Science.gov

Sample records for nio-based oxygen carrier

  1. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  2. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies. PMID:25898071

  3. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  4. Current status of injectable oxygen carriers.

    PubMed

    Zuck, T F; Riess, J G

    1994-01-01

    In this review the current status of what commonly are termed "blood substitutes" is discussed. The term blood substitute is a misnomer because the formulations under development at this time transport respiratory gases but do not perform the metabolic, regulatory, and protective functions of blood. Either hemoglobin or a perfluorochemical form the base to transport oxygen; the advantages and disadvantages of each base are discussed. The availability of a blood substitute in the U.S. will require approval by the Food and Drug Administration (FDA) and, by law, both its efficacy and safety must be demonstrated prior to approval. Showing efficacy of any blood substitute is complicated by the oxygen reserve and the compensatory mechanisms to acute blood loss in man. The challenge is to prove that the administration of these formulations offer clinical advantages compared with replacement of volume alone. Several efficacy models, the most attractive among them being perioperative hemodilution, should provide data that would bring these formulations into clinical practice. When hemoglobin is not within the favorable environment of the red cell, whether the hemoglobin is derived from expression vectors developed through recombinant biotechnology or from lysed human red cells, it acquires a left-shifted oxygen disassociation curve. Further, because the tetramer disassociates when injected intravenously and the resulting dimers are cleared rapidly from the circulation by the kidneys, intravascular dwell time is brief. Hemoglobins have been modified chemically and linked intramolecularly, intermolecularly, and to macromolecules to correct these problems. While these manipulations have normalized the p50 and extended the dwell time significantly, some toxicity problems remain unresolved. The binding of nitric oxide to hemoglobin preparations and the presumably resultant systemic and pulmonary hypertension observed in animals may be the most difficult to overcome, although the

  5. Polymeric nanoparticles for hemoglobin-based oxygen carriers.

    PubMed

    Piras, Anna Maria; Dessy, Alberto; Chiellini, Federica; Chiellini, Emo; Farina, Claudio; Ramelli, Massimiliano; Della Valle, Elena

    2008-10-01

    This article reports on the current status of the research on blood substitutes with particular attention on hemoglobin-based oxygen carriers (HBOCs). Insights on the physiological role of hemoglobin are reported in the view of the development of both acellular and cellular hemoglobin-based oxygen carriers. Attention is then focused on biocompatible polymeric materials that find application as matrices for cellular based HBOCs and on the strategies employed to avoid methemoglobin formation. Results are reported regarding the use of bioerodible polymeric matrices based on hemiesters of alternating copolymer (maleic anhydride-co-butyl vinyl ether) for the preparation of hemoglobin loaded nanoparticles.

  6. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  7. Methane adsorption and dissociation on iron oxide oxygen carriers: the role of oxygen vacancies.

    PubMed

    Cheng, Zhuo; Qin, Lang; Guo, Mengqing; Fan, Jonathan A; Xu, Dikai; Fan, Liang-Shih

    2016-06-28

    We performed ab initio DFT+U calculations to explore the interaction between methane and iron oxide oxygen carriers for chemical looping reaction systems. The adsorption of CH4 and CHx (x = 0-3) radicals on α-Fe2O3(001), and the influence of oxygen vacancies at the top surface and on the subsurface on the adsorption properties of the radicals was investigated. The adsorption strength for CH4 and C radicals at the top of the α-Fe2O3(001) surface in the presence of oxygen vacancies is lower than that on the stoichiometric surface. However, for methyl (CH3), methylene (CH2) and methine (CH) radicals, it is correspondingly higher. In contrast, the oxygen vacancy formation on the subsurface not only increases the adsorption strength of CH3, CH2 and CH radicals, but also facilitates C radical adsorption. We found that oxygen vacancies significantly affect the adsorption configuration of CHx radicals, and determine the probability of finding an adsorbed species in the stoichiometric region and the defective region at the surface. With the obtained adsorption geometries and energetics of these species adsorbed on the surface, we extend the analysis to CH4 dissociation under chemical looping reforming conditions. The distribution of adsorbed CH4 and CHx (x = 0-3) radicals is calculated and analyzed which reveals the relationship between adsorbed CHx radical configuration and oxygen vacancies in iron oxide. Also, the oxygen vacancies can significantly facilitate CH4 activation by lowering the dissociation barriers of CH3, CH2 and CH radicals. However, when the oxygen vacancy concentration reaches 2.67%, increasing the oxygen vacancy concentration cannot continue to lower the CH dissociation barrier. The study provides fundamental insights into the mechanism of CH4 dissociation on iron based oxygen carriers and also provide guidance to design more efficient oxygen carriers. PMID:27265327

  8. Effects of Hemoglobin-Based Oxygen Carriers on Blood Coagulation

    PubMed Central

    Roghani, Kimia; Holtby, Randall J.; Jahr, Jonathan S.

    2014-01-01

    For many decades, Hemoglobin-based oxygen carriers (HBOCs) have been central in the development of resuscitation agents that might provide oxygen delivery in addition to simple volume expansion. Since 80% of the world population lives in areas where fresh blood products are not available, the application of these new solutions may prove to be highly beneficial (Kim and Greenburg 2006). Many improvements have been made to earlier generation HBOCs, but various concerns still remain, including coagulopathy, nitric oxide scavenging, platelet interference and decreased calcium concentration secondary to volume expansion (Jahr et al. 2013). This review will summarize the current challenges faced in developing HBOCs that may be used clinically, in order to guide future research efforts in the field. PMID:25514567

  9. Oxygen transport during hemodilution with a perfluorocarbon-based oxygen carrier: effect of altitude and hyperoxia.

    PubMed

    Gardeazábal, Tatiana; Cabrera, Mariana; Cabrales, Pedro; Intaglietta, Marcos; Briceño, Juan Carlos

    2008-08-01

    Oxygen delivery and consumption after hemodilution with a perfluorocarbon-based oxygen carrier (PFCOC) was evaluated at sea level and at 2,600 m above sea level. Fifteen anesthetized rats were subjected to a two-exchange normovolemic hemodilution of 40% of the circulating blood volume each. First exchange was performed with a colloid solution. Second exchange was with 80% PFCOC and 20% colloid. Animals were then ventilated with 100% oxygen. Experiments were performed at barometric pressure of 1.0 atm (sea-level group, n=9) or 0.74 atm (2,600-m group, n=6). Blood gases, hematocrit, fluorocrit, and hemoglobin content were measured at baseline and 15 min after each exchange. After hemodilution, total arterial content was not modified by the PFCOC in either group. In contrast, arteriovenous oxygen difference increased significantly in both groups, as did the oxygen extraction ratio. In the second exchange, although total arterial content was similar between the two groups, the perfluorocarbon and plasma phases contributed significantly more at sea level. Arteriovenous oxygen difference was significantly less at sea level with a higher contribution from the perfluorocarbon and plasma phases. In conclusion, hemodilution with a PFCOC induced changes in oxygen delivery and consumption that differ with altitude. The 2,600-m group exhibited a higher oxygen extraction ratio and arteriovenous oxygen difference, with reduced oxygen delivery and unloading from both the fluorocarbon and plasma phase. Therefore, the efficacy of PFCOCs at 2,600 m above sea level is reduced, and altitude must be taken into account when PFCOCs are used.

  10. Development of Recombinant Hemoglobin-Based Oxygen Carriers

    PubMed Central

    Varnado, Cornelius L.; Mollan, Todd L.; Birukou, Ivan; Smith, Bryan J.Z.; Henderson, Douglas P.

    2013-01-01

    Abstract Significance: The worldwide blood shortage has generated a significant demand for alternatives to whole blood and packed red blood cells for use in transfusion therapy. One such alternative involves the use of acellular recombinant hemoglobin (Hb) as an oxygen carrier. Recent Advances: Large amounts of recombinant human Hb can be expressed and purified from transgenic Escherichia coli. The physiological suitability of this material can be enhanced using protein-engineering strategies to address specific efficacy and toxicity issues. Mutagenesis of Hb can (i) adjust dioxygen affinity over a 100-fold range, (ii) reduce nitric oxide (NO) scavenging over 30-fold without compromising dioxygen binding, (iii) slow the rate of autooxidation, (iv) slow the rate of hemin loss, (v) impede subunit dissociation, and (vi) diminish irreversible subunit denaturation. Recombinant Hb production is potentially unlimited and readily subjected to current good manufacturing practices, but may be restricted by cost. Acellular Hb-based O2 carriers have superior shelf-life compared to red blood cells, are universally compatible, and provide an alternative for patients for whom no other alternative blood products are available or acceptable. Critical Issues: Remaining objectives include increasing Hb stability, mitigating iron-catalyzed and iron-centered oxidative reactivity, lowering the rate of hemin loss, and lowering the costs of expression and purification. Although many mutations and chemical modifications have been proposed to address these issues, the precise ensemble of mutations has not yet been identified. Future Directions: Future studies are aimed at selecting various combinations of mutations that can reduce NO scavenging, autooxidation, oxidative degradation, and denaturation without compromising O2 delivery, and then investigating their suitability and safety in vivo. Antioxid. Redox Signal. 18, 2314–2328. PMID:23025383

  11. Attrition Rate of Oxygen Carriers in Chemical Looping Combustion Systems

    NASA Astrophysics Data System (ADS)

    Feilen, Harry Martin

    This project developed an evaluation methodology for determining, accurately and rapidly, the attrition resistance of oxygen carrier materials used in chemical looping technologies. Existing test protocols, to evaluate attrition resistance of granular materials, are conducted under non-reactive and ambient temperature conditions. They do not accurately reflect the actual behavior under the unique process conditions of chemical looping, including high temperatures and cyclic operation between oxidizing and reducing atmospheres. This project developed a test method and equipment that represented a significant improvement over existing protocols. Experimental results obtained from this project have shown that hematite exhibits different modes of attrition, including both due to mechanical stresses and due to structural changes in the particles due to chemical reaction at high temperature. The test methodology has also proven effective in providing reactivity changes of the material with continued use, a property, which in addition to attrition, determines material life. Consumption/replacement cost due to attrition or loss of reactivity is a critical factor in the economic application of the chemical looping technology. This test method will allow rapid evaluation of a wide range of materials that are best suited for this technology. The most important anticipated public benefit of this project is the acceleration of the development of chemical looping technology for lowering greenhouse gas emissions from fossil fuel combustion.

  12. Validation of oxygen saturation measurements in a canine model of hemoglobin-based oxygen carrier infusion.

    PubMed

    Jahr, Jonathan S; Lurie, Fedor; Driessen, Bernd; Tang, Zuping; Louie, Richard F; Kost, Gerald

    2003-01-01

    This study was designed to validate oxygen saturation measurements from the NOVA CO-Oximeter (NOVA Biomedical Corporation, Waltham, MA), the i-STAT System (Sensor Devices, Waukesha, WI), and the Corning 170 blood gas analyzer (Bayer Corporation, East Walpole, MA) under conditions similar to the clinical application of a hemoglobin-based oxygen carrier (HBOC, hemoglobin glutamer-200 [bovine]; Oxyglobin, Biopure Corporation, Cambridge, MA). A canine model was used for both in vitro and in vivo experiments. In vivo experiments were conducted in a canine laboratory, and in vitro experiments were conducted in a tonometry laboratory. Study subjects were six mixed-breed dogs, each weighing approximately 30 kg. In the first set of experiments, the target blood po(2) levels were reached by tonometry. In the second set of experiments, quantitative measurements of total oxygen content with the LEXO2CON-K (HOSPEX Fiberoptics, Chestnut Hill, MA) were performed, immediately followed by measurements with the NOVA CO-Oximeter and the i-STAT system. HBOC was added in concentrations of 16.2, 32.5, 65, and 97.5 g/L. To analyze the clinical significance of the differences in the results obtained with the each investigated instrument, blood samples from dogs treated with HBOC after acute hemorrhagic shock were used. Oxygen saturation, oxygen content, and po(2) were measured. There was a strong correlation between the oxygen saturation values measured with the investigated instruments in samples after tonometry and known po(2). The total calculated oxygen content varied by 5% based on results generated by calculations using the investigated instruments. The results did not change with different oxygenation of the sample. The differences among methods were not significant when the HBOC concentration was 16.2 g/L. Higher concentrations of HBOC increased the difference between calculated and measured oxygen content; the i-STAT system demonstrated a greater deviation compared with the

  13. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    SciTech Connect

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  14. Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes.

    PubMed

    Tao, Zhimin; Ghoroghchian, P Peter

    2014-09-01

    Here, we discuss recent advances in the development of artificial red blood cell (RBC) substitutes, illustrating lessons learned from initial attempts using perfluorocarbon (PFC) emulsions and acellular hemoglobin-based oxygen carriers (HBOCs). We also highlight novel oxygen-containing microparticles, nanoparticles, and stem cell-derived RBC products, with emphasis on improvements in biocompatibility and oxygen delivery. In addition, we envision future developments for the rational design of advanced blood substitutes that aim to address unmet clinical needs.

  15. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the

  16. The USA Multicenter Prehosptial Hemoglobin -based Oxygen Carrier Resuscitation Trial: Scientific Rationale, Study Design, and Results

    PubMed Central

    Moore, Ernest E.; Johnson, Jeffrey L.; Moore, Frederick A.; Moore, Hunter B.

    2013-01-01

    The current generation of blood substitutes tested in clinical trials are red blood cell (RBC) substitutes; that is, they are designed primarily to transport oxygen. The products now being used in advanced-phase clinical trials are derived from hemoglobin (Hb) and are thus often referred to as Hb-based oxygen carriers (HBOCs). The potential benefits of HBOCs are well known (Box 1). The objectives of this overview are to provide the scientific background and rationale for the study design of the USA Multi-center Prehospital HBOC Resuscitation Trial and to present the results and discuss clinical implications. Box 1Potential clinical benefits of hemoglobin-based oxygen carriers in trauma careAvailabilityAbundant supplyUniversally compatibleProlonged shelf-lifeStorage at room temperatureSafetyNo disease transmissionsNo antigenic reactionsNo immunologic effectsEfficacyEnhanced oxygen deliveryImproved rheologic properties PMID:19341912

  17. Current status of oxygen carriers ('blood substitutes'): 2006.

    PubMed

    Winslow, R M

    2006-08-01

    An alternative to blood transfusion, based on oxygen-carrying solutions, has been sought for over a century. The present 'first-generation' haemoglobin-products were based on observations that crosslinking with, for example, glutaraldehyde, overcame subunit dissociation and renal toxicity. Experience with these solutions has shown that they can be vasoactive, sometimes increasing blood pressure, sometimes decreasing tissue perfusion and sometimes both. Clinical trials have been disappointing because of unexpected toxicity. The 'second-generation' products are based on a better understanding of the mechanisms of this vasoconstriction. Such products may seem counterintuitive by traditional standards, but it is hoped that they will be less toxic, more beneficial to patients, and more economical to produce.

  18. Nanocomposite oxygen carriers for chemical-looping combustion of sulfur-contaminated synthesis gas

    SciTech Connect

    Rahul D. Solunke; Goetz Veser

    2009-09-15

    Chemical-looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC, which combine the high reactivity of metals with the high-temperature stability of ceramics. In the present study, we investigate the effect of H{sub 2}S in a typical coal-derived syngas on the stability and redox kinetics of Ni- and Cu-based nanostructured oxygen carriers. Both carriers show excellent structural stability and only mildly changed redox kinetics upon exposure to H{sub 2}S, despite a significant degree of sulfide formation. Surprisingly, partial sulfidation of the support results in a strong increase in oxygen carrier capacity in both cases because of the addition of a sulfide-sulfate cycle. Overall, the carriers show great potential for use in CLC of high-sulfur fuels. 21 refs., 13 figs. 1 tab.

  19. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOEpatents

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  20. Hemoglobin-Based Oxygen Carrier for Traumatic Hemorrhagic Shock Treatment in a Jehovah’s Witness

    PubMed Central

    Posluszny, Joseph A.; Napolitano, Lena M.

    2016-01-01

    Introduction: Treatment of severe hemorrhagic shock due to acute blood loss from traumatic injuries in a Jehovah’s witness (JW) trauma patient is very challenging since hemostatic blood product resuscitation is limited by refusal of the transfusion of allogeneic blood products. Case Presentation: We describe a multifaceted approach to the clinical care of a severely anemic JW trauma patient including the early administration of a bovine hemoglobin-based oxygen carrier (HBOC) as a bridge to resolution of critical anemia (nadir hemoglobin 3.9 g/dL). Hemoglobin-based oxygen carrier infusions were used to supplement oxygen delivery until endogenous erythropoiesis could restore adequate red blood cell mass. Subsequent endogenous bone marrow recovery was supported by early administration of high-dose erythropoiesis-stimulating agents and iron supplementation. Conclusions: Early HBOC administration can be used in the treatment of severe hemorrhagic shock in trauma patients who refuse allogeneic blood.

  1. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal

    SciTech Connect

    Siriwardane, Ranjani V.; Ksepko, Ewelina; Tian, Hanging

    2013-01-01

    The objective of this work was to prepare supported bimetallic Fe–Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe–Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe–Cu/support oxygen carriers. Bimetallic Fe–Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 °C to 900 °C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe–Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800–900 °C and might be successfully used up to 900 °C for coal CLC reaction in the presence of steam.

  2. Large >60 gallon/day ‘pulse-tube’ oxygen liquefier for aircraft carriers

    NASA Astrophysics Data System (ADS)

    Spoor, P. S.

    2015-12-01

    An oxygen liquefier using a large ‘pulse-tube’ or acoustic-Stirling cryocooler is described, which has a liquefaction rate in excess of 60 gallons per day (227 liters per day) as measured by the increase in weight of a storage dewar, from <20 kWe input. Several of these systems will be deployed on U.S. Navy aircraft carriers to provide shipboard liquid oxygen. Paths to improvement in future systems are identified, although it is noted that since the present system exceeds the required specifications, these improvements may not be implemented in the near term.

  3. Artificial oxygen carriers--the new doping threat in endurance sport?

    PubMed

    Schumacher, Y O; Schmid, A; Dinkelmann, S; Berg, A; Northoff, H

    2001-11-01

    Maximal oxygen uptake is the major performance limiting factor in endurance sports. Sophisticated training methods have been developed to increase this variable. On the other hand, attempts have been made to improve maximal oxygen uptake by artificial means: blood doping and the misuse of recombinant human erythropoietin have beneficial effects on aerobic exercise capacity. Both methods have been banned by international sporting federations. A new class of substances might represent the next step of fraudulent improvement of the maximal oxygen uptake: artificial oxygen carriers, such as solutions based on recombinant, bovine or human hemoglobin and perfluorocarbon-emulsions have been shown to improve oxygen delivery to the muscle. Hemoglobin-based solutions improve aerobic exercise capacity in animal and human testing. Both substances have potentially lethal side effects including renal toxicity, increased systemic and pulmonary blood pressure and impairment of the immune system. Hemoglobin-based carriers can be detected in drug testing with routine laboratory tests based on the detection of free hemoglobin. Perfluorocarbon is not metabolized by the body and exhaled through the lung and can be measured with chromatography. No screening for these substances in drug tests has been performed so far. International sporting federations should be aware of this new, emerging doping threat.

  4. Lipidheme-microsphere (LH-M). A new type of totally synthetic oxygen carrier and its oxygen carrying ability.

    PubMed

    Kakizaki, T; Kobayashi, K; Komatsu, T; Nishide, H; Tsuchida, E

    1994-01-01

    We have succeeded in synthesizing a new type of totally artificial oxygen carrier which was produced by covering oil droplets (microsphere) with synthetic hemes (LH-M). We studied its oxygen-transporting ability in hemorrhagic dogs. Four beagles weighing about 8 kg were studied. Under controlled ventilation, exchange-transfusion of 30 ml/kg was carried out. Cardiac output, hemoglobin and LH-M concentration in the blood, and blood gas were measured to 5 hours after intravenous injection of LH-M solution. LH-M delivered 15.7 to 22.3 ml/min (11 to 16%) of oxygen to the tissue and 5.5 to 8.2 ml/min (11 to 17%) of oxygen was consumed from LH-M to 5 hours after intravenous injection. Its half-life time in the blood stream was about 12 hours. It was confirmed that LH-M transported oxygen and released it to the tissue in vivo.

  5. Development of an ultrasound sensitive oxygen carrier for oxygen delivery to hypoxic tissue.

    PubMed

    Eisenbrey, John R; Albala, Lorenzo; Kramer, Michael R; Daroshefski, Nick; Brown, David; Liu, Ji-Bin; Stanczak, Maria; O'Kane, Patrick; Forsberg, Flemming; Wheatley, Margaret A

    2015-01-15

    Radiation therapy is frequently used in the treatment of malignancies, but tumors are often more resistant than the surrounding normal tissue to radiation effects, because the tumor microenvironment is hypoxic. This manuscript details the fabrication and characterization of an ultrasound-sensitive, injectable oxygen microbubble platform (SE61O2) for overcoming tumor hypoxia. SE61O2 was fabricated by first sonicating a mixture of Span 60 and water-soluble vitamin E purged with perfluorocarbon gas. SE61O2 microbubbles were separated from the foam by flotation, then freeze dried under vacuum to remove all perfluorocarbon, and reconstituted with oxygen. Visually, SE61O2 microbubbles were smooth, spherical, with an average diameter of 3.1 μm and were reconstituted to a concentration of 6.5 E7 microbubbles/ml. Oxygen-filled SE61O2 provides 16.9 ± 1.0 dB of enhancement at a dose of 880 μl/l (5.7 E7 microbubbles/l) with a half-life under insonation of approximately 15 min. In in vitro release experiments, 2 ml of SE61O2 (1.3 E8 microbubbles) triggered with ultrasound was found to elevate oxygen partial pressures of 100ml of degassed saline 13.8 mmHg more than untriggered bubbles and 20.6 mmHg more than ultrasound triggered nitrogen-filled bubbles. In preliminary in vivo delivery experiments, triggered SE61O2 resulted in a 30.4 mmHg and 27.4 mmHg increase in oxygen partial pressures in two breast tumor mouse xenografts.

  6. Sulfur behavior in chemical looping combustion with NiO/Al{sub 2}O{sub 3} oxygen carrier

    SciTech Connect

    Shen, Laihong; Gao, Zhengping; Wu, Jiahua; Xiao, Jun

    2010-05-15

    Chemical looping combustion (CLC) is a novel technology where CO{sub 2} is inherently separated during combustion. Due to the existence of sulfur contaminants in the fossil fuels, the gaseous products of sulfur species and the interaction of sulfur contaminants with oxygen carrier are a big concern in the CLC practice. The reactivity of NiO/Al{sub 2}O{sub 3} oxygen carrier reduction with a gas mixture of CO/H{sub 2} and H{sub 2}S is investigated by means of a thermogravimetric analyzer (TGA) and Fourier Transform Infrared spectrum analyzer in this study. An X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to evaluate the phase characterization of reacted oxygen carrier, and the formation mechanisms of the gaseous products of sulfur species are elucidated in the process of chemical looping combustion with a gaseous fuel containing hydrogen sulfide. The results show that the rate of NiO reduction with H{sub 2}S is higher than the one with CO. There are only Ni and Ni{sub 3}S{sub 2} phases of nickel species in the fully reduced oxygen carrier, and no evidence for the existence of NiS or NiS{sub 2}. The formation of Ni{sub 3}S{sub 2} is completely reversible during the process of oxygen carrier redox. A liquid phase sintering on the external surface of reduced oxygen carriers is mainly attributed to the production of the low melting of Ni{sub 3}S{sub 2} in the nickel-based oxygen carrier reduction with a gaseous fuel containing H{sub 2}S. Due to the sintering of metallic nickel grains on the external surface of the reduced oxygen carrier, further reaction of the oxygen carrier with H{sub 2}S is constrained, and there is no increase of the sulfidation index of the reduced oxygen carrier with the cyclical reduction number. Also, a continuous operation with a syngas of carbon monoxide and hydrogen containing H{sub 2}S is carried out in a 1 kW{sub th} CLC prototype based on the nickel-based oxygen carrier, and

  7. Significance of oxygen carriers and role of liquid paraffin in improving validamycin A production.

    PubMed

    Feng, Jinsong; Jiang, Jing; Liu, Yan; Li, Wei; Azat, Ramila; Zheng, Xiaodong; Zhou, Wen-Wen

    2016-10-01

    Validamycin A (Val-A) synthesized by Streptomyces hygroscopicus 5008 is widely used as a high-efficient antibiotic to protect plants from sheath blight disease. A novel fermentation strategy was introduced to stimulate Val-A production by adding oxygen carriers. About 58 % increase in Val-A production was achieved using liquid paraffin. Further, biomass, carbon source, metabolic genes, and metabolic enzymes were studied. It was also found that the supplementation of liquid paraffin increased the medium dissolved oxygen and intracellular oxidative stress level. The expression of the global regulators afsR and soxR sensitive to ROS, ugp catalyzing synthesis of Val-A precursor, and Val-A structural genes was enhanced. The change of the activities of glucose-6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase was observed, which reflected the redirection of carbon metabolic flux. Based on these results, liquid paraffin addition as an oxygen carrier could be a useful technique in industrial production of Val-A and our study revealed a redox-based secondary metabolic regulation in S. hygroscopicus 5008, which provided a new insight into the regulation of the biosynthesis of secondary metabolites. PMID:27514663

  8. Significance of oxygen carriers and role of liquid paraffin in improving validamycin A production.

    PubMed

    Feng, Jinsong; Jiang, Jing; Liu, Yan; Li, Wei; Azat, Ramila; Zheng, Xiaodong; Zhou, Wen-Wen

    2016-10-01

    Validamycin A (Val-A) synthesized by Streptomyces hygroscopicus 5008 is widely used as a high-efficient antibiotic to protect plants from sheath blight disease. A novel fermentation strategy was introduced to stimulate Val-A production by adding oxygen carriers. About 58 % increase in Val-A production was achieved using liquid paraffin. Further, biomass, carbon source, metabolic genes, and metabolic enzymes were studied. It was also found that the supplementation of liquid paraffin increased the medium dissolved oxygen and intracellular oxidative stress level. The expression of the global regulators afsR and soxR sensitive to ROS, ugp catalyzing synthesis of Val-A precursor, and Val-A structural genes was enhanced. The change of the activities of glucose-6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase was observed, which reflected the redirection of carbon metabolic flux. Based on these results, liquid paraffin addition as an oxygen carrier could be a useful technique in industrial production of Val-A and our study revealed a redox-based secondary metabolic regulation in S. hygroscopicus 5008, which provided a new insight into the regulation of the biosynthesis of secondary metabolites.

  9. Using fluorochemical as oxygen carrier to enhance the growth of marine microalga Nannochloropsis oculata.

    PubMed

    Lee, Yu-Hsiang; Yeh, Yu-Ling; Lin, Keng-Hsien; Hsu, Yu-Chih

    2013-08-01

    The commercial value of marine Nannochloropsis oculata has been recognized due to its high content of eicosapentaenoic acid (>50% w/w). To make it as a profitable bioresource, one of the most desirable goals is to develop a quality-controlled, cost-effective, and large-scale photobioreactor for N. oculata growth. Generally, closed culture system can offer many advantages over open system such as small space requirement, controllable process and low risk of contamination. However, oxygen accumulation is often a detrimental factor for enclosed microalgal culture that has seriously hampered the development of microalga-related industries. In this study, we proposed to use fluorochemical as oxygen carrier to overcome the challenge where four liquid fluorochemicals namely perfluorooctyl bromide, perfluorodecalin, methoxynonafluorobutane, and ethoxynonafluorobutane were investigated separately. Our results showed that the microalgal proliferation with different fluorinated liquids was similar and comparable to the culture without a fluorochemical. When cultured in the photobioreactor with 60% oxygen atmosphere, the N. oculata can grow up in all the fluorochemical photobioreactors, but completely inhibited in the chamber without a fluorochemical. Moreover, the perfluorooctyl bromide system exhibited the most robust efficacy of oxygen removal in the culture media (perfluorooctyl bromide > perfluorodecalin > methoxynonafluorobutane > ethoxynonafluorobutane), and yielded a >3-fold increase of biomass production after 5 days. In summary, the developed fluorochemical photobioreactors offer a feasible means for N. oculata growth in closed and large-scale setting without effect of oxygen inhibition.

  10. Using fluorochemical as oxygen carrier to enhance the growth of marine microalga Nannochloropsis oculata.

    PubMed

    Lee, Yu-Hsiang; Yeh, Yu-Ling; Lin, Keng-Hsien; Hsu, Yu-Chih

    2013-08-01

    The commercial value of marine Nannochloropsis oculata has been recognized due to its high content of eicosapentaenoic acid (>50% w/w). To make it as a profitable bioresource, one of the most desirable goals is to develop a quality-controlled, cost-effective, and large-scale photobioreactor for N. oculata growth. Generally, closed culture system can offer many advantages over open system such as small space requirement, controllable process and low risk of contamination. However, oxygen accumulation is often a detrimental factor for enclosed microalgal culture that has seriously hampered the development of microalga-related industries. In this study, we proposed to use fluorochemical as oxygen carrier to overcome the challenge where four liquid fluorochemicals namely perfluorooctyl bromide, perfluorodecalin, methoxynonafluorobutane, and ethoxynonafluorobutane were investigated separately. Our results showed that the microalgal proliferation with different fluorinated liquids was similar and comparable to the culture without a fluorochemical. When cultured in the photobioreactor with 60% oxygen atmosphere, the N. oculata can grow up in all the fluorochemical photobioreactors, but completely inhibited in the chamber without a fluorochemical. Moreover, the perfluorooctyl bromide system exhibited the most robust efficacy of oxygen removal in the culture media (perfluorooctyl bromide > perfluorodecalin > methoxynonafluorobutane > ethoxynonafluorobutane), and yielded a >3-fold increase of biomass production after 5 days. In summary, the developed fluorochemical photobioreactors offer a feasible means for N. oculata growth in closed and large-scale setting without effect of oxygen inhibition. PMID:23178985

  11. Protoporphyrin IX nanoparticle carrier: preparation, optical properties, and singlet oxygen generation.

    PubMed

    Rossi, Liane M; Silva, Paulo R; Vono, Lucas L R; Fernandes, Adjaci U; Tada, Dayane B; Baptista, Maurício S

    2008-11-01

    The present study is focused on developing a nanoparticle carrier for the photosensitizer protoporphyrin IX for use in photodynamic therapy. The entrapment of protoporphyrin IX (Pp IX) in silica spheres was achieved by modification of Pp IX molecules with an organosilane reagent. The immobilized drug preserved its optical properties and the capacity to generate singlet oxygen, which was detected by a direct method from its characteristic phosphorescence decay curve at near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen when a suspension of Pp IX-loaded particles in acetonitrile was excited at 532 nm was determined as 52 micros, which is in good agreement with the value determined for methylene blue in acetonitrile solution under the same conditions. The Pp IX-loaded silica particles have an efficiency of singlet oxygen generation (eta Delta) higher than the quantum yield of free porphyrins. This high efficiency of singlet oxygen generation was attributed to changes on the monomer-dimer equilibrium after photosentisizer immobilization. PMID:18834155

  12. Artificial oxygen carriers based on perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules.

    PubMed

    Stephan, Claudia; Schlawne, Carolin; Grass, Stefan; Waack, Indra N; Ferenz, Katja B; Bachmann, Michael; Barnert, Sabine; Schubert, Rolf; Bastmeyer, Martin; de Groot, Herbert; Mayer, Christian

    2014-01-01

    Poly(n-butyl-cyanoacrylate)-nanocapsules filled by perfluorodecalin (PFD) are proposed as potential oxygen carriers for blood substitute. The capsule dispersion is prepared via interfacial polymerisation from a PFD emulsion in water which in turn is generated by spontaneous phase separation. The resulting dispersion is capable of carrying approximately 10% of its own volume of gaseous oxygen, which is approximately half of the capacity of human blood. The volumes of the organic solvents and water are varied within a wide range, connected to a change of the capsule radius between 200 and 400 nm. The principal suitability of the capsule dispersion for intravenous application is proven in first physiological experiments. A total amount of 10 ml/kg body weight has been infused into rats, with the dispersion supernatant and a normal saline solution as controls. After the infusion of nanocapsules, the blood pressure as well as the heart rate remains constant on a normal level.

  13. Chemical looping combustion of biomass-derived syngas using ceria-supported oxygen carriers.

    PubMed

    Huang, H B; Aisyah, L; Ashman, P J; Leung, Y C; Kwong, C W

    2013-07-01

    Cu, Ni and Fe oxides supported on ceria were investigated for their performance as oxygen carriers during the chemical looping combustion of biomass-derived syngas. A complex gas mixture containing CO, H2, CO2, CH4 and other hydrocarbons was used to simulate the complex fuel gas environment derived from biomass gasification. Results show that the transfer of the stored oxygen into oxidants for the supported Cu and Ni oxides at 800°C for the combustion of syngas was effective (>85%). The unsupported Cu oxide showed high oxygen carrying capacity but particle sintering was observed at 800°C. A reaction temperature of 950°C was required for the supported Fe oxides to transfer the stored oxygen into oxidants effectively. Also, for the complex fuel gas environment, the supported Ni oxide was somewhat effective in reforming CH4 and other light hydrocarbons into CO, which may have benefits for the reduction of tar produced during biomass pyrolysis.

  14. Custom instruction set NIOS-based OFDM processor for FPGAs

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Sunkara, Divya; Castillo, Encarnacion; Garcia, Antonio

    2006-05-01

    Orthogonal Frequency division multiplexing (OFDM) spread spectrum technique, sometimes also called multi-carrier or discrete multi-tone modulation, are used in bandwidth-efficient communication systems in the presence of channel distortion. The benefits of OFDM are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. OFDM is the basis for the European digital audio broadcasting (DAB) standard, the global asymmetric digital subscriber line (ADSL) standard, in the IEEE 802.11 5.8 GHz band standard, and ongoing development in wireless local area networks. The modulator and demodulator in an OFDM system can be implemented by use of a parallel bank of filters based on the discrete Fourier transform (DFT), in case the number of subchannels is large (e.g. K > 25), the OFDM system are efficiently implemented by use of the fast Fourier transform (FFT) to compute the DFT. We have developed a custom FPGA-based Altera NIOS system to increase the performance, programmability, and low power in mobil wireless systems. The overall gain observed for a 1024-point FFT ranges depending on the multiplier used by the NIOS processor between a factor of 3 and 16. A careful optimization described in the appendix yield a performance gain of up to 77% when compared with our preliminary results.

  15. Toward 21st century blood component replacement therapeutics: artificial oxygen carriers, platelet substitutes, recombinant clotting factors, and others.

    PubMed

    Kim, Hae Won; Greenburg, A Gerson

    2006-01-01

    In this brief overview, recent progress and current status of blood substitute research and development is summarized. Current blood substitute development efforts are focused on red blood cell substitutes but substitutes for platelets and other blood components are also in progress. Red cell substitutes currently in various stages of development are semi-synthetic or synthetic oxygen carriers that include "stealth" or "masked" red cells, hemoglobin-based oxygen carriers and perfluorocarbon-based oxygen carriers. Artificial platelets (or platelet substitutes) are in early stages of development and include human platelet fragments or particles of synthetic/semi-synthetic materials or recombinant human serum albumin coupled with platelet surface receptor fragments. Of note, some recombinant clotting factors (Factors VII, VIII, IX) have already been successfully developed and licensed for treatment of hemophilia. In addition, some future approaches and prospects of blood component replacement therapeutics are discussed.

  16. Polyketide Quinones Are Alternate Intermediate Electron Carriers during Mycobacterial Respiration in Oxygen-Deficient Niches.

    PubMed

    Anand, Amitesh; Verma, Priyanka; Singh, Anil Kumar; Kaushik, Sandeep; Pandey, Rajesh; Shi, Ce; Kaur, Harneet; Chawla, Manbeena; Elechalawar, Chandra Kumar; Kumar, Dhirendra; Yang, Yong; Bhavesh, Neel S; Banerjee, Rajkumar; Dash, Debasis; Singh, Amit; Natarajan, Vivek T; Ojha, Anil K; Aldrich, Courtney C; Gokhale, Rajesh S

    2015-11-19

    Mycobacterium tuberculosis (Mtb) adaptation to hypoxia is considered crucial to its prolonged latent persistence in humans. Mtb lesions are known to contain physiologically heterogeneous microenvironments that bring about differential responses from bacteria. Here we exploit metabolic variability within biofilm cells to identify alternate respiratory polyketide quinones (PkQs) from both Mycobacterium smegmatis (Msmeg) and Mtb. PkQs are specifically expressed in biofilms and other oxygen-deficient niches to maintain cellular bioenergetics. Under such conditions, these metabolites function as mobile electron carriers in the respiratory electron transport chain. In the absence of PkQs, mycobacteria escape from the hypoxic core of biofilms and prefer oxygen-rich conditions. Unlike the ubiquitous isoprenoid pathway for the biosynthesis of respiratory quinones, PkQs are produced by type III polyketide synthases using fatty acyl-CoA precursors. The biosynthetic pathway is conserved in several other bacterial genomes, and our study reveals a redox-balancing chemicocellular process in microbial physiology. PMID:26585386

  17. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity

    PubMed Central

    Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  18. Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers. 1. Fate of sulfur

    SciTech Connect

    Garcia-Labiano, F.; de Diego, L.F.; Gayan, P.; Adanez, J.; Abad, A.; Dueso, C.

    2009-03-15

    Chemical-looping combustion (CLC) has been suggested among the best alternatives to reduce the economic cost of CO{sub 2} capture using fuel gas because CO{sub 2} is inherently separated in the process. For gaseous fuels, natural gas, refinery gas, or syngas from coal gasification can be used. These fuels may contain different amounts of sulfur compounds, such as H{sub 2}S and COS. An experimental investigation of the fate of sulfur during CH{sub 4} combustion in a 500 W{sub th} CLC prototype using a Ni-based oxygen carrier has been carried out. The effect on the oxygen carrier behavior and combustion efficiency of several operating conditions such as temperature and H{sub 2}S concentration has been analyzed. Nickel sulfide, Ni3S{sub 2}, was formed at all operating conditions in the fuel reactor, which produced an oxygen carrier deactivation and lower combustion efficiencies. However, the oxygen carrier recovered their initial reactivity after certain time without sulfur addition. The sulfides were transported to the air reactor where SO{sub 2} was produced as final gas product. Agglomeration problems derived from the sulfides formation were never detected during continuous operation. Considering both operational and environmental aspects, fuels with sulfur contents below 100 vppm H{sub 2}S seem to be adequate to be used in an industrial CLC plant.

  19. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity.

    PubMed

    Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  20. Identification of deep trap energies and influences of oxygen plasma ashing on semiconductor carrier lifetime

    NASA Astrophysics Data System (ADS)

    Koprowski, A.; Humbel, O.; Plappert, M.; Krenn, H.

    2015-03-01

    We have performed an analytical study of the effects of oxygen plasma ashing processes in semiconductor device fabrication and its impact on minority carrier lifetime in high voltage semiconductor devices. Our work includes a critical background study of life time killing mechanisms by deep traps imparted into the semiconductor by barrel plasma ashing. The Elymat technique provides the opportunity to measure lifetime and diffusion length of minority carriers and surface photo voltage (SPV) measurement was used to analyse influences of process parameters such as photoresist, time budget and positioning in the process chamber. It was shown that in microwave plasma processes the diffusion length changes severely with tempering at 200 °C, whereas RF-plasma processes show a significant process time-dependence. Batch tools in general suffer from a strong first wafer effect which could be correlated with the static electrical parameters of the semiconductor devices. The trap identities were detected by using deep level transient spectroscopy and the chemical species of the traps has been proven by inductive coupled plasma mass spectrometry. The deep-bandgap trap energies are reliable fingerprints of the chosen process parameters such as process time and of resist-influences. By microwave plasma processes intrinsic Fe and FeB-complex levels were identified and a good agreement with the SPV-measurement and electrical device characteristic was shown. RF-plasma processes impart levels attributed to Pt levels and an additional level, which could be identified as a trap level probably forming a complex of Pt and H.

  1. Advancement in recombinant protein production using a marine oxygen carrier to enhance oxygen transfer in a CHO-S cell line.

    PubMed

    Le Pape, Fiona; Bossard, Morgane; Dutheil, Delphine; Rousselot, Morgane; Polard, Valérie; Férec, Claude; Leize, Elisabeth; Delépine, Pascal; Zal, Franck

    2015-06-01

    Recombinant proteins, particularly proteins used as therapeutics, are widely expressed for bioprocessing manufacturing processes. Mammalian cell lines represent the major host cells for bioproduction, according to their capacities of post-translational modifications and folding of secreted proteins. Many parameters can affect cell productivity, especially the rate of oxygen transfer. Dissolved oxygen, in high or low proportions, is a crucial parameter which can affect cell viability and thus productivity. HEMARINA has developed a new technology, commercially proposed as HEMOXCell(®), to improve cell culture at a large production scale. HEMOXCell(®) is a marine oxygen carrier having properties of high oxygen sensitivity, to be used as an oxygen additive during cell culture manufacturing. In this study, we investigated the effects of HEMOXCell(®) on the culture of the commonly used CHO-S cell line. Two main objectives were pursued: 1) cell growth rate and viability during a batch mode process, and 2) the determination of the effect of this oxygen carrier on recombinant protein production from a CHO-transfected cell line. Our results show an increase of CHO-S cellular growth at a rate of more than four-fold in culture with HEMOXCell(®). Moreover, an extension of the growth exponential phase and high cell viability were observed. All of these benefits seem to contribute to the improvement of recombinant protein production. This work underlines several applications using this marine-type oxygen carrier for large biomanufacturing. It is a promising cell culture additive according to the increasing demand for therapeutic products such as monoclonal antibodies.

  2. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  3. Cell-free oxygen carriers: scientific foundations, clinical development, and new directions.

    PubMed

    Winslow, Robert M

    2008-10-01

    The most significant hurdle to the development of a safe and effective hemoglobin-based oxygen carrier ("blood substitute") is generally thought to be its propensity to cause vasoconstriction in the microcirculation and hypertension. Two theories for this effect are currently being studied: in one, scavenging NO by hemoglobin reduces vasorelaxation; in the other, cell-free hemoglobin oversupplies O2 (a known vasoconstrictor) to vascular walls by facilitated diffusion. While both mechanisms might lead to reduction of local NO concentration, the important distinction between the two is that if the NO scavenging theory is correct, it greatly diminishes the prospects to develop any solution based on free hemoglobin. However, if the O2-oversupply theory is correct, modifications to the hemoglobin molecule can be envisioned that can prevent oversupply and reduce toxicity. This review summarizes the development of Hemospan, a novel modification of human hemoglobin whose design is based on the O2-oversupply theory. Because of its low P50 and increased molecular size, the release of O2 in resistance vessels (arterioles) by Hemospan is restricted, and vasoconstriction is greatly reduced.

  4. Influence of oxygen addition to the carrier gas on laser-induced breakdown spectroscopy measurements on aerosols

    NASA Astrophysics Data System (ADS)

    Palazzo, N.; Migliorini, F.; Dondè, R.; Maffi, S.; De Iuliis, S.

    2016-01-01

    In this work, laser-induced breakdown spectrosopy is implemented on aerosol particles for absolute concentration analysis. The aim of this work is the investigation of the effect of the bath gas used for nebulizing the aerosol. Nitrogen, air, and 50% O2 in N2 mixture have been chosen as carrier gasses in order to analyze the effect of oxygen addition to the gas. LIBS measurements have been carried out on aerosol particles produced from CuCl2 2H2O solutions, and the 324.7 nm Cu line is considered. As a first analysis, plasma parameters, such as temperature and electron density, have been evaluated changing the carrier gas. Measurements to derive the LIBS calibration curve of the 324.7 nm Cu line are carried out in air and in N2. The significant difference in the slope of the resulting calibration curves has to be attributed to the oxygen addition to the bath gas. To explore such behavior, time-resolved measurements of the Cu line and peak/base ratio have been performed. The presence of two competitive effects have been observed that becomes significant increasing the amount of oxygen in the carrier gas. One is the oxygen-quenching effect, already observed in the literature, and the other one is the enhancement of the Cu LIBS signal, expecially at short delay times. These effects have been observed also at other Cu lines and changing the analyte source. The results are presented and widely discussed.

  5. Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model.

    PubMed

    Li, Heng; Ohta, Hidenobu; Tahara, Yu; Nakamura, Sakiko; Taguchi, Kazuaki; Nakagawa, Machiko; Oishi, Yoshihisa; Goto, Yu-Ichi; Wada, Keiji; Kaga, Makiko; Inagaki, Masumi; Otagiri, Masaki; Yokota, Hideo; Shibata, Shigenobu; Sakai, Hiromi; Okamura, Kunihiro; Yaegashi, Nobuo

    2015-10-16

    Pre-eclampsia affects approximately 5% of all pregnant women and remains a major cause of maternal and fetal morbidity and mortality. The hypertension associated with pre-eclampsia develops during pregnancy and remits after delivery, suggesting that the placenta is the most likely origin of this disease. The pathophysiology involves insufficient trophoblast invasion, resulting in incomplete narrow placental spiral artery remodeling. Placental insufficiency, which limits the maternal-fetal exchange of gas and nutrients, leads to fetal intrauterine growth restriction. In this study, in our attempt to develop a new therapy for pre-eclampsia, we directly rescued placental and fetal hypoxia with nano-scale size artificial oxygen carriers (hemoglobin vesicles). The present study is the first to demonstrate that artificial oxygen carriers successfully treat placental hypoxia, decrease maternal plasma levels of anti-angiogenic proteins and ameliorate fetal growth restriction in the pre-eclampsia rat model.

  6. Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model

    PubMed Central

    Li, Heng; Ohta, Hidenobu; Tahara, Yu; Nakamura, Sakiko; Taguchi, Kazuaki; Nakagawa, Machiko; Oishi, Yoshihisa; Goto, Yu-ichi; Wada, Keiji; Kaga, Makiko; Inagaki, Masumi; Otagiri, Masaki; Yokota, Hideo; Shibata, Shigenobu; Sakai, Hiromi; Okamura, Kunihiro; Yaegashi, Nobuo

    2015-01-01

    Pre-eclampsia affects approximately 5% of all pregnant women and remains a major cause of maternal and fetal morbidity and mortality. The hypertension associated with pre-eclampsia develops during pregnancy and remits after delivery, suggesting that the placenta is the most likely origin of this disease. The pathophysiology involves insufficient trophoblast invasion, resulting in incomplete narrow placental spiral artery remodeling. Placental insufficiency, which limits the maternal-fetal exchange of gas and nutrients, leads to fetal intrauterine growth restriction. In this study, in our attempt to develop a new therapy for pre-eclampsia, we directly rescued placental and fetal hypoxia with nano-scale size artificial oxygen carriers (hemoglobin vesicles). The present study is the first to demonstrate that artificial oxygen carriers successfully treat placental hypoxia, decrease maternal plasma levels of anti-angiogenic proteins and ameliorate fetal growth restriction in the pre-eclampsia rat model. PMID:26471339

  7. Hemorheological implications of perfluorocarbon based oxygen carrier interaction with colloid plasma expanders and blood.

    PubMed

    Vásquez, Diana M; Ortiz, Daniel; Alvarez, Oscar A; Briceño, Juan C; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsions used as artificial oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in vitro in parallel with in vivo analysis of blood flow in the microcirculation using intravital microscopy, when PEs were administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation and increased blood viscosity in a shear dependent fashion. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo compared to nonaggregating mixtures of PFC and PEs. For the PEs evaluated, human serum albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rates (e.g., arterioles, venules, and pulmonary circulation) when used in a clinical setting, because persistent aggregates could cause capillary occlusion, decreased perfusion, pulmonary emboli or focal ischemia.

  8. Synthesis of Hemoglobin Conjugated Polymeric Micelle: A ZnPc Carrier with Oxygen Self-Compensating Ability for Photodynamic Therapy.

    PubMed

    Wang, Shasha; Yuan, Fang; Chen, Kui; Chen, Gaojian; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun

    2015-09-14

    Photodynamic therapy (PDT) is a promising singlet oxygen ((1)O2) mediated clinical treatment for many tumors. As the source of (1)O2, oxygen plays an important role in the curative effect of PDT. However, the facts of photochemical depletion of oxygen and the intrinsic hypoxic microenvironment of tumors remain the major challenges. In this work, a novel photosensitizer carrier with oxygen self-compensating ability was designed for PDT. It was synthesized via chemical conjugation of hemoglobin (Hb) to polymeric micelles formed by triblock copolymers of poly(ethylene glycol)-block-poly(acrylic acid)-block-polystyrene (PEG-b-PAA-b-PS). The PEG-b-PAA-b-PS and resultant micelles in aqueous solution were comprehensively characterized by means of FTIR, (1)H NMR, GPC, DLS, TEM, and fluorescence spectroscopy. The oxygen-binding capacity and antioxidative activity of the Hb conjugated micelles were evaluated via UV-vis spectroscopy. In addition, compared with the control micelles without Hb, the Hb conjugated photosensitizer carrier was able to generate more (1)O2 and exert greater photocytotoxicity on Hela cells in vitro.

  9. Evaluation of the capabilities of a hemoglobin vesicle as an artificial oxygen carrier in a rat exchange transfusion model.

    PubMed

    Izumi, Y; Sakai, H; Kose, T; Hamada, K; Takeoka, S; Yoshizu, A; Horinouchi, H; Kato, R; Nishide, H; Tsuchida, E; Kobayashi, K

    1997-01-01

    Encapsulation of hemoglobin within a liposome is one of the strategies in the development of artificial oxygen carriers. It maintains the oxygen transporting properties of hemoglobin and, at the same time, eliminates the side effects of cell free hemoglobin. Hemoglobin vesicles (HbV) are a type of liposome encapsulated hemoglobin. They have a particle size of approximately 250 nm, a hemoglobin concentration of 10 g/dl, and the oxygen affinity, P50, is regulated to 32 Torr. In this study the authors examined the oxygen transporting capability of HbV in vivo, by performing exchange transfusions in rats. Exchange transfusion (90% of the estimated circulatory volume) with HbV suspended in 5% albumin (containing 160 mEq/L, sodium and 107 mEq/L, chloride) was carried out in male Wistar rats. Mean arterial pressure and heart rate were monitored through the arterial catheter. Arterial blood samples for gas analyses were also obtained from the arterial catheter. Abdominal aortic blood flow was measured by an ultrasonic pulsed Doppler flowmeter as an indicator of cardiac output. The oxygen tension of blood withdrawn from the right atrium was measured as an indicator of mixed venous oxygen tension. These values were employed to calculate oxygen delivery and consumption. Renal cortical and skeletal muscle tissue oxygen tensions were monitored as indicators of tissue perfusion. Five percent albumin and washed rat red blood cells suspended in 5% albumin containing 10 g/dl of hemoglobin; were employed as controls. At the completion of a 90% exchange transfusion, renal cortical and skeletal muscle tissue oxygen tensions, along with oxygen delivery and consumption, were sustained almost equally well with the HbV suspension compared to the washed rat red blood cell suspension, but declined significantly with the albumin suspension. The results indicate that the oxygen transporting capability of HbV was almost equivalent to that of rat red blood cells. PMID:9242942

  10. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    NASA Astrophysics Data System (ADS)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it

  11. Fluorinert, an oxygen carrier, improves cell culture performance in deep square 96-well plates by facilitating oxygen transfer.

    PubMed

    Meyer, Aaron; Condon, Russell G G; Keil, Gregory; Jhaveri, Nikita; Liu, Zhong; Tsao, Yung-Shyeng

    2012-01-01

    In bioprocess development, the 96-well plate format has been widely used for high-throughput screening of production cell line or culture conditions. However, suspension cell cultures in conventional 96-well plates often fail to reach high cell density under normal agitation presumably due to constraints in oxygen transfer. Although more vigorous agitation can improve gas transfer in 96-well plate format, it often requires specialized instruments. In this report, we employed Fluorinert, a biologically inert perfluorocarbon, to improve oxygen transfer in 96-well plate and to enable the growth of a Chinese Hamster Ovary cell line expressing a recombinant monoclonal antibody. When different amounts of Fluorinert were added to the cell culture medium, a dose-dependent improvement in cell growth was observed in both conventional and deep square 96-well plates. When sufficient Fluorinert was present in the culture, the cell growth rate, the peak cell density, and recombinant protein production levels achieved in deep square 96-wells were comparable to cultures in ventilated shake flasks. Although Fluorinert is known to dissolve gases such as oxygen and CO(2), it does not dissolve nor extract medium components, such as glucose, lactate, or amino acids. We conclude that mixing Fluorinert with culture media is a suitable model for miniaturization of cell line development and process optimization. Proper cell growth and cellular productivity can be obtained with a standard shaker without the need for any additional aeration or vigorous agitation. PMID:21954223

  12. The effect of synthetic oxygen carrier-enriched fibrin hydrogel on Schwann cells under hypoxia condition in vitro.

    PubMed

    Ma, Teng; Wang, Yuqing; Qi, Fengyu; Zhu, Shu; Huang, Liangliang; Liu, Zhongyang; Huang, Jinghui; Luo, Zhuojing

    2013-12-01

    Schwann cell (SC), which plays a key role in peripheral nerve regeneration, is one of the most classic supportive cells in neural tissue engineering. However, the biological activity of SCs seeded in nerve scaffolds decays subsequently due to local hypoxia induced by ischemia. Thus, we aimed to investigate whether a synthetic oxygen carrier-enriched fibrin gel would provide a sustained oxygen release to cultured SCs in vitro for overcoming a temporary (48 h) oxygen deprivation. In this study, perfluorotributylamine (PFTBA)-based oxygen carrying fibrin gel was prepared to provide oxygen for SCs under normoxic or hypoxic conditions. The dissolved oxygen within the culture media was measured by a blood-gas analyzer to quantify the time course of oxygen release from the PFTBA-enriched fibrin gel. SCs were cultured in the presence or absence of PFTBA-enriched fibrin gel under normoxic or hypoxic conditions. The tolerance of SCs to hypoxia was examined by a cell apoptosis assay. The growth of cells was characterized using S-100 staining and a CCK-8 assay. The migration of cells was examined using a Transwell chamber. The mRNA of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glial cell derived neurotrophic factor (GDNF), neural cell adhesion molecule (N-CAM) and vascular endothelial growth factor (VEGF) in SCs were assayed by RT-PCR. In addition, SCs cultured in 3D PFTBA-enriched hydrogel were characterized by Live/Dead staining and the mRNA levels of BDNF, NGF, GDNF, N-CAM and VEGF were assayed by RT-PCR. The results showed that the PFTBA-enriched fibrin hydrogel was able to promote cell adhesion, migration, and proliferation under hypoxic conditions. Interestingly, PFTBA applied through the fibrin hydrogel dramatically enhanced the mRNA of BDNF, NGF, GDNF, N-CAM and VEGF under hypoxic condition. These findings highlight the possibility of enhancing nerve regeneration in cellular nerve grafts through PFTBA increased neurotropic secretion in SCs.

  13. Hydrogen- and oxygen-related effects in phthalocyanine crystals: formation of carrier traps and a change in the magnetic state.

    PubMed

    Tsetseris, Leonidas

    2014-02-21

    The performance of organic semiconductors as electronic materials is very sensitive to impurity incorporation and reactions. Here we show using first-principles calculations that hydrogen and oxygen impurities introduce distinct changes in the electronic properties of metal phthalocyanines (MPc), a family of organic semiconductors renowned for their light conversion efficiency. Selective adsorption of hydrogen atoms on pyridinic nitrogen atoms of MPc molecules, namely zinc and copper phthalocyanines, modifies the magnetic state of the latter and generates carrier trap states deep in the band gap of MPc crystals. Reactions with O atoms have a lesser effect on MPc electronic properties, while intercalated oxygen molecules give rise to traps below the conduction band minimum. The results identify H and O impurities as important degradation culprits for MPc-based systems, in agreement with pertinent experiments. PMID:24413162

  14. Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing.

    PubMed

    Wijekoon, Asanka; Fountas-Davis, Natalie; Leipzig, Nic D

    2013-03-01

    In this study a series of novel, biocompatible hydrogels able to repeatedly takeup and deliver oxygen at beneficial levels have been developed by conjugating various perfluorocarbon (PFC) chains to methacrylamide chitosan via Schiff base nucleophilic substitution, followed by photopolymerization to form hydrogels. The synthesized fluorinated methacrylamide chitosan (MACF) hydrogels were confirmed by high resolution (19)F NMR. Synthesized MACF hydrogels were tested for their ability to takeup and then release oxygen for future use in dermal wound healing. Depending on the PFC substitution type maximum O(2) uptake was observed within 2-6h, followed by complete release to the surrounding environment (5% CO(2)) within 12-120h at oxygen partial pressures of 1-25mm Hg h(-1), providing outstanding system tuning for wound healing and regenerative medicine. MACFs with the most fluorines per substitution showed the greatest uptake and release of oxygen. Interestingly, adding PFC chains with a fluorinated aromatic group considerably enhanced oxygen uptake and extended release compared with a linear PFC chain with the same number of fluorine molecules. MACF hydrogels proved to be readily reloaded with oxygen once release was complete, and regeneration could be performed as long as the hydrogel was intact. Fibroblasts were cultured on MACFs and assays confirmed that materials containing more fluorines per substitution supported the most cells with the greatest metabolic activity. This result was true, even without oxygenation, suggesting PFC-facilitated oxygen diffusion from the culture medium. Finally, MACF gradient hydrogels were created, demonstrating that these materials can control oxygen levels on a spatial scale of millimeters and greatly enhance cellular proliferative and metabolic responses.

  15. Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier.

    PubMed

    Luo, Guozhi; Li, Li; Liu, Qian; Xu, Guimei; Tan, Hongxin

    2014-11-01

    The effect of dissolved oxygen (DO) on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier was evaluated in a lab-scale experiment. Aerated, low-oxygen, and anoxic treatment groups were set up, which had average DO concentrations of 5.2±1.0, 1.4±1.2, and 0.5±0.3 mg L(-1), respectively. The NO3(-)-N and total nitrogen (TN) removal rates in the aerated group (37.44±0.24 and 36.24±0.48 g m(-3) d(-1), respectively) were higher than those in the other two groups. There was no significant difference between the low-oxygen and anoxic groups for the NO3(-)-N or TN removal rate. Accumulation of NO2(-)-N reached 5.0 mg L(-1) in the aerated group; no nitrite accumulation was found in the other two treatment groups. Bacterial communities of the low-oxygen and anoxic groups showed high similarity and were significantly different from those of the aerated group.

  16. Oxygen carrier for gas chromatographic analysis of inert gases in propellants

    NASA Technical Reports Server (NTRS)

    Cannon, W. A.

    1972-01-01

    Gas chromatographic determination of small quantities of inert gases in reactive propellants is discussed. Operating conditions used for specific analyses of helium in diborane and nitrogen in oxygen difluoride are presented in tabular form.

  17. Perfluorodecalin-Filled Poly(n-butyl-cyanoacrylate) Nanocapsules as Potential Artificial Oxygen Carriers: Preclinical Safety and Biocompatibility.

    PubMed

    Laudien, Julia; Groß-Heitfeld, Christoph; Mayer, Christian; de Groot, Herbert; Kirsch, Michael; Ferenz, Katja B

    2015-08-01

    With regard to the development of artificial blood substitutes, perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules are already discussed for the use as artificial oxygen carriers. The aim of the present study was to thoroughly investigate the preclinical safety and biocompatibility of the perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules prepared by interfacial polymerization. Nanocapsules were assessed for physical and microbial stability. Subsequent to intravenous infusion to anesthetized rats, effects on systemic parameters, microcirculation, circulatory in vivo half-life, acid base/metabolic status, organ damage and biodistribution were evaluated using inter alia 19F-NMR spectroscopy and in vivo microscopy. Perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules displayed physical and microbial stability over a period of 4 weeks and the circulatory in vivo half-life was t1/2 = 30 min. In general, all animals tolerated intravenous infusion of the prepared nanocapsules, even though several side-effects occurred. As a consequence of nanocapsule infusion, a transient decrease in mean arterial blood pressure, impairment of hepatic microcirculation, organ/tissue damage of liver, spleen and small intestine, as well as an elevation of plasma enzyme activities such as lactate dehydrogenase, creatine kinase and aspartate aminotransferase could be observed. The assessment of the distribution pattern revealed nanocapsule accumulation in spleen, kidney and small intestine. Perfluorodecalin-filled poly(n-butyl-cyanoacrylate) nanocapsules conformed to basic requirements of drugs under preclinical development but further improvement is needed to establish these nanocapsules as novel artificial oxygen carriers.

  18. Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles

    PubMed Central

    Sinks, Louise E.; Robbins, Gregory P.; Roussakis, Emmanuel; Troxler, Thomas; Hammer, Daniel A.; Vinogradov, Sergei A.

    2010-01-01

    Oxygen concentration distributions in biological systems can be imaged by the phosphorescence quenching method in combination with two-photon laser scanning microscopy. In this paper we identified the excitation regime in which the signal of a two-photon-enhanced phosphorescent probe1 is dependent quadratically on the excitation power (quadratic regime), and performed simulations that relate the photophysical properties of the probe to the imaging resolution. Further, we characterized polymersomes as a method of probe encapsulation and delivery. Photo-physical and oxygen sensing properties of the probe were found unchanged when the probe is encapsulated in polymersomes. Polymersomes were found capable of sustaining high probe concentrations, thereby serving to improve the signal-to-noise ratios for oxygen detection compared to the previously employed probe delivery methods. Imaging of polymersomes loaded with the probe was used as a test-bed for a new method. PMID:20462225

  19. Coencapsulation of oxygen carriers and glucose oxidase in polyelectrolyte complex capsules for the enhancement of D-gluconic acid and delta-gluconolactone production.

    PubMed

    Bucko, Marek; Gemeiner, Peter; Vikartovská, Alica; Mislovicová, Danica; Lacík, Igor; Tkác, Ján

    2010-04-01

    A novel encapsulated oxidative biocatalyst comprising glucose oxidase (GOD) coencapsulated with oxygen carriers within polyelectrolyte complex capsules was developed for the production of D-gluconic acid and delta-gluconolactone. The capsules containing immobilized GOD were produced by polyelectrolyte complexation with sodium alginate (SA) and cellulose sulfate (CS) as polyanions, poly(methylene-co-guanidine) (PMCG) as the polycation, CaCl(2) as the gelling agent and NaCl as the antigelling agent (GOD-SA-CS/PMCG capsules). Poly(dimethylsiloxane) (PDMS) and an emulsion of n-dodecane (DOD) or perfluorodecaline (PFD) with PDMS were used as the oxygen carriers and MnO(2) was used as a hydrogen peroxide decomposition catalyst. Water-soluble PDMS was found to act as both an oxygen carrier and an emulsifier of water-insoluble DOD and PFD. Stable microcapsules could be produced with concentrations of up to 4% (w/w) of PDMS, 10% (w/w) of DOD and PFD, and 25% (w/w) of MnO(2) in the polyanion solution of SA and CS. Roughly a two-fold increase in the GOD activity from 21.0+/-1.1 to 38.4+/-2.0 U*g(-1) and product space-time yields (STY) from 44.3+/-2.0 to 83.4+/-3.4 g*H*day(-1) could be achieved utilizing coencapsulated oxygen carriers compared to GOD encapsulated in the absence of oxygen carriers. This enhanced production does not significantly depend on the selected oxygen carrier under the conditions used in this study.

  20. Coencapsulation of oxygen carriers and glucose oxidase in polyelectrolyte complex capsules for the enhancement of D-gluconic acid and delta-gluconolactone production.

    PubMed

    Bucko, Marek; Gemeiner, Peter; Vikartovská, Alica; Mislovicová, Danica; Lacík, Igor; Tkác, Ján

    2010-04-01

    A novel encapsulated oxidative biocatalyst comprising glucose oxidase (GOD) coencapsulated with oxygen carriers within polyelectrolyte complex capsules was developed for the production of D-gluconic acid and delta-gluconolactone. The capsules containing immobilized GOD were produced by polyelectrolyte complexation with sodium alginate (SA) and cellulose sulfate (CS) as polyanions, poly(methylene-co-guanidine) (PMCG) as the polycation, CaCl(2) as the gelling agent and NaCl as the antigelling agent (GOD-SA-CS/PMCG capsules). Poly(dimethylsiloxane) (PDMS) and an emulsion of n-dodecane (DOD) or perfluorodecaline (PFD) with PDMS were used as the oxygen carriers and MnO(2) was used as a hydrogen peroxide decomposition catalyst. Water-soluble PDMS was found to act as both an oxygen carrier and an emulsifier of water-insoluble DOD and PFD. Stable microcapsules could be produced with concentrations of up to 4% (w/w) of PDMS, 10% (w/w) of DOD and PFD, and 25% (w/w) of MnO(2) in the polyanion solution of SA and CS. Roughly a two-fold increase in the GOD activity from 21.0+/-1.1 to 38.4+/-2.0 U*g(-1) and product space-time yields (STY) from 44.3+/-2.0 to 83.4+/-3.4 g*H*day(-1) could be achieved utilizing coencapsulated oxygen carriers compared to GOD encapsulated in the absence of oxygen carriers. This enhanced production does not significantly depend on the selected oxygen carrier under the conditions used in this study. PMID:20222845

  1. Charge carrier dynamics in nanocrystalline Dy substituted ceria based oxygen ion conductors

    NASA Astrophysics Data System (ADS)

    Anirban, Sk.; Dutta, A.

    2016-05-01

    Nano-crystalline Ce1-xDyxO2-δ (x = 0.1-0.5) materials were prepared using the low temperature citrate auto-ignition method. The Rietveld analysis of the XRD data confirmed the single phase cubic fluorite structure. The particle sizes of the sintered samples are in nano range and lattice parameter increases with Dy concentration. Polydispersed and agglomerated particles are observed by SEM. The EDAX spectra show good stoichiometry of the different atoms in the samples. The conductivity is found to have both grain and grain boundary contribution and shows highest value at x= 0.2. The frequency dependence of dielectric permittivity has been analyzed using Havrilliak-Negami formalism. The variation in different electrical properties has been explained by formation defect associates and their interaction with charge carriers.

  2. Pharmacokinetic study of enclosed hemoglobin and outer lipid component after the administration of hemoglobin vesicles as an artificial oxygen carrier.

    PubMed

    Taguchi, Kazuaki; Urata, Yukino; Anraku, Makoto; Maruyama, Toru; Watanabe, Hiroshi; Sakai, Hiromi; Horinouchi, Hirohisa; Kobayashi, Koichi; Tsuchida, Eishun; Kai, Toshiya; Otagiri, Masaki

    2009-07-01

    The hemoglobin vesicle (HbV) is an artificial oxygen carrier that encapsulates a concentrated Hb solution in lipid vesicles (liposomes). The pharmacokinetic properties of HbV were investigated in mice and rats. With use of HbV in which the internal Hb was labeled with (125)I ((125)I-HbV) and cell-free (125)I-Hb, it was found that encapsulation of Hb increased the half-life by 30 times, accompanied by decreased distribution in both the liver and kidney. The half-life of HbV was increased, and the uptake clearance for the liver and spleen were decreased with increasing doses of HbV. In an in vitro study, the specific uptake and degradation of HbV in RAW 264.7 cells were found, but this was not the case for parenchymal and endothelial cells. The pharmacokinetics of HbV components (internal Hb and liposomal lipid) were also investigated using (125)I-HbV and (3)H-HbV (liposomal cholesterol was radiolabeled with tritium-3). The time courses for the plasma concentration curves of (125)I-HbV, (3)H-HbV, and iron derived from HbV suggest that HbV maintain an intact structure in the blood circulation up to 24 h after injection. (125)I-HbV and (3)H-HbV were distributed mainly to the liver and spleen. Internal Hb disappeared from both the liver and spleen 5 days after injection, and the liposomal cholesterol disappeared at approximately 14 days. Internal Hb was excreted into the urine and cholesterol into feces via biliary excretion. These results suggest that the HbV has a reasonable blood retention and metabolic and excretion performance and could be used as an oxygen carrier.

  3. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity.

    PubMed

    He, Weiwei; Kim, Hyun-Kyung; Wamer, Wayne G; Melka, David; Callahan, John H; Yin, Jun-Jie

    2014-01-15

    Semiconductor nanostructures with photocatalytic activity have the potential for many applications including remediation of environmental pollutants and use in antibacterial products. An effective way for promoting photocatalytic activity is depositing noble metal nanoparticles (NPs) on a semiconductor. In this paper, we demonstrated the successful deposition of Au NPs, having sizes smaller than 3 nm, onto ZnO NPs. ZnO/Au hybrid nanostructures having different molar ratios of Au to ZnO were synthesized. It was found that Au nanocomponents even at a very low Au/ZnO molar ratio of 0.2% can greatly enhance the photocatalytic and antibacterial activity of ZnO. Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au NPs on the generation of reactive oxygen species and photoinduced charge carriers. Deposition of Au NPs onto ZnO resulted in a dramatic increase in light-induced generation of hydroxyl radical, superoxide and singlet oxygen, and production of holes and electrons. The enhancing effect of Au was dependent on the molar ratio of Au present in the ZnO/Au nanostructures. Consistent with these results from ESR measurements, ZnO/Au nanostructures also exhibited enhanced photocatalytic and antibacterial activity. These results unveiled the enhanced mechanism of Au on ZnO and these materials have great potential for use in water purification and antibacterial products.

  4. Size-dependent interaction of cells and hemoglobin-albumin based oxygen carriers prepared using the SPG membrane emulsification technique.

    PubMed

    Lai, Yao-Tong; Ohta, Seiichi; Akamatsu, Kazuki; Nakao, Shin-Ichi; Sakai, Yasuyuki; Ito, Taichi

    2015-01-01

    Hemoglobin-based oxygen carriers (HBOCs) of various sizes have been developed so far, but their optimum size has not been clarified yet. Here, we examined the effect of HBOCs size on their interaction with cells using Shirasu porous glass (SPG) membrane emulsification technique, which enables precise tuning of particle size. Microspheres composed of bovine hemoglobin (bHb) and bovine serum albumin (BSA) was fabricated with the average diameters of 1.2-18.3 μm and the coefficient of variation of below 13%. Cellular uptake of the microspheres by RAW264.7 was observed at a diameter below 5 μm; however, uptake of the microspheres by HepG2 and HUVEC were not observed at any diameter. No enhancement of the generation of reactive oxygen species in the cytoplasm was detected at diameters above 9.8 μm in the three cell lines, due to their low cellular uptake. In addition, cytotoxicity of the microspheres decreased with increasing microsphere diameter in the three cell lines and microspheres of 18.3 μm showed good cellular compatibility regardless of the oxyhemoglobin percentage. Since cytotoxicity is a crucial factor in their applications, our systemic investigation would provide a new insight into the design of HBOCs. PMID:26399378

  5. Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions.

    PubMed

    Fontes, P; Lopez, R; van der Plaats, A; Vodovotz, Y; Minervini, M; Scott, V; Soltys, K; Shiva, S; Paranjpe, S; Sadowsky, D; Barclay, D; Zamora, R; Stolz, D; Demetris, A; Michalopoulos, G; Marsh, J W

    2015-02-01

    We describe a new preservation modality combining machine perfusion (MP) at subnormothermic conditions(21 °C) with a new hemoglobin-based oxygen carrier (HBOC) solution. MP (n=6) was compared to cold static preservation (CSP; n=6) in porcine orthotopic liver transplants after 9 h of cold ischemia and 5-day follow-up. Recipients' peripheral blood, serial liver biopsies, preservation solutions and bile specimens were collected before, during and after liver preservation. Clinical laboratorial and histological analyses were performed in addition to mitochondrial functional assays, transcriptomic, metabolomic and inflammatory inflammatory mediator analyses. Compared with CSP, MP animals had: (1) significantly higher survival (100%vs. 33%; p<0.05); (2) superior graft function (p<0.05);(3) eight times higher hepatic O2 delivery than O2 consumption (0.78 mL O2/g/h vs. 0.096 mL O2/g/h) during MP; and (4) significantly greater bile production (MP=378.5 ± 179.7; CS=151.6 ± 116.85). MP downregulated interferon (IFN)-α and IFN-γ in liver tissue. MP allografts cleared lactate, produced urea, sustained gluconeogenesis and produced hydrophilic bile after reperfusion. Enhanced oxygenation under subnormothermic conditions triggers regenerative and cell protective responses resulting in improved allograft function. MP at 21 °C with the HBOC solution significantly improves liver preservation compared to CSP.

  6. Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a ~550 kDa polypeptide

    PubMed Central

    2010-01-01

    Background The allosteric respiratory protein hemocyanin occurs in gastropods as tubular di-, tri- and multimers of a 35 × 18 nm, ring-like decamer with a collar complex at one opening. The decamer comprises five subunit dimers. The subunit, a 400 kDa polypeptide, is a concatenation of eight paralogous functional units. Their exact topology within the quaternary structure has recently been solved by 3D electron microscopy, providing a molecular model of an entire didecamer (two conjoined decamers). Here we study keyhole limpet hemocyanin (KLH2) tridecamers to unravel the exact association mode of the third decamer. Moreover, we introduce and describe a more complex type of hemocyanin tridecamer discovered in fresh/brackish-water cerithioid snails (Leptoxis, Melanoides, Terebralia). Results The "typical" KLH2 tridecamer is partially hollow, whereas the cerithioid tridecamer is almost completely filled with material; it was therefore termed "mega-hemocyanin". In both types, the staggering angle between adjoining decamers is 36°. The cerithioid tridecamer comprises two typical decamers based on the canonical 400 kDa subunit, flanking a central "mega-decamer" composed of ten unique ~550 kDa subunits. The additional ~150 kDa per subunit substantially enlarge the internal collar complex. Preliminary oxygen binding measurements indicate a moderate hemocyanin oxygen affinity in Leptoxis (p50 ~9 mmHg), and a very high affinity in Melanoides (~3 mmHg) and Terebralia (~2 mmHg). Species-specific and individual variation in the proportions of the two subunit types was also observed, leading to differences in the oligomeric states found in the hemolymph. Conclusions In cerithioid hemocyanin tridecamers ("mega-hemocyanin") the collar complex of the central decamer is substantially enlarged and modified. The preliminary O2 binding curves indicate that there are species-specific functional differences in the cerithioid mega-hemocyanins which might reflect different physiological

  7. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    NASA Technical Reports Server (NTRS)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure < 70 mmHg, head trauma, and penetrating injury requiring surgery. HSD and HSS have received regulatory approval in 14 and 3 countries, respectively, with 81,000+ units sold. The primary reported use was head injury and trauma resuscitation. Complications and reported adverse events are surprisingly rare and not significantly different from other solutions.HBOCs are potent volume expanders in addition to oxygen carriers with volume expansion greater than standard colloids. Several investigators have evaluated small volume hyperoncotic HBOCs or HS-HBOC formulations for hypotensive and normotensive resuscitation in animals. A consistent finding in resuscitation with HBOCs is depressed cardiac output. There is some evidence that HBOCs more efficiently unload

  8. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers.

    PubMed

    Chen, Jiin-Yu; Scerbo, Michelle; Kramer, George

    2009-01-01

    The complications associated with acquiring and storing whole blood for transfusions have launched substantial efforts to develop a blood substitute. The history of these efforts involves a complicated mixture of science, ethics, and business. This review focuses on clinical trials of the three hemoglobin-based oxygen carriers (HBOC) that have progressed to Phase II or III clinical trials: He-mAssist (Baxter; Deerfield, IL, US), PolyHeme (Northfield; Evanston, IL, US), and Hemopure (Biopure; Cambridge, MA, US). Published animal studies and clinical trials carried out in a perioperative setting have demonstrated that these products successfully transport and deliver oxygen, but all may induce hypertension and lead to unexpectedly low cardiac outputs. Overall, these studies suggest that HBOCs resulted in only modest blood saving during and after surgery, no improvement in mortality and an increased incidence of adverse reactions. To date, the results from these perioperative studies have not led to regulatory approval. All three companies instead chose to focus their efforts on large trials of trauma patients in the pre-hospital setting.Baxter abandoned the development of HemAssist after a trial in the U.S. was prematurely halted when the first 100 patients showed significantly increased mortality rates as compared to patients treated with blood products. Northfield's PolyHeme trial demonstrated a non-significant trend towards increased mortality and a very modest reduction in the subsequent need for blood. The testing of Biopure's Hemopure for trauma patients has been halted for several years because of FDA concerns over trial design and study justification. Ethical concerns have also been raised regarding the design and implementation of all HBOC clinical trials.Thus, the available evidence suggests that HemAssist, Polyheme, and Hemopure are associated with a significant level of cardiovascular dysfunction. The next generation of HBOCs remains under development.

  9. Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.

    PubMed

    Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang

    2014-05-01

    Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4.

  10. Liver Preservation With Machine Perfusion and a Newly Developed Cell‐Free Oxygen Carrier Solution Under Subnormothermic Conditions

    PubMed Central

    Lopez, R.; van der Plaats, A.; Vodovotz, Y.; Minervini, M.; Scott, V.; Soltys, K.; Shiva, S.; Paranjpe, S.; Sadowsky, D.; Barclay, D.; Zamora, R.; Stolz, D.; Demetris, A.; Michalopoulos, G.; Marsh, J. W.

    2015-01-01

    We describe a new preservation modality combining machine perfusion (MP) at subnormothermic conditions (21°C) with a new hemoglobin‐based oxygen carrier (HBOC) solution. MP (n = 6) was compared to cold static preservation (CSP; n = 6) in porcine orthotopic liver transplants after 9 h of cold ischemia and 5‐day follow‐up. Recipients' peripheral blood, serial liver biopsies, preservation solutions and bile specimens were collected before, during and after liver preservation. Clinical laboratorial and histological analyses were performed in addition to mitochondrial functional assays, transcriptomic, metabolomic and inflammatory mediator analyses. Compared with CSP, MP animals had: (1) significantly higher survival (100% vs. 33%; p < 0.05); (2) superior graft function (p < 0.05); (3) eight times higher hepatic O2 delivery than O2 consumption (0.78 mL O2/g/h vs. 0.096 mL O2/g/h) during MP; and (4) significantly greater bile production (MP = 378.5 ± 179.7; CS = 151.6 ± 116.85). MP down‐regulated interferon (IFN)‐α and IFN‐γ in liver tissue. MP allografts cleared lactate, produced urea, sustained gluconeogenesis and produced hydrophilic bile after reperfusion. Enhanced oxygenation under subnormothermic conditions triggers regenerative and cell protective responses resulting in improved allograft function. MP at 21°C with the HBOC solution significantly improves liver preservation compared to CSP. PMID:25612645

  11. Rheological properties of hemoglobin vesicles (artificial oxygen carriers) suspended in a series of plasma-substitute solutions.

    PubMed

    Sakai, Hiromi; Sato, Atsushi; Takeoka, Shinji; Tsuchida, Eishun

    2007-07-17

    Hemoglobin vesicles (HbV) or liposome-encapsulated Hbs are artificial oxygen carriers that have been developed for use as transfusion alternatives. The extremely high concentration of the HbV suspension (solutes, ca. 16 g/dL; volume fraction, ca. 40 vol %) gives it an oxygen-carrying capacity that is comparable to that of blood. The HbV suspension does not possess a colloid osmotic pressure. Therefore, HbV must be suspended in or co-injected with an aqueous solution of a plasma substitute (water-soluble polymer), which might interact with HbV. This article describes our study of the rheological properties of HbV suspended in a series of plasma substitute solutions of various molecular weights: recombinant human serum albumin (rHSA), dextran (DEX), modified fluid gelatin (MFG), and hydroxylethyl starch (HES). The HbV suspended in rHSA was nearly Newtonian. Other polymers-HES, DEX, and MFG-induced HbV flocculation, possibly by depletion interaction, and rendered the suspensions as non-Newtonian with a shear-thinning profile (10(-4)-10(3) s(-1)). These HbV suspensions showed a high storage modulus (G') because of the presence of flocculated HbV. However, HbV suspended in rHSA exhibited a very low G'. The viscosities of HbV suspended in DEX, MFG, and high-molecular-weight HES solutions responded quickly to rapid step changes in shear rates of 0.1-100 s(-1) and a return to 0.1 s(-1), indicating that flocculation is both rapid and reversible. Microscopically, the flow pattern of the flocculated HbV that perfused through microchannels (4.5 microm deep, 7 microm wide, 20 cmH2O applied pressure) showed no plugging. Furthermore, the time required for passage was simply proportional to the viscosity. Collectively, the HbV suspension viscosity was influenced by the presence of plasma substitutes. The HbV suspension provides a unique opportunity to manipulate rheological properties for various clinical applications in addition to its use as a transfusion alternative. PMID

  12. Hepatically-metabolized and -excreted artificial oxygen carrier, hemoglobin vesicles, can be safely used under conditions of hepatic impairment

    SciTech Connect

    Taguchi, Kazuaki; Miyasato, Mayumi; Ujihira, Hayato; Watanabe, Hiroshi; Kadowaki, Daisuke; Sakai, Hiromi; Tsuchida, Eishun; Horinouchi, Hirohisa; Kobayashi, Koichi; Maruyama, Toru; Otagiri, Masaki

    2010-11-01

    The hemoglobin vesicle (HbV) is an artificial oxygen carrier in which a concentrated Hb solution is encapsulated in lipid vesicles. Our previous studies demonstrated that HbV is metabolized by the mononuclear phagocyte system, and the lipid components are excreted from the liver. It is well-known that many hepatically-metabolized and -excreted drugs show altered pharmaceutics under conditions of liver impairment, which results in adverse effects. The aim of this study was to determine whether the administration of HbV causes toxicity in rats with carbon tetrachloride induced liver cirrhosis. Changes in plasma biochemical parameters, histological staining and the pharmacokinetic distribution of HbV were evaluated after an HbV injection of the above model rats at a putative clinical dose (1400 mgHb/kg). Plasma biochemical parameters were not significantly affected, except for a transient elevation of lipase, lipid components and bilirubin, which recovered within 14 days after an HbV infusion. Negligible morphological changes were observed in the kidney, liver, spleen, lung and heart. Hemosiderin, a marker of iron accumulation in organs, was observed in the liver and spleen up to 14 days after HbV treatment, but no evidence of oxidative stress in the plasma and liver were observed. HbV is mainly distributed in the liver and spleen, and the lipid components are excreted into feces within 7 days. In conclusion, even under conditions of hepatic cirrhosis, HbV and its components exhibit the favorable metabolic and excretion profile at the putative clinical dose. These findings provide further support for the safety and effectiveness of HbV in clinical settings.

  13. Increased viscosity of hemoglobin-based oxygen carriers retards NO-binding when perfused through narrow gas-permeable tubes.

    PubMed

    Sakai, Hiromi; Okuda, Naoto; Takeoka, Shinji; Tsuchida, Eishun

    2011-03-01

    Increased fluid viscosity of a solution of hemoglobin-based oxygen carriers (HBOCs) reduces vasoconstrictive effects because increased shear stress on the vascular wall enhances the production of vasorelaxation factors such as NO. Nevertheless, on a microcirculatory level, it remains unclear how viscosity affects the reaction of HBOCs and NO. In this study, different HBOCs were perfused through narrow gas-permeable tubes (25 μm inner diameter at 1 mm/s centerline velocity; hemoglobin concentration [Hb]=5 g/dL). The reaction was examined microscopically based on the Hb visible-light absorption spectrum. When immersed in a NO atmosphere, the NO-binding of deoxygenated Hb solution (viscosity, 1.1 cP at 1000 s(-1)) in the tube occurred about twice as rapidly as that of red blood cells (RBCs): 1.6 cP. Binding was reduced by PEGylation (PEG-Hb, 7.7 cP), by addition of a high molecular weight hydroxyethyl starch (HES) (2.8 cP), and by encapsulation to form Hb-vesicles (HbVs, 1.5 cP; particle size 279 nm). However, the reduction was not as great as that shown for RBCs. A mixture of HbVs and HES (6.2 cP) showed almost identical NO-binding to that of RBCs. Higher viscosity and particle size might reduce lateral diffusion when particles are flowing. The HbVs with HES showed the slowest NO-binding. Furthermore, Hb encapsulation and PEGylation, but not HES-addition, tended to retard CO-binding. Increased viscosity reportedly enhances production of endothelium NO. In addition, our results show that the increased viscosity also inhibits the reaction with NO. Each effect might mitigate vasoconstriction.

  14. Endothelial dysfunction enhances vasoconstriction due to scavenging of nitric oxide by a hemoglobin-based oxygen carrier

    PubMed Central

    Yu, Binglan; Shahid, Mohd; Egorina, Elena M.; Sovershaev, Mikhail A.; Raher, Michael J.; Lei, Chong; Wu, Mei X.; Bloch, Kenneth D.; Zapol, Warren M.

    2010-01-01

    Background At present, there is no safe and effective hemoglobin-based oxygen carrier (HBOC) to substitute for red blood cell transfusion. It is uncertain whether a deficiency of endothelial nitric oxide bioavailability (endothelial dysfunction) prevents or augments the HBOC-induced vasoconstriction. Methods Hemodynamic effects of infusion of PolyHeme (1.08 g hemoglobin/kg, Northfield Laboratories, Evanston, IL) or murine tetrameric hemoglobin (0.48 g hemoglobin/kg) were determined in awake healthy lambs, awake mice and anesthetized mice. In vitro, a cumulative dose-tension response was obtained by sequential addition of PolyHeme or tetrameric hemoglobin to phenylephrine-precontracted murine aortic rings. Results Infusion of PolyHeme did not cause systemic hypertension in awake lambs, but produced acute systemic and pulmonary vasoconstriction. Infusion of PolyHeme did not cause systemic hypertension in healthy wild-type mice, but induced severe systemic vasoconstriction in mice with endothelial dysfunction (either db/db mice or high-fat fed wild-type mice for 4–6 weeks). The db/db mice were more sensitive to systemic vasoconstriction than wild-type mice after the infusion of either tetrameric hemoglobin or PolyHeme. Murine aortic ring studies confirmed that db/db mice have an impaired response to an endothelial-dependent vasodilator and an enhanced vasoconstrictor response to a HBOC. Conclusions Reduction of low molecular weight hemoglobin concentrations to less than 1% is insufficient to abrogate the vasoconstrictor effects of HBOC infusion in healthy awake sheep or in mice with reduced vascular nitric oxide levels associated with endothelial dysfunction. These findings suggest that testing HBOCs in animals with endothelial dysfunction can provide a more sensitive indication of their potential vasoconstrictor effects. PMID:20179495

  15. Effect of the hemoglobin-based oxygen carrier HBOC-201 on laboratory instrumentation: cobas integra, chiron blood gas analyzer 840, Sysmex SE-9000 and BCT.

    PubMed

    Wolthuis, A; Peek, D; Scholten, R; Moreira, P; Gawryl, M; Clark, T; Westerhuis, L

    1999-01-01

    As part of a clinical trial, we evaluated the effects of the hemoglobin-based oxygen-carrier (HBOC) HBOC-201 (an ultrapurified, stroma-free bovine hemoglobin product, Biopure, Cambridge, MA, USA) on our routine clinical chemistry analyzer (Cobas Integra, F. Hoffmann-La Roche Ltd, Basel, Switzerland ), blood gas analyzer (Chiron 840, Chiron Diagnostics Corporation, East Walpole, MA, USA), routine hemocytometry analyzer (Sysmex SE-9000, TOA Medical Electronics Co Ltd., Kobe, Japan), hemostasis analyzer (BCT, Dade-Behring, Marburg, Germany) and bloodbanking system (Dia-Med-ID Micro Typing System, DiaMed AG, Cressier, Switzerland). The maximum tested concentration of HBOC-201 was 65 g/l. Of the 27 routine clinical chemistry tests challenged with HBOC-201, bilirubin-direct, creatine kinase MB-fraction (CK-MB), creatine kinase (CK), gamma-glutamyltransferase (GGT), magnesium and uric acid were influenced by even low concentrations of HBOC-201. These tests were excluded from use on the plasma of patients treated with HBOC-201. Since the non-availability of the cardiac marker CK-MB may lead to problems in acute situations, we introduced the qualitative Trop T-test (Boehringer Mannheim), which was not influenced. The applicability of another nine tests was limited by the concentration of the HBOC-201 in the patients' plasma. No interference of HBOC-201 in routine hemocytometry, hemostasis-analysis and red-blood cell agglutination detection (blood-bank tests) was observed. Although immediate patient-care was not compromised, routine use of hemoglobin-based oxygen carriers will have a strong impact on logistical management. The development of robust laboratory tests free from the interference of the pigmented oxygen carriers should therefore precede its introduction into routine transfusion medicine.

  16. Oxidative protection of hemoglobin and hemerythrin by cross-linking with a nonheme iron peroxidase: potentially improved oxygen carriers for use in blood substitutes.

    PubMed

    Hathazi, Denisa; Mot, Augustin C; Vaida, Anetta; Scurtu, Florina; Lupan, Iulia; Fischer-Fodor, Eva; Damian, Grigore; Kurtz, Donald M; Silaghi-Dumitrescu, Radu

    2014-05-12

    The nonheme peroxidase, rubrerythrin, shows the ability to reduce hydrogen peroxide to water without involving strongly oxidizing and free-radical-creating powerful oxidants such as compounds I and II [formally Fe(IV)] formed in peroxidases and catalases. Rubrerythrin could, therefore, be a useful ingredient in protein-based artificial oxygen carriers. Here, we report that the oxygen-carrying proteins, hemoglobin (Hb) and hemerythrin (Hr), can each be copolymerized with rubrerythrin using glutaraldehyde yielding high molecular weight species. These copolymers show additional peroxidase activity compared to Hb-only and Hr-only polymers, respectively and also generate lower levels of free radicals in reactions that involve hydrogen peroxide. Tests on human umbilical vein endothelial cells (HUVEC) reveal slightly better performance of the Rbr copolymers compared to controls, as measured at 24 h, but not at later times.

  17. Perfluorocarbon-filled poly(lactide-co-gylcolide) nano- and microcapsules as artificial oxygen carriers for blood substitutes: a physico-chemical assessment.

    PubMed

    Bauer, J; Zähres, M; Zellermann, A; Kirsch, M; Petrat, F; de Groot, H; Mayer, C

    2010-01-01

    The physico-chemical suitability of perfluorocarbon-filled capsules as artificial oxygen carriers for blood substitutes is assessed on the example of biodegradable poly(lactide-co-gylcolide) micro- and nanocapsules with a liquid content of perfluorodecalin. The morphology of the capsules is studied by confocal laser scanning microscopy using Nile red as a fluorescent marker. The mechanical stability and the wall flexibility of the capsules are examined by atomic force microscopy. The permeability of the capsule walls in connection with the oxygen uptake is detected by nuclear magnetic resonance. It is shown that the preparation in fact leads to nanocapsules with a mechanical stability which compares well with the one of red blood cells. The capsule walls exhibit sufficient permeability to allow for the exchange of oxygen in aqueous environment. In the fully saturated state, the amount of oxygen dissolved within the encapsulated perfluorodecalin in aqueous dispersion is as large as for bulk perfluorodecalin. Simple kinetic studies are presently restricted to the time scale of minutes, but so far indicate that the permeability of the capsule walls could be sufficient to allow for rapid gas exchange.

  18. Effects of a Hemoglobin-Based Oxygen Carrier (HBOC-201) and Derivatives with Altered Oxygen Affinity and Viscosity on Systemic and Microcirculatory Variables in a Top-load Rat Model

    PubMed Central

    Song, Bjorn Kyungsuck; Nugent, William H.; Moon-Massat, Paula F.; Pittman, Roland N.

    2014-01-01

    The effects of a polymerized bovine hemoglobin-based oxygen carrier (HBOC) and two derivatives on arteriolar vasoactivity and tissue oxygen tension were explored by administering HBOC in a dose-response fashion to normovolemic rats. The effect of oxygen affinity (P50) and viscosity were also explored, where the P50 and viscosity of the parent compound (HBOC-201) and its modifications (MP50 and LP50A) were as follows: 40 mmHg and 3.0 cP (HBOC-20l); 18 mmHg and 4.4 cP (MP50); and 17 mmHg and 12.1 cP (LP50A). Anesthetized male Sprague-Dawley rats (N = 32) were randomized to receive one of the HBOC solutions, and were administered four infusions that increased in concentration for each dose (2, 22, 230 and 780 mg/kg, IV). Data were compared to rats receiving an equivalent volume for each of the four infusions (0.4, 0.4, 3.8, 13.1 ml/kg, IV) of iso-oncotic 5.9% human serum albumin (HSA). Increasing doses of either HBOC solutions or HSA were associated with increasing MAP. Doses 3 and 4 of HBOC-201, MP50 and HSA produced significant increases in MAP, whereas similar increases began at a lower dose (Dose 2) with LP50A. There were no significant changes in arteriolar diameters at any dose for any group. Interstitial partial pressure of oxygen (ISF PO2) remained unchanged for HBOC-201, MP50 and HSA, but LP50A caused a significant decrease in ISF PO2 compared to baseline after Doses 3 and 4. In conclusion, there was no evidence that HBOC-201 would perform better with increased oxygen affinity (40 to 18 mmHg) or viscosity (3.0 to 4.4 cP). PMID:25046829

  19. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.

    PubMed

    Corbella, Beatriz M; de Diego, Luis F; García-Labiano, Francisco; Adánez, Juan; Palaciost, José M

    2005-08-01

    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 degrees C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent

  20. Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors.

    PubMed

    Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J

    2013-07-24

    In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

  1. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors.

    PubMed

    Luo, Guozhi; Xu, Guimei; Gao, Jinfang; Tan, Hongxin

    2016-05-01

    Nitrate-nitrogen (NO3(-)-N) always accumulates in commercial recirculating aquaculture systems (RASs) with aerobic nitrification units. The ability to reduce NO3(-)-N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen (DO) content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO3(-)-N from RASs. The effect of dissolved oxygen (DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone (PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group (Group A, average DO concentration of 0.28±0.05mg/L), the low-oxygen treatment DO group (Group B, average DO concentration of 2.50±0.24mg/L) and the aerated treatment group (Group C, average DO concentration of 5.63±0.57mg/L). Feeding with 200mg/L of NO3(-)-N, the NO3(-)-N removal rates were 1.53, 1.60 and 1.42kg/m(3) PCL/day in Groups A, B and C, respectively. No significant difference in NO3(-)-N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated. PMID:27155419

  2. Metabolism of hemoglobin-vesicles (artificial oxygen carriers) and their influence on organ functions in a rat model.

    PubMed

    Sakai, Hiromi; Horinouchi, Hirohisa; Masada, Yohei; Takeoka, Shinji; Ikeda, Eiji; Takaori, Masuhiko; Kobayashi, Koichi; Tsuchida, Eishun

    2004-08-01

    Phospholipid vesicles encapsulating Hb (Hb-vesicles: HbV) have been developed for use as artificial O(2) carriers (250 nm phi). As one of the safety evaluations, we analyzed the influence of HbV on the organ functions by laboratory tests of plasma on a total of 29 analytes. The HbV suspension ([Hb]=10 g/dl) was intravenously infused into male Wistar rats (20 ml/kg; whole blood = 56 ml/kg). The blood was withdrawn at 8h, and 1, 2, 3, and 7 days after infusion, and the plasma was ultracentrifuged to remove HbV in order to avoid its interference effect on the analytes. Enzyme concentrations, AST, ALT, ALP, and LAP showed significant, but minor changes, and did not show a sign of a deteriorative damage to the liver that was one of the main organs for the HbV entrapment and the succeeding metabolism. The amylase and lipase activities showed reversible changes, however, there was no morphological changes in pancreas. Plasma bilirubin and iron did not increase in spite of the fact that a large amount of Hb was metabolized in the macrophages. Cholesterols, phospholipids, and beta-lipoprotein transiently increased showing the maximum at 1 or 2 days, and returned to the control level at 7 days. They should be derived from the membrane components of HbV that are liberated from macrophages entrapping HbV. Together with the previous report of the prompt metabolism of HbV in the reticuloendothelial system by histopathological examination, it can be concluded that HbV infusion transiently modified the values of the analytes without any irreversible damage to the corresponding organs at the bolus infusion rate of 20 ml/kg.

  3. Characterization of chemical looping combustion of coal in a 1 kW{sub th} reactor with a nickel-based oxygen carrier

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Gao, Zhengping; Xiao, Jun

    2010-05-15

    Chemical looping combustion is a novel technology that can be used to meet the demand on energy production without CO{sub 2} emission. To improve CO{sub 2} capture efficiency in the process of chemical looping combustion of coal, a prototype configuration for chemical looping combustion of coal is made in this study. It comprises a fast fluidized bed as an air reactor, a cyclone, a spout-fluid bed as a fuel reactor and a loop-seal. The loop-seal connects the spout-fluid bed with the fast fluidized bed and is fluidized by steam to prevent the contamination of the flue gas between the two reactors. The performance of chemical looping combustion of coal is experimentally investigated with a NiO/Al{sub 2}O{sub 3} oxygen carrier in a 1 kW{sub th} prototype. The experimental results show that the configuration can minimize the amount of residual char entering into the air reactor from the fuel reactor with the external circulation of oxygen carrier particles giving up to 95% of CO{sub 2} capture efficiency at a fuel reactor temperature of 985 C. The effect of the fuel reactor temperature on the release of gaseous products of sulfur species in the air and fuel reactors is carried out. The fraction of gaseous sulfur product released in the fuel reactor increases with the fuel reactor temperature, whereas the one in the air reactor decreases correspondingly. The high fuel reactor temperature results in more SO{sub 2} formation, and H{sub 2}S abatement in the fuel reactor. The increase of SO{sub 2} in the fuel reactor accelerates the reaction of SO{sub 2} with CO to form COS, and COS concentration in the fuel reactor exit gas increases with the fuel reactor temperature. The SO{sub 2} in the air reactor exit gas is composed of the product of sulfur in residual char burnt with air and that of nickel sulfide oxidization with air in the air reactor. Due to the evident decrease of residual char in the fuel reactor with increasing fuel reactor temperature, it results in the

  4. Hemoglobin vesicles and red blood cells as carriers of carbon monoxide prior to oxygen for resuscitation after hemorrhagic shock in a rat model.

    PubMed

    Sakai, Hiromi; Horinouchi, Hirohisa; Tsuchida, Eishun; Kobayashi, Koichi

    2009-05-01

    Hemoglobin vesicles (HbVs) are artificial oxygen (O2) carriers that encapsulate concentrated hemoglobin (Hb) solution in phospholipid vesicles (liposomes). Recent reports on cytoprotective effects of exogenous carbon monoxide (CO) urged us to test infusion of CO-bound HbV (CO-HbV) and red blood cells (CO-RBC) in hemorrhagic-shocked rats to improve tissue viability over that of O2-bound HbV (O2-HbV) and O2-bound RBC (O2-RBC). Male Wistar rats were anesthetized with 1.5% sevoflurane inhalation (FiO2 = 21%) while spontaneous breathing was maintained. Shock was induced by 50% blood withdrawal from femoral artery. Fifteen minutes later, they received CO-HbV, CO-RBC, O2-HbV, O2-RBC, or empty vesicles (EV) suspended in 5% recombinant albumin. All groups showed prompt recovery of blood pressure and blood gas parameters just after resuscitation and survived for 6 h of observation period. However, only the EV group showed significant hypotension at 3 and 6 h. Plasma enzyme levels were elevated at 6 h, especially in the O2-HbV, O2-RBC, and EV groups. They were significantly lower in the CO-HbV and CO-RBC groups than in the O2-bound fluids. Immunohistochemical staining of 3-nitrotyrosine exhibited less oxidative damage in the liver and lung for CO-HbV and CO-RBC groups. Blood carbonyl Hb levels (26%-39% immediately after infusion) decreased to less than 3% at 6 h while CO was exhaled through the lung. Both HbV and RBC gradually gained the O2 transport function. Collectively, both CO-HbV and CO-RBC showed a resuscitative effect for hemorrhagic-shocked rats. They reduced oxidative damage to organs in comparison to O2-HbV and O2-RBC. Adverse and poisonous effects of CO gas were not evident for 6 h in this experimental model. Further study is necessary to clarify the neurological impact of a longer observation period for eventual clinical applications. PMID:18827742

  5. Effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells: dependency on p53 status of tumor cells and types of (10)B-carriers.

    PubMed

    Masunaga, Shin-ichiro; Tatebe, Hitoshi; Nishimura, Yasumasa; Tano, Keizo; Sanada, Yu; Moriwaki, Takahiro; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Ono, Koji

    2016-01-01

    Purpose To evaluate the effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells. Materials and methods Cultured human head and neck squamous cell carcinoma cell line transfected with mutant TP53 (SAS/mp53), or with a neo vector as a control (SAS/neo) was incubated with L-para-boronophenylalanine-(10)B (BPA) or sodium mercaptoundecahydrododecaborate-(10)B (BSH) as a (10)B-carrier at the (10)B concentration of 60 ppm for 24 h under aerobic (20.7% of oxygen) or hypoxic (0.28% of oxygen) conditions. Immediately after incubation, cultured tumor cells received reactor thermal neutron beams, and a cell survival assay was performed. (10)B concentration of cultured SAS/neo or SAS/mp53 cells incubated under aerobic or hypoxic conditions was determined with a thermal neutron guide tube. Results Hypoxic incubation significantly decreased (10)B concentration of cultured cells with a clearer tendency observed following BPA than BSH treatment in both SAS/neo and SAS/mp53 cells. Following neutron beam irradiation, SAS/mp53 cells showed significantly higher relative biological effectiveness values than SAS/neo cells because of the significantly lower radiosensitivity of SAS/mp53 to γ-rays than SAS/neo cells. Conclusion Oxygen pressure during incubation with a (10)B-carrier had a critical impact on (10)B uptake of cultured tumor cells.

  6. Effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells: dependency on p53 status of tumor cells and types of (10)B-carriers.

    PubMed

    Masunaga, Shin-ichiro; Tatebe, Hitoshi; Nishimura, Yasumasa; Tano, Keizo; Sanada, Yu; Moriwaki, Takahiro; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Ono, Koji

    2016-01-01

    Purpose To evaluate the effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells. Materials and methods Cultured human head and neck squamous cell carcinoma cell line transfected with mutant TP53 (SAS/mp53), or with a neo vector as a control (SAS/neo) was incubated with L-para-boronophenylalanine-(10)B (BPA) or sodium mercaptoundecahydrododecaborate-(10)B (BSH) as a (10)B-carrier at the (10)B concentration of 60 ppm for 24 h under aerobic (20.7% of oxygen) or hypoxic (0.28% of oxygen) conditions. Immediately after incubation, cultured tumor cells received reactor thermal neutron beams, and a cell survival assay was performed. (10)B concentration of cultured SAS/neo or SAS/mp53 cells incubated under aerobic or hypoxic conditions was determined with a thermal neutron guide tube. Results Hypoxic incubation significantly decreased (10)B concentration of cultured cells with a clearer tendency observed following BPA than BSH treatment in both SAS/neo and SAS/mp53 cells. Following neutron beam irradiation, SAS/mp53 cells showed significantly higher relative biological effectiveness values than SAS/neo cells because of the significantly lower radiosensitivity of SAS/mp53 to γ-rays than SAS/neo cells. Conclusion Oxygen pressure during incubation with a (10)B-carrier had a critical impact on (10)B uptake of cultured tumor cells. PMID:26887694

  7. Bioconjugation of Serum Albumin to a Maleimide-appended Porphyrin/Cyclodextrin Supramolecular Complex as an Artificial Oxygen Carrier in the Bloodstream.

    PubMed

    Kitagishi, Hiroaki; Kawasaki, Hiroki; Kano, Koji

    2015-08-01

    HemoCD is an inclusion complex of per-O-methylated β-cyclodextrin dimer and an iron(II) porphyrin, which forms a stable O2 complex in water. Therefore, hemoCD has the potential for use as a synthetic O2 carrier in mammalian blood. In this study, a hemoCD derivative having a maleimide group (Mal-hemoCD) was conjugated to a Cys residue of serum albumin via a Michael addition reaction in order to increase the circulation time of the O2 carrier. The O2 -binding affinities (P1/2 [Torr]) and half-lives (t1/2 [h]) of the O2 adducts at pH 7.4 and 25 °C were determined to be 9 Torr and 23 h for Mal-hemoCD, and 10 Torr and 14 h for albumin-conjugated hemoCD (Alb-hemoCD). Our pharmacokinetic study revealed that renal excretion of Alb-hemoCD was effectively suppressed and that half of injected Alb-hemoCD remained in blood at 3 h after injection. It is noteworthy that Mal-hemoCD also had a long circulation time because of the bioconjugation reaction that occurred during circulation in the bloodstream. PMID:26053595

  8. Carrier rockets

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. A.; Vladimirov, V. V.; Dmitriev, R. D.; Osipov, S. O.

    This book takes into consideration domestic and foreign developments related to launch vehicles. General information concerning launch vehicle systems is presented, taking into account details of rocket structure, basic design considerations, and a number of specific Soviet and American launch vehicles. The basic theory of reaction propulsion is discussed, giving attention to physical foundations, the various types of forces acting on a rocket in flight, basic parameters characterizing rocket motion, the effectiveness of various approaches to obtain the desired velocity, and rocket propellants. Basic questions concerning the classification of launch vehicles are considered along with construction and design considerations, aspects of vehicle control, reliability, construction technology, and details of structural design. Attention is also given to details of rocket motor design, the basic systems of the carrier rocket, and questions of carrier rocket development.

  9. Process for the elimination of waste water produced upon the desulfurization of coking oven gas by means of wash solution containing organic oxygen-carrier, with simultaneous recovery of elemental sulfur

    SciTech Connect

    Diemer, P.; Brake, W.; Dittmer, R.

    1985-04-16

    A process is disclosed for the elimination of waste water falling out with the desulfurization of coking oven gas by means of an organic oxygen carrier-containing washing solution with simultaneous recovery of elemental sulfur. The waste water is decomposed in a combustion chamber in a reducing atmosphere at temperatures between about 1000/sup 0/ and 1100/sup 0/ C. under such conditions that the mole ratio of H/sub 2/S:SO/sub 2/ in the exhaust gas of the combustion chamber amounts to at least 2:1. Sulfur falling out is separated and the sensible heat of the exhaust gas is utilized for steam generation. The cooled and desulfurized exhaust gas is added to the coking oven gas before the pre-cooling. Sulfur falling out from the washing solution in the oxidizer is separated out and lead into the combustion chamber together with the part of the washing solution discharged as waste water from the washing solution circulation. Preferred embodiments include that the sulfur loading of the waste water can amount to up to about 370 kg sulfur per m/sup 3/ waste water; having the cooling of sulfur-containing exhaust gas leaving the combustion chamber follow in a waste heat boiler and a sulfur condenser heated by pre-heated boiler feed water, from which condenser sulfur is discharged in liquid state.

  10. Oxygen safety

    MedlinePlus

    COPD - oxygen safety; Chronic obstructive pulmonary disease - oxygen safety; Chronic obstructive airways disease - oxygen safety; Emphysema - oxygen safety; Heart failure - oxygen-safety; Palliative care - oxygen safety; ...

  11. What Is Carrier Screening?

    MedlinePlus

    ... you want to learn. Search form Search Carrier screening You are here Home Testing & Services Testing for ... help you make the decision. What Is Carrier Screening? Carrier screening checks if a person is a " ...

  12. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C. [Wilmington, DE; Baker, Richard W. [Palo Alto, CA

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  13. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C.

    1984-01-01

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  14. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  15. Rockets using Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

  16. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb ... in your home. A different kind of oxygen therapy is called hyperbaric oxygen therapy. It uses oxygen ...

  17. Common Carrier Services.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    After outlining the Federal Communications Commission's (FCC) responsibility for regulating interstate common carrier communication (non-broadcast communication whose carriers are required by law to furnish service at reasonable charges upon request), this information bulletin reviews the history, technological development, and current…

  18. Composite carrier bar device

    SciTech Connect

    Felder, D.W.

    1981-09-01

    A composite carrier bar is disclosed for oil well pumping units that utilize sucker rod to operate bottom hole pumps. The bar includes a recessed cavity for receiving a hydraulic ram to operate as a polish rod jack and also a secondary carrier bar for receiving a secondary polish rod clamp for use in respacing bottom hole pumps and serve as a safety clamp during operation.

  19. Oxygen Therapy

    MedlinePlus

    ... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...

  20. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  1. Common Carrier Services.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This bulletin outlines the Federal Communications Commission's (FCC) responsibilities in regulating the interstate and foreign common carrier communication via electrical means. Also summarized are the history, technological development, and current capabilities and prospects of telegraph, wire telephone, radiotelephone, satellite communications,…

  2. Preconception Carrier Screening

    MedlinePlus

    ... What can the results of a carrier screening test tell me? A genetic counselor or your health care provider will use the results to calculate the ... the publisher. Related FAQs Genetic Disorders (FAQ094) Screening Tests for Birth Defects ... Education & Events Annual Meeting CME Overview CREOG ...

  3. Sealed substrate carrier for electroplating

    DOEpatents

    Ganti, Kalyana Bhargava

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  4. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  5. Oxygen Delivering Biomaterials for Tissue Engineering

    PubMed Central

    Farris, Ashley L.; Rindone, Alexandra N.; Grayson, Warren L.

    2016-01-01

    Tissue engineering (TE) has provided promising strategies for regenerating tissue defects, but few TE approaches have been translated for clinical applications. One major barrier in TE is providing adequate oxygen supply to implanted tissue scaffolds, since oxygen diffusion from surrounding vasculature in vivo is limited to the periphery of the scaffolds. Moreover, oxygen is also an important signaling molecule for controlling stem cell differentiation within TE scaffolds. Various technologies have been developed to increase oxygen delivery in vivo and enhance the effectiveness of TE strategies. Such technologies include hyperbaric oxygen therapy, perfluorocarbon- and hemoglobin-based oxygen carriers, and oxygen-generating, peroxide-based materials. Here, we provide an overview of the underlying mechanisms and how these technologies have been utilized for in vivo TE applications. Emerging technologies and future prospects for oxygen delivery in TE are also discussed to evaluate the progress of this field towards clinical translation. PMID:27453782

  6. Yarn carrier with clutch

    NASA Technical Reports Server (NTRS)

    Doyne, Richard A. (Inventor); Benson, Rio H. (Inventor); El-Shiekh, Aly (Inventor)

    1994-01-01

    A yarn carrier apparatus particularly suited for use in braiding machinery or the like due to its capability of continuous yarn feeding and retraction of long lengths of yarn. The yarn carrier apparatus comprises a yarn supply spool which is rotatably mounted within the housing, a spring motor also mounted within the housing and operatively connected to the yarn supply spool through a mechanical transmission assembly which is adapted to multiply rotational movement between the first element of the gear assembly operatively connected to the spring motor and the final element of the gear assembly operatively connected to the yarn supply spool. The spring motor is adapted to tension the yarn during both feeding and retraction thereof, and it is further adapted to periodically rotatably slip within the housing and partially unwind so as to allow for continuous withdrawal of a long length of yarn without the spring motor becoming fully wound and preventing further yarn retraction.

  7. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  8. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma; Diana Xiaobing

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  9. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  10. 49 CFR 369.2 - Classification of carriers-motor carriers of property, household goods carriers, and dual...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contract motor carriers of property are grouped into the following three classes: Class I. Carriers having... applying the revenue deflator formula in Note A. Class II. Carriers having annual carrier operating... applying the revenue deflator formula in Note A. Class III. Carriers having annual carrier...

  11. Personnel emergency carrier vehicle

    NASA Technical Reports Server (NTRS)

    Owens, Lester J. (Inventor); Fedor, Otto H. (Inventor)

    1987-01-01

    A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly.

  12. Identification of the Charge Carriers in Cerium Phosphate Ceramics

    SciTech Connect

    Ray, Hannah L.; Jonghe, Lutgard C. De

    2010-06-02

    The total conductivity of Sr-doped cerium orthophosphate changes by nearly two orders of magnitude depending on the oxygen and hydrogen content of the atmosphere. The defect model for the system suggests that this is because the identity of the dominant charge carrier can change from electron holes to protons when the sample is in equilibrium with air vs. humidified hydrogen. In this work are presented some preliminary measurements that can help to clarify this exchange between carriers. The conduction behavior of a 2percent Sr-doped CePO4 sample under symmetric atmospheric conditions is investigated using several techniques, including AC impedance, H/D isotope effects, and chronoamperometry.

  13. Oxygen Incorporation in Rubrene Single Crystals

    NASA Astrophysics Data System (ADS)

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-05-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed.

  14. Oxygen Incorporation in Rubrene Single Crystals

    PubMed Central

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  15. Oxygen incorporation in rubrene single crystals.

    PubMed

    Mastrogiovanni, Daniel D T; Mayer, Jeff; Wan, Alan S; Vishnyakov, Aleksey; Neimark, Alexander V; Podzorov, Vitaly; Feldman, Leonard C; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  16. Drug Carrier for Photodynamic Cancer Therapy

    PubMed Central

    Debele, Tilahun Ayane; Peng, Sydney; Tsai, Hsieh-Chih

    2015-01-01

    Photodynamic therapy (PDT) is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0) to an excited singlet state (S1–Sn), followed by intersystem crossing to an excited triplet state (T1). The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*), which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer. PMID:26389879

  17. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  18. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  19. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  20. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  1. Oxygen-Concentrating Cell

    NASA Technical Reports Server (NTRS)

    Buehler, K.

    1986-01-01

    High-purity oxygen produced from breathing air or from propellantgrade oxygen in oxygen-concentrating cell. Operating economics of concentrator attractive: Energy consumption about 4 Wh per liter of oxygen, slightly lower than conventional electrochemical oxygen extractors.

  2. Origin and distribution of charge carriers in LaAlO3-SrTiO3 oxide heterostructures in the high carrier density limit

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sumanta; Pal, Banabir; Choudhury, Debraj; Sarkar, Indranil; Drube, Wolfgang; Gorgoi, Mihaela; Karis, Olof; Takagi, H.; Matsuno, Jobu; Sarma, D. D.

    2016-06-01

    Using hard x-ray photoelectron spectroscopy with variable photon energy (2-8 keV), we address the distribution of charge carriers in the prototypical LaAlO3 (LAO) and SrTiO3 (STO) oxide heterostructures with high carrier densities (1017cm-2 ). Our results demonstrate the presence of two distinct charge distributions in this system: one tied to the interface with a ˜1 -nm width and ˜2 -5 × 1014-cm-2 carrier concentration, while the other appears distributed nearly homogeneously through the bulk of STO corresponding to a much larger carrier contribution. Our results also establish bimodal oxygen vacancies, namely on top of LAO and throughout STO, quantitatively establishing these as the origin of the observed bimodal depth distribution of charge carriers in these highly doped sample.

  3. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy.

    PubMed

    Selvamuthukumar, Subramanian; Velmurugan, Ramaiyan

    2012-01-01

    Nanotechnology having developed exponentially, the aim has been on therapeutic undertaking, particularly for cancerous disease chemotherapy. Nanostructured lipid carriers have attracted expanding scientific and commercial vigilance in the last couple of years as alternate carriers for the pharmaceutical consignment, particularly anticancer pharmaceuticals. Shortcomings often came across with anticancer mixtures, such as poor solubility, normal tissue toxicity, poor specificity and steadiness, as well as the high incidence rate of pharmaceutical resistance and the rapid degradation, need of large-scale output procedures, a fast release of the pharmaceutical from its carrier scheme, steadiness troubles, the residues of the organic solvents utilized in the output method and the toxicity from the polymer with esteem to the carrier scheme are anticipated to be overcome through use of the Nanostructured Lipid Carrier. In this review the benefits, types, drug release modulations, steadiness and output techniques of NLCs are discussed. In supplement, the function of NLC in cancer chemotherapy is presented and hotspots in research are emphasized. It is foreseen that, in the beside future, nanostructured lipid carriers will be further advanced to consign cytotoxic anticancer compounds in a more efficient, exact and protected manner. PMID:23167765

  4. Theranostic Oxygen Delivery Using Ultrasound and Microbubbles

    PubMed Central

    Kwan, James J.; Kaya, Mehmet; Borden, Mark A.; Dayton, Paul A.

    2012-01-01

    Means to overcome tumor hypoxia have been the subject of clinical investigations since the 1960's; however these studies have yet to find a treatment which is widely accepted. It has been known for nearly a century that hypoxic cells are more resistant to radiotherapy than aerobic cells, and tumor hypoxia is a major factor leading to the resistance of tumors to radiation treatment as well as several cytotoxic agents. In this manuscript, the application of ultrasound combined with oxygen-carrier microbubbles is demonstrated as a method to locally increase dissolved oxygen. Microbubbles can also be imaged by ultrasound, thus providing the opportunity for image-guided oxygen delivery. Simulations of gas diffusion and microbubble gas exchange show that small amounts (down to 5 vol%) of a low-solubility osmotic gas can substantially increase microbubble persistence and therefore production rates and stability of oxygen-carrier microbubbles. Simulations also indicate that the lipid shell can be engineered with long-chain lipids to increase oxygen payload during in vivo transit. Experimental results demonstrate that the application of ultrasound to destroy the microbubbles significantly enhances the local oxygen release. We propose this technology as an application for ultrasound image-guided release of oxygen directly to hypoxic tissue, such as tumor sites to enhance radiotherapy. PMID:23382774

  5. 49 CFR 369.3 - Classification of carriers-motor carriers of passengers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Classification of carriers-motor carriers of...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS REPORTS OF MOTOR CARRIERS § 369.3 Classification of carriers—motor carriers of passengers....

  6. 49 CFR 369.3 - Classification of carriers-motor carriers of passengers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Classification of carriers-motor carriers of...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS REPORTS OF MOTOR CARRIERS § 369.3 Classification of carriers—motor carriers of passengers....

  7. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    PubMed Central

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-01-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth. PMID:26202477

  8. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment.

    PubMed

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-07-23

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth.

  9. Stable wafer-carrier system

    DOEpatents

    Rozenzon, Yan; Trujillo, Robert T; Beese, Steven C

    2013-10-22

    One embodiment of the present invention provides a wafer-carrier system used in a deposition chamber for carrying wafers. The wafer-carrier system includes a base susceptor and a top susceptor nested inside the base susceptor with its wafer-mounting side facing the base susceptor's wafer-mounting side, thereby forming a substantially enclosed narrow channel. The base susceptor provides an upward support to the top susceptor.

  10. Reduced fecundity in male ALS gene-carriers

    SciTech Connect

    Johnson, W.G.; Lustenberger, A.; Lucek, P.R.

    1995-11-06

    In order to study genetic aspects in multicase families, 89 amyotrophic lateral sclerosis (ALS) and 214 Parkinson disease (PD) kindreds were analyzed in parallel studies. Obligate gene-carriers were identified as described previously. There were fewer children per gene-carrier male (2.42) than per gene-carrier female (3.25, Student`s t-test, P<.0003) for ALS but not for other diseases. The data taken together suggest that fecundity in ALS gene-carriers was reduced in males, possibly as a result of reduced fertility. Since childbearing is usually accomplished well before the onset of neurological symptoms in ALS, and since reduced fecundity was found in male ALS gene-carriers, these findings raise the possibility that an ALS gene might have a pleiotrophic effect on fertility in males occurring decades before the onset of neurological symptoms. Evidence is presented linking reactive oxygen species to reduced fertility in males. Alternatively, decreased or nonfunctional androgen receptors could play a role. 22 refs., 1 fig., 2 tabs.

  11. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, Ian C.; Baker, Richard W.

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  12. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  13. Difficulty of carrier generation in orthorhombic PbO

    NASA Astrophysics Data System (ADS)

    Liao, Min; Takemoto, Seiji; Xiao, Zewen; Toda, Yoshitake; Tada, Tomofumi; Ueda, Shigenori; Kamiya, Toshio; Hosono, Hideo

    2016-04-01

    Polycrystalline β-PbO films were grown by pulsed laser deposition in atmospheres ranging from oxygen-poor (the oxygen pressure of 0.01 Pa) to oxygen-rich (13 Pa) conditions, and the oxygen chemical potential was further enhanced by ozone annealing to examine hole doping. It was found that each of the as-grown β-PbO films showed poor electrical conductivity, σ < 1.4 × 10-7 S cm-1, regardless of the oxygen pressure. The density functional calculations revealed that native defects including Pb and O vacancies have deep transition levels and extremely high formation enthalpies, which indicates difficulty of carrier generation in β-PbO and explains the experimentally observed poor electrical conductivity. The analysis of the electronic structures showed that the interaction between Pb 6s and O 2p orbitals is weak due to the deep energy level of Pb 6s and does not raise the valence band maximum (VBM) level unlike that observed in SnO, which is also supported by ultraviolet photoemission spectroscopy measurements. The deep acceptor transition levels of the native defects are attributed to the deep VBM of β-PbO. On the other hand, annealing β-PbO films in reactive oxygen-containing atmospheres (i.e., O3) led to a significantly enhanced electrical conductivity (i.e., σ > 7.1 × 102 S cm-1) but it is the result of the formation of an n-type PbO2 phase because oxygen chemical potential exceeded the phase boundary limit. The striking difference in carrier generation between PbO and SnO is discussed based on the electronic structures calculated by density functional theory.

  14. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  15. Tailoring the surface properties and carrier dynamics in SnO2 nanowires.

    PubMed

    Kar, Ayan; Stroscio, Michael A; Meyyappan, M; Gosztola, David J; Wiederrecht, Gary P; Dutta, Mitra

    2011-07-15

    We report a study of the role of mid-gap defect levels due to surface states in SnO(2) nanowires on carrier trapping. Ultrafast pump-probe spectroscopy provides carrier relaxation time constants that reveal the nature and positions of various defect levels due to the surface states which in turn provide details on how the carriers relax after their injection. The effect of oxygen annealing on carrier concentration is also studied through XPS valence band photoemission spectroscopy, a sensitive non-contact surface characterization technique. These measurements show that charge transfer associated with chemisorption of oxygen in different forms produces an upward band bending and leads to an increase in the depletion layer width by approximately 70 nm, thereby decreasing surface conductivity and forming the basis for the molecular sensing capability of the nanowires.

  16. Production of an Accelerated Oxygen-14 Beam

    SciTech Connect

    Powell, James; O'Neil, James P.; Cerny, Joseph

    2002-05-03

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was Carbon-11 and beams of intensity more than 108 ions/sec have been utilized for experiments. Development of Oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 seconds and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of Oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, Oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an Oxygen-14 beam have been performed.

  17. Oxygen: the poison is in the dose.

    PubMed

    Winslow, Robert M

    2013-02-01

    Cell-free hemoglobin (Hb) has been blamed for a spectrum of problems, including vasoconstriction pancreatitis, myocardial infarction, and pulmonary hypertension in hemolytic anemia, malaria, and sickle cell anemia, and from Hb-based oxygen carriers (HBOCs). Toxicities have been attributed to scavenging of nitric oxide (NO). However, while NO scavenging may explain many in vitro effects, and some effects in animal models and clinical trials with HBOCs, key inconsistencies in the theory require alternative explanations. This review considers the hypothesis that cell-free Hb oversupplies oxygen to tissues, leading to oxygen-related toxicity, possibly through formation of reactive oxygen species and local destruction of NO. Evidence for this hypothesis comes from various sources, establishing that tissue oxygen levels are maintained over very narrow (and low) levels, even at high oxygen consumption. Tissue is normally protected from excessive oxygen by its extremely low solubility in plasma, but introduction of cell-free Hb, even at low concentration, greatly augments oxygen supply, engaging protective mechanisms that include vasoconstriction and ischemia. The requirement to limit oxygen supply by cell-free Hb suggests novel ways to modify it to overcome vasoconstriction, independent of the intrinsic reaction of Hb with NO. This control is essential to the design of a safe and effective cell-free HBOC.

  18. Monitoring oxygenation.

    PubMed

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  19. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  20. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  1. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  2. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  3. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  4. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  5. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  6. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  7. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  8. Straddle carrier radiation portal monitoring

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O. Dennis

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  9. Straddle Carrier Radiation Portal Monitoring

    SciTech Connect

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O Dennis

    2005-08-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  10. Residual Versus Suppressed-Carrier Coherent Communications

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Million, S.

    1996-07-01

    This article addresses the issue of when to suppress or not to suppress the transmitted carrier in designing a coherent communication system employing a carrier tracking loop for carrier synchronization. Assuming that a phase-locked loop (PLL) is used whenever there exists a residual carrier and a Costas loop is used whenever the carrier is suppressed, the regions of system parameters that delineate these two options are presented based on the desire to minimize the average probability of error of the system.

  11. Carrier sense data highway system

    DOEpatents

    Frankel, Robert

    1984-02-14

    A data transmission system includes a transmission medium which has a certain propagation delay time over its length. A number of data stations are successively coupled to the transmission medium for communicating with one another. Each of the data stations includes a transmitter for originating signals, each signal beginning with a carrier of a duration which is at least the propagation delay time of the transmission medium. Each data station also includes a receiver which receives other signals from other data stations and inhibits operation of the transmitter at the same data station when a carrier of another signal is received.

  12. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  13. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  14. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  15. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  16. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  17. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  18. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  19. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  20. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  1. 14 CFR 380.11 - Payment to direct air carrier(s).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... carrier(s). Except for air taxi operators and commuter air carriers (which are governed by 14 CFR 298.38) and Canadian charter air taxi operators (which are governed by 14 CFR 294.32), the direct air carrier(s) shall be paid in full for the cost of the charter transportation (for both legs, if a...

  2. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  3. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that the Agency's Motor Carrier Safety Advisory Committee...

  4. 76 FR 12214 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice: Announcement of Motor Carrier Safety Advisory Committee meeting; request for comment. SUMMARY: The Federal Motor Carrier Safety...

  5. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    SciTech Connect

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.

    2015-07-07

    An improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy (DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V{sub 2}) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.

  6. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    SciTech Connect

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.

    2015-07-02

    In this study, an improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy(DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.

  7. Whey drying on porous carriers

    SciTech Connect

    Mitura, E.; Kaminski, W.

    1996-05-01

    Whey is treated very often as a waste which pollutes the natural environment. Whey which is a valuable source of protein, lacrose, vitamins and mineral salts should be utilized completely. The present paper is a proposal of whey drying on porous carriers. It is proved experimentally that the proposed drying method guarantees good product quality.

  8. Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers.

    PubMed

    Souto, Eliana B; Severino, Patrícia; Basso, Rafael; Santana, Maria Helena A

    2013-01-01

    Reactive oxygen species (ROS) are known to cause several human pathologies. For this reason, antioxidants have gained utmost importance because of their potential as prophylactic and therapeutic agents in many diseases. Examples of their application include their use in diabetic patients, as aging drugs, in cancer diseases, Parkinson's, Alzheimer's, autoimmune disorders, and also in inflammation. Antioxidants have limited absorption profiles, therefore low bioavailability and low concentrations at the target site. Efforts have been done towards loading antioxidant molecules in advanced nanoparticulate carriers, e.g., liposomes, polymeric nanoparticles, solid lipid nanoparticles, self-emulsifying drug delivery system. Examples of -successful achievements include the encapsulation of drugs and other active ingredients, e.g., coenzyme Q10, vitamin E and vitamin A, resveratrol and polyphenols, curcumin, lycopene, silymarin, and superoxide dismutase. This review focuses on the comprehensive analysis of using nanoparticulate carriers for loading these molecules for oral administration.

  9. 14 CFR 271.4 - Carrier costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... place will be evaluated: (1) For costs attributable to the carrier's flying operations (direct expenses... altitude at which the carrier must fly to the designated hub; and (v) Other operational elements...

  10. Natural Carriers for siRNA Delivery.

    PubMed

    Karunaratne, D Nedra; Jafari, Mousa; Ranatunga, R J K Udayana; Siriwardhana, Asitha

    2015-01-01

    This review is based on carriers of natural origin such as polysaccharides, proteins, and cell derived entities which have been used for delivery of siRNA. To realize the therapeutic potential of a delivery system, the role of the carrier is of utmost importance. Historical aspects of viral vectors, the first carriers of genes are briefly outlined. Chitosan, one of the extensively experimented carriers, alginates and other polysaccharides have shown success in siRNA delivery. Peptides of natural origin and mimics thereof have emerged as another versatile carrier. Exosomes and mini cells of cellular origin are the newest entrants to the area of siRNA delivery and probably the closest one can get to a natural carrier. In many of the carriers, modifications have provided better efficiency in delivery. The salient features of the carriers and their advantages and disadvantages are also reviewed.

  11. Protein carriers of conjugate vaccines

    PubMed Central

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  12. New mitochondrial carriers: an overview.

    PubMed

    Arco, A Del; Satrústegui, J

    2005-10-01

    The transport of metabolites, nucleotides and cofactors across the mitochondrial inner membrane is performed by members of mitochondrial carrier family (MCF). These proteins share marked structural features that have made feasible the functional characterization of numerous MCs in the last years. The MCs responsible for transport activities in mitochondria known for decades such as glutamate uptake or ATP-Mg/Pi exchange have recently been identified as well as novel carriers such as those involved in S-adenosylmethionine or thiamine pyrophosphate uptake. Here, after a brief review of the novel data on structural characteristics and import mechanisms of MCF members, we present an exhaustive compilation of human MC sequences, including previously characterized carriers, together with their respective Saccharomyces cerevisiae orthologues, ordered according to the phylogenetic analysis of el Moualij and co-workers [Yeast (1997) 13: 573-581]. We have detected the existence of at least 49 human MC sequences, including those of yet unknown function. An overview of novel MCF members functionally characterized in recent years in mammals and in yeast genomes is presented.

  13. Living with Oxygen Therapy

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With Oxygen Therapy Oxygen therapy helps many people function better and be ... chronic obstructive pulmonary disease) Although you may need oxygen therapy continuously or for long periods, it doesn' ...

  14. Spacelab carrier complement thermal design and performance

    NASA Astrophysics Data System (ADS)

    Bancroft, S.; Key, R.; Kittredge, S.

    1992-07-01

    The present discussion of the Spacelab carrier complement, which encompasses a Module Carrier, a Module-Pallet Carrier, and a Multiplexer/Demultiplexer Pallet, gives attention to both active and passive thermal performance capabilities, and presents ground testing and analytical results obtained to date. An account is given of the prospective use of a Spacelab Multipurpose Experiment Support Structure.

  15. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  16. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  17. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  18. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  19. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  20. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity Bus... calendar year, the dollar amounts of total system operating revenues for each such carrier shall be arrayed... total issue traffic revenue is to its total system revenues, and the percent that each carrier's...

  1. Responsible implementation of expanded carrier screening

    PubMed Central

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-01-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  2. 14 CFR 221.2 - Carrier's duty.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS TARIFFS General § 221.2 Carrier's duty. (a) Must file tariffs. (1) Except as provided in paragraph... carrier or foreign air carrier, when through service and through rates shall have been established, and... collect or receive a greater or less or different compensation for foreign air transportation or for...

  3. Spacelab carrier complement thermal design and performance

    NASA Technical Reports Server (NTRS)

    Bancroft, S.; Key, R.; Kittredge, S.

    1992-01-01

    The present discussion of the Spacelab carrier complement, which encompasses a Module Carrier, a Module-Pallet Carrier, and a Multiplexer/Demultiplexer Pallet, gives attention to both active and passive thermal performance capabilities, and presents ground testing and analytical results obtained to date. An account is given of the prospective use of a Spacelab Multipurpose Experiment Support Structure.

  4. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Study carriers. 1139.21 Section 1139.21... Industry § 1139.21 Study carriers. (a) For the purposes of this proceeding the “study carriers” shall... and/or charges. (b) To corroborate the selection of the above study carriers, and to provide a...

  5. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Study carriers. 1139.21 Section 1139.21... Industry § 1139.21 Study carriers. (a) For the purposes of this proceeding the “study carriers” shall... and/or charges. (b) To corroborate the selection of the above study carriers, and to provide a...

  6. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  7. Synthesis and physicochemical properties of polyacrylamide nanoparticles as photosensitizer carriers.

    PubMed

    Gualdesi, M S; Igarzabal, C I Alvarez; Vara, J; Ortiz, C S

    2016-10-15

    At present, polyacrylamide nanoparticles are attractive to drug delivery. However, some physicochemical characteristics of these nanoparticles still need to be further improved in practice. Polyacrylamide nanoparticles with an average size of 80nm and a zeta potential of -30mV were synthesized and used as photosensitizer carriers. The new monobrominated derivatives and parent compounds were the photosensitizers for the photodynamic therapy loaded in the nanocarrier. The physicochemical characterization of the prepared nanoparticles, drug loading, the ability to generate singlet oxygen and chemical stability were investigated. The novel tested nanoparticles exhibited a loading percentage of between 80 and 99%, higher generation of singlet oxygen and good stability in comparison with the corresponding starting reagent. According to these results, the novel polyacrylamide nanoparticles are excellent candidates for drug vehiculization.

  8. Synthesis and physicochemical properties of polyacrylamide nanoparticles as photosensitizer carriers.

    PubMed

    Gualdesi, M S; Igarzabal, C I Alvarez; Vara, J; Ortiz, C S

    2016-10-15

    At present, polyacrylamide nanoparticles are attractive to drug delivery. However, some physicochemical characteristics of these nanoparticles still need to be further improved in practice. Polyacrylamide nanoparticles with an average size of 80nm and a zeta potential of -30mV were synthesized and used as photosensitizer carriers. The new monobrominated derivatives and parent compounds were the photosensitizers for the photodynamic therapy loaded in the nanocarrier. The physicochemical characterization of the prepared nanoparticles, drug loading, the ability to generate singlet oxygen and chemical stability were investigated. The novel tested nanoparticles exhibited a loading percentage of between 80 and 99%, higher generation of singlet oxygen and good stability in comparison with the corresponding starting reagent. According to these results, the novel polyacrylamide nanoparticles are excellent candidates for drug vehiculization. PMID:27568496

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  11. Non-permeable substrate carrier for electroplating

    DOEpatents

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  12. Non-permeable substrate carrier for electroplating

    SciTech Connect

    Abas, Emmanuel Chua; Chen, Chen-an; Ma, Diana Xiaobing; Ganti, Kalyana; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor

    2015-12-29

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  13. Biocheese: A Food Probiotic Carrier

    PubMed Central

    Castro, J. M.; Tornadijo, M. E.; Fresno, J. M.; Sandoval, H.

    2015-01-01

    This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The physicochemical and technological parameters influencing the quality of these products have also to be measured so as to obtain a process optimization. PMID:25802862

  14. Biocheese: a food probiotic carrier.

    PubMed

    Castro, J M; Tornadijo, M E; Fresno, J M; Sandoval, H

    2015-01-01

    This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The physicochemical and technological parameters influencing the quality of these products have also to be measured so as to obtain a process optimization. PMID:25802862

  15. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  16. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Announcement of advisory... Committee that provides the Agency with advice and recommendations on motor carrier safety programs...

  17. Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater.

    PubMed

    Gu, Qiyuan; Sun, Tichang; Wu, Gen; Li, Mingyue; Qiu, Wei

    2014-08-01

    This study aims to evaluate the effect of carrier filling ratio on the performance of a moving bed biofilm reactor in degrading chemical oxygen demand, phenol, thiocyanate, and ammonia from coking wastewater at 20h of hydraulic retention time. The operational experiments under different carrier filling ratios ranging from 20% to 60% were investigated. The maximum removal efficiency of 89%, 99% and 99% for COD, phenol and thiocyanate, and minimum sensitivity to the increasing contaminants concentration in the influent were achieved at 50% carrier filling ratio. The Haldane competitive substrate inhibition kinetics model was used to describe the relationship between the oxygen uptake rate of ammonium oxidizers and the concentration of free ammonium. The highest biofilm microbial community functional diversity (Shannon's diversity index, H') and evenness (Shannon's evenness index, E') were obtained at 50% carrier filling ratio in all runs using a Biolog ECO microplate.

  18. Oxygen Sensing and Homeostasis.

    PubMed

    Prabhakar, Nanduri R; Semenza, Gregg L

    2015-09-01

    The discovery of carotid bodies as sensory receptors for detecting arterial blood oxygen levels, and the identification and elucidation of the roles of hypoxia-inducible factors (HIFs) in oxygen homeostasis have propelled the field of oxygen biology. This review highlights the gas-messenger signaling mechanisms associated with oxygen sensing, as well as transcriptional and non-transcriptional mechanisms underlying the maintenance of oxygen homeostasis by HIFs and their relevance to physiology and pathology.

  19. Carrier detection in xeroderma pigmentosum

    SciTech Connect

    Parshad, R.; Sanford, K.K.; Kraemer, K.H.; Jones, G.M.; Tarone, R.E. )

    1990-01-01

    We were able to detect clinically normal carriers of xeroderma pigmentosum (XP) genes with coded samples of either peripheral blood lymphocytes or skin fibroblasts, using a cytogenetic assay shown previously to detect individuals with cancer-prone genetic disorders. Metaphase cells of phytohemagglutinin-stimulated T-lymphocytes from eight individuals who are obligate heterozygotes for XP were compared with those from nine normal controls at 1.3, 2.3, and 3.3 h after x-irradiation (58 R) during the G2 phase of the cell cycle. Lymphocytes from the XP heterozygotes had twofold higher frequencies of chromatid breaks or chromatid gaps than normal (P less than 10(-5)) when fixed at 2.3 or 3.3 h after irradiation. Lymphocytes from six XP homozygotes had frequencies of breaks and gaps threefold higher than normal. Skin fibroblasts from an additional obligate XP heterozygote, when fixed approximately 2 h after x-irradiation (68 R), had a twofold higher frequency of chromatid breaks and a fourfold higher frequency of gaps than fibroblasts from a normal control. This frequency of aberrations in cells from the XP heterozygote was approximately half that observed in the XP homozygote. The elevated frequencies of chromatid breaks and gaps after G2 phase x-irradiation may provide the basis of a test for identifying carriers of the XP gene(s) within known XP families.

  20. Femtosecond carrier dynamics in graphite

    NASA Astrophysics Data System (ADS)

    Seibert, K.; Cho, G. C.; Kütt, W.; Kurz, H.; Reitze, D. H.; Dadap, J. I.; Ahn, H.; Downer, M. C.; Malvezzi, A. M.

    1990-08-01

    We present a comprehensive report of pump-probe reflectivity and transmission measurements on highly oriented pyrolytic graphite with 50 fs time resolution. The experiments trace the generation, relaxation, and recombination of nonequilibrium carriers in a quasi-two-dimensional semimetallic solid over a wide range of experimental parameters. The fluence of excitation at hν=2.0 eV was varied between 10-6 and 10-2 J/cm2, below the threshold for optical damage, while probe pulses in the photon energy range 1.5carriers cool and recombine in less than 1 ps. Later dynamics reflect the generation and diffusion of heat in the lattice, and are consistent with previous picosecond reflectivity measurements.

  1. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  2. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  3. Carriers of the astronomical 2175 ? extinction feature

    SciTech Connect

    Bradley, J; Dai, Z; Ernie, R; Browning, N; Graham, G; Weber, P; Smith, J; Hutcheon, I; Ishii, H; Bajt, S; Floss, C; Stadermann, F

    2004-07-20

    The 2175 {angstrom} extinction feature is by far the strongest spectral signature of interstellar dust observed by astronomers. Forty years after its discovery the origin of the feature and the nature of the carrier remain controversial. The feature is enigmatic because although its central wavelength is almost invariant its bandwidth varies strongly from one sightline to another, suggesting multiple carriers or a single carrier with variable properties. Using a monochromated transmission electron microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV (2175 {angstrom}) feature in submicrometer-sized interstellar grains within interplanetary dust particles (IDPs) collected in the stratosphere. The carriers are organic carbon and amorphous silicates that are abundant and closely associated with one another both in IDPs and in the interstellar medium. Multiple carriers rather than a single carrier may explain the invariant central wavelength and variable bandwidth of the astronomical 2175 {angstrom} feature.

  4. Ultrafast carriers dynamics in filled-skutterudites

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Xu, Xianfan; Salvador, James R.

    2015-06-01

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.4-0.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  5. Recent Advances in Subunit Vaccine Carriers.

    PubMed

    Vartak, Abhishek; Sucheck, Steven J

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  6. Ultrafast carriers dynamics in filled-skutterudites

    SciTech Connect

    Guo, Liang; Xu, Xianfan; Salvador, James R.

    2015-06-08

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.4–0.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  7. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  8. The Universal Oxygen Connector.

    PubMed

    Lauer, Mark A; Gombkoto, Rebecca L M

    2006-02-01

    The purpose of this article is to describe the benefits of using the Universal Oxygen Connector. Until now, an oxygen hose was only able to connect to a 22-mm fitting, such as those found on humidifiers used in the recovery room, and oxygen tubing was only able to connect to a Christmas tree type adapter. The Universal Oxygen Connector, manufactured and sold by International Medical, Inc (Burnsville, Minn), was developed to allow the practitioner to attach either a 22-mm oxygen hose, oxygen tubing, or a 15-mm oxygen adapter to the same connector. Patients benefit from the administration of supplemental oxygen in the perioperative period. Supplemental oxygen has been shown to decrease postoperative hypoxemia, infection, and in some cases, nausea and vomiting. As such, oxygen should be administered during transport from the operating room to the recovery room, in the recovery room, and at times during transport to the patient room and in the patient room. Oxygen also should be administered whenever a patient receiving oxygen is transported. Use of the Universal Oxygen Connector decreases material waste, decreases hospital costs, saves time and effort and, most importantly, promotes patient safety by providing a versatile system for oxygen delivery.

  9. 49 CFR 369.1 - Annual reports of motor carriers of property, motor carriers of household goods, and dual...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF... dual property motor carriers, must file Motor Carrier Annual Report Form M (Form M). Carriers must file... property and class I household goods motor carriers must file Motor Carrier Quarterly Report Form QFR...

  10. Laboratory Studies of DIB Carriers

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1995-01-01

    Spectroscopic studies of the following potential diffuse interstellar band (DIB) carriers are reviewed: unspecified organics, carbon chains, polycyclic aromatic hydrocarbons (PAHs), fullerenes and derivatives, as well as porphyrins and related material. An assessment of each is given, along with suggestions for further experimental studies needed to fully test each candidate. Of the experimental techniques in common use matrix isolation spectroscopy with neon matrices is the most appropriate for the DIBs. The low vapor pressure and high reactivity of these materials preclude gas phase studies on many of these species. At this point, given the type and quality of published data available, carbon chains and PARs are the most promising candidates for a number of the DIBs.

  11. Carriers by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mronga, Norbert; Adel, J.; Czech, Erwin

    1990-07-01

    Printed materials are affecting people's lives in a variety of ways and to a constantly increasing extent, both in the private and in the business spheres. In particular, the predicted reduction of printed materials resulting from electronic data processing - the so-called "paperless electronic office" - has not occured, indeed quite the reverse. In recent years electrophotographic reprography has established itself successfully as a competitor to conventional printing processes. In the office a photocopier is now a part of the standard equipment. Because of BASF's traditional intensive involvement with pigments and colored printing inks its interest in new technologies in these areas is especially great. BASF has therefore been engaged in research on carriers for some years now.

  12. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  13. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  14. Charge carrier thermalization in organic diodes

    PubMed Central

    van der Kaap, N. J.; Koster, L. J. A.

    2016-01-01

    Charge carrier mobilities of organic semiconductors are often characterized using steady-state measurements of space charge limited diodes. These measurements assume that charge carriers are in a steady-state equilibrium. In reality, however, energetically hot carriers are introduces by photo-excitation and injection into highly energetic sites from the electrodes. These carriers perturb the equilibrium density of occupied states, and therefore change the overall charge transport properties. In this paper, we look into the effect of energetically hot carriers on the charge transport in organic semiconductors using steady state kinetic Monte Carlo simulations. For injected hot carriers in a typical organic semiconductor, rapid energetic relaxation occurs in the order of tens of nanoseconds, which is much faster than the typical transit time of a charge carrier throught the device. Furthermore, we investigate the impact of photo-generated carriers on the steady-state mobility. For a typical organic voltaic material, an increase in mobility of a factor of 1.1 is found. Therefore, we conclude that the impact of energetically hot carriers on normal device operation is limited. PMID:26791095

  15. CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E.F. Loros

    2000-06-23

    The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building

  16. Home Oxygen Therapy

    MedlinePlus

    ... important advantage of liquid oxygen is you can transfer some of the liquid oxygen into a smaller, ... from gas stoves, candles, lighted fireplaces, or other heat sources. Don't use any flammable products like ...

  17. Biogeochemistry: Oxygen burrowed away

    NASA Astrophysics Data System (ADS)

    Meysman, Filip J. R.

    2014-09-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  18. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with

  19. Timeline: Cellular Oxygen Sensing.

    PubMed

    Szewczak, Lara

    2016-09-22

    Since the 1950s, researchers have recognized that red blood cell numbers expand or contract as needed, according to the amount of available oxygen. The later discoveries that erythropoietin and VEGF levels adapt to oxygen levels launched a new field aimed at understanding how cells sense and respond to normal- and low-oxygen environments. The 2016 Albert Lasker Basic Medical Research Award recognizes key discoveries about this global oxygen sensing pathway and its impacts on pathogenesis, including cancer and inflammation. PMID:27662095

  20. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  1. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  2. On the low carrier lifetime edge zone in multicrystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Jiang, Tingting; Yu, Xuegong; Wang, Lei; Gu, Xin; Yang, Deren

    2014-01-01

    We have demonstrated the cause of low minority carrier lifetime corresponding to the edge zone of casting multicrystalline silicon ingots and its influence on the performance of solar cells. It is found that the concentration of substitutional carbon, interstitial oxygen, and dislocation density have no direct correlation with the low minority carrier lifetime in the edge zone. However, the distribution of interstitial iron exactly coincides with the minority carrier lifetime, indicating that iron contamination is mainly responsible for the lifetime degradation. After phosphorus diffusion gettering process, the low carrier lifetime region became narrower, and the concentration of interstitial iron is reduced by almost one order of magnitude. However, the carrier lifetime in the edge zone cannot be raised to average level. After celling process, the internal quantum efficiency map of the edge zone has a lower response to the long wavelength light, in accordance with the minority carrier lifetime distribution in this region. Therefore, the solar cells based on edge zones exhibit slightly lower efficiency than those conventional ones.

  3. On the low carrier lifetime edge zone in multicrystalline silicon ingots

    SciTech Connect

    Jiang, Tingting; Yu, Xuegong; Wang, Lei; Gu, Xin; Yang, Deren

    2014-01-07

    We have demonstrated the cause of low minority carrier lifetime corresponding to the edge zone of casting multicrystalline silicon ingots and its influence on the performance of solar cells. It is found that the concentration of substitutional carbon, interstitial oxygen, and dislocation density have no direct correlation with the low minority carrier lifetime in the edge zone. However, the distribution of interstitial iron exactly coincides with the minority carrier lifetime, indicating that iron contamination is mainly responsible for the lifetime degradation. After phosphorus diffusion gettering process, the low carrier lifetime region became narrower, and the concentration of interstitial iron is reduced by almost one order of magnitude. However, the carrier lifetime in the edge zone cannot be raised to average level. After celling process, the internal quantum efficiency map of the edge zone has a lower response to the long wavelength light, in accordance with the minority carrier lifetime distribution in this region. Therefore, the solar cells based on edge zones exhibit slightly lower efficiency than those conventional ones.

  4. Carrier Screening: Past, Present, and Future

    PubMed Central

    Bajaj, Komal; Gross, Susan J.

    2014-01-01

    To date, preconceptual and prenatal patients have been offered gene-by-gene, disorder-by-disorder carrier screening. Newer techniques allow screening of many disorders at one time. The goal of this review is to provide an overview of the current practice and future direction of carrier screening within the preconceptual/prenatal setting.

  5. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Industry § 1139.21 Study carriers. (a) For the purposes of this proceeding the “study carriers” shall... charges, derived $500,000 or more in annual operating revenues from the issue traffic, or 1 percent or more of the total annual operating revenues received by all Class I carriers from the issue...

  6. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Study carriers. 1139.21 Section 1139.21 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity...

  7. Hydrogen: the future energy carrier.

    PubMed

    Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver

    2010-07-28

    Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.

  8. Oxygen defects in phosphorene.

    PubMed

    Ziletti, A; Carvalho, A; Campbell, D K; Coker, D F; Castro Neto, A H

    2015-01-30

    Surface reactions with oxygen are a fundamental cause of the degradation of phosphorene. Using first-principles calculations, we show that for each oxygen atom adsorbed onto phosphorene there is an energy release of about 2 eV. Although the most stable oxygen adsorbed forms are electrically inactive and lead only to minor distortions of the lattice, there are low energy metastable forms which introduce deep donor and/or acceptor levels in the gap. We also propose a mechanism for phosphorene oxidation involving reactive dangling oxygen atoms and we suggest that dangling oxygen atoms increase the hydrophilicity of phosphorene.

  9. Brain Oxygenation Monitoring.

    PubMed

    Kirkman, Matthew A; Smith, Martin

    2016-09-01

    A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring. It is increasingly deployed whenever intracranial pressure monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address uncertainties about cerebral oxygenation monitoring and management. This article describes the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations, and future perspectives. PMID:27521197

  10. Optoelectronic characterization of carrier extraction in a hot carrier photovoltaic cell structure

    NASA Astrophysics Data System (ADS)

    Dimmock, James A. R.; Kauer, Matthias; Smith, Katherine; Liu, Huiyun; Stavrinou, Paul N.; Ekins-Daukes, Nicholas J.

    2016-07-01

    A hot carrier photovoltaic cell requires extraction of electrons on a timescale faster than they can lose energy to the lattice. We optically and optoelectronically characterize two resonant tunneling structures, showing their compatability with hot carrier photovoltaic operation, demonstrating structural and carrier extraction properties necessary for such a device. In particular we use time resolved and temperature dependent photoluminescence to determine extraction timescales and energy levels in the structures and demonstrate fast carrier extraction by tunneling. We also show that such devices are capable of extracting photo-generated electrons at high carrier densities, with an open circuit voltage in excess of 1 V.

  11. Oxygen pressure measurement using singlet oxygen emission

    SciTech Connect

    Khalil, Gamal E.; Chang, Alvin; Gouterman, Martin; Callis, James B.; Dalton, Larry R.; Turro, Nicholas J.; Jockusch, Steffen

    2005-05-15

    Pressure sensitive paint (PSP) provides a visualization of two-dimensional pressure distributions on airfoil and model automobile surfaces. One type of PSP utilizes platinum tetra(pentafluorophenyl)porphine (PtTFPP) dissolved in a fluoro-polymer film. Since the intense 650 nm triplet emission of PtTFPP is quenched by ground state oxygen, it is possible to measure two-dimensional oxygen concentration from the 650 nm emission intensity using a Stern-Volmer-type relationship. This article reports an alternative luminescence method to measure oxygen concentration based on the porphyrin-sensitized 1270 nm singlet oxygen emission, which can be imaged with an InGaAs near infrared camera. This direct measurement of oxygen emission complements and further validates the oxygen measurement based on PtTFPP phosphorescence quenching. Initial success at obtaining a negative correlation between the 650 nm PtTFPP emission and the 1270 nm O{sub 2} emission in solution led us to additional two-dimensional film studies using surfaces coated with PtTFPP, MgTFPP, and H{sub 2}TFPP in polymers in a pressure and temperature controlled chamber.

  12. Oxygen pressure measurement using singlet oxygen emission

    NASA Astrophysics Data System (ADS)

    Khalil, Gamal E.; Chang, Alvin; Gouterman, Martin; Callis, James B.; Dalton, Larry R.; Turro, Nicholas J.; Jockusch, Steffen

    2005-05-01

    Pressure sensitive paint (PSP) provides a visualization of two-dimensional pressure distributions on airfoil and model automobile surfaces. One type of PSP utilizes platinum tetra(pentafluorophenyl)porphine (PtTFPP) dissolved in a fluoro-polymer film. Since the intense 650nm triplet emission of PtTFPP is quenched by ground state oxygen, it is possible to measure two-dimensional oxygen concentration from the 650nm emission intensity using a Stern-Volmer-type relationship. This article reports an alternative luminescence method to measure oxygen concentration based on the porphyrin-sensitized 1270nm singlet oxygen emission, which can be imaged with an InGaAs near infrared camera. This direct measurement of oxygen emission complements and further validates the oxygen measurement based on PtTFPP phosphorescence quenching. Initial success at obtaining a negative correlation between the 650nm PtTFPP emission and the 1270nm O2 emission in solution led us to additional two-dimensional film studies using surfaces coated with PtTFPP, MgTFPP, and H2TFPP in polymers in a pressure and temperature controlled chamber.

  13. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  14. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  15. 77 FR 46555 - Motor Carrier Safety Advisory Committee: Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee: Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier... major motor carrier safety provisions of the recently enacted Moving Ahead for Progress in the...

  16. Removal of nitrogen from secondary effluent of a petrochemical industrial park by a hybrid biofilm-carrier reactor with one-stage ANAMMOX.

    PubMed

    Lin, Han-Lin; Tsao, Hsiang-Wei; Huang, Yu-Wen; Wang, Yi-Chuan; Yang, Keng-Hao; Yang, Ya-Fei; Wang, Wei-Chiang; Wen, Chun-Kuei; Chen, Sheng-Kun; Cheng, Sheng-Shung

    2014-01-01

    A laboratory study was undertaken to explore the capability of one-stage ANAMMOX in a hybrid biofilm-carrier reactor (HBCR) fed with petrochemical wastewater. Under favorable operating conditions in continuous-flow operations (at the dissolved oxygen level of 0.5-1.0 mg L(-1)), the average total nitrogen (TN) removal efficiency reached 62-67% and approximately 90% of TN can be removed by ANAMMOX. In batch operations of the hybrid biofilm-carrier reactor (without adding carbon substrate), the specific TN removal rate of the reactor in which both Kaldnes and nonwoven carriers were kept was two-fold higher than that of the reactor in which only nonwoven carriers were kept. This indicated that the microbial activity of thinner biofilms (Kaldnes carriers) was remarkably higher than that of thicker biofilms (nonwoven carriers). Finally, based on the 16S rRNA clone library, a cluster of ANAMMOX Candidatus Kuenenia stuttgartiensis was identified.

  17. Wastewater treatment with bacteria immobilized onto a ceramic carrier in an aerated system.

    PubMed

    Kariminiaae-Hamedaani, Hamid-Reza; Kanda, Kohzo; Kato, Fumio

    2003-01-01

    Biological treatment of the wastewater discharged from a food processing factory was continuously carried out in a packed bed bioreactor under aerobic conditions. The bacterium isolated from the wastewater was immobilized onto a new type of ceramic carrier by a vacuum method and high numbers of bacteria were colonized onto the carrier (2.9 x 10(9) cfu/g of dry ceramic carrier). The effect of the hydraulic retention time (HRT) and aeration rate on the removal of the chemical oxygen demand (COD) was investigated. The system was able on average to remove more than 82% of the influent COD during 160 d of operation and more than 87% of the influent COD on average was removed when the HRT was 30.17 h and the aeration rate was 2.0 vvm. Aeration rates in the range of 0.4 to 2.0 vvm do not affect the COD removal efficiency. PMID:16233380

  18. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... only (gaseous or liquid tanks). (iii) Oxygen generating portable equipment only. (iv) Stationary oxygen... stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents; or (ii) Rents stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents after the period...

  19. Calcium regulation of mitochondrial carriers.

    PubMed

    Del Arco, Araceli; Contreras, Laura; Pardo, Beatriz; Satrustegui, Jorgina

    2016-10-01

    Mitochondrial function is regulated by calcium. In addition to the long known effects of matrix Ca(2+), regulation of metabolite transport by extramitochondrial Ca(2+) represents an alternative Ca(2+)-dependent mechanism to regulate mitochondrial function. The Ca(2+) regulated mitochondrial transporters (CaMCs) are well suited for that role, as they contain long N-terminal extensions harboring EF-hand Ca(2+) binding domains facing the intermembrane space. They fall in two groups, the aspartate/glutamate exchangers, AGCs, major components of the NADH malate aspartate shuttle (MAS) and urea cycle, and the ATP-Mg(2+)/Pi exchangers or short CaMCs (APCs or SCaMCs). The AGCs are activated by relatively low Ca(2+) levels only slightly higher than resting Ca(2+), whereas all SCaMCs studied so far require strong Ca(2+) signals, above micromolar, for activation. In addition, AGCs are not strictly Ca(2+) dependent, being active even in Ca(2+)-free conditions. Thus, AGCs are well suited to respond to small Ca(2+) signals and that do not reach mitochondria. In contrast, ATP-Mg(2+)/Pi carriers are inactive in Ca(2+) free conditions and activation requires Ca(2+) signals that will also activate the calcium uniporter (MCU). By changing the net content of adenine nucleotides of the matrix upon activation, SCaMCs regulate the activity of the permeability transition pore, and the Ca(2+) retention capacity of mitochondria (CRC), two functions synergizing with those of the MCU. The different Ca(2+) activation properties of the two CaMCs are discussed in relation to their newly obtained structures. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:27033520

  20. Calcium regulation of mitochondrial carriers.

    PubMed

    Del Arco, Araceli; Contreras, Laura; Pardo, Beatriz; Satrustegui, Jorgina

    2016-10-01

    Mitochondrial function is regulated by calcium. In addition to the long known effects of matrix Ca(2+), regulation of metabolite transport by extramitochondrial Ca(2+) represents an alternative Ca(2+)-dependent mechanism to regulate mitochondrial function. The Ca(2+) regulated mitochondrial transporters (CaMCs) are well suited for that role, as they contain long N-terminal extensions harboring EF-hand Ca(2+) binding domains facing the intermembrane space. They fall in two groups, the aspartate/glutamate exchangers, AGCs, major components of the NADH malate aspartate shuttle (MAS) and urea cycle, and the ATP-Mg(2+)/Pi exchangers or short CaMCs (APCs or SCaMCs). The AGCs are activated by relatively low Ca(2+) levels only slightly higher than resting Ca(2+), whereas all SCaMCs studied so far require strong Ca(2+) signals, above micromolar, for activation. In addition, AGCs are not strictly Ca(2+) dependent, being active even in Ca(2+)-free conditions. Thus, AGCs are well suited to respond to small Ca(2+) signals and that do not reach mitochondria. In contrast, ATP-Mg(2+)/Pi carriers are inactive in Ca(2+) free conditions and activation requires Ca(2+) signals that will also activate the calcium uniporter (MCU). By changing the net content of adenine nucleotides of the matrix upon activation, SCaMCs regulate the activity of the permeability transition pore, and the Ca(2+) retention capacity of mitochondria (CRC), two functions synergizing with those of the MCU. The different Ca(2+) activation properties of the two CaMCs are discussed in relation to their newly obtained structures. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.

  1. Electric Properties of Obsidian: Evidence for Positive Hole Charge Carriers

    NASA Astrophysics Data System (ADS)

    Nordvik, R.; Freund, F. T.

    2012-12-01

    The blackness of obsidian is due to the presence of oxygen anions in the valence state 1-, creating broad energy levels at the upper edge of the valence band, which absorb visible light over a wide spectral range. These energy states are associated with defect electrons in the oxygen anion sublattice, well-known from "smoky quartz", where Al substituting for Si captures a defect electron in the oxygen anion sublattice for charge compensation [1]. Such defect electrons, also known as positive holes, are responsible for the increase in electrical conductivity in igneous rocks when uniaxial stresses are applied, causing the break-up of pre-existing peroxy defects, Si-OO-Si [2]. Peroxy defects in obsidian cannot be so easily activated by mechanical stress because the glassy matrix will break before sufficiently high stress levels can be reached. If peroxy defects do exist, however, they can be studied by activating them thermally [3]. We describe experiments with rectangular slabs of obsidian with Au electrodes at both ends. Upon heating one end, we observe (i) a thermopotential and (ii) a thermocurrent developing at distinct temperatures around 250°C and 450°C, marking the 2-step break-up of peroxy bonds. [1] Schnadt, R., and Schneider, J.: The electronic structure of the trapped-hole center in smoky quartz, Zeitschrift Physik B Condensed Matter 11, 19-42, 1970. [2] Freund, F. T., Takeuchi, A., and Lau, B. W.: Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Physics and Chemistry of the Earth, 31, 389-396, 2006. [3] Freund, F., and Masuda, M. M.: Highly mobile oxygen hole-type charge carriers in fused silica, Journal Material Research, 8, 1619-1622, 1991.

  2. Anomalous independence of interface superconductivity from carrier density.

    PubMed

    Wu, J; Pelleg, O; Logvenov, G; Bollinger, A T; Sun, Y-J; Boebinger, G S; Vanević, M; Radović, Z; Božović, I

    2013-10-01

    The recent discovery of superconductivity at the interface of two non-superconducting materials has received much attention. In cuprate bilayers, the critical temperature (Tc) can be significantly enhanced compared with single-phase samples. Several explanations have been proposed, invoking Sr interdiffusion, accumulation and depletion of mobile charge carriers, elongation of the copper-to-apical-oxygen bond length, or a beneficial crosstalk between a material with a high pairing energy and another with a large phase stiffness. From each of these models, one would predict Tc to depend strongly on the carrier density in the constituent materials. Here, we study combinatorial libraries of La(2-x)Sr(x)CuO4-La2CuO4 bilayer samples--an unprecedentedly large set of more than 800 different compositions. The doping level x spans a wide range, 0.15 < x < 0.47, and the measured Hall coefficient varies by one order of magnitude. Nevertheless, across the entire sample set, Tc stays essentially constant at about 40 K. We infer that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. This result poses a new challenge to theory--cuprate superconductors have not run out of surprises. PMID:23913171

  3. Anomalous independence of interface superconductivity from carrier density

    NASA Astrophysics Data System (ADS)

    Wu, J.; Pelleg, O.; Logvenov, G.; Bollinger, A. T.; Sun, Y.-J.; Boebinger, G. S.; Vanević, M.; Radović, Z.; Božović, I.

    2013-10-01

    The recent discovery of superconductivity at the interface of two non-superconducting materials has received much attention. In cuprate bilayers, the critical temperature (Tc) can be significantly enhanced compared with single-phase samples. Several explanations have been proposed, invoking Sr interdiffusion, accumulation and depletion of mobile charge carriers, elongation of the copper-to-apical-oxygen bond length, or a beneficial crosstalk between a material with a high pairing energy and another with a large phase stiffness. From each of these models, one would predict Tc to depend strongly on the carrier density in the constituent materials. Here, we study combinatorial libraries of La2-xSrxCuO4-La2CuO4 bilayer samples—an unprecedentedly large set of more than 800 different compositions. The doping level x spans a wide range, 0.15 < x < 0.47, and the measured Hall coefficient varies by one order of magnitude. Nevertheless, across the entire sample set, Tc stays essentially constant at about 40 K. We infer that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. This result poses a new challenge to theory—cuprate superconductors have not run out of surprises.

  4. Integrated turbomachine oxygen plant

    DOEpatents

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  5. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  6. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  7. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  8. Continuous home oxygen therapy.

    PubMed

    Ortega Ruiz, Francisco; Díaz Lobato, Salvador; Galdiz Iturri, Juan Bautista; García Rio, Francisco; Güell Rous, Rosa; Morante Velez, Fátima; Puente Maestu, Luis; Tàrrega Camarasa, Julia

    2014-05-01

    Oxygen therapy is defined as the therapeutic use of oxygen and consists of administering oxygen at higher concentrations than those found in room air, with the aim of treating or preventing hypoxia. This therapeutic intervention has been shown to increase survival in patients with chronic obstructive pulmonary disease (COPD) and respiratory failure. Although this concept has been extended by analogy to chronic respiratory failure caused by respiratory and non-respiratory diseases, continuous oxygen therapy has not been shown to be effective in other disorders. Oxygen therapy has not been shown to improve survival in patients with COPD and moderate hypoxaemia, nor is there consensus regarding its use during nocturnal desaturations in COPD or desaturations caused by effort. The choice of the oxygen source must be made on the basis of criteria such as technical issues, patient comfort and adaptability and cost. Flow must be adjusted to achieve appropriate transcutaneous oxyhaemoglobin saturation correction.

  9. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    NASA Technical Reports Server (NTRS)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  10. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  11. 7 CFR 33.4 - Carrier.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS REGULATIONS... private carrier, including, but not limited to trucks, railroads, airplanes, vessels, tramp or...

  12. Useful Life Prediction for Payload Carrier Hardware

    NASA Technical Reports Server (NTRS)

    Ben-Arieh, David

    2002-01-01

    The Space Shuttle has been identified for use through 2020. Payload carrier systems will be needed to support missions through the same time frame. To support the future decision making process with reliable systems, it is necessary to analyze design integrity, identify possible sources of undesirable risk and recognize required upgrades for carrier systems. This project analyzed the information available regarding the carriers and developed the probability of becoming obsolete under different scenarios. In addition, this project resulted in a plan for an improved information system that will improve monitoring and control of the various carriers. The information collected throughout this project is presented in this report as process flow, historical records, and statistical analysis.

  13. NASA's Original Shuttle Carrier Departs Dryden

    NASA Video Gallery

    NASA's Space Shuttle Carrier Aircraft (SCA) No. 905, departed NASA's Dryden Flight Research Center on Oct. 24, 2012 for the final time, ending a 38-year association with the NASA field center at Ed...

  14. Multiple sclerosis in an adrenoleukodystrophy carrier

    PubMed Central

    Jenkins, Thomas; Sarasamma, Priya; Gillett, Godfrey; Coley, Stuart; Sharrack, Basil

    2011-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a rare inherited metabolic disorder, in which accumulation of very long chain fatty acids (VLCFAs) results in damage to the central nervous system. As the disease is X-linked, males are affected severely, but female carriers may also present with neurological symptoms. We report the case of a young adult female, who presented with episodic sensorimotor symptoms. Although she was a heterozygous female carrier of X-ALD, subsequent investigations confirmed a diagnosis of multiple sclerosis (MS). To the best of our knowledge, this is the first reported case of a female X-ALD carrier in which the clinical features were more consistent with co-existent MS than ALD-related pathology. The case serves as a reminder that alternative, more common diagnoses should also be considered in carriers of rare neurological syndromes. PMID:24765366

  15. Precise frequency calibration using television video carriers

    NASA Technical Reports Server (NTRS)

    Burkhardt, Edward E.

    1990-01-01

    The availability of inexpensive and quick precise frequency calibration methods is limited. VLF and GPS do offer precise calibration. However, antenna placement, cost of equipment, and calibration time place many restrictions on the user. The USNO maintained line-10 television Time of Coincidence (TOC) of station WTTG, channel 5, Washington, DC requires a frequency stable video carrier. This video carrier, 77.24 MHz is controlled by the same cesium beam standard controlling the TOC of line-10. Excellent frequency comparisons against this video carrier have been accomplished at 95 miles (153 km). With stable propagation and a three foot wire antenna, a part in 10(exp 9) can be determined in a few minutes. Inexpensive field equipment with a synthesized 1 kHz offset from the video carrier offers parts in 10(exp 11) calibrations in a few minutes using an oscilloscope as a phase comparator.

  16. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  17. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  18. Minority carrier lifetime in indium phosphide

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Weinberg, Irving; Kneisel, Keith

    1991-01-01

    Transient photoluminescence is used to measure the minority carrier lifetime on n-type and p-type InP wafers. The measurements show that unprocessed InP wafers have very high minority carrier lifetimes. Lifetimes of 200 ns and 700 ns were observed for lightly-doped p- and n-type material respectively. Lifetimes over 5 ns were found in heavily doped n-type material.

  19. Enhanced attached growth of microalgae Scenedesmus. LX1 through ambient bacterial pre-coating of cotton fiber carriers.

    PubMed

    Zhuang, Lin-Lan; Azimi, Yaldah; Yu, Dawei; Wang, Wen-Long; Wu, Yin-Hu; Dao, Guo-Hua; Hu, Hong-Ying

    2016-10-01

    The role of bacteria/extracellular polymeric substances (EPS) coated carriers on attached microalgae growth in suspended-solid phase photobioreactor (sspBR) was assessed in this study. The results showed that pre-coating cotton with ambient bacteria and their EPS improved the attached microalgal growth by as much as 230% in terms of attached microalgae density. Additionally, the single cell dry weight, chemical composition and oxygen evolving activity of attached microalgae were significantly affected by the presence of bacteria/EPS coating on the cotton carriers. The protein content of microalgae cells cultivated in the ssPBRs with carriers coated by bacteria and sterilized bacteria were on average 26% and 15% more than uncoated carriers, respectively. Through absorbing and immobilizing nutrients from the bulk medium, the bacteria/EPS coating provided the attached microalgae with nitrogen/phosphorus for protein synthesis, especially during the late stages of batch cultivation. PMID:27416514

  20. Enhanced attached growth of microalgae Scenedesmus. LX1 through ambient bacterial pre-coating of cotton fiber carriers.

    PubMed

    Zhuang, Lin-Lan; Azimi, Yaldah; Yu, Dawei; Wang, Wen-Long; Wu, Yin-Hu; Dao, Guo-Hua; Hu, Hong-Ying

    2016-10-01

    The role of bacteria/extracellular polymeric substances (EPS) coated carriers on attached microalgae growth in suspended-solid phase photobioreactor (sspBR) was assessed in this study. The results showed that pre-coating cotton with ambient bacteria and their EPS improved the attached microalgal growth by as much as 230% in terms of attached microalgae density. Additionally, the single cell dry weight, chemical composition and oxygen evolving activity of attached microalgae were significantly affected by the presence of bacteria/EPS coating on the cotton carriers. The protein content of microalgae cells cultivated in the ssPBRs with carriers coated by bacteria and sterilized bacteria were on average 26% and 15% more than uncoated carriers, respectively. Through absorbing and immobilizing nutrients from the bulk medium, the bacteria/EPS coating provided the attached microalgae with nitrogen/phosphorus for protein synthesis, especially during the late stages of batch cultivation.

  1. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene.

    PubMed

    Sierra, Juan F; Neumann, Ingmar; Costache, Marius V; Valenzuela, Sergio O

    2015-06-10

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport. PMID:25950746

  2. Radio Science Measurements with Suppressed Carrier

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  3. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  4. Oxygen in GaN.

    NASA Astrophysics Data System (ADS)

    van de Walle, Chris G.; Neugebauer, Jörg

    1997-03-01

    Oxygen is commonly present during epitaxial growth of GaN. We have proposed that unintentional incorporation of O, as well as Si, is responsible for the frequently observed n-type conductivity in as-grown GaN. Here we present results from comprehensive density-functional-pseudopotential studies of GaN:O under pressure, and of O interactions with native defects and dopant impurities. We find that the O donor undergoes a DX-like transition under pressure: a large outward relaxation introduces a deep level in the band gap. This behavior explains the carrier freezeout in GaN under pressure.^1 Si donors do not exhibit the transition, consistent with experiment. Results for these impurities in AlGaN will also be discussed. We have also investigated the interaction between O and native defects. Most notably we find a large binding energy between O and the gallium vacancy (V_Ga), which we have proposed to be the source of the yellow luminescence. Finally, we have studied the interaction between O and Mg acceptors. The incorporation of the O donor is significantly enhanced in Mg-doped material. In addition, we calculate a binding energy of 0.6 eV for Mg-O complexes. The presence of O during growth can thus be detrimental to p-type GaN. ^1 C. Wetzel et al., Proc. ICPS-23 (World Scientific, Singapore, 1996), p. 2929.

  5. Materials flight experiment carrier capability and future flight experiments on Hitchhiker-M carrier program

    NASA Astrophysics Data System (ADS)

    Davis, D.

    1993-10-01

    The CMSS has designed, fabricated, and qualified a unique Materials FLight EXperiment (MFLEX) carrier. The MFLEX is a reusable materials experiment carrier designed to support a wide array of sensors that measure synergistic effects on candidate space materials in Low Earth Orbit (LEO). The MFLEX can be integrated on a variety of launch vehicles/carriers and multiple units can be networked to optimize the surface area of carriers such as the Hitchhiker-M currently being built by the Goddard Space Flight Center (GSFC).

  6. Materials flight experiment carrier capability and future flight experiments on Hitchhiker-M carrier program

    NASA Technical Reports Server (NTRS)

    Davis, D.

    1993-01-01

    The CMSS has designed, fabricated, and qualified a unique Materials FLight EXperiment (MFLEX) carrier. The MFLEX is a reusable materials experiment carrier designed to support a wide array of sensors that measure synergistic effects on candidate space materials in Low Earth Orbit (LEO). The MFLEX can be integrated on a variety of launch vehicles/carriers and multiple units can be networked to optimize the surface area of carriers such as the Hitchhiker-M currently being built by the Goddard Space Flight Center (GSFC).

  7. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers.

  8. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes.

    PubMed

    Cheng, Xiang; Huang, Yan; Li, Hui; Yue, Fan; Wen, Hongmei; Wang, Jide

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  9. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  10. Carrier effects on tertiary nitrifying moving bed biofilm reactor: An examination of performance, biofilm and biologically produced solids.

    PubMed

    Forrest, Daina; Delatolla, Robert; Kennedy, Kevin

    2016-01-01

    Increasingly stricter ammonia and nitrogen release regulations with respect to wastewater effluents are creating a need for tertiary treatment systems. The moving bed biofilm reactor (MBBR) is being considered as an upgrade option for an increasing number of wastewater treatment facilities due to its small footprint and ease of operation. Despite the MBBRs creation as a system to remove nitrogen, recent research on MBBR systems showing that the system's performance is directly related to carrier surface area and is irrespective of carrier shape and type has been performed exclusively on chemical oxygen demand (COD) removal systems. Furthermore, the influence of carrier type on the solids produced by MBBR systems has also been exclusively studied for COD removal systems. This work investigates the effects of three specific carrier types on ammonia removal rates, biofilm morphology, along with solids production and settleability of tertiary nitrifying MBBR systems. The study concludes that carrier type has no significant effect on tertiary nitrifying MBBR system performance under steady, moderate loading conditions. The research does however highlight the propensity of greater surface area to volume carriers to become clogged under high loading conditions and that the high surface area carriers investigated in this study required longer adjustment periods to changes in loading after becoming clogged.

  11. Batteries: Avoiding oxygen

    NASA Astrophysics Data System (ADS)

    Hardwick, Laurence J.

    2016-08-01

    In the development of lithium–air batteries, managing the phase change between gaseous oxygen and crystalline lithium peroxide is a key challenge. Now, a high-performing sealed battery with an oxygen anion-redox electrode is presented that does not involve any gas evolution.

  12. Extracorporeal membrane oxygenation circuitry.

    PubMed

    Lequier, Laurance; Horton, Stephen B; McMullan, D Michael; Bartlett, Robert H

    2013-06-01

    The extracorporeal membrane oxygenation circuit is made of a number of components that have been customized to provide adequate tissue oxygen delivery in patients with severe cardiac and/or respiratory failure for a prolonged period of time (days to weeks). A standard extracorporeal membrane oxygenation circuit consists of a mechanical blood pump, gas-exchange device, and a heat exchanger all connected together with circuit tubing. Extracorporeal membrane oxygenation circuits can vary from simple to complex and may include a variety of blood flow and pressure monitors, continuous oxyhemoglobin saturation monitors, circuit access sites, and a bridge connecting the venous access and arterial infusion limbs of the circuit. Significant technical advancements have been made in the equipment available for short- and long-term extracorporeal membrane oxygenation applications. Contemporary extracorporeal membrane oxygenation circuits have greater biocompatibility and allow for more prolonged cardiopulmonary support time while minimizing the procedure-related complications of bleeding, thrombosis, and other physiologic derangements, which were so common with the early application of extracorporeal membrane oxygenation. Modern era extracorporeal membrane oxygenation circuitry and components are simpler, safer, more compact, and can be used across a wide variety of patient sizes from neonates to adults. PMID:23735989

  13. Oxygen sensitive paper

    NASA Technical Reports Server (NTRS)

    Whidby, J. F.

    1973-01-01

    Paper is impregnated with mixture of methylene blue and ethylenediaminetetraacetic acid. Methylene blue is photo-reduced to leuco-form. Paper is kept isolated from oxygen until ready for use. Paper can be reused by photo-reduction after oxygen exposure.

  14. Oxygen therapy - infants

    MedlinePlus

    ... help breathing than they can get from an oxygen hood or nasal cannula, but do not need a machine to completely ... is not warm enough. Most (but not all) nasal cannulas use cool, dry oxygen. At higher flow rates, this can irritate the ...

  15. Batteries: Avoiding oxygen

    NASA Astrophysics Data System (ADS)

    Hardwick, Laurence J.

    2016-08-01

    In the development of lithium-air batteries, managing the phase change between gaseous oxygen and crystalline lithium peroxide is a key challenge. Now, a high-performing sealed battery with an oxygen anion-redox electrode is presented that does not involve any gas evolution.

  16. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  17. Audit of oxygen therapy.

    PubMed

    Gravil, J H; O'Neill, V J; Stevenson, R D

    1997-06-01

    We audited the use of oxygen in our hospital. Over three days we found 119 patients using oxygen, 21 wearing their mask incorrectly or not at all. The commonest indication was chronic obstructive pulmonary disease. Forty patients had no record of arterial gas analysis. Of those who had, 29 did not require oxygen and the average time from last arterial gas analysis was 5.7 days and only eight patients were being monitored with an oximeter. Taking into account the risk of exacerbating carbon dioxide retention and the problems that arise when discharging a patient who has been receiving oxygen therapy for the duration of their admission, we fee oxygen therapy should only be administered with the knowledge of the arterial gases and with frequent reassessment during therapy.

  18. Acute oxygen therapy.

    PubMed

    Akbar, Fazal; Campbell, Ian Allen

    2004-05-01

    Oxygen therapy is a central part of our clinical practice and is widely used in many pulmonary and non-pulmonary conditions worldwide but it is sometimes used unnecessarily and can be harmful. Optimum use is not only important for patient care but is also sound fiscally because of the expense of oxygen and the cost of devices utilised. This article is aimed both at reviewing available research and guidelines for the use of oxygen and providing knowledge of different administering and monitoring devices and equipment. Various hospital based audits have shown oxygen as being poorly prescribed and inappropriately administered and it is important for everyone involved in patient care to understand the basics of oxygen therapy before optimum practice can be implemented and followed. PMID:15225466

  19. Oxygen-induced recombination centers in as-grown Czochralski silicon crystals

    NASA Technical Reports Server (NTRS)

    Nauka, K.; Gatos, H. C.; Lagowski, J.

    1983-01-01

    Simultaneous quantitative microprofiles of the interstitial oxygen concentration and of the excess carrier lifetime are obtained in Czochralski-grown Si crystals employing double laser absorption scanning. It is found that oxygen concentration maxima and minima along the crystal growth direction coincide with lifetime minima and maxima, respectively. Another finding is that the magnitude of oxygen-induced lifetime changes increases dramatically in going from the center to the periphery of the crystal. The findings discussed imply that 'as-grown' oxygen precipitates figure in lifetime-limiting processes.

  20. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus.

    PubMed

    Espinosa-Gongora, Carmen; Larsen, Niels; Schønning, Kristian; Fredholm, Merete; Guardabassi, Luca

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming. PMID:27509169

  1. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    PubMed Central

    Espinosa-Gongora, Carmen; Larsen, Niels; Schønning, Kristian; Fredholm, Merete; Guardabassi, Luca

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming. PMID:27509169

  2. The effect of oxide precipitates on minority carrier lifetime in n-type silicon

    NASA Astrophysics Data System (ADS)

    Murphy, J. D.; Al-Amin, M.; Bothe, K.; Olmo, M.; Voronkov, V. V.; Falster, R. J.

    2015-12-01

    Supersaturated levels of interstitial oxygen in Czochralski silicon can lead to the formation of oxide precipitates. Although beneficial from an internal gettering perspective, oxygen-related extended defects give rise to recombination which reduces minority carrier lifetime. The highest efficiency silicon solar cells are made from n-type substrates in which oxide precipitates can have a detrimental impact on cell efficiency. In order to quantify and to understand the mechanism of recombination in such materials, we correlate injection level-dependent minority carrier lifetime data measured with silicon nitride surface passivation with interstitial oxygen loss and precipitate concentration measurements in samples processed under substantially different conditions. We account for surface recombination, doping level, and precipitate morphology to present a generalised parameterisation of lifetime. The lifetime data are analysed in terms of recombination activity which is dependent on precipitate density or on the surface area of different morphologies of precipitates. Correlation of the lifetime data with interstitial oxygen loss data shows that the recombination activity is likely to be dependent on the precipitate surface area. We generalise our findings to estimate the impact of oxide precipitates with a given surface area on lifetime in both n-type and p-type silicon.

  3. A Method to Perform Direct Oxygen Analysis on Lunar Simulants and Other Complex Oxide Materials

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo

    2007-01-01

    An essential requirement for making space travel and long term missions more efficient and affordable to NASA includes finding innovative ways to supply oxygen for life support and propulsion. In this experiment, carrier gas hot extraction was investigated as a possible method for measuring the oxygen from samples of lunar soil simulants before and after oxygen extraction. The determination of oxygen using the R0600 Oxygen Determinator is usually limited to oxides with low oxygen concentrations, but after the manipulation of certain furnace operating parameters such as analysis time and ramp rate, the R0600 was used to determine the oxygen content of high concentration oxides such as Fe 2O3 , Al2O3 , and SiO2.

  4. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  5. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  6. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  7. 47 CFR 64.1190 - Preferred carrier freezes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Preferred carrier freezes. 64.1190 Section 64.1190 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) MISCELLANEOUS RULES RELATING TO COMMON CARRIERS Changes in Preferred Telecommunications Service Providers § 64.1190 Preferred carrier freezes....

  8. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  9. 27 CFR 28.93 - Carrier to be designated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Carrier to be designated... to a Manufacturing Bonded Warehouse § 28.93 Carrier to be designated. The name of the carrier or carriers to be used in transporting the distilled spirits from the bonded premises of the distilled...

  10. 27 CFR 28.93 - Carrier to be designated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carrier to be designated... to a Manufacturing Bonded Warehouse § 28.93 Carrier to be designated. The name of the carrier or carriers to be used in transporting the distilled spirits from the bonded premises of the distilled...

  11. 27 CFR 28.93 - Carrier to be designated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Carrier to be designated... to a Manufacturing Bonded Warehouse § 28.93 Carrier to be designated. The name of the carrier or carriers to be used in transporting the distilled spirits from the bonded premises of the distilled...

  12. 27 CFR 28.93 - Carrier to be designated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Carrier to be designated... to a Manufacturing Bonded Warehouse § 28.93 Carrier to be designated. The name of the carrier or carriers to be used in transporting the distilled spirits from the bonded premises of the distilled...

  13. 27 CFR 28.93 - Carrier to be designated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Carrier to be designated... to a Manufacturing Bonded Warehouse § 28.93 Carrier to be designated. The name of the carrier or carriers to be used in transporting the distilled spirits from the bonded premises of the distilled...

  14. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory... MCSAC will complete action on Task 11-01, regarding Patterns of Safety Violations by Motor...

  15. 75 FR 2923 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... sessions announced on January 5, 2010 (75 FR 285), and elsewhere in today's Federal Register, and to... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety...

  16. 46 CFR 565.3 - Classification as controlled carrier.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 9 2014-10-01 2014-10-01 false Classification as controlled carrier. 565.3 Section 565... MARITIME PRACTICES CONTROLLED CARRIERS § 565.3 Classification as controlled carrier. (a) Notification. The... States and will notify any ocean common carrier of any change in its classification as a...

  17. 46 CFR 565.3 - Classification as controlled carrier.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 9 2012-10-01 2012-10-01 false Classification as controlled carrier. 565.3 Section 565... MARITIME PRACTICES CONTROLLED CARRIERS § 565.3 Classification as controlled carrier. (a) Notification. The... States and will notify any ocean common carrier of any change in its classification as a...

  18. 46 CFR 565.3 - Classification as controlled carrier.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 9 2011-10-01 2011-10-01 false Classification as controlled carrier. 565.3 Section 565... MARITIME PRACTICES CONTROLLED CARRIERS § 565.3 Classification as controlled carrier. (a) Notification. The... States and will notify any ocean common carrier of any change in its classification as a...

  19. 46 CFR 565.3 - Classification as controlled carrier.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 9 2013-10-01 2013-10-01 false Classification as controlled carrier. 565.3 Section 565... MARITIME PRACTICES CONTROLLED CARRIERS § 565.3 Classification as controlled carrier. (a) Notification. The... States and will notify any ocean common carrier of any change in its classification as a...

  20. 46 CFR 565.3 - Classification as controlled carrier.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Classification as controlled carrier. 565.3 Section 565... MARITIME PRACTICES CONTROLLED CARRIERS § 565.3 Classification as controlled carrier. (a) Notification. The... States and will notify any ocean common carrier of any change in its classification as a...

  1. 47 CFR 64.1140 - Carrier liability for slamming.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier liability for slamming. 64.1140 Section 64.1140 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Providers § 64.1140 Carrier liability for slamming. (a) Carrier Liability for Charges. Any...

  2. 47 CFR 73.1540 - Carrier frequency measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 73.1540 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... measurements. (a) The carrier frequency of each AM and FM station and the visual carrier frequency and the difference between the visual carrier and the aural carrier or center frequency of each TV and Class A...

  3. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent.

    PubMed

    Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi

    2015-09-01

    The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans. PMID:25953607

  4. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent.

    PubMed

    Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi

    2015-09-01

    The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans.

  5. Theileria annulata: carrier state and immunity.

    PubMed

    Ilhan, T; Williamson, S; Kirvar, E; Shiels, B; Brown, C G

    1998-06-29

    Recovery from primary infection of Theileria annulata results in the development of a persistent carrier state in the vertebrate host. The carrier state is of great importance in the maintenance of the life cycle by alternate tick/cattle challenge and both contributes to and may be necessary for maintenance of immunity. Therefore, an accurate determination of carrier animals could be useful in determining immune status and may allow the necessary control measures to be implemented. Detailed information on the carrier state of animals following immunization with attenuated cell lines is lacking. In this study, relationship between immune response, persistence of the parasite, and the antibody response has been investigated. Calves were infected with T. annulata sporozoites, low passage (non-attenuated) or high passage (attenuated, vaccine) cell lines and later challenged with a lethal dose of heterologous sporozoites. The presence and persistence of the parasite were monitored by PCR using primers derived from genes coding for ssrRNA and a 30 kDa major merozoite surface protein, by Giemsa stained blood smears to detect the presence of piroplasms and also by attempting to establish infected mononuclear cell cultures from venous blood. Antibody responses were measured by indirect ELISA using a merozoite recombinant antigen and IFAT using piroplasm and macroschizont antigens. Results showed that there was an evident relationship between the persistence of carrier status, antibody response in ELISA and immune response to challenge.

  6. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  7. Carrier relaxation dynamics in heavy fermion compounds

    SciTech Connect

    Demsar, J.; Tracy, L. A.; Averitt, R. D.; Trugman, S. A.; Sarrao, John L.,; Taylor, Antoinette J.,

    2002-01-01

    The first femtosecond carrier relaxation dynamics studies in heavy fermion compounds are presented. The carrier relaxation time shows a dramatic hundred-fold increase below the Kondo temperature revealing a dramatic sensitivity to the electronic density of states near the Fermi level. Femtosecond time-resolved optical spectroscopy is an excellent experimental alternative to conventional spectroscopic methods that probe the low energy electronic structure in strongly correlated electron systems. In particular, it has been shown that carrier relaxation dynamics are very sensitive to changes in the low energy density of states (e.g. associated with the formation of a low energy gap or pseudogap) providing new insights into the low energy electronic structure in these materials. In this report we present the first studies of carrier relaxation dynamics in heavy fermion (HF) systems by means of femtosecond time-resolved optical spectroscopy. Our results show that the carrier relaxation dynamics, below the Kondo temperature (T{sub K}), are extremely sensitive to the low energy density of states (DOS) near the Ferini level to which localized f-moments contribute. Specifically, we have performed measurements of the photoinduced reflectivity {Delta}R/R dynamics as a function of temperature and excitation intensity on the series of HF compounds YbXCu{sub 4} (X = Ag, Cd, In) in comparison to their non-magnetic counterparts LuXCu{sub 4}.

  8. Oxygen foreshock of Mars

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Lundin, R.; Frahm, R. A.; Sauvaud, J.-A.; Holmström, M.; Barabash, S.

    2015-12-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations from the Analyzer of Space Plasmas and Energetic Atoms experiment's Ion Mass Analyser (IMA). On 21 September 2008, MEX/IMA detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock and this distribution was observed continuously up to more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. This is the first time that a substantial amount of planetary oxygen is observed upstream of the bow shock. Although rare, this is not the only IMA observation of foreshock-like oxygen: oxygen ions are sometimes observed for a short period of time (<5 min) inside the foreshock region. These observations suggest a new escape channel for planetary ions through the acceleration in the bow shock-magnetosheath region.

  9. 14 CFR 158.23 - Consultation with air carriers and foreign air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Consultation with air carriers and foreign air carriers. 158.23 Section 158.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... funding by PFC's; (2) The PFC level for each project, the proposed charge effective date, the...

  10. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  11. Suppression of ionic liquid gate-induced metallization of SrTiO3(001) by oxygen.

    PubMed

    Li, Mingyang; Han, Wei; Jiang, Xin; Jeong, Jaewoo; Samant, Mahesh G; Parkin, Stuart S P

    2013-10-01

    Ionic liquid gating of three terminal field effect transistor devices with channels formed from SrTiO3(001) single crystals induces a metallic state in the channel. We show that the metallization is strongly affected by the presence of oxygen gas introduced external to the device whereas argon and nitrogen have no effect. The suppression of the gating effect is consistent with electric field induced migration of oxygen that we model by oxygen-induced carrier annihilation.

  12. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy.

    PubMed

    Roy, Indrajit; Ohulchanskyy, Tymish Y; Pudavar, Haridas E; Bergey, Earl J; Oseroff, Allan R; Morgan, Janet; Dougherty, Thomas J; Prasad, Paras N

    2003-07-01

    A novel nanoparticle-based drug carrier for photodynamic therapy is reported which can provide stable aqueous dispersion of hydrophobic photosensitizers, yet preserve the key step of photogeneration of singlet oxygen, necessary for photodynamic action. A multidisciplinary approach is utilized which involves (i) nanochemistry in micellar cavity to produce these carriers, (ii) spectroscopy to confirm singlet oxygen production, and (iii) in vitro studies using tumor cells to investigate drug-carrier uptake and destruction of cancer cells by photodynamic action. Ultrafine organically modified silica-based nanoparticles (diameter approximately 30 nm), entrapping water-insoluble photosensitizing anticancer drug 2-devinyl-2-(1-hexyloxyethyl) pyropheophorbide, have been synthesized in the nonpolar core of micelles by hydrolysis of triethoxyvinylsilane. The resulting drug-doped nanoparticles are spherical, highly monodispersed, and stable in aqueous system. The entrapped drug is more fluorescent in aqueous medium than the free drug, permitting use of fluorescence bioimaging studies. Irradiation of the photosensitizing drug entrapped in nanoparticles with light of suitable wavelength results in efficient generation of singlet oxygen, which is made possible by the inherent porosity of the nanoparticles. In vitro studies have demonstrated the active uptake of drug-doped nanoparticles into the cytosol of tumor cells. Significant damage to such impregnated tumor cells was observed upon irradiation with light of wavelength 650 nm. Thus, the potential of using ceramic-based nanoparticles as drug carriers for photodynamic therapy has been demonstrated.

  13. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    DOE PAGESBeta

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.

    2015-07-02

    In this study, an improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy(DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capturemore » cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.« less

  14. Spectroscopy of carrier multiplication in nanocrystals.

    PubMed

    Bruhn, Benjamin; Limpens, Rens; Chung, Nguyen Xuan; Schall, Peter; Gregorkiewicz, Tom

    2016-01-01

    Carrier multiplication in nanostructures promises great improvements in a number of widely used technologies, among others photodetectors and solar cells. The decade since its discovery was ridden with fierce discussions about its true existence, magnitude, and mechanism. Here, we introduce a novel, purely spectroscopic approach for investigation of carrier multiplication in nanocrystals. Applying this method to silicon nanocrystals in an oxide matrix, we obtain an unambiguous spectral signature of the carrier multiplication process and reveal details of its size-dependent characteristics-energy threshold and efficiency. The proposed method is generally applicable and suitable for both solid state and colloidal samples, as well as for a great variety of different materials. PMID:26852922

  15. Nanogel Carrier Design for Targeted Drug Delivery

    PubMed Central

    Eckmann, D. M.; Composto, R. J.; Tsourkas, A.; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions. PMID:25485112

  16. Inorganic Nanomaterials as Carriers for Drug Delivery.

    PubMed

    Chen, Shizhu; Hao, Xiaohong; Liang, Xingjie; Zhang, Qun; Zhang, Cuimiao; Zhou, Guoqiang; Shen, Shigang; Jia, Guang; Zhang, Jinchao

    2016-01-01

    For safe and effective therapy, drugs must be delivered efficiently and with minimal systemic side effects. Nanostructured drug carriers enable the delivery of small-molecule drugs as well as nucleic acids and proteins. Inorganic nanomaterials are ideal for drug delivery platforms due to their unique physicochemical properties, such as facile preparation, good storage stability and biocompatibility. Many inorganic nanostructure-based drug delivery platforms have been prepared. Although there are still many obstacles to overcome, significant advances have been made in recent years. This review focuses on the status and development of inorganic nanostructures, including silica, quantum dots, gold, carbon-based and magnetic iron oxide-based nanostructures, as carriers for chemical and biological drugs. We specifically highlight the extensive use of these inorganic drug carriers for cancer therapy. Finally, we discuss the most important areas in the field that urgently require further study. PMID:27301169

  17. Nonuniform carrier distribution in semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Evankow, Joseph David, Jr.

    This work discusses the experimental results and theoretical analysis of the longitudinal distribution of the spontaneous emission, amplified spontaneous emission, hole-electron pairs, and gain in semiconductor optical amplifiers. A novel, yet simple, technique was developed enabling, for the first time, the measurement of these distributions. This was accomplished with a high degree of spatial resolution using a single-mode micro-lensed fiber tip positioned perpendicular to the active region and moved longitudinally along the stripe. The cornerstone of this study centers on the theoretical analysis of the small portion of the isotropic spontaneous emission, emanating from the optical cavity, which is captured by the lensed fiber. Spectral as well as integrated power measurements were made along the length of the cavity. These spectral and integrated power measurements provide a direct link to the carrier concentration and gain along the optical cavity. The distribution of this spontaneous emission along the amplifier, and its relationship to other parameters, provide information about the carriers. Since the common mode of operation for linear optical amplifiers is deep in saturation, the devices in this study were analyzed in regimes significantly below the small-signal gain. While large carrier density non- uniformity occur with output powers equal to or greater than Psat, a significant amount can occur in amplifiers even with small input signals. In these amplifiers, the higher carder concentrations produce much higher internal gain coefficients making them more prone to non-uniform carrier density distributions. Moreover, even in semiconductor lasers, where the carrier concentration and the gain are pinned at the onset of lasing to rather pedestrian levels (approximately 1 × 1018 cm-3 and of 3 dB, respectively), previous theoretical analysis for more than a decade postulated that a significant spatial distribution occur. These measurements and analysis

  18. Inherited metabolic diseases affecting the carrier.

    PubMed

    Endres, W

    1997-03-01

    The objective of this review is to draw attention to those inherited metabolic traits which are potentially harmful also for the carrier, and to outline preventive measures, at least for obligate heterozygotes, i.e. parents of homozygous children. Concerning carriers of food-dependent abnormalities, early vascular disease in homocystinuria, hyperammonaemic episodes in ornithine transcarbamylase deficiency, presenile cataracts in galactosaemia as well as galactokinase deficiency, spastic paraparesis in X-linked adrenoleukodystrophy, and HELLP syndrome in mothers of babies with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency have to be mentioned. In the group of food-independent disorders, clinical features in carriers may be paraesthesias and corneal dystrophy in Fabry disease, lens clouding in Lowe syndrome, lung and/or liver diseases in alpha 1-antitrypsin deficiency, and renal stones in cystinuria type II and III. Finally, two monogenic carrier states are known which in pregnant individuals could possibly afflict the developing fetus, i.e. heterozygosity for galactosaemia and for phenylketonuria. Elevated levels of galactose-1-phosphate have been found in red blood cells of infants heterozygous for galactosaemia born to heterozygous mothers. Aspartame in very high doses is reported to increase blood phenylalanine levels in heterozygotes for phenylketonuria, thus being a risk for the fetus of a heterozygous mother. For some of these carrier states preventive measures can be recommended, e.g. restriction of lactose in parents and heterozygous grandparents of children with galactosaemia and galactokinase deficiency as well as transiently in infants heterozygous for galactosaemia, dietary supplementation with monounsaturated fatty acids in symptomatic carriers for X-linked adrenoleukodystrophy, avoidance of smoking and alcohol in heterozygotes for alpha 1-antitrypsin deficiency, avoidance of episodes of dehydration in heterozygotes for cystinuria, and

  19. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  20. Traveling with Portable Oxygen

    MedlinePlus

    ... is rich in oxygen. At higher altitudes, the atmosphere becomes increasingly thin as a result of decreasing ... breathe a mixture of gases similar to the atmosphere inside a pressurized airplane cabin at cruising altitude. ...

  1. Oxygen and Biological Evolution.

    ERIC Educational Resources Information Center

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  2. Medical Oxygen Safety

    MedlinePlus

    ... near the oxygen. Post No Smoking and No Open Flames signs in and outside the home to remind people not to smoke. Your Source for SAFETY Information NFPA Public Education Division • 1 Batterymarch Park, Quincy, MA 02169 Name ...

  3. Hyperbaric oxygen therapy

    MedlinePlus

    ... units may be available in outpatient centers. The air pressure inside a hyperbaric oxygen chamber is about two and a half times higher than the normal pressure in the ... Air or gas embolism Bone infections ( osteomyelitis ) that have ...

  4. Using oxygen at home

    MedlinePlus

    ... sooner to your house or neighborhood if the power goes out. Keep their phone numbers in a place where you can find them easily. Tell your family, neighbors, and friends that you use oxygen. They can help during an emergency.

  5. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  6. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  7. Flicker noise in hot carrier semiconductors

    SciTech Connect

    Orlov, V.B.; Yakimov, A.V.

    1988-04-01

    Change in electrical flicker noise power in hot carrier semiconductors can be explained by fluctuations in the intensity of impurity scattering, which contradicts the Hooge-Kleinpenning-Vandamme hypothesis, which relates flicker conduction noise to lattice scattering. It has been shown that such noise can be caused by fluctuations in the effective number of neutral scattering centers within the semiconductor volume. This source modulates carrier mobility, i.e., mobility fluctuations are a secondary effect. We offer herein an explanation of known experimental data on 1/f noise in silicon and gallium arsenide.

  8. CONCENTRATION OF Pu USING OXALATE TYPE CARRIER

    DOEpatents

    Ritter, D.M.; Black, R.P.S.

    1960-04-19

    A method is given for dissolving and reprecipitating an oxalate carrier precipitate in a carrier precipitation process for separating and recovering plutonium from an aqueous solution. Uranous oxalate, together with plutonium being carried thereby, is dissolved in an aqueous alkaline solution. Suitable alkaline reagents are the carbonates and oxulates of the alkali metals and ammonium. An oxidizing agent selected from hydroxylamine and hydrogen peroxide is then added to the alkaline solution, thereby oxidizing uranium to the hexavalent state. The resulting solution is then acidified and a source of uranous ions provided in the acidified solution, thereby forming a second plutoniumcarrying uranous oxalate precipitate.

  9. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  10. Extracellular stability of nanoparticulate drug carriers

    PubMed Central

    Liu, Karen C.; Yeo, Yoon

    2014-01-01

    Nanoparticulate (NP) drug carrier systems are attractive vehicles for selective drug delivery to solid tumors. Ideally, NPs should evade clearance by the reticuloendothelial system while maintaining the ability to interact with tumor cells and facilitate cellular uptake. Great effort has been made to fulfill these design criteria, yielding various types of functionalized NPs. Another important consideration in NP design is the physical and functional stability during circulation, which, if ignored, can significantly undermine the promise of intelligently designed NP drug carriers. This commentary reviews several NP examples with stability issues and their consequences, ending in a discussion of experimental methods for reliable prediction of NP stability. PMID:24214175

  11. Practical procedures: oxygen therapy.

    PubMed

    Olive, Sandra

    Knowing when to start patients on oxygen therapy can save lives, but ongoing assessment and evaluation must be carried out to ensure the treatment is safe and effective. This article outlines when oxygen therapy should be used and the procedures to follow. It also describes the delivery methods applicable to different patient groups, along with the appropriate target saturation ranges, and details relevant nurse competencies.

  12. [Oxygen Leukocyte Larceny].

    PubMed

    Pinto da Costa, Miguel; Pimenta Coelho, Henrique

    2016-05-01

    The authors present a case of a 60-year-old male patient, previously diagnosed with B-cell chronic lymphocytic leukemia, who was admitted to the Emergency Room with dyspnea. The initial evaluation revealed severe anemia (Hgb = 5.0 g/dL) with hyperleukocytosis (800.000/µL), nearly all of the cells being mature lymphocytes, a normal chest X-ray and a low arterial oxygen saturation (89%; pulse oximetry). After red blood cell transfusion, Hgb values rose (9.0 g/dL) and there was a complete reversion of the dyspnea. Yet, subsequent arterial blood gas analysis, without the administration of supplemental oxygen, systematically revealed very low oxygen saturation values (~ 46%), which was inconsistent with the patientâs clinical state and his pulse oximetry values (~ 87%), and these values were not corrected by the administration of oxygen via non-rebreather mask. The investigation performed allowed to establish the diagnosis of oxygen leukocyte larceny, a phenomenon which conceals the true oxygen saturation due to peripheral consumption by leukocytes. PMID:27649020

  13. [Oxygen Leukocyte Larceny].

    PubMed

    Pinto da Costa, Miguel; Pimenta Coelho, Henrique

    2016-05-01

    The authors present a case of a 60-year-old male patient, previously diagnosed with B-cell chronic lymphocytic leukemia, who was admitted to the Emergency Room with dyspnea. The initial evaluation revealed severe anemia (Hgb = 5.0 g/dL) with hyperleukocytosis (800.000/µL), nearly all of the cells being mature lymphocytes, a normal chest X-ray and a low arterial oxygen saturation (89%; pulse oximetry). After red blood cell transfusion, Hgb values rose (9.0 g/dL) and there was a complete reversion of the dyspnea. Yet, subsequent arterial blood gas analysis, without the administration of supplemental oxygen, systematically revealed very low oxygen saturation values (~ 46%), which was inconsistent with the patientâs clinical state and his pulse oximetry values (~ 87%), and these values were not corrected by the administration of oxygen via non-rebreather mask. The investigation performed allowed to establish the diagnosis of oxygen leukocyte larceny, a phenomenon which conceals the true oxygen saturation due to peripheral consumption by leukocytes.

  14. OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN

    SciTech Connect

    Whittet, D. C. B.

    2010-02-20

    This paper assesses the implications of a recent discovery that atomic oxygen is being depleted from diffuse interstellar gas at a rate that cannot be accounted for by its presence in silicate and metallic oxide particles. To place this discovery in context, the uptake of elemental O into dust is considered over a wide range of environments, from the tenuous intercloud gas and diffuse clouds sampled by the depletion observations to dense clouds where ice mantles and gaseous CO become important reservoirs of O. The distribution of O in these contrasting regions is quantified in terms of a common parameter, the mean number density of hydrogen (n{sub H}). At the interface between diffuse and dense phases (just before the onset of ice-mantle growth) as much as {approx}160 ppm of the O abundance is unaccounted for. If this reservoir of depleted oxygen persists to higher densities it has implications for the oxygen budget in molecular clouds, where a shortfall of the same order is observed. Of various potential carriers, the most plausible appears to be a form of O-bearing carbonaceous matter similar to the organics found in cometary particles returned by the Stardust mission. The 'organic refractory' model for interstellar dust is re-examined in the light of these findings, and it is concluded that further observations and laboratory work are needed to determine whether this class of material is present in quantities sufficient to account for a significant fraction of the unidentified depleted oxygen.

  15. Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements

    NASA Astrophysics Data System (ADS)

    Fujieda, Miho; Gotoh, Tadahiro; Amagai, Jun

    2016-06-01

    Carrier-phase measurement is one of the ways to improve the measurement resolution of two-way satellite frequency transfer. We introduce two possible methods for carrier-phase measurement: direct carrier-phase detection identified by Two-Way Carrier-Phase (TWCP) and the use of carrier-frequency information identified by Two-Way Carrier Frequency (TWCF). We performed the former using an arbitrary waveform generator and an analog-to-digital sampler and the latter using a conventional modem. The TWCF measurement using the modem had a resolution of 10-13 and the result agreed with that obtained by GPS carrier-phase frequency transfer in a 1500 km baseline. The measurement accuracy may have been limited by the poor frequency resolution of the modem; however, the TWCF measurement was able to improve the stability of conventional two-way satellite frequency transfer. Additionally, we show that the TWCP measurement system has the potential to achieve a frequency stability of 10-17.

  16. Managing photons and carriers for photocatalysis

    NASA Astrophysics Data System (ADS)

    Thomann, Isabell; Robatjazi, Hossein; Bahauddin, Shah; Doiron, Chloe; Liu, Xuejun; Tumkur, Thejaswi; Wang, Wei-Ren; Wray, Parker

    While small plasmonic nanoparticles efficiently generate energetic hot carriers, light absorption in a monolayer of such particles is inefficient, and practical utilization of the hot carriers in addition requires efficient charge-separation. Here we describe our approach to address both challenges. By designing an optical cavity structure for the plasmonic photoelectrode, light absorption in these particles can be significantly enhanced, resulting in efficient hot electron generation. Rather than utilizing a Schottky barrier to preserve the energy of the carriers, our structure allows for their direct injection into the adjacent electrolyte. On the substrate side, the plasmonic particles are in contact with a wide band gap oxide film that serves as an electron blocking layer but accepts holes and transfers them to the counter electrode. The observed photocurrent spectra follow the plasmon spectrum, and demonstrate that the extracted electrons are energetic enough to drive the hydrogen evolution reaction. A similar structure can be designed to achieve broadband absorption enhancement in monolayer MoS2. Time permitting, I will discuss charge carrier dynamics in hybrid nanoparticles composed of plasmonic / two-dimensional materials, and applications of photo-induced force microscopy to study photocatalytic processes.

  17. Itaconic acid carrier ampholytes for isoelectric focusing.

    PubMed

    Brenna, O

    1977-04-11

    Commercial carrier ampholytes, obtained by coupling polyethylene polyamines to acrylic acid, exhibit a conductivity minimum in the pH range 5.5-6.5 owing to the lack of appropriate pK values of the polyamine in this pH region. By replacing acrylic with itaconic acid, it has been possible to effect substantial improvements in the pH range 5.5-6.5 as itaconic acid has a pK2 value of 5.45. Upon coupling, the pK of the gramma-carboxyl group remains virtually unaltered. With itoconic acid carrier ampholytes it has been possible to improve the conductivity in the pH range 5.5-6.5 by as much as 400% compared with conventional carrier ampholytes. It is suggected that the commercial products should be supplemented with itaconic acid carrier ampholytes in order to obtain a more uniform conductivity and buffering capacity in the pH range 3-10.

  18. 14 CFR 221.2 - Carrier's duty.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Property; (3) Part 297, Foreign Air Freight Forwarders and Foreign Cooperative Shippers... Trips by Foreign Air Carriers; (9) Part 292, International Cargo Transportation, except as provided in part 292. (10) Part 293 International Passenger Transportation, except as provided in part 293....

  19. 14 CFR 221.2 - Carrier's duty.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Property; (3) Part 297, Foreign Air Freight Forwarders and Foreign Cooperative Shippers... Trips by Foreign Air Carriers; (9) Part 292, International Cargo Transportation, except as provided in part 292. (10) Part 293 International Passenger Transportation, except as provided in part 293....

  20. 14 CFR 221.2 - Carrier's duty.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Property; (3) Part 297, Foreign Air Freight Forwarders and Foreign Cooperative Shippers... Trips by Foreign Air Carriers; (9) Part 292, International Cargo Transportation, except as provided in part 292. (10) Part 293 International Passenger Transportation, except as provided in part 293....

  1. 42 CFR 421.200 - Carrier functions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Carrier functions. 421.200 Section 421.200 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... a channel of communication to and from CMS of information, instructions, and other material...

  2. Carrier recovery techniques on satellite mobile channels

    NASA Technical Reports Server (NTRS)

    Vucetic, B.; Du, J.

    1990-01-01

    An analytical method and a stored channel model were used to evaluate error performance of uncoded quadrature phase shift keying (QPSK) and M-ary phase shift keying (MPSK) trellis coded modulation (TCM) over shadowed satellite mobile channels in the presence of phase jitter for various carrier recovery techniques.

  3. 7 CFR 35.4 - Carrier.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Carrier. 35.4 Section 35.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT...

  4. 7 CFR 35.4 - Carrier.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Carrier. 35.4 Section 35.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT...

  5. Solid state cloaking for electrical charge carrier mobility control

    DOEpatents

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  6. Effects of hydration and water deprivation on blood viscosity during a soccer game in sickle cell trait carriers.

    PubMed

    Diaw, Mor; samb, Abdoulaye; Diop, Saliou; Sall, Niama Diop; Ba, Abdoulaye; Cissé, Fallou; Connes, Philippe

    2014-02-01

    The present study compared the changes in blood viscosity, hydration status, body temperature and heart rate between a group of sickle cell trait (SCT) carriers and a control (Cont) group before and after a soccer game performed in two conditions: one with water offered ad libitum (hydration condition; Hyd) and the other one without water (dehydration condition; Dehyd). Blood viscosity and haematocrit per blood viscosity ratio (HVR; an index of red blood cell oxygen transport effectiveness) were measured before and at the end of each game. Resting blood viscosity was greater in the SCT carriers than in the Cont group. The increase of blood viscosity over baseline at the end of the game in the Cont group was similar in the two conditions. In contrast, the change in blood viscosity occurring in SCT carriers during soccer games was dependant on the experimental condition: (1) in Dehyd condition, blood viscosity rose over baseline; (2) in Hyd condition, blood viscosity decreased below resting level reaching Cont values. The Cont group had higher HVR than SCT carriers at rest. HVR remained unchanged in the Cont group at the end of the games, whatever the experimental condition. Although HVR of SCT carriers decreased below baseline at the end of the game performed in Dehyd condition, it increased over resting level in Hyd condition reaching the values of the Cont group. Our study demonstrated that ad libitum hydration in exercising SCT carriers normalises the blood hyperviscosity.

  7. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... contents (stationary and portable). (ii) Portable equipment only (gaseous or liquid tanks). (iii) Oxygen... equipment that requires delivery of gaseous or liquid oxygen contents; or (ii) Rents stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents after the period of continuous use...

  8. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contents (stationary and portable). (ii) Portable equipment only (gaseous or liquid tanks). (iii) Oxygen... equipment that requires delivery of gaseous or liquid oxygen contents; or (ii) Rents stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents after the period of continuous use...

  9. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... contents (stationary and portable). (ii) Portable equipment only (gaseous or liquid tanks). (iii) Oxygen... equipment that requires delivery of gaseous or liquid oxygen contents; or (ii) Rents stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents after the period of continuous use...

  10. Prenatal Carrier Screening for Spinal Muscular Atrophy.

    PubMed

    Wood, S Lindsay; Brewer, Fallon; Ellison, Rebecca; Biggio, Joseph R; Edwards, Rodney K

    2016-10-01

    Introduction Spinal muscular atrophy (SMA), a neurodegenerative genetic disorder, affects 1:5,000 to 1:10,000 infants. Carrier rates are 1:25 to 1:50. We implemented ACOG-endorsed prenatal SMA screening in mid-2014 and sought to assess uptake, observed carrier rate, and providers' knowledge and attitudes toward genetic conditions and carrier screening. Methods Retrospective cohort study of all patients receiving prenatal genetic counseling at our institution from August 2014 to April 2015. Factors associated with screening uptake were assessed. Proportions who accepted screening, were screen-positive, had partners tested, had partners who were screen-positive, and had fetuses tested were calculated. Providers' knowledge and attitudes were assessed using a validated questionnaire. Results Of 1,158 patients offered SMA screening, 224 accepted (19.3%, 95% CI 17.2-21.7). Uptake differed by race, parity, religion, and genetic counselor seen. Five (2.2% or 1:45, 95% CI 0.8-5.3 or 1:19-1:125) women were identified as carriers. Of 3 partners screened, none screened positive (0%, 95% CI 0-5.3). There were no prenatal SMA diagnoses (0%, 95% CI 0-1.4). Of 90 survey respondents, 42% incorrectly answered 1 of 9 knowledge questions. Provider attitudes toward screening were contradictory. Conclusion Despite significant resources utilized, prenatal SMA carrier screening identified no fetal cases. Cost-effectiveness and other barriers should be considered prior to large-scale adoption of more comprehensive genetic screening. PMID:27611803

  11. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  12. Atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Reynolds, John M.

    1991-01-01

    The passive Long Duration Exposure Facility (LDEF) Experiment A0034, Atomic Oxygen Simulated Outgassing, consisted of two identical one-sixth tray modules, exposing selected thermal control coatings to atomic oxygen and the combined space environment on the leading edge and, for reference, to the relative wake environment on the trailing edge. Optical mirrors were included adjacent to the thermal coatings for deposition of outgassing products. Ultraviolet grade windows and metal covers were provided for additional assessment of the effects of the various environmental factors. Preliminary results indicate that orbital atomic oxygen is both a degrading and a optically restorative factor in the thermo-optical properties of selected thermal coatings. There is evidence of more severe optical degradation on collector mirrors adjacent to coatings that were exposed to the RAM-impinging atomic oxygen. This evidence of atomic oxygen stimulated outgassing is discussed in relation to alternative factors that could affect degradation. The general effects of the space environment on the experiment hardware as well as the specimens are discussed.

  13. OXYGEN POISONING IN MAMMALS.

    PubMed

    Binger, C A; Faulkner, J M; Moore, R L

    1927-04-30

    1. Oxygen in concentrations of over 70 per cent of an atmosphere is poisonous to dogs, rabbits, guinea pigs and mice. 2. The poisonous effects manifest themselves in drowsiness, anorexia, loss of weight, increasing dyspnea, cyanosis and death from oxygen want. 3. The cause of oxygen want is a destructive lesion of the lungs. 4. The lesion may be characterized grossly as an hemorrhagic edema. Microscopically there is to be seen in varying degrees of intensity (a) capillary engorgement with hemorrhage, (b) the presence of interstitial and intraalveolar serum, (c) hypertrophy and desquamation of alveolar cells, (d) interstitial and alveolar infiltration of mononuclear cells. 5. The type of tissue reaction is not characteristic of an infectious process and no organisms have been recovered at autopsy from the heart's blood or from lung puncture. 6. The poisonous effects of inhalations of oxygen-rich mixtures do not appear to be related to impurities in the oxygen, nor are they related to faulty ventilation, excessive moisture or increased carbon dioxide in the atmosphere of the chambers in which the experimental animals were confined. PMID:19869294

  14. Proton intercalated two-dimensional WO3 nano-flakes with enhanced charge-carrier mobility at room temperature

    NASA Astrophysics Data System (ADS)

    Zhuiykov, Serge; Kats, Eugene; Carey, Benjamin; Balendhran, Sivacarendran

    2014-11-01

    Quasi two-dimensional (Q2D) semiconducting metal oxides with enhanced charge carrier mobility hold tremendous promise for nano-electronics, photonics, catalysis, nano-sensors and electrochromic applications. In addition to graphene and metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te), 2D sub-stoichiometric WO3-x is gaining importance as a promising semiconductor material for field-effect-transistor (FET) based devices. A combination of high permittivity, suppression of the Coulomb effects, and their stratified structure enhances the carrier mobility in such a material. Additionally, the sub-stoichiometry of this semiconductor oxide allows the reduction of the bandgap and increase of the free charge carriers at the same time. Here, we report for the first time H+ intercalated WO3 FETs, made of Q2D nano-flakes, with enhanced charge-carrier mobility exceeding 319 cm2 V-1 s-1 comparable with the charge-carrier mobility of Q2D dichalcogenides MoS2 and WSe2. Analyses indicate that the enhanced electrical properties of the sub-stoichiometric WO3-x depend on the oxygen vacancies in the intercalated nano-flakes. These findings confirmed that Q2D sub-stoichiometric WO3-x is a promising material for various functional FET devices.Quasi two-dimensional (Q2D) semiconducting metal oxides with enhanced charge carrier mobility hold tremendous promise for nano-electronics, photonics, catalysis, nano-sensors and electrochromic applications. In addition to graphene and metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te), 2D sub-stoichiometric WO3-x is gaining importance as a promising semiconductor material for field-effect-transistor (FET) based devices. A combination of high permittivity, suppression of the Coulomb effects, and their stratified structure enhances the carrier mobility in such a material. Additionally, the sub-stoichiometry of this semiconductor oxide allows the reduction of the bandgap and increase of the free charge carriers at the same time. Here, we report

  15. Simulation of oxygen saturation of hemoglobin solution, RBC suspension and hemosome by a neural network system.

    PubMed

    Kan, P; Chen, W K; Lee, C J

    1996-03-01

    Hemoglobin-based artificial blood substitutes as oxygen carrier is advantageous over current plasma expander. In this study, oxygen saturation of hemoglobin solution, red blood cell suspension and artificial blood substitute under various conditions were measured by yeast-consuming-oxygen experiments instead of spectrophotometer. The empirical results were assigned into training feedforward back-propagation neural network system in order to simulate the oxygen saturation model modulated by those factors such as pH, [Cl-], [2,3-DPG], pO2 and pCO2. Consequently, this neural network is able to simulate accurately the oxygen saturation of Hb solution. The prediction of hemosome is not agreed well possible because of the resistance of transport of oxygen. However, the results showed neural net can offer a simple and convenient way in comparison with the conventional methods, especially in dealing with complex and ambiguous problem.

  16. Radiative recombination of hot carriers in narrow-gap semiconductors

    SciTech Connect

    Pavlov, N. V.; Zegrya, G. G.

    2012-01-15

    The mechanism of the radiative recombination of hot carriers in narrow-gap semiconductors is analyzed using the example of indium antimonide. It is shown that the CHCC Auger recombination process may lead to pronounced carrier heating at high excitation levels. The distribution functions and concentrations of hot carriers are determined. The radiative recombination rate of hot carriers and the radiation gain coefficient are calculated in terms of the Kane model. It is demonstrated that the radiative recombination of hot carriers will make a substantial contribution to the total radiative recombination rate at high carrier concentrations.

  17. Lower frequency of Gaucher disease carriers among Tay-Sachs disease carriers.

    PubMed

    Peleg, L; Frisch, A; Goldman, B; Karpaty, M; Narinsky, R; Bronstein, S; Frydman, M

    1998-01-01

    The heterozygote frequency of Gaucher disease (GD) and Tay-Sachs disease (TSD) is distinctly high among Ashkenazi Jews (1:29 for TSD and 1:16 for GD). Two main theories have been suggested to explain this high occurrence: a founder effect with subsequent genetic drift, and a selective advantage of heterozygotes. We compared the frequency of the GD most common mutation (1226A-->G) among carriers of the common TSD mutation (+1277 TATC) with the frequency of this mutation in the general Ashkenazi population. The frequency of GD carriers among 308 TSD heterozygotes was 1:28 which is about half the expected (P = 0.03). These results indicate that carriers of both diseases do not possess additional evolutionary advantage over single mutation carriers. A reasonable interpretation of these findings is that one or both mutations have arisen relatively recently in different regions of Europe and have not yet reached genetic equilibrium. PMID:9781065

  18. Modeling Minority-Carrier Lifetime Techniques That Use Transient Excess-Carrier Decay: Preprint

    SciTech Connect

    Johnston, S. W.; Berman, G. M.; Ahrenkiel, R. K.

    2008-05-01

    Lifetime spectroscopy is a valuable tool for the characterization of PV materials. This paper combines modeling and experimental results to illustrate the injection-level dependent response of three transient excess-carrier decay techniques.

  19. New strategy to apply perfluorodecalin as an oxygen carrier in lipase production: minimisation and reuse.

    PubMed

    Vieira, Erika Souza; de Oliveira Fontes, Tâmara Karoline; Pereira, Matheus Mendonça; Alexandre, Hofsky Vieira; da Silva, Daniel Pereira; Soares, Cleide Mara Faria; Lima, Álvaro Silva

    2015-04-01

    A novel strategy for the production of lipase by Bacillus sp. ITP-001 in a stirred tank fermenter using perfluorodecalin (PFD) was studied. Firstly, a response surface methodology 2(2) with three central points was employed to optimise the effect of agitation speed and aeration rate in lipase production. According to the response from the experimental designs, 300 rpm (revolutions per minute) and 0.5 vvm (air volume/liquid volume per minute) were found to provide the best condition (lipolytic activity: LA = 3,140.76 U mL(-1)). Then, the influence of PFD concentration on the fermentation process was evaluated. Incorporation of PFD at all concentrations above 1% had no statistically significant influence on lipase production, that is, the previous optimisation allowed the reduction of the amount of PFD added besides increasing lipase production. Furthermore, PFD could be used in three sequential fermentations without altering the statistical production of lipase, reducing by 67% the cost of PFD addition.

  20. Possibilities of Using Fetal Hemoglobin as a Platform for Producing Hemoglobin-Based Oxygen Carriers (HBOCs).

    PubMed

    Ratanasopa, Khuanpiroon; Cedervall, Tommy; Bülow, Leif

    2016-01-01

    The expression levels of fetal hemoglobin (HbF) in bacterial recombinant systems are higher compared with normal adult hemoglobin (HbA). However, heme disorientation in globins are often observed in recombinant production processes, both for HbA and HbF, although the degree of heme oriental disorder is much lower for HbF. In addition, the heme disorientation can be converted to a normal conformation by an oxidation-reduction process. A chromatographic cleaning process involving a strong anion exchanger can be utilized to remove such unstable and nondesirable forms of Hb.

  1. Reducible Supports for Ni-based Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect

    Bhavsar, Saurabh; Veser, Goetz

    2013-04-01

    Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.

  2. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later

  3. Field Effect and Strongly Localized Carriers in the Metal-Insulator Transition Material VO(2).

    PubMed

    Martens, K; Jeong, J W; Aetukuri, N; Rettner, C; Shukla, N; Freeman, E; Esfahani, D N; Peeters, F M; Topuria, T; Rice, P M; Volodin, A; Douhard, B; Vandervorst, W; Samant, M G; Datta, S; Parkin, S S P

    2015-11-01

    The intrinsic field effect, the change in surface conductance with an applied transverse electric field, of prototypal strongly correlated VO(2) has remained elusive. Here we report its measurement enabled by epitaxial VO(2) and atomic layer deposited high-κ dielectrics. Oxygen migration, joule heating, and the linked field-induced phase transition are precluded. The field effect can be understood in terms of field-induced carriers with densities up to ∼5×10(13)  cm(-2) which are trongly localized, as shown by their low, thermally activated mobility (∼1×10(-3)  cm(2)/V s at 300 K). These carriers show behavior consistent with that of Holstein polarons and strongly impact the (opto)electronics of VO(2). PMID:26588400

  4. LWS/SET Technology Experiment Carrier

    NASA Technical Reports Server (NTRS)

    Sherman, Barry; Giffin, Geoff

    2002-01-01

    This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be

  5. Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber

    NASA Astrophysics Data System (ADS)

    König, Dirk; Takeda, Yasuhiko; Puthen-Veettil, Binesh; Conibeer, Gavin

    2012-10-01

    We propose a technologically feasible concept of a hot carrier (HC) solar cell (SC) which fulfills the electronic, optical, and to some extent the phononic criteria required. The energy selective process of HCs is implemented into the hot carrier absorber (HCA). Its electronic properties are investigated by a Monte-Carlo code which simulates random deviations of structure thickness and a normal distribution of random elastic electron (e-) scattering. The structure can be grown epitaxially as a HC-SC test device.

  6. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    NASA Astrophysics Data System (ADS)

    Cai, Yu; Sha, Shuang

    2016-09-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.

  7. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  8. Neurological oxygen toxicity.

    PubMed

    Farmery, Scott; Sykes, Oliver

    2012-10-01

    SCUBA diving has several risks associated with it from breathing air under pressure--nitrogen narcosis, barotrauma and decompression sickness (the bends). Trimix SCUBA diving involves regulating mixtures of nitrogen, oxygen and helium in an attempt to overcome the risks of narcosis and decompression sickness during deep dives, but introduces other potential hazards such as hypoxia and oxygen toxicity convulsions. This study reports on a seizure during the ascent phase, its potential causes and management and discusses the hazards posed to the diver and his rescuer by an emergency ascent to the surface.

  9. The Appropriate Use of Oxygen

    PubMed Central

    Lubin, Stan

    1988-01-01

    The scientific evidence for the efficacy of oxygen therapy in acute hypoxemia is limited. In chronic hypoxemia continuous oxygen therapy appears to decrease mortality. Current indications for oxygen treatment are PaO2 less than 60 in acute hypoxemia and less than 55 in chronic hypoxemia. Physical and physiological hazards of oxygen are reviewed. Three syndromes of pulmonary oxygen toxicity are described: tracheobronchitis, adult respiratory distress syndrome, and bronchopulmonary dysplasia. PMID:21253258

  10. The ADP/ATP Carrier and Its Relationship to Oxidative Phosphorylation in Ancestral Protist Trypanosoma brucei

    PubMed Central

    Gnipová, Anna; Šubrtová, Karolína; Panicucci, Brian; Horváth, Anton; Lukeš, Julius

    2015-01-01

    The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote. PMID:25616281

  11. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.

    PubMed

    Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger

    2015-06-22

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures.

  12. Thermal-drag carrier cooling in undoped semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Apostolova, T.; Alsing, P. M.; Cardimona, D. A.

    2005-09-01

    An approach for carrier cooling in undoped and contactless semiconductors is proposed by using thermal-drag effects in comparison with other methods, such as direct resonant tunneling, nonresonant thermionic, and junction-tunneling cooling, as well as indirect optothermionic and thermoelectric cooling, of carriers in doped and contacted semiconductors. A four-step microscopic model is proposed for this thermal-drag carrier cooling in undoped semiconductors. Wide-band-gap semiconductors with small lattice specific heat and small exchange specific heat between carriers and phonons are found to achieve the best thermal-drag carrier cooling under near-band-edge interband pumping by a weak field. This indirect carrier cooling is accompanied by the lattice cooling. The carrier temperature is pinned to the lattice temperature due to ultrafast carrier-phonon scattering, and it is dragged down by the reduction of the lattice temperature, i.e., the thermal-drag effects.

  13. 47 CFR 54.405 - Carrier obligation to offer Lifeline.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) UNIVERSAL SERVICE Universal Service Support for Low-Income Consumers § 54.405 Carrier obligation... demonstrate continued eligibility within the 60-day time period. A carrier providing Lifeline service in...

  14. 47 CFR 54.405 - Carrier obligation to offer Lifeline.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) UNIVERSAL SERVICE Universal Service Support for Low-Income Consumers § 54.405 Carrier obligation... within the 60-day time period. A carrier providing Lifeline service in a state that has...

  15. Experimental distribution of entanglement with separable carriers.

    PubMed

    Fedrizzi, A; Zuppardo, M; Gillett, G G; Broome, M A; Almeida, M P; Paternostro, M; White, A G; Paterek, T

    2013-12-01

    The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer-or communication-of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments.

  16. Superconductivity in carrier-doped silicon carbide

    NASA Astrophysics Data System (ADS)

    Muranaka, Takahiro; Kikuchi, Yoshitake; Yoshizawa, Taku; Shirakawa, Naoki; Akimitsu, Jun

    2008-12-01

    We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al) shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm-3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  17. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2004-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  18. Radionuclide carriers for targeting of cancer

    PubMed Central

    Sofou, Stavroula

    2008-01-01

    This review describes strategies for the delivery of therapeutic radionuclides to tumor sites. Therapeutic approaches are summarized in terms of tumor location in the body, and tumor morphology. These determine the radionuclides of choice for suggested targeting ligands, and the type of delivery carriers. This review is not exhaustive in examples of radionuclide carriers for targeted cancer therapy. Our purpose is two-fold: to give an integrated picture of the general strategies and molecular constructs currently explored for the delivery of therapeutic radionuclides, and to identify challenges that need to be addressed. Internal radiotherapies for targeting of cancer are at a very exciting and creative stage. It is expected that the current emphasis on multidisciplinary approaches for exploring such therapeutic directions should enable internal radiotherapy to reach its full potential. PMID:18686778

  19. Carrier heating and negative photoconductivity in graphene

    SciTech Connect

    Heyman, J. N.; Stein, J. D.; Kaminski, Z. S.; Banman, A. R.; Massari, A. M.; Robinson, J. T.

    2015-01-07

    We investigated negative photoconductivity in graphene using ultrafast terahertz techniques. Infrared transmission was used to determine the Fermi energy, carrier density, and mobility of p-type chemical vapor deposition graphene samples. Time-resolved terahertz photoconductivity measurements using a tunable mid-infrared pump probed these samples at photon energies between 0.35 eV and 1.55 eV, approximately one-half to three times the Fermi energy of the samples. Although interband optical transitions in graphene are blocked for pump photon energies less than twice the Fermi energy, we observe negative photoconductivity at all pump photon energies investigated, indicating that interband excitation is not required to observe this effect. Our results are consistent with a thermalized free-carrier population that cools by electron-phonon scattering, but are inconsistent with models of negative photoconductivity based on population inversion.

  20. Straddle Carrier Interface and Dispatching System

    2012-09-13

    SCIDS is the Data Dispatching and Transfer Point (DDTP) component of a straddle carrier-based radiation detection system developed for the DOE Megaports Initiative for scanning shipping containers in transshipment ports. Its purpose is to communicate with a Radiation Detection Straddle Carrier (RDSC) developed by Detector Networks International, sending commands to the RDSC and receiving sensor data from the RDSC. Incoming sensor and status data from the RDSC is forwarded to a back-end data storage andmore » display system that is external to SCIDS. SCIDS provides a graphical user interface for port operations personnel that displays location and status of the RDSC and status of each container in the port, and accepts commands from the operator directing the scanning operations of the RDSC.« less

  1. LNG carrier using membrane tank system delivered

    SciTech Connect

    Not Available

    1993-12-06

    The world's first LNG carrier that incorporates the Technigaz Mark 3 membrane tank system was delivered in October to its owner, Asia LNG Transport Sdn. Bhd., a joint venture between Nippon Yusen K.K. and Perbadanan Nasional Shipping Line Berhad of Malaysia. NKK built the 18,800 cu m, fully double-hull carrier Aman Bintulu at its Tsu works. Construction was completed in September with more than 2 months of sea trials and gas tests using [minus]190 C. Liquid nitrogen and final gas trails with LNG. The orthogonally corrugated stainless membrane primary barrier and the triplex (aluminum foil/fiber glass cloth) composite-material secondary barrier prevent LNG from leaking in the event of an accident.

  2. Carrier cultures of simian foamy virus.

    PubMed

    Clarke, J K; Samuels, J; Dermott, E; Gay, F W

    1970-05-01

    The production of cultures of HEp-2 and BHK-21 cells persistently infected with a type 1 simian foamy virus is described. After infection, HEp-2 cells showed no structural changes, whereas BHK-21 cells lost their normal spindle shape and showed mitochondrial damage, and some cells contained many lysosomes. Thin sections also showed that a few BHK-21 cells contained virus particles in low concentration, and infectious virus could be isolated from both the cells and the supernatant fluid. No virus was seen in thin sections of HEp-2 cells, although infectious virus in low titer could be recovered intermittently from lysed cells. Both carrier cultures were immune to challenge with homologous virus and antigen could be detected in over 90% of the cells even after growth for 9 weeks in the presence of virus-neutralizing serum. The distribution of antigen in carrier cultures of both cell types is described and compared with that seen in cytocidal infections. PMID:4986851

  3. Straddle Carrier Interface and Dispatching System

    SciTech Connect

    2012-09-13

    SCIDS is the Data Dispatching and Transfer Point (DDTP) component of a straddle carrier-based radiation detection system developed for the DOE Megaports Initiative for scanning shipping containers in transshipment ports. Its purpose is to communicate with a Radiation Detection Straddle Carrier (RDSC) developed by Detector Networks International, sending commands to the RDSC and receiving sensor data from the RDSC. Incoming sensor and status data from the RDSC is forwarded to a back-end data storage and display system that is external to SCIDS. SCIDS provides a graphical user interface for port operations personnel that displays location and status of the RDSC and status of each container in the port, and accepts commands from the operator directing the scanning operations of the RDSC.

  4. Carrier synchronization and detection of polyphase signals.

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Simon, M. K.

    1972-01-01

    Digital communication networks used for the distribution of high-speed digital information are currently the subject of design studies for many civil and military applications. This paper presents results that are useful in such studies as well as in network planning. In particular, the paper is concerned with the problems of carrier synchronization and noisy reference detection of polyphase signals. Reconstruction of coherent references for the detection of polyphase signals is considered and analyzed for three carrier reconstruction loops, namely, Nth power (multiply-and-divide) loops, generalized Costas (I-Q) loops, and extensions of data-aided (modulation wipeoff) loops. General expressions for the error probability are developed when the reconstructed reference signals are noisy.

  5. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2006-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  6. Mobility of charge carriers in disordered dielectrics

    NASA Astrophysics Data System (ADS)

    Tiotnev, A. P.; Boev, S. G.; Sadovnichii, D. N.

    1994-07-01

    We compare experimental data on the mobility of holes (the majority charge carriers) in polyepoxy-propylcarbazole, measured using the time-of-flight technique (drift mobility) and the nonsteady-state radiation-induced electrical conductivity method (effective mobility). We show that these two quantities are quite different in the dispersive transport regime; and while the second quantity is a characteristic of the material, the first quantity depends in a complicated fashion on the ratio of the electric field strength to the sample thickness. The “untreated” data on drift mobility measurements using the time-of-flight technique do not have direct physical meaning and cannot be compared with the conclusions of modern microscopic theories of the mobility of charge carriers in disordered matrices.

  7. Psychiatric diagnoses aboard an aircraft carrier.

    PubMed

    Bohnker, B; McEwen, G; Blanco, J; Feeks, E

    1992-11-01

    A descriptive study was conducted for 150 consecutive patients with a psychiatric diagnosis evaluated over 11 months by the medical staff onboard an aircraft carrier. Patients with sole diagnosis of alcohol abuse or dependence were excluded. Axis II diagnoses, or personality disorders, were more common (N = 120) than Axis I diagnoses (N = 46). The most common Axis I diagnoses were adjustment disorder and major depression. Axis II diagnoses were significantly more likely (OR = 7.33, 95% CI 4.45-12.16, p = 0.000) in sailors less than 23 years of age compared to ship's population. Suicide behavior was demonstrated in 68% (102/150) of the patient population. This study emphasized the requirement for extensive psychiatric training for the clinical aerospace medicine specialists providing operational support to aircraft carrier crews.

  8. Screening-induced carrier transport in silicene.

    PubMed

    Hu, Bo

    2015-06-24

    Based on the Boltzmann transport equation in the MRT approximation, we present a theory to investigate low-field carrier transport in dual-gated silicene FETs by taking into account screened charged impurity scattering, which is the most likely scattering mechanism limiting the conductivity. Static RPA dielectric screening is also included in the conductivity calculation to study temperature-dependent silicene transport. It is found that both calculated conductivity and band gap not only depend strongly on carrier sheet density, but also depend strongly on effective offset density. More importantly, screening-induced metal-insulator-transition phenomena in buckled silicene can be observed theoretically, which is similar to that obtained in monolayer graphene.

  9. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content.

    PubMed

    Shalash, Ahmed O; Molokhia, Abdulla M; Elsayed, Mustafa M A

    2015-10-01

    To gain insights into complex interactions in carrier-based dry powder inhalation mixtures, we studied the relationships between the carrier microstructural characteristics and performance. We used mercury intrusion porosimetry to measure the microstructural characteristics and to also derive the air permeability of eight carriers. We evaluated the performances of inhalation mixtures of each of these carriers and fluticasone propionate after aerosolization from an Aerolizer®. We did not observe a simple relationship between the carrier total porosity and the performance. Classification of the porosity according to pore size, however, provided interesting insights. The carrier nanoporosity, which refers to pores smaller than micronized drug particles, has a positive influence on the performance. Nanopores reduce the carrier effective contact area and the magnitude of interparticulate adhesion forces in inhalation mixtures. The carrier microporosity, which refers to pores similar in size to drug particles, also has a positive influence on the performance. During mixing, micropores increase the effectiveness of frictional and press-on forces, which are responsible for breaking up of cohesive drug agglomerates and for distribution of drug particles over the carrier surface. On the other hand, the carrier macroporosity, which refers to pores larger than drug particles, apparently has a negative influence on the performance. This influence is likely mediated via the effects of macropores on the powder bed tensile strength and fluidization behavior. The air permeability better represents these effects. The inhalation mixture performance improved as the carrier air permeability decreased. Interestingly, as the carrier fine particle content increased, the carrier microporosity increased and the carrier air permeability decreased. This proposes a new mechanism for the positive effect of fine excipient materials on the performance of carrier-based inhalation mixtures. Fine

  10. PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT

    DOEpatents

    Thompson, S.G.

    1958-07-01

    A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.

  11. Cyclic spectrum based carrier recovery for OQPSK

    NASA Astrophysics Data System (ADS)

    Peng, Hua; Li, Jing

    2011-10-01

    A union carrier synchronization scheme of feed-forward frequency offset estimation and PLL for OQPSK signals is discussed in this paper. A feed-forward frequency offset estimator is developed based on the cyclic spectrum of the received signal. In order to suppress channel noise, an improved strategy is proposed. Simulations show that the presented scheme can achieve steady state much more quickly than conventional Costas loop. At the same time, the steady error of the union scheme is also smaller.

  12. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  13. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  14. The Oxygen Flask Method

    ERIC Educational Resources Information Center

    Boulton, L. H.

    1973-01-01

    Discusses application of Schoniger's method of quantitative organic elemental analysis in teaching of qualitative analysis of the halogens, nitrogen, sulphur, and phosphorus. Indicates that the oxygen flask method is safe and suitable for both high school and college courses because of simple apparatus requirements. (CC)

  15. Oxygen transport by hemoglobin.

    PubMed

    Mairbäurl, Heimo; Weber, Roy E

    2012-04-01

    Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply.

  16. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  17. FUEL OXYGENATES HEALTH ISSUES

    EPA Science Inventory

    Oxygenates (e.g., methyl tertiary butyl ether [MTBE], ethanol) are required in certain areas of the United States by the 1990 Clean Air Act Amendments. MTBE and ethanol have also been used to increase octane ratings in U.S. gasoline since the 1970s. In 1996 alone, 10 billion Kg...

  18. Calibration Of Oxygen Monitors

    NASA Technical Reports Server (NTRS)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1988-01-01

    Readings corrected for temperature, pressure, and humidity of air. Program for handheld computer developed to ensure accuracy of oxygen monitors in National Transonic Facility, where liquid nitrogen stored. Calibration values, determined daily, based on entries of data on barometric pressure, temperature, and relative humidity. Output provided directly in millivolts.

  19. Shuttle Carrier Aircraft (SCA) Fleet Photo

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's two Boeing 747 Shuttle Carrier Aircraft (SCA) are seen here nose to nose at Dryden Flight Research Center, Edwards, California. The front mounting attachment for the Shuttle can just be seen on top of each. The SCAs are used to ferry Space Shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are; three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached, and two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Texas. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back

  20. Organized polysaccharide fibers as stable drug carriers.

    PubMed

    Janaswamy, Srinivas; Gill, Kristin L; Campanella, Osvaldo H; Pinal, Rodolfo

    2013-04-15

    Many challenges arise during the development of new drug carrier systems, and paramount among them are safety, solubility and controlled release requirements. Although synthetic polymers are effective, the possibility of side effects imposes restrictions on their acceptable use and dose limits. Thus, a new drug carrier system that is safe to handle and free from side effects is very much in need and food grade polysaccharides stand tall as worthy alternatives. Herein, we demonstrate for the first time the feasibility of sodium iota-carrageenan fibers and their distinctive water pockets to embed and release a wide variety of drug molecules. Structural analysis has revealed the existence of crystalline network in the fibers even after encapsulating the drug molecules, and iota-carrageenan maintains its characteristic and reproducible double helical structure suggesting that the composites thus produced are reminiscent of cocrystals. The melting properties of iota-carrageenan:drug complexes are distinctly different from those of either drug or iota-carrageenan fiber. The encapsulated drugs are released in a sustained manner from the fiber matrix. Overall, our research provides an elegant opportunity for developing effective drug carriers with stable network toward enhancing and/or controlling bioavailability and extending shelf-life of drug molecules using GRAS excipients, food polysaccharides, that are inexpensive and non-toxic.

  1. Hot Carrier Extraction with Plasmonic Broadband Absorbers.

    PubMed

    Ng, Charlene; Cadusch, Jasper J; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gómez, Daniel E

    2016-04-26

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photocatalysis, photovoltaics, and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multistack layered configuration to achieve broadband, near-unit light absorption, which is spatially localized on the nanoparticle layer. We show that this enhanced light absorbance leads to ∼40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where (i) the photons have energies higher than the Schottky junctions and (ii) the absorption of light is localized on the metal nanoparticles.

  2. Photoinduced carrier annihilation in silicon pn junction

    NASA Astrophysics Data System (ADS)

    Sameshima, Toshiyuki; Motoki, Takayuki; Yasuda, Keisuke; Nakamura, Tomohiko; Hasumi, Masahiko; Mizuno, Toshihisa

    2015-08-01

    We report analysis of the photo-induced minority carrier effective lifetime (τeff) in a p+n junction formed on the top surfaces of a n-type silicon substrate by ion implantation of boron and phosphorus atoms at the top and bottom surfaces followed by activation by microwave heating. Bias voltages were applied to the p+ boron-doped surface with n+ phosphorus-doped surface kept at 0 V. The values of τeff were lower than 1 × 10-5 s under the reverse-bias condition. On the other hand, τeff markedly increased to 1.4 × 10-4 s as the forward-bias voltage increased to 0.7 V and then it leveled off when continuous-wave 635 nm light was illuminated at 0.74 mW/cm2 on the p+ surface. The carrier annihilation velocity S\\text{p + } at the p+ surface region was numerically estimated from the experimental τeff. S\\text{p + } ranged from 4000 to 7200 cm/s under the reverse-bias condition when the carrier annihilation velocity S\\text{n + } at the n+ surface region was assumed to be a constant value of 100 cm/s. S\\text{p + } markedly decreased to 265 cm/s as the forward-bias voltage increased to 0.7 V.

  3. Organized polysaccharide fibers as stable drug carriers

    PubMed Central

    Janaswamy, Srinivas; Gill, Kristin L.; Campanella, Osvaldo H.; Pinal, Rodolfo

    2013-01-01

    Many challenges arise during the development of new drug carrier systems, and paramount among them are safety, solubility and controlled release requirements. Although synthetic polymers are effective, the possibility of side effects imposes restrictions on their acceptable use and dose limits. Thus, a new drug carrier system that is safe to handle and free from side effects is very much in need and food grade polysaccharides stand tall as worthy alternatives. Herein, we demonstrate for the first time the feasibility of sodium iota-carrageenan fibers and their distinctive water pockets to embed and release a wide variety of drug molecules. Structural analysis has revealed the existence of crystalline network in the fibers even after encapsulating the drug molecules, and iota-carrageenan maintains its characteristic and reproducible double helical structure suggesting that the composites thus produced are reminiscent of cocrystals. The melting properties of iota-carrageenan:drug complexes are distinctly different from those of either drug or iota-carrageenan fiber. The encapsulated drugs are released in a sustained manner from the fiber matrix. Overall, our research provides an elegant opportunity for developing effective drug carriers with stable network toward enhancing and/or controlling bioavailability and extending shelf-life of drug molecules using GRAS excipients, food polysaccharides, that are inexpensive and non–toxic. PMID:23544530

  4. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    DOEpatents

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  5. Hydrogen as fuel carrier in PEM fuelcell for automobile applications

    NASA Astrophysics Data System (ADS)

    Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.

    2015-02-01

    The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.

  6. Duality of β-glucan microparticles: antigen carrier and immunostimulants

    PubMed Central

    Baert, Kim; De Geest, Bruno G; De Greve, Henri; Cox, Eric; Devriendt, Bert

    2016-01-01

    Designing efficient recombinant mucosal vaccines against enteric diseases is still a major challenge. Mucosal delivery of recombinant vaccines requires encapsulation in potent immunostimulatory particles to induce an efficient immune response. This paper evaluates the capacity of β-glucan microparticles (GPs) as antigen vehicles and characterizes their immune-stimulatory effects. The relevant infectious antigen FedF was chosen to be loaded inside the microparticles. The incorporation of FedF inside the particles was highly efficient (roughly 85%) and occurred without antigen degradation. In addition, these GPs have immunostimulatory effects as well, demonstrated by the strong reactive oxygen species (ROS) production by porcine neutrophils upon their recognition. Although antigen-loaded GPs still induce ROS production, antigen loading decreases this production by neutrophils for reasons yet unknown. However, these antigen-loaded GPs are still able to bind their specific β-glucan receptor, demonstrated by blocking complement receptor 3, which is the major β-glucan receptor on porcine neutrophils. The dual character of these particles is confirmed by a T-cell proliferation assay. FedF-loaded particles induce a significantly higher FedF-specific T-cell proliferation than soluble FedF. Taken together, these results show that GPs are efficient antigen carriers with immune-stimulatory properties. PMID:27330289

  7. Method of increasing minority carrier lifetime in silicon web or the like

    NASA Technical Reports Server (NTRS)

    Liu, J. K.; Schwuttke, G. H.; Koliwad, K. M. (Inventor)

    1983-01-01

    A silicon dendrite is grown as a ribbon forming two silicon crystal layers which are separated by an interface layer which contains a large number of defects. Significant increase of minority carrier lifetime with homogeneous distribution at the outer surfaces of the two silicon crystal layers is achieved by processing the web in an atmosphere of a selected gas, e.g., oxygen, nitrogen or an inert gas, for about 30 minutes to several hours at a temperature preferably on the order of 900 to 1200 C.

  8. 21 CFR 58.113 - Mixtures of articles with carriers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Mixtures of articles with carriers. 58.113 Section... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Test and Control Articles § 58.113 Mixtures of articles with carriers. (a) For each test or control article that is mixed with a carrier,...

  9. 21 CFR 58.113 - Mixtures of articles with carriers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Mixtures of articles with carriers. 58.113 Section... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Test and Control Articles § 58.113 Mixtures of articles with carriers. (a) For each test or control article that is mixed with a carrier,...

  10. 21 CFR 58.113 - Mixtures of articles with carriers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Mixtures of articles with carriers. 58.113 Section... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Test and Control Articles § 58.113 Mixtures of articles with carriers. (a) For each test or control article that is mixed with a carrier,...

  11. 14 CFR 296.3 - Indirect cargo air carrier.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Indirect cargo air carrier. 296.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS INDIRECT AIR TRANSPORTATION OF PROPERTY General § 296.3 Indirect cargo air carrier. An indirect cargo air carrier is any U.S. citizen who undertakes to engage indirectly in...

  12. 14 CFR 296.3 - Indirect cargo air carrier.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Indirect cargo air carrier. 296.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS INDIRECT AIR TRANSPORTATION OF PROPERTY General § 296.3 Indirect cargo air carrier. An indirect cargo air carrier is any U.S. citizen who undertakes to engage indirectly in...

  13. 14 CFR 296.3 - Indirect cargo air carrier.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Indirect cargo air carrier. 296.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS INDIRECT AIR TRANSPORTATION OF PROPERTY General § 296.3 Indirect cargo air carrier. An indirect cargo air carrier is any U.S. citizen who undertakes to engage indirectly in...

  14. 49 CFR 373.101 - Motor carrier bills of lading.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... information as prescribed in 49 CFR part 379. ... 49 Transportation 5 2012-10-01 2012-10-01 false Motor carrier bills of lading. 373.101 Section 373... BILLS Motor Carrier Receipts and Bills § 373.101 Motor carrier bills of lading. Every motor...

  15. 49 CFR 373.101 - Motor carrier bills of lading.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... information as prescribed in 49 CFR part 379. ... 49 Transportation 5 2014-10-01 2014-10-01 false Motor carrier bills of lading. 373.101 Section 373... BILLS Motor Carrier Receipts and Bills § 373.101 Motor carrier bills of lading. Every motor...

  16. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  17. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  18. 14 CFR 252.3 - Smoking ban: air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Smoking ban: air carriers. 252.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air carriers shall prohibit smoking on all scheduled passenger flights....

  19. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  20. 14 CFR 252.3 - Smoking ban: air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Smoking ban: air carriers. 252.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air carriers shall prohibit smoking on all scheduled passenger flights....

  1. 14 CFR 252.3 - Smoking ban: air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Smoking ban: air carriers. 252.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air carriers shall prohibit smoking on all scheduled passenger flights....

  2. 14 CFR 252.3 - Smoking ban: air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Smoking ban: air carriers. 252.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air carriers shall prohibit smoking on all scheduled passenger flights....

  3. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  4. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  5. 47 CFR 64.1190 - Preferred carrier freezes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... procedures necessary to lift a preferred carrier freeze; an explanation that these steps are in addition to... selection unless he or she lifts the freeze. (iii) An explanation of any charges associated with the... unable to make a change in carrier selection unless she or he lifts the preferred carrier freeze; and...

  6. 47 CFR 64.1190 - Preferred carrier freezes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... procedures necessary to lift a preferred carrier freeze; an explanation that these steps are in addition to... selection unless he or she lifts the freeze. (iii) An explanation of any charges associated with the... unable to make a change in carrier selection unless she or he lifts the preferred carrier freeze; and...

  7. 47 CFR 73.1540 - Carrier frequency measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Carrier frequency measurements. 73.1540 Section... measurements. (a) The carrier frequency of each AM and FM station and the visual carrier frequency and the... departure limits. (c) The primary standard of frequency for radio frequency measurements is the...

  8. 47 CFR 73.1540 - Carrier frequency measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Carrier frequency measurements. 73.1540 Section... measurements. (a) The carrier frequency of each AM and FM station and the visual carrier frequency and the... departure limits. (c) The primary standard of frequency for radio frequency measurements is the...

  9. 14 CFR 296.3 - Indirect cargo air carrier.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Indirect cargo air carrier. 296.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS INDIRECT AIR TRANSPORTATION OF PROPERTY General § 296.3 Indirect cargo air carrier. An indirect cargo air carrier is any U.S. citizen who undertakes to engage indirectly in...

  10. 19 CFR 113.64 - International carrier bond conditions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false International carrier bond conditions. 113.64...; DEPARTMENT OF THE TREASURY CUSTOMS BONDS Customs Bond Conditions § 113.64 International carrier bond conditions. A bond for international carriers shall contain the conditions listed in this section and may...

  11. 19 CFR 113.64 - International carrier bond conditions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false International carrier bond conditions. 113.64...; DEPARTMENT OF THE TREASURY CUSTOMS BONDS Customs Bond Conditions § 113.64 International carrier bond conditions. A bond for international carriers shall contain the conditions listed in this section and may...

  12. 47 CFR 69.601 - Exchange carrier association.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Exchange carrier association. 69.601 Section 69...) ACCESS CHARGES Exchange Carrier Association § 69.601 Exchange carrier association. (a) An association... Common Line revenue requirement, pay long term support to association Common Line tariff participants,...

  13. 47 CFR 69.601 - Exchange carrier association.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Exchange carrier association. 69.601 Section 69...) ACCESS CHARGES Exchange Carrier Association § 69.601 Exchange carrier association. (a) An association... Common Line revenue requirement, pay long term support to association Common Line tariff participants,...

  14. 14 CFR 158.69 - Recordkeeping and auditing: Collecting carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Recordkeeping and auditing: Collecting carriers. 158.69 Section 158.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....69 Recordkeeping and auditing: Collecting carriers. (a) Collecting carriers shall establish...

  15. 49 CFR 1139.22 - Revenue data for study carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Revenue data for study carriers. 1139.22 Section 1139.22 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION... Intercity Bus Industry § 1139.22 Revenue data for study carriers. The study carriers, as identified...

  16. 49 CFR 1139.22 - Revenue data for study carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Revenue data for study carriers. 1139.22 Section 1139.22 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION... Intercity Bus Industry § 1139.22 Revenue data for study carriers. The study carriers, as identified...

  17. The history of extracorporeal oxygenators.

    PubMed

    Lim, M W

    2006-10-01

    Extracorporeal oxygenators are artificial devices that substitute for anatomical lungs by delivering oxygen to, and extracting carbon dioxide from, blood. They were first conceptualised by the English scientist Robert Hooke (1635-1703) and developed into practical extracorporeal oxygenators by French and German experimental physiologists in the 19th century. Indeed, most of the extracorporeal oxygenators used until the late 1970s were derived from von Schroder's 1882 bubble oxygenator and Frey and Gruber's 1885 film oxygenator. As there is no intervening barrier between blood and oxygen, these are called 'direct contact' oxygenators; they contributed significantly to the development and practice of cardiac surgery till the 1980s. Membrane extracorporeal oxygenators introduce a gas-permeable interface between blood and oxygen. This greatly decreased the blood trauma of direct-contact extracorporeal oxygenators, and enabled extracorporeal oxygenators to be used in longer-term applications such as the intensive therapy of respiratory distress syndrome; this was demonstrably beneficial for neonates but less so for older patients. Much work since the 1960s focused on overcoming the gas exchange handicap of the membrane barrier, leading to the development of high-performance microporous hollow-fibre oxygenators that eventually replaced direct-contact oxygenators in cardiac theatres. PMID:16978315

  18. The history of extracorporeal oxygenators.

    PubMed

    Lim, M W

    2006-10-01

    Extracorporeal oxygenators are artificial devices that substitute for anatomical lungs by delivering oxygen to, and extracting carbon dioxide from, blood. They were first conceptualised by the English scientist Robert Hooke (1635-1703) and developed into practical extracorporeal oxygenators by French and German experimental physiologists in the 19th century. Indeed, most of the extracorporeal oxygenators used until the late 1970s were derived from von Schroder's 1882 bubble oxygenator and Frey and Gruber's 1885 film oxygenator. As there is no intervening barrier between blood and oxygen, these are called 'direct contact' oxygenators; they contributed significantly to the development and practice of cardiac surgery till the 1980s. Membrane extracorporeal oxygenators introduce a gas-permeable interface between blood and oxygen. This greatly decreased the blood trauma of direct-contact extracorporeal oxygenators, and enabled extracorporeal oxygenators to be used in longer-term applications such as the intensive therapy of respiratory distress syndrome; this was demonstrably beneficial for neonates but less so for older patients. Much work since the 1960s focused on overcoming the gas exchange handicap of the membrane barrier, leading to the development of high-performance microporous hollow-fibre oxygenators that eventually replaced direct-contact oxygenators in cardiac theatres.

  19. 49 CFR 369.1 - Annual reports of motor carriers of property, motor carriers of household goods, and dual...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... classification criteria, see § 369.2. (b) Quarterly Report Form QFR. All class I common motor carriers of... M. All class I and class II common and contract carriers of property, including household goods...

  20. Sterol carrier and lipid transfer proteins.

    PubMed

    Scallen, T J; Pastuszyn, A; Noland, B J; Chanderbhan, R; Kharroubi, A; Vahouny, G V

    1985-09-01

    The discovery of the sterol carrier and lipid transfer proteins was largely a result of the findings that cells contained cytosolic factors which were required either for the microsomal synthesis of cholesterol or which could accelerate the transfer or exchange of phospholipids between membrane preparations. There are two sterol carrier proteins present in rat liver cytosol. Sterol carrier protein 1 (SCP1) (Mr 47 000) participates in the microsomal conversion of squalene to lanosterol, and sterol carrier protein 2 (SCP2) (Mr 13 500) participates in the microsomal conversion of lanosterol to cholesterol. In addition SCP2 also markedly stimulates the esterification of cholesterol by rat liver microsomes, as well as the conversion of cholesterol to 7 alpha-hydroxycholesterol - the major regulatory step in bile acid formation. Also, SCP2 is required for the intracellular transfer of cholesterol from adrenal cytoplasmic lipid inclusion droplets to mitochondria for steroid hormone production, as well as cholesterol transfer from the outer to the inner mitochondrial membrane. SCP2 is identical to the non-specific phospholipid exchange protein. While SCP2 is capable of phospholipid exchange between artificial donors/acceptors, e.g. liposomes and microsomes, it does not enhance the release of lipids other than unesterified cholesterol from natural donors/acceptors, e.g. adrenal lipid inclusion droplets, and will not enhance exchange of labeled phosphatidylcholine between lipid droplets and mitochondria. Careful comparison of SCP2 and fatty acid binding protein (FABP) using six different assay procedures demonstrates separate and distinct physiological functions for each protein, with SCP2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP2 does not specifically bind or

  1. Oxygen Measurements in Liposome Encapsulated Hemoglobin

    NASA Astrophysics Data System (ADS)

    Phiri, Joshua Benjamin

    Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.

  2. Reduced macular function in ABCA4 carriers

    PubMed Central

    2015-01-01

    Purpose To study retinal function and morphology in ABCA4 carriers to investigate if ABCA4 carriership is associated with any functional or morphological changes and, if so, to explore whether certain mutations may be associated with particularly severe alterations. Methods Eighteen subjects were recruited by means of being the parents of 10 teenagers/young adults with genetically confirmed ABCA4-associated retinal degenerations. The teenagers/young adults are well-known patients and have been followed in our clinic for many years. The eighteen subjects underwent careful ophthalmological examinations, including fundus photography and autofluorescence imaging, Goldmann perimetry, optical coherence tomography (OCT), full-field electroretinography (ffERG), multifocal electroretinography (mERG), and ABCA4 gene sequencing. The ffERG and mERG results were compared with those of healthy controls. Results All subjects carried at least one ABCA4 mutation. Two subjects were compound heterozygous and therefore were excluded from the group-wise statistical analysis. Thirteen different ABCA4 mutations were found. C.2894 A>G (5/18) and c.768 G>T (4/18) were most common. Fourteen of 16 ABCA4 carriers demonstrated significantly altered mERG parameters (reduced amplitudes and/or delayed implicit times (ITs)) compared to normal values. In addition, the two subjects with compound heterozygous ABCA4 mutations had altered mERG parameters. A statistical comparison to the control group showed significantly reduced amplitudes and delayed ITs; p≤0.003 for all mERG parameters. FfERG parameters were altered in two ABCA4 carriers and one of the subjects with compound heterozygous ABCA4 mutations (reduced amplitude and delayed IT for the 30 Hz flicker ERG). No significant alterations were found for the whole group of ABCA4 carriers compared to the ffERG control group. Fundus photographs showed subtle to extensive pigmentary changes in several ABCA4 carriers. Conclusions In this study, ABCA4

  3. Emergency oxygen: What? Who? When?

    PubMed

    Starr, L M

    1994-01-01

    1. While the need for oxygen to support ill or injured clients is well established, confusion exists about oxygen devices and legal and training requirements. 2. The FDA recognizes both emergency and prescription oxygen. Emergency devices may be used legally by a non-health care workplace first aider who has completed a course in oxygen administration. Training sources for oxygen administration training are identified. 3. Workplace first aiders may assist a client and occupational health nurse by administering emergency oxygen. The appropriate use of these devices for cases of cardiac distress/arrest, shock, COPD, and hyperventilation is reviewed. PMID:8147981

  4. Application of Black Pearl carbon-supported WO 3 nanostructures as hybrid carriers for electrocatalytic RuSe x nanoparticles

    NASA Astrophysics Data System (ADS)

    Miecznikowski, Krzysztof; Kulesza, Pawel J.; Fiechter, Sebastian

    2011-07-01

    RuSe x electrocatalytic nanoparticles were deposited onto hybrid carriers composed of Black Pearl carbon-supported tungsten oxide; and the resulting system's electrochemical activity was investigated during oxygen reduction reaction. The tungsten oxide-utilizing and RuSe x nanoparticle-containing materials were characterized using transmission electron microscopy, X-ray diffraction and electrochemical diagnostic techniques such as cyclic voltammetry and rotating ring-disk voltammetry. Application of Black Pearl carbon carriers modified with ultra-thin films of WO 3 as matrices (supports) for RuSe x catalytic centers results during electroreduction of oxygen in 0.5 mol dm -3 H 2SO 4 (under rotating disk voltammetric conditions) in the potential shift of ca. 70 mV towards more positive values relative to the behavior of the analogous WO 3-free system. Also the percent formation (at ring in the rotating ring-disk voltammetry) of the undesirable hydrogen peroxide has been decreased approximately twice by utilizing WO 3-modified carbon carriers. The results are consistent with the bifunctional mechanism in which oxygen reduction is initiated at RuSe x centers and the hydrogen peroxide intermediate is reductively decomposed at reactive WO 3-modified Black Pearl supports. The electrocatalytic activity of the system utilizing WO 3-modified Black Pearl supports has been basically unchanged upon addition of acetic acid, formic acid or methyl formate to the sulfuric acid supporting electrolyte.

  5. [Oxygen therapy during Argentine-based national and international flights].

    PubMed

    Martínez Fraga, Alejandro; Sívori, Martín; Alonso, Mariana

    2008-01-01

    There are no data about supplemental oxygen in flight in our country. The objective of our study was to evaluate arranging in-flight-oxygen required by a simulated traveler, system of administration and costs, and to compare the results between Argentine-based (A) and international (I) airlines. The questionnaire used was similar to that of Stoller et al12. Data collection consisted of telephone calls placed by one of the authors to all commercial air carriers listed in our two Buenos Aires City airports during July 2007. A structured interview with questions was addressed on issues that an oxygen-using air traveler would need to arrange in-flight oxygen. Of the 25 airlines, 6 were discarded because of lack of information (24%, three A -60%- and one I -16%-). All A allowed in-flight-oxygen vs. 80% of I (p<0.05), 100% of A and 94% of I required a medical certificate (p=NS); 71% of A and 100% of I required previous notification (p<0.05); 50% of A and 87% of I provided patient interphases of oxygen administration (p=NS). Free of charge oxygen could be provided by 100% of A and 50% of I, with airline charge between 70 to 300 dollars. In conclusion, we observed different policies, rules, availability, and a pronounced lack of standardization of airline information. The cost of oxygen was very different between airlines and it was superior on I. It will be necessary to carry out actions to facilitate patient access to oxygentherapy and to standardize medical information among airlines in our country.

  6. Transmission line model for strained quantum well lasers including carrier transport and carrier heating effects.

    PubMed

    Xia, Mingjun; Ghafouri-Shiraz, H

    2016-03-01

    This paper reports a new model for strained quantum well lasers, which are based on the quantum well transmission line modeling method where effects of both carrier transport and carrier heating have been included. We have applied this new model and studied the effect of carrier transport on the output waveform of a strained quantum well laser both in time and frequency domains. It has been found that the carrier transport increases the turn-on, turn-off delay times and damping of the quantum well laser transient response. Also, analysis in the frequency domain indicates that the carrier transport causes the output spectrum of the quantum well laser in steady state to exhibit a redshift which has a narrower bandwidth and lower magnitude. The simulation results of turning-on transients obtained by the proposed model are compared with those obtained by the rate equation laser model. The new model has also been used to study the effects of pump current spikes on the laser output waveforms properties, and it was found that the presence of current spikes causes (i) wavelength blueshift, (ii) larger bandwidth, and (iii) reduces the magnitude and decreases the side-lobe suppression ratio of the laser output spectrum. Analysis in both frequency and time domains confirms that the new proposed model can accurately predict the temporal and spectral behaviors of strained quantum well lasers. PMID:26974607

  7. Core-shell poly-methylmethacrylate nanoparticles as effective carriers of electrostatically loaded anionic porphyrin.

    PubMed

    Varchi, Greta; Benfenati, Valentina; Pistone, Assunta; Ballestri, Marco; Sotgiu, Giovanna; Guerrini, Andrea; Dambruoso, Paolo; Liscio, Andrea; Ventura, Barbara

    2013-05-01

    Among the medical applications of nanoparticles, their usage as photosensitizer (PS) carriers for photodynamic therapy (PDT) has attracted increasing attention. In the present study we explored the morphological and photophysical properties of core-shell PMMA nanoparticles (PMMA-NPs) electrostatically post-loaded with the synthetic, water soluble 5,10,15,20-tetrakis(4-sulphonatophenyl)-porphyrin (TPPS4). pH response and singlet oxygen analyses of differently loaded samples proved the high capability of the PMMA-NPs to shield the PS from the environment, while retaining the PS singlet oxygen production capability. Preliminary in vitro imaging and phototoxicity experiments on HepG2 cells demonstrated the efficacy of the system to trigger photoinduced cell death in the culture.

  8. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2015-12-01

    Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  9. The determining factor for interstitial oxygen formation in Ruddlesden-Popper type La2NiO4-based oxides.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Ling, Yihan; Tamenori, Yusuke; Amezawa, Koji

    2016-01-21

    The interstitial oxygen formation mechanism in La2NiO4-based oxides was studied using soft X-ray absorption spectroscopy. When the interstitial oxygen concentration increased, the pre-edge peak of O K-edge spectra increased while Ni L-edge spectra was almost invariant. These spectral changes strongly suggest the significant contribution of ligand oxygen to interstitial oxygen formation by providing/accepting electronic charge carriers. The variation of the integrated peak intensity of the O K-edge strongly suggests that interstitial oxygen formation is determined by the equilibrium unoccupied pDOS of ligand oxygen. From this hypothesis, we propose that modulating the electronic structure is the key to control the capability of interstitial oxygen formation in La2NiO4-based oxides.

  10. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... different for stationary oxygen equipment than for portable oxygen equipment, the flow rate for the stationary equipment is used. (ii) If the prescribed flow rate is different for the patient at rest than for... amounts are separately calculated for the following items: (i) Stationary oxygen equipment and...

  11. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  12. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  13. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. The results of the checkout, shakedown, and initial parametric tests are summarized.

  14. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. Technical progress achieved during the first two months of the program is summarized.

  15. The crystal structure of oxy hemoglobin from high oxygen affinity bird emu (Dromaius novaehollandiae).

    PubMed

    Mohamed Abubakkar, Mohamed H; Saraboji, Kadhirvel; Ponnuswamy, Mon Nanjappa G

    2014-01-01

    Hemoglobin is an honorary enzyme, a two-way respiratory carrier, transporting oxygen from the lungs to the tissues and facilitating the return transport of carbon dioxide. Hemoglobin has high affinity for oxygen and low affinity for carbon dioxide and other substances in the arterial circulation, whereas in the venous circulation these relative affinities are upturned. The oxygen affinity of hemoglobin increases with the fall in temperature and decreases with the increase in pH and 2, 3-bisphosphoglycerate; point mutations also affect the tetrameric arrangement and alter the oxygen affinity. Though several studies have revealed the specific reasons for the adaptation of increased oxygen affinity of avian hemoglobins at high-altitudes, further structural insights on hemoglobins from high oxygen affinity species are required to understand the detailed oxygen adaptation at the molecular level. Herein, we describe the structural investigation of hemoglobin from emu (Dromaius novaehollandiae), a high oxygen affinity bird. Hemoglobin from emu was purified using anion-exchange chromatography, crystallized and determined the structure in the oxy form at a resolution of 2.3 Å; the R-factor of the model was 19.2%. The structure was compared with other oxy hemoglobins of high oxygen affinity avian species; significant changes are noted at intra-subunit contacts which provide the clues for increased oxygen affinity of emu hemoglobin. PMID:25146185

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  18. Fuel cell oxygen electrode

    DOEpatents

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  19. Transport properties of oxygen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1983-01-01

    Tables of viscosity, thermal conductivity, and thermal diffusivity of oxygen as a function of temperature and pressure from the triple point to 320 K and at pressures to 100 MPa are presented. Auxiliary tables in engineering units are also given. Viscosity and thermal conductivity are calculated from published correlations. Density and specific heat at constant pressure, required to calculate thermal diffusivity, are obtained from an equation of state. The Prandtl number can be obtained quite easily from the values tabulated.

  20. Electrocatalyst for oxygen reduction

    NASA Technical Reports Server (NTRS)

    Swette, L. L. (Inventor)

    1971-01-01

    The performance and costs of an electrochemical catalyst as compared to a pure platinum catalyst is evaluated. The catalysts are used to reduce oxygen in low temperature alkaline fuel cells. The electrochemical catalyst is composed of silver and platinum and is dispersed in a resinous inert binder to provide a cell electrode. The results indicate the electrochemical catalyst is superior structurally to the platinum one for high current density operation, and is at least as active as the platinum catalyst in other operations.

  1. Fuel cell oxygen electrode

    DOEpatents

    Shanks, Howard R.; Bevolo, Albert J.; Danielson, Gordon C.; Weber, Michael F.

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  2. Carrier Transport Mechanism in Single Crystalline Organic Semiconductor Thin Film Elucidated by Visualized Carrier Motion.

    PubMed

    Matsubara, Kohei; Abe, Kentaro; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    Time-resolved microscopic second harmonic generation (TRM-SHG) measurement was conducted to evaluate temperature dependence of the anisotropic carrier transport process in 6,13-Bis(triisopropylsilylethynyl) (TIPS) pentacene single crystalline domains for two orthogonal directions. Enhancement of the electric field induced SHG (EFI-SHG) signal at the electrode edge at low temperature suggests the presence of potential drop in the injection process. We directly evaluated temperature dependence of the carrier mobility by taking into account the potential drop, and concluded that the Marcus theory is appropriate to interpret the carrier transport in anisotropic TIPS pentacene thin film. TRM-SHG method is a facile and effective way to directly visualize transport process in anisotropic materials and to evaluate injection and transport processes simultaneously. PMID:27451638

  3. Hyaluronic acid concentration-mediated changes in structure and function of porous carriers for corneal endothelial cell sheet delivery.

    PubMed

    Lai, Jui-Yang

    2016-02-01

    In this study, the effects of hyaluronic acid (HA) concentrations (0.05-1.25wt.%) on the properties of porous carriers for corneal endothelial tissue engineering were investigated. The pore size and porosity gradually increased with decreasing solid content. However, at relatively low HA concentration (i.e., 0.05wt.%), the material samples contained small interior pores and a dense surface skin layer, probably due to no gas bubble effect on the stirring processing of porous microstructures of freeze-dried polysaccharide hydrogels. The carriers prepared from 0.25wt.% HA solution had the highest freezable water content and oxygen and glucose permeability among the samples evaluated. Results of cell viability assays and quantitative real-time reverse transcription polymerase chain reaction analyses showed that the HA concentration-related alteration of porous microstructure dictates the compatibility of biopolymer carriers with corneal endothelial cell (CEC) cultures. In vivo studies demonstrated that the CEC sheet/HA carrier construct implants are therapeutically efficacious in the reconstruction of endothelial scrape-wounded corneas. It is concluded that the polysaccharide concentration is the major factor for affecting the processing of carriers and their structure and function. Porous hydrogels prepared from 0.25wt.% HA solution are capable of delivering bioengineered CEC sheets to the posterior surface of cornea. PMID:26652391

  4. Proton intercalated two-dimensional WO3 nano-flakes with enhanced charge-carrier mobility at room temperature.

    PubMed

    Zhuiykov, Serge; Kats, Eugene; Carey, Benjamin; Balendhran, Sivacarendran

    2014-12-21

    Quasi two-dimensional (Q2D) semiconducting metal oxides with enhanced charge carrier mobility hold tremendous promise for nano-electronics, photonics, catalysis, nano-sensors and electrochromic applications. In addition to graphene and metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te), 2D sub-stoichiometric WO(3-x) is gaining importance as a promising semiconductor material for field-effect-transistor (FET) based devices. A combination of high permittivity, suppression of the Coulomb effects, and their stratified structure enhances the carrier mobility in such a material. Additionally, the sub-stoichiometry of this semiconductor oxide allows the reduction of the bandgap and increase of the free charge carriers at the same time. Here, we report for the first time H(+) intercalated WO(3) FETs, made of Q2D nano-flakes, with enhanced charge-carrier mobility exceeding 319 cm(2) V(-1) s(-1) comparable with the charge-carrier mobility of Q2D dichalcogenides MoS(2) and WSe(2). Analyses indicate that the enhanced electrical properties of the sub-stoichiometric WO(3-x) depend on the oxygen vacancies in the intercalated nano-flakes. These findings confirmed that Q2D sub-stoichiometric WO(3-x) is a promising material for various functional FET devices. PMID:25367432

  5. Plasmon-induced hot carriers in metallic nanoparticles.

    PubMed

    Manjavacas, Alejandro; Liu, Jun G; Kulkarni, Vikram; Nordlander, Peter

    2014-08-26

    Plasmon-induced hot carrier formation is attracting an increasing research interest due to its potential for applications in photocatalysis, photodetection and solar energy harvesting. However, despite very significant experimental effort, a comprehensive theoretical description of the hot carrier generation process is still missing. In this work we develop a theoretical model for the plasmon-induced hot carrier process and apply it to spherical silver nanoparticles and nanoshells. In this model, the conduction electrons of the metal are described as free particles in a finite spherical potential well, and the plasmon-induced hot carrier production is calculated using Fermi’s golden rule. We show that the inclusion of many-body interactions has only a minor influence on the results. Using the model we calculate the rate of hot carrier generation, finding that it closely follows the spectral profile of the plasmon. Our analysis reveals that particle size and hot carrier lifetime play a central role in determining both the production rate and the energy distribution of the hot carriers. Specifically, larger nanoparticle sizes and shorter lifetimes result in higher carrier production rates but smaller energies, and vice versa. We characterize the efficiency of the hot carrier generation process by introducing a figure of merit that measures the number of high energy carriers generated per plasmon. Furthermore, we analyze the spatial distribution and directionality of these excitations. The results presented here contribute to the basic understanding of plasmon-induced hot carrier generation and provide insight for optimization of the process.

  6. Atmospheric Oxygen Photoabsorption

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.

    1996-01-01

    The work conducted on this grant was devoted to various aspects of the photophysics and photochemistry of the oxygen molecule. Predissociation linewidths were measured for several vibrational levels in the O2(B3 Sigma(sub u)(sup -)) state, providing good agreement with other groups working on this important problem. Extensive measurements were made on the loss kinetics of vibrationally excited oxygen, where levels between v = 5 and v = 22 were investigated. Cavity ring-down spectroscopy was used to measure oscillator strengths in the oxygen Herzberg bands. The great sensitivity of this technique made it possible to extend the known absorption bands to the dissociation limit as well as providing many new absorption lines that seem to be associated with new O2 transitions. The literature concerning the Herzberg band strengths was evaluated in light of our new measurements, and we made recommendations for the appropriate Herzberg continuum cross sections to be used in stratospheric chemistry. The transition probabilities for all three Herzberg band systems were re-evaluated, and we are recommending a new set of values.

  7. Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2016-06-01

    The origin of oxygenic photosynthesis was the most important metabolic innovation in Earth history. It allowed life to generate energy and reducing power directly from sunlight and water, freeing it from the limited resources of geochemically derived reductants. This greatly increased global primary productivity and restructured ecosystems. The release of O2 as an end product of water oxidation led to the rise of oxygen, which dramatically altered the redox state of Earth's atmosphere and oceans and permanently changed all major biogeochemical cycles. Furthermore, the biological availability of O2 allowed for the evolution of aerobic respiration and novel biosynthetic pathways, facilitating much of the richness we associate with modern biology, including complex multicellularity. Here we critically review and synthesize information from the geological and biological records for the origin and evolution of oxygenic photosynthesis. Data from both of these archives illustrate that this metabolism first appeared in early Paleoproterozoic time and, despite its biogeochemical prominence, is a relatively late invention in the context of our planet's history.

  8. Onboard oxygen generation systems.

    PubMed

    Manatt, S A

    1981-11-01

    During the 1970s, the development of onboard oxygen generation systems (OBOGS) progressed through ground and flight test phases to the point where a second-generation concept is now production qualified and additional alternatives are being evaluated. This paper reviews the development of OBOGS and assesses the current state of the art of these systems. High-purity fluomine systems, developed for flight demonstration and qualified for production application, are discussed. Development of enriched air molecular sieve systems for laboratory and flight applications is described, along with a recent study of a permeable membrane-based aircraft oxygen enrichment concept. Capabilities and characteristics of the various OBOGS concepts are compared, showing the greater compliance of high-purity fluomine systems with the current oxygen military standards while noting the advantages of the reduced interface complexity of enriched air systems. Recommendations for future OBOGS development are presented, emphasizing the need to coordinate the development of specifications and hardware so the optimum compromises between physiological requirements and engineering feasibilities can result in OBOGS that best satisfy the metabolic needs of aircrew members.

  9. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  10. Ancient Oceans Had Less Oxygen

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    The amount of dissolved oxygen in the oceans in the mid-Proterozoic period has evolutionary implications since essential trace metals are redox sensitive. The findings suggest that there is global lack of oxygen in seawater.

  11. How Does Oxygen Therapy Work?

    MedlinePlus

    ... this page from the NHLBI on Twitter. How Does Oxygen Therapy Work? Oxygen therapy provides you with ... pass through your nose or mouth like it does with the other delivery systems. A humidifier adds ...

  12. Oxygen in demand: How oxygen has shaped vertebrate physiology.

    PubMed

    Dzal, Yvonne A; Jenkin, Sarah E M; Lague, Sabine L; Reichert, Michelle N; York, Julia M; Pamenter, Matthew E

    2015-08-01

    In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite

  13. Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Luo, Zhenyu; Zheng, Mingbin; Zhao, Pengfei; Chen, Ze; Siu, Fungming; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2016-03-01

    Photodynamic therapy has been increasingly applied in clinical cancer treatments. However, native hypoxic tumoural microenvironment and lacking oxygen supply are the major barriers hindering photodynamic reactions. To solve this problem, we have developed biomimetic artificial red cells by loading complexes of oxygen-carrier (hemoglobin) and photosensitizer (indocyanine green) for boosted photodynamic strategy. Such nanosystem provides a coupling structure with stable self-oxygen supply and acting as an ideal fluorescent/photoacoustic imaging probe, dynamically monitoring the nanoparticle biodistribution and the treatment of PDT. Upon exposure to near-infrared laser, the remote-triggered photosensitizer generates massive cytotoxic reactive oxygen species (ROS) with sufficient oxygen supply. Importantly, hemoglobin is simultaneously oxidized into the more active and resident ferryl-hemoglobin leading to persistent cytotoxicity. ROS and ferryl-hemoglobin synergistically trigger the oxidative damage of xenograft tumour resulting in complete suppression. The artificial red cells with self-monitoring and boosted photodynamic efficacy could serve as a versatile theranostic platform.

  14. Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions.

    PubMed

    Weyand, Birgit; Nöhre, Mariel; Schmälzlin, Elmar; Stolz, Marvin; Israelowitz, Meir; Gille, Christoph; von Schroeder, Herb P; Reimers, Kerstin; Vogt, Peter M

    2015-01-01

    We present a new method for noninvasive real-time oxygen measurement inside three-dimensional tissue-engineered cell constructs in static and dynamic culture settings in a laminar flow bioreactor. The OPAL system (optical oxygen measurement system) determines the oxygen-dependent phosphorescence lifetime of spherical microprobes and uses a two-frequency phase-modulation technique, which fades out the interference of background fluorescence from the cell carrier and culture medium. Higher cell densities in the centrum of the scaffolds correlated with lower values of oxygen concentration obtained with the OPAL system. When scaffolds were placed in the bioreactor, higher oxygen values were measured compared to statically cultured scaffolds in a Petri dish, which were significantly different at day 1-3 of culture. This technique allows the use of signal-weak microprobes in biological environments and monitors the culture process inside a bioreactor.

  15. Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions

    PubMed Central

    Weyand, Birgit; Nöhre, Mariel; Schmälzlin, Elmar; Stolz, Marvin; Israelowitz, Meir; Gille, Christoph; von Schroeder, Herb P.; Reimers, Kerstin; Vogt, Peter M.

    2015-01-01

    Abstract We present a new method for noninvasive real-time oxygen measurement inside three-dimensional tissue-engineered cell constructs in static and dynamic culture settings in a laminar flow bioreactor. The OPAL system (optical oxygen measurement system) determines the oxygen-dependent phosphorescence lifetime of spherical microprobes and uses a two-frequency phase-modulation technique, which fades out the interference of background fluorescence from the cell carrier and culture medium. Higher cell densities in the centrum of the scaffolds correlated with lower values of oxygen concentration obtained with the OPAL system. When scaffolds were placed in the bioreactor, higher oxygen values were measured compared to statically cultured scaffolds in a Petri dish, which were significantly different at day 1–3 of culture. This technique allows the use of signal-weak microprobes in biological environments and monitors the culture process inside a bioreactor. PMID:26309802

  16. Oxygen Deficient YBa 2 Cu 3 O 7-δ : Two Superconducting Phases

    NASA Astrophysics Data System (ADS)

    Stankowski, J.; ¦L+/-Zak, A.; Kempiñski, W.; Andrzejewski, B.; Reichel, B.; Plesch, G.

    2003-03-01

    A set of oxygen deficient powder and granular samples of YBa 2 Cu 3 O 7-δ ceramics was studied by means of thermogravimetric and magnetically modulated microwave absorption methods. Especially the last method has turned out to be a powerful method, which was used to determine the dependence of critical temperature T c on the oxygen parameter δ. Using these methods it has been shown that the removing of oxygen evokes the inhomogeneous oxygen distribution in the samples and a change in carrier concentration till to the loss of superconducting properties. A superconducting phase with T_c=60 K, which occurs in oxygen deficient YBa 2 Cu 3 O 7-δ sample, is an unstable phase.

  17. Suppressed carrier full-spectrum combining

    NASA Technical Reports Server (NTRS)

    Rogstad, D. H.

    1991-01-01

    A technique to accomplish full spectrum arraying where all the telemetry power is put into the subcarrier sidebands (suppressed carrier) is described. The matched filter needed in each antenna prior to cross correlation for deriving the coherence delay and phase offsets is an open loop version of the telemetry phase lock loop provided in the Advanced Digital Receiver. In analogy with a Costas loop telemetry receiver, a squaring loss is derived, and a signal to noise ratio for the cross correlation loop phase is presented.

  18. Suppressed carrier full-spectrum combining

    NASA Astrophysics Data System (ADS)

    Rogstad, D. H.

    1991-11-01

    A technique to accomplish full spectrum arraying where all the telemetry power is put into the subcarrier sidebands (suppressed carrier) is described. The matched filter needed in each antenna prior to cross correlation for deriving the coherence delay and phase offsets is an open loop version of the telemetry phase lock loop provided in the Advanced Digital Receiver. In analogy with a Costas loop telemetry receiver, a squaring loss is derived, and a signal to noise ratio for the cross correlation loop phase is presented.

  19. Oxygen Transport Membranes

    SciTech Connect

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  20. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  1. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  2. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments. PMID:27492338

  3. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L.

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  4. 77 FR 60507 - Motor Carrier Safety Advisory Committee (MCSAC): Public Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee (MCSAC): Public Subcommittee Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Meeting of Compliance, Safety, Accountability (CSA) Subcommittee of Motor Carrier Safety...

  5. 78 FR 5243 - Motor Carrier Safety Advisory Committee (MCSAC): Public Meeting of Subcommittees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee (MCSAC): Public Meeting of Subcommittees AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier Safety Advisory Committee (MCSAC). SUMMARY: FMCSA announces that...

  6. Defect Chemistry of La 2- xSr xCuO 4- δ: Oxygen Nonstoichiometry and Thermodynamic Stability

    NASA Astrophysics Data System (ADS)

    Kanai, Hideki; Mizusaki, Junichiro; Tagawa, Hiroaki; Hoshiyama, Seiichiro; Hirano, Katsuhiko; Fujita, Kazuyuki; Tezuka, Meguru; Hashimoto, Takuya

    1997-06-01

    The oxygen nonstoichiometry of La2-xSrxCuO4-δ(x=0-0.3) was measured as a function of Sr content, temperature (400-1000°C), and oxygen partial pressure (P(O2)= 1-1×10-10atm) using high-temperature gravimetry and coulometric titration. The oxygen nonstoichiometry ranges from oxygen excess to oxygen deficiency one depending onP(O2) and the Sr content,x. Oxygen excess was observed for specimens withxless than 0.05. The dependence of oxygen excess nonstoichiometry on oxygen partial pressures was found to be explained by a model with interstitial oxygen as a predominant defect. In oxygen-deficient regions, partial molar enthalpy and partial molar entropy of oxygen were calculated from the nonstoichiometry data. It was revealed from the variation in partial molar enthalpy that a strong interaction between the oxygen and its vacancy exists in oxygen-deficient La2-xSrxCuO4-δ. The experimentally obtained partial molar entropy of oxygen was compared with those calculated assuming a so-called metal model, a hopping conduction model, and a narrow band conduction model, where the increase in oxygen vacancies hardly influences the carrier concentration, the holes generated by oxidation of the specimen are trapped by Cu ions, and the holes generated are itinerant, respectively. The variation in partial molar entropy of oxygen could be explained well by either the hopping model or the narrow band conduction model. The oxygen partial pressures required for the decomposition of La2-xSrxCuO4-δwere also measured through the nonstoichiometry measurement. Discontinuity was observed in the dependence of oxygen partial pressures for decomposition on Sr content betweenx=0.05 and 0.10, suggesting an abrupt variation in the thermodynamic behavior of La2-xSrxCuO4-δwith the Sr content in this region.

  7. Residual and suppressed-carrier arraying techniques for deep-space communications

    NASA Technical Reports Server (NTRS)

    Shihabi, M.; Shah, B.; Hinedi, S.; Million, S.

    1995-01-01

    Three techniques that use carrier information from multiple antennas to enhance carrier acquisition and tracking are presented. These techniques in combination with baseband combining are analyzed and simulated for residual and suppressed-carrier modulation. It is shown that the carrier arraying using a single carrier loop technique can acquire and track the carrier even when any single antenna in the array cannot do so by itself. The carrier aiding and carrier arraying using multiple carrier loop techniques, on the other hand, are shown to lock on the carrier only when one of the array elements has sufficient margin to acquire the carrier on its own.

  8. O2 sensing dynamics of BiFeO3 nanofibers: effect of minor carrier compensation

    NASA Astrophysics Data System (ADS)

    Sobhan, Mushtaq; Xu, Qiang; Katoch, Akash; Anariba, Franklin; Kim, Sang Sub; Wu, Ping

    2015-05-01

    In this paper we investigate O2 sensing dynamics in BiFeO3 (BFO) nanofibers at various concentrations and temperatures, by using a combined experiment and computer simulation approach. Samples of pristine BFO, Ni-doped BFO, and Pb-doped BFO nanofibers were prepared. By incorporating Ni and Pb, additional acceptor states are introduced in BFO. Density functional theory calculations show that Ni prefers to substitute Fe site while Pb substitutes Bi site, resulting in a new deep donor originating from Ni interstitial defects, along with oxygen vacancies (Vo). We find that both the sensing response and recovery time are shorter in samples made of pristine BFO nanofibers than in Ni- and Pb-doped nanofiber samples. We interpret the observed sensing dynamics through charge transport theory of the major (acceptors) and minor (donors) carriers, and found that the minor carrier compensation plays a significant role in determining the response and recovery time of the sensor device. This minor carrier compensation charge transport mechanism will provide new insights into more robust sensor development strategies, and into the research of ion-electron coupling in chemical dynamics of semiconductors.

  9. BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS

    PubMed Central

    Cabrales, Pedro; Intaglietta, Marcos

    2013-01-01

    The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271

  10. Colloidal carrier systems for transcutaneous immunization.

    PubMed

    Gupta, Prem N; Vyas, Suresh P

    2011-04-01

    Recently, the skin has emerged as a potential alternative route for non-invasive delivery of vaccine. It has been recognized as a highly immune-reactive tissue containing an abundance of antigen presenting cells, especially within the epidermis. Transcutaneous immunization, introduction of antigen through topical application onto the intact skin, has many practical merits compared to injectable routes of administration. It combines the advantages of needle-free delivery while targeting the immunologically rich milieu of the skin. This simple and non-invasive immunization procedure elicits systemic and cell mediated immune responses and therefore, it provides a viable and cost-effective strategy for disease prevention. Various strategies i.e physical, chemical and novel carrier systems can be explored for trancutaneous immunization. Specially designed vaccine carrier systems are attracting immense attention and these could be potential module for non-invasive antigen delivery. The review covers topical delivery consideration in brief followed by an insight into various novel delivery systems for transcutaneous vaccine delivery.

  11. Carbon phosphide monolayers with superior carrier mobility.

    PubMed

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P

    2016-04-28

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics. PMID:27067002

  12. Pathways to hydrogen as an energy carrier.

    PubMed

    Sigfusson, Thorsteinn I

    2007-04-15

    When hydrogen is used as an alternative energy carrier, it is very important to understand the pathway from the primary energy source to the final use of the carrier. This involves, for example, the understanding of greenhouse gas emissions associated with the production of hydrogen and throughout the lifecycle of a given utilization pathway as well as various energy or exergy efficiencies and aspects involved. This paper which is based on a talk given at the Royal Society in London assesses and reviews the various production pathways for hydrogen with emphasis on emissions, energy use and energy efficiency. The paper also views some aspects of the breaking of the water molecule and examines some new emerging physical evidence which could pave the way to a new and more feasible pathway. A special attention will be given to the use of the renewable energy pathway. As an example of a hydrogen society that could be based on renewable primary energy, the paper describes the hydrogen society experiments in Iceland as well as unconventional hydrogen obtained from geothermal gases. In the light of our experience, attempts will be made to shed light upon drivers as well as obstacles in the development of a hydrogen society.

  13. Localized charge carriers in graphene nanodevices

    SciTech Connect

    Bischoff, D. Varlet, A.; Simonet, P.; Eich, M.; Overweg, H. C.; Ihn, T.; Ensslin, K.

    2015-09-15

    Graphene—two-dimensional carbon—is a material with unique mechanical, optical, chemical, and electronic properties. Its use in a wide range of applications was therefore suggested. From an electronic point of view, nanostructured graphene is of great interest due to the potential opening of a band gap, applications in quantum devices, and investigations of physical phenomena. Narrow graphene stripes called “nanoribbons” show clearly different electronical transport properties than micron-sized graphene devices. The conductivity is generally reduced and around the charge neutrality point, the conductance is nearly completely suppressed. While various mechanisms can lead to this observed suppression of conductance, disordered edges resulting in localized charge carriers are likely the main cause in a large number of experiments. Localized charge carriers manifest themselves in transport experiments by the appearance of Coulomb blockade diamonds. This review focuses on the mechanisms responsible for this charge localization, on interpreting the transport details, and on discussing the consequences for physics and applications. Effects such as multiple coupled sites of localized charge, cotunneling processes, and excited states are discussed. Also, different geometries of quantum devices are compared. Finally, an outlook is provided, where open questions are addressed.

  14. Localized charge carriers in graphene nanodevices

    NASA Astrophysics Data System (ADS)

    Bischoff, D.; Varlet, A.; Simonet, P.; Eich, M.; Overweg, H. C.; Ihn, T.; Ensslin, K.

    2015-09-01

    Graphene—two-dimensional carbon—is a material with unique mechanical, optical, chemical, and electronic properties. Its use in a wide range of applications was therefore suggested. From an electronic point of view, nanostructured graphene is of great interest due to the potential opening of a band gap, applications in quantum devices, and investigations of physical phenomena. Narrow graphene stripes called "nanoribbons" show clearly different electronical transport properties than micron-sized graphene devices. The conductivity is generally reduced and around the charge neutrality point, the conductance is nearly completely suppressed. While various mechanisms can lead to this observed suppression of conductance, disordered edges resulting in localized charge carriers are likely the main cause in a large number of experiments. Localized charge carriers manifest themselves in transport experiments by the appearance of Coulomb blockade diamonds. This review focuses on the mechanisms responsible for this charge localization, on interpreting the transport details, and on discussing the consequences for physics and applications. Effects such as multiple coupled sites of localized charge, cotunneling processes, and excited states are discussed. Also, different geometries of quantum devices are compared. Finally, an outlook is provided, where open questions are addressed.

  15. Influence of carrier on the performance of dry powder inhalers.

    PubMed

    Saint-Lorant, G; Leterme, P; Gayot, A; Flament, M P

    2007-04-01

    The aim of this work is to study carriers which can become alternatives to monohydrate lactose in dry powder inhalers and to consider particle parameters that influence adhesion between drug and carrier in dry powder inhalers. Different forms of mannitol, lactose and maltitol were mixed with either terbutaline sulphate or formoterol fumarate. The blends were submitted to different adhesion tests where drug detachment from the carrier was obtained either through mechanical vibration or by aspiration. Parameters like particle shape, roughness, amorphous content and cristalline form may affect interactions between drug and carrier. In our case, crystallized forms of the carrier offered lower adhesion but better release of the active ingredient than spray-dried forms. The crystallized mannitol produced maximal fine particle dose. The blends of the mannitols and the two active ingredients gave different results. The two techniques used to assess the adhesion of drugs to carrier particles provide complementary information about drug/carrier interactions and detachment. The mechanical sieving allows to assess blend stability and the air-jet sieving makes it possible to determine how easily the drug separates from carrier. For the drugs tested, the results of fine particle doses are in agreement with the Alpine air-jet sieve results. The tests used are helpful for the choice of a new carrier in the field of the development of new carriers for dry powder inhalers. PMID:17113733

  16. Solar Forbidden Oxygen, Revisited

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2008-10-01

    Recent large reductions in the solar oxygen abundance, based on synthesis of photospheric O I, OH, and CO absorptions with 3D convection models, have provoked consternation in the helioseismology community: the previous excellent agreement between measured p-mode oscillation frequencies and predictions based on the recommended epsilonO of a decade ago (680 parts per million [ppm] relative to hydrogen) unravels at the new low value (460 ppm). In an attempt to reconcile these conflicting results, the formation of pivotal [O I] λ6300, which is blended with a weak Ni I line, has been reconsidered, exploiting an alternative 3D model (albeit only a single temporal snapshot). And while there are several areas of agreement with the earlier [O I] studies of Allende Prieto, Asplund, and others, there is one crucial point of disagreement: the epsilonO derived here is significantly larger, 650 +/- 65 ppm (although at the expense of a ~30% weaker Ni I line than expected from the recommended nickel abundance). One innovation is a more robust treatment of the solar wavelengths: the balance between the components of the [O I] + Ni I blend is sensitive to velocity errors of only a few hundred m s-1. A second improvement is enforcement of a "continuum calibration" to ensure a self-consistent 3D temperature scale. Because of the renewed agreement between the linchpin tracer [O I] and seismic oxygen, the proposed downward slump of the solar metallicity and the perceived "oxygen crisis" now can be said to rest on less secure footings.

  17. Oxygen supplies in disaster management.

    PubMed

    Blakeman, Thomas C; Branson, Richard D

    2013-01-01

    Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. Hospitals have large supplies of liquid oxygen and a supply of compressed gas oxygen cylinders that allow several days of reserve, but a large influx of patients from a disaster can strain these resources. Most backup liquid oxygen supplies are attached to the main liquid system and supply line. In the event of damage to the main system, the reserve supply is rendered useless. The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator. PMID:23271827

  18. Oxygen supplies in disaster management.

    PubMed

    Blakeman, Thomas C; Branson, Richard D

    2013-01-01

    Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. Hospitals have large supplies of liquid oxygen and a supply of compressed gas oxygen cylinders that allow several days of reserve, but a large influx of patients from a disaster can strain these resources. Most backup liquid oxygen supplies are attached to the main liquid system and supply line. In the event of damage to the main system, the reserve supply is rendered useless. The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator.

  19. Oxygen therapy in preterm infants.

    PubMed

    Cherian, S; Morris, I; Evans, J; Kotecha, S

    2014-06-01

    Despite being the most widely used and vital therapy in neonatology, optimal strategies for the use of oxygen in preterm infants remain controversial. Achieving the balance between attaining adequate tissue oxygenation and avoiding oxygen toxicity is challenging. There remains a paucity of clear evidence based guidance for clinicians on safe oxygen saturation targets. What does seem apparent is that these targets vary over time in the life of a preterm infant. This article summarises the evidence behind current practice of oxygen monitoring and administration from the first few minutes after birth, through to the acute neonatal and later convalescent periods. Finally, we review the use of home oxygen for preterm infants with bronchopulmonary dysplasia including administration and weaning from domically home oxygen.

  20. Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO(3): LDA + U study.

    PubMed

    Cuong, Do Duc; Lee, Bora; Choi, Kyeong Mi; Ahn, Hyo-Shin; Han, Seungwu; Lee, Jaichan

    2007-03-16

    We find, using a local density approximation +Hubbard U method, that oxygen vacancies tend to cluster in a linear way in SrTiO(3), a prototypical perovskite oxide, accompanied by strong electron localization at the 3d state of the nearby Ti transition metal ion. The vacancy clustering and the associated electron localization lead to a profound impact on materials properties, e.g., the reduction in free-carrier densities, the appearance of characteristic optical spectra, and the decrease in vacancy mobility. The high stability against the vacancy migration also suggests the physical reality of the vacancy cluster.