Science.gov

Sample records for nio-based oxygen carrier

  1. Experiments on chemical looping combustion of coal with a NiO based oxygen carrier

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Xiao, Jun

    2009-03-15

    A chemical looping combustion process for coal using interconnected fluidized beds with inherent separation of CO{sub 2} is proposed in this paper. The configuration comprises a high velocity fluidized bed as an air reactor, a cyclone, and a spout-fluid bed as a fuel reactor. The high velocity fluidized bed is directly connected to the spout-fluid bed through the cyclone. Gas composition of both fuel reactor and air reactor, carbon content of fly ash in the fuel reactor, carbon conversion efficiency and CO{sub 2} capture efficiency were investigated experimentally. The results showed that coal gasification was the main factor which controlled the contents of CO and CH{sub 4} concentrations in the flue gas of the fuel reactor, carbon conversion efficiency in the process of chemical looping combustion of coal with NiO-based oxygen carrier in the interconnected fluidized beds. Carbon conversion efficiency reached only 92.8% even when the fuel reactor temperature was high up to 970 C. There was an inherent carbon loss in the process of chemical looping combustion of coal in the interconnected fluidized beds. The inherent carbon loss was due to an easy elutriation of fine char particles from the freeboard of the spout-fluid bed, which was inevitable in this kind of fluidized bed reactor. Further improvement of carbon conversion efficiency could be achieved by means of a circulation of fine particles elutriation into the spout-fluid bed or the high velocity fluidized bed. CO{sub 2} capture efficiency reached to its equilibrium of 80% at the fuel reactor temperature of 960 C. The inherent loss of CO{sub 2} capture efficiency was due to bypassing of gases from the fuel reactor to the air reactor, and the product of residual char burnt with air in the air reactor. Further experiments should be performed for a relatively long-time period to investigate the effects of ash and sulfur in coal on the reactivity of nickel-based oxygen carrier in the continuous CLC reactor

  2. Synthetic carriers of oxygen.

    PubMed

    Dellacherie, E; Labrude, P; Vigneron, C; Riess, J G

    1987-01-01

    During the last decade, construction of artificial carriers of oxygen for transfusion purposes has evolved in three main directions, which can be reviewed as follows. The first approach consists of modifying hemoglobin (Hb), the natural oxygen carrier, in order to lower its oxygen affinity and increase its intravascular persistence. To achieve this aim, two basic procedures have been used: molecular and environmental modification. In the first case, Hb is modified with chemical reagents; the second requires encapsulation of Hb to obtain artificial erythrocytes. The second approach is based on the use of synthetic oxygen-carrying chelates that mimic the oxygenation function of Hb. The main products in this class are metalloporphyrins, whose chemical environment is designed to render them efficient as reversible carriers of oxygen in vivo. Finally, the third approach deals with the perfluorochemicals used in emulsified form. Perfluorochemical liquids are excellent gas solvents, but some problems remain unsolved with regard to their development as oxygen carriers in vivo: low O2 dissolving capacity, toxicity, and excretion.

  3. Hemoglobin-Based Nanoarchitectonic Assemblies as Oxygen Carriers.

    PubMed

    Jia, Yi; Duan, Li; Li, Junbai

    2016-02-10

    Safe and effective artificial oxygen carriers are the subject of great interest due to the problems of traditional blood transfusion and enormous demand in clinical use. In view of its unique oxygen-transport ability and normal metabolic pathways, hemoglobin is regarded as an ideal oxygen-carrying unit. With advances in nano-biotechnology, hemoglobin assemblies as artificial oxygen carriers achieve great development. Here, recent progress on hemoglobin-based oxygen carriers is highlighted in view of two aspects: acellular hemoglobin-based oxygen carriers and cellular hemoglobin-based oxygen carriers. These novel oxygen carriers exhibit advantages over traditional carriers and will greatly promote research on reliable and feasible oxygen carriers.

  4. Recombinant Hemoglobins as Artificial Oxygen Carriers

    PubMed Central

    Fronticelli, Clara; Koehler, Raymond C.; Brinigar, William S.

    2008-01-01

    This paper describes the approaches we have taken to construct a) mutant hemoglobins with different oxygen affinities, and b) mutant hemoglobins and myoglobins that polymerize to high molecular weight aggregates in an effort to prevent extravasation and the associated vasoactivity. In vivo testing indicates that exchange transfusion of polymeric hemoglobins in mice does not result in vasoactivity and that polymeric hemoglobins are effective oxygen carriers to ischemic tissues irrespective of their oxygen affinity and cooperativity. PMID:17364470

  5. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  6. Doping with artificial oxygen carriers: an update.

    PubMed

    Schumacher, Yorck Olaf; Ashenden, Michael

    2004-01-01

    traumatic blood loss, oxygen therapeutic applications in radiography (oxygenation of tumour cells is beneficial to the effect of certain chemotherapeutic agents), other medical applications such as organ preservation, and finally to meet the requirements of patients who cannot receive donor blood because of religious beliefs. Given the elite athlete's historical propensity to experiment with novel doping strategies, it is likely that the burgeoning field of artificial oxygen carriers has already attracted their attention. Scientific data concerning the performance benefits associated with blood substitutes are virtually nonexistent; however, international sporting federations have been commendably proactive in adding this category to their banned substance lists. The current situation is vulnerable to exploitation by immoral athletes since there is still no accepted methodology to test for the presence of artificial oxygen carriers.

  7. Designed Proteins as Optimized Oxygen Carriers for Artificial Blood

    DTIC Science & Technology

    2014-02-01

    process in which the bis-histidine-ligated ferrous heme iron donates an electron, forming superoxide. Experimental testing of this hypothesis are...Award Number: W81XWH-11-2-0083 TITLE: Designed Proteins as Optimized Oxygen Carriers for Artificial Blood PRINCIPAL INVESTIGATOR: Ronald L...AND SUBTITLE 5a. CONTRACT NUMBER Designed Proteins as Optimized Oxygen Carriers for Artificial Blood 5b. GRANT NUMBER W81XWH-11-2-0083 5c

  8. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  9. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.

    PubMed

    Bucci, Enrico

    2009-06-01

    Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.

  10. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process.

    PubMed

    Cheng, Zhuo; Qin, Lang; Guo, Mengqing; Xu, Mingyuan; Fan, Jonathan A; Fan, Liang-Shih

    2016-11-30

    We perform ab initio DFT+U calculations and experimental studies of the partial oxidation of methane to syngas on iron oxide oxygen carriers to elucidate the role of oxygen vacancies in oxygen carrier reactivity. In particular, we explore the effect of oxygen vacancy concentration on sequential processes of methane dehydrogenation, and oxidation with lattice oxygen. We find that when CH4 adsorbs onto Fe atop sites without neighboring oxygen vacancies, it dehydrogenates with CHx radicals remaining on the same site and evolves into CO2via the complete oxidation pathway. In the presence of oxygen vacancies, on the other hand, the formed methyl (CH3) prefers to migrate onto the vacancy site while the H from CH4 dehydrogenation remains on the original Fe atop site, and evolves into CO via the partial oxidation pathway. The oxygen vacancies created in the oxidation process can be healed by lattice oxygen diffusion from the subsurface to the surface vacancy sites, and it is found that the outward diffusion of lattice oxygen atoms is more favorable than the horizontal diffusion on the same layer. Based on the proposed mechanism and energy profile, we identify the rate-limiting steps of the partial oxidation and complete oxidation pathways. Also, we find that increasing the oxygen vacancy concentration not only lowers the barriers of CH4 dehydrogenation but also the cleavage energy of Fe-C bonds. However, the barrier of the rate-limiting step cannot further decrease when the oxygen vacancy concentration reaches 2.5%. The fundamental insight into the oxygen vacancy effect on CH4 oxidation with iron oxide oxygen carriers can help guide the design and development of more efficient oxygen carriers and CLPO processes.

  11. Artificial carrier for oxygen supply in biological systems.

    PubMed

    Dey, E S; Norrlöw, O; Liu, Y

    2004-04-01

    Several poly (dimethylsiloxanes) (PDMS) copolymers of dimethylsiloxane (DMS) with ethylene or propylene oxide were tested as artificial carriers for the delivery of oxygen to biological systems. Copolymers with a DMS content of 33% or lower enhanced glucose oxidation by 200% in contrast to the 25% increase produced by the same concentration of perfluorodecalin. When 0.05% of the copolymer with 18% DMS was included in the growth media of Bacillus thuriginensis, the biomass (growth rate) increased 1.5-fold. With 0.1% of this copolymer, actinorhodin production by Streptomyces coelicolor A3 (2) occurred in half the normal time and with an increased yield. In conclusion, these PDMS copolymers are a good alternative to perfluorodecalin as oxygen carriers in biotechnological processes.

  12. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  13. Hemoglobin-based oxygen carriers for hemorrhagic shock.

    PubMed

    Elmer, Jonathan; Alam, Hasan B; Wilcox, Susan R

    2012-03-01

    Hemorrhagic shock is a pathologic state in which intravascular volume and tissue oxygen delivery are impaired, leading to circulatory collapse and cellular ischemia. Resuscitation with hemoglobin-based oxygen carriers (HBOCs) is appealing in that their use can both restore intravascular volume and tissue oxygenation, without the limitations in supply and immunomodulatory effects of packed red blood cells. However, the development of safe and effective agents has been elusive. In this article, we briefly discuss the major limitations of traditional resuscitative fluids which have driven the continued interest in HBOCs. We then review the history of early HBOC development and the modern understanding of their mechanisms of toxicity, which has informed the rational design of second-generation agents. Finally, we provide an overview of these second-generation HBOCs that are under active investigation or have recently completed phase 3 clinical trials.

  14. Effects of Hemoglobin-Based Oxygen Carriers on Blood Coagulation

    PubMed Central

    Roghani, Kimia; Holtby, Randall J.; Jahr, Jonathan S.

    2014-01-01

    For many decades, Hemoglobin-based oxygen carriers (HBOCs) have been central in the development of resuscitation agents that might provide oxygen delivery in addition to simple volume expansion. Since 80% of the world population lives in areas where fresh blood products are not available, the application of these new solutions may prove to be highly beneficial (Kim and Greenburg 2006). Many improvements have been made to earlier generation HBOCs, but various concerns still remain, including coagulopathy, nitric oxide scavenging, platelet interference and decreased calcium concentration secondary to volume expansion (Jahr et al. 2013). This review will summarize the current challenges faced in developing HBOCs that may be used clinically, in order to guide future research efforts in the field. PMID:25514567

  15. Methodologies for detection of hemoglobin-based oxygen carriers.

    PubMed

    Goebel, Catrin; Alma, Chris; Howe, Chris; Kazlauskas, Rymantas; Trout, Graham

    2005-01-01

    Blood substitutes based on hemoglobin or hemoglobin-based oxygen carriers (HBOCs) are oxygen-carrying therapeutic agents developed for use in operations and emergencies in place of donated blood. Increased oxygen-carrying capacity through the use of blood substitutes could help elite athletes to lengthen endurance capacity and improve their performance. As blood substitutes become more readily available, it is essential that a qualitative detection method for their abuse in sport is available. Ideally, such a method would be simple and inexpensive. This study investigates methods that could be used as screening procedures to easily detect HBOCs in plasma and develops tests that can unequivocally confirm their presence. The investigation into the screening method indicates that the direct visual screening of plasma discoloration is the most appropriate with detection limits of less than 1% HBOC in plasma. Two methods are shown to confirm the presence of exogenous hemoglobin in plasma samples, size-exclusion chromatography with photodiode array detection and high-performance liquid chromatography analysis of enzymatic digests with detection by electrospray mass spectrometry. This work emphasizes the need for cooperation between drug developers and sports testing laboratories to ensure that methods for the detection of putative doping agents are available prior to product release.

  16. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond.

    PubMed

    Chang, Thomas M S

    2012-06-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymer membrane. Extensions into oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics.

  17. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond

    PubMed Central

    Chang, Thomas M. S.

    2013-01-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymermembrane. Extensions in to oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics. PMID:22409281

  18. Convection and hemoglobin-based oxygen carrier enhanced oxygen transport in a hepatic hollow fiber bioreactor.

    PubMed

    Sullivan, Jesse P; Harris, David R; Palmer, Andre F

    2008-01-01

    Hepatic hollow fiber bioreactors are a promising class of bioartificial liver assist device (BLAD). The development of this type of device is currently hindered by limited oxygen transport to cultured hepatocytes, due to low solubility of oxygen in aqueous media. In order to increase the oxygen spectrum to cultured hepatocytes housed within a hollow fiber bioreactor, several different engineering strategies were explored in this study. These included: supplementing the circulating media stream of the hollow fiber bioreactor with a hemoglobin-based oxygen carrier (bovine red blood cells) with defined oxygen binding and release kinetics and operating the bioreactor with media flow through the hollow fiber membrane into the extracapillary space (ECS). We hypothesize that these two strategies can be used to improve hepatocyte oxygenation and possibly attain an in vivo-like pO(2) spectrum, similar to that observed in vivo in the liver sinusoid. This work is significant, since provision of an in vivo-like pO(2) spectrum should create a fully functional BLAD that could potentially bridge thousands of liver failure patients towards native liver regeneration of damaged tissue or, if necessary, orthotopic liver transplantation.

  19. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  20. Attrition Rate of Oxygen Carriers in Chemical Looping Combustion Systems

    NASA Astrophysics Data System (ADS)

    Feilen, Harry Martin

    This project developed an evaluation methodology for determining, accurately and rapidly, the attrition resistance of oxygen carrier materials used in chemical looping technologies. Existing test protocols, to evaluate attrition resistance of granular materials, are conducted under non-reactive and ambient temperature conditions. They do not accurately reflect the actual behavior under the unique process conditions of chemical looping, including high temperatures and cyclic operation between oxidizing and reducing atmospheres. This project developed a test method and equipment that represented a significant improvement over existing protocols. Experimental results obtained from this project have shown that hematite exhibits different modes of attrition, including both due to mechanical stresses and due to structural changes in the particles due to chemical reaction at high temperature. The test methodology has also proven effective in providing reactivity changes of the material with continued use, a property, which in addition to attrition, determines material life. Consumption/replacement cost due to attrition or loss of reactivity is a critical factor in the economic application of the chemical looping technology. This test method will allow rapid evaluation of a wide range of materials that are best suited for this technology. The most important anticipated public benefit of this project is the acceleration of the development of chemical looping technology for lowering greenhouse gas emissions from fossil fuel combustion.

  1. In vivo biodistribution and oxygenation potential of a new generation of oxygen carrier.

    PubMed

    Le Gall, Tony; Polard, Valérie; Rousselot, Morgane; Lotte, Auréline; Raouane, Mouna; Lehn, Pierre; Opolon, Paule; Leize, Elisabeth; Deutsch, Eric; Zal, Franck; Montier, Tristan

    2014-10-10

    Natural giant extracellular hemoglobins (Hbs) from polychaete annelids are currently actively investigated as promising oxygen carriers. Their powerful oxygenating ability and their safety have been demonstrated in preclinical studies, motivating their development for therapeutic and industrial applications. HEMARINA-M101 (M101) is derived from the marine invertebrate Arenicola marina. It is formulated as a manufactured product designated HEMOXYCarrier(®) (HEMARINA SA, France). The aim of the present study was to unveil the fate of M101 after a single intravenous (i.v.) injection in mice. For this purpose, M101 was tagged with a far-red fluorescent dye. Repeated non-invasive fluorescent imaging revealed a rapid diffusion of M101 in the whole body of animals, reaching all the examined organs such as brain, liver, lungs and ovaries. Functional M101 was circulating in bloodstream for several hours, without inducing any obvious side-effects. Last, a single i.v. injection of M101 in mice bearing human-derived subcutaneous tumors demonstrated the ability of this Hb to reduce hypoxia in poorly vascularized tissues, thus supporting the biological relevance of M101 oxygen release to vertebrate tissues. Altogether, these results further encourage the development of M101 as an oxygen carrying therapeutic. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. HemoCD as an artificial oxygen carrier: oxygen binding and autoxidation.

    PubMed

    Kano, Koji; Kitagishi, Hiroaki

    2009-02-01

    Despite many attempts to construct completely artificial systems for carrying oxygen (O(2)) in aqueous solution, no successful example had been reported until quite recently except for picket fence porphinatoiron(II) embedded in liposomal membrane. We newly prepared a 1:1 complex (hemoCD) of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinatoiron(II) (Fe[II]TPPS) and a per-O-methylated beta-cyclodextrin dimer having a pyridine linker (Py3CD). HemoCD binds O(2) reversibly in aqueous solution. The oxygen affinity corresponding to the partial O(2) pressure, at which half of the hemoCD molecules are oxygenated, was 16.9 torr in phosphate buffer at pH 7.0 and 25 degrees C. Oxy-hemoCD was gradually autoxidized (t(1/2) = 30.1 h) due to nucleophilic attack of a water molecule to the O(2)-Fe bond. Encapsulation of the iron center of Fe(II)TPPS by two cyclodextrin truncated cones is essential for binding of O(2) to the ferrous center of the porphyrin. This manuscript reports the basic characteristics of hemoCD and the possible future utility of a totally artificial O(2) carrier.

  3. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    DOEpatents

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  4. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    SciTech Connect

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  5. Reduction Kinetics of a CasO4 Based Oxygen Carrier for Chemical-Looping Combustion

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Song, Q. L.; Zheng, W. G.; Deng, Z. Y.; Shen, L. H.; Zhang, M. Y.

    The CaSO4 based oxygen carrier has been proposed as an alternative low cost oxygen carrier for Chemical-looping combustion (CLC) of coal. The reduction of CaSO4 to CaS is an important step for the cyclic process of reduction/oxidation in CLC of coal with CaSO4 based oxygen carrier. Thermodynamic analysis of CaSO4 oxygen carrier with CO based on the principle of Gibbs free energy minimization show that the essentially high purity of CO2 can be obtained, while the solid product is CaS instead of CaO. The intrinsic reduction kinetics of a CaSO4 based oxygen carrier with CO was investigated in a differential fixed bed reactor. The effects of gas partial pressure (20%-70%) and temperature (880-950°C) on the reduction were investigated. The reduction was described with shrinking unreacted core model. Experimental results of CO partial pressure on the solid conversion show that the reduction of fresh oxygen carriers is of first order with respect to the CO partial pressure. Both chemical reaction control and product layer diffusion control determine the reduction rate. The dependences of reaction rate constant and effective diffusivity with temperature were both obtained. The kinetic equation well predicted the experimental data.

  6. Metal ferrite oxygen carriers for chemical looping combustion of solid fuels

    DOEpatents

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-01-31

    The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.

  7. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier.

    PubMed

    Huang, Zhen; He, Fang; Feng, Yipeng; Zhao, Kun; Zheng, Anqing; Chang, Sheng; Li, Haibin

    2013-07-01

    Biomass direct chemical looping (BDCL) conversion with natural hematite as an oxygen carrier was conducted in a fluidized bed reactor under argon atmosphere focusing on investigation the cyclic performance of oxygen carrier. The presence of oxygen carrier can evidently promote the biomass conversion. The gas yield and carbon conversion increased from 0.75 Nm(3)/kg and 62.23% of biomass pyrolysis to 1.06 Nm(3)/kg and 87.63% of BDCL, respectively. The components of the gas product in BDCL were close to those in biomass pyrolysis as the cyclic number increased. The gas yield and carbon conversion decreased from 1.06 Nm(3)/kg and 87.63% at 1st cycle to 0.93 Nm(3)/kg and 77.18% at 20th cycle, respectively, due to the attrition and structural changes of oxygen carrier. X-ray diffraction (XRD) analysis showed that the reduction extent of oxygen carrier increased with the cycles. Scanning electron microscope (SEM) and pore structural analysis displayed that agglomeration was observed with the cycles.

  8. Methodology for the assessment of oxygen as an energy carrier

    NASA Astrophysics Data System (ADS)

    Yang, Ming Wei

    Due to the energy intensity of the oxygen generating process, the electric power grid would benefit if the oxygen generating process was consumed electric power only during low demand periods. Thus, the question to be addressed in this study is whether oxygen production and/or usage can be modified to achieve energy storage and/or transmission objectives at lower cost. The specific benefit to grid would be a leveling, over time, of the demand profile and thus would require less installation capacity. In order to track the availability of electricity, a compressed air storage unit is installed between the cryogenic distillation section and the main air compressor of air separation unit. A profit maximizing scheme for sizing storage inventory and related equipments is developed. The optimum scheme is capable of market responsiveness. Profits of steel maker, oxy-combustion, and IGCC plants with storage facilities can be higher than those plants without storage facilities, especially, at high-price market. Price tracking feature of air storage integration will certainly increase profit margins of the plants. The integration may push oxy-combustion and integrated gasification combined cycle process into economic viability. Since oxygen is used in consumer sites, it may generate at remote locations and transport to the place needed. Energy losses and costs analysis of oxygen transportation is conducted for various applications. Energy consumptions of large capacity and long distance GOX and LOX pipelines are lower than small capacity pipelines. However, transportation losses and costs of GOX and LOX pipelines are still higher than electricity transmission.

  9. Use of coal as fuel for chemical-looping combustion with Ni-based oxygen carrier

    SciTech Connect

    Gao, Z.P.; Shen, L.H.; Xiao, J.; Qing, C.J.; Song, Q.L.

    2008-12-15

    Chemical-looping combustion is an indirect combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The feasibility of using NiO as an oxygen carrier during chemical-looping combustion of coal has been investigated experimentally at 800-960{degree}C in the present work. The experiments were carried out in a fluidized bed, where the steam acted as the gasification-fluidization medium. Coal gasification and the reaction of oxygen carrier with the water gas take place simultaneously in the reactor. The oxygen carrier particles exhibit high reactivity above 900{degree}C, and the dry basis concentration of CO{sub 2} in the exit gas of the reactor is nearly 95%. The flue gas composition as a function of the reactor temperature and cyclic reduction number is discussed. At 800-960{degree}C, the dry basis concentration of CO{sub 2} in the flue gas presents a monotonously increasing trend, whereas the dry basis concentration of CO, H{sub 2}, and CH{sub 4} decreases monotonously. The concentrations of CO{sub 2}, CO, H{sub 2}, and CH{sub 4} in the flue gas as a function of cyclic reduction number present a para-curve characteristic at 900{degree}C. With the increase of cyclic reduction number, the dry basis concentration of CO{sub 2} decreases remarkably, while the dry basis concentrations of CO, H{sub 2}, and CH{sub 4} increase rapidly. Moreover, the peak value of H{sub 2} concentration is less than that of CO. The performance of the NiO-based oxygen carriers was also evaluated using an X-ray diffractometer and a scanning electron microscope to characterize the solid residues of oxygen carrier. The results indicate that NiO is one of the suitable oxygen carriers for chemical-looping combustion of coal.

  10. Synergetic effects of mixed copper–iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the

  11. Manganese and iron as oxygen carriers to anoxie estuarine sediment

    NASA Astrophysics Data System (ADS)

    Brayner, F. M. M.; Matvienko, B.

    2003-05-01

    We studied the concentration of a series of transition metals including Mn and Fe in an estuarine fishpond. The pond is situated at latitude 8°10'S and longitude 34°55'W, in the Capibaribe River estuary, within the Recife city boundaries, which is located in Pernambuco, a state of the Brazilian Northeast Pond area is 1.5 ha and it bas a 0.5 m depth. It is separated from the river by dikes. Water temperature at 28° C is stable throughout the year. Light breezes keep the water aerated, but intense ongoing decomposition makes the sediment anoxie. The area, originally of mangrove type, has been changed by antropic action on its fauna and vegetation. The study focuses on changes in behaviour of heavy metals. Samples of bottom sediments wore collected by Eckman dredge sediment sampler and total metal concentration was determined by the lithium borate fusion method. Water, recent sediment, and consolidated sediment were examined in this fishpond where Mn and Fe are brought in periodically by water and then gradually go into the sediment at respective rates of 10.52 and 1332 mg m^{-2}a^{-1}. Strong bioturbation re-suspends sediment while simultaneously re-dissolution of these ions is going on fhrough reduction in the anoxie sédiment. As soluble species these ions migrate from sediment to water and are there continually oxidized by dissolved oxygen, becoming insoluble. With their precipitation, chemically bound oxygen is carried down to the sediment, constituting a parallel channel of transport in addition to migration into the sediment bydiffusion of the oxygen dissolved in the water. The estimated flow rates are 3.25 and 76 mg O2 m^{-2}a^{-1} due to Mn and Fe respectively. The rates were established using natural silicon as a tracer.

  12. Synthetic approaches to RBC mimicry and oxygen carrier systems.

    PubMed

    Modery-Pawlowski, Christa L; Tian, Lewis L; Pan, Victor; Sen Gupta, Anirban

    2013-04-08

    Whole blood or red blood cell (RBC) transfusions are highly significant, clinically, for blood replacement therapies in traumatic injuries, presurgical conditions, and anemias. However, natural RBC-based products suffer from limited shelf life due to pathological contamination and also present risks of refractoriness, graft-versus-host disease, immunosuppression, and acute lung injury. These issues can be only partially resolved by pathogen reduction technologies, serological blood testing, leukoreduction, and specialized storage; hence, they severely affect the efficacy and safety of the blood products. Consequently, there is a significant interest in synthetic RBC analogues that can mimic its oxygen-transport properties while allowing convenient manufacture, reproducibility, long shelf life, and reduced biological risks. To this end, the current Review provides a comprehensive description and discussion of the various research approaches and current state-of-the-art in synthetically mimicking RBC's oxygen-carrying biochemical properties, as well as the biophysical parameters (shape, size and mechanical modulus) that influence RBCs' hemodynamic transport properties in blood flow.

  13. Nanocomposite oxygen carriers for chemical-looping combustion of sulfur-contaminated synthesis gas

    SciTech Connect

    Rahul D. Solunke; Goetz Veser

    2009-09-15

    Chemical-looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC, which combine the high reactivity of metals with the high-temperature stability of ceramics. In the present study, we investigate the effect of H{sub 2}S in a typical coal-derived syngas on the stability and redox kinetics of Ni- and Cu-based nanostructured oxygen carriers. Both carriers show excellent structural stability and only mildly changed redox kinetics upon exposure to H{sub 2}S, despite a significant degree of sulfide formation. Surprisingly, partial sulfidation of the support results in a strong increase in oxygen carrier capacity in both cases because of the addition of a sulfide-sulfate cycle. Overall, the carriers show great potential for use in CLC of high-sulfur fuels. 21 refs., 13 figs. 1 tab.

  14. Electric arc furnace dust as an alternative low-cost oxygen carrier for chemical looping combustion.

    PubMed

    Kuo, Yu-Lin; Huang, Wei-Chen; Tseng, Yao-Hsuan; Chang, Shu-Huai; Ku, Young; Lee, Hao-Yeh

    2017-08-12

    The relative abundance and low cost of electric arc furnace dust (EAFD) make it a viable oxygen carrier for chemical looping combustion (CLC) system. Under a reducing agent, zinc ferrite (ZnFe2O4) phase in EAFD releases zinc vapor in a complex gas-solid reaction. In an effort to suppress the emission of zinc vapor, the reaction mechanism of ZnFe2O4 prepared as an oxygen carrier in a redox cycling test is primarily discussed, as well as the issue of coupling with an inert Al2O3 support. The study focused the investigation on redox cycling behavior and CO2 conversion in ZnFe2O4/Al2O3 and EAFD/Al2O3 systems using a thermogravimetric analyzer (TGA) and fixed-bed reactor (FxBR). In a lab-scaled semi-fluidized bed reactor (semi-FzBR) of EAFD/Al2O3 as an oxygen carrier system, a high CO gas yield approximately 0.98 after fifty redox cycles is also experimentally obtained. It can be anticipated that the use of EAFD/Al2O3 system as an oxygen carrier in a reversible CLC process could be economical and environmentally beneficial. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mixtures of hemoglobin-based oxygen carriers and perfluorocarbons exhibit a synergistic effect in oxygenating hepatic hollow fiber bioreactors.

    PubMed

    Chen, Guo; Palmer, Andre F

    2010-02-15

    Hepatic hollow fiber (HF) bioreactors are being developed for use as bioartificial liver assist devices (BLADs). In general, BLADs suffer from O(2) limited transport, which reduces their performance. This modeling study seeks to investigate if O(2) carrying solutions consisting of mixtures of hemoglobin-based oxygen carriers (HBOCs) and perfluorocarbons (PFCs) can enhance O(2) transport to hepatocytes cultured in the extra capillary space (ECS) of HF bioreactors. We simulated supplementing the circulating cell culture media stream of the HF bioreactor with a mixture containing these two types of oxygen carriers (HBOCs and PFCs). A mathematical model was developed based on the dimensions and physical characteristics of a commercial HF bioreactor. The resulting set of partial differential equations, which describes fluid transport; as well as, mass transport of dissolved O(2) in the pseudo-homogeneous PFC/water phase and oxygenated HBOC, was solved to yield the O(2) concentration field in the three HF domains (lumen, membrane and ECS). Our results show that mixtures of HBOC and PFC display a synergistic effect in oxygenating the ECS. Therefore, the presence of both HBOC and PFC in the circulating cell culture media dramatically improves transport of O(2) to cultured hepatocytes. Moreover, the in vivo O(2) spectrum in a liver sinusoid can be recapitulated by supplementing the HF bioreactor with a mixture of HBOCs and PFCs at an inlet pO(2) of 80 mmHg. Therefore, we expect that PFC-based oxygen carriers will be more efficient at transporting O(2) at higher O(2) levels (e.g., at an inlet pO(2) of 760 mmHg, which corresponds to pure O(2) in equilibrium with aqueous cell culture media at 1 atm). 2009 Wiley Periodicals, Inc.

  16. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOEpatents

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  17. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion

    SciTech Connect

    Shen, Laihong; Zheng, Min; Xiao, Jun; Xiao, Rui

    2008-08-15

    Chemical looping combustion (CLC) has been suggested as an energy-efficient method for the capture of carbon dioxide from combustion. It is indirect combustion by the use of an oxygen carrier, which can be used for CO{sub 2} capture in power-generating processes. The possibility of CLC using a calcium-based oxygen carrier is investigated in this paper. In the air reactor air is supplied to oxidize CaS to CaSO{sub 4}, where oxygen is transferred from air to the oxygen carrier; the reduction of CaSO{sub 4} to CaS takes place in the fuel reactor. The exit gas from the fuel reactor is CO{sub 2} and H{sub 2}O. After condensation of water, almost pure CO{sub 2} could be obtained. The thermodynamic and kinetic problem of the reduction reactions of CaSO{sub 4} with CO and H{sub 2} and the oxidization reactions of CaS with O{sub 2} is discussed in the paper to investigate the technique possibility. To prevent SO{sub 2} release from the process of chemical looping combustion using a calcium-based oxygen carrier, thermochemical CaSO{sub 4} reduction and CaS oxidation are discussed. Thermal simulation experiments are carried out using a thermogravimetric analyzer (TGA). The properties of the products are characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD), and the optimal reaction parameters are evaluated. The effects of reaction temperature, reductive gas mixture, and oxygen partial pressure on the composition of flue gas are discussed. The suitable temperature of the air reactor is between 1050 and 1150 C and the optimal temperature of the fuel reactor between 900 and 950 C. (author)

  18. Novel hemoglobin particles--promising new-generation hemoglobin-based oxygen carriers.

    PubMed

    Bäumler, Hans; Xiong, Yu; Liu, Zhi Zhao; Patzak, Andreas; Georgieva, Radostina

    2014-08-01

    During the last 30 years, artificial oxygen carriers have been investigated intensively with the aim to develop universal blood substitutes. Favorably, hemoglobin-based oxygen carriers (HBOCs) are expected to meet the sophisticated requirements. However, the HBOCs tested until now show serious side effects, which resulted in failure of clinical trials and Food and Drug Administration disapproval. The main problem consists in vasoconstriction triggered by nitric oxide (NO) scavenging or/and oxygen oversupply in the pre-capillary arterioles. HBOCs with a size between 100 nm and 1 µm and high oxygen affinity are needed. Here we present a highly effective and simple fabrication procedure, which can provide hemoglobin particles (HbPs) with a narrow size distribution of around 700 nm, nearly uniform morphology, high oxygen affinity, and low immunogenicity. Isolated mouse glomeruli are successfully perfused with concentrated HbP suspensions without any observable vasoconstriction of the afferent arterioles. The results suggest no oxygen oversupply and limited NO scavenging by these particles, featuring them as a highly promising blood substitute. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    NASA Astrophysics Data System (ADS)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  20. Development and performance of Cu-based oxygen carriers for chemical-looping combustion

    SciTech Connect

    Chuang, S.Y.; Dennis, J.S.; Hayhurst, A.N.; Scott, S.A.

    2008-07-15

    Chemical-looping combustion (CLC) has the inherent property of separating the product CO{sub 2} from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. This paper focuses on the development and performance of a suitable Cu-based oxygen carrier for burning solid fuels using CLC. Carriers were made from CuO and Al{sub 2}O{sub 3} (as a support) in three different ways: mechanical mixing, wet impregnation, and co-precipitation. The reactivity of these solids was assessed by measuring their ability to oxidize CO, when in a hot bed of sand fluidized by a mixture of CO and N{sub 2}. After that, the Cu in the carrier was oxidized back to CuO by fluidizing the hot bed with air. These oxygen carriers were tested over many such cycles of reduction and oxidation. This work confirms that supporting CuO on Al{sub 2}O{sub 3} enhances the ability of the resulting particles to withstand mechanical and thermal stresses in a fluidized bed. Also, only co-precipitation produces particles that have a high loading of copper and do not agglomerate at 800-900 C. The performance of co-precipitated particles of CuO/Al{sub 2}O{sub 3} at oxidizing CO to CO{sub 2} was significantly affected by the pH of the solution in which precipitation occurred: a high pH (9.7) gave particles that reacted completely and rapidly. After 18 cycles, such a co-precipitated carrier with 82.5 wt% CuO yielded all its oxygen when oxidizing CO. X-ray analysis showed that when heated, CuO reacted with Al{sub 2}O{sub 3} to form CuAl{sub 2}O{sub 4}, which was fully reducible, so CuO experienced no loss in extent of reaction after forming this mixed oxide. An increase in operating temperature from 800 to 900 C led to the CuO providing slightly less oxygen; this was because a little of the CuO decomposed to Cu{sub 2}O between its reduction and oxidation, when the bed was fluidized by pure N{sub 2}. (author)

  1. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal

    SciTech Connect

    Siriwardane, Ranjani V.; Ksepko, Ewelina; Tian, Hanging

    2013-01-01

    The objective of this work was to prepare supported bimetallic Fe–Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe–Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe–Cu/support oxygen carriers. Bimetallic Fe–Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 °C to 900 °C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe–Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800–900 °C and might be successfully used up to 900 °C for coal CLC reaction in the presence of steam.

  2. Decoupling free-carriers contributions from oxygen-vacancy and cation-substitution in extrinsic conducting oxides

    PubMed Central

    Lin, Y. H.; Liu, Y. S.; Lin, Y. C.; Wei, Y. S.; Liao, K. S.; Lee, K. R.; Lai, J. Y.; Chen, H. M.; Jean, Y. C.; Liu, C. Y.

    2013-01-01

    The intrinsic oxygen-vacancies and the extrinsic dopants are two major fundamental free-carrier sources for the extrinsic conducting oxides, such as Sn-doped In2O3. Yet, the individual contributions of the above two free-carrier sources to the total carrier concentrations have never been unraveled. A carrier-concentration separation model is derived in this work, which can define the individual contributions to the total carrier concentration from the intrinsic oxygen-vacancies and the extrinsic dopants, separately. The individual contributions obtained from the present carrier-concentration separation model are verified by the two-state trapping model, photoluminescence, and positron annihilation lifetime (PAL) spectroscopy. In addition, the oxygen-vacancy formation energy of the Sn:In2O3 thin film is determined to be 0.25 eV by PAL spectroscopy. PMID:23405036

  3. Comparison of the Pharmacokinetic Properties of Hemoglobin-Based Oxygen Carriers

    PubMed Central

    Taguchi, Kazuaki; Yamasaki, Keishi; Maruyama, Toru; Otagiri, Masaki

    2017-01-01

    Hemoglobin (Hb) is an ideal material for use in the development of an oxygen carrier in view of its innate biological properties. However, the vascular retention of free Hb is too short to permit a full therapeutic effect because Hb is rapidly cleared from the kidney via glomerular filtration or from the liver via the haptogloblin-CD 163 pathway when free Hb is administered in the blood circulation. Attempts have been made to develop alternate acellular and cellular types of Hb based oxygen carriers (HBOCs), in which Hb is processed via various routes in order to regulate its pharmacokinetic properties. These HBOCs have been demonstrated to have superior pharmacokinetic properties including a longer half-life than the Hb molecule in preclinical and clinical trials. The present review summarizes and compares the pharmacokinetic properties of acellular and cellular type HBOCs that have been developed through different approaches, such as polymerization, PEGylation, cross-linking, and encapsulation. PMID:28335469

  4. Oxygen carrier development for chemical looping combustion of coal derived synthesis gas

    SciTech Connect

    Siriwardane, R.V.; Chaudhari, K.; Zinn, A.N.; Simonyi, T.; Robinson, Clark; Poston, J.A.

    2006-09-01

    In the present work, NETL researchers have studied chemical looping combustion (CLC) with an oxygen carrier NiO/bentonite (60 wt.% NiO) for the IGCC systems utilizing simulated synthesis gas. Multi cycle CLC was conducted with NiO/Bentonite in TGA at atmospheric pressure and in a high pressure reactor in a temperature range between 700-900°C. Global reaction rates of reduction and oxidation as a function of conversion were calculated for all oxidation-reduction cycles utilizing the TGA data. The effect of particle size of the oxygen carrier on CLC was studied for the size between 20-200 mesh. The multi cycle CLC tests conducted in a high pressure packed bed flow reactor indicated constant total production of CO2 from fuel gas at 800°C and 900°C and full consumption of hydrogen during the reaction.

  5. Large >60 gallon/day ‘pulse-tube’ oxygen liquefier for aircraft carriers

    NASA Astrophysics Data System (ADS)

    Spoor, P. S.

    2015-12-01

    An oxygen liquefier using a large ‘pulse-tube’ or acoustic-Stirling cryocooler is described, which has a liquefaction rate in excess of 60 gallons per day (227 liters per day) as measured by the increase in weight of a storage dewar, from <20 kWe input. Several of these systems will be deployed on U.S. Navy aircraft carriers to provide shipboard liquid oxygen. Paths to improvement in future systems are identified, although it is noted that since the present system exceeds the required specifications, these improvements may not be implemented in the near term.

  6. Numerical investigation of the role of clustering during oxygen-carrier regeneration in Chemical Looping Combustion

    NASA Astrophysics Data System (ADS)

    Goyal, Himanshu; Pepiot, Perrine

    2016-11-01

    In the air-reactor of a dual-bed Chemical Looping Combustion (CLC) system, the spent oxygen-carrier, in the form of metal or reduced metal oxide, is oxidized with air, typically in a high velocity riser reactor. Such a configuration provides challenging modeling issues, as the granular flow is characterized by a highly fluctuating solid volume fraction due to the formation of dense clusters. This may strongly affect the solid residence time in the air-reactor, and therefore, the extent of the oxygen-carrier regeneration and ultimately, the overall reactivity of the carrier in the fuel reactor. Here, we investigate how clustering impacts gas-solid chemical reactions in the reactor using a detailed Lagrange-Euler computational framework. The simulations account for both mass and heat transfer between the gas phase and the metal oxide particles, and the evolution of oxygen content of the metal oxide particles, or equivalently, their degree of oxidation. Two particle models of different complexity are considered. Results are analyzed to quantify the relative importance on the regeneration process of the reactor hydrodynamics. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1638837.

  7. Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Wang, Shuzhong; Wang, Longfei; Lv, Mingming

    2014-12-01

    The performance of three iron-based oxygen carriers (pure Fe2O3, synthetic Fe2O3/MgAl2O4 and iron ore) in reduction process using methane as fuel is investigated in thermo-gravimetric analyzer (TGA). The reaction rate and mechanism between three oxygen carriers and methane are investigated. On the basis of reactivity in reduction process, it may be concluded that Fe2O3/MgAl2O4 has the best reactivity with methane. The reaction rate constant is found to be in the following order: Fe2O3/MgAl2O4 > pure Fe2O3 > iron ore and the activation energy varies between 49 and 184 kJ mol-1. Reduction reactions for the pure Fe2O3 and synthetic Fe2O3/MgAl2O4 are well represented by the reaction controlling mechanism, and for the iron ore the phase-boundary controlled (contracting cylinder) model dominates. The particles of iron ore and synthetic Fe2O3/MgAl2O4 have better stability than that of pure Fe2O3 when the reaction temperature is limited to lower than 1223 K. These preliminary results suggest that iron-based mixed oxygen carrier particles are potential to be used in methane chemical looping process, but the reactivity of the iron ore needs to be increased.

  8. Ex Vivo Machine Perfusion in VCA with a Novel Oxygen Carrier System to Enhance Graft Preservation and Immunologic Outcomes

    DTIC Science & Technology

    2016-12-01

    Distribution Unlimited Page 1 AWARD NUMBER: W81XWH-13-2-0061 TITLE: “Ex Vivo Machine Perfusion in VCA with a Novel Oxygen Carrier System to...ADDRESS. 1. REPORT DATE December 2016 2. REPORT TYPE Final 3. DATES COVERED 15 Sep 2013 – 14 Sep 2016 4. TITLE AND SUBTITLE Ex Vivo Machine ...Perfusion in CTA with a Novel Oxygen Carrier System to Enhance Graft 5a. CONTRACT NUMBER Ex Vivo Machine Perfusion in CTA with a Novel Oxygen Carrier System

  9. Ex Vivo Machine Perfusion in CTA with a Novel Oxygen Carrier System to Enhance Graft Preservation and Immunologic Outcomes

    DTIC Science & Technology

    2015-10-01

    preservation (CSP), cold ischemia time (CIT), hemoglobin based oxygen carrier (HBOC), composite tissue allotransplants (CTAs), subnormothermic ( SN ...subnormothermic ( SN ) MP in vascularized composite allotransplantation (VCA) by modifying our original Liver Assist Device from Organ Assist

  10. Sulfur behavior in chemical looping combustion with NiO/Al{sub 2}O{sub 3} oxygen carrier

    SciTech Connect

    Shen, Laihong; Gao, Zhengping; Wu, Jiahua; Xiao, Jun

    2010-05-15

    Chemical looping combustion (CLC) is a novel technology where CO{sub 2} is inherently separated during combustion. Due to the existence of sulfur contaminants in the fossil fuels, the gaseous products of sulfur species and the interaction of sulfur contaminants with oxygen carrier are a big concern in the CLC practice. The reactivity of NiO/Al{sub 2}O{sub 3} oxygen carrier reduction with a gas mixture of CO/H{sub 2} and H{sub 2}S is investigated by means of a thermogravimetric analyzer (TGA) and Fourier Transform Infrared spectrum analyzer in this study. An X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to evaluate the phase characterization of reacted oxygen carrier, and the formation mechanisms of the gaseous products of sulfur species are elucidated in the process of chemical looping combustion with a gaseous fuel containing hydrogen sulfide. The results show that the rate of NiO reduction with H{sub 2}S is higher than the one with CO. There are only Ni and Ni{sub 3}S{sub 2} phases of nickel species in the fully reduced oxygen carrier, and no evidence for the existence of NiS or NiS{sub 2}. The formation of Ni{sub 3}S{sub 2} is completely reversible during the process of oxygen carrier redox. A liquid phase sintering on the external surface of reduced oxygen carriers is mainly attributed to the production of the low melting of Ni{sub 3}S{sub 2} in the nickel-based oxygen carrier reduction with a gaseous fuel containing H{sub 2}S. Due to the sintering of metallic nickel grains on the external surface of the reduced oxygen carrier, further reaction of the oxygen carrier with H{sub 2}S is constrained, and there is no increase of the sulfidation index of the reduced oxygen carrier with the cyclical reduction number. Also, a continuous operation with a syngas of carbon monoxide and hydrogen containing H{sub 2}S is carried out in a 1 kW{sub th} CLC prototype based on the nickel-based oxygen carrier, and

  11. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture.

    PubMed

    He, Feng; Linak, William P; Deng, Shuang; Li, Fanxing

    2017-02-21

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling duct, range between 2 and 5 μm. A notable number of submicrometer particulates are also identified. Oxygen carrier attrition was observed to lead to increased CuO loss resulting from the chemical looping reactions, i.e., Cu is enriched in small particles generated primarily from fragmentation in the size range of 10-75 μm. Cyclic reduction and oxidation reactions in CLC have been determined to weaken the oxygen carrier particles, resulting in increased particulate emission rates when compared to those of oxygen carriers without redox reactions. The generation rate for particulates <10 μm was found to decrease with progressive cycles over as-prepared oxygen carrier particles and then reach a steady state. The surface of the oxygen carrier is also found to be coarsened due to a Kirkendall effect, which also explains the enrichment of Cu on particle surfaces and in small particles.

  12. Significance of oxygen carriers and role of liquid paraffin in improving validamycin A production.

    PubMed

    Feng, Jinsong; Jiang, Jing; Liu, Yan; Li, Wei; Azat, Ramila; Zheng, Xiaodong; Zhou, Wen-Wen

    2016-10-01

    Validamycin A (Val-A) synthesized by Streptomyces hygroscopicus 5008 is widely used as a high-efficient antibiotic to protect plants from sheath blight disease. A novel fermentation strategy was introduced to stimulate Val-A production by adding oxygen carriers. About 58 % increase in Val-A production was achieved using liquid paraffin. Further, biomass, carbon source, metabolic genes, and metabolic enzymes were studied. It was also found that the supplementation of liquid paraffin increased the medium dissolved oxygen and intracellular oxidative stress level. The expression of the global regulators afsR and soxR sensitive to ROS, ugp catalyzing synthesis of Val-A precursor, and Val-A structural genes was enhanced. The change of the activities of glucose-6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase was observed, which reflected the redirection of carbon metabolic flux. Based on these results, liquid paraffin addition as an oxygen carrier could be a useful technique in industrial production of Val-A and our study revealed a redox-based secondary metabolic regulation in S. hygroscopicus 5008, which provided a new insight into the regulation of the biosynthesis of secondary metabolites.

  13. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor.

    PubMed

    Chen, Guo; Palmer, Andre F

    2009-04-15

    A mathematical model was developed to study O(2) transport in a convection enhanced hepatic hollow fiber (HF) bioreactor, with hemoglobin-based O(2) carriers (HBOCs) present in the flowing cell culture media stream of the HF lumen. In this study, four HBOCs were evaluated: PEG-conjugated human hemoglobin (MP4), human hemoglobin (hHb), bovine hemoglobin (BvHb) and polymerized bovine hemoglobin (PolyBvHb). In addition, two types of convective flow in the HF extra capillary space (ECS) were considered in this study. Starling flow naturally occurs when both of the ECS ports are closed. If one of the ECS ports is open, forced convective flow through the ECS will occur due to the imposed pressure difference between the lumen and ECS. This type of flow is referred to as cross-flow in this work, since some of the fluid entering the HF lumen will pass across the HF membrane and exit via the open ECS port. In this work, we can predict the dissolved O(2) concentration profile as well as the O(2) transport flux in an individual HF of the bioreactor by solving the coupled momentum and mass transport equations. Our results show that supplementation of the cell culture media with HBOCs can dramatically enhance O(2) transport to the ECS (containing hepatocytes) and lead to the formation of an in vivo-like O(2) spectrum for the optimal culture of hepatocytes. However, both Starling flow and cross-flow have a very limited effect on O(2) transport in the ECS. Taken together, this work represents a novel predictive tool that can be used to design or analyze HF bioreactors that expose cultured cells to defined overall concentrations and gradients of O(2).

  14. Performance of nickel-based oxygen carrier produced using renewable fuel aloe vera

    NASA Astrophysics Data System (ADS)

    Afandi, NF; Devaraj, D.; Manap, A.; Ibrahim, N.

    2017-04-01

    Consuming and burning of fuel mainly fossil fuel has gradually increased in this upcoming era due to high-energy demand and causes the global warming. One of the most effective ways to reduce the greenhouse gases is by capturing carbon dioxide (CO2) during the combustion process. Chemical looping combustion (CLC) is one of the most effective methods to capture the CO2 without the need of an energy intensive air separation unit. This method uses oxygen carrier to provide O2 that can react with fuel to form CO2 and H2O. This research focuses on synthesizing NiO/NiAl2O4 as an oxygen carrier due to its properties that can withstand high temperature during CLC application. The NiO/NiAl2O4 powder was synthesized using solution combustion method with plant extract renewable fuel, aloe vera as the fuel. In order to optimize the performance of the particles that can be used in CLC application, various calcination temperatures were varied at 600°C, 800°C, 1050°C and 1300°C. The phase and morphology of obtained powders were characterized using X-ray diffraction (XRD) and Field Emission Microscopy (FESEM) respectively together with the powder elements. In CLC application, high reactivity can be achieved by using smaller particle size of oxygen carrier. This research succeeded in producing nano-structured powder with high crystalline structure at temperature 1050°C which is suitable to be used in CLC application.

  15. Effect of hemoglobin- and Perflubron-based oxygen carriers on common clinical laboratory tests.

    PubMed

    Ma, Z; Monk, T G; Goodnough, L T; McClellan, A; Gawryl, M; Clark, T; Moreira, P; Keipert, P E; Scott, M G

    1997-09-01

    Polymerized hemoglobin solutions (Hb-based oxygen carriers; HBOCs) and a second-generation perfluorocarbon (PFC) emulsion (Perflubron) are in clinical trials as temporary oxygen carriers ("blood substitutes"). Plasma and serum samples from patients receiving HBOCs look markedly red, whereas those from patients receiving PFC appear to be lipemic. Because hemolysis and lipemia are well-known interferents in many assays, we examined the effects of these substances on clinical chemistry, immunoassay, therapeutic drug, and coagulation tests. HBOC concentrations up to 50 g/L caused essentially no interference for Na, K, Cl, urea, total CO2, P, uric acid, Mg, creatinine, and glucose values determined by the Hitachi 747 or Vitros 750 analyzers (or both) or for immunoassays of lidocaine, N-acetylprocainamide, procainamide, digoxin, phenytoin, quinidine, or theophylline performed on the Abbott AxSym or TDx. Gentamycin and vancomycin assays on the AxSym exhibited a significant positive and negative interference, respectively. Immunoassays for TSH on the Abbott IMx and for troponin I on the Dade Stratus were unaffected by HBOC at this concentration. Tests for total protein, albumin, LDH, AST, ALT, GGT, amylase, lipase, and cholesterol were significantly affected to various extents at different HBOC concentrations on the Hitachi 747 and Vitros 750. The CK-MB assay on the Stratus exhibited a negative interference at 5 g/L HBOC. HBOC interference in coagulation tests was method-dependent-fibrometer-based methods on the BBL Fibro System were free from interference, but optical-based methods on the MLA 1000C exhibited interferences at 20 g/L HBOC. A 1:20 dilution of the PFC-based oxygen carrier (600 g/L) caused no interference on any of these chemistry or immunoassay tests except for amylase and ammonia on the Vitros 750 and plasma iron on the Hitachi 747.

  16. Chemical-looping combustion of simulated synthesis gas using nickel oxide oxygen carrier supported on bentonite

    SciTech Connect

    Siriwardane, R.V.; Chaudhari, K.; Poston, J.A.; Zinn, A.; Simonyi, T.; Robinson, C.

    2007-05-01

    Chemical-looping combustion (CLC) is a combustion technology for clean and efficient utilization of fossil fuels for energy production. This process which produces sequestration ready CO2 systems is a promising technology to be utilized with coal gasification systems. In the present work, chemical-looping combustion has been studied with an oxygen carrier, NiO/bentonite (60 wt % NiO) for the gasification systems utilizing simulated synthesis gas. Global reaction rates of reduction and oxidation as a function of conversion were calculated for oxidation-reduction cycles utilizing the thermogravimetric analysis (TGA) data on multicycle tests conducted with NiO/bentonite at atmospheric pressure between 700 and 900 °C. The rate of reduction increased slightly with an increase in temperature, while the rate of oxidation decreased at 900 °C. The effect of particle size of the oxygen carrier on CLC was studied for the particle size between 20 and 200 mesh. The rates of reactions depended on the particle size of the oxygen carrier. The smaller the particle size, the higher the reaction rates. The multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for the production of CO2 from fuel gas at 800 and 900 °C and full consumption of hydrogen during the reaction. The data from a one cycle test on the effect of the pressure on the performance with NiO/bentonite utilizing the tapered element oscillating microbalance (TEOM) showed a positive effect of the pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. The X-ray diffraction (XRD) analysis confirmed the presence of the NiO phase in NiO/bentonite with the oxidized sample in the highpressure reactor and Ni phase with the reduced sample. The presence of a small amount of NiO in the reduced sample detected by X-ray photoelectron spectroscopy (XPS) may be due to its exposure to air during sample transfer from the reactor to XPS. Scanning electron

  17. Polyketide Quinones Are Alternate Intermediate Electron Carriers during Mycobacterial Respiration in Oxygen-Deficient Niches.

    PubMed

    Anand, Amitesh; Verma, Priyanka; Singh, Anil Kumar; Kaushik, Sandeep; Pandey, Rajesh; Shi, Ce; Kaur, Harneet; Chawla, Manbeena; Elechalawar, Chandra Kumar; Kumar, Dhirendra; Yang, Yong; Bhavesh, Neel S; Banerjee, Rajkumar; Dash, Debasis; Singh, Amit; Natarajan, Vivek T; Ojha, Anil K; Aldrich, Courtney C; Gokhale, Rajesh S

    2015-11-19

    Mycobacterium tuberculosis (Mtb) adaptation to hypoxia is considered crucial to its prolonged latent persistence in humans. Mtb lesions are known to contain physiologically heterogeneous microenvironments that bring about differential responses from bacteria. Here we exploit metabolic variability within biofilm cells to identify alternate respiratory polyketide quinones (PkQs) from both Mycobacterium smegmatis (Msmeg) and Mtb. PkQs are specifically expressed in biofilms and other oxygen-deficient niches to maintain cellular bioenergetics. Under such conditions, these metabolites function as mobile electron carriers in the respiratory electron transport chain. In the absence of PkQs, mycobacteria escape from the hypoxic core of biofilms and prefer oxygen-rich conditions. Unlike the ubiquitous isoprenoid pathway for the biosynthesis of respiratory quinones, PkQs are produced by type III polyketide synthases using fatty acyl-CoA precursors. The biosynthetic pathway is conserved in several other bacterial genomes, and our study reveals a redox-balancing chemicocellular process in microbial physiology.

  18. Syngas chemical looping gasification process: oxygen carrier particle selection and performance

    SciTech Connect

    Fanxing Li; Hyung Ray Kim; Deepak Sridhar; Fei Wang; Liang Zeng; Joseph Chen; L.-S. Fan

    2009-08-15

    The syngas chemical looping (SCL) process coproduces hydrogen and electricity. The process involves reducing metal oxides with syngas followed by regeneration of reduced metal oxides with steam and air in a cyclic manner. Iron oxide is determined to be a desired oxygen carrier for hydrogen production considering overall properties including oxygen carrying capacity, thermodynamic properties, reaction kinetics, physical strength, melting points, and environmental effects. An iron oxide based particle can maintain good reactivity for more than 100 reduction-oxidation (redox) cycles in a thermogravimetric analyzer (TGA). The particle exhibits a good crushing strength (>20 MPa) and low attrition rate. Fixed bed experiments are carried out which reaffirm its reactivity. More than 99.75% of syngas is converted during the reduction stage. During the regeneration stage, hydrogen with an average purity of 99.8% is produced. 23 refs., 6 figs., 10 tabs.

  19. Chemical looping combustion of biomass-derived syngas using ceria-supported oxygen carriers.

    PubMed

    Huang, H B; Aisyah, L; Ashman, P J; Leung, Y C; Kwong, C W

    2013-07-01

    Cu, Ni and Fe oxides supported on ceria were investigated for their performance as oxygen carriers during the chemical looping combustion of biomass-derived syngas. A complex gas mixture containing CO, H2, CO2, CH4 and other hydrocarbons was used to simulate the complex fuel gas environment derived from biomass gasification. Results show that the transfer of the stored oxygen into oxidants for the supported Cu and Ni oxides at 800°C for the combustion of syngas was effective (>85%). The unsupported Cu oxide showed high oxygen carrying capacity but particle sintering was observed at 800°C. A reaction temperature of 950°C was required for the supported Fe oxides to transfer the stored oxygen into oxidants effectively. Also, for the complex fuel gas environment, the supported Ni oxide was somewhat effective in reforming CH4 and other light hydrocarbons into CO, which may have benefits for the reduction of tar produced during biomass pyrolysis.

  20. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

    SciTech Connect

    Xiao, Rui; Song, Min; Zhang, Shuai; Shen, Laihong; Song, Qilei; Lu, Zuoji

    2010-06-15

    Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasified with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates

  1. Custom instruction set NIOS-based OFDM processor for FPGAs

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Sunkara, Divya; Castillo, Encarnacion; Garcia, Antonio

    2006-05-01

    Orthogonal Frequency division multiplexing (OFDM) spread spectrum technique, sometimes also called multi-carrier or discrete multi-tone modulation, are used in bandwidth-efficient communication systems in the presence of channel distortion. The benefits of OFDM are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. OFDM is the basis for the European digital audio broadcasting (DAB) standard, the global asymmetric digital subscriber line (ADSL) standard, in the IEEE 802.11 5.8 GHz band standard, and ongoing development in wireless local area networks. The modulator and demodulator in an OFDM system can be implemented by use of a parallel bank of filters based on the discrete Fourier transform (DFT), in case the number of subchannels is large (e.g. K > 25), the OFDM system are efficiently implemented by use of the fast Fourier transform (FFT) to compute the DFT. We have developed a custom FPGA-based Altera NIOS system to increase the performance, programmability, and low power in mobil wireless systems. The overall gain observed for a 1024-point FFT ranges depending on the multiplier used by the NIOS processor between a factor of 3 and 16. A careful optimization described in the appendix yield a performance gain of up to 77% when compared with our preliminary results.

  2. Simulation of oxygen carrier mediated oxygen transport to C3A hepatoma cells housed within a hollow fiber bioreactor.

    PubMed

    Sullivan, Jesse P; Gordon, Jason E; Palmer, Andre F

    2006-02-05

    A priori knowledge of the dissolved oxygen (O2) concentration profile within a hepatic hollow fiber (HF) bioreactor is important in developing an effective bioartificial liver assist device (BLAD). O2 provision is limiting within HF bioreactors and we hypothesize that supplementing a hepatic HF bioreactor's circulating media with bovine red blood cells (bRBCs), which function as an O2 carrier, will improve oxygenation. The dissolved O2 concentration profile within a single HF (lumen, membrane, and representative extra capillary space (ECS)) was modeled with the finite element method, and compared to experimentally measured data obtained on an actual HF bioreactor with the same dimensions housing C3A hepatoma cells. Our results (experimental and modeling) indicate bRBC supplementation of the circulating media leads to an increase in O2 consumed by C3A cells. Under certain experimental conditions (pO2,IN) = 95 mmHg, Q = 8.30 mL/min), the addition of bRBCs at 5% of the average in vivo human red blood cell concentration (% hRBC) results in approximately 50% increase in the O2 consumption rate (OCR). By simply adjusting the operating conditions (pO2,IN) = 25 mmHg, Q = 1.77 mL/min) and increasing bRBC concentration to 25% hRBC the OCR increase is approximately 10-fold. However, the improved O2 concentration profile experienced by the C3A cells could not duplicate the full range of in vivo O2 tensions (25-70 mmHg) typically experienced within the liver sinusoid with this particular HF bioreactor. Nonetheless, we demonstrate that the O2 transport model accurately predicts O2 consumption within a HF bioreactor, thus setting up the modeling framework for improving the design of future hepatic HF bioreactors. (c) 2005 Wiley Periodicals, Inc.

  3. A PEGylated bovine hemoglobin as a potent hemoglobin-based oxygen carrier.

    PubMed

    Wang, Ying; Wang, Linli; Yu, Weili; Gao, Dawei; You, Guoxing; Li, Penglong; Zhang, Shan; Zhang, Jun; Hu, Tao; Zhao, Lian; Zhou, Hong

    2017-01-01

    Hemoglobin (Hb)-based oxygen carriers (HBOCs) have been used as blood substitutes in surgery medicine and oxygen therapeutics for ischemic stroke. As a potent HBOC, the PEGylated Hb has received much attention for its oxygen delivery and plasma expanding ability. Two PEGylated Hbs, Euro-Hb, and MP4 have been developed for clinical trials, using human adult hemoglobin (HbA) as the original substrate. However, HbA was obtained from outdated human blood and its quantity available from this source may not be sufficient for mass production of PEGylated HbA. In contrast, bovine Hb (bHb) has no quantity constraints for its ample resource. Thus, bHb is of potential to function as an alternative substrate to obtain a PEGylated bHb (bHb-PEG). bHb-PEG was prepared under the same reaction condition as HbA-PEG, using maleimide chemistry. The structural, functional, solution and physiological properties of bHb-PEG were determined and compared with those of HbA-PEG. bHb-PEG showed higher hydrodynamic volume, colloidal osmotic pressure, viscosity and P50 than HbA-PEG. The high P50 of bHb can partially compensate the PEGylation-induced perturbation in the R to T state transition of HbA. bHb-PEG was non-vasoactive and could efficiently recover the mean arterial pressure of mice suffering from hemorrhagic shock. Thus, bHb-PEG is expected to function as a potent HBOC for its high oxygen delivery and strong plasma expanding ability. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:252-260, 2017.

  4. [Hemoglobin-based oxygen carriers and trials to substitute red blood cells].

    PubMed

    Smani, Y; Labrude, P; Vigneron, C; Faivre, B

    2007-11-01

    The idea to develop a blood substitute was stimulated by the need of military in the last two world wars and by transmission of pathogenic germs (Hepatitis B in 1960, HIV in 1980 and Hepatitis C in 1990) during blood transfusion that limited the donor blood transfusion. There are two main groups of blood substitutes: perfluorocarbon emulsions and hemoglobin-based oxygen carriers (HBOC). These latter are of natural origin: human, bovine or recombinant and undergo three modifications types: chemicals (intramolecular cross-linking, polymerisation, conjugation to macromolecules and combination of several chemical modifications), genetics or technological by microencapsulation. HBOCs are in different phases of clinical trials and some of them present side effects (hemodynamic and oxidative). The understanding of these effects and the possibility of correcting them, condition their use on a large scale and the economic consequences, which they can generate.

  5. Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers

    SciTech Connect

    Tian, H.; Chaudhari, K.; Simonyi, T.; Poston, J.; Liu, T.; Sanders, T.; Veser, G.; Siriwardane, R.

    2008-01-01

    CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900 °C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO2 from fuel gas at 800 and 900 °C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700 °C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900 °C.

  6. Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers

    SciTech Connect

    Hanjing Tian; Karuna Chaudhari; Thomas Simonyi; James Poston; Tengfei Liu; Tom Sanders; Goetz Veser; Ranjani Siriwardane

    2008-11-15

    CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900{degree}C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO{sub 2} from fuel gas at 800 and 900{degree}C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700{degree}C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900{degree}C. 48 refs., 12 figs., 8 tabs.

  7. Chemical-looping Combustion of Coal-derived Synthesis Gas Over Copper Oxide Oxygen Carriers

    SciTech Connect

    Tian, Hanjing; Chaudhari, K P; Simonyi, Thomas; Poston, J A; Liu, Tengfei; Sanders, Tom; Veser, Goetz; Siriwardane, R V

    2008-11-01

    CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900 °C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO2 from fuel gas at 800 and 900 °C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700 °C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900 °C.

  8. Chemicl-looping combustion of coal with metal oxide oxygen carriers

    SciTech Connect

    Siriwardane, R.; Tian, H.; Richards, G.; Simonyi, T.; Poston, J.

    2009-01-01

    The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe2O3, Co3O4, NiO, and Mn2O3 were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO2), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500 °C and complete the full combustion at 700 °C. In addition, the reduced copper can be fully reoxidized by air at 700 °C. The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO2 and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 °C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers.

  9. Chemical-looping combustion of coal with metal oxide oxygen carriers

    SciTech Connect

    Ranjani Siriwardane; Hanjing Tian; George Richards; Thomas Simonyi; James Poston

    2009-08-15

    The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe{sub 2}O{sub 3}, CO{sub 3}O{sub 4}, NiO, and Mn{sub 2}O{sub 3} were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO{sub 2}), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500{sup o}C and complete the full combustion at 700{sup o}C. In addition, the reduced copper can be fully reoxidized by air at 700{sup o}C. The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO{sub 2} and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 {sup o}C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers. 22 refs., 12 figs., 2 tabs.

  10. Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers.

    PubMed

    García-Labiano, Francisco; Gayán, Pilar; Adánez, Juan; De Diego, Luis F; Forero, Carmen R

    2007-08-15

    Waste management generated from a Chemical-Looping Combustion (CLC) plant using copper-based materials is analyzed by two ways: the recovery and recycling of the used material and the disposal of the waste. A copper recovery process coupled to the CLC plant is proposed to avoid the loss of active material generated by elutriation from the system. Solid residues obtained from a 10 kWth CLC prototype operated during 100 h with a CuO-Al2O3 oxygen carrier prepared by impregnation were used as raw material in the recovery process. Recovering efficiencies of approximately 80% were obtained in the process, where the final products were an eluate of Cu(NO3)2 and a solid. The eluate was used for preparation of new oxygen carriers by impregnation, which exhibited high reactivity for reduction and oxidation reactions as well as adequate physical and chemical properties to be used in a CLC plant. The proposed recovery process largely decreases the amount of natural resources (Cu and Al203) employed in a CLC power plant as well as the waste generated in the process. To determine the stability of the different solid streams during deposition in a landfill, these were characterized with respect to their leaching behavior according to the European Union normative. The solid residue finally obtained in the CLC plant coupled to the recovery process (composed by Al2O3 and CuAl2O4) can be classified as a stable nonreactive hazardous waste acceptable at landfills for nonhazardous wastes.

  11. Investigation of Coal Fueled Chemical Looping Combustion Using Fe3O4 as Oxygen Carrier

    NASA Astrophysics Data System (ADS)

    Xlang, Wenguo; Sun, Xiaoyan; Wangt, Sha; Tian, Wendong; Xu, Xiang; Xu, Yanji; Xiao, Yunhan

    Chemical-looping combustion (CLC) is a novel combustion technique with CO2 separation. Magnetite (Fe3O4) was selected as the oxygen carrier and Shenhua coal (Inner Mongolia, China) as the fuel for this study. The influences of operation temperatures, and coal to Fe3O4 mass ratios on the reduction characteristics of the oxygen carrier were investigated using an atmosphere TGA. The sample, comprised of 2.25mg coal and 12.75mg Fe3O4, was heated to 1000°C. Experimental results show that the reaction between the coal volatile and Fe3O4 began at 700°C while the reaction between the coal char and Fe3O4 occurred at 800°C and reached a peak at 900°C. Fe3O4 was fully reduced into FeO, while some FeO was further reduced to Fe. As the operation temperature rises, the reduction conversion rate increases. At the temperatures of 850°C, 900°C, and 950°C, the reduction conversion rates were 37.1%, 46.5%, and 54.1% respectively. When the mass ratios of coal to Fe3O4 were 5/95, 10/90, 15/85, and 20/80, the reduction conversion rates were 29.5%,40.8%,46.5%, and 46.6% respectively. With the increase of coal to Fe3O4 mass ratio, the conversion rate increases first and then changes no more. There exists an optimal coal to Fe3O4 mass ratio.

  12. Processing and Evaluation of Next Generation Oxygen Carrier Materials for Chemical Looping Combustion

    NASA Astrophysics Data System (ADS)

    Hamedi Rad, Mina

    This study follows two methods to achieve a modified CaMnO 3-delta structure with higher oxygen capacity and stability. The first method is replacement of manganese with iron as a cheaper alternative and the second method is size effect investigations of A-site dopants on CaMn 0.9Fe0.1O3-delta and its oxygen capacity and stability. Solid state reaction followed by mechanical extrusion is used as the preparation method. All synthesized perovskites are characterized by TGA and XRD analyses. The samples of highest oxygen capacity and stability are further characterized by SEM and BET analyses. Oxygen uncoupling behavior and reactivity of these samples are also examined using a fluidized bed reactor performing Chemical Looping Combustion. The temperature effect is also investigated during chemical looping process at temperatures of 800, 850, 900 and 950 °C. In the first method, since calcium could not be incorporated in the structure, strontium is used as the A-site cation. SrFeO3-delta has shown to be more stable than CaMnO3-delta. However, because of low oxygen capacity, it is doped on the A-site (La and Ba) and B-site (Al, Ti, Mn, Co) by 10 mol% (Sr0.9La0.1FeO3-delta, Sr0.9Ba0.1FeO3-delta, SrFe0.9Al 0.1O3-delta, SrFe0.9Ti0.1O3-delta , SrFe0.9Mn0.1O3-delta, SrFe 0.9Co0.1O3-delta). Results reveal that manganese doped structure (SrFe0.9Mn0.1O3-delta) has the highest oxygen capacity. Adding more manganese to the structure increases the oxygen capacity even further. The best iron-based structure has 30 mol% manganese, doped on the B-site, having 28% mass change in an inert atmosphere (SrFe0.7Mn0.3O3-delta, SFM73) and high stability. Results of conducted experiments in second method demonstrated that Strontium doped perovskite (Ca0.9Sr0.1Mn0.9Fe 0.1O3-delta, CS91MF91) is the best synthesized oxygen carrier among all synthesized manganese and iron-based perovskites. This material shows excellent oxygen uptake and release (1.78 wt. %) and high stability. The reactivity and

  13. Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart (†).

    PubMed

    Wrobeln, Anna; Schlüter, Klaus D; Linders, Jürgen; Zähres, Manfred; Mayer, Christian; Kirsch, Michael; Ferenz, Katja B

    2017-06-01

    The aim of this study was to prove whether albumin-derived perfluorocarbon-based nanoparticles (capsules) can operate as a novel artificial oxygen carrier in a rat Langendorff-heart perfusion model. Hearts perfused with capsules showed increased left ventricular pressure and rate pressure product compared to hearts perfused with pure Krebs-Henseleit (KH)-buffer. The capsules prevented the myocardium from functional fail when in their absence a noxious ischemia was observed. Capsules did not change rheological properties of KH-buffer and could repeatedly reload with oxygen. This albumin-derived perfluorocarbon-based artificial oxygen carrier preserved the function of rat hearts due to the transport of oxygen in a satisfactory manner. Because of these positive results, the functionality of the applied capsules should be verified in living animals.

  14. [Effects of Hydraulic Retention Time and Dissolved Oxygen on a CANON Reactor with Haydite as Carrier].

    PubMed

    Wang, Hui-fang; Fu, Kun-ming; Zuo, Zao-rong; Qiu, Fu-guo

    2015-11-01

    One Completely Autotrophic Nitrogen Removal Over Nitrite ( CANON) reactor with haydite as carrier was investigated to study the effects of different hydraulic retention time ( HRT) and dissolved oxygen (DO) on CANON reactors by seeding sludge from another mature CANON reactor and using synthetic inorganic ammonia-rich waste water as influent. During the experiment, the concentration of influent ammonia nitrogen was basically unchanged, the HRT of the reactor were 9, 7, 5 h in turn and the range of DO was 1.16-3.20 mg x L(-1). The results showed that: (1) When DO was 1.20-1.75 mg x L(-1), despite the increase of DO can improve AOB's activity and matrix mass transfer in the system, NH4(+) -N and TN removal efficiency were still fell with the shortening of HRT for the CANON reactor, especially when DO was higher than 2.50 mg x L(-1), TN removal efficiency dropped sharply; (2) Under the condition that DO was 1.20-1.75 mg x L(-1), with the shortening of HRT, partial nitritation tended to be stable in the CANON process, and when DO was higher than 1.75 mg x L(-1), even if HRT was shorter, partial nitritation was still severely damaged; (3) Under the condition that DO was 1.20-1.75 mg x L(-1) and HRT was 7 h, for the CANON reactor, partial nitritation and total nitrogen removal efficiency kept well. Hydraulic retention time and dissolved oxygen both are important operational parameters for biological wastewater treatment process, which could directly affect the effect of biological treatment and effluent quality, so to choose appropriate hydraulic retention time and dissolved oxygen coordinately is very important to improve the effect of treatment of ammonium-rich wastewater by CANON process.

  15. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    EPA Science Inventory

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  16. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity

    PubMed Central

    Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  17. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity.

    PubMed

    Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages.

  18. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    EPA Science Inventory

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  19. A Pilot Study of Peritoneal Perfusion with a Novel Hemoglobin Based Oxygen Carrier in Swine (Sus scrofa)

    DTIC Science & Technology

    2016-10-12

    Animals were then randomized to peritoneal perfusion with either a novel bovine hemoglobin-based oxygen carrier or control (Lactated Ringers). After...recorded.Results: No differences were observed between treatment and control animals in terms of C02, 02 and time to death.Conclusion: Peritoneal gas exchange did

  20. Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers. 1. Fate of sulfur

    SciTech Connect

    Garcia-Labiano, F.; de Diego, L.F.; Gayan, P.; Adanez, J.; Abad, A.; Dueso, C.

    2009-03-15

    Chemical-looping combustion (CLC) has been suggested among the best alternatives to reduce the economic cost of CO{sub 2} capture using fuel gas because CO{sub 2} is inherently separated in the process. For gaseous fuels, natural gas, refinery gas, or syngas from coal gasification can be used. These fuels may contain different amounts of sulfur compounds, such as H{sub 2}S and COS. An experimental investigation of the fate of sulfur during CH{sub 4} combustion in a 500 W{sub th} CLC prototype using a Ni-based oxygen carrier has been carried out. The effect on the oxygen carrier behavior and combustion efficiency of several operating conditions such as temperature and H{sub 2}S concentration has been analyzed. Nickel sulfide, Ni3S{sub 2}, was formed at all operating conditions in the fuel reactor, which produced an oxygen carrier deactivation and lower combustion efficiencies. However, the oxygen carrier recovered their initial reactivity after certain time without sulfur addition. The sulfides were transported to the air reactor where SO{sub 2} was produced as final gas product. Agglomeration problems derived from the sulfides formation were never detected during continuous operation. Considering both operational and environmental aspects, fuels with sulfur contents below 100 vppm H{sub 2}S seem to be adequate to be used in an industrial CLC plant.

  1. Synthesis of Cu-rich, Al2O3-stabilized oxygen carriers using a coprecipitation technique: redox and carbon formation characteristics.

    PubMed

    Imtiaz, Qasim; Kierzkowska, Agnieszka M; Broda, Marcin; Müller, Christoph R

    2012-03-20

    Chemical looping combustion (CLC) is an emerging, new technology for carbon capture and storage (CCS). Copper-based oxygen carriers are of particular interest due to their high oxygen carrying capacity and reactivity, low tendency for carbon deposition, and exothermic reduction reactions. In this work, CuO-based and Al(2)O(3)-stabilized oxygen carriers with high CuO loadings were developed using a coprecipitation technique. The cyclic redox performance of the synthesized oxygen carriers was evaluated at 800 °C in a laboratory-scale fluidized bed reactor using a reducing atmosphere comprising 10 vol. % CH(4) and 90 vol. % N(2). The CuO content in the oxygen carrier was found to increase with the pH value at which the coprecipitation was performed. The oxygen carrying capacity of the oxygen carrier containing 87.8 wt % CuO was found to be high (5.5 mmol O(2)/g oxygen carrier) and stable over 25 redox cycles. Increasing the CuO content further, i.e. > 90 wt %, resulted in materials which showed a decreasing oxygen carrying capacity with cycle number. It was also shown that the incorporation of K(+) ions in the oxygen carrier can avoid the formation of the spinel CuAl(2)O(4) and significantly reduce carbon deposition.

  2. Preparation of uniform-sized hemoglobin-albumin microspheres as oxygen carriers by Shirasu porous glass membrane emulsification technique.

    PubMed

    Lai, Yao-Tong; Sato, Mayu; Ohta, Seiichi; Akamatsu, Kazuki; Nakao, Shin-ichi; Sakai, Yasuyuki; Ito, Taichi

    2015-03-01

    We have developed a new type of artificial oxygen carrier composed of bovine hemoglobin (bHb) and bovine serum albumin (BSA) prepared by Shirasu porous glass (SPG) membrane emulsification technique. The resultant emulsion droplets containing 10 wt% bHb and 5-20 wt% BSA were subsequently cross-linked by glutaraldehyde to form the microspheres. Due to the uniform pore structure of SPG membranes, the average diameters of bHb10-BSAm microspheres were successfully controlled at around 5 μm with a coefficient of variation of around 10%. In addition, the biocompatibility of the carriers depended on their oxyhemoglobin percentage regardless of their same size. Finally, the P50 values of these microspheres ranged from 8.08 to 11.60 mmHg, which showed a high oxygen affinity and an oxygen delivery function. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Advancement in recombinant protein production using a marine oxygen carrier to enhance oxygen transfer in a CHO-S cell line.

    PubMed

    Le Pape, Fiona; Bossard, Morgane; Dutheil, Delphine; Rousselot, Morgane; Polard, Valérie; Férec, Claude; Leize, Elisabeth; Delépine, Pascal; Zal, Franck

    2015-06-01

    Recombinant proteins, particularly proteins used as therapeutics, are widely expressed for bioprocessing manufacturing processes. Mammalian cell lines represent the major host cells for bioproduction, according to their capacities of post-translational modifications and folding of secreted proteins. Many parameters can affect cell productivity, especially the rate of oxygen transfer. Dissolved oxygen, in high or low proportions, is a crucial parameter which can affect cell viability and thus productivity. HEMARINA has developed a new technology, commercially proposed as HEMOXCell(®), to improve cell culture at a large production scale. HEMOXCell(®) is a marine oxygen carrier having properties of high oxygen sensitivity, to be used as an oxygen additive during cell culture manufacturing. In this study, we investigated the effects of HEMOXCell(®) on the culture of the commonly used CHO-S cell line. Two main objectives were pursued: 1) cell growth rate and viability during a batch mode process, and 2) the determination of the effect of this oxygen carrier on recombinant protein production from a CHO-transfected cell line. Our results show an increase of CHO-S cellular growth at a rate of more than four-fold in culture with HEMOXCell(®). Moreover, an extension of the growth exponential phase and high cell viability were observed. All of these benefits seem to contribute to the improvement of recombinant protein production. This work underlines several applications using this marine-type oxygen carrier for large biomanufacturing. It is a promising cell culture additive according to the increasing demand for therapeutic products such as monoclonal antibodies.

  4. Effect of temperature on reduction of CaSO{sub 4} oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor

    SciTech Connect

    Song, Q.L.; Xiao, R.; Deng, Z.Y.; Shen, L.H.; Xiao, J.; Zhang, M.Y.

    2008-12-15

    Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. The sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.

  5. Characterization of nano-bubbles as an oxygen carrier for in-situ bioremediation of organic pollutants in the subsurface

    NASA Astrophysics Data System (ADS)

    KIM, E.; Jung, J.; Kang, S.; Choi, Y.

    2016-12-01

    In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.

  6. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  7. Interpretation of hemolysis tests following administration of a second-generation hemoglobin-based oxygen carrier.

    PubMed

    Drieghe, S; Stove, V; Decruyenaere, J; Delanghe, J

    2013-01-01

    Hemoglobin released into the circulation during hemolysis or therapy with chemically modified hemoglobins, exert oxidative and NO-scavenging toxic effects. Pyridoxalated hemoglobin polyoxyethylene conjugate (PHP) is one of the second-generation hemoglobin-based oxygen carriers (HBOCs). We wanted to investigate the metabolism of PHP with a special focus on its consequences for interpreting hemolysis-related diagnostic parameters in PHP-treated patients. Clinical samples were analyzed from 3 patients, who received PHP (as part of the PHOENIX phase III trial) for treatment of catecholamine-resistant distributive shock. In contrast to expectations, clearance of PHP by hemopexin, instead of haptoglobin was documented by increased hemolysis indices, absence of decreased haptoglobin values, presence of free PHP-hemoglobin and exhausted hemopexin concentrations. The present case report is important for both clinicians and laboratorians since it nicely illustrates that a hemolytic aspect of plasma is not necessarely synonymous with hemolysis. A hemolytic aspect of plasma or serum (high hemolysis index) in combination with normal or increased haptoglobin values should draw the attention; additional determination of lactate dehydrogenase and hemopexin may then be useful to distinguish the condition from in vitro hemolysis and to monitor the in vivo elimination of the heme compounds.

  8. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media.

    PubMed

    Le Pape, Fiona; Cosnuau-Kemmat, Lucie; Richard, Gaëlle; Dubrana, Frédéric; Férec, Claude; Zal, Franck; Leize, Elisabeth; Delépine, Pascal

    2017-03-22

    Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three-dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)-supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%-increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two-fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and "stemness." These features will be further tested within three-dimensional scaffolds.

  9. Influence of oxygen addition to the carrier gas on laser-induced breakdown spectroscopy measurements on aerosols

    NASA Astrophysics Data System (ADS)

    Palazzo, N.; Migliorini, F.; Dondè, R.; Maffi, S.; De Iuliis, S.

    2016-01-01

    In this work, laser-induced breakdown spectrosopy is implemented on aerosol particles for absolute concentration analysis. The aim of this work is the investigation of the effect of the bath gas used for nebulizing the aerosol. Nitrogen, air, and 50% O2 in N2 mixture have been chosen as carrier gasses in order to analyze the effect of oxygen addition to the gas. LIBS measurements have been carried out on aerosol particles produced from CuCl2 2H2O solutions, and the 324.7 nm Cu line is considered. As a first analysis, plasma parameters, such as temperature and electron density, have been evaluated changing the carrier gas. Measurements to derive the LIBS calibration curve of the 324.7 nm Cu line are carried out in air and in N2. The significant difference in the slope of the resulting calibration curves has to be attributed to the oxygen addition to the bath gas. To explore such behavior, time-resolved measurements of the Cu line and peak/base ratio have been performed. The presence of two competitive effects have been observed that becomes significant increasing the amount of oxygen in the carrier gas. One is the oxygen-quenching effect, already observed in the literature, and the other one is the enhancement of the Cu LIBS signal, expecially at short delay times. These effects have been observed also at other Cu lines and changing the analyte source. The results are presented and widely discussed.

  10. Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion

    SciTech Connect

    Francisco Garcia-Labiano; Juan Adanez; Luis F. de Diego; Pilar Gayan; Alberto Abad

    2006-02-01

    This work analyzes the main characteristics related to the chemical looping combustion (CLC) process necessary to use the syngas obtained in an integrated gasification combined cycle (IGCC) power plant. The kinetics of reduction with H{sub 2} and CO and oxidation with O{sub 2} of three high-reactivity oxygen carriers used in the CLC system have been determined in a thermogravimetric analyzer at atmospheric pressure. The iron- and nickel-based oxygen carriers were prepared by freeze-granulation, and the copper-based oxygen carrier was prepared by impregnation. The changing grain size model (CGSM) was used for the kinetic determination, assuming spherical grains for the freeze-granulated particles containing iron and nickel and a platelike geometry for the reacting surface of the copper-based impregnated particles. The dependence of the reaction rates on temperature was low, with the activation energy values varying from 14 to 33 kJ mol{sup -1} for the reduction and 7 to 15 kJ mol{sup -1} for the oxidation. The reaction order depended on the reacting gas and oxygen carrier, with values ranging from 0.25 to 1. However, an increase in the operating pressure for the IGCC + CLC system increases the thermal efficiency of the process, and the CO{sub 2} is recovered as a high pressure gas, decreasing the energy demand for further compression. The effect of pressure on the behavior of the oxygen carriers has been analyzed in a pressurized thermogravimetric analyzer at 1073 K and pressures up to 30 atm. It has been found that an increase in total pressure has a negative effect on the reaction rates of all the oxygen carriers. Moreover, the use of the CGSM with the kinetic parameters obtained at atmospheric pressure predicted higher reaction rates than those experimentally obtained at higher pressures, and therefore, the kinetic parameters necessary to design pressurized CLC plants must be determined at the operating pressure. 34 refs., 8 figs., 2 tabs.

  11. Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier

    SciTech Connect

    Abad, Alberto; Adanez, Juan; Garcia-Labiano, Francisco; de Diego, Luis F.; Gayan, Pilar

    2010-03-15

    A mathematical model for a bubbling fluidized bed has been developed to simulate the performance of the fuel-reactor in chemical-looping combustion (CLC) systems. This model considers both the fluid dynamic of the fluidized bed and freeboard and the kinetics of reduction of the oxygen-carrier, here CuO impregnated on alumina. The main outputs of the model are the conversion of the carrier and the gas composition at the reactor exit, the axial profiles of gas concentrations and the fluid dynamical structure of the reactor. The model was validated using measurements when burning CH{sub 4} in a 10 kW{sub th} prototype using a Cu-based oxygen-carrier. The influence of the circulation rate of solids, the load of fuel gas, the reactor temperature and size of the oxygen-carrier particles were analyzed. Combustion efficiencies predicted by the model showed a good agreement with measurements. Having validated the model, the implications for designing and optimizing a fuel-reactor were as follows. The inventory of solids for a high conversion of the fuel was sensitive to the reactor's temperature, the solids' circulation rate and the extent to which the solids entering to the reactor had been regenerated. The optimal ratio of oxygen-carrier to fuel was found to be 1.7-4 for the Cu-based oxygen-carrier used here. In this range, the inventory of solids to obtain a combustion efficiency of 99.9% at 1073 K was less than 130 kg/MW{sub th}. In addition, the model's results were very sensitive to the resistance to gas diffusing between the emulsion and bubble phases in the bed, to the decay of solids' concentration in the freeboard and to the efficiency contact between gas and solids in the freeboard. Thus, a simplified model, ignoring any restriction to gas and solids contacting each other, will under-predict the inventory of solids by a factor of 2-10. (author)

  12. Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model.

    PubMed

    Li, Heng; Ohta, Hidenobu; Tahara, Yu; Nakamura, Sakiko; Taguchi, Kazuaki; Nakagawa, Machiko; Oishi, Yoshihisa; Goto, Yu-Ichi; Wada, Keiji; Kaga, Makiko; Inagaki, Masumi; Otagiri, Masaki; Yokota, Hideo; Shibata, Shigenobu; Sakai, Hiromi; Okamura, Kunihiro; Yaegashi, Nobuo

    2015-10-16

    Pre-eclampsia affects approximately 5% of all pregnant women and remains a major cause of maternal and fetal morbidity and mortality. The hypertension associated with pre-eclampsia develops during pregnancy and remits after delivery, suggesting that the placenta is the most likely origin of this disease. The pathophysiology involves insufficient trophoblast invasion, resulting in incomplete narrow placental spiral artery remodeling. Placental insufficiency, which limits the maternal-fetal exchange of gas and nutrients, leads to fetal intrauterine growth restriction. In this study, in our attempt to develop a new therapy for pre-eclampsia, we directly rescued placental and fetal hypoxia with nano-scale size artificial oxygen carriers (hemoglobin vesicles). The present study is the first to demonstrate that artificial oxygen carriers successfully treat placental hypoxia, decrease maternal plasma levels of anti-angiogenic proteins and ameliorate fetal growth restriction in the pre-eclampsia rat model.

  13. Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model

    PubMed Central

    Li, Heng; Ohta, Hidenobu; Tahara, Yu; Nakamura, Sakiko; Taguchi, Kazuaki; Nakagawa, Machiko; Oishi, Yoshihisa; Goto, Yu-ichi; Wada, Keiji; Kaga, Makiko; Inagaki, Masumi; Otagiri, Masaki; Yokota, Hideo; Shibata, Shigenobu; Sakai, Hiromi; Okamura, Kunihiro; Yaegashi, Nobuo

    2015-01-01

    Pre-eclampsia affects approximately 5% of all pregnant women and remains a major cause of maternal and fetal morbidity and mortality. The hypertension associated with pre-eclampsia develops during pregnancy and remits after delivery, suggesting that the placenta is the most likely origin of this disease. The pathophysiology involves insufficient trophoblast invasion, resulting in incomplete narrow placental spiral artery remodeling. Placental insufficiency, which limits the maternal-fetal exchange of gas and nutrients, leads to fetal intrauterine growth restriction. In this study, in our attempt to develop a new therapy for pre-eclampsia, we directly rescued placental and fetal hypoxia with nano-scale size artificial oxygen carriers (hemoglobin vesicles). The present study is the first to demonstrate that artificial oxygen carriers successfully treat placental hypoxia, decrease maternal plasma levels of anti-angiogenic proteins and ameliorate fetal growth restriction in the pre-eclampsia rat model. PMID:26471339

  14. Synthesis of Hemoglobin Conjugated Polymeric Micelle: A ZnPc Carrier with Oxygen Self-Compensating Ability for Photodynamic Therapy.

    PubMed

    Wang, Shasha; Yuan, Fang; Chen, Kui; Chen, Gaojian; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun

    2015-09-14

    Photodynamic therapy (PDT) is a promising singlet oxygen ((1)O2) mediated clinical treatment for many tumors. As the source of (1)O2, oxygen plays an important role in the curative effect of PDT. However, the facts of photochemical depletion of oxygen and the intrinsic hypoxic microenvironment of tumors remain the major challenges. In this work, a novel photosensitizer carrier with oxygen self-compensating ability was designed for PDT. It was synthesized via chemical conjugation of hemoglobin (Hb) to polymeric micelles formed by triblock copolymers of poly(ethylene glycol)-block-poly(acrylic acid)-block-polystyrene (PEG-b-PAA-b-PS). The PEG-b-PAA-b-PS and resultant micelles in aqueous solution were comprehensively characterized by means of FTIR, (1)H NMR, GPC, DLS, TEM, and fluorescence spectroscopy. The oxygen-binding capacity and antioxidative activity of the Hb conjugated micelles were evaluated via UV-vis spectroscopy. In addition, compared with the control micelles without Hb, the Hb conjugated photosensitizer carrier was able to generate more (1)O2 and exert greater photocytotoxicity on Hela cells in vitro.

  15. Investigation of coal fueled chemical looping combustion using Fe3O4 as oxygen carrier: Influence of variables

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyan; Xiang, Wenguo; Wang, Sha; Tian, Wendong; Xu, Xiang; Xu, Yanji; Xiao, Yunhan

    2010-06-01

    Chemical-looping combustion (CLC) is a novel combustion technique with inherent CO2 separation. Magnetite (Fe3O4) was selected as the oxygen carrier. Shenhua coal (Inner Mongolia, China), straw coke and natural coke were used as fuels for this study. Influences of operation temperatures, coal to Fe3O4 mass ratios, and different kinds of fuels on the reduction characteristics of the oxygen carrier were investigated using an atmosphere thermogravimetric analyzer (TGA). Scanning electron microscopy (SEM) was used to analyse the characteristic of the solid residues. Experimental results shown that the reaction between the coal and the oxygen carrier become strong at a temperature of higher than 800°C. As the operation temperature rises, the reduction conversion rate increases. At the temperatures of 850°C, 900°C, and 950°C, the reduction conversion rates were 37.1%, 46.5%, and 54.1% respectively. However, SEM images show that at the temperature of higher than 950°C, the iron oxides become melted and sintered. The possible operation temperature should be kept around 900°C. When the mass ratios of coal to Fe3O4 were 5/95, 10/90, 15/85, and 20/80, the reduction conversion rates were 29.5%, 40.8%, 46.5%, and 46.6% respectively. With the increase of coal, the conversion rate goes up. But there exist an optimal ratio around 15/85. Comparisons based on different kinds of fuels show that the solid fuel with a higher volatile and a more developed pore structure is conducive to the reduction reactivity of the oxygen carrier.

  16. Use of liposome encapsulated hemoglobin as an oxygen carrier for fetal and adult rat liver cell culture.

    PubMed

    Montagne, Kevin; Huang, Hongyun; Ohara, Keikou; Matsumoto, Kunio; Mizuno, Atsushi; Ohta, Katsuji; Sakai, Yasuyuki

    2011-11-01

    Engineering liver tissue constructs with sufficient cell mass for transplantation implies culturing large numbers of hepatocytes in a reduced volume; however, providing sufficient oxygen to dense cell cultures is still not feasible using only conventional culture medium. Liposome-encapsulated hemoglobin (LEH), an oxygen-carrying blood substitute originally designed for short-term perfusion, may be a good candidate as an oxygen carrier to cultured liver cells. In this study, we investigated the feasibility of maintaining long term hepatocyte cultures using LEH. Primary fetal and adult rat liver cells were directly exposed to LEH for 6 to 14 days in static culture or in a perfused flat plate bioreactor. The functions and viability of adult rat hepatocytes exposed to LEH were not adversely affected in static monolayer culture and were even improved in the bioreactor. However, some cytotoxicity of LEH was observed with fetal rat liver cells after 4 days of culture. LEH, though a suitable oxygen carrier for long-term culture of mature hepatocytes, is not suitable in its present form for perfusing fetal hepatocyte cultures in direct contact with the liposomes; either the LEH will have to be made less toxic or a more sophisticated bioreactor that prevents the direct contact between hepatocytes and perfusates will have to be designed if fetal cells are to be used for liver tissue engineering.

  17. Reactivity deterioration of NiO/Al{sub 2}O{sub 3} oxygen carrier for chemical looping combustion of coal in a 10 kW{sub th} reactor

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Gao, Zhengping; Xiao, Jun

    2009-07-15

    A relatively long-term experiment for chemical looping combustion of coal with NiO/Al{sub 2}O{sub 3} oxygen carrier was carried out in a 10 kW{sub th} continuous reactor of interconnected fluidized beds, and 100 h of operation was reached with the same batch of the oxygen carrier. The reactivity deterioration of the oxygen carriers was present during the experimental period. The reactivity deterioration of reacted oxygen carriers at different experimental stages was evaluated using X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray fluorescence spectrometer. SEM analysis showed no significant change in the morphology of the nickel-based oxygen carrier at the fuel reactor temperature {<=}940 C, but loss of surface area and porosity of reacted oxygen carriers was observed when the fuel reactor temperature exceeded 960 C. The results show that the sintering effect have mainly contributed to the reactivity deterioration of reacted oxygen carriers in the CLC process for coal, while the effects of coal ash and sulfur can be ignored. The oxidization of reduced oxygen carrier with air was an intensive exothermic process, and the high temperature of oxygen carrier particles led to sintering on the surface of oxygen carrier particles in the air reactor. Attention must be paid to control the external circulation of oxygen carrier particles in the interconnected fluidized beds in order to efficiently transport heat from the air reactor to the fuel reactor, and reduce the temperature of oxygen carrier particles in the air reactor. Improvement of reactivity deterioration of reacted oxygen carriers was achieved by the supplement of steam into the fuel reactor. Nevertheless, NiO/Al{sub 2}O{sub 3} is still one of the optimal oxygen carriers for chemical looping combustion of coal if the sintering of oxygen carrier is minimized at the suitable reactor temperature. (author)

  18. The trade-offs and effect of carrier size and oxygen-loading on gaseous toluene removal performance of a three-phase circulating-bed biofilm reactor.

    PubMed

    Sang, B-I; Yoo, E-S; Kim, B J; Rittmann, B E

    2003-05-01

    We conducted a series of steady-state and short-term experiments on a three-phase circulating-bed biofilm reactor (CBBR) for removing toluene from gas streams. The goal was to investigate the effect of macroporous-carrier size (1-mm cubes versus 4-mm cubes) on CBBR performance over a wide range of oxygen loading. We hypothesized that the smaller biomass accumulation with 1-mm carriers would minimize dissolved-oxygen (DO) limitation and improve toluene removal, particularly when the DO loading is constrained. The CBBR with 1-mm carriers overcame the performance limitation observed with the CBBR with 4-mm carriers: i.e., oxygen depletion inside the biofilm. The 1-mm carriers consistently gave superior removal of toluene and chemical oxygen-demand, and the advantage was greatest for the lowest oxygen loading and the greatest toluene loading. The 1-mm carriers achieved superior performance because they minimized the negative effects of oxygen depletion, while continuing to provide protection from excess biomass detachment and inhibition from toluene.

  19. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    NASA Astrophysics Data System (ADS)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it

  20. Oxygen vacancies promoted interfacial charge carrier transfer of CdS/ZnO heterostructure for photocatalytic hydrogen generation.

    PubMed

    Xie, Ying Peng; Yang, Yongqiang; Wang, Guosheng; Liu, Gang

    2017-10-01

    The solid-state Z-scheme trinary/binary heterostructures show the advantage of utilizing the high-energy photogenerated charge carriers in photocatalysis. However, the key factors controlling such Z-scheme in the binary heterostructures are still unclear. In this paper, we showed that oxygen vacancies could act as an interface electron transfer mediator to promote the direct Z-scheme charge transfer process in binary semiconductor heterostructures of CdS/ZnS. Increasing the concentration of surface oxygen vacancies of ZnO crystal can greatly enhance photocatalytic hydrogen generation of CdS/ZnO heterostructure. This was attributed to the strengthened direct Z-scheme charge transfer process in CdS/ZnO, as evidenced by steady-state/time-resolved photoluminescence spectroscopy and selective photodeposition of metal particles on the heterostructure. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing.

    PubMed

    Wijekoon, Asanka; Fountas-Davis, Natalie; Leipzig, Nic D

    2013-03-01

    In this study a series of novel, biocompatible hydrogels able to repeatedly takeup and deliver oxygen at beneficial levels have been developed by conjugating various perfluorocarbon (PFC) chains to methacrylamide chitosan via Schiff base nucleophilic substitution, followed by photopolymerization to form hydrogels. The synthesized fluorinated methacrylamide chitosan (MACF) hydrogels were confirmed by high resolution (19)F NMR. Synthesized MACF hydrogels were tested for their ability to takeup and then release oxygen for future use in dermal wound healing. Depending on the PFC substitution type maximum O(2) uptake was observed within 2-6h, followed by complete release to the surrounding environment (5% CO(2)) within 12-120h at oxygen partial pressures of 1-25mm Hg h(-1), providing outstanding system tuning for wound healing and regenerative medicine. MACFs with the most fluorines per substitution showed the greatest uptake and release of oxygen. Interestingly, adding PFC chains with a fluorinated aromatic group considerably enhanced oxygen uptake and extended release compared with a linear PFC chain with the same number of fluorine molecules. MACF hydrogels proved to be readily reloaded with oxygen once release was complete, and regeneration could be performed as long as the hydrogel was intact. Fibroblasts were cultured on MACFs and assays confirmed that materials containing more fluorines per substitution supported the most cells with the greatest metabolic activity. This result was true, even without oxygenation, suggesting PFC-facilitated oxygen diffusion from the culture medium. Finally, MACF gradient hydrogels were created, demonstrating that these materials can control oxygen levels on a spatial scale of millimeters and greatly enhance cellular proliferative and metabolic responses.

  2. Oxygen carrier for gas chromatographic analysis of inert gases in propellants

    NASA Technical Reports Server (NTRS)

    Cannon, W. A.

    1972-01-01

    Gas chromatographic determination of small quantities of inert gases in reactive propellants is discussed. Operating conditions used for specific analyses of helium in diborane and nitrogen in oxygen difluoride are presented in tabular form.

  3. Beneficial effects of Pluronic F-68 and artificial oxygen carriers on the post-thaw recovery of cryopreserved plant cells.

    PubMed

    Lowe, K C; Anthony, P; Davey, M R; Power, J B

    2001-07-01

    The storage of prokaryotic and eukaryotic cells at ultra-low temperature in liquid nitrogen (-196 degrees C) is a procedure that has assumed an increasingly important role in underpinning many aspects of biotechnology. For eukaryotic cells, the transition from a cryopreserved state to physiologically normal temperatures and oxygen tensions, induces respiratory imbalances that may stimulate the production of toxic oxygen radicals causing impaired cellular functions. Novel treatments, that focus specifically on enhancing oxygen delivery to cells, are important in maximising post-thaw recovery. Recently, several approaches have been evaluated with suspension cultured plant cells as a model, yet biotechnologically-important, totipotent eukaryotic cell system. Such treatments include non-ionic surfactants, primarily Pluronic F-68, and artificial oxygen carriers, the latter based on inert perfluorochemical liquids or chemically-modifed haemoglobin, as supplements to culture medium used during the post-thaw recovery phase of cell growth. When used either alone or in combination, such novel treatments stimulate significantly the post-thaw viability and biomass production of cultured plant cells. Many of these technologies will be exploitable in cryopreservation protocols for eukaryotic cells in general.

  4. Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier.

    PubMed

    Luo, Guozhi; Li, Li; Liu, Qian; Xu, Guimei; Tan, Hongxin

    2014-11-01

    The effect of dissolved oxygen (DO) on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier was evaluated in a lab-scale experiment. Aerated, low-oxygen, and anoxic treatment groups were set up, which had average DO concentrations of 5.2±1.0, 1.4±1.2, and 0.5±0.3 mg L(-1), respectively. The NO3(-)-N and total nitrogen (TN) removal rates in the aerated group (37.44±0.24 and 36.24±0.48 g m(-3) d(-1), respectively) were higher than those in the other two groups. There was no significant difference between the low-oxygen and anoxic groups for the NO3(-)-N or TN removal rate. Accumulation of NO2(-)-N reached 5.0 mg L(-1) in the aerated group; no nitrite accumulation was found in the other two treatment groups. Bacterial communities of the low-oxygen and anoxic groups showed high similarity and were significantly different from those of the aerated group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dicarboxylate carrier-mediated glutathione transport is essential for reactive oxygen species homeostasis and normal respiration in rat brain mitochondria

    PubMed Central

    Kamga, Christelle K.; Zhang, Shelley X.

    2010-01-01

    Glutathione transport into mitochondria is mediated by oxoglutarate (OGC) and dicarboxylate carrier (DIC) in the kidney and liver. However, transport mechanisms in brain mitochondria are unknown. We found that both carriers were expressed in the brain. Using cortical mitochondria incubated with physiological levels of glutathione, we found that butylmalonate, a DIC inhibitor, reduced mitochondrial glutathione to levels similar to those seen in mitochondria incubated without extramitochondrial glutathione (59% of control). In contrast, phenylsuccinate, an OGC inhibitor, had no effect (97% of control). Additional experiments with DIC and OGC short hairpin RNA in neuronal-like PC12 cells resulted in similar findings. Significantly, DIC inhibition resulted in increased reactive oxygen species (ROS) content in and H2O2 release from mitochondria. It also led to decreased membrane potential, increased basal respiration rates, and decreased phosphorus-to-oxygen (P/O) ratios, especially when electron transport was initiated from complex I. Accordingly, we found that DIC inhibition impaired complex I activity, but not those for complexes II and III. This impairment was not associated with dislodgment of complex subunits. These results suggest that DIC is the main glutathione transporter in cortical mitochondria and that DIC-mediated glutathione transport is essential for these mitochondria to maintain ROS homeostasis and normal respiratory functions. PMID:20538765

  6. Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier - article no. A19

    SciTech Connect

    Baosheng Jin; Rui Xiao; Zhongyi Deng; Qilei Song

    2009-07-01

    To concentrate CO{sub 2} in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, while the outlet gas stream from the air reactor contains only N{sub 2} and some unused O{sub 2}. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO{sub 4}+ H{sub 2}) is developed by means of the commercial code FLUENT and the effects of partial pressure of H{sub 2} (concentration of H{sub 2}) on chemical looping combustion performance are also studied. The results show that the concentration of H{sub 2} could enhance the CLC performance.

  7. Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics.

    PubMed

    Zhou, Zhaohui; Liu, Jin; Long, Run; Li, Linqiu; Guo, Liejin; Prezhdo, Oleg V

    2017-05-17

    Ultrafast charge recombination in hematite (α-Fe2O3) severely limits its applications in solar energy conversion and utilization, for instance, in photoelectrochemical water splitting. We report the first time-domain ab initio study of charge relaxation dynamics in α-Fe2O3 with and without the oxygen vacancy (Ov) defect, using non-adiabatic molecular dynamics implemented within time-dependent density functional theory. The simulations show that the hole trapping is the rate-limiting step in the electron-hole recombination process for both neutral and ionized Ov systems. The electron trapping is fast, and the trapped electron are relatively long-lived. A similar asymmetry is found for the relaxation of free charge carriers: relaxation of photoholes in the valence band is slower than relaxation of photoelectrons in the conduction band. The slower dynamics of holes offers an advantage to water oxidation at α-Fe2O3 photoanodes. Notably, the neutral Ov defect accelerates significantly the charge recombination rate, by about a factor of 30 compared to the ideal lattice, due to the stronger electron-vibrational coupling at the defect. However, the recombination rate in the ionized Ov defect is decreased by a factor of 10 with respect to the neutral defect, likely due to expansion of the local iron shell around the Ov site. The Ov defect ionization in α-Fe2O3 photoanodes is important for increasing both electrical conductivity and charge carrier lifetimes. The simulations reproduce well the time scales for the hot carrier cooling, trapping and recombination available from transient spectroscopy experiments, and suggest two alternative mechanisms for the Ov-assisted electron-hole recombination. The study provides a detailed atomistic understanding of carrier dynamics in hematite, and rationalizes the experimentally reported activation of α-Fe2O3 photoanodes by incorporation of Ov defects.

  8. Effects of haemoglobin-based oxygen carrier hemoglobin glutamer-200 (bovine) on intestinal perfusion and oxygenation in a canine hypovolaemia model.

    PubMed

    Driessen, B; Jahr, J S; Lurie, F; Griffey, S M; Gunther, R A

    2001-05-01

    The objective of this investigation was to study the effects of the first marketed haemoglobin-based oxygen carrier, Hemoglobin glutamer-200 (bovine) (Hb-200) (Oxyglobin) on splanchnic perfusion and oxygenation in a canine model of acute hypovolaemia. Twelve anaesthetized dogs [mean weight 30.8 (S.D. 1.4) kg] were instrumented for recordings of heart rate (HR), mean arterial pressure (MAP), central venous pressure (CVP), cardiac output and cranial mesenteric arterial (CMA) and venous blood flows (CMV). Total and plasma haemoglobin (Hb), oxygen content and saturation, lactate concentration, pH and blood gases were analysed in arterial, mixed venous and mesenteric venous blood samples. Measurements were made before (baseline) and after 1 h of haemorrhage, after which animals were resuscitated with either shed blood (controls) or Hb-200 until HR, MAP and CVP returned to prehaemorrhage levels. Recordings were repeated immediately and 3 h after termination of fluid resuscitation, after which organ specimens were obtained for microscopic examination. Haemorrhage (average 32 ml kg(-1)) reduced MAP to 50 mm Hg, increased HR and systemic vascular resistance (SVR), and was accompanied in both the systemic and the splanchnic circulation by significant decreases in blood flow, Hb content and oxygen delivery (DO2), and lactic acidosis. In controls, all variables recovered to baseline after isovolaemic resuscitation with shed blood. In dogs resuscitated with a small volume of Hb-200 (10 ml kg(-1)), HR, MAP, CVP and CMA and CMV blood flows returned to baseline. However, cardiac output, total Hb, oxygen content and systemic and mesenteric DO2 remained depressed while SVR increased further. Mesenteric and systemic acid-base status recovered in both groups, and there was no difference in microscopic tissue damage between groups. Thus, Hb-200 reconstituted splanchnic perfusion and oxidative metabolism in spite of pronounced systemic vasoconstriction and insufficient restoration of CO

  9. The effect of synthetic oxygen carrier-enriched fibrin hydrogel on Schwann cells under hypoxia condition in vitro.

    PubMed

    Ma, Teng; Wang, Yuqing; Qi, Fengyu; Zhu, Shu; Huang, Liangliang; Liu, Zhongyang; Huang, Jinghui; Luo, Zhuojing

    2013-12-01

    Schwann cell (SC), which plays a key role in peripheral nerve regeneration, is one of the most classic supportive cells in neural tissue engineering. However, the biological activity of SCs seeded in nerve scaffolds decays subsequently due to local hypoxia induced by ischemia. Thus, we aimed to investigate whether a synthetic oxygen carrier-enriched fibrin gel would provide a sustained oxygen release to cultured SCs in vitro for overcoming a temporary (48 h) oxygen deprivation. In this study, perfluorotributylamine (PFTBA)-based oxygen carrying fibrin gel was prepared to provide oxygen for SCs under normoxic or hypoxic conditions. The dissolved oxygen within the culture media was measured by a blood-gas analyzer to quantify the time course of oxygen release from the PFTBA-enriched fibrin gel. SCs were cultured in the presence or absence of PFTBA-enriched fibrin gel under normoxic or hypoxic conditions. The tolerance of SCs to hypoxia was examined by a cell apoptosis assay. The growth of cells was characterized using S-100 staining and a CCK-8 assay. The migration of cells was examined using a Transwell chamber. The mRNA of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glial cell derived neurotrophic factor (GDNF), neural cell adhesion molecule (N-CAM) and vascular endothelial growth factor (VEGF) in SCs were assayed by RT-PCR. In addition, SCs cultured in 3D PFTBA-enriched hydrogel were characterized by Live/Dead staining and the mRNA levels of BDNF, NGF, GDNF, N-CAM and VEGF were assayed by RT-PCR. The results showed that the PFTBA-enriched fibrin hydrogel was able to promote cell adhesion, migration, and proliferation under hypoxic conditions. Interestingly, PFTBA applied through the fibrin hydrogel dramatically enhanced the mRNA of BDNF, NGF, GDNF, N-CAM and VEGF under hypoxic condition. These findings highlight the possibility of enhancing nerve regeneration in cellular nerve grafts through PFTBA increased neurotropic secretion in SCs

  10. Separation and determination of reduced vitamin C in polymerized hemoglobin-based oxygen carriers of the human placenta.

    PubMed

    Chen, Gang; Mo, Ling; Li, Shen; Zhou, Wentao; Wang, Hong; Liu, Jiaxin; Yang, Chengmin

    2015-06-01

    The molybdenum blue method was used to determine the content of reduced vitamin C (Vc) in a solution of polymerized hemoglobin-based oxygen carriers (HBOCs) of the human placenta. The conditions of absorption wavelength, HCl addition, and reaction time, were investigated. The results of validation experiments showed that under the optimized conditions, a standard curve was confirmed with good linearity of 0.9985, for the Vc amount ranging from 0-200 μg. The values for relative standard deviation (RSD) of the precision and repeatability were both below 5%. Vc recovery was in the range of 97-102%. The conclusion could be made that a reduction in Vc content could be tested effectively by the molybdenum blue method.

  11. Charge carrier dynamics in nanocrystalline Dy substituted ceria based oxygen ion conductors

    NASA Astrophysics Data System (ADS)

    Anirban, Sk.; Dutta, A.

    2016-05-01

    Nano-crystalline Ce1-xDyxO2-δ (x = 0.1-0.5) materials were prepared using the low temperature citrate auto-ignition method. The Rietveld analysis of the XRD data confirmed the single phase cubic fluorite structure. The particle sizes of the sintered samples are in nano range and lattice parameter increases with Dy concentration. Polydispersed and agglomerated particles are observed by SEM. The EDAX spectra show good stoichiometry of the different atoms in the samples. The conductivity is found to have both grain and grain boundary contribution and shows highest value at x= 0.2. The frequency dependence of dielectric permittivity has been analyzed using Havrilliak-Negami formalism. The variation in different electrical properties has been explained by formation defect associates and their interaction with charge carriers.

  12. Charge carrier dynamics in nanocrystalline Dy substituted ceria based oxygen ion conductors

    SciTech Connect

    Anirban, Sk.; Dutta, A.

    2016-05-06

    Nano-crystalline Ce{sub 1-x}Dy{sub x}O{sub 2-δ} (x = 0.1-0.5) materials were prepared using the low temperature citrate auto-ignition method. The Rietveld analysis of the XRD data confirmed the single phase cubic fluorite structure. The particle sizes of the sintered samples are in nano range and lattice parameter increases with Dy concentration. Polydispersed and agglomerated particles are observed by SEM. The EDAX spectra show good stoichiometry of the different atoms in the samples. The conductivity is found to have both grain and grain boundary contribution and shows highest value at x= 0.2. The frequency dependence of dielectric permittivity has been analyzed using Havrilliak-Negami formalism. The variation in different electrical properties has been explained by formation defect associates and their interaction with charge carriers.

  13. Different Methods of Manufacturing Fe-Based Oxygen Carrier Particles for Reforming Via Chemical Looping, and Their Effect on Performance

    NASA Astrophysics Data System (ADS)

    Cleeton, J. P. E.; Bonn, C. D.; Müller, C. R.; Dennis, J. S.; Scott, S. A.

    Chemical looping combustion (CLC) is a means of combusting carbonaceous fuels, which inherently separates the greenhouse gas carbon dioxide from the remaining combustion products, and has the potential to be used for the production of high-purity hydrogen. Iron-based oxygen carriers for CLC have been subject to considerable work; however, there are issues regarding the lifespan of iron-based oxygen carriers over repeated cycles. In this work, haematite (Fe2O3) was reduced in an N2+CO+CO2 mixture within a fluidised bed at 850°C, and oxidised back to magnetite (Fe3O4) in a H2O+N2 mixture, with the subsequent yield of hydrogen during oxidation being of interest. Subsequent cycles started from Fe3O4 and two transition regimes were studied; Fe3O4↔Fe0.947O and Fe3O4↔Fe. Particles were produced by mechanical mixing and co-precipitation. In the case of co-precipitated particles, Al was added such that the ratio of Fe:Al by weight was 9:1, and the final pH of the particles during precipitation was investigated for its subsequent effect on reactivity. This paper shows that co-precipitated particles containing additives such as Al may be able to achieve consistently high H2 yields when cycling between Fe3O4 and Fe, and that these yields are a function of the ratio of [CO2] to [CO] during reduction, where thermodynamic arguments suggest that the yield should be independent of this ratio. A striking feature with our materials was that particles made by mechanical mixing performed much better than those made by co-precipitation when cycling between Fe3O4 and Fe0.947O, but much worse than co-precipitated particles when cycling between Fe3O4 and Fe.

  14. Nanogranular metallic Fe oxygen deficient TiO2-δ composite films: a room temperature, highly carrier polarized magnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Yoon, S. D.; Widom, A.; Miller, K. E.; McHenry, M. E.; Vittoria, C.; Harris, V. G.

    2008-05-01

    Nanogranular metallic iron (Fe) and titanium dioxide (TiO2-δ) were sequentially deposited on (100) lanthanum aluminate (LaAlO3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. By sequential deposition, ≈10 nm diameter metallic Fe spherical grains were suspended within a TiO2-δ matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 G at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed with the measured value. The film composite structure was characterized as a p-type magnetic semiconductor at 300 K with a carrier density of the order of ≈1022 cm-3. The hole carriers were excited at the interface between the nanogranular Fe and TiO2-δ matrix, similar to holes excited in the metal/n-type semiconductor interface commonly observed in metal-oxide-semiconductor (MOS) devices. From the large anomalous Hall effect measured in these films, we observed that the holes at the interface were strongly spin polarized. Structure and magnetotransport properties suggested that these PLD films have potential spintronics applications.

  15. Sol-gel-derived NiO/NiAl{sub 2}O{sub 4} oxygen carriers for chemical-looping combustion by coal char

    SciTech Connect

    Haibo Zhao; Liming Liu; Baowen Wang; Di Xu; Linlin Jiang; Chuguang Zheng

    2008-03-15

    This paper focuses on the investigation of Ni-based oxygen carriers for CLC by coal char. First, Al(OC{sub 3}H{sub 7}){sub 3} and Ni(NO{sub 3}){sub 2} are selected as the main raw materials to prepare sol-gel-derived NiO/NiAl{sub 2}O{sub 4} oxygen carriers. The oxygen carrier with a mass content of 60% NiO, a sintering temperature of 1300{sup o}C, and a sintering time of 6 h performs comparatively well. Second, the reduction reaction of the NiO/NiAl{sub 2}O{sub 4} oxygen carriers with char and the circular reduction/oxidation reactions of the NiO/NiAl{sub 2}O{sub 4} oxygen carriers with char/air or hydrogen/air are carried out in a thermogravimetric analysis (TGA) instrument to investigate the reactivities and chemical life of the prepared NiO/NiAl{sub 2}O{sub 4} oxygen carriers. The experimental results show that (a) when the TGA temperature is higher than 850{sup o}C, NiO/NiAl{sub 2}O{sub 4} starts to react with coal char rapidly, which indicates that CLC of coal char using NiO/NiAl{sub 2}O{sub 4} as oxygen carriers is a feasible technology of energy utilization in principle; (b) NiO/NiAl{sub 2}O{sub 4}, which maintains its activity over single-cycle reduction/oxidation reactions with char/air or multiple-cycle reduction/oxidation reactions with hydrogen/air, exhibits extremely good recyclablity; (c) the porous beehive structure of the NiO/NiAl{sub 2}O{sub 4} particle is maintained, and the sintering behavior between different particles is not observed during cyclic studies. Those experimental results prove the sol-gel-derived oxygen carrier NiO/NiAl{sub 2}O{sub 4} is capable of being used in chemical-looping combustion fueled by coal char or H{sub 2}. 51 refs., 5 figs., 5 tabs.

  16. Bloodless reperfusion with the oxygen carrier HBOC-201 in acute myocardial infarction: a novel platform for cardioprotective probes delivery.

    PubMed

    García-Ruiz, Jose M; Galán-Arriola, Carlos; Fernández-Jiménez, Rodrigo; Aguero, Jaume; Sánchez-González, Javier; García-Alvarez, Ana; Nuno-Ayala, Mario; Dubé, Gregory P; Zafirelis, Zafiris; López-Martín, Gonzalo J; Bernal, Juan A; Lara-Pezzi, Enrique; Fuster, Valentín; Ibáñez, Borja

    2017-03-01

    Reperfusion, despite being required for myocardial salvage, is associated with additional injury. We hypothesize that infarct size (IS) will be reduced by a period of bloodless reperfusion with hemoglobin-based oxygen carriers (HBOC) before blood-flow restoration. In the pig model, we first characterized the impact of intracoronary perfusion with a fixed volume (600 ml) of a pre-oxygenated acellular HBOC, HBOC-201, on the healthy myocardium. HBOC-201 was administered through the lumen of the angioplasty balloon (i.e., distal to the occlusion site) immediately after onset of coronary occlusion at 1, 0.7, 0.4, or 0.2 ml/kg/min for 12, 17, 30, and 60 min, respectively, followed by blood-flow restoration. Outcome measures were systemic hemodynamics and LV performance assessed by the state-of-the-art cardiac magnetic resonance (CMR) imaging. The best performing HBOC-201 perfusion strategies were then tested for their impact on LV performance during myocardial infarction, in pigs subjected to 45 min mid-left anterior descending (LAD) coronary occlusion. At the end of the ischemia duration, pigs were randomized to regular reperfusion (blood-only reperfusion) vs. bloodless reperfusion (perfusion with pre-oxygenated HBOC-201 distal to the occlusion site), followed by blood-flow restoration. Hemodynamics and CMR-measured LV performance were assessed at 7- and 45-day follow-up. In modifications of the HBOC-201 procedure, glucose and insulin were included to support cardiac metabolism. A total of 66 pigs were included in this study. Twenty healthy pigs (5 per infusion protocol) were used in the study of healthy myocardium. Intracoronary administration of HBOC-201 (600 ml) at varying rates, including a flow of 0.4 ml/kg/min (corresponding to a maximum perfusion time of 30 min), did not damage the healthy myocardium. Slower perfusion (longer infusion time) was associated with permanent LV dysfunction and myocardial necrosis. A total of 46 pigs underwent MI induction

  17. Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity.

    PubMed

    Choudhury, Biswajit; Bayan, Sayan; Choudhury, Amarjyoti; Chakraborty, Purushottam

    2016-03-01

    Oxygen vacancies are introduced into hydrothermally processed TiO2 nanotube by vacuum calcination. Formation of oxygen vacancies modifies the local coordination in TiO2 as evident from Raman spectroscopy and secondary ion mass spectrometry (SIMS) results. The surface area is increased from 172.5m(2)/g in pure to 405.1m(2)/g in defective TiO2 nanotube. The mid-band gap electronic states created by oxygen vacancies are mostly responsible for the effective narrowing of band gap. Charge carrier separation is sufficiently prolonged as the charged oxygen defect states inhibit facile carrier recombination. With high surface area, narrowed band gap and separated charge carriers defective TiO2 nanotube is a suitable candidate in the photodegradation of methylene blue (MB) and phenol under visible light illumination. Photosensitized electron transfer from MB to the conduction band of TiO2 and the photodegradation of MB is facilitated in presence of high density of oxygen vacancies. Unlike MB, phenol absorbs in the UV region and does not easily excited under visible light. Phenol shows activity under visible light by forming charge transfer complex with TiO2. Defect trapped carriers become available at the phenol-TiO2 interface and finally interact with phenol molecule and degrade it.

  18. Comparative investigation on chemical looping combustion of coal-derived synthesis gas containing H2S over supported NiO oxygen carriers

    SciTech Connect

    Ksepko, E.; Siriwardane, R.; Tian, H.; Simonyi, T.; Sciazko, M.

    2010-01-01

    Chemical looping combustion (CLC) of simulated coal-derived synthesis gas was conducted with NiO oxygen carriers supported on SiO2, ZrO2, TiO2, and sepiolite. The effect of H2S on the performance of these samples for the CLC process was also evaluated. Five-cycle thermogravimetric analysis (TGA) tests at 800 C indicated that all oxygen carriers had a stable performance at 800 C, except NiO/SiO2. Full reduction/oxidation reactions of the oxygen carrier were obtained during the five-cycle test. It was found that support had a significant effect on reaction performance of NiO both in reduction and oxidation rates. The reduction reaction was significantly faster than the oxidation reaction for all oxygen carriers, while the oxidation reaction is fairly slow due to oxygen diffusion on NiO layers. The reaction profile was greatly affected by the presence of H2S, but there was no effect on the capacity due to the presence of H2S in synthesis gas. The presence of H2S decreased reduction reaction rates significantly, but oxidation rates of reduced samples increased. X-ray diffraction (XRD) data of the oxidized samples after a five-cycle test showed stable crystalline phases without any formation of sulfides or sulfites/sulfates. Increase in reaction temperature to 900 C had a positive effect on the performance.

  19. Optimization of lipase production by Staphylococcus warneri EX17 using the polydimethylsiloxanes artificial oxygen carriers.

    PubMed

    Rech, Fernanda Roberta; Volpato, Giandra; Ayub, Marco Antônio Záchia

    2011-09-01

    In this research, the combined effects of polydimethylsiloxane (PDMS) and different conditions of oxygen volumetric mass transfer coefficient (k(L)a) on lipase production by Staphylococcus warneri EX17 were studied and optimized in bioreactor cultures. Raw glycerol from biodiesel synthesis was used as the sole carbon source. Full-factorial central composite design and the response surface methodology were employed for the experimental design and analysis of the results. The optimal polydimethylsiloxane concentration and mass coefficient transfer (k(L)a) were found to be 13.5% (v/v) and 181 h(-1), respectively. Under these conditions, the maximal cell production obtained was 10.0 g/l, and the volumetric lipase activities of approximately 490 U/l, after 6 h of cultivation. These results are in close agreement with the model predictions. Results obtained in this work reveal the positive effects of PDMS on oxygen volumetric mass transfer coefficient (k(L)a) in the Staphylococcus warneri EX17 cultivation and lipase production.

  20. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity.

    PubMed

    He, Weiwei; Kim, Hyun-Kyung; Wamer, Wayne G; Melka, David; Callahan, John H; Yin, Jun-Jie

    2014-01-15

    Semiconductor nanostructures with photocatalytic activity have the potential for many applications including remediation of environmental pollutants and use in antibacterial products. An effective way for promoting photocatalytic activity is depositing noble metal nanoparticles (NPs) on a semiconductor. In this paper, we demonstrated the successful deposition of Au NPs, having sizes smaller than 3 nm, onto ZnO NPs. ZnO/Au hybrid nanostructures having different molar ratios of Au to ZnO were synthesized. It was found that Au nanocomponents even at a very low Au/ZnO molar ratio of 0.2% can greatly enhance the photocatalytic and antibacterial activity of ZnO. Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au NPs on the generation of reactive oxygen species and photoinduced charge carriers. Deposition of Au NPs onto ZnO resulted in a dramatic increase in light-induced generation of hydroxyl radical, superoxide and singlet oxygen, and production of holes and electrons. The enhancing effect of Au was dependent on the molar ratio of Au present in the ZnO/Au nanostructures. Consistent with these results from ESR measurements, ZnO/Au nanostructures also exhibited enhanced photocatalytic and antibacterial activity. These results unveiled the enhanced mechanism of Au on ZnO and these materials have great potential for use in water purification and antibacterial products.

  1. Size-dependent interaction of cells and hemoglobin-albumin based oxygen carriers prepared using the SPG membrane emulsification technique.

    PubMed

    Lai, Yao-Tong; Ohta, Seiichi; Akamatsu, Kazuki; Nakao, Shin-Ichi; Sakai, Yasuyuki; Ito, Taichi

    2015-01-01

    Hemoglobin-based oxygen carriers (HBOCs) of various sizes have been developed so far, but their optimum size has not been clarified yet. Here, we examined the effect of HBOCs size on their interaction with cells using Shirasu porous glass (SPG) membrane emulsification technique, which enables precise tuning of particle size. Microspheres composed of bovine hemoglobin (bHb) and bovine serum albumin (BSA) was fabricated with the average diameters of 1.2-18.3 μm and the coefficient of variation of below 13%. Cellular uptake of the microspheres by RAW264.7 was observed at a diameter below 5 μm; however, uptake of the microspheres by HepG2 and HUVEC were not observed at any diameter. No enhancement of the generation of reactive oxygen species in the cytoplasm was detected at diameters above 9.8 μm in the three cell lines, due to their low cellular uptake. In addition, cytotoxicity of the microspheres decreased with increasing microsphere diameter in the three cell lines and microspheres of 18.3 μm showed good cellular compatibility regardless of the oxyhemoglobin percentage. Since cytotoxicity is a crucial factor in their applications, our systemic investigation would provide a new insight into the design of HBOCs. © 2015 American Institute of Chemical Engineers.

  2. HemoCD as a Totally Synthetic Artificial Oxygen Carrier: Improvements in the Synthesis and O2 /CO Discrimination.

    PubMed

    Kitagishi, Hiroaki; Mao, Qiyue; Kitamura, Naoya; Kita, Takahiro

    2017-04-01

    HemoCD, which is composed of an iron(II)porphyrin such as 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinatoiron(II) (Fe(II)TPPS) and a cyclodextrin (CD) dimer having a pyridine linker, represents a synthetic hemoglobin (Hb) model compound that exhibits reversible oxygen (O2 ) binding ability in aqueous solution at an ambient temperature. Therefore, hemoCD has the potential to be used as a totally synthetic artificial oxygen carrier. In this article, we describe the improvements of hemoCD related to its synthesis and O2 /CO selectivity. The synthesis procedure of the CD dimer of hemoCD was re-examined, and the CD dimer was successively synthesized from inexpensive β-CD with a 38% yield (three-steps), which enabled us to obtain the CD dimer in gram-quantities. The O2 /CO selectivity of hemoCD was also markedly improved using an iron(II)porphyrin having a carboxylate group at the distal site of hemoCD. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. A Hemoglobin Based Oxygen Carrier, Bovine Polymerized Hemoglobin (HBOC-201) versus Hetastarch (HEX) in an Uncontrolled Liver Injury Hemorrhagic Shock Swine Model with Delayed Evacuation

    DTIC Science & Technology

    2004-10-01

    A Hemoglobin Based Oxygen Carrier, Bovine Polymerized Hemoglobin (HBOC-201) versus Hetastarch (HEX) in an Uncontrolled Liver Injury Hemorrhagic Shock...Transcutaneous tis- sue oxygenation was restored more rap- idly in HBOC-201 pigs, there was a trend to lower lactic acid, and base deficit was less...lactic acidosis and base deficit (BD) abnormalities, indicating on-going hypoperfusion.2–4 As these abnormalities measured upon hospital arrival

  4. Preoxygenated hemoglobin-based oxygen carrier HBOC-201 annihilates myocardial ischemia during brief coronary artery occlusion in pigs.

    PubMed

    Te Lintel Hekkert, Maaike; Dubé, Gregory P; Regar, Evelyn; de Boer, Martine; Vranckx, Pascal; van der Giessen, Wim J; Serruys, Patrick W; Duncker, Dirk J

    2010-03-01

    Because of their ability to perfuse remote regions and deliver oxygen, hemoglobin-based oxygen carriers (HBOCs) may be considered in the treatment of several ischemic conditions such as acute coronary syndromes or high-risk percutaneous intervention. Here we studied the effects of intracoronary infusion of ex vivo preoxygenated HBOC-201 during brief total coronary artery occlusion (CAOs) on myocardial oxygenation and left ventricular (LV) function in a large animal model and investigated the influence of HBOC-201 temperature and infusion rate on these effects. Thirteen open-chest anesthetized swine were instrumented for measurement of global and regional LV function and metabolism. CAOs were induced by inflating an intracoronary balloon catheter; preoxygenated HBOC-201 (12 g/dL) was infused distally through the central lumen of the balloon catheter. Animals underwent consecutive 3-min CAOs interspersed by 30 min of reperfusion, accompanied by different HBOC-201 infusion rates (0, 15, 23, 30, 40, and 50 ml/min) and/or two infusion temperatures (18 degrees C or 37 degrees C) in random order. CAO elicited immediate loss of systolic shortening (SS) in the ischemic region (19 +/- 1% at baseline vs. -3 +/- 2% at end of CAO), resulting in decreases in maximum rate of rise in LV pressure (15 +/- 5%) and stroke volume (12 +/- 4%; all P < 0.05). Balloon deflation resulted in marked coronary reactive hyperemia (to 472 +/- 74% of baseline), increases in coronary venous concentrations of adenosine + inosine (to 218 +/- 26% of baseline; both P < 0.05) and rapid restoration of SS toward baseline. HBOC-201 ameliorated the CAO-induced changes in SS, stroke volume, reactive hyperemia, and coronary venous adenosine + inosine. The effects were temperature and flow dependent with full preservation of SS at 50 ml/min HBOC-201 of 37 degrees C. In conclusion, intracoronary preoxygenated HBOC-201 preserved myocardial oxygenation and LV function in swine during CAO in a dose- and

  5. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H{sub 2}) for chemical-looping combustion

    SciTech Connect

    Alberto Abad; Francisco Garcia-Labiano; Luis F. de Diego; Pilar Gayn; Juan Adnez

    2007-08-15

    The reactivity of three Cu-, Fe-, and Ni-based oxygen carriers to be used in a chemical-looping combustion (CLC) system using syngas as fuel has been analyzed. The oxygen carriers exhibited high reactivity during reduction with fuel gases present in syngas (H{sub 2} and CO), with average values in the range 8-30% min{sup -1}. No effect of the gas products (H{sub 2}O, CO{sub 2}) on the reduction reaction rate was detected. The kinetic parameters of reaction with H{sub 2} and CO have been determined by thermogravimetric analysis. The grain model with spherical or platelike geometry in the grain was used for the kinetic determination, in which the chemical reaction controlled the global reaction rate. The activation energies determined for these reactions were low, with values ranging from 14 to 33 kJ mol{sup -1}. The reaction order depended on the reacting gas, and values from 0.5 to 1 were found. Moreover, the reactivity of the oxygen carriers when both H{sub 2} and CO are simultaneously present in the reacting gases has been analyzed, both at atmospheric and pressurized conditions. For the Cu- and Fe-based oxygen carriers, the reaction rate of the oxygen carrier with syngas corresponded to the addition of the reaction rates for the individual fuel gases, H{sub 2} and CO. For the Ni-based oxygen carrier, the reaction rate was that corresponding to the fuel gas that reacted faster with the oxygen carrier at the reacting conditions (fuel concentration, temperature, and pressure). The consequences of the behavior of the reaction of syngas and the water-gas shift (WGS) equilibrium on the design of the fuel reactor of a CLC system have been analyzed. A preliminary estimation of the solids inventory for the use of syngas in the fuel reactor of a CLC system gave values in the range of 19-34 kg MW{sup -1} when the WGS equilibrium was considered to be instantaneous. 8 figs., 4 tabs.

  6. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    NASA Technical Reports Server (NTRS)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure < 70 mmHg, head trauma, and penetrating injury requiring surgery. HSD and HSS have received regulatory approval in 14 and 3 countries, respectively, with 81,000+ units sold. The primary reported use was head injury and trauma resuscitation. Complications and reported adverse events are surprisingly rare and not significantly different from other solutions.HBOCs are potent volume expanders in addition to oxygen carriers with volume expansion greater than standard colloids. Several investigators have evaluated small volume hyperoncotic HBOCs or HS-HBOC formulations for hypotensive and normotensive resuscitation in animals. A consistent finding in resuscitation with HBOCs is depressed cardiac output. There is some evidence that HBOCs more efficiently unload

  7. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    NASA Technical Reports Server (NTRS)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure < 70 mmHg, head trauma, and penetrating injury requiring surgery. HSD and HSS have received regulatory approval in 14 and 3 countries, respectively, with 81,000+ units sold. The primary reported use was head injury and trauma resuscitation. Complications and reported adverse events are surprisingly rare and not significantly different from other solutions.HBOCs are potent volume expanders in addition to oxygen carriers with volume expansion greater than standard colloids. Several investigators have evaluated small volume hyperoncotic HBOCs or HS-HBOC formulations for hypotensive and normotensive resuscitation in animals. A consistent finding in resuscitation with HBOCs is depressed cardiac output. There is some evidence that HBOCs more efficiently unload

  8. Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO{sub 4} oxygen carrier in a fluidized bed reactor

    SciTech Connect

    Qilei Song; Rui Xiao; Zhongyi Deng; Wenguang Zheng; Laihong Shen; Jun Xiao

    2008-11-15

    The cyclic test of a CaSO{sub 4}-based oxygen carrier (natural anhydrite) in alternating reducing simulated coal gas and oxidizing conditions was performed at 950{degree}C in a fluidized bed reactor at atmospheric pressure. A high concentration of CO{sub 2} was obtained in the reduction. The H{sub 2} and CO conversions and CO{sub 2} yield increased initially and final decreased significantly. The release of SO{sub 2} and H{sub 2}S during the cyclic test was found to be responsible for the decrease of reactivity of a CaSO{sub 4} oxygen carrier. The oxygen carrier conversion after the reduction reaction decreased gradually in the cyclic test. Through the comparison of mass-based reaction rates as a function of mass conversion at typical cycles, it was also evident that the reactivity of a CaSO{sub 4} oxygen carrier increased for the initial cycles but finally decreased after around 15 cycles. X-ray diffraction analysis revealed that the presence and intensity of the reduction sulfur species was in accordance with the results of gas conversion. The content of CaO was higher than expected, suggesting the formation of SO{sub 2} and H{sub 2}S during the cycles. Surface morphology analysis demonstrates that the natural anhydrite particle surface varied from impervious to porous after the cyclic test. It was also observed that the small grains on the surface of the oxygen carrier sintered in the cyclic tests. Energy-dispersive spectrum analysis also demonstrated the decrease of oxygen intensity after reduction, and CaO became the main component after the 20th oxidation. Pore structure analysis suggested that the particles agglomerated or sintered in the cyclic tests. The possible method for sulfur mitigation is proposed. Finally, some basic consideration on the design criteria of a CLC system for solid fuels using a CaSO{sub 4} oxygen carrier is discussed by the references and provides direction for future work. 49 refs., 10 figs., 5 tabs.

  9. Targeted O2 delivery by low-p50 hemoglobin: a new basis for hemoglobin-based oxygen carriers.

    PubMed

    Winslow, Robert M

    2005-01-01

    We have proposed new criteria for a successful cell-free, hemoglobin-based O2 carrier. These include increased molecular radius, increased viscosity, increased oncotic pressure, and reduced p50. A new molecule, MalPEG-Hb, formulated at 4.2g/dL in lactated Ringer's solution (MP4), has been produced according to these new criteria. MP4 has a p50 of 5-6 mm Hg, oncotic pressure of 49mm Hg and viscosity of 2.2cPs. After 50% exchange transfusion with MP4, rats survive a 60% controlled hemorrhage in spite of total hemoglobin of 7.8 g/dL and plasma hemoglobin concentration of 1.6 g/dL. This model results in 50% mortality in control animals and 100% mortality in animals exchange-transfused with either crosslinked or polymerized hemoglobin. Oxygen supply to tissue was measured directly in the hamster skinfold model, in which O2 release in precapillary and capillary vessels can be quantified. The data demonstrate that the effectiveness of MP4 results from its ability to conserve O2 in precapillary vessels and release O2 in capillaries, thereby "targeting" O2 to hypoxic tissue. Preservation of functional capillary density and prevention of vasoconstriction further contribute to the effectiveness of this new formulation.

  10. Primary and secondary immune responses to keyhole limpet hemocyanin in rats after infusion of hemoglobin vesicle, an artificial oxygen carrier.

    PubMed

    Fujihara, Mitsuhiro; Takahashi, Daisuke; Abe, Hideki; Sakai, Hiromi; Horinouchi, Hirohisa; Kobayashi, Koichi; Ikeda, Hisami; Azuma, Hiroshi

    2014-03-01

    Hemoglobin vesicles (HbVs), artificial oxygen carriers encapsulating concentrated Hb solution on phospholipid vesicles (liposomes), are promising candidates for clinically useful transfusion. Although HbV infusion transiently suppressed the proliferative response of rat splenic T-cells to concanavalin A or keyhole limpet hemocyanin (KLH), a T-cell-dependent antigen, in ex vivo culture conditions, HbV infusion did not affect the primary IgG antibody response. We extended our assessment of the effects of HbV infusion on the systemic immune response using primary and secondary responses to KLH in rats. We observed that the generation of primary anti-KLH IgM antibody in HbV-infused rats was not suppressed but was instead higher than those in saline-infused rats. Furthermore, HbV infusion did not suppress the increase of IgG subclass of KLH antibody in secondary response. The T cell response to KLH of bulk spleen cells, as derived from 2-3 months after secondary KLH immunization, was unaffected by infusion of HbV, suggesting that HbV loading has no suppressive effect on homeostatic survival of memory T-cells against KLH. These results indicate that HbV is highly biocompatible in systemic immune responses in rats.

  11. Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.

    PubMed

    Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang

    2014-05-01

    Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Hepatically-metabolized and -excreted artificial oxygen carrier, hemoglobin vesicles, can be safely used under conditions of hepatic impairment

    SciTech Connect

    Taguchi, Kazuaki; Miyasato, Mayumi; Ujihira, Hayato; Watanabe, Hiroshi; Kadowaki, Daisuke; Sakai, Hiromi; Tsuchida, Eishun; Horinouchi, Hirohisa; Kobayashi, Koichi; Maruyama, Toru; Otagiri, Masaki

    2010-11-01

    The hemoglobin vesicle (HbV) is an artificial oxygen carrier in which a concentrated Hb solution is encapsulated in lipid vesicles. Our previous studies demonstrated that HbV is metabolized by the mononuclear phagocyte system, and the lipid components are excreted from the liver. It is well-known that many hepatically-metabolized and -excreted drugs show altered pharmaceutics under conditions of liver impairment, which results in adverse effects. The aim of this study was to determine whether the administration of HbV causes toxicity in rats with carbon tetrachloride induced liver cirrhosis. Changes in plasma biochemical parameters, histological staining and the pharmacokinetic distribution of HbV were evaluated after an HbV injection of the above model rats at a putative clinical dose (1400 mgHb/kg). Plasma biochemical parameters were not significantly affected, except for a transient elevation of lipase, lipid components and bilirubin, which recovered within 14 days after an HbV infusion. Negligible morphological changes were observed in the kidney, liver, spleen, lung and heart. Hemosiderin, a marker of iron accumulation in organs, was observed in the liver and spleen up to 14 days after HbV treatment, but no evidence of oxidative stress in the plasma and liver were observed. HbV is mainly distributed in the liver and spleen, and the lipid components are excreted into feces within 7 days. In conclusion, even under conditions of hepatic cirrhosis, HbV and its components exhibit the favorable metabolic and excretion profile at the putative clinical dose. These findings provide further support for the safety and effectiveness of HbV in clinical settings.

  13. Fluid resuscitation of uncontrolled hemorrhage using a hemoglobin-based oxygen carrier: effect of traumatic brain injury.

    PubMed

    White, Nathan J; Wang, Xu; Bradbury, Nicole; Moon-Massat, Paula F; Freilich, Daniel; Auker, Charles; McCarron, Richard; Scultetus, Anke; Stern, Susan A

    2013-02-01

    Animal models of combined traumatic brain injury (TBI) and hemorrhagic shock (HS) suggest a benefit of hemoglobin-based oxygen carrier (HBOC)-based resuscitation, but their use remains controversial, and little is known of the specific effects of TBI and high-pressure (large arterial injury) bleeding on resuscitation. We examine the effect of TBI and aortic tear injury on low-volume HBOC resuscitation in a swine polytrauma model and hypothesize that HBOC-based resuscitation will improve survival in the setting of aortic tear regardless of the presence of TBI. Anesthetized swine subjected to HS with aortic tear with or without fluid percussion TBI underwent equivalent limited resuscitation with HBOC, lactated Ringer's solution, or HBOC + nitroglycerine (vasoattenuated HBOC) and were observed for 6 h. There was no independent effect of TBI on survival time after adjustment for fluid type, and there was no interaction between TBI and resuscitation fluid type. However, total catheter hemorrhage volume required to reach target shock blood pressure was less with TBI (14.0 mL · kg(-1) [confidence interval, 12.4-15.6 mL · kg(-1)]) versus HS only (21.0 mL · kg(-1) [confidence interval, 19.5-22.5 mL · kg(-1)]), with equivalent lactate accumulation. Traumatic brain injury did not affect survival in this polytrauma model, but less hemorrhage was required in the presence of TBI to achieve an equivalent degree of shock suggesting globally impaired cardiovascular response to hemorrhage in the presence of TBI. There was also no benefit of HBOC-based fluid resuscitation over lactated Ringer's solution, contrary to models using liver injury as the source of hemorrhage, considering wound location is of paramount importance when choosing resuscitation strategy.

  14. Investigations into the effects of volatile biomass tar on the performance of Fe-based CLC oxygen carrier materials

    NASA Astrophysics Data System (ADS)

    Boot-Handford, Matthew E.; Florin, Nick; Fennell, Paul S.

    2016-11-01

    In this study we present findings from investigations into interactions between biomass tar and two iron based oxygen carrier materials (OCMs) designed for chemical-looping applications: a 100% Fe2O3 (100Fe) OCM and a 60 wt% Fe2O3/40 wt% Al2O3 (60Fe40Al) OCM. A novel 6 kWe two-stage, fixed-bed reactor was designed and constructed to simulate a chemical-looping combustion (CLC) process with ex situ gasification of biomass. Beech wood was pyrolysed in the first stage of the reactor at 773 K to produce a tar-containing fuel gas that was used to reduce the OCM loaded into the 2nd stage at 973 K. The presence of either OCM was found to significantly reduce the amount of biomass tars exiting the reactor by up to 71 wt% compared with analogous experiments in which the biomass tar compounds were exposed to an inert bed of sand. The tar cracking effect of the 60Fe40Al OCM was slightly greater than the 100Fe OCM although the reduction in the tar yield was roughly equivalent to the increase in carbon deposition observed for the 60Fe40Al OCM compared with the 100Fe OCM. In both cases, the tar cracking effect of the OCMs appeared to be independent of the oxidation state in which the OCM was exposed to the volatile biomass pyrolysis products (i.e. Fe2O3 or Fe3O4). Exposing the pyrolysis vapours to the OCMs in their oxidised (Fe2O3) form favoured the production of CO2. The production of CO was favoured when the OCMs were in their reduced (Fe3O4) form. Carbon deposition was removed in the subsequent oxidation phase with no obvious deleterious effects on the reactivity in subsequent CLC cycles with reduction by 3 mol% CO.

  15. Kinetics of Oxidation of a Reduced Form of the Cu-Based Oxygen-Carrier for Use in Chemical-Looping Combustion

    NASA Astrophysics Data System (ADS)

    Chuang, S. Y.; Dennis, J. S.; Hayhurst, A. N.; Scott, S. A.

    A co-precipitated mixture of CuO and Al2O3 is a good oxygen-carrier for chemical-looping combustion. The kinetics of regeneration of this reduced oxygen-carrier (355 - 500 urn) were measured from 300 to 750°C when reacting it with O2. Care was taken to ensure these measurements were not affected by interphase mass transfer. Efforts were also made to minimise sampling problems by using a rapid-response mass spectrometer for reactions lasting for 45 s or less; otherwise, a paramagnetic analyser for O2 was used, since the mass spectrometer drifted with time. The order of reaction with respect to O2 was found to be ˜ unity at 300 to 750°C. Below 600°C, the reduced oxygen-carrier was incompletely oxidised to a mixture of CU2O and Al2O3. Above 600°C, regeneration was completely to CuO and Al2O3 and was controlled to a considerable extent by external mass transfer. At these higher temperatures, regeneration involved a shrinking core mechanism and the two consecutive steps: 2Cu + 1/2O_2 to Cu_2 O, Cu_2 O + 1/2O_2 to 2CuO. The activation energies and pre-exponential factors for both reactions were measured from initial rates. The kinetics in the first cycle of operations were found to be similar to those in the subsequent cycles.

  16. Carrier Compensation by Excess Oxygen Atoms in Anatase Ti0.94Nb0.06O2+δ Epitaxial Thin Films

    NASA Astrophysics Data System (ADS)

    Hiroyuki Nogawa,; Taro Hitosugi,; Akira Chikamatsu,; Shoichiro Nakao,; Yasushi Hirose,; Toshihiro Shimada,; Hiroshi Kumigashira,; Masaharu Oshima,; Tetsuya Hasegawa,

    2010-04-01

    We report the effect of post-deposition annealing on the electrical transport properties of anatase Ti0.94Nb0.06O2 (TNO) epitaxial thin films. Annealing TNO films in pure oxygen drastically suppressed the carrier density (ne). A high ne of the order of 1021 cm-3 was recovered by successive annealing in pure hydrogen. Core-level X-ray photoemission spectroscopy revealed that Ti and Nb respectively exist as tetravalent and pentavalent ions in fully oxidized samples. The concentration of Nb5+ relative to that of Nb4+ tends to increase with O2 annealing, suggesting that carriers released by Nb donors are compensated by electron-killing impurity states created by O2 annealing. Based on these findings, we propose that excess oxygen atoms incorporated by O2 annealing occupy interstitial sites and behave as deep acceptor states, which compensate electron carriers generated by Nb doping. Resonant valence-band photoemission spectroscopy directly confirmed the formation of deep acceptor states associated with oxygen annealing.

  17. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    SciTech Connect

    Hallam, Brett Abbott, Malcolm; Nampalli, Nitin; Hamer, Phill; Wenham, Stuart

    2016-02-14

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.

  18. Influence of polarity of set voltage on the properties of conductive filaments in NiO based nonvolatile memory device

    NASA Astrophysics Data System (ADS)

    Yan, Hui-Yu; Li, Zhi-Qing

    2017-03-01

    In this paper, we realize the coexistence of bipolar and unipolar resistive switching (RS) in one Pt-Ir/NiO/TiB1+δ cell. The types of RS are controlled by polarity of set voltage and are free from the current compliance. Based on this coexistence, the set voltage and characters of filaments formed in RS are studied. The results show that the types of filaments also show polarity dependence on the set voltage. The positive set voltage can induce metallic filaments while the negative set voltage can result in semiconductor filaments. It reveals that the distribution of magnitude of set voltage shows abnormal polarity dependence in our devices. The combination the theory of interaction between oxygen vacancy defects and one-carrier impact ionization theory of breakdown account for these results. The influence of filament properties on RS types is also discussed.

  19. Carbon Monoxide-Saturated Hemoglobin-Based Oxygen Carriers Attenuate High-Altitude-Induced Cardiac Injury by Amelioration of the Inflammation Response and Mitochondrial Oxidative Damage.

    PubMed

    Wang, Qingshu; Hu, Ling; Hu, Yu; Gong, Gu; Tan, Hua; Deng, Li; Sun, Xiaoqin; Yi, Xiaobo; Sun, Yangyang; Wu, Wei; Li, Tao

    2017-01-01

    To investigate the therapeutic effect of carbon monoxide (CO) on high-altitude hypoxia-induced cardiac damage. Forty male C57BL/6 mice were randomly divided into 4 groups. The mice were exposed to normoxia or simulated 5,500-meter high-altitude hypoxia in a hypobaric chamber for 7 days. During the first 3 days, the mice were pretreated with CO-saturated hemoglobin (Hb)-based oxygen carrier (CO-HBOC), oxygen-saturated hemoglobin-based oxygen carrier (O2-HBOC) at a dose of 0.3 g Hb/kg/day or an equivalent volume of saline. The in vivo left ventricle function, cardiac enzyme release, histopathological changes, apoptosis and inflammation were also measured. High-altitude hypoxia induced significant cardiac damage, as demonstrated by impaired cardiac function and increased proapoptotic, proinflammatory and pro-oxidant markers. Pretreatment with CO-HBOC significantly improved cardiac performance, reduced cardiac enzyme release and limited myocardial apoptosis. The increased inflammatory response was also suppressed. In addition to the preserved mitochondrial structure, hypobaric hypoxia-induced mitochondrial oxidative damage was remarkably attenuated. Moreover, these antiapoptotic and antioxidative effects were accompanied by an upregulated phosphorylation of Akt, ERK and STAT3. This study demonstrated that CO-HBOC provides a promising protective effect on high-altitude hypoxia-induced myocardial injury, which is mediated by the inhibition of inflammation and mitochondrial oxidative damage. © 2016 S. Karger AG, Basel.

  20. Effects of heliox as carrier gas on ventilation and oxygenation in an animal model of piston-type HFOV: a crossover experimental study.

    PubMed

    Zeynalov, Bakhtiyar; Hiroma, Takehiko; Nakamura, Tomohiko

    2010-11-12

    This study aimed to compare gas exchange with heliox and oxygen-enriched air during piston-type high-frequency oscillatory ventilation (HFOV). We hypothesized that helium gas would improve both carbon dioxide elimination and arterial oxygenation during piston-type HFOV. Five rabbits were prepared and ventilated by piston-type HFOV with carrier 50% helium/oxygen (heliox50) or 50% oxygen/nitrogen (nitrogen50) gas mixture in a crossover study. Changing the gas mixture from nitrogen50 to heliox50 and back was performed five times per animal with constant ventilation parameters. Arterial blood gas, vital function and respiratory test indices were recorded. Compared with nitrogen50, heliox50 did not change PaCO2 when stroke volume remained constant, but significantly reduced PaCO2 after alignment of amplitude pressure. No significant changes in PaO2 were seen despite significant decreases in mean airway pressure with heliox50 compared with nitrogen50. This study demonstrated that heliox enhances CO2 elimination and maintains oxygenation at the same amplitude but with lower airway pressure compared to air/O2 mix gas during piston-type HFOV.

  1. Effect of the hemoglobin-based oxygen carrier HBOC-201 on laboratory instrumentation: cobas integra, chiron blood gas analyzer 840, Sysmex SE-9000 and BCT.

    PubMed

    Wolthuis, A; Peek, D; Scholten, R; Moreira, P; Gawryl, M; Clark, T; Westerhuis, L

    1999-01-01

    As part of a clinical trial, we evaluated the effects of the hemoglobin-based oxygen-carrier (HBOC) HBOC-201 (an ultrapurified, stroma-free bovine hemoglobin product, Biopure, Cambridge, MA, USA) on our routine clinical chemistry analyzer (Cobas Integra, F. Hoffmann-La Roche Ltd, Basel, Switzerland ), blood gas analyzer (Chiron 840, Chiron Diagnostics Corporation, East Walpole, MA, USA), routine hemocytometry analyzer (Sysmex SE-9000, TOA Medical Electronics Co Ltd., Kobe, Japan), hemostasis analyzer (BCT, Dade-Behring, Marburg, Germany) and bloodbanking system (Dia-Med-ID Micro Typing System, DiaMed AG, Cressier, Switzerland). The maximum tested concentration of HBOC-201 was 65 g/l. Of the 27 routine clinical chemistry tests challenged with HBOC-201, bilirubin-direct, creatine kinase MB-fraction (CK-MB), creatine kinase (CK), gamma-glutamyltransferase (GGT), magnesium and uric acid were influenced by even low concentrations of HBOC-201. These tests were excluded from use on the plasma of patients treated with HBOC-201. Since the non-availability of the cardiac marker CK-MB may lead to problems in acute situations, we introduced the qualitative Trop T-test (Boehringer Mannheim), which was not influenced. The applicability of another nine tests was limited by the concentration of the HBOC-201 in the patients' plasma. No interference of HBOC-201 in routine hemocytometry, hemostasis-analysis and red-blood cell agglutination detection (blood-bank tests) was observed. Although immediate patient-care was not compromised, routine use of hemoglobin-based oxygen carriers will have a strong impact on logistical management. The development of robust laboratory tests free from the interference of the pigmented oxygen carriers should therefore precede its introduction into routine transfusion medicine.

  2. Effects of GC temperature and carrier gas flow rate on on-line oxygen isotope measurement as studied by on-column CO injection.

    PubMed

    Chen, Zhi-Gang; Yin, Xi-Jie; Zhou, Youping

    2015-08-01

    Although deemed important to δ(18) O measurement by on-line high-temperature conversion techniques, how the GC conditions affect δ(18) O measurement is rarely examined adequately. We therefore directly injected different volumes of CO or CO-N2 mix onto the GC column by a six-port valve and examined the CO yield, CO peak shape, CO-N2 separation, and δ(18) O value under different GC temperatures and carrier gas flow rates. The results show the CO peak area decreases when the carrier gas flow rate increases. The GC temperature has no effect on peak area. The peak width increases with the increase of CO injection volume but decreases with the increase of GC temperature and carrier gas flow rate. The peak intensity increases with the increase of GC temperature and CO injection volume but decreases with the increase of carrier gas flow rate. The peak separation time between N2 and CO decreases with an increase of GC temperature and carrier gas flow rate. δ(18) O value decreases with the increase of CO injection volume (when half m/z 28 intensity is <3 V) and GC temperature but is insensitive to carrier gas flow rate. On average, the δ(18) O value of the injected CO is about 1‰ higher than that of identical reference CO. The δ(18) O distribution pattern of the injected CO is probably a combined result of ion source nonlinearity and preferential loss of C(16) O or oxygen isotopic exchange between zeolite and CO. For practical application, a lower carrier gas flow rate is therefore recommended as it has the combined advantages of higher CO yield, better N2 -CO separation, lower He consumption, and insignificant effect on δ(18) O value, while a higher-than-60 °C GC temperature and a larger-than-100 µl CO volume is also recommended. When no N2 peak is expected, a higher GC temperature is recommended, and vice versa. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Hydrogen production with CO 2 capture by coupling steam reforming of methane and chemical-looping combustion: Use of an iron-based waste product as oxygen carrier burning a PSA tail gas

    NASA Astrophysics Data System (ADS)

    Ortiz, María; Gayán, Pilar; de Diego, Luis F.; García-Labiano, Francisco; Abad, Alberto; Pans, Miguel A.; Adánez, Juan

    In this work it is analyzed the performance of an iron waste material as oxygen carrier for a chemical-looping combustion (CLC) system. CLC is a novel combustion technology with the benefit of inherent CO 2 separation that can be used as a source of energy for the methane steam reforming process (SR). The tail gas from the PSA unit is used as fuel in the CLC system. The oxygen carrier behaviour with respect to gas combustion was evaluated in a continuous 500 W th CLC prototype using a simulated PSA off-gas stream as fuel. Methane or syngas as fuel were also studied for comparison purposes. The oxygen carrier showed enough high oxygen transport capacity and reactivity to fully convert syngas at 880 °C. However, lower conversion of the fuel was observed with methane containing fuels. An estimated solids inventory of 1600 kg MW th -1 would be necessary to fully convert the PSA off-gas to CO 2 and H 2O. An important positive effect of the oxygen carrier-to-fuel ratio up to 1.5 and the reactor temperature on the combustion efficiency was found. A characterization of the calcined and after-used particles was carried out showing that this iron-based material can be used as oxygen carrier in a CLC plant since particles maintain their properties (reactivity, no agglomeration, high durability, etc.) after more than 111 h of continuous operation.

  4. Hemoglobin-vesicle, a cellular artificial oxygen carrier that fulfils the physiological roles of the red blood cell structure.

    PubMed

    Sakai, Hiromi; Sou, Keitaro; Horinouchi, Hirohisa; Kobayashi, Koichi; Tsuchida, Eishun

    2010-01-01

    Hb-vesicles (HbV) are artificial O(2) carriers encapsulating concentrated Hb solution (35 g/dL) with a phospholipid bilayer membrane (liposome). The concentration of the HbV suspension is extremely high ([Hb] = 10 g/dL) and it has an O(2) carrying capacity that is comparable to that of blood. HbV is much smaller than RBC (250 vs. 8000 nm), but it recreates the functions of RBCs; (i) the slower rate of O(2) unloading than Hb solution; (ii) colloid osmotic pressure is zero; (iii) the viscosity of a HbV suspension is adjustable to that of blood; (iv) HbV is finally captured by and degraded in RES; (v) co-encapsulation of an allosteric effector to regulate O(2) affinity; (vi) the lipid bilayer membrane prevents direct contact of Hb and vasculature; (vii) NO-binding is retarded to some extent by an intracellular diffusion barrier, and HbV does not induce vasoconstriction. (viii) Both RBC and HbV can be a carrier of not only O(2) but also exogenous CO. However, HbV has limitations such as a shorter functional half-life when compared with RBCs. On the other hand, the advantages of HbV are that it is pathogen-free and blood-type-antigen-free; moreover, it can withstand long-term storage of a few years, none of which can be achieved by the RBC transfusion systems.

  5. The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carriers.

    PubMed

    McCarthy, M R; Vandegriff, K D; Winslow, R M

    2001-08-30

    We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.

  6. Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model

    PubMed Central

    Moghadasi, Mohammad Amin; Nili-Ahmadabadi, Mahmoud; Forghani, Farsad; Kim, Hyoung Seop

    2016-01-01

    In general, melting process is not a common method for the production of oxide dispersion strengthened (ODS) alloys due to agglomeration and coarsening of oxide particles. However, vacuum casting process has recently been employed as a promising process to produce micro-scale oxide dispersed alloys. In this paper, we report the process and characterization of in situ formation and uniform dispersion of nano-scale Y-Ti oxide particles in Fe-10Ni-7Mn (wt.%) alloy. The processing route involves a solid-liquid reaction between the added TiO2 as an oxygen carrier and dissolved yttrium in liquid metal leading to an optimal microstructure with nano-sized dispersed oxide particles. The developed thermodynamic model shows the independence of the final phase constituents from experimental conditions such as melting temperature or vacuum system pressure which offers a general pathway for the manufacture of oxide dispersion strengthened materials. PMID:27941814

  7. Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model

    NASA Astrophysics Data System (ADS)

    Moghadasi, Mohammad Amin; Nili-Ahmadabadi, Mahmoud; Forghani, Farsad; Kim, Hyoung Seop

    2016-12-01

    In general, melting process is not a common method for the production of oxide dispersion strengthened (ODS) alloys due to agglomeration and coarsening of oxide particles. However, vacuum casting process has recently been employed as a promising process to produce micro-scale oxide dispersed alloys. In this paper, we report the process and characterization of in situ formation and uniform dispersion of nano-scale Y-Ti oxide particles in Fe-10Ni-7Mn (wt.%) alloy. The processing route involves a solid-liquid reaction between the added TiO2 as an oxygen carrier and dissolved yttrium in liquid metal leading to an optimal microstructure with nano-sized dispersed oxide particles. The developed thermodynamic model shows the independence of the final phase constituents from experimental conditions such as melting temperature or vacuum system pressure which offers a general pathway for the manufacture of oxide dispersion strengthened materials.

  8. Erasable photoinduced change of carrier density and coherence lengths in oxygen-deficient YBa 2Cu 3O x

    NASA Astrophysics Data System (ADS)

    Göb, W.; Lang, W.; Markowitsch, W.; Schlosser, V.; Kula, W.; Soblewski, Roman

    1995-11-01

    We report on the persistent and erasable photoinduced change of normal-state transport and superconducting properties of oxygen-deficient YBa 2Cu 3O 6.6 thin films. After illumination with white light for several hours at 150K, a decrease of the electrical resistivity, an increase of the number of mobile holes, and a change of the magnetoresistance caused by superconducting order-parameter fluctuations, were observed. From the latter measurement, we find a photoinduced enhancement of the superconducting coherence lengths in both in-plane and out-of-plane directions.

  9. Enhanced plasmid production in miniaturized high-cell-density cultures of Escherichia coli supported with perfluorinated oxygen carrier.

    PubMed

    Pilarek, Maciej; Brand, Eva; Hillig, Friederike; Krause, Mirja; Neubauer, Peter

    2013-08-01

    A simple method for plasmid minipreps in closed 1.5 mL microcentrifuge tubes using a cultivation medium with internal substrate delivery (EnBase(®)) in combination with a two-phase perfluorodecalin (PFD) system supplying additional oxygen to the E. coli culture is described. The procedure can simply be performed on a thermoshaker using only 50 μL cultivation volume. Twenty and twenty-five percent higher cell densities and plasmid concentration, respectively, were obtained with the additional oxygen delivery system when compared to cultures without PFD. Compared to standard 2 mL LB cultures ninefold higher cell densities and eightfold higher plasmid concentrations were achieved for the smaller culture volume. The μL-scale cultures can be directly utilized in further plasmid purification without any centrifugation step or the subsequent removal of the supernatant. This simplifies the routine procedure considerably. Furthermore, the new method is very robust considering the time of cultivation. Highest plasmid concentrations were already obtained after only 6 h of cultivation, but the plasmid concentration remained high (87 % of the maximum) even until 8 h of cultivation. Aside from the advantage of this method for the daily routine, we believe that it could also be applied to automated high-throughput processes.

  10. The effects of preserved red blood cells on the severe adverse events observed in patients infused with hemoglobin based oxygen carriers.

    PubMed

    Valeri, C Robert; Ragno, Gina

    2008-01-01

    The severe adverse events observed in patients who received hemoglobin based oxygen carriers (HBOCs) were associated with the Ringer's D.L lactate resuscitative solution administered and to the excipient used in the HBOCs containing Ringer's D,L lactate and the length of storage of the preserved RBC administered to the patient at the time that the HBOCs were infused. This paper reports the quality of the red blood cells preserved in the liquid state at 4 degrees C and that of previously frozen RBCs stored at 4 degrees C with regard to their survival, function and safety. Severe adverse events have been observed related to the length of storage of the liquid preserved RBC stored at 4 degrees C prior to transfusion. The current methods to preserve RBC in the liquid state in additive solutions at 4 degrees C maintain their survival and function for only 2 weeks. The freezing of red blood cells with 40% W/V glycerol and storage at -80 degrees C allows for storage at -80 degrees C for 10 years and following thawing, deglycerolization and storage at 4 degrees C in the additive solution (AS-3, Nutricel) for 2 weeks with acceptable 24 hour posttransfusion survival, less than 1% hemolysis, and moderately impaired oxygen transport function with no associated adverse events. Frozen deglycerolized RBCs are leukoreduced and contain less than 5% of residual plasma and non-plasma substances. Frozen deglycerolized RBCs are the ideal RBC product to transfuse patients receiving HBOCs.

  11. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.

    PubMed

    Corbella, Beatriz M; de Diego, Luis F; García-Labiano, Francisco; Adánez, Juan; Palaciost, José M

    2005-08-01

    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 degrees C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent

  12. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors.

    PubMed

    Luo, Guozhi; Xu, Guimei; Gao, Jinfang; Tan, Hongxin

    2016-05-01

    Nitrate-nitrogen (NO3(-)-N) always accumulates in commercial recirculating aquaculture systems (RASs) with aerobic nitrification units. The ability to reduce NO3(-)-N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen (DO) content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO3(-)-N from RASs. The effect of dissolved oxygen (DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone (PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group (Group A, average DO concentration of 0.28±0.05mg/L), the low-oxygen treatment DO group (Group B, average DO concentration of 2.50±0.24mg/L) and the aerated treatment group (Group C, average DO concentration of 5.63±0.57mg/L). Feeding with 200mg/L of NO3(-)-N, the NO3(-)-N removal rates were 1.53, 1.60 and 1.42kg/m(3) PCL/day in Groups A, B and C, respectively. No significant difference in NO3(-)-N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated.

  13. Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors.

    PubMed

    Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J

    2013-07-24

    In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

  14. Characterization of chemical looping combustion of coal in a 1 kW{sub th} reactor with a nickel-based oxygen carrier

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Gao, Zhengping; Xiao, Jun

    2010-05-15

    Chemical looping combustion is a novel technology that can be used to meet the demand on energy production without CO{sub 2} emission. To improve CO{sub 2} capture efficiency in the process of chemical looping combustion of coal, a prototype configuration for chemical looping combustion of coal is made in this study. It comprises a fast fluidized bed as an air reactor, a cyclone, a spout-fluid bed as a fuel reactor and a loop-seal. The loop-seal connects the spout-fluid bed with the fast fluidized bed and is fluidized by steam to prevent the contamination of the flue gas between the two reactors. The performance of chemical looping combustion of coal is experimentally investigated with a NiO/Al{sub 2}O{sub 3} oxygen carrier in a 1 kW{sub th} prototype. The experimental results show that the configuration can minimize the amount of residual char entering into the air reactor from the fuel reactor with the external circulation of oxygen carrier particles giving up to 95% of CO{sub 2} capture efficiency at a fuel reactor temperature of 985 C. The effect of the fuel reactor temperature on the release of gaseous products of sulfur species in the air and fuel reactors is carried out. The fraction of gaseous sulfur product released in the fuel reactor increases with the fuel reactor temperature, whereas the one in the air reactor decreases correspondingly. The high fuel reactor temperature results in more SO{sub 2} formation, and H{sub 2}S abatement in the fuel reactor. The increase of SO{sub 2} in the fuel reactor accelerates the reaction of SO{sub 2} with CO to form COS, and COS concentration in the fuel reactor exit gas increases with the fuel reactor temperature. The SO{sub 2} in the air reactor exit gas is composed of the product of sulfur in residual char burnt with air and that of nickel sulfide oxidization with air in the air reactor. Due to the evident decrease of residual char in the fuel reactor with increasing fuel reactor temperature, it results in the

  15. Effect of the cellular-type artificial oxygen carrier hemoglobin vesicle as a resuscitative fluid for prehospital treatment: experiments in a rat uncontrolled hemorrhagic shock model.

    PubMed

    Seishi, Yasuhisa; Horinouchi, Hirohisa; Sakai, Hiromi; Kobayashi, Koichi

    2012-08-01

    The hemoglobin vesicle (Hb-vesicle) is a cellular-type artificial oxygen carrier showing a resuscitative effect comparable to that of blood transfusion in several animal models. However, the efficacy of Hb-vesicles for resuscitation when the hemorrhage cannot be controlled remains unclear. Therefore, we used Hb-vesicles in a rat hemorrhagic shock model caused by continuous bleeding. For inducing uncontrolled hemorrhage, animals were heparinized and bled from the caudal artery. Fluid resuscitation was subsequently performed with five materials: Hb-vesicle suspension in a 5% albumin (Alb) solution (HbV), washed red blood cells (wRBC) in a 6% hydroxyethyl starch (HES) solution, 5% Alb, 6% HES, and saline (Sal). During the experiment, all animals in the HbV and wRBC groups survived, whereas all those in the Alb and HES groups died. In the Sal group, five of seven animals died. In the HbV and wRBC groups, the heart rate, mean arterial pressure, and blood lactic acid levels were stabilized during resuscitation. Meanwhile, the hematocrit levels of the HbV, Alb, and HES groups showed sharp decreases (HbV: 6.8% ± 1.7%, Alb: 6.8% ± 0.8%, HES: 5.5% ± 0.7% at 100% total circulated blood volume; final hematocrit of the HbV group: 1.5% ± 0.5%). These results suggest that shocked animals can survive longer when the Hb-vesicle supply is maintained and that HbV showed a similar effect to wRBC in maintaining the circulating volume and oxygen metabolism. Continuous infusion of Hb-vesicles may extend the survival of trauma victims with uncontrolled hemorrhage until they have reached a trauma center.

  16. Characterization of high molecular weight multimeric states of human haptoglobin and hemoglobin-based oxygen carriers by high-mass MALDI MS.

    PubMed

    Pimenova, Tatiana; Pereira, Claudia P; Schaer, Dominik J; Zenobi, Renato

    2009-04-01

    High-mass MALDI-TOF mass spectrometry (MS) is a novel analytical approach to study large biomolecules and their interactions. It is a powerful alternative method to gel electrophoresis (GE) and size exclusion chromatography (SEC) for obtaining information on the molecular weights of macromolecules and for determining protein complexes. The precision of mass measurements (mass accuracy), high sensitivity, speed of the analysis, and tolerance toward sample heterogeneity are the major features of this MS-based approach. Remarkably, MS provides direct stoichiometric information of macromolecular protein complexes, when noncovalent interactions are stabilized during desorption/ionization by use of chemical cross-linking reagents. In this study, high-mass MALDI-TOF MS was applied to characterize the multimeric state of the human plasma protein haptoglobin (Hp), which is in the mass range of 150-300 kDa. Also, higher order structures of hemoglobin-based oxygen carriers (HBOCs) and their interactions with human haptoglobin were analyzed. These investigations are of clinical importance and contribute to the overall understanding of specific toxicity and clearance of HBOCs.

  17. Electrophoretic, size-exclusion high-performance liquid chromatography and liquid chromatography-electrospray ionization ion trap mass spectrometric detection of hemoglobin-based oxygen carriers.

    PubMed

    Simitsek, Phaedra Dora; Giannikopoulou, Panagiota; Katsoulas, Haralabos; Sianos, Efstathios; Tsoupras, George; Spyridaki, Maria-Helen; Georgakopoulos, Costas

    2007-02-05

    Hemoglobin-based oxygen carriers (HBOCs) are blood substitutes based on hemoglobin of either bovine or human origin and they can potentially be misused in elite sports to improve endurance performance. Recently, three methods have been proposed in doping control analysis to allow HBOCs screening and identification by application of electrophoresis, size-exclusion chromatography coupled with HPLC and LC coupled with tandem mass spectrometry (LC/MSMS). In view of the Athens 2004 Olympic Games, modifications were introduced in order to increase the specificity of these methods. The sample preparation protocols of the electrophoretic and SEC-HPLC methods were modified with the introduction of sequential ultra filtration steps to remove all heme containing material below 100 kDa, thus leaving only HBOCs material for analysis. Furthermore, a modification of the LC/MSMS methodology was introduced to allow full scan MS-MS spectra of peptide segments arising from the tryptic digestion of bovine HBOCs. These relatively simple methodological modifications have major impact, as far as time and cost effectiveness is concerned in doping control procedures, because they provide a useful tool in order to identify which suspect samples from the initial visual screening are due to hemolysis and exclude them from further analysis.

  18. Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers

    SciTech Connect

    Tian, H.J.; Simonyi, T.; Poston, J.; Siriwardane, R.

    2009-09-15

    The effect of hydrogen sulfide (H{sub 2}S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxides - such as iron oxide, nickel oxide, manganese oxide, and copper oxide - was investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H{sub 2}S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H{sub 2}S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H{sub 2}S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H{sub 2}S for all four metal oxides.

  19. Effect of hydrogen sulfide on chemical looping of coal-derived synthesis gas over bentonite-supported metal---oxide oxygen carriers

    SciTech Connect

    Tian, H.; Simonyi, T.; Poston, J.; Siriwardane, R.

    2009-01-01

    The effect of hydrogen sulfide (H2S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxidesssuch as iron oxide, nickel oxide, manganese oxide, and copper oxideswas investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H2S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H2S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H2S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H2S for all four metal oxides.

  20. Effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells: dependency on p53 status of tumor cells and types of (10)B-carriers.

    PubMed

    Masunaga, Shin-ichiro; Tatebe, Hitoshi; Nishimura, Yasumasa; Tano, Keizo; Sanada, Yu; Moriwaki, Takahiro; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Ono, Koji

    2016-01-01

    Purpose To evaluate the effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells. Materials and methods Cultured human head and neck squamous cell carcinoma cell line transfected with mutant TP53 (SAS/mp53), or with a neo vector as a control (SAS/neo) was incubated with L-para-boronophenylalanine-(10)B (BPA) or sodium mercaptoundecahydrododecaborate-(10)B (BSH) as a (10)B-carrier at the (10)B concentration of 60 ppm for 24 h under aerobic (20.7% of oxygen) or hypoxic (0.28% of oxygen) conditions. Immediately after incubation, cultured tumor cells received reactor thermal neutron beams, and a cell survival assay was performed. (10)B concentration of cultured SAS/neo or SAS/mp53 cells incubated under aerobic or hypoxic conditions was determined with a thermal neutron guide tube. Results Hypoxic incubation significantly decreased (10)B concentration of cultured cells with a clearer tendency observed following BPA than BSH treatment in both SAS/neo and SAS/mp53 cells. Following neutron beam irradiation, SAS/mp53 cells showed significantly higher relative biological effectiveness values than SAS/neo cells because of the significantly lower radiosensitivity of SAS/mp53 to γ-rays than SAS/neo cells. Conclusion Oxygen pressure during incubation with a (10)B-carrier had a critical impact on (10)B uptake of cultured tumor cells.

  1. A bovine hemoglobin-based oxygen carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral oxygen metabolism during low flow in a porcine model.

    PubMed

    McNeil, Jeffrey D; Propper, Brandon; Walker, Joshua; Holguin, Lauren; Evans, Lauren; Lee, Kihak; Fox, Peter T; Michalek, Joel E; Baisden, Clinton E

    2011-08-01

    Cerebral ischemia can occur during cardiopulmonary bypass, especially during low flow. HBOC-201 (OPK Biotech, Cambridge, Mass) is a hemoglobin-based oxygen-carrying solution that enhances oxygen delivery. This project evaluated the benefits on total body and cerebral oxygen delivery and consumption using HBOC-201 during cardiopulmonary bypass. Twelve immature swine were assigned to one of 2 groups. One group used HBOC-201 in pump prime, and the other used donor porcine blood. Cardiopulmonary bypass was initiated and then flow was serially decreased from 100% to 75%, to 50%, and then back to full flow. At each interval, (15)O positron emission tomographic analysis was performed, and blood was collected. Total body and cerebral oxygen delivery and consumption were calculated. Statistical analysis was performed with a Tukey-Kramer adjusted P value based on a repeated measures linear model on log-transformed data. Total and plasma hemoglobin levels were higher in the HBOC-201 group. Oxygen delivery and consumption were not statistically different but did tend to be higher in the HBOC-201 group. Mixed venous saturation was lower in the HBOC-201 group but not significant. Mild metabolic acidosis with increased lactate levels developed in the blood group. Mean cerebral blood flow decreased in both groups when total flow was 50%. In the HBOC-201 group cerebral oxygen metabolism was maintained. The addition of HBOC-201 for cardiopulmonary bypass appears to improve oxygen use and minimize anaerobic metabolism. Cerebral oxygen use was preserved in the HBOC-201 group, even during decrease in blood flow. These findings support the reported improved oxygen-unloading properties of HBOC-201 and might provide a benefit during cardiopulmonary bypass. Published by Mosby, Inc.

  2. Bioconjugation of Serum Albumin to a Maleimide-appended Porphyrin/Cyclodextrin Supramolecular Complex as an Artificial Oxygen Carrier in the Bloodstream.

    PubMed

    Kitagishi, Hiroaki; Kawasaki, Hiroki; Kano, Koji

    2015-08-01

    HemoCD is an inclusion complex of per-O-methylated β-cyclodextrin dimer and an iron(II) porphyrin, which forms a stable O2 complex in water. Therefore, hemoCD has the potential for use as a synthetic O2 carrier in mammalian blood. In this study, a hemoCD derivative having a maleimide group (Mal-hemoCD) was conjugated to a Cys residue of serum albumin via a Michael addition reaction in order to increase the circulation time of the O2 carrier. The O2 -binding affinities (P1/2 [Torr]) and half-lives (t1/2 [h]) of the O2 adducts at pH 7.4 and 25 °C were determined to be 9 Torr and 23 h for Mal-hemoCD, and 10 Torr and 14 h for albumin-conjugated hemoCD (Alb-hemoCD). Our pharmacokinetic study revealed that renal excretion of Alb-hemoCD was effectively suppressed and that half of injected Alb-hemoCD remained in blood at 3 h after injection. It is noteworthy that Mal-hemoCD also had a long circulation time because of the bioconjugation reaction that occurred during circulation in the bloodstream. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Carrier Screening

    MedlinePlus

    ... available for a limited number of diseases, including cystic fibrosis , fragile X syndrome , sickle cell disease , and Tay– ... are already pregnant are offered carrier screening for cystic fibrosis, hemoglobinopathies , and spinal muscular atrophy . You can have ...

  4. Differential Sensitivities of Pulmonary and Coronary Arteries to Hemoglobin-Based Oxygen Carriers and Nitrovasodilators: Study in a Bovine Ex Vivo Model of Vascular Strips

    DTIC Science & Technology

    2010-01-01

    Hai, C.-M .• 2004. Cholinergic receptor-mediated differential cytoskeletal recruitment of actin - and integrin-binding proteins in intact airway...activated cation channels, signaling protein kinases, and reactive oxygen species (Liu and Gutterman. 2009). As shown in Fig. 1, relative to basal tone...nitrovasodilators. The expression of the NO-regulated enzyme guany- late cyclase is known to be vessel type-specific (Edwards et al .. 1984: Schermuly et al .. 2008

  5. Lowering of elevated tissue PCO2 in a hemorrhagic shock rat model after reinfusion of a novel nanobiotechnological polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase that is an oxygen and a carbon dioxide carrier with enhanced antioxidant properties.

    PubMed

    Bian, Yuzhu; Wei, Gao; Chang, Thomas M S

    2013-02-01

    Even though erythrocytes transport both oxygen and carbon dioxide, research on blood substitutes has concentrated on the transport of oxygen and its vasoactivity and oxidative effects. Recent study in a hemorrhagic shock animal model shows that the degree of tissue PCO(2) elevation is directly related to mortality rates. We therefore prepared a novel nanobiotechnological carrier for both O(2) and CO(2) with enhanced antioxidant properties. This is based on the use of glutaraldehyde to crosslink stroma free hemoglobin (SFHb), superoxide dismutase (SOD), catalase (CAT) and carbonic anhydrase (CA) to form a soluble PolySFHb-SOD-CAT-CA. It was compared to blood and different resuscitation fluids on the ability to lower elevated tissue PCO(2) in a 2/3 blood volume loss rat hemorrhagic shock model. Sixty minutes of sustained hemorrhagic shock at 30 mm Hg resulted in the increase of tissue PCO(2) to 95 mm ± 3 mmHg from the control level of 55 mm Hg. Reinfusion of whole blood (Hb 15 g/dL with its RBC enzymes) lowered the tissue PCO2 to 72 ± 4.5 mmHg 60 minutes after reinfusion. PolySFHb-SOD-CAT-CA (SFHb 10 g/dL plus additional enzymes) was more effective than whole blood in lowering PCO(2) lowering this to 66.2 ± 3.5 mmHg. Ringer's Lactated solution or polyhemoglobin lowered the elevated PCO2 only slightly to 87 ± 4.5 mmHg and 84.8 ± 1.5 mmHg, respectively. Moreover, ST-elevation for whole blood (Hb 15 g/dL) and PolySFHb-SOD-CAT-CA (Hb 10 g/dL) was respectively 12.8% ± 4% and 13.0% ± 2% of the control 60 minutes after reinfusion. Both are significantly better than those in the Ringer's lactated group and the PolyHb group. In conclusion, this novel approach for blood substitute design has resulted in a novel nanobiotechnological carrier for both O(2) and CO(2) with enhanced antioxidant properties.

  6. Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier

    SciTech Connect

    Yan Cao; Bianca Casenas; Wei-Ping Pan

    2006-10-15

    This paper is the second in a series of two on the investigation of the chemical looping combustion (CLC) of solid fuels. The first paper put forward the concept of the CLC of solid fuels using a circulating fluidized bed as a reactor and Cu-CuO as the oxygen carrier, which was based on an analysis of oxygen transfer capability, reaction enthalpy, and chemical equilibrium. In this second paper, we report the results of the evaluation of the reduction of CuO reduced by solid fuels such as coal and some other 'opportunity' solid fuels. Tests on the reduction of CuO by the selected solid fuels were conducted using simultaneous differential scanning calorimetry and thermogravimetric analysis, which simulates a microreactor. An attached mass spectrometer (MS) was used for the characterization of evolved gaseous products. The X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used for the characterization of the solid residues. Results strongly supported the feasibility of CuO reduction by selected solid fuels. CuO can be fully converted into Cu in a reduction process, either in a direct path by solid fuels, which was verified by MS analysis under a N{sub 2} atmosphere, or in an indirect path by pyrolysis and gasification products of solid fuels in the reducer. No Cu{sub 2}O exists in reducing atmospheres, which was characterized by an XRD analysis and mass balance calculations. No carbon deposit was found on the surface of the reduced Cu, which was characterized by SEM analysis. CuO reduction by solid fuels can start at temperatures as low as approximately 500 C. Tests indicated that the solid fuels with higher reactivity (higher volatile matter) would be desirable for the development of the chemical looping combustion process of solid fuels, such as sub-bituminous Powder River Basin coal and solid waste and biomass. 4 refs., 12 figs., 3 tabs.

  7. Process for the elimination of waste water produced upon the desulfurization of coking oven gas by means of wash solution containing organic oxygen-carrier, with simultaneous recovery of elemental sulfur

    SciTech Connect

    Diemer, P.; Brake, W.; Dittmer, R.

    1985-04-16

    A process is disclosed for the elimination of waste water falling out with the desulfurization of coking oven gas by means of an organic oxygen carrier-containing washing solution with simultaneous recovery of elemental sulfur. The waste water is decomposed in a combustion chamber in a reducing atmosphere at temperatures between about 1000/sup 0/ and 1100/sup 0/ C. under such conditions that the mole ratio of H/sub 2/S:SO/sub 2/ in the exhaust gas of the combustion chamber amounts to at least 2:1. Sulfur falling out is separated and the sensible heat of the exhaust gas is utilized for steam generation. The cooled and desulfurized exhaust gas is added to the coking oven gas before the pre-cooling. Sulfur falling out from the washing solution in the oxidizer is separated out and lead into the combustion chamber together with the part of the washing solution discharged as waste water from the washing solution circulation. Preferred embodiments include that the sulfur loading of the waste water can amount to up to about 370 kg sulfur per m/sup 3/ waste water; having the cooling of sulfur-containing exhaust gas leaving the combustion chamber follow in a waste heat boiler and a sulfur condenser heated by pre-heated boiler feed water, from which condenser sulfur is discharged in liquid state.

  8. Hydrogen carriers

    NASA Astrophysics Data System (ADS)

    He, Teng; Pachfule, Pradip; Wu, Hui; Xu, Qiang; Chen, Ping

    2016-12-01

    Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal-organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH-H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

  9. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C.; Baker, Richard W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  10. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C.

    1984-01-01

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  11. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  12. Carrier-mediated electrodialysis.

    PubMed

    Hansen, Steven P; Fyles, Thomas M

    2011-06-14

    Supported liquid membranes containing valinomycin or a calix[4]arene carrier can support electrodialysis under an imposed transmembrane potential. Under optimal conditions both transmembrane flux and carrier-based cation selectivity are enhanced relative to simple dialysis mediated by the same carriers. This journal is © The Royal Society of Chemistry 2011

  13. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  14. Common Carrier Services.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    After outlining the Federal Communications Commission's (FCC) responsibility for regulating interstate common carrier communication (non-broadcast communication whose carriers are required by law to furnish service at reasonable charges upon request), this information bulletin reviews the history, technological development, and current…

  15. Oxygenated kidney preservation techniques.

    PubMed

    Hosgood, Sarah A; Nicholson, Harriet F L; Nicholson, Michael L

    2012-03-15

    Improving preservation techniques to minimize injury is of particular importance in organs from marginal donors. Since the introduction of transplantation and routine use of hypothermic temperatures for kidney preservation, there has been much debate on whether it is necessary to add oxygen to support the low level of metabolism under these conditions. Supplementing the kidney with oxygen during hypothermic preservation is not common practice. However, there is evidence to support its application. Oxygen can be added by various techniques such as retrograde persufflation whereby filtered and humidified oxygen is bubbled through the vasculature; under hyperbaric conditions using specialized pressurized chambers; during hypothermic machine perfusion; with the addition of oxygen carriers; and under normothermic conditions. Evidence suggests that oxygenation is particularly beneficial in restoring cellular levels of adenosine triphosphate after kidneys have been subjected to warm or cold ischemic injury. However, under normal conditions, the benefits are less convincing, but the evidence is insufficient to draw any conclusions. This overview explores the ways in which oxygen can be administered during preservation in experimental and clinical models of kidney transplantation.

  16. Tuning superconductivity by carrier injection

    NASA Astrophysics Data System (ADS)

    Müller, Paul

    2011-03-01

    All high-Tc cuprates are stacking sequences of Cu O2 layers and charge reservoir layers consisting of metal oxides. Upon doping the Cu O2 layers, antiferromagnetic order is destroyed and metallic conductivity is established. Usually doping is achieved by a non-stoichiometric composition of the charge reservoir layer. However, we already have shown that we can change the carrier concentration of Bi 2 Sr 2 CaCu 2 O8 + δ single crystals by current injection along the c- axis. Critical temperature, c-axis resistivity and critical current of intrinsic Josephson junctions can be tuned in a large range from underdoping to extreme overdoping. This effect is persistent up to annealing temperatures of approximately 270 K. Using current injection at higher bias, we were able to reduce the carrier concentration again. We investigated in detail the superconducting properties by performing macroscopic quantum tunneling experiments of intrinsic Josephson junctions. The experiments have been carried out repeatedly on samples, whose properties were changed only by current injection. An exponential increase of the critical current density with hole concentration was observed. At the same time, the capacitance of intrinsic Josephson junctions increased significantly. Finally, only by current injection, we were able to convert into the superconducting state a nonsuperconducting, oxygen depleted sample. This work was done in collaboration with Y. Koval, X.Y. Jin, S. Probst, Y. Simsek, C. Steiner (Universität Erlangen), H. B. Wang (NIMS, Tsukuba), and G. Behr, B. Büchner (IFW Dresden).

  17. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  18. Oxygen Therapy

    MedlinePlus

    ... stored as a gas or liquid in special tanks. These tanks can be delivered to your home and contain ... they won’t run out of oxygen. Portable tanks and oxygen concentrators may make it easier for ...

  19. Automatic carrier acquisition system

    NASA Technical Reports Server (NTRS)

    Bunce, R. C. (Inventor)

    1973-01-01

    An automatic carrier acquisition system for a phase locked loop (PLL) receiver is disclosed. It includes a local oscillator, which sweeps the receiver to tune across the carrier frequency uncertainty range until the carrier crosses the receiver IF reference. Such crossing is detected by an automatic acquisition detector. It receives the IF signal from the receiver as well as the IF reference. It includes a pair of multipliers which multiply the IF signal with the IF reference in phase and in quadrature. The outputs of the multipliers are filtered through bandpass filters and power detected. The output of the power detector has a signal dc component which is optimized with respect to the noise dc level by the selection of the time constants of the filters as a function of the sweep rate of the local oscillator.

  20. [Apneic oxygenation].

    PubMed

    Alekseev, A V; Vyzhigina, M A; Parshin, V D; Fedorov, D S

    2013-01-01

    Recent technological advances in thoracic and tracheal surgery make the anaesthesiologist use different respiratory techniques during the operation. Apneic oxygenation is a one of alternative techniques. This method is relatively easy in use, does not require special expensive equipment and is the only possible technique in several clinical situations when other respiratory methods are undesirable or cannot be used. However there is no enough information about apneic oxygenation in Russian. This article reviews publications about apneic oxygenation. The review deals with experiments on diffusion respiration in animals, physiological changes during apneic oxygenation in man and defines clinical cases when apneic oxygenation can be used.

  1. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  2. Common Carrier Services.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This bulletin outlines the Federal Communications Commission's (FCC) responsibilities in regulating the interstate and foreign common carrier communication via electrical means. Also summarized are the history, technological development, and current capabilities and prospects of telegraph, wire telephone, radiotelephone, satellite communications,…

  3. Particulate Formation from a Copper Oxide-Based Oxygen ...

    EPA Pesticide Factsheets

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling duct, range between 2 and 5 μm. A notable number of submicron particulates are also identified. Oxygen carrier attrition was observed to lead to increased CuO loss resulting from the chemical looping reactions, i.e., Cu is enriched in small particles generated primarily from fragmentation in the size range of 10-75 μm. Cyclic reduction and oxidation reactions in CLC have been determined to weaken the oxygen carrier particles, resulting in increased particulate emission rates when compared to oxygen carriers without redox reactions. The generation rate for particulates < 10 μm was found to decrease with progressive cycles over as-prepared oxygen carrier particles and then reach a steady state. The surface of the oxygen carrier is also found to be coarsened due to a Kirkendall effect, which also explains the enrichment of Cu on particle surfaces and in small particles. As a result, it is important to collect and reprocess small particles generated from chemical looping processes to reduce oxygen carrier loss. The redox reactions associated with chemical looping combustion play an important role in particle attrition in the fluidized bed. Reaction-induced local stresses, due to the r

  4. Particulate Formation from a Copper Oxide-Based Oxygen ...

    EPA Pesticide Factsheets

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling duct, range between 2 and 5 μm. A notable number of submicron particulates are also identified. Oxygen carrier attrition was observed to lead to increased CuO loss resulting from the chemical looping reactions, i.e., Cu is enriched in small particles generated primarily from fragmentation in the size range of 10-75 μm. Cyclic reduction and oxidation reactions in CLC have been determined to weaken the oxygen carrier particles, resulting in increased particulate emission rates when compared to oxygen carriers without redox reactions. The generation rate for particulates < 10 μm was found to decrease with progressive cycles over as-prepared oxygen carrier particles and then reach a steady state. The surface of the oxygen carrier is also found to be coarsened due to a Kirkendall effect, which also explains the enrichment of Cu on particle surfaces and in small particles. As a result, it is important to collect and reprocess small particles generated from chemical looping processes to reduce oxygen carrier loss. The redox reactions associated with chemical looping combustion play an important role in particle attrition in the fluidized bed. Reaction-induced local stresses, due to the r

  5. Sealed substrate carrier for electroplating

    DOEpatents

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  6. Oxygen Delivering Biomaterials for Tissue Engineering

    PubMed Central

    Farris, Ashley L.; Rindone, Alexandra N.; Grayson, Warren L.

    2016-01-01

    Tissue engineering (TE) has provided promising strategies for regenerating tissue defects, but few TE approaches have been translated for clinical applications. One major barrier in TE is providing adequate oxygen supply to implanted tissue scaffolds, since oxygen diffusion from surrounding vasculature in vivo is limited to the periphery of the scaffolds. Moreover, oxygen is also an important signaling molecule for controlling stem cell differentiation within TE scaffolds. Various technologies have been developed to increase oxygen delivery in vivo and enhance the effectiveness of TE strategies. Such technologies include hyperbaric oxygen therapy, perfluorocarbon- and hemoglobin-based oxygen carriers, and oxygen-generating, peroxide-based materials. Here, we provide an overview of the underlying mechanisms and how these technologies have been utilized for in vivo TE applications. Emerging technologies and future prospects for oxygen delivery in TE are also discussed to evaluate the progress of this field towards clinical translation. PMID:27453782

  7. Yarn carrier with clutch

    NASA Technical Reports Server (NTRS)

    Doyne, Richard A. (Inventor); Benson, Rio H. (Inventor); El-Shiekh, Aly (Inventor)

    1994-01-01

    A yarn carrier apparatus particularly suited for use in braiding machinery or the like due to its capability of continuous yarn feeding and retraction of long lengths of yarn. The yarn carrier apparatus comprises a yarn supply spool which is rotatably mounted within the housing, a spring motor also mounted within the housing and operatively connected to the yarn supply spool through a mechanical transmission assembly which is adapted to multiply rotational movement between the first element of the gear assembly operatively connected to the spring motor and the final element of the gear assembly operatively connected to the yarn supply spool. The spring motor is adapted to tension the yarn during both feeding and retraction thereof, and it is further adapted to periodically rotatably slip within the housing and partially unwind so as to allow for continuous withdrawal of a long length of yarn without the spring motor becoming fully wound and preventing further yarn retraction.

  8. Oxygen therapeutics--current concepts.

    PubMed

    Hill, S E

    2001-04-01

    In an effort to develop agents that enhance the oxygen-delivery capability of blood without the risks associated with allogeneic blood transfusions, several products are undergoing development and clinical trials. These oxygen transport agents can be divided into two main groups, perfluorocarbon (PFC) emulsions and modified hemoglobin solutions. Articles from the literature on the development and clinical trials of oxygen therapeutic agents were reviewed. PFCs are synthetic fluorinated hydrocarbons that increase dissolved oxygen in the fluid phase of the blood without binding the oxygen molecule. They enhance oxygen delivery significantly and may be used to augment the technique of intraoperative autologous donation. Two PFC products have been tested in Phase III clinical trials. Hemoglobin-based oxygen carriers (HBOCs) are either cross-linked or microencapsulated hemoglobin molecules. Modification of the human hemoglobin molecule with intra- and inter-molecular cross-linking eliminates renal toxicity and improves the oxygen dissociation characteristics of the molecule. These modifications are necessary because stroma-free hemoglobin (Hb) does not release oxygen in the physiologic range and dissociates into dimers which can be rapidly filtered by the kidney, leading to renal toxicity. In addition to human Hb, bovine hemoglobin is another source of raw material for HBOC products. Recombinant human Hb has also been produced, using an E. coli expression system, for HBOC manufacturing. Four cross-linked hemoglobin products have been tested in Phase III clinical trials. While no product has yet been approved for clinical use, preliminary studies with oxygen therapeutics show promising results, with effective oxygen carrying capacity and acceptable side effect profiles. In the future, the formation of a hybrid product which combines the best features from several of the products currently undergoing development may yield the ideal oxygen therapeutic agent.

  9. Shuttle Carrier Aircraft

    NASA Image and Video Library

    2014-04-23

    It has been called the world's greatest piggyback ride: a space shuttle, atop a Boeing 747 jet aircraft. But this is no ordinary 747, this is the Shuttle Carrier Aircraft...the SCA. This specially modified jumbo jet was not only a taxi service for the shuttle, but also helped in the development of the shuttle itself. In 30 years of flying, the majestic image of a spacecraft joined to the SCA, became a symbol of American invention and ingenuity.

  10. Oxygen Therapy

    MedlinePlus

    ... They can serve as a backup during a power outage or equipment issue. What is a nasal cannula? A nasal cannula is a two-pronged tube that is placed in your nose for delivering oxygen. The other end of the tube is attached to your oxygen system. A nasal cannula has the ability to deliver ...

  11. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  12. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  13. A new oxygen transport agent.

    PubMed

    Standl, Thomas

    2005-04-01

    Modern highly purified and chemically modified hemoglobin-based oxygen carriers (HBOC) are free of significant side effects on kidneys and coagulation, and they do not possess ABO antigens, allowing transfusion without knowledge of the respective blood group. Even at room air oxygen concentrations HBOC can compensate for intravascular volume deficits in hemorrhagic shock, including restoration of colloid osmotic pressure and organ perfusion, and deliver oxygen to organs and tissues during nearly complete blood exchange. In animal experiments and clinical trials all HBOC showed a vasoconstrictive side-effect which is mainly caused by nitric oxide scavenging, and to a lesser extent by reactive vasoconstriction because of precapillary oxygen off-loading. The study by Bjorkholm in this issue of the journal (see page 505) investigates the application of a moderate dose of the newly designed HBOC, MP4, in volunteers. MP4 has a high molecular size and a very low p50 resulting in a high oxygen affinity thus avoiding significant (pre)capillary oxygen off-loading. No significant rises in blood pressure or major laboratory abnormalities were seen after MP4 infusion. This new HBOC may be applicable in patients as a red blood substitute where vasoconstriction must be avoided. In addition, poststenotic tissue oxygenation might be a further indication. However, the number of treated volunteers and the infused dose of MP4 were both are very small. Therefore, one cannot draw conclusions on the safety, tolerability and efficacy of MP4 in terms of red cell replacement when large amounts of oxygen carriers are needed.

  14. Boron oxygen complexes in Si

    NASA Astrophysics Data System (ADS)

    Sanati, M.; Estreicher, S. K.

    2006-04-01

    The carrier lifetime in boron-doped Czochralski Si is strongly reduced by irradiation (space-based solar cells) or illumination (terrestrial cells). The culprits are believed to be boron-oxygen complexes. We use first-principles theory to predict the structure, electrical activity, and stability of complexes involving substitutional or interstitial B and interstitial O or oxygen dimers. Four complexes with comparable binding energies and thermodynamic gap levels are identified and their local vibrational modes predicted. Replacing B with Ga yields complexes with much smaller binding energies.

  15. Comparison of airline passenger oxygen systems.

    PubMed

    Byrne, N J

    1995-08-01

    The principal sources of oxygen for inflight passenger use, scheduled and unscheduled, are examined. Present practices of assessment of the passenger's "fitness to fly" are described. Three partner airlines, British Airways, U.S. Air, and Qantas, catering for more than 8000 oxygen requests annually, are compared. Analysis of customer use suggests that medical oxygen requests are frequently not clinically justified. The growth in demand, for both scheduled and unscheduled use of an expensive resource, supports the need for a "recommended best practice" among carriers. Passengers with respiratory disorders who will most benefit from inflight oxygen are vulnerable either to hypoxia or asthma.

  16. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  17. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  18. Increased Vascular Resistance with Hemoglobin-Based Oxygen Carriers

    DTIC Science & Technology

    1993-01-01

    vascular resistance. Swine resuscitated with otofHb exhibited the rapid onset of marked systemic hypertension . The blood pressure rose within seconds...virtual absence of red blood cells (3), hemoglobin solutions have produced hypertension irn animals or have not supported an increase in cardiac output...with blood volume expansion. Half of all the humans administered hemoglobin in published trials demonstrated hypertension (4), and a recent human

  19. Synthesis of New High-Oxygen Carriers and Ditetrazinetetroxide (DTTO)

    DTIC Science & Technology

    2009-12-24

    using the Cheetah program. It was shown that optimized propellant formulations, using either aluminum or alane as a fuel and hydroxyl terminated...density and heat of formation predictions of Harold Schechter, we have calculated for DTTO, using the Cheetah Approved for Public Release...preliminary experiments are summarized in Table 9. For unknown reasons the extent of reduction of the phenylazo- group to an amino- group is far

  20. Designed Proteins as Optimized Oxygen Carriers for Artificial Blood

    DTIC Science & Technology

    2013-02-01

    the body, and then release it. NO is a vasodilator , and it is hypothesized that the observed incidents are a result of uncontrolled systemic... vasodilation . NO preferentially binds ferric heme, although it has a weak affinity for ferrous heme. Mammalian hemoglobins are penta- coordinate: one

  1. 49 CFR 369.2 - Classification of carriers-motor carriers of property, household goods carriers, and dual...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... formula in Note A. (b)(1) The class to which any carrier belongs shall be determined by annual carrier... applying the revenue deflator formula in Note A. Class II. Carriers having annual carrier operating... applying the revenue deflator formula in Note A. Class III. Carriers having annual carrier operating...

  2. Oxygen safety

    MedlinePlus

    ... a restaurant, keep at least 6 feet (2 meters) away from any source of fire, such as ... or tabletop candle. Keep oxygen 6 feet (2 meters) away from: Toys with electric motors Electric baseboard ...

  3. Telemetry carrier ring and support

    NASA Technical Reports Server (NTRS)

    Wakeman, Thomas G. (Inventor)

    1992-01-01

    A telemetry carrier ring for use in a gas turbine engine includes an annular support ring connected to the engine and an annular carrier ring coupled to the support ring, each ring exhibiting different growth characteristics in response to thermal and mechanical loading. The carrier ring is coupled to the support ring by a plurality of circumferentially spaced web members which are relatively thin in an engine radial direction to provide a predetermined degree of radial flexibility. the web members have a circumferential width and straight axial line of action selected to transfer torque and thrust between the support ring and the carrier ring without substantial deflection. The use of the web members with radial flexibility provides compensation between the support ring and the carrier ring since the carrier ring grows at a different rate than the supporting ring.

  4. Artificial O2 carriers: status in 2005.

    PubMed

    Spahn, Donat R; Kocian, Roman

    2005-01-01

    Donor blood is a limited resource and its transfusion is associated with significant adverse effects. Therefore, alternatives have been searched, the ultimate being artificial oxygen (O2) carriers. There are two main groups of artificial O2 carriers: hemoglobin based and perfluorocarbon emulsions. The hemoglobin molecule in hemoglobin based artificial O2 carriers needs to be stabilized to prevent dissociation of the alpha2beta2-hemoglobin tetramer into alphabeta-dimers in order to prolong intravascular retention and to eliminate nephrotoxicity. Other modifications serve to decrease O2 affinity in order to improve O2 off-loading to tissues. In addition, polyethylene glycol may be surface conjugated to increase molecular size. Finally, certain products are polymerized to increase the hemoglobin concentration at physiologic colloid oncotic pressure. Perfluorocarbons are carbon-fluorine compounds characterized by a high gas dissolving capacity for O2 and CO2 and chemical and biologic inertness. Perfluorocarbons are not miscible with water and therefore need to be brought into emulsion for intravenous application. Development, product specification, physiologic effects, efficacy to decrease the need for donor blood in surgery and side effects of the following products are described: Diaspirin cross-linked hemoglobin (HemAssist), human recombinant hemoglobin (rHb1.1 and rHb2.0), polymerized bovine hemoglobin-based O2 carrier (HBOC-201), human polymerized hemoglobin (PolyHeme), hemoglobin raffimer (Hemolink), maleimide-activated polyethylene glycol-modified hemoglobin (MP4) and perflubron emulsion (Oxygent). In addition, enzyme cross-linked poly-hemoglobin, hemoglobin containing vesicles (nano-dimension artificial red blood cells) and an allosteric modifier (RSR13) are discussed. The most advanced products are in clinical phase III trials but no product has achieved market approval yet in the US, Europe or Canada.

  5. Personnel emergency carrier vehicle

    NASA Technical Reports Server (NTRS)

    Owens, Lester J. (Inventor); Fedor, Otto H. (Inventor)

    1987-01-01

    A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly.

  6. Carrier doping and interlayer coupling in HTSC single crystals

    SciTech Connect

    Kishio, K.; Shimoyama, J.; Kimura, T.; Kotaka, Y.; Kitazawa, K.; Yamafuji, K.; Li, Q.; Suenaga, M.

    1994-09-01

    Experimental results of the effect of carrier doping on the irreversibility lines in (La,Sr){sub 2}CuO{sub 4{minus}{delta}} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8 + {delta}} single crystals are summarized. As a function of Sr or oxygen contents, systematic and dramatic widening of the irreversible regions in the B {minus} T phase diagram was observed in both systems. The present study suggests the critical importance of carrier concentration which directly affects the interlayer coupling strength and dimensionality of the flux line lattice in all the layered HTSC compounds as a universal feature.

  7. Identification of the Charge Carriers in Cerium Phosphate Ceramics

    SciTech Connect

    Ray, Hannah L.; Jonghe, Lutgard C. De

    2010-06-02

    The total conductivity of Sr-doped cerium orthophosphate changes by nearly two orders of magnitude depending on the oxygen and hydrogen content of the atmosphere. The defect model for the system suggests that this is because the identity of the dominant charge carrier can change from electron holes to protons when the sample is in equilibrium with air vs. humidified hydrogen. In this work are presented some preliminary measurements that can help to clarify this exchange between carriers. The conduction behavior of a 2percent Sr-doped CePO4 sample under symmetric atmospheric conditions is investigated using several techniques, including AC impedance, H/D isotope effects, and chronoamperometry.

  8. Future Carrier vs. Super Carrier: New Issues and Technologies

    DTIC Science & Technology

    2004-01-01

    the 24 Steven S. Weatherspoon, :Naval Forces 2/2003,” North American Focus , ( EBSCO ...alternative to lack of host nation support or limited access to airports and seaports of debarkation. Some visions of future carriers remove CTOL...American Focus. EBSCO Publishing 2003. Periodical Articles and Reports: Ackerman, Robert K. “Future carrier designed for evolution.” Signal

  9. Oxygen Incorporation in Rubrene Single Crystals

    PubMed Central

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-01-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed. PMID:24786311

  10. Drug Carrier for Photodynamic Cancer Therapy

    PubMed Central

    Debele, Tilahun Ayane; Peng, Sydney; Tsai, Hsieh-Chih

    2015-01-01

    Photodynamic therapy (PDT) is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0) to an excited singlet state (S1–Sn), followed by intersystem crossing to an excited triplet state (T1). The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*), which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer. PMID:26389879

  11. Infrared hot carrier diode mixer.

    PubMed

    Aukerman, L W; Erler, J W

    1977-11-01

    Detection of a 54.3-GHz beatnote at 10.6 microm has been observed with a hot carrier diode mixer. The diode consists of a "cat whisker" antenna, which forms an ohmic point contact to n-InAs. The mechanism of this room-temperature detector is described as the "thermoelectric effect" of hot carriers.

  12. Optically induced free carrier light modulator

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.; Richards, W. E.

    1969-01-01

    Signal carrier laser beam is optically modulated by a second laser beam of different frequency acting on a free carrier source to which the signal carrier laser is directed. The second laser beam affects the transmission characteristics of the free carrier source to light from the signal carrier laser, thus modulating it.

  13. 42 CFR 421.200 - Carrier functions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Carrier functions. 421.200 Section 421.200 Public...) MEDICARE PROGRAM MEDICARE CONTRACTING Carriers § 421.200 Carrier functions. A contract between CMS and a carrier specifies the functions to be performed by the carrier. The contract may include any or all of the...

  14. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  15. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  16. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  17. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  18. Theranostic Oxygen Delivery Using Ultrasound and Microbubbles

    PubMed Central

    Kwan, James J.; Kaya, Mehmet; Borden, Mark A.; Dayton, Paul A.

    2012-01-01

    Means to overcome tumor hypoxia have been the subject of clinical investigations since the 1960's; however these studies have yet to find a treatment which is widely accepted. It has been known for nearly a century that hypoxic cells are more resistant to radiotherapy than aerobic cells, and tumor hypoxia is a major factor leading to the resistance of tumors to radiation treatment as well as several cytotoxic agents. In this manuscript, the application of ultrasound combined with oxygen-carrier microbubbles is demonstrated as a method to locally increase dissolved oxygen. Microbubbles can also be imaged by ultrasound, thus providing the opportunity for image-guided oxygen delivery. Simulations of gas diffusion and microbubble gas exchange show that small amounts (down to 5 vol%) of a low-solubility osmotic gas can substantially increase microbubble persistence and therefore production rates and stability of oxygen-carrier microbubbles. Simulations also indicate that the lipid shell can be engineered with long-chain lipids to increase oxygen payload during in vivo transit. Experimental results demonstrate that the application of ultrasound to destroy the microbubbles significantly enhances the local oxygen release. We propose this technology as an application for ultrasound image-guided release of oxygen directly to hypoxic tissue, such as tumor sites to enhance radiotherapy. PMID:23382774

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  20. 14 CFR 380.11 - Payment to direct air carrier(s).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... carrier(s). Except for air taxi operators and commuter air carriers (which are governed by 14 CFR 298.38) and Canadian charter air taxi operators (which are governed by 14 CFR 294.32), the direct air carrier...

  1. 14 CFR 380.11 - Payment to direct air carrier(s).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... carrier(s). Except for air taxi operators and commuter air carriers (which are governed by 14 CFR 298.38) and Canadian charter air taxi operators (which are governed by 14 CFR 294.32), the direct air carrier...

  2. 14 CFR 380.11 - Payment to direct air carrier(s).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... carrier(s). Except for air taxi operators and commuter air carriers (which are governed by 14 CFR 298.38) and Canadian charter air taxi operators (which are governed by 14 CFR 294.32), the direct air carrier...

  3. 14 CFR 380.11 - Payment to direct air carrier(s).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... carrier(s). Except for air taxi operators and commuter air carriers (which are governed by 14 CFR 298.38) and Canadian charter air taxi operators (which are governed by 14 CFR 294.32), the direct air carrier...

  4. 14 CFR 380.11 - Payment to direct air carrier(s).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... carrier(s). Except for air taxi operators and commuter air carriers (which are governed by 14 CFR 298.38) and Canadian charter air taxi operators (which are governed by 14 CFR 294.32), the direct air carrier...

  5. 14 CFR 271.5 - Carrier revenues.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS GUIDELINES FOR SUBSIDIZING AIR CARRIERS PROVIDING ESSENTIAL AIR TRANSPORTATION § 271.5 Carrier revenues. (a) The projected passenger revenue for a carrier providing essential air service at an eligible...

  6. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    PubMed Central

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-01-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth. PMID:26202477

  7. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-07-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth.

  8. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment.

    PubMed

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-07-23

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth.

  9. 49 CFR 369.3 - Classification of carriers-motor carriers of passengers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Classification of carriers-motor carriers of...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS REPORTS OF MOTOR CARRIERS § 369.3 Classification of carriers—motor carriers of passengers. (a...

  10. 49 CFR 369.3 - Classification of carriers-motor carriers of passengers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Classification of carriers-motor carriers of...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS REPORTS OF MOTOR CARRIERS § 369.3 Classification of carriers—motor carriers of passengers. (a...

  11. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of another carrier, the effective and prospective fares of the adopted carrier shall be changed to reflect the name of the adopting carrier and the effective date of the adoption. Further, each adopted fare shall bear...

  12. Engineering antiphagocytic biomimetic drug carriers

    PubMed Central

    Sawdon, Alicia; Peng, Ching-An

    2014-01-01

    Drug-delivery carriers have the potential to not only treat but also diagnose many diseases; however, they still lack the complexity of natural-particulate systems. Cell-based therapies using tumor-targeting T cells and tumor-homing mesenchymal stem cells have given researchers a means to exploit the characteristics exhibited by innate-biological entities. Similarly, immune evasion by pathogens has inspired the development of natural polymers to cloak drug carriers. The ‘marker-of-self’ CD47 protein, which is found ubiquitously on mammalian cell surfaces, has been used for evading phagocyte clearance of drug carriers. This review will focus on the recent progress of drug carriers co-opting the tricks that cells in nature use to hide safely under the radar of the body’s innate immune system. PMID:23883126

  13. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  14. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, Ian C.; Baker, Richard W.

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  15. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  16. Stable wafer-carrier system

    DOEpatents

    Rozenzon, Yan; Trujillo, Robert T; Beese, Steven C

    2013-10-22

    One embodiment of the present invention provides a wafer-carrier system used in a deposition chamber for carrying wafers. The wafer-carrier system includes a base susceptor and a top susceptor nested inside the base susceptor with its wafer-mounting side facing the base susceptor's wafer-mounting side, thereby forming a substantially enclosed narrow channel. The base susceptor provides an upward support to the top susceptor.

  17. Reduced fecundity in male ALS gene-carriers

    SciTech Connect

    Johnson, W.G.; Lustenberger, A.; Lucek, P.R.

    1995-11-06

    In order to study genetic aspects in multicase families, 89 amyotrophic lateral sclerosis (ALS) and 214 Parkinson disease (PD) kindreds were analyzed in parallel studies. Obligate gene-carriers were identified as described previously. There were fewer children per gene-carrier male (2.42) than per gene-carrier female (3.25, Student`s t-test, P<.0003) for ALS but not for other diseases. The data taken together suggest that fecundity in ALS gene-carriers was reduced in males, possibly as a result of reduced fertility. Since childbearing is usually accomplished well before the onset of neurological symptoms in ALS, and since reduced fecundity was found in male ALS gene-carriers, these findings raise the possibility that an ALS gene might have a pleiotrophic effect on fertility in males occurring decades before the onset of neurological symptoms. Evidence is presented linking reactive oxygen species to reduced fertility in males. Alternatively, decreased or nonfunctional androgen receptors could play a role. 22 refs., 1 fig., 2 tabs.

  18. Difficulty of carrier generation in orthorhombic PbO

    SciTech Connect

    Liao, Min; Takemoto, Seiji; Toda, Yoshitake; Tada, Tomofumi; Xiao, Zewen; Kamiya, Toshio; Hosono, Hideo; Ueda, Shigenori

    2016-04-28

    Polycrystalline β-PbO films were grown by pulsed laser deposition in atmospheres ranging from oxygen-poor (the oxygen pressure of 0.01 Pa) to oxygen-rich (13 Pa) conditions, and the oxygen chemical potential was further enhanced by ozone annealing to examine hole doping. It was found that each of the as-grown β-PbO films showed poor electrical conductivity, σ < 1.4 × 10{sup −7} S cm{sup −1}, regardless of the oxygen pressure. The density functional calculations revealed that native defects including Pb and O vacancies have deep transition levels and extremely high formation enthalpies, which indicates difficulty of carrier generation in β-PbO and explains the experimentally observed poor electrical conductivity. The analysis of the electronic structures showed that the interaction between Pb 6s and O 2p orbitals is weak due to the deep energy level of Pb 6s and does not raise the valence band maximum (VBM) level unlike that observed in SnO, which is also supported by ultraviolet photoemission spectroscopy measurements. The deep acceptor transition levels of the native defects are attributed to the deep VBM of β-PbO. On the other hand, annealing β-PbO films in reactive oxygen-containing atmospheres (i.e., O{sub 3}) led to a significantly enhanced electrical conductivity (i.e., σ > 7.1 × 10{sup 2} S cm{sup −1}) but it is the result of the formation of an n-type PbO{sub 2} phase because oxygen chemical potential exceeded the phase boundary limit. The striking difference in carrier generation between PbO and SnO is discussed based on the electronic structures calculated by density functional theory.

  19. Difficulty of carrier generation in orthorhombic PbO

    NASA Astrophysics Data System (ADS)

    Liao, Min; Takemoto, Seiji; Xiao, Zewen; Toda, Yoshitake; Tada, Tomofumi; Ueda, Shigenori; Kamiya, Toshio; Hosono, Hideo

    2016-04-01

    Polycrystalline β-PbO films were grown by pulsed laser deposition in atmospheres ranging from oxygen-poor (the oxygen pressure of 0.01 Pa) to oxygen-rich (13 Pa) conditions, and the oxygen chemical potential was further enhanced by ozone annealing to examine hole doping. It was found that each of the as-grown β-PbO films showed poor electrical conductivity, σ < 1.4 × 10-7 S cm-1, regardless of the oxygen pressure. The density functional calculations revealed that native defects including Pb and O vacancies have deep transition levels and extremely high formation enthalpies, which indicates difficulty of carrier generation in β-PbO and explains the experimentally observed poor electrical conductivity. The analysis of the electronic structures showed that the interaction between Pb 6s and O 2p orbitals is weak due to the deep energy level of Pb 6s and does not raise the valence band maximum (VBM) level unlike that observed in SnO, which is also supported by ultraviolet photoemission spectroscopy measurements. The deep acceptor transition levels of the native defects are attributed to the deep VBM of β-PbO. On the other hand, annealing β-PbO films in reactive oxygen-containing atmospheres (i.e., O3) led to a significantly enhanced electrical conductivity (i.e., σ > 7.1 × 102 S cm-1) but it is the result of the formation of an n-type PbO2 phase because oxygen chemical potential exceeded the phase boundary limit. The striking difference in carrier generation between PbO and SnO is discussed based on the electronic structures calculated by density functional theory.

  20. Oxygen: the poison is in the dose.

    PubMed

    Winslow, Robert M

    2013-02-01

    Cell-free hemoglobin (Hb) has been blamed for a spectrum of problems, including vasoconstriction pancreatitis, myocardial infarction, and pulmonary hypertension in hemolytic anemia, malaria, and sickle cell anemia, and from Hb-based oxygen carriers (HBOCs). Toxicities have been attributed to scavenging of nitric oxide (NO). However, while NO scavenging may explain many in vitro effects, and some effects in animal models and clinical trials with HBOCs, key inconsistencies in the theory require alternative explanations. This review considers the hypothesis that cell-free Hb oversupplies oxygen to tissues, leading to oxygen-related toxicity, possibly through formation of reactive oxygen species and local destruction of NO. Evidence for this hypothesis comes from various sources, establishing that tissue oxygen levels are maintained over very narrow (and low) levels, even at high oxygen consumption. Tissue is normally protected from excessive oxygen by its extremely low solubility in plasma, but introduction of cell-free Hb, even at low concentration, greatly augments oxygen supply, engaging protective mechanisms that include vasoconstriction and ischemia. The requirement to limit oxygen supply by cell-free Hb suggests novel ways to modify it to overcome vasoconstriction, independent of the intrinsic reaction of Hb with NO. This control is essential to the design of a safe and effective cell-free HBOC. © 2012 American Association of Blood Banks.

  1. Production of an Accelerated Oxygen-14 Beam

    SciTech Connect

    Powell, James; O'Neil, James P.; Cerny, Joseph

    2002-05-03

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was Carbon-11 and beams of intensity more than 108 ions/sec have been utilized for experiments. Development of Oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 seconds and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of Oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, Oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an Oxygen-14 beam have been performed.

  2. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  3. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  4. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  5. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  6. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  7. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  8. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  9. 7 CFR 35.4 - Carrier.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Carrier. 35.4 Section 35.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... AND PLUMS Definitions § 35.4 Carrier. Carrier means any common or private carrier, including, but...

  10. 14 CFR 04 - Air Carrier Groupings

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Air Carrier Groupings Section 04 Section... PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air...

  11. Nanoscale upconversion for oxygen sensing.

    PubMed

    Presley, Kayla; Hwang, Jinwoo; Cheong, Soshan; Tilley, Richard; Collins, Josh; Viapiano, Mariano; Lannutti, John

    2017-01-01

    Optical oxygen sensors have many promising qualities but rely on excitation by violet or blue wavelengths that suffer from high levels of scattering and absorption in biological tissues. Here we demonstrate an alternative method using 980nm near-infrared light to initially stimulate ceramic upconverting nanoparticles (UCNPs) contained within a novel form, electrospun core-shell fibers. The emission of the UCNPs excites a molecular optical oxygen sensor, the subsequent phosphorescent emission being dynamically quenched by the presence of molecular oxygen. The potential for use of such an energy transfer within electrospun fibers widely used in biological applications is promising. However, current knowledge of such 'handshake' interactions is limited. Fiber-based carriers enabling such optical conversions provide unique opportunities for biosensing as they recapitulate the topography of the extracellular matrix. This creates a wide array of potential theranostic, fiber-based applications in disease diagnosis/imaging, drug delivery and monitoring of therapeutic response. Using a fiber-based vehicle, we observed gaseous oxygen sensing capabilities and a linear Stern-Volmer response allowing highly accurate calibration. Configurational aspects were also studied to determine how to maximize the efficiency of this 'handshake' interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Making your own retrograde carrier.

    PubMed

    Chai, W L; Ngeow, W C

    1999-02-01

    One of the problems faced by manufacturers is the difficulty in constructing a robust and reliable, angled applicator tip. This can be overcome by handmaking your own retrograde carrier. The applicator tip may be bent to about 50 degrees and, if a kink occurs while bending the tip, it can be replaced easily by a new modified needle. Because the wire used is flexible, it can adapt to the bend without a problem. Narrower carriers can also be made using a 20-G needle, perhaps more suitable for retrograde fillings of molar apices. Because the carrier is designed to be used once only, the problems of it being difficult to load and liable to blockages should not arise.

  13. Hydrogen as an energy carrier

    SciTech Connect

    Winter, C.J.; Nitsch, J

    1988-01-01

    The book deals with the possibilities of an energetic utilization of hydrogen. This energy carrier can be produced from the unlimited energy sources solar energy, wind energy and hydropower, and from nuclear energy. It is also in a position to one day supplement or supersede the fossil energy carriers oil, coal and gas. Contents: Significance and Use of Hydrogen: Energy Supply Structures and the Importance of Gaseous Energy Carriers. Technologies for the Energetic Use of Hydrogen. Hydrogen as Raw Material. Safety Aspects of Hydrogen Energy. Production of Hydrogen from Nonfossil Primary Energy: Photovoltaic Electricity Generation. Thermo-mechanical Electricity Generation. Water Splitting Methods. Selected Hydrogen Production Systems. Storage, Transport and Distribution of Hydrogen. Design of a Future Hydrogen Energy Economy: Potential and Chances of Hydrogen. Hydrogen in a Future Energy Economy. Concepts for the Introduction of Nonfossil Hydrogen. Energy-economic Conditions and the Cooperation with Hydrogen Producing Countries. Index.

  14. Charge carrier transport in polyvinylcarbazole

    NASA Astrophysics Data System (ADS)

    Tyutnev, Andrey P.; Saenko, Vladimir S.; Pozhidaev, Evgenii D.; Kolesnikov, Vladislav A.

    2006-07-01

    A critical analysis of the existing time-of-flight (TOF) data in poly(N-vinylcarbazole) (PVK) proves that these are highly controversial with claims and counterclaims about charge carrier transport (dispersive versus Gaussian). It is felt that the TOF method taken alone is incapable of resolving the standing dilemma. As a final means to resolve it, we propose a combination of two varieties of the TOF technique using both sheet-like and uniform carrier generation modes in conjunction with radiation-induced conductivity measurements. All three techniques are realized using the ELA-50 electron gun facility. To demonstrate the effectiveness of our approach we report experimental data for PVK, which show that carrier transport in this polymer is indeed dispersive. Evidence is presented substantiating the gross interference the surface traps could exert on the shape of a TOF transient. As a result, a preflight part of the TOF signal should not be used for parameter evaluation.

  15. High-performance multilayer WSe2 field-effect transistors with carrier type control

    DOE PAGES

    Pudasaini, Pushpa Raj; Oyedele, Akinola; Zhang, Cheng; ...

    2017-07-06

    In this paper, high-performance multilayer WSe2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe2 thickness. The carrier type evolves with increasing WSe2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe2 as a function of the thickness and the carrier band offsets relative to the metal contacts. Furthermore, we present amore » strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. Finally, this work demonstrates progress towards the realization of high-performance multilayer WSe2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.« less

  16. Carrier sense data highway system

    DOEpatents

    Frankel, Robert

    1984-02-14

    A data transmission system includes a transmission medium which has a certain propagation delay time over its length. A number of data stations are successively coupled to the transmission medium for communicating with one another. Each of the data stations includes a transmitter for originating signals, each signal beginning with a carrier of a duration which is at least the propagation delay time of the transmission medium. Each data station also includes a receiver which receives other signals from other data stations and inhibits operation of the transmitter at the same data station when a carrier of another signal is received.

  17. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  18. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  19. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  20. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  1. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Adoption of provisions of one carrier by... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of another... of the adopting carrier and the effective date of the adoption. Further, each adopted fare shall bear...

  2. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    NASA Astrophysics Data System (ADS)

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.

    2015-07-01

    An improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy (DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.

  3. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    SciTech Connect

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.

    2015-07-07

    An improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy (DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V{sub 2}) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.

  4. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    SciTech Connect

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.

    2015-07-02

    In this study, an improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy(DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.

  5. Carrier lifetimes in silicon carbide

    NASA Astrophysics Data System (ADS)

    Nigam, Saurav

    Carrier lifetimes are one of the most crucial parameters that govern the performance of high voltage/high power devices. The lack of understanding of the factors that determine the carrier lifetimes in silicon carbide is currently a major impediment in the development of high voltage/high power technology based on this material. The objective of this dissertation was to identify and subsequently, characterize various recombination channels present in silicon carbide. Of special importance was identification of lifetime limiting defects in the high quality epitaxial layers grown by state-of-the-art chemical vapor deposition technique for high voltage application. The effect of growth conditions (C/Si ratio, growth temperature, seed polarity, epilayer thickness, and background doping) on the concentrations of various defects were investigated with the aim of manipulating carrier lifetimes by controlling different growth parameters. Based on the qualitative correlations between various point defects and carrier lifetimes in more than thirty epitaxial layers, three defects (Z-defect, EH6/7 center, and P1 center) were identified as potential lifetime limiting defects. The P1 center was shown to act as efficient recombination channel whenever present in concentrations greater than 1013 cm-3. Such concentrations were observed in layers grown on the C-face and at low C/Si ratio (less than 1.5). The measurement of recombination rates of electrons and holes via the Z-defect and the EH6/7 center (as a function of temperature) were performed by analyzing the carrier dynamics in specially designed p-n diodes. At 300 K, the capture cross section of the two states of the Z-defect were sigman1˜6x10-15 cm2 (electron capture at the donor state), sigmap1˜2x1014 cm2 (hole capture at the donor state), sigman2˜1x10 16 cm2 (electron capture at the acceptor state), and sigma p2˜1e-13 cm2 (hole capture at the acceptor state). The electron capture cross section for the EH6/7 centers was

  6. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that the Agency's Motor Carrier Safety Advisory Committee...

  7. 76 FR 12214 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice: Announcement of Motor Carrier Safety Advisory Committee meeting; request for comment. SUMMARY: The Federal Motor Carrier Safety...

  8. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  9. 75 FR 29384 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  10. Oxygen measurements to improve singlet oxygen dosimetry

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Finlay, Jarod C.; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) involves interactions between the three main components of light fluence, photosensitizer concentration, and oxygenation. Currently, singlet oxygen explicit dosimetry (SOED) has focused on the first two of these components. The macroscopic model to calculate reacted singlet oxygen has previously involved a fixed initial ground state oxygen concentration. A phosphorescence-based oxygen probe was used to measure ground state oxygen concentration throughout treatments for mice bearing radioactively induced fibroscarcoma tumors. Photofrin-, BPD-, and HPPH-mediated PDT was performed on mice. Model-calculated oxygen and measured oxygen was compared to evaluate the macroscopic model as well as the photochemical parameters involved. Oxygen measurements at various depths were compared to calculated values. Furthermore, we explored the use of noninvasive diffuse correlation spectroscopy (DCS) to measure tumor blood flow changes in response to PDT to improve the model calculation of reacted singlet oxygen. Mice were monitored after treatment to see the effect of oxygenation on long-term recurrence-free survival as well as the efficacy of using reacted singlet oxygen as a predictive measure of outcome. Measurement of oxygenation during treatment helps to improve SOED as well as confirm the photochemical parameters involved in the macroscopic model. Use of DCS in predicting oxygenation changes was also investigated.

  11. Whey drying on porous carriers

    SciTech Connect

    Mitura, E.; Kaminski, W.

    1996-05-01

    Whey is treated very often as a waste which pollutes the natural environment. Whey which is a valuable source of protein, lacrose, vitamins and mineral salts should be utilized completely. The present paper is a proposal of whey drying on porous carriers. It is proved experimentally that the proposed drying method guarantees good product quality.

  12. ISS qualified thermal carrier equipment

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .

  13. Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers.

    PubMed

    Souto, Eliana B; Severino, Patrícia; Basso, Rafael; Santana, Maria Helena A

    2013-01-01

    Reactive oxygen species (ROS) are known to cause several human pathologies. For this reason, antioxidants have gained utmost importance because of their potential as prophylactic and therapeutic agents in many diseases. Examples of their application include their use in diabetic patients, as aging drugs, in cancer diseases, Parkinson's, Alzheimer's, autoimmune disorders, and also in inflammation. Antioxidants have limited absorption profiles, therefore low bioavailability and low concentrations at the target site. Efforts have been done towards loading antioxidant molecules in advanced nanoparticulate carriers, e.g., liposomes, polymeric nanoparticles, solid lipid nanoparticles, self-emulsifying drug delivery system. Examples of -successful achievements include the encapsulation of drugs and other active ingredients, e.g., coenzyme Q10, vitamin E and vitamin A, resveratrol and polyphenols, curcumin, lycopene, silymarin, and superoxide dismutase. This review focuses on the comprehensive analysis of using nanoparticulate carriers for loading these molecules for oral administration.

  14. Benefits of 21% Oxygen Compared with 100% Oxygen for Delivery of Isoflurane to Mice (Mus musculus) and Rats (Rattus norvegicus).

    PubMed

    Wilding, Laura A; Hampel, Joe A; Khoury, Basma M; Kang, Stacey; Machado-Aranda, David; Raghavendran, Krishnan; Nemzek, Jean A

    2017-03-01

    At research institutions, isoflurane delivered by precision vaporizer to a face mask is the standard for rodent surgery and for procedures with durations that exceed a few minutes. Pure oxygen is often used as the carrier gas for isoflurane anesthesia, despite documented complications from long-term 100% oxygen use in humans and known occupational safety risks. We therefore examined the effect of anesthetic delivery gas on physiologic variables in mice and rats. Rodents were anesthetized for 60 min with isoflurane delivered in either 21% or 100% oxygen by means of a nose cone. We noted no difference between carrier gasses in physiologic variables in mice, including body temperature, respiratory rate, mean arterial pressure, surgical recovery time, pH, or PaCO2. However, blood gas analysis revealed evidence of a ventilation-perfusion mismatch in the 100% oxygen group. Pressure-volume hysteresis and histomorphometric analyses confirmed the presence of increased atelectasis in mice that received 100% oxygen. Unlike mice, rats that received isoflurane in 100% oxygen had acute respiratory acidosis and elevated mean arterial pressure, but atelectasis was similar between carrier gasses. Our data suggest that both 100% and 21% oxygen are acceptable for the delivery of isoflurane to mice. However, mice anesthetized for studies focused on lung physiology or architecture would benefit from the delivery of isoflurane in 21% oxygen to reduce absorption atelectasis and the potential associated downstream inflammatory effects. For rats, delivery of isoflurane in 21% and 100% oxygen both caused perturbations in physiologic variables, and choosing a carrier gas is not straightforward.

  15. Benefits of 21% Oxygen Compared with 100% Oxygen for Delivery of Isoflurane to Mice (Mus musculus) and Rats (Rattus norvegicus)

    PubMed Central

    Wilding, Laura A; Hampel, Joe A; Khoury, Basma M; Kang, Stacey; Machado‑Aranda, David; Raghavendran, Krishnan; Nemzek, Jean A

    2017-01-01

    At research institutions, isoflurane delivered by precision vaporizer to a face mask is the standard for rodent surgery and for procedures with durations that exceed a few minutes. Pure oxygen is often used as the carrier gas for isoflurane anesthesia, despite documented complications from long-term 100% oxygen use in humans and known occupational safety risks. We therefore examined the effect of anesthetic delivery gas on physiologic variables in mice and rats. Rodents were anesthetized for 60 min with isoflurane delivered in either 21% or 100% oxygen by means of a nose cone. We noted no difference between carrier gasses in physiologic variables in mice, including body temperature, respiratory rate, mean arterial pressure, surgical recovery time, pH, or PaCO2.However, blood gas analysis revealed evidence of a ventilation–perfusion mismatch in the 100% oxygen group. Pressure–volume hysteresis and histomorphometric analyses confirmed the presence of increased atelectasis in mice that received 100% oxygen. Unlike mice, rats that received isoflurane in 100% oxygen had acute respiratory acidosis and elevated mean arterial pressure, but atelectasis was similar between carrier gasses. Our data suggest that both 100% and 21% oxygen are acceptable for the delivery of isoflurane to mice. However, mice anesthetized for studies focused on lung physiology or architecture would benefit from the delivery of isoflurane in 21% oxygen to reduce absorption atelectasis and the potential associated downstream inflammatory effects. For rats, delivery of isoflurane in 21% and 100% oxygen both caused perturbations in physiologic variables, and choosing a carrier gas is not straightforward. PMID:28315643

  16. Oxygen therapeutics: pursuit of an alternative to the donor red blood cell.

    PubMed

    Ness, Paul M; Cushing, Melissa M

    2007-05-01

    There is no true substitute for the many functions of human red blood cells, and synthetic products will not replace the need for blood donation in the foreseeable future. Hemoglobin-based oxygen carriers have many characteristics that would serve as a useful adjunct to red cells in clinical settings. Over time, these technologies have the potential to dramatically reshape the practice of transfusion medicine. To review the characteristics and potential utility of hemoglobin-based oxygen carriers and perfluorocarbon-based oxygen carriers. Several hemoglobin-based oxygen carriers are under study in phase III clinical trials. Novel uses for synthetic oxygen therapeutics are emphasized. All published reports with the key words oxygen therapeutics, blood substitutes, and red cell substitutes from 1933 until March 2006 were searched through Medline. Significant findings were synthesized. Recognition of the true impact of red cell substitutes is still several years away. The most compelling products, hemoglobin-based oxygen carriers, have potential use in trauma, providing immediate oxygen-carrying support in the face of alloantibodies or autoantibodies, and in other clinical situations in which long-term survival of red cells is not essential. In the interim, efforts should be focused on enhancing the current blood supply system while supporting ongoing and planned blood substitute research efforts, including trials assessing novel clinical indications for these products.

  17. Plant mitochondrial carriers: an overview.

    PubMed

    Laloi, M

    1999-12-01

    In the two last decades, biochemical studies using mitochondrial swelling experiments or direct solute uptake in isolated mitochondria have lead to the identification of different transport systems at the level of the plant mitochondrial inner membrane. Although most of them have been found to have similar features to those identified in animal mitochondria, some differences have been observed between plant and animal transporters. More recently, molecular biology studies have revealed that most of the mitochondrial exchanges are performed by nuclear encoded proteins, which form a superfamily. Members of this family have been reported in animals, yeast as well as plants. This review attempts to give an overview of the present knowledge concerning the biochemical and molecular characterisation of plant members of the mitochondrial carrier family and, when possible, a comparison with carriers from other organisms.

  18. Carriers

    MedlinePlus

    ... Trials Research Publications Support & Care For Newly Diagnosed Care Packages Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At School At Home Adults With SMA Play Travel Grief & Loss Community & ...

  19. Carrier-Mediated Antiviral Therapy

    DTIC Science & Technology

    1988-01-01

    methyimethacrylate). (x) Adsorption onto 0.2% aluminium hydroxide. (L) Fluid vaccine . The vaccines with nanoparticles as adjuvants were tested by...interferon, most likely by providing a slow release of the drug over several days. B. Polymeric Microcapsule Carriers for Drugs and Viral Vaccine Persistent...development of more specific and purer vaccines very often leads to a decrease in the antibody response. hence protection. This effect was observed some

  20. [Peripartum period and hemophilia carriers].

    PubMed

    Bonnet, A; Chevalier, Y; Wallon, G; Huissoud, C; Aubrun, F

    2013-11-01

    Women who are carriers for hemophilia are usually considered as safe carriers. However, they can present hemorragic symptoms associated with low factor VIII or IX levels. During pregancy, factor VIII increases whereas factor IX does not. The peripartum period is at risk of increased bleeding in these women. Here are presented reports of clinical data concerning two hemophilia carriers with low factor VIII or IX (30-40%) during the peripartum period. They received remifentanil and ketamine for labor pain management because of contraindication of epidural and spinal analgesia. Delivery occured quickly but they presented immediate moderate postpartum haemorrage. They did not necessitate blood transfusion. The one with hemophilia A received desmopressin just after delivery and the other one received factor IX when she arrived in delivery room. Blood factor VIII or IX has to be assessed in these women with familial history of hemophilia and bleeding. During pregnancy, factor VIII increases and can be assessed many times during pregnancy expecting a level over 50%. Factor IX does not really increase during pregancy and hemorrage can occur. Epidural and spinal anesthesia seem to be contraindicated as far as recommandations are concerned. Coagulation factor substitution is a mean of increasing factor level before these anaesthesias and can be discussed for each case. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  1. Protein carriers of conjugate vaccines

    PubMed Central

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  2. High-Nitrogen and High-Oxygen Chemistry

    DTIC Science & Technology

    2005-07-01

    Sources • High-Oxygen Carriers and Oxidizer Balanced Ionic Liquids 412 July, 2005 3rd Energetic Materials Technology Exchange, Arlington, VA Distribution...spectroscopy • [trans- UO2 (N3)4]2-, the first example of an actinide oxoazide, was also prepared and characterized by its crystal structure 1812 July, 2005...synthesized and characterized, and their usefulness for preparing gem-bis-difluoramino compounds was demonstrated. • High-oxygen carrying anions hold great promise for oxidizer -balanced, ionic liquid propellants.

  3. Responsible implementation of expanded carrier screening.

    PubMed

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-06-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines.

  4. 5 CFR 890.1308 - Carrier participation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Carrier participation. 890.1308 Section 890.1308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... Program Demonstration Project § 890.1308 Carrier participation. (a) All carriers who participate in...

  5. Responsible implementation of expanded carrier screening

    PubMed Central

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-01-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  6. 5 CFR 890.1308 - Carrier participation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Carrier participation. 890.1308 Section 890.1308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... Program Demonstration Project § 890.1308 Carrier participation. (a) All carriers who participate in...

  7. 5 CFR 890.1308 - Carrier participation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Carrier participation. 890.1308 Section 890.1308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... Program Demonstration Project § 890.1308 Carrier participation. (a) All carriers who participate in...

  8. 5 CFR 890.1308 - Carrier participation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Carrier participation. 890.1308 Section 890.1308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... Program Demonstration Project § 890.1308 Carrier participation. (a) All carriers who participate in...

  9. 47 CFR 54.904 - Carrier certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier certification. 54.904 Section 54.904 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Interstate Common Line Support Mechanism for Rate-of-Return Carriers § 54.904...

  10. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Study carriers. 1139.21 Section 1139.21... Industry § 1139.21 Study carriers. (a) For the purposes of this proceeding the “study carriers” shall... and/or charges. (b) To corroborate the selection of the above study carriers, and to provide a data...

  11. 7 CFR 33.4 - Carrier.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Carrier. 33.4 Section 33.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ISSUED UNDER AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.4 Carrier. Carrier means any common...

  12. Lactose composite carriers for respiratory delivery.

    PubMed

    Young, Paul M; Kwok, Philip; Adi, Handoko; Chan, Hak-Kim; Traini, Daniela

    2009-04-01

    Lactose dry powder inhaler (DPI) carriers, constructed of smaller sub units (composite carriers), were evaluated to assess their potential for minimising drug-carrier adhesion, variability in drug-carrier forces and influence on drug aerosol performance from carrier-drug blends. Lactose carrier particles were prepared by fusing sub units of lactose (either 2, 6 or 10 microm) in saturated lactose slurry. The resultant composite particles, as well as supplied lactose, were sieve fractioned to obtain a 63-90 microm carriers. The carriers were evaluated in terms of size (laser diffraction) morphology (electron microscopy and atomic force microscopy), crystallinity and drug adhesion (colloid probe microscopy). In addition, blends containing drug and carrier were prepared and evaluated in terms of drug aerosol performance. The surface morphology and physico-chemical properties of the composite carriers were significantly different. Depending on the initial primary lactose size, the composite particles could be prepared with different surface roughness. Variation in composite roughness could be related to the change in drug adhesion (via modification in contact geometry) and thus drug aerosol performance from drug-lactose blends. Composite based carriers are a potential route to control drug-carrier adhesion forces and variability thus allowing more precise control of formulation performance.

  13. 49 CFR 1241.1 - Common carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Common carriers. 1241.1 Section 1241.1 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT...-CARRIERS SUBJECT TO PART I OF THE INTERSTATE COMMERCE ACT § 1241.1 Common carriers. All common...

  14. 18 CFR 357.1 - Common carriers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Common carriers. 357.1 Section 357.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... SUBJECT TO PART I OF THE INTERSTATE COMMERCE ACT § 357.1 Common carriers. All common carriers by...

  15. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  16. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  17. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  18. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  19. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... other carriers to pass off by means of activities which are inconsistent with the minimum safeguards...

  20. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  1. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  2. 47 CFR 69.105 - Carrier common line for non-price cap local exchange carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier common line for non-price cap local...) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.105 Carrier common line... shall be assessed upon all interexchange carriers that use local exchange common line facilities for...

  3. Wastewater treatment with biomass carriers made from steelmaking by-product

    SciTech Connect

    Aritome, Kiyoshi; Miki, Osamu; Okuno, Yoshio

    1995-07-01

    It is economical to use microorganisms in wastewater treatment. In steelmaking, ammonia liquor from coke-oven plant, for example, is treated using microorganisms. To treat wastewater efficiently in biological processes, the following conditions are necessary: appropriate conditions for activities of microorganisms; proper concentration of microorganisms in reactor; effective contact of wastewater and microorganisms; and reliable separation of treated wastewater and microorganisms. Three types of biomass carriers made from granulated slag to satisfy these conditions have been developed. Research efforts have been under way to apply these carriers in reduction of COD (chemical oxygen demand) in wastewater. Developed biomass carriers can reduce the volume of COD oxidation reactor and promise easy operation compared with the conventional activated sludge processes. This result has been substantialized in sewage treatment facilities, factory wastewater treatment facilities and deodorization facilities. For the future, nitrate reduction in stainless pickling wastewater with fixed-bed biomass carriers will be also investigated.

  4. Maintenance of Mitochondrial Oxygen Homeostasis by Cosubstrate Compensation

    PubMed Central

    Kueh, Hao Yuan; Niethammer, Philipp; Mitchison, Timothy J.

    2013-01-01

    Mitochondria maintain a constant rate of aerobic respiration over a wide range of oxygen levels. However, the control strategies underlying oxygen homeostasis are still unclear. Using mathematical modeling, we found that the mitochondrial electron transport chain (ETC) responds to oxygen level changes by undergoing compensatory changes in reduced electron carrier levels. This emergent behavior, which we named cosubstrate compensation (CSC), enables the ETC to maintain homeostasis over a wide of oxygen levels. When performing CSC, our ETC models recapitulated a classic scaling relationship discovered by Chance [Chance B (1965) J. Gen. Physiol. 49:163-165] relating the extent of oxygen homeostasis to the kinetics of mitochondrial electron transport. Analysis of an in silico mitochondrial respiratory system further showed evidence that CSC constitutes the dominant control strategy for mitochondrial oxygen homeostasis during active respiration. Our findings indicate that CSC constitutes a robust control strategy for homeostasis and adaptation in cellular biochemical networks. PMID:23528093

  5. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  6. Home oxygen therapy under Medicare. A primer.

    PubMed Central

    Shigeoka, J. W.; Stults, B. M.

    1992-01-01

    Medicare recently implemented a new, strict, and complex home oxygen policy and a new oxygen prescription form. Unfortunately, the lack of instructions for the form has led to confusion, frustration, and suboptimal treatment. Long-term oxygen therapy prolongs survival, ameliorates hypoxic organ dysfunction, and improves exercise endurance. Indications for therapy include hypoxemia caused by cardiopulmonary diseases, hypoxemia that occurs with sleep or exercise, and hypoxemic organ dysfunction. Patients should be stable and have an arterial blood oxygen tension (PaO2) of 55 mm of mercury (7.3 kPa) or less or arterial blood oxygen saturation (SaO2) of 88% or less. There should be evidence of hypoxic organ dysfunction when the (PaO2) is 56 to 59 mm of mercury (7.4 to 7.8 kPa) or the SaO2 is 89%. A medical review by the insurance carrier is required if oxygen is to be prescribed when hypoxemia is less severe--if the PaO2 is 60 mm of mercury (8.0 kPa) or more or if the SaO2 is 90% or more. The instructions for oxygen flow, duration, and equipment must be explicit to ensure adequate therapy. An oxygen concentrator with a small oxygen cylinder portable system fulfills most needs. Oxygen cylinders may be used at low flows for patients who require therapy only during sleep or where electrical power is unreliable. A liquid oxygen system may be prescribed for active patients. Portable equipment should be provided in addition to stationary equipment when patients have resting hypoxemia. Portable equipment alone is sufficient when there is exercise-related hypoxemia with normal oxygenation at rest. Newly developed oxygen-conserving devices may offer longer ambulatory times and possibly lower operating costs. When home oxygen therapy is started in the hospital, the Certificate of Medical Necessity should be completed and patients should be trained to use the equipment before discharge. PMID:1734596

  7. Oxygen sensing and signaling.

    PubMed

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.

  8. Non-permeable substrate carrier for electroplating

    DOEpatents

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  9. Non-permeable substrate carrier for electroplating

    DOEpatents

    Abas, Emmanuel Chua; Chen, Chen-an; Ma, Diana Xiaobing; Ganti, Kalyana; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor

    2015-12-29

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  10. Tunnel and field effect carrier ballistics

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Bell, L. Douglas (Inventor)

    1989-01-01

    Methods and apparatus for interacting carriers with a structure of matter employ an electrode for emitting said carriers at a distance from a surface of that structure, and cause such carriers to travel along ballistic trajectories inside that structure by providing along the mentioned distance a gap for performance of a process selected from the group of carrier tunneling and field emission and injecting carriers emitted by the mentioned electrode and that process ballistically into the structure through the gap and the mentioned surface. The carriers are collected or analyzed after their travel along ballistic trajectories in the structure of matter. Pertinent information on the inside of the structure is obtained by conducting inside that structure what conventionally would have been considered external ballistics, while performing the carrier-propelling internal ballistics conversely outside that structure.

  11. Oxygen Sensing and Homeostasis

    PubMed Central

    Semenza, Gregg L.

    2015-01-01

    The discovery of carotid bodies as sensory receptors for detecting arterial blood oxygen levels, and the identification and elucidation of the roles of hypoxia-inducible factors (HIFs) in oxygen homeostasis have propelled the field of oxygen biology. This review highlights the gas-messenger signaling mechanisms associated with oxygen sensing, as well as transcriptional and non-transcriptional mechanisms underlying the maintenance of oxygen homeostasis by HIFs and their relevance to physiology and pathology. PMID:26328879

  12. External tank aft cargo carrier

    NASA Technical Reports Server (NTRS)

    Mobley, T. B.

    1984-01-01

    The External Tank (ET) Aft Cargo Carrier (ACC) is a low cost, low risk augmentation of the Space Transportation System (STS). It almost doubles the cargo volume of the STS while minimally impacting other STS elements (orbiter, ET and solid rocket boosters SRBs, launch facilities and STS operations. In addition to increasing the potential volume of cargo carried on a Shuttle launch, the ACC provides the following additional benefits: (1) Increased STS competitiveness for payloads; (2) Increased cargo manifest flexibility; (3) Increased spacecraft design options; (4) Alternate manifesting for special payloads; and (5) Future space platform/station design options.

  13. Biocheese: A Food Probiotic Carrier

    PubMed Central

    Castro, J. M.; Tornadijo, M. E.; Fresno, J. M.; Sandoval, H.

    2015-01-01

    This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The physicochemical and technological parameters influencing the quality of these products have also to be measured so as to obtain a process optimization. PMID:25802862

  14. Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater.

    PubMed

    Gu, Qiyuan; Sun, Tichang; Wu, Gen; Li, Mingyue; Qiu, Wei

    2014-08-01

    This study aims to evaluate the effect of carrier filling ratio on the performance of a moving bed biofilm reactor in degrading chemical oxygen demand, phenol, thiocyanate, and ammonia from coking wastewater at 20h of hydraulic retention time. The operational experiments under different carrier filling ratios ranging from 20% to 60% were investigated. The maximum removal efficiency of 89%, 99% and 99% for COD, phenol and thiocyanate, and minimum sensitivity to the increasing contaminants concentration in the influent were achieved at 50% carrier filling ratio. The Haldane competitive substrate inhibition kinetics model was used to describe the relationship between the oxygen uptake rate of ammonium oxidizers and the concentration of free ammonium. The highest biofilm microbial community functional diversity (Shannon's diversity index, H') and evenness (Shannon's evenness index, E') were obtained at 50% carrier filling ratio in all runs using a Biolog ECO microplate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Announcement of advisory... Committee that provides the Agency with advice and recommendations on motor carrier safety programs...

  16. Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors.

    PubMed

    Zhang, Yingjie; Chen, Qian; Alivisatos, A Paul; Salmeron, Miquel

    2015-07-08

    Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe force microscopy, we measured the temporal response of the QDs as the channel material in a FET following step function changes of gate bias. The measurements reveal an exponential decay of mobile carrier density with time constants of 3-5 s for holes and ∼10 s for electrons. An Ohmic behavior, with uniform carrier density, was observed along the channel during the injection and transport processes. These slow, uniform carrier trapping processes are reversible, with time constants that depend critically on the gas environment. We propose that the underlying mechanism is some reversible electrochemical process involving dissociation and diffusion of water and/or oxygen related species. These trapping processes are dynamically activated by the injected charges, in contrast with static electronic traps whose presence is independent of the charge state. Understanding and controlling these processes is important for improving the performance of electronic, optoelectronic, and memory devices based on disordered semiconductors.

  17. Carrier detection in xeroderma pigmentosum

    SciTech Connect

    Parshad, R.; Sanford, K.K.; Kraemer, K.H.; Jones, G.M.; Tarone, R.E. )

    1990-01-01

    We were able to detect clinically normal carriers of xeroderma pigmentosum (XP) genes with coded samples of either peripheral blood lymphocytes or skin fibroblasts, using a cytogenetic assay shown previously to detect individuals with cancer-prone genetic disorders. Metaphase cells of phytohemagglutinin-stimulated T-lymphocytes from eight individuals who are obligate heterozygotes for XP were compared with those from nine normal controls at 1.3, 2.3, and 3.3 h after x-irradiation (58 R) during the G2 phase of the cell cycle. Lymphocytes from the XP heterozygotes had twofold higher frequencies of chromatid breaks or chromatid gaps than normal (P less than 10(-5)) when fixed at 2.3 or 3.3 h after irradiation. Lymphocytes from six XP homozygotes had frequencies of breaks and gaps threefold higher than normal. Skin fibroblasts from an additional obligate XP heterozygote, when fixed approximately 2 h after x-irradiation (68 R), had a twofold higher frequency of chromatid breaks and a fourfold higher frequency of gaps than fibroblasts from a normal control. This frequency of aberrations in cells from the XP heterozygote was approximately half that observed in the XP homozygote. The elevated frequencies of chromatid breaks and gaps after G2 phase x-irradiation may provide the basis of a test for identifying carriers of the XP gene(s) within known XP families.

  18. Carrier localization in gallium nitride

    SciTech Connect

    Wetzel, C.; Walukiewicz, W.; Haller, E.E.

    1996-09-01

    In wide bandgap GaN, a large number of interesting and important scientific questions remain to be answered. For example, the large free electron concentration reaching 10{sup 19} to 10{sup 20} cm{sup - 3} in nominally undoped material are ascribed to intrinsic defects because no chemical impurity has been found at such high concentrations. According to theoretical models, a nitrogen vacancy acts as a donor but its formation energy is very large in n-type materials, making this suggestion controversial. We have investigated the nature of this yet unidentified donor at large hydrostatic pressure. Results from infrared reflection and Raman scattering indicate strong evidence for localization of free carriers by large pressures. The carrier density is drastically decreased by two orders of magnitude between 20 and 30 GPa. Several techniques provide independent evidence for results in earlier reports and present the first quantitative analysis. A possible interpretation of this effect in terms of the resonant donor level is presented.

  19. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  20. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  1. The story of oxygen.

    PubMed

    Heffner, John E

    2013-01-01

    The history of oxygen from discovery to clinical application for patients with chronic lung disease represents a long and storied journey. Within a relatively short period, early investigators not only discovered oxygen but also recognized its importance to life and its role in respiration. The application of oxygen to chronic lung disease, however, took several centuries. In the modern era, physiologists pursued the chemical nature of oxygen and its physiologic interaction with cellular metabolism and gas transport. It took brazen clinicians, however, to pursue oxygen as a therapeutic resource for patients with chronic lung disease because of the concern in the 20th century of the risks of oxygen toxicity. Application of ambulatory oxygen devices allowed landmark investigations of the long-term effects of continuous oxygen that established its safety and efficacy. Although now well established for hypoxic patients, many questions remain regarding the benefits of oxygen for varying severity and types of chronic lung disease.

  2. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  3. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  4. Atomic transport of oxygen

    SciTech Connect

    Routbort, J.L.; Tomlins, G.W.

    1994-06-15

    Atomic transport of oxygen in nonstoichiometric oxides is an extremely important topic which overlaps science and technology. In many cases the diffusion of oxygen controls sintering, grain growth, and creep. High oxygen diffusivity is critical for efficient operation of many fuel cells. Additionally, oxygen diffusivities are an essential ingredient in any point defect model. Secondary Ion Mass Spectrometry (SIMS) is the most accurate modern technique to measure oxygen tracer diffusion. This paper briefly reviews the principles and applications of SIMS for the measurement of oxygen transport. Case studies are taken from recent work on ZnO and some high-temperature superconductors.

  5. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  6. Carriers of the astronomical 2175 ? extinction feature

    SciTech Connect

    Bradley, J; Dai, Z; Ernie, R; Browning, N; Graham, G; Weber, P; Smith, J; Hutcheon, I; Ishii, H; Bajt, S; Floss, C; Stadermann, F

    2004-07-20

    The 2175 {angstrom} extinction feature is by far the strongest spectral signature of interstellar dust observed by astronomers. Forty years after its discovery the origin of the feature and the nature of the carrier remain controversial. The feature is enigmatic because although its central wavelength is almost invariant its bandwidth varies strongly from one sightline to another, suggesting multiple carriers or a single carrier with variable properties. Using a monochromated transmission electron microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV (2175 {angstrom}) feature in submicrometer-sized interstellar grains within interplanetary dust particles (IDPs) collected in the stratosphere. The carriers are organic carbon and amorphous silicates that are abundant and closely associated with one another both in IDPs and in the interstellar medium. Multiple carriers rather than a single carrier may explain the invariant central wavelength and variable bandwidth of the astronomical 2175 {angstrom} feature.

  7. Carrier testing for spinal muscular atrophy

    PubMed Central

    Gitlin, Jonathan M.; Fischbeck, Kenneth; Crawford, Thomas O.; Cwik, Valerie; Fleischman, Alan; Gonye, Karla; Heine, Deborah; Hobby, Kenneth; Kaufmann, Petra; Keiles, Steven; MacKenzie, Alex; Musci, Thomas; Prior, Thomas; Lloyd-Puryear, Michele; Sugarman, Elaine A.; Terry, Sharon F.; Urv, Tiina; Wang, Ching; Watson, Michael; Yaron, Yuval; Frosst, Phyllis; Howell, R. Rodney

    2014-01-01

    Spinal muscular atrophy is the most common fatal hereditary disease among newborns and infants. There is as yet no effective treatment. Although a carrier test is available, currently there is disagreement among professional medical societies who proffer standards of care as to whether or not carrier screening for spinal muscular atrophy should be offered as part of routine reproductive care. This leaves health care providers without clear guidance. In fall 2009, a meeting was held by National Institutes of Health to examine the scientific basis for spinal muscular atrophy carrier screening and to consider the issues that accompany such screening. In this article, the meeting participants summarize the discussions and conclude that pan-ethnic carrier screening for spinal muscular atrophy is technically feasible and that the specific study of implementing a spinal muscular atrophy carrier screening program raises broader issues about determining the scope and specifics of carrier screening in general. PMID:20808230

  8. Factors controlling oxygen utilization.

    PubMed

    Biaglow, John; Dewhirst, Mark; Leeper, Dennis; Burd, Randy; Tuttle, Steve

    2005-01-01

    We demonstrate, theoretically, that oxygen diffusion distance is related to the metabolic rate of tumors (QO2) as well as the oxygen tension. The difference in QO2 rate between tumors can vary by as much as 80-fold. Inhibition of oxygen utilization by glucose or chemical inhibitors can improve the diffusion distance. Combining respiratory inhibitors with increased availability of oxygen will further improve the oxygen diffusion distance for all tumors. A simple means for inhibiting oxygen consumption is the use of glucose (the Crabtree effect). The inhibition of tumor oxygen utilization by glucose occurs in R323OAc mammary carcinoma and 9L glioma cells. However, stimulation of oxygen consumption is observed with glucose in the Q7 hepatoma cell line. MIBG, a known inhibitor of oxygen utilization, blocks oxygen consumption in 9L, but is weakly inhibitory with the Q7. Q7 tumor cells demonstrate an anomalous behavior of glucose and MIBG on oxygen consumption. Our results clearly demonstrate the necessity for comparing effects of different agents on different tumor cells. Generalizations cannot be made with respect to the choice of inhibitor for in vivo use. Our work shows that oxygen consumption also can be inhibited with malonate and chlorosuccinate. These substrates may be effective in vivo, where glucose is low and glutamine is the major substrate. Our results indicate that information about individual tumor substrate-linked metabolic controls may be necessary before attempting to inhibit oxygen utilization in vivo for therapeutic benefit.

  9. Shuttle carrier aircraft flight tests

    NASA Technical Reports Server (NTRS)

    Fulton, F. L., Jr.

    1977-01-01

    Since the Space Shuttle will need to be transported from its place of assembly to the launch site, a method has been developed whereby the Shuttle rides piggyback on a modified Boeing 747, called the Shuttle carrier aircraft (SCA). This paper describes tests of the SCA in its mated configuration. Tests include: flutter, found to decrease when fiberglass and wood fairings were added to the base of each supporting pylon; stability and control, found to be acceptable after damping with control pulses; noise and buffet, found high but acceptable; and climb, in which drag was marked but acceptable with the special rated thrust (SRT) power setting. Simulated launch maneuvers were undertaken at an airspeed of 273 KCAS. Transport of the Shuttle takes place with the Shuttle tail cone on, at a cruise speed of 288 KCAS at an altitude of 22,000 feet.

  10. Carrier facilitated transport through membranes

    SciTech Connect

    Kaper, H.G.; Leaf, G.K.; Matkowsky, B.J.

    1980-06-01

    Facilitated transport is a process whereby the diffusion of a solute across a membrane is chemically enhanced. In this report an analysis is given of a facilitated transport system involving a volatile species A which reacts with a nonvolatile carrier species B to form the nonvolatile product AB. The species A is transported across the membrane by ordinary diffusion, as well as by the diffusion of the product AB. It is assumed that the reaction rates are large, so the reactions are confined mostly to thin boundary layers near the surfaces of the membrane. The method of matched asymptotic expansions is used to derive the asymptotic solution of the nonlinear boundary value problem governing equilibrium. The effect of various parameters on the facilitation factor is analyzed in detail.

  11. Laboratory Studies of DIB Carriers

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1995-01-01

    Spectroscopic studies of the following potential diffuse interstellar band (DIB) carriers are reviewed: unspecified organics, carbon chains, polycyclic aromatic hydrocarbons (PAHs), fullerenes and derivatives, as well as porphyrins and related material. An assessment of each is given, along with suggestions for further experimental studies needed to fully test each candidate. Of the experimental techniques in common use matrix isolation spectroscopy with neon matrices is the most appropriate for the DIBs. The low vapor pressure and high reactivity of these materials preclude gas phase studies on many of these species. At this point, given the type and quality of published data available, carbon chains and PARs are the most promising candidates for a number of the DIBs.

  12. Charge carrier thermalization in organic diodes

    PubMed Central

    van der Kaap, N. J.; Koster, L. J. A.

    2016-01-01

    Charge carrier mobilities of organic semiconductors are often characterized using steady-state measurements of space charge limited diodes. These measurements assume that charge carriers are in a steady-state equilibrium. In reality, however, energetically hot carriers are introduces by photo-excitation and injection into highly energetic sites from the electrodes. These carriers perturb the equilibrium density of occupied states, and therefore change the overall charge transport properties. In this paper, we look into the effect of energetically hot carriers on the charge transport in organic semiconductors using steady state kinetic Monte Carlo simulations. For injected hot carriers in a typical organic semiconductor, rapid energetic relaxation occurs in the order of tens of nanoseconds, which is much faster than the typical transit time of a charge carrier throught the device. Furthermore, we investigate the impact of photo-generated carriers on the steady-state mobility. For a typical organic voltaic material, an increase in mobility of a factor of 1.1 is found. Therefore, we conclude that the impact of energetically hot carriers on normal device operation is limited. PMID:26791095

  13. CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E.F. Loros

    2000-06-23

    The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building

  14. Both Hemophilia Health Care Providers and Hemophilia A Carriers Report that Carriers have Excessive Bleeding

    PubMed Central

    Paroskie, Allison; Oso, Olatunde; DeBaun, Michael R.; Sidonio, Robert F

    2014-01-01

    Introduction Hemophilia A, the result of reduced factor VIII (FVIII) activity, is an X-linked recessive bleeding disorder. Previous reports of Hemophilia A carriers suggest an increased bleeding tendency. Our objective was to determine the attitudes and understanding of the Hemophilia A carrier bleeding phenotype, and opinions regarding timing of carrier testing from the perspective of both medical providers and affected patients. Data from this survey was used as preliminary data for an ongoing prospective study. Material and Methods An electronic survey was distributed to physicians and nurses employed at Hemophilia Treatment Centers (HTC), and Hemophilia A carriers who were members of Hemophilia Federation of America. Questions focused on the clinical understanding of bleeding symptoms and management of Hemophilia A carriers, and the timing and intensity of carrier testing. Results Our survey indicates that 51% (36/51) of providers compared to 78% (36/46) of carriers believe that Hemophilia A carriers with normal FVIII activity have an increased bleeding tendency (p<0.001); 72% (33/36) of Hemophilia A carriers report a high frequency of bleeding symptoms. Regarding carrier testing, 72% (50/69) of medical providers recommend testing after 14 years of age, conversely 65% (29/45) of Hemophilia A carriers prefer testing to be done prior to this age (p<0.001). Discussion Hemophilia A carriers self-report a higher frequency of bleeding than previously acknowledged, and have a preference for earlier testing to confirm carrier status. PMID:24309601

  15. Chemical oxygen generation.

    PubMed

    Ward, Kevin R; Huvard, Gary S; McHugh, Mark; Mallepally, Rajender R; Imbruce, Richard

    2013-01-01

    While pressurized oxygen in tank form, as well as oxygen concentrators, are ubiquitous in civilian healthcare in developed countries for medical use, there are a number of settings where use of these oxygen delivery platforms is problematic. These settings include but are not limited to combat casualty care and healthcare provided in extreme rural environments in undeveloped countries. Furthermore, there are a number of settings where delivery of oxygen other than the pulmonary route to oxygenate tissues would be of value, including severe lung injury, airway obstruction, and others. This paper provides a brief overview of the previous and current attempts to utilize chemical oxygen production strategies to enhance systemic oxygenation. While promising, the routine use of chemically produced oxygen continues to pose significant engineering and physiologic challenges.

  16. Oxygen in Orion

    NASA Image and Video Library

    2011-08-01

    This graphic illustrates where astronomers at last found oxygen molecules in space -- near the star-forming core of the Orion nebula. The squiggly lines, or spectra, reveal the signatures of oxygen molecules, detected by ESA Hershel Space Observatory.

  17. Hyperbaric oxygen therapy

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002375.htm Hyperbaric oxygen therapy To use the sharing features on this page, please enable JavaScript. Hyperbaric oxygen therapy uses a special pressure chamber to increase ...

  18. Miniature oxygen resuscitator

    NASA Technical Reports Server (NTRS)

    Johnson, G.; Teegen, J. T.; Waddell, H.

    1969-01-01

    Miniature, portable resuscitation system is used during evacuation of patients to medical facilities. A carrying case contains a modified resuscitator head, cylinder of oxygen, two-stage oxygen regulator, low pressure tube, and a mask for mouth and nose.

  19. Oxygen control with microfluidics.

    PubMed

    Brennan, Martin D; Rexius-Hall, Megan L; Elgass, Laura Jane; Eddington, David T

    2014-11-21

    Cellular function and behavior are affected by the partial pressure of O2, or oxygen tension, in the microenvironment. The level of oxygenation is important, as it is a balance of oxygen availability and oxygen consumption that is necessary to maintain normoxia. Changes in oxygen tension, from above physiological oxygen tension (hyperoxia) to below physiological levels (hypoxia) or even complete absence of oxygen (anoxia), trigger potent biological responses. For instance, hypoxia has been shown to support the maintenance and promote proliferation of regenerative stem and progenitor cells. Paradoxically, hypoxia also contributes to the development of pathological conditions including systemic inflammatory response, tumorigenesis, and cardiovascular disease, such as ischemic heart disease and pulmonary hypertension. Current methods to study cellular behavior in low levels of oxygen tension include hypoxia workstations and hypoxia chambers. These culture systems do not provide oxygen gradients that are found in vivo or precise control at the microscale. Microfluidic platforms have been developed to overcome the inherent limits of these current methods, including lack of spatial control, slow equilibration, and unachievable or difficult coupling to live-cell microscopy. The various applications made possible by microfluidic systems are the topic of this review. In order to understand how the microscale can be leveraged for oxygen control of cells and tissues within microfluidic systems, some background understanding of diffusion, solubility, and transport at the microscale will be presented in addition to a discussion on the methods for measuring the oxygen tension in microfluidic channels. Finally the various methods for oxygen control within microfluidic platforms will be discussed including devices that rely on diffusion from liquid or gas, utilizing on-or-off-chip mixers, leveraging cellular oxygen uptake to deplete the oxygen, relying on chemical reactions in

  20. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  1. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  2. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with

  3. Oxygen sensitive microwells.

    PubMed

    Sinkala, Elly; Eddington, David T

    2010-12-07

    Oxygen tension is critical in a number of cell pathways but is often overlooked in cell culture. One reason for this is the difficulty in modulating and assessing oxygen tensions without disturbing the culture conditions. Toward this end, a simple method to generate oxygen-sensitive microwells was developed through embossing polystyrene (PS) and platinum(ii) octaethylporphyrin ketone (PtOEPK) thin films. In addition to monitoring the oxygen tension, microwells were employed in order to isolate uniform clusters of cells in microwells. The depth and width of the microwells can be adapted to different experimental parameters easily by altering the thin film processing or embossing stamp geometries. The thin oxygen sensitive microwell substrate is also compatible with high magnification modalities such as confocal imaging. The incorporation of the oxygen sensor into the microwells produces measurements of the oxygen tension near the cell surface. The oxygen sensitive microwells were calibrated and used to monitor oxygen tensions of Madin-Darby Canine Kidney Cells (MDCKs) cultured at high and low densities as a proof of concept. Wells 500 µm in diameter seeded with an average of 330 cells exhibited an oxygen level of 12.6% whereas wells seeded with an average of 20 cells per well exhibited an oxygen level of 19.5%, a 35.7% difference. This platform represents a new tool for culturing cells in microwells in a format amenable to high magnification imaging while monitoring the oxygen state of the culture media.

  4. Oxygen therapy - infants

    MedlinePlus

    ... the cells in the body get too little oxygen, energy production decreases. With too little energy, cells may not work well and may die. Your baby may not grow properly. Many of the developing organs, ... much oxygen can also cause injury. Breathing too much oxygen ...

  5. Hypoxemia (Low Blood Oxygen)

    MedlinePlus

    Symptoms Hypoxemia (low blood oxygen) By Mayo Clinic Staff Hypoxemia is a below-normal level of oxygen in your blood, specifically in the arteries. Hypoxemia ... of breath. Hypoxemia is determined by measuring the oxygen level in a blood sample taken from an ...

  6. Indicators: Dissolved Oxygen

    EPA Pesticide Factsheets

    Dissolved oxygen (DO) is the amount of oxygen that is present in water. It is an important measure of water quality as it indicates a water body's ability to support aquatic life. Water bodies receive oxygen from the atmosphere and from aquatic plants.

  7. Oxygen boost pump study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An oxygen boost pump is described which can be used to charge the high pressure oxygen tank in the extravehicular activity equipment from spacecraft supply. The only interface with the spacecraft is the +06 6.205 Pa supply line. The breadboard study results and oxygen tank survey are summarized and the results of the flight-type prototype design and analysis are presented.

  8. [Study of humidifying oxygen with 0.1 copper sulfate solution].

    PubMed

    Song, J F; Zhang, G H; Bai, C Z; Duan Jie, L J

    1996-05-01

    The 0.1/dL copper sulfate solution may be used to replace distilled water for humidifying oxygen. It can reduce the carrier rate and prolong the using time. There is little copper-ion in the oxygen while the 0.5/dL copper sulfate solution were used continuously for 9 days. The oxygen humidified by copper sulfate solution has no peculiar smell. The solution is cheap, easy to make, and has broad bacteriostatic spectrum.

  9. Data-aided carrier tracking loops

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Simon, M. K.

    1973-01-01

    Power in composite signal sidebands is used to enhance signal-to-noise ratio in carrier tracking loop, thereby reducing radio loss and decreasing probability of receiver error. By adding quadrature channel to phase-lock-loop detector circuit of receiver, dc component can be fed back into carrier tracking loop.

  10. 5 CFR 890.1308 - Carrier participation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 890.1308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... Program Demonstration Project § 890.1308 Carrier participation. (a) All carriers who participate in the... project areas must participate in the demonstration project, except as provided for in paragraphs (b), (c...

  11. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false Study carriers. 1139.21 Section 1139.21 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity...

  12. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Study carriers. 1139.21 Section 1139.21 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity...

  13. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Study carriers. 1139.21 Section 1139.21 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity...

  14. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Study carriers. 1139.21 Section 1139.21 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity...

  15. 14 CFR 271.4 - Carrier costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Carrier costs. 271.4 Section 271.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS GUIDELINES FOR SUBSIDIZING AIR CARRIERS PROVIDING ESSENTIAL AIR TRANSPORTATION § 271.4...

  16. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce Act... or controlled by or under common control with any carrier by railroad and which operates any... transportation, receipt, delivery, elevation, transfer in transit, refrigeration or icing, storage, and handling...

  17. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce Act... or controlled by or under common control with any carrier by railroad and which operates any... transportation, receipt, delivery, elevation, transfer in transit, refrigeration or icing, storage, and handling...

  18. 10 CFR 40.12 - Carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Carriers. 40.12 Section 40.12 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Exemptions § 40.12 Carriers. (a) Except as specified in... in section 62 of the Act to the extent that they transport or store source material in the regular...

  19. 10 CFR 70.12 - Carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Carriers. 70.12 Section 70.12 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Exemptions § 70.12 Carriers. Common and... regulations in this part to the extent that they transport special nuclear material in the regular course of...

  20. 10 CFR 70.12 - Carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Carriers. 70.12 Section 70.12 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Exemptions § 70.12 Carriers. Common and... regulations in this part to the extent that they transport special nuclear material in the regular course of...

  1. Singlet oxygen in photosensitization.

    PubMed

    Moan, Johan; Juzenas, Petras

    2006-01-01

    Oxygen is a ubiquitous element and a vitally important substance for life on the Earth, and especially for human life. Living organisms need oxygen for most, if not all, of their cellular functions. On the other hand, oxygen can produce metabolites that are toxic and potentially lethal to the same cells. Being reactive and chemically unstable reactive oxygen species (ROS) are the most important metabolites that initiate reduction and oxidation (redox) reactions under physiological conditions. Oxygen in its excited singlet state (1O2) is probably the most important intermediate in such reactions. Since the discovery of oxygen by Joseph Priestley in 1775 it has been recognized that oxygen can be both beneficial and harmful to life.

  2. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  3. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  4. Hydrogen: the future energy carrier.

    PubMed

    Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver

    2010-07-28

    Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.

  5. Airline policy for passengers requiring supplemental in-flight oxygen.

    PubMed

    Walker, Jacqueline; Kelly, Paul T; Beckert, Lutz

    2009-05-01

    The aim of this study was to investigate the current Australian/New Zealand airline policy on supplemental in-flight oxygen for passengers with lung disease. Fifty-four commercial airlines servicing international routes were surveyed. Information was gathered from airline call centres and web sites. The survey documented individual airline policy on in-flight oxygen delivery, approval schemes, equipment and cost. Of the 54 airlines contacted, 43 (81%) were able to support passengers requiring in-flight oxygen. The majority (88%) of airlines provided a cylinder for passengers to use. Airline policy for calculating the cost of in-flight oxygen differed considerably between carriers. Six (14%) airlines supplied oxygen to passengers free of charge; however, three of these airlines charged for an extra seat. Fifteen airlines (35%) charged on the basis of oxygen supplied, that is, per cylinder. Fourteen airlines (33%) had a flat rate charge per sector. This study confirmed that most airlines can accommodate passengers requiring supplemental oxygen. However, the findings highlight inconsistencies in airline policies and substantial cost differences for supplemental in-flight oxygen. We advocate an industry standardization of policy and cost of in-flight oxygen.

  6. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  7. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  8. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  9. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  10. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is...

  11. Oxygen sensing characteristics of individual ZnO nanowire transistors

    SciTech Connect

    Li, Q.H.; Liang, Y.X.; Wan, Q.; Wang, T.H.

    2004-12-27

    Individual ZnO nanowire transistors are fabricated, and their sensing properties are investigated. The transistors show a carrier density of 2300 {mu}m{sup -1} and mobility up to 6.4 cm{sup 2}/V s, which are obtained from the I{sub SD}-V{sub G} curves. The threshold voltage shifts in the positive direction and the source-drain current decreases as ambient oxygen concentration increases. However, the opposite occurs when the transistors are under illumination. Surface adsorbates on the ZnO nanowires affect both the mobility and the carrier density. Our data are helpful in understanding the sensing mechanism of the gas sensors.

  12. Material quality frontiers of MOVPE grown AlGaAs for minority carrier devices

    NASA Astrophysics Data System (ADS)

    Heckelmann, S.; Lackner, D.; Dimroth, F.; Bett, A. W.

    2017-04-01

    In this study, secondary ion mass spectroscopy of oxygen, deep level transient spectroscopy and power dependent relative photoluminescence are compared regarding their ability to resolve differences in AlxGa1-xAs material quality. AlxGa1-xAs samples grown with two different trimethylaluminum sources showing low and high levels of oxygen contamination are compared. As tested in the growth of minority carrier devices, i.e. AlxGa1-xAs solar cells, the two precursors clearly lead to different device characteristics. It is shown that secondary ion mass spectroscopy could not resolve the difference in oxygen concentration, whereas deep level transient spectroscopy and photoluminescence based measurements indicate the influence of the precursor oxygen level on the material quality.

  13. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory... MCSAC will complete action on Task 11-01, regarding Patterns of Safety Violations by Motor Carrier...

  14. 75 FR 2923 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC) will...

  15. 77 FR 46555 - Motor Carrier Safety Advisory Committee: Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee: Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier... major motor carrier safety provisions of the recently enacted Moving Ahead for Progress in the...

  16. Tuning the thermoelectric properties of A-site deficient SrTiO3 ceramics by vacancies and carrier concentration.

    PubMed

    Srivastava, Deepanshu; Norman, Colin; Azough, Feridoon; Schäfer, Marion C; Guilmeau, Emmanuel; Kepaptsoglou, Demie; Ramasse, Quentin M; Nicotra, Giuseppe; Freer, Robert

    2016-09-29

    Ceramics based on Sr0.8La0.067Ti0.8Nb0.2O3-δ have been prepared by the mixed oxide route. The La1/3NbO3 component generates ∼13.4% A-site vacancies; this was fixed for all samples. Powders were sintered under air and reducing conditions at 1450 to 1700 K; products were of high density (>90% theoretical). Processing under reducing conditions led to the formation of a Ti1-xNbxO2-y second phase, core-shell structures and oxygen deficiency. X-ray diffraction (XRD) confirmed a simple cubic structure with space group Pm3[combining macron]m. Transmission electron microscopy revealed a high density of dislocations while analytical scanning transmission electron microscopy at atomic resolution demonstrated a uniform distribution of La, Nb and vacancies in the lattice. X-ray photoemission spectroscopy and thermogravimetry showed the oxygen deficiency (δ value) to be ∼0.08 in reduced samples with enhanced carrier concentrations ∼2 × 10(21) cm(-3). Both carrier concentration and carrier mobility increased with sintering time, giving a maximum figure of merit (ZT) of 0.25. Selective additional doping by La or Nb, with no additional A site vacancies, led to the creation of additional carriers and reduced electrical resistivity. Together these led to enhanced ZT values of 0.345 at 1000 K. The contributions from oxygen vacancies and charge carriers have been investigated independently.

  17. Carrier Dynamics in Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Harrison, P.; Indjin, D.; Jovanović, V. D.; Mirčetić, A.; Ikonić, Z.; Kelsall, R. W.; McTavish, J.; Savić, I.; Vukmirović, N.; Milanović, V.

    2005-01-01

    A fully quantum-mechanical model for carrier scattering transport in semiconductor intersubband devices was applied to modelling of carrier dynamics in quantum cascade lasers. The standard model uses the envelope function and effective mass approximations to solve electron band structure under an applied bias. The k·p model has been employed in p-type systems where the more complex band structure requires it. The resulting wave functions are then used to evaluate all relevant carrier-phonon, carrier-carrier and alloy scattering rates from each quantised state to all others within the same and the neighbouring period. This piece of information is then used to construct a rate equation for the equilibrium carrier density in each subband and this set of coupled rate equations are solved self-consistently to obtain the carrier density in each eigenstate. The latter is a fundamental description of the device and can be used to calculate the current density and gain as a function of the applied bias and temperature, which in turn yields the threshold current and expected temperature dependence of the device characteristics. A recent extension which includes a further iteration of an energy balance equation also yields the electron (or hole) temperature over the subbands. This paper will review the method and describe its application to mid-infrared and terahertz, GaAs, GaN, and SiGe cascade laser designs.

  18. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  19. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  20. Integrated turbomachine oxygen plant

    DOEpatents

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  1. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  2. Oxygen, a paradoxical element?

    PubMed

    Greabu, Maria; Battino, M; Mohora, Maria; Olinescu, R; Totan, Alexandra; Didilescu, Andreea

    2008-01-01

    Oxygen is an essential element for life on earth. No life may exist without oxygen. But in the last forty years, conclusive evidence demonstrated the double-edge sword of this element. In certain conditions, oxygen may produce reactive species, even free radicals. More, the production of reactive oxygen species (ROS) takes place everywhere: in air, nature or inside human bodies. The paradox of oxygen atom is entirely due to its peculiar electronic structure. But life began on earth, only when nature found efficient weapons against ROS, these antioxidants, which all creatures are extensibly endowed with. The consequences of oxygen activation in human bodies are only partly known, in spite of extensive scientific research on theoretical, experimental and clinical domains.

  3. Continuous home oxygen therapy.

    PubMed

    Ortega Ruiz, Francisco; Díaz Lobato, Salvador; Galdiz Iturri, Juan Bautista; García Rio, Francisco; Güell Rous, Rosa; Morante Velez, Fátima; Puente Maestu, Luis; Tàrrega Camarasa, Julia

    2014-05-01

    Oxygen therapy is defined as the therapeutic use of oxygen and consists of administering oxygen at higher concentrations than those found in room air, with the aim of treating or preventing hypoxia. This therapeutic intervention has been shown to increase survival in patients with chronic obstructive pulmonary disease (COPD) and respiratory failure. Although this concept has been extended by analogy to chronic respiratory failure caused by respiratory and non-respiratory diseases, continuous oxygen therapy has not been shown to be effective in other disorders. Oxygen therapy has not been shown to improve survival in patients with COPD and moderate hypoxaemia, nor is there consensus regarding its use during nocturnal desaturations in COPD or desaturations caused by effort. The choice of the oxygen source must be made on the basis of criteria such as technical issues, patient comfort and adaptability and cost. Flow must be adjusted to achieve appropriate transcutaneous oxyhaemoglobin saturation correction.

  4. Hot carrier relaxation dynamics in zinc selenide

    NASA Astrophysics Data System (ADS)

    Mehendale, Manjusha

    The ultrafast relaxation dynamics of hot carriers are monitored in a high-quality ZnSe epilayer grown on GaAs substrate by employing a novel femtosecond pump-probe differential reflectivity technique which exploits the intrinsic interferometric asymmetric Fabry-Perot sample structure. The ultrashort femtosecond pulses used in these timeresolved pump-probe experiments are derived from a hard-apertured Kerr-lens modelocked Ti:sapphire laser. The effect of pump-laser-induced thermal lensing on the stability and operational characteristics of such solid-state Femtosecond lasers is discussed. A theoretical model, which assumes the exponential cooling of electrons and holes towards the band edge and a simple two parabolic band structure, is used to estimate the hot carrier cooling times for various photoexcited carrier densities. This model shows the results to be consistent with the expected characteristic electronic LO-phonon emission time of 35-40 fs and provide evidence for the influence of a non-equilibrium LO-phonon population, known as ``hot phonon effect'', on the electron cooling dynamics for carrier densities higher than 3 × 1017 cm-3. Another model, which is based on a balance equation approach, is used to analyze the experimental data more accurately, by including the effects of various processes such as screened carrier-phonon, carrier-carrier scattering and hot phonon effects on the relaxation dynamics. Comparison of the experimental data with this latter theoretical model indicates that the observed reduction in the electron cooling rate with increasing carrier density is due to both screening of the Fröhlich interaction and hot phonon effect. Finally, a comparison of hot carrier relaxation processes at various lattice temperatures is presented. This study provides an evidence of a more pronounced hot phonon effect at a lattice temperature of 80K than at 300K, which is complicated by temperature-dependent changes in optical and physical properties of the

  5. Electric Properties of Obsidian: Evidence for Positive Hole Charge Carriers

    NASA Astrophysics Data System (ADS)

    Nordvik, R.; Freund, F. T.

    2012-12-01

    The blackness of obsidian is due to the presence of oxygen anions in the valence state 1-, creating broad energy levels at the upper edge of the valence band, which absorb visible light over a wide spectral range. These energy states are associated with defect electrons in the oxygen anion sublattice, well-known from "smoky quartz", where Al substituting for Si captures a defect electron in the oxygen anion sublattice for charge compensation [1]. Such defect electrons, also known as positive holes, are responsible for the increase in electrical conductivity in igneous rocks when uniaxial stresses are applied, causing the break-up of pre-existing peroxy defects, Si-OO-Si [2]. Peroxy defects in obsidian cannot be so easily activated by mechanical stress because the glassy matrix will break before sufficiently high stress levels can be reached. If peroxy defects do exist, however, they can be studied by activating them thermally [3]. We describe experiments with rectangular slabs of obsidian with Au electrodes at both ends. Upon heating one end, we observe (i) a thermopotential and (ii) a thermocurrent developing at distinct temperatures around 250°C and 450°C, marking the 2-step break-up of peroxy bonds. [1] Schnadt, R., and Schneider, J.: The electronic structure of the trapped-hole center in smoky quartz, Zeitschrift Physik B Condensed Matter 11, 19-42, 1970. [2] Freund, F. T., Takeuchi, A., and Lau, B. W.: Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Physics and Chemistry of the Earth, 31, 389-396, 2006. [3] Freund, F., and Masuda, M. M.: Highly mobile oxygen hole-type charge carriers in fused silica, Journal Material Research, 8, 1619-1622, 1991.

  6. Oxygen therapy for COPD.

    PubMed

    McDonald, Christine F

    2014-11-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death globally, characterised by progressive breathlessness, loss of function and, in its later stages, chronic hypoxaemia. Long-term continuous oxygen therapy increases life expectancy in patients with severe resting hypoxaemia. However, there are few data to support the use of oxygen in patients with only mild hypoxaemia and more research is required to determine any benefits of oxygen supplementation in COPD in such individuals.

  7. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  8. Regulation of substrate utilization by the mitochondrial pyruvate carrier.

    PubMed

    Vacanti, Nathaniel M; Divakaruni, Ajit S; Green, Courtney R; Parker, Seth J; Henry, Robert R; Ciaraldi, Theodore P; Murphy, Anne N; Metallo, Christian M

    2014-11-06

    Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied (13)C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched-chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with the use of lipids and amino acids as catabolic and anabolic fuels.

  9. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    NASA Technical Reports Server (NTRS)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  10. Oxygen concentrators: a primary oxygen supply source.

    PubMed

    Friesen, R M; Raber, M B; Reimer, D H

    1999-12-01

    Efforts to harmonize the standards of the CSA and the ISO, as they relate to compressed medical gas supply and piping, prompted us to review ten years experience with oxygen concentrators (OCs) in Canada used as a primary hospital oxygen supply. The goals of this study were; 1) To document the number of Canadian OC Hospital sites, 2) to define what impact these units have had on medical practice and patient care, and 3) to explore trends in oxygen costing and utilization at the study sites. Following a four part mail survey and telephone follow up, site surveys were conducted for all hospitals utilizing an OC. Installation and service records, operating costs, amortization detail, leasing records as well as patient safety were all detailed. Forty eight of 52 Canadian hospitals utilizing an OC participated. Clinical activity at the surveyed sites of 1996 included 30,642 surgical operations, 9,415 intensive care bed days and 364,529 emergency room visits. The cumulative survey represents 1,026,819 hr of OC operation. During a 24 hr day, OCs operate 55 +/- 3% of the time. Financial analysis was validated at 43 of the 48 hospital sites. During the study the unit cost of oxygen was reduced by 62% (P <.0001). An annual increase in oxygen consumption of 11.5 +/- 2% was documented (P <.0001). No patient care critical incidents related to OCs were reported. An OC installation which is CAN/CSA Z305.6-M92 compliant provides a safe, reliable, cost efficient primary hospital source of oxygen.

  11. Technical Strategies to Improve Tissue Engineering of Cartilage-Carrier-Constructs

    NASA Astrophysics Data System (ADS)

    Pörtner, R.; Goepfert, C.; Wiegandt, K.; Janssen, R.; Ilinich, E.; Paetzold, H.; Eisenbarth, E.; Morlock, M.

    Technical aspects play an important role in tissue engineering. Especially an improved design of bioreactors is crucial for cultivation of artificial three-dimensional tissues in vitro. Here formation of cartilage-carrier-constructs is used to demonstrate that the quality of the tissue can be significantly improved by using optimized culture conditions (oxygen concentration, growth factor combination) as well as special bioreactor techniques to induce fluid-dynamic, hydrostatic or mechanical load during generation of cartilage.

  12. Effect of Anesthesia Carrier Gas on In-Vivo Circulation Times of Ultrasound Microbubble Contrast Agents in Rats

    PubMed Central

    Mullin, Lee; Gessner, Ryan; Kwan, James; Kaya, Mehmet; Borden, Mark A.; Dayton, Paul A.

    2012-01-01

    Purpose Microbubble contrast agents are currently implemented in a variety of both clinical and preclinical ultrasound imaging studies. The therapeutic and diagnostic capabilities of these contrast agents are limited by their short in-vivo lifetimes, and research to lengthen their circulation times is ongoing. In this manuscript, observations are presented from a controlled experiment performed to evaluate differences in circulation times for lipid shelled perfluorocarbon-filled contrast agents circulating within rodents as a function of inhaled anesthesia carrier gas. Methods The effects of two common anesthesia carrier gas selections - pure oxygen and medical air – were observed within five rats. Contrast agent persistence within the kidney was measured and compared for oxygen and air anesthesia carrier gas for six bolus contrast injections in each animal. Simulations were performed to examine microbubble behavior with changes in external environment gases. Results A statistically significant extension of contrast circulation time was observed for animals breathing medical air compared to breathing pure oxygen. Simulations support experimental observations and indicate that enhanced contrast persistence may be explained by reduced ventilation/perfusion mismatch and classical diffusion, in which nitrogen plays a key role by contributing to the volume and diluting other gas species in the microbubble gas core. Conclusion: Using medical air in place of oxygen as the carrier gas for isoflurane anesthesia can increase the circulation lifetime of ultrasound microbubble contrast agents. PMID:21246710

  13. Tunable Carrier Multiplication and Cooling in Graphene

    NASA Astrophysics Data System (ADS)

    Johannsen, Jens Christian; Ulstrup, Søren; Crepaldi, Alberto; Cilento, Federico; Zacchigna, Michele; Miwa, Jill A.; Cacho, Cephise; Chapman, Richard T.; Springate, Emma; Fromm, Felix; Raidel, Christian; Seyller, Thomas; King, Phil D. C.; Parmigiani, Fulvio; Grioni, Marco; Hofmann, Philip

    2015-01-01

    Time- and angle-resolved photoemission measurements on two doped graphene samples displaying different doping levels reveal remarkable differences in the ultrafast dynamics of the hot carriers in the Dirac cone. In the more strongly ($n$-)doped graphene, we observe larger carrier multiplication factors ($>$ 3) and a significantly faster phonon-mediated cooling of the carriers back to equilibrium compared to in the less ($p$-)doped graphene. These results suggest that a careful tuning of the doping level allows for an effective manipulation of graphene's dynamical response to a photoexcitation.

  14. Biogenesis of endosome-derived transport carriers.

    PubMed

    Chi, Richard J; Harrison, Megan S; Burd, Christopher G

    2015-09-01

    Sorting of macromolecules within the endosomal system is vital for physiological control of nutrient homeostasis, cell motility, and proteostasis. Trafficking routes that export macromolecules from the endosome via vesicle and tubule transport carriers constitute plasma membrane recycling and retrograde endosome-to-Golgi pathways. Proteins of the sorting nexin family have been discovered to function at nearly every step of endosomal transport carrier biogenesis and it is becoming increasingly clear that they form the core machineries of cargo-specific transport pathways that are closely integrated with cellular physiology. Here, we summarize recent progress in elucidating the pathways that mediate the biogenesis of endosome-derived transport carriers.

  15. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  16. Monitoring Oxygen Status.

    PubMed

    Toffaletti, J G; Rackley, C R

    Although part of a common "blood gas" test panel with pH and pCO2, the pO2, %O2Hb, and related parameters are independently used to detect and monitor oxygen deficits from a variety of causes. Measurement of blood gases and cooximetry may be done by laboratory analyzers, point of care testing, noninvasive pulse oximetry, and transcutaneous blood gases. The specimen type and mode of monitoring oxygenation that are chosen may be based on a combination of urgency, practicality, clinical need, and therapeutic objectives. Because oxygen concentrations in blood are extremely labile, there are several highly important preanalytical practices necessary to prevent errors in oxygen and cooximetry results. Effective utilization of oxygen requires binding by hemoglobin in the lungs, transport in the blood, and release to tissues, where cellular respiration occurs. Hydrogen ion (pH), CO2, temperature, and 2,3-DPG all play important roles in these processes. Additional measurements and calculations are often used to interpret and locate the cause and source of an oxygen deficit. These include the Hb concentration, Alveolar-arterial pO2 gradient, pO2:FIO2 ratio, oxygenation index, O2 content and O2 delivery, and pulmonary dead space and intrapulmonary shunting. The causes of hypoxemia will be covered and, to illustrate how the oxygen parameters are used clinically in the diagnosis and management of patients with abnormal oxygenation, two clinical cases will be presented and described.

  17. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  18. Elastomer Compatible With Oxygen

    NASA Technical Reports Server (NTRS)

    Martin, Jon W.

    1987-01-01

    Artificial rubber resists ignition on impact and seals at low temperatures. Filled fluoroelastomer called "Katiflex" developed for use in seals of vessels holding cold liquid and gaseous oxygen. New material more compatible with liquid oxygen than polytetrafluoroethylene. Provides dynamic seal at -196 degrees C with only 4 times seal stress required at room temperature. In contrast, conventional rubber seals burn or explode on impact in high-pressure oxygen, and turn hard or even brittle at liquid-oxygen temperatures, do not seal reliably, also see (MFS-28124).

  19. Electron beam tuning of carrier concentrations in oxide nanowires

    NASA Astrophysics Data System (ADS)

    Ji, Hyunjin; Choi, Jaewan; Cho, Youngseung; Hwang, In-Sung; Kim, Sun-Jung; Lee, Jong-Heun; Roth, Siegmar; Kim, Gyu-Tae

    2011-07-01

    In spite of the attractive electrical properties of metal oxide nanowires, it is difficult to tune their surface states, notably the ionic adsorbents and oxygen vacancies, both of which can cause instability, degradation, and the irreproducibility or unrepeatable changes of the electrical characteristics. In order to control the surface states of the nanowires, electron beams were locally irradiated onto the channels of metal oxide nanowire field effect transistors. This high energy electron beam irradiation changed the electrical properties of the individual metal oxide nanowires, due to the removal of the negative adsorbents (O2-, O-). The detachment of the ionic adsorbents changes the charge states of the nanowires, resulting in the enhancement of the electrical conductance in n-type nanowires (ZnO, SnO2) and the degradation of the conductance in p-type nanowires (CuO). By investigating the changes in the electrical properties of nanowire devices in air or vacuum, with or without exposure to electron beams, the roles of the physisorbed water molecules or chemisorbed oxygen molecules can be independently understood. Unlike the electron beam irradiation, the vacuum enhanced the conductance of both n-type (ZnO, SnO2) and p-type (CuO) nanowires, due to the release of charges caused by the detachment of the polarized water molecules that were screening them from the surface of the nanowires, irrespective of the major carrier type. The electron beam irradiation technique has the potential to locally modulate the charge carriers in electronic nanowire devices, and the changes could be maintained with proper passivation for the long-term preservation of the device characteristics.

  20. Electron beam tuning of carrier concentrations in oxide nanowires

    SciTech Connect

    Ji, Hyunjin; Choi, Jaewan; Roth, Siegmar; Kim, Gyu-Tae; Cho, Youngseung; Hwang, In-Sung; Kim, Sun-Jung; Lee, Jong-Heun

    2011-07-01

    In spite of the attractive electrical properties of metal oxide nanowires, it is difficult to tune their surface states, notably the ionic adsorbents and oxygen vacancies, both of which can cause instability, degradation, and the irreproducibility or unrepeatable changes of the electrical characteristics. In order to control the surface states of the nanowires, electron beams were locally irradiated onto the channels of metal oxide nanowire field effect transistors. This high energy electron beam irradiation changed the electrical properties of the individual metal oxide nanowires, due to the removal of the negative adsorbents (O{sub 2}{sup -}, O{sup -}). The detachment of the ionic adsorbents changes the charge states of the nanowires, resulting in the enhancement of the electrical conductance in n-type nanowires (ZnO, SnO{sub 2}) and the degradation of the conductance in p-type nanowires (CuO). By investigating the changes in the electrical properties of nanowire devices in air or vacuum, with or without exposure to electron beams, the roles of the physisorbed water molecules or chemisorbed oxygen molecules can be independently understood. Unlike the electron beam irradiation, the vacuum enhanced the conductance of both n-type (ZnO, SnO{sub 2}) and p-type (CuO) nanowires, due to the release of charges caused by the detachment of the polarized water molecules that were screening them from the surface of the nanowires, irrespective of the major carrier type. The electron beam irradiation technique has the potential to locally modulate the charge carriers in electronic nanowire devices, and the changes could be maintained with proper passivation for the long-term preservation of the device characteristics.

  1. Anomalous independence of interface superconductivity from carrier density.

    PubMed

    Wu, J; Pelleg, O; Logvenov, G; Bollinger, A T; Sun, Y-J; Boebinger, G S; Vanević, M; Radović, Z; Božović, I

    2013-10-01

    The recent discovery of superconductivity at the interface of two non-superconducting materials has received much attention. In cuprate bilayers, the critical temperature (Tc) can be significantly enhanced compared with single-phase samples. Several explanations have been proposed, invoking Sr interdiffusion, accumulation and depletion of mobile charge carriers, elongation of the copper-to-apical-oxygen bond length, or a beneficial crosstalk between a material with a high pairing energy and another with a large phase stiffness. From each of these models, one would predict Tc to depend strongly on the carrier density in the constituent materials. Here, we study combinatorial libraries of La(2-x)Sr(x)CuO4-La2CuO4 bilayer samples--an unprecedentedly large set of more than 800 different compositions. The doping level x spans a wide range, 0.15 < x < 0.47, and the measured Hall coefficient varies by one order of magnitude. Nevertheless, across the entire sample set, Tc stays essentially constant at about 40 K. We infer that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. This result poses a new challenge to theory--cuprate superconductors have not run out of surprises.

  2. Personality traits in Huntington's disease: An exploratory study of gene expansion carriers and non-carriers.

    PubMed

    Larsen, Ida Unmack; Mortensen, Erik Lykke; Vinther-Jensen, Tua; Nielsen, Jørgen Erik; Knudsen, Gitte Moos; Vogel, Asmus

    2016-12-01

    Huntington's disease (HD) is associated with risk for developing psychiatric symptoms. Vulnerability or resilience to psychiatric symptoms may be associated with personality traits. This exploratory study, aimed to investigate personality traits in a large cohort of HD carriers and at risk gene-expansion negative individuals (HD non-carriers), exploring whether carrying the HD gene or growing up in an HD family influences personality traits. Forty-seven HD carriers, Thirty-nine HD non-carriers, and 121 healthy controls answered the Danish version of the revised NEO personality inventory. Comparisons between HD carriers and HD non-carriers were mostly non-significant but the combined group of HD carriers and non-carriers showed significantly higher scores on the facets: "hostility," "assertiveness," and "activity" and on the trait "Conscientiousness" relative to controls, "Conscientiousness" have been associated with resilience to psychiatric symptoms. Twelve HD carriers and non-carriers were classified as depressed and showed significantly lower scores on "Extraversion" and "Conscientiousness" and significantly higher scores on "Neuroticism," which are associated with vulnerability to psychiatric symptoms. Our findings suggest that, there is no direct effect of the HD gene on personality traits, but that personality assessment may be relevant to use when identifying individuals from HD families who are vulnerable to develop psychiatric symptoms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Intraoral radiation carrier for edentulous patients

    SciTech Connect

    Sela, M.; Taicher, S.

    1983-12-01

    The principles of fabricating an intraoral radioactive carrier have been described to treat malignant diseases of the oral cavity. The prosthesis provides consistent direction and fixation of the radioactive source into the same location.

  4. What It Means to be a Carrier

    MedlinePlus

    ... Toolkits Advocacy National Fragile X Foundation Advocacy Day STAR Local Advocacy Agenda and Accomplishments Community Community Support ... premutation carriers were an increased rate of twin births and of premature ovarian failure (POI). .. We now ...

  5. Carrier cooling in colloidal quantum wells.

    PubMed

    Pelton, Matthew; Ithurria, Sandrine; Schaller, Richard D; Dolzhnikov, Dmitriy S; Talapin, Dmitri V

    2012-12-12

    It has recently become possible to chemically synthesize atomically flat semiconductor nanoplatelets with monolayer-precision control over the platelet thickness. It has been suggested that these platelets are quantum wells; that is, carriers in these platelets are confined in one dimension but are free to move in the other two dimensions. Here, we report time-resolved photoluminescence and transient-absorption measurements of carrier relaxation that confirm the quantum-well nature of these nanomaterials. Excitation of the nanoplatelets by an intense laser pulse results in the formation of a high-temperature carrier population that cools back down to ambient temperature on the time scale of several picoseconds. The rapid carrier cooling indicates that the platelets are well-suited for optoelectronic applications such as lasers and modulators.

  6. Useful Life Prediction for Payload Carrier Hardware

    NASA Technical Reports Server (NTRS)

    Ben-Arieh, David

    2002-01-01

    The Space Shuttle has been identified for use through 2020. Payload carrier systems will be needed to support missions through the same time frame. To support the future decision making process with reliable systems, it is necessary to analyze design integrity, identify possible sources of undesirable risk and recognize required upgrades for carrier systems. This project analyzed the information available regarding the carriers and developed the probability of becoming obsolete under different scenarios. In addition, this project resulted in a plan for an improved information system that will improve monitoring and control of the various carriers. The information collected throughout this project is presented in this report as process flow, historical records, and statistical analysis.

  7. Precise frequency calibration using television video carriers

    NASA Technical Reports Server (NTRS)

    Burkhardt, Edward E.

    1990-01-01

    The availability of inexpensive and quick precise frequency calibration methods is limited. VLF and GPS do offer precise calibration. However, antenna placement, cost of equipment, and calibration time place many restrictions on the user. The USNO maintained line-10 television Time of Coincidence (TOC) of station WTTG, channel 5, Washington, DC requires a frequency stable video carrier. This video carrier, 77.24 MHz is controlled by the same cesium beam standard controlling the TOC of line-10. Excellent frequency comparisons against this video carrier have been accomplished at 95 miles (153 km). With stable propagation and a three foot wire antenna, a part in 10(exp 9) can be determined in a few minutes. Inexpensive field equipment with a synthesized 1 kHz offset from the video carrier offers parts in 10(exp 11) calibrations in a few minutes using an oscilloscope as a phase comparator.

  8. 47 CFR 54.809 - Carrier certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICE Interstate Access Universal Service Support Mechanism § 54.809 Carrier certification. (a... mechanism, on or before the filing deadlines set forth in paragraph (c) of this section. All of...

  9. Functional Properties of the Mitochondrial Carrier System.

    PubMed

    Taylor, Eric B

    2017-09-01

    The mitochondrial carrier system (MCS) transports small molecules between mitochondria and the cytoplasm. It is integral to the core mitochondrial function to regulate cellular chemistry by metabolism. The mammalian MCS comprises the transporters of the 53-member canonical SLC25A family and a lesser number of identified noncanonical transporters. The recent discovery and investigations of the mitochondrial pyruvate carrier (MPC) illustrate the diverse effects a single mitochondrial carrier may exert on cellular function. However, the transport selectivities of many carriers remain unknown, and most have not been functionally investigated in mammalian cells. The mechanisms coordinating their function as a unified system remain undefined. Increased accessibility to molecular genetic and metabolomic technologies now greatly enables investigation of the MCS. Continued investigation of the MCS may reveal how mitochondria encode complex regulatory information within chemical thermodynamic gradients. This understanding may enable precision modulation of cellular chemistry to counteract the dysmetabolism inherent in disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. NASA's Original Shuttle Carrier Departs Dryden

    NASA Image and Video Library

    NASA's Space Shuttle Carrier Aircraft (SCA) No. 905, departed NASA's Dryden Flight Research Center on Oct. 24, 2012 for the final time, ending a 38-year association with the NASA field center at Ed...

  11. Precise frequency calibration using television video carriers

    NASA Technical Reports Server (NTRS)

    Burkhardt, Edward E.

    1990-01-01

    The availability of inexpensive and quick precise frequency calibration methods is limited. VLF and GPS do offer precise calibration. However, antenna placement, cost of equipment, and calibration time place many restrictions on the user. The USNO maintained line-10 television Time of Coincidence (TOC) of station WTTG, channel 5, Washington, DC requires a frequency stable video carrier. This video carrier, 77.24 MHz is controlled by the same cesium beam standard controlling the TOC of line-10. Excellent frequency comparisons against this video carrier have been accomplished at 95 miles (153 km). With stable propagation and a three foot wire antenna, a part in 10(exp 9) can be determined in a few minutes. Inexpensive field equipment with a synthesized 1 kHz offset from the video carrier offers parts in 10(exp 11) calibrations in a few minutes using an oscilloscope as a phase comparator.

  12. Optical carrier wave shocking: detection and dispersion.

    PubMed

    Kinsler, P; Radnor, S B P; Tyrrell, J C A; New, G H C

    2007-06-01

    Carrier wave shocking is studied using the pseudospectral spatial-domain (PSSD) technique. We describe the shock detection diagnostics necessary for this numerical study and verify them against theoretical shocking predictions for the dispersionless case. These predictions show a carrier envelope phase and pulse bandwidth sensitivity in the single-cycle regime. The flexible dispersion management offered by the PSSD enables us to independently control the linear and nonlinear dispersion. Customized dispersion profiles allow us to analyze the development of both carrier self-steepening and shocks. The results exhibit a marked asymmetry between normal and anomalous dispersion, both in the limits of the shocking regime and in the (near) shocked pulse wave forms. Combining these insights, we offer some suggestions on how carrier shocking (or at least extreme self-steepening) might be realized experimentally.

  13. Minority carrier lifetime in indium phosphide

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Weinberg, Irving; Kneisel, Keith

    1991-01-01

    Transient photoluminescence is used to measure the minority carrier lifetime on n-type and p-type InP wafers. The measurements show that unprocessed InP wafers have very high minority carrier lifetimes. Lifetimes of 200 ns and 700 ns were observed for lightly-doped p- and n-type material respectively. Lifetimes over 5 ns were found in heavily doped n-type material.

  14. Minority carrier lifetime in indium phosphide

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Weinberg, Irving; Kneisel, Keith

    1991-01-01

    Transient photoluminescence is used to measure the minority carrier lifetime on n-type and p-type InP wafers. The measurements show that unprocessed InP wafers have very high minority carrier lifetimes. Lifetimes of 200 ns and 700 ns were observed for lightly-doped p- and n-type material respectively. Lifetimes over 5 ns were found in heavily doped n-type material.

  15. Synthetic Lipoproteins as Carriers for Drug Delivery.

    PubMed

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  16. Enhanced attached growth of microalgae Scenedesmus. LX1 through ambient bacterial pre-coating of cotton fiber carriers.

    PubMed

    Zhuang, Lin-Lan; Azimi, Yaldah; Yu, Dawei; Wang, Wen-Long; Wu, Yin-Hu; Dao, Guo-Hua; Hu, Hong-Ying

    2016-10-01

    The role of bacteria/extracellular polymeric substances (EPS) coated carriers on attached microalgae growth in suspended-solid phase photobioreactor (sspBR) was assessed in this study. The results showed that pre-coating cotton with ambient bacteria and their EPS improved the attached microalgal growth by as much as 230% in terms of attached microalgae density. Additionally, the single cell dry weight, chemical composition and oxygen evolving activity of attached microalgae were significantly affected by the presence of bacteria/EPS coating on the cotton carriers. The protein content of microalgae cells cultivated in the ssPBRs with carriers coated by bacteria and sterilized bacteria were on average 26% and 15% more than uncoated carriers, respectively. Through absorbing and immobilizing nutrients from the bulk medium, the bacteria/EPS coating provided the attached microalgae with nitrogen/phosphorus for protein synthesis, especially during the late stages of batch cultivation.

  17. Oxygen sensitive paper

    NASA Technical Reports Server (NTRS)

    Whidby, J. F.

    1973-01-01

    Paper is impregnated with mixture of methylene blue and ethylenediaminetetraacetic acid. Methylene blue is photo-reduced to leuco-form. Paper is kept isolated from oxygen until ready for use. Paper can be reused by photo-reduction after oxygen exposure.

  18. Hyperbaric Oxygen Therapy

    MedlinePlus

    ... treated with hyperbaric oxygen therapy include serious infections, bubbles of air in your blood vessels, and wounds that won't heal as a result of diabetes or radiation injury. In a hyperbaric oxygen therapy chamber, the air pressure is increased to three times ...

  19. Aircrew oxygen system

    NASA Technical Reports Server (NTRS)

    Babinsky, A. D.; Kiraly, R. J.; Wynveen, R. A.

    1972-01-01

    Closed-loop rebreather system which includes pilot provides oxygen for use in aircraft by safe, reliable method of low weight and size and reduces expense of ground equipment. Water electrolysis generated oxygen is fed into rebreather loop which allows nitrogen elimination and water and carbon dioxide removal.

  20. Durability of oxygen sensors

    NASA Astrophysics Data System (ADS)

    Snapp, L.

    1985-03-01

    This report describes the results of dynamometer and vehicle durability testing from a variety of sources, as well as common causes of failure for oxygen sensors. The data indicates that oxygen sensors show low failure rates, even at mileages of 80,000 miles and beyond.

  1. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  2. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene

    NASA Astrophysics Data System (ADS)

    Sierra, Juan F.; Neumann, Ingmar; Costache, Marius V.; Valenzuela, Sergio O.

    2015-06-01

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage VNL across the remaining (detector) leads. Due to the nonlocal character of the measurement, VNL is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and VNL, VNL ~ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying VNL as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  3. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene.

    PubMed

    Sierra, Juan F; Neumann, Ingmar; Costache, Marius V; Valenzuela, Sergio O

    2015-06-10

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  4. Presymptomatic signs in healthy CJD mutation carriers.

    PubMed

    Gigi, Ariela; Vakil, Eli; Kahana, Ester; Hadar, Uri

    2005-01-01

    Creutzfeldt-Jacob disease (CJD) is a rapidly progressing dementia with neurological, psychiatric and cognitive symptoms. We focused our study on the familial CJD form among Libyan Jews (the E200K mutation), trying to identify preclinical neuropsychological signs in mutation carriers to facilitate early diagnosis of the disease. A wide range of neuropsychological tests was administered to 27 healthy volunteers, all first-degree relatives of genetic CJD patients. Thirteen of our participants were gene mutation carriers (E200K) and 14 controls. The healthy mutation carriers reported significantly lower Trait and higher State anxiety scores. Repeated Measure analysis showed statistical significance. The Anxiety Index (State-Trait Anxiety Score) progressed with age in the carriers' group but not in the controls. Since this was more pronounced in the older subjects, we suggest that abnormal stress mechanisms precede the clinical onset of CJD. Cognitive differences have also been found between carriers and controls, especially in visual recognition of pictured objects. Both kinds of differences (anxiety levels and cognitive deficits) were most pronounced in elderly subjects. This study is the first to show any dysfunction in healthy CJD mutation carriers.

  5. Radio Science Measurements with Suppressed Carrier

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  6. Radio Science Measurements with Suppressed Carrier

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  7. Radio science measurements with suppressed carrier

    NASA Astrophysics Data System (ADS)

    Asmar, S.; Divsalar, D.; Oudrhiri, K.; Hamkins, J.

    Radio Science started when it became apparent with early deep space missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. The type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use the Cramer-Rao bound (CRB). The CRB for suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of the CRB for non-ideal data wiping is an innovative method that is presented here. Some numerical results are provided for a coded system.

  8. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  9. On optima: the case of myoglobin-facilitated oxygen diffusion.

    PubMed

    Wittenberg, Jonathan B

    2007-08-15

    The process of myoglobin/leghemoglobin-facilitated oxygen diffusion is adapted to function in different environments in diverse organisms. We enquire how the functional parameters of the process are optimized in particular organisms. The ligand-binding properties of the proteins, myoglobin and plant symbiotic hemoglobins, we discover, suggest that they have been adapted under genetic selection pressure for optimal performance. Since carrier-mediated oxygen transport has probably evolved independantly many times, adaptation of diverse proteins for a common functionality exemplifies the process of convergent evolution. The progenitor proteins may be built on the myoglobin scaffold or may be very different.

  10. Electrically-induced ferromagnetism at room temperature in (Ti,Co)O2: carrier-mediated ferromagnetism

    NASA Astrophysics Data System (ADS)

    Fukumura, Tomoteru

    2013-03-01

    Oxide-diluted magnetic semiconductors (DMS) is expected to have high Curie temperature via carrier-mediated ferromagnetism through heavy electron mass and large electron carrier density. We have studied various oxide-DMS such as (Zn,Mn)O, and discovered room temperature ferromagnetism in (Ti,Co)O2. The origin of ferromagnetism has been discussed for a decade. Previously, the control of ferromagnetism was demonstrated through carrier control by chemical doping. But it was difficult to exclude the defect-mediated ferromagnetism, since the electron donor was the oxygen vacancy. In order to evidence the carrier-mediated ferromagnetism, the electric field control of ferromagnetism is useful. The control of ferromagnetism at room temperature is also important for implementation of spintronic devices. By gating with electric double layer transistor, the ferromagnetism was induced at room temperature, representing electron carrier-mediated ferromagnetism. Chemical doping study in (Ti,Co)O2 for wider range of carrier density exhibited clearer paramagnetic insulator to ferromagnetic metal transition with increasing carrier density. At a medium carrier density, a ferromagnetic insulator phase appeared possibly related with a phase separation between ferromagnetic and paramagnetic phases. Also, a superparamagnetic phase appeared for excessively reduced sample. Taking all these results into account, previously proposed extrinsic mechanisms such as oxygen vacancy-mediated mechanism, metal segregation, and superparamagnetism are not correct picture of the ferromagnetism. This study was in collaboration with Y. Yamada, K. Ueno, M. Kawasaki, H. T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, A. Fujimori, and T. Mizokawa. This research was in part supported by JSPS through NEXT Program initiated by CSTP.

  11. Oxygen-induced recombination centers in as-grown Czochralski silicon crystals

    NASA Technical Reports Server (NTRS)

    Nauka, K.; Gatos, H. C.; Lagowski, J.

    1983-01-01

    Simultaneous quantitative microprofiles of the interstitial oxygen concentration and of the excess carrier lifetime are obtained in Czochralski-grown Si crystals employing double laser absorption scanning. It is found that oxygen concentration maxima and minima along the crystal growth direction coincide with lifetime minima and maxima, respectively. Another finding is that the magnitude of oxygen-induced lifetime changes increases dramatically in going from the center to the periphery of the crystal. The findings discussed imply that 'as-grown' oxygen precipitates figure in lifetime-limiting processes.

  12. Oxygen-induced recombination centers in as-grown Czochralski silicon crystals

    NASA Technical Reports Server (NTRS)

    Nauka, K.; Gatos, H. C.; Lagowski, J.

    1983-01-01

    Simultaneous quantitative microprofiles of the interstitial oxygen concentration and of the excess carrier lifetime are obtained in Czochralski-grown Si crystals employing double laser absorption scanning. It is found that oxygen concentration maxima and minima along the crystal growth direction coincide with lifetime minima and maxima, respectively. Another finding is that the magnitude of oxygen-induced lifetime changes increases dramatically in going from the center to the periphery of the crystal. The findings discussed imply that 'as-grown' oxygen precipitates figure in lifetime-limiting processes.

  13. Carrier effects on tertiary nitrifying moving bed biofilm reactor: An examination of performance, biofilm and biologically produced solids.

    PubMed

    Forrest, Daina; Delatolla, Robert; Kennedy, Kevin

    2016-01-01

    Increasingly stricter ammonia and nitrogen release regulations with respect to wastewater effluents are creating a need for tertiary treatment systems. The moving bed biofilm reactor (MBBR) is being considered as an upgrade option for an increasing number of wastewater treatment facilities due to its small footprint and ease of operation. Despite the MBBRs creation as a system to remove nitrogen, recent research on MBBR systems showing that the system's performance is directly related to carrier surface area and is irrespective of carrier shape and type has been performed exclusively on chemical oxygen demand (COD) removal systems. Furthermore, the influence of carrier type on the solids produced by MBBR systems has also been exclusively studied for COD removal systems. This work investigates the effects of three specific carrier types on ammonia removal rates, biofilm morphology, along with solids production and settleability of tertiary nitrifying MBBR systems. The study concludes that carrier type has no significant effect on tertiary nitrifying MBBR system performance under steady, moderate loading conditions. The research does however highlight the propensity of greater surface area to volume carriers to become clogged under high loading conditions and that the high surface area carriers investigated in this study required longer adjustment periods to changes in loading after becoming clogged.

  14. Nanostructured Lipid Carriers (NLC) as Vehicles for Topical Administration of Sesamol: In Vitro Percutaneous Absorption Study and Evaluation of Antioxidant Activity.

    PubMed

    Puglia, Carmelo; Lauro, Maria Rosaria; Offerta, Alessia; Crascì, Lucia; Micicchè, Lucia; Panico, Anna Maria; Bonina, Francesco; Puglisi, Giovanni

    2017-03-01

    Sesamol is a natural phenolic compound extracted from Sesamum indicum seed oil. Sesamol is endowed with several beneficial effects, but its use as a topical agent is strongly compromised by unfavorable chemical-physical properties. Therefore, to improve its characteristics, the aim of the present work was the formulation of nanostructured lipid carriers as drug delivery systems for topical administration of sesamol.Two different nanostructured lipid carrier systems have been produced based on the same solid lipid (Compritol® 888 ATO) but in a mixture with two different kinds of oil phase such as Miglyol® 812 (nanostructured lipid carrier-M) and sesame oil (nanostructured lipid carrier-PLUS). Morphology and dimensional distribution of nanostructured lipid carriers have been characterized by differential scanning calorimetry and photon correlation spectroscopy, respectively. The release pattern of sesamol from nanostructured lipid carriers was evaluated in vitro determining drug percutaneous absorption through excised human skin. Furthermore, an oxygen radical absorbance capacity assay was used to determine their antioxidant activity.From the results obtained, the method used to formulate nanostructured lipid carriers led to a homogeneous dispersion of particles in a nanometric range. Sesamol has been encapsulated efficiently in both nanostructured lipid carriers, with higher encapsulation efficiency values (> 90 %) when sesame oil was used as the oil phase (nanostructured lipid carrier-PLUS). In vitro evidences show that nanostructured lipid carrier dispersions were able to control the rate of sesamol diffusion through the skin, with respect to the reference formulations.Furthermore, the oxygen radical absorbance capacity assay pointed out an interesting and prolonged antioxidant activity of sesamol, especially when vehiculated by nanostructured lipid carrier-PLUS.

  15. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  16. Influence of oxygen on defect production in electron-irradiated, boron-doped silicon

    NASA Technical Reports Server (NTRS)

    Deangelis, H. M.; Drevinsky, P. J.

    1984-01-01

    Deep level transient spectroscopy (DLTS) measurements were made on float-zone and crucible-grown, boron-doped silicon irradiated with 1-MeV electrons. The minority carrier trap attributed to a boron-related state, was not seen in low-resistivity, float-zone silicon. However, a new majority carrier trap was observed in these samples. In the case of more lightly doped material the minority carrier trap was present, and its introduction rate was lower in float-zone than in crucible-grown silicon. For 1- and 10-ohm-cm float-zone material that was oxidized during processing, the introduction rates for this trap were comparable to those for crucible-grown silicon. This behavior indicates that the minority carrier trap involves oxygen and that it may be due to a boron-oxygen complex. The majority carrier trap seen in heavily doped, float-zone silicon may also involve boron but not oxygen. Observed trap concentrations suggest that oxygen content in the regions examined by DLTS is affected by processing techniques. Other differences were observed in defect production and annealing behavior of electron-irradiated, float-zone and crucible-grown silicon.

  17. A Method to Perform Direct Oxygen Analysis on Lunar Simulants and Other Complex Oxide Materials

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo

    2007-01-01

    An essential requirement for making space travel and long term missions more efficient and affordable to NASA includes finding innovative ways to supply oxygen for life support and propulsion. In this experiment, carrier gas hot extraction was investigated as a possible method for measuring the oxygen from samples of lunar soil simulants before and after oxygen extraction. The determination of oxygen using the R0600 Oxygen Determinator is usually limited to oxides with low oxygen concentrations, but after the manipulation of certain furnace operating parameters such as analysis time and ramp rate, the R0600 was used to determine the oxygen content of high concentration oxides such as Fe 2O3 , Al2O3 , and SiO2.

  18. Oxygen foreshock of Mars

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Lundin, R.; Frahm, R. A.; Sauvaud, J.-A.; Holmström, M.; Barabash, S.

    2015-12-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations from the Analyzer of Space Plasmas and Energetic Atoms experiment's Ion Mass Analyser (IMA). On 21 September 2008, MEX/IMA detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock and this distribution was observed continuously up to more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. This is the first time that a substantial amount of planetary oxygen is observed upstream of the bow shock. Although rare, this is not the only IMA observation of foreshock-like oxygen: oxygen ions are sometimes observed for a short period of time (<5 min) inside the foreshock region. These observations suggest a new escape channel for planetary ions through the acceleration in the bow shock-magnetosheath region.

  19. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  20. The effect of oxide precipitates on minority carrier lifetime in n-type silicon

    NASA Astrophysics Data System (ADS)

    Murphy, J. D.; Al-Amin, M.; Bothe, K.; Olmo, M.; Voronkov, V. V.; Falster, R. J.

    2015-12-01

    Supersaturated levels of interstitial oxygen in Czochralski silicon can lead to the formation of oxide precipitates. Although beneficial from an internal gettering perspective, oxygen-related extended defects give rise to recombination which reduces minority carrier lifetime. The highest efficiency silicon solar cells are made from n-type substrates in which oxide precipitates can have a detrimental impact on cell efficiency. In order to quantify and to understand the mechanism of recombination in such materials, we correlate injection level-dependent minority carrier lifetime data measured with silicon nitride surface passivation with interstitial oxygen loss and precipitate concentration measurements in samples processed under substantially different conditions. We account for surface recombination, doping level, and precipitate morphology to present a generalised parameterisation of lifetime. The lifetime data are analysed in terms of recombination activity which is dependent on precipitate density or on the surface area of different morphologies of precipitates. Correlation of the lifetime data with interstitial oxygen loss data shows that the recombination activity is likely to be dependent on the precipitate surface area. We generalise our findings to estimate the impact of oxide precipitates with a given surface area on lifetime in both n-type and p-type silicon.

  1. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    PubMed Central

    Espinosa-Gongora, Carmen; Larsen, Niels; Schønning, Kristian; Fredholm, Merete; Guardabassi, Luca

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming. PMID:27509169

  2. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    DTIC Science & Technology

    2017-08-01

    AFRL-SA-WP-SR-2017-0024 Closed Loop Control of Oxygen Delivery and Oxygen Generation Dr. Jay Johannigman1, Richard Branson1...TITLE AND SUBTITLE Closed Loop Control of Oxygen Delivery and Oxygen Generation 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER...humans would be the next step in validating this system. 15. SUBJECT TERMS Closed loop control, oxygen generation , oxygen concentration

  3. Suppression of ionic liquid gate-induced metallization of SrTiO3(001) by oxygen.

    PubMed

    Li, Mingyang; Han, Wei; Jiang, Xin; Jeong, Jaewoo; Samant, Mahesh G; Parkin, Stuart S P

    2013-10-09

    Ionic liquid gating of three terminal field effect transistor devices with channels formed from SrTiO3(001) single crystals induces a metallic state in the channel. We show that the metallization is strongly affected by the presence of oxygen gas introduced external to the device whereas argon and nitrogen have no effect. The suppression of the gating effect is consistent with electric field induced migration of oxygen that we model by oxygen-induced carrier annihilation.

  4. Physical Properties of Oxygen Deficient YTTRIUM(1) BARIUM(2) COPPER(3) OXYGEN(7-DELTA) Superconductors.

    NASA Astrophysics Data System (ADS)

    Sun, He Bi.

    The physical properties of oxygen deficient polycrystalline rm YBa_2Cu_3O_{7 -delta} superconducting materials have been systematically investigated. These properties include magnetic susceptibility, electrical transport, thermoelectric power and infrared reflectivity. A great deal of this study has concentrated on the magnetic and transport properties of these materials when they are in the mixed state. The polycrystalline specimens used in this work were prepared through a solid state reaction. The oxygen content of the specimens was controlled using several annealing methods and the oxygen deficiency delta was determined by X-ray diffraction, gas evolution, iodometric titration and neutron diffraction techniques. A new method has been developed for the investigation of magnetic relaxation in these materials using the conventional a.c. susceptibility technique after modification. This thesis represents the first detailed and systematic study of the thermal activation energy for high Tc superconductors using many different methods, including a.c. susceptibility, magnetic relaxation, electric resistivity and thermoelectric power. All the results obtained, including their numerical values and field dependence are consistent with and comparable to previously reported data. A modified critical state model has been successfully used to interpret the magnetic field dependence of the isothermal a.c. susceptibility data, including field dependent a.c. losses and the chi^' -chi^{'' } interrelationship. This study highlights the strong influence that delta exerts on the superconducting and normal state properties of polycrystalline rm YBa_2Cu_3O_{7-delta } material. In particular, for transport properties, delta affects the carrier doping in the CuO_2 planes, which determines the carrier concentration. Therefore increasing delta reduces the superconducting transition temperature. For the magnetic property, delta has a negative influence on the pinning energy in

  5. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  6. Theileria annulata: carrier state and immunity.

    PubMed

    Ilhan, T; Williamson, S; Kirvar, E; Shiels, B; Brown, C G

    1998-06-29

    Recovery from primary infection of Theileria annulata results in the development of a persistent carrier state in the vertebrate host. The carrier state is of great importance in the maintenance of the life cycle by alternate tick/cattle challenge and both contributes to and may be necessary for maintenance of immunity. Therefore, an accurate determination of carrier animals could be useful in determining immune status and may allow the necessary control measures to be implemented. Detailed information on the carrier state of animals following immunization with attenuated cell lines is lacking. In this study, relationship between immune response, persistence of the parasite, and the antibody response has been investigated. Calves were infected with T. annulata sporozoites, low passage (non-attenuated) or high passage (attenuated, vaccine) cell lines and later challenged with a lethal dose of heterologous sporozoites. The presence and persistence of the parasite were monitored by PCR using primers derived from genes coding for ssrRNA and a 30 kDa major merozoite surface protein, by Giemsa stained blood smears to detect the presence of piroplasms and also by attempting to establish infected mononuclear cell cultures from venous blood. Antibody responses were measured by indirect ELISA using a merozoite recombinant antigen and IFAT using piroplasm and macroschizont antigens. Results showed that there was an evident relationship between the persistence of carrier status, antibody response in ELISA and immune response to challenge.

  7. 47 CFR 15.113 - Power line carrier systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Power line carrier systems. 15.113 Section 15... Radiators § 15.113 Power line carrier systems. Power line carrier systems, as defined in § 15.3(t), are subject only to the following requirements: (a) A power utility operating a power line carrier system...

  8. 46 CFR 565.3 - Classification as controlled carrier.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 9 2013-10-01 2013-10-01 false Classification as controlled carrier. 565.3 Section 565... MARITIME PRACTICES CONTROLLED CARRIERS § 565.3 Classification as controlled carrier. (a) Notification. The... States and will notify any ocean common carrier of any change in its classification as a...

  9. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  10. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  11. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  12. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  13. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply for...

  14. 47 CFR 73.1540 - Carrier frequency measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 73.1540 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... measurements. (a) The carrier frequency of each AM and FM station and the visual carrier frequency and the difference between the visual carrier and the aural carrier or center frequency of each TV and Class A...

  15. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping

    NASA Astrophysics Data System (ADS)

    Víllora, Encarnación G.; Shimamura, Kiyoshi; Yoshikawa, Yukio; Ujiie, Takekazu; Aoki, Kazuo

    2008-05-01

    Electrical conductivity of β-Ga2O3 has been attributed so far to an oxygen deficiency, the donors presumably being oxygen vacancies. This letter shows, however, that the conductivity can be intentionally controlled over three orders of magnitude by Si doping. The related free-carrier concentration, which varies between 1016-1018cm-3, corresponds to a 25%-50% effective Si donors. Since Si is the main impurity present in Ga2O3 powders—in the order of the studied doping levels—we conclude that the electrical conductance of β-Ga2O3 can be attributed to Si impurities, and that the contribution of oxygen vacancies, if any, is not dominant.

  16. Using oxygen at home

    MedlinePlus

    ... sooner to your house or neighborhood if the power goes out. Keep their phone numbers in a place where you can find them easily. Tell your family, neighbors, and friends that you use oxygen. They can help during an emergency.

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-07-01

    In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  18. Oxygen and Biological Evolution.

    ERIC Educational Resources Information Center

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  19. Oxygen and Biological Evolution.

    ERIC Educational Resources Information Center

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  20. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  1. Aircraft Oxygen Generation

    DTIC Science & Technology

    2012-02-01

    board oxygen generation system to provide breathing oxygen for the aircrew. Compared to historical experience , there have been an increasing number of...as well as retired military members with relevant experience . Also, the Panel received numerous inputs from the USAF Safety Center’s safety...Beginning in 2008, the F-22 aircraft began to experience a significantly higher rate of hypoxia-like incidents with unknown causes as reported by the

  2. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    DOE PAGES

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; ...

    2015-07-02

    In this study, an improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy(DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range of capturemore » cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.« less

  3. [Oxygen Leukocyte Larceny].

    PubMed

    Pinto da Costa, Miguel; Pimenta Coelho, Henrique

    2016-05-01

    The authors present a case of a 60-year-old male patient, previously diagnosed with B-cell chronic lymphocytic leukemia, who was admitted to the Emergency Room with dyspnea. The initial evaluation revealed severe anemia (Hgb = 5.0 g/dL) with hyperleukocytosis (800.000/µL), nearly all of the cells being mature lymphocytes, a normal chest X-ray and a low arterial oxygen saturation (89%; pulse oximetry). After red blood cell transfusion, Hgb values rose (9.0 g/dL) and there was a complete reversion of the dyspnea. Yet, subsequent arterial blood gas analysis, without the administration of supplemental oxygen, systematically revealed very low oxygen saturation values (~ 46%), which was inconsistent with the patientâs clinical state and his pulse oximetry values (~ 87%), and these values were not corrected by the administration of oxygen via non-rebreather mask. The investigation performed allowed to establish the diagnosis of oxygen leukocyte larceny, a phenomenon which conceals the true oxygen saturation due to peripheral consumption by leukocytes.

  4. Ambient Oxygen Promotes Tumorigenesis

    PubMed Central

    Starost, Matthew F.; Lago, Cory U.; Lim, Philip K.; Sack, Michael N.; Kang, Ju-Gyeong; Wang, Ping-yuan; Hwang, Paul M.

    2011-01-01

    Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53−/− mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53−/− mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo. PMID:21589870

  5. Dissolved oxygen: Chapter 6

    USGS Publications Warehouse

    Senn, David; Downing-Kunz, Maureen; Novick, Emily

    2016-01-01

    Dissolved oxygen (DO) concentration serves as an important indicator of estuarine habitat condition, because all aquatic macro-organisms require some minimum DO level to survive and prosper. The instantaneous DO concentration, measured at a specific location in the water column, results from a balance between multiple processes that add or remove oxygen (Figure 6.1): primary production produces O2; aerobic respiration in the water column and sediments consumes O2; abiotic or microbially-mediated biogeochemical reactions utilize O2 as an oxidant (e.g., oxidation of ammonium, sulfide, and ferrous iron); O2 exchange occurs across the air:water interface in response to under- or oversaturated DO concentrations in the water column; and water currents and turbulent mixing transport DO into and out of zones in the water column. If the oxygen loss rate exceeds the oxygen production or input rate, DO concentration decreases. When DO losses exceed production or input over a prolonged enough period of time, hypoxia ((<2-3 mg/L) or anoxia can develop. Persistent hypoxia or anoxia causes stress or death in aquatic organism populations, or for organisms that can escape a hypoxic or anoxic area, the loss of habitat. In addition, sulfide, which is toxic to aquatic organisms and causes odor problems, escapes from sediments under low oxygen conditions. Low dissolved oxygen is a common aquatic ecosystem response to elevated organic

  6. Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Li, Jia-Dan; Zhuang, Lin; Hong, Rui-Jiang

    2017-10-01

    A high-performance multicrystalline silicon (mc-Si) ingot was produced by seed-assisted directional solidification, and the minority carrier lifetime of the periphery edge region was evaluated. The defects and impurities in the periphery edge region of the silicon wafers were systematically studied with photoluminescence (PL) imaging, minority carrier lifetime mapping, and Fourier transform infrared (FTIR) spectroscopy. Their relationships with the minority carrier lifetime were investigated. The concentration of substitutional carbon, interstitial oxygen, and dislocation clusters is not directly correlated with the low minority carrier lifetime of the edge zone of the mc-Si ingot. Inhomogeneous grain size distribution and contamination with iron impurities were demonstrated to be the main factors affecting the low minority carrier lifetime. By controlling the impurities and improving the grain size distribution, a modified furnace was designed and a higher-quality mc-Si ingot was manufactured.

  7. Nanogel Carrier Design for Targeted Drug Delivery

    PubMed Central

    Eckmann, D. M.; Composto, R. J.; Tsourkas, A.; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions. PMID:25485112

  8. Inorganic Nanomaterials as Carriers for Drug Delivery.

    PubMed

    Chen, Shizhu; Hao, Xiaohong; Liang, Xingjie; Zhang, Qun; Zhang, Cuimiao; Zhou, Guoqiang; Shen, Shigang; Jia, Guang; Zhang, Jinchao

    2016-01-01

    For safe and effective therapy, drugs must be delivered efficiently and with minimal systemic side effects. Nanostructured drug carriers enable the delivery of small-molecule drugs as well as nucleic acids and proteins. Inorganic nanomaterials are ideal for drug delivery platforms due to their unique physicochemical properties, such as facile preparation, good storage stability and biocompatibility. Many inorganic nanostructure-based drug delivery platforms have been prepared. Although there are still many obstacles to overcome, significant advances have been made in recent years. This review focuses on the status and development of inorganic nanostructures, including silica, quantum dots, gold, carbon-based and magnetic iron oxide-based nanostructures, as carriers for chemical and biological drugs. We specifically highlight the extensive use of these inorganic drug carriers for cancer therapy. Finally, we discuss the most important areas in the field that urgently require further study.

  9. Quinolones in the treatment of Salmonella carriers.

    PubMed

    Rodríguez-Noriega, E; Andrade-Villanueva, J; Amaya-Tapia, G

    1989-01-01

    Infections caused by Salmonella typhi are commonly followed by a chronic carrier state despite positive clinical and initial bacteriologic responses. The use of primary antibiotics like chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole has several major drawbacks, including in some instances the failure to prevent the carrier state. The appearance worldwide of strains with multiple resistance to the most commonly used regimens has prompted the search for new forms of therapy. Among the agents studied have been third-generation cephalosporins and quinolones, which are active in vitro against bacterial enteropathogens like S. typhi. Resolution of chronic carriage of S. typhi and other salmonellae is difficult, and regimens commonly fail (including those that combine antibiotic administration with removal of the gallbladder). In addition to being active in vitro against Salmonella species, the newer quinolones adequately penetrate the intestinal lumen, liver, bile, and gallbladder. Initial experience with norfloxacin and ciprofloxacin in oral treatment of the chronic S. typhi carrier state in adults has been promising.

  10. Carrier lifetimes in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  11. Carrier frequency noise from HVDC converters

    NASA Astrophysics Data System (ADS)

    Fisher, F. A.; Griess, L. D.; Laforest, J. J.; Lindh, C. B.

    1982-08-01

    The development of an ac and dc side carrier frequency noise model for incorporation in the Bonneville Power Administration's ElectroMagnetic Transient Program (EMTP) is described. This model of an HVDC Station generates the characteristic wave shapes of voltages and currents in the time plane on which a Fast Fourier Transformer (FFT) is applied. The model representation of HVDC equipment such as converter transformers, smoothing reactors and harmonic filters is compared with de-energized impedance measurements of similar equipment in an HVDC Station. The carrier frequency range for the model covered is 10 kHz - 300 kHz. The measurements were obtained on the valve side and line side of the converter for both ac and dc sides. The calculated and measured noise were compared. The different measuring methods are described. A preferred measurement program is suggested and guidelines are indicated for power line carrier (plc) signal to noise ratios.

  12. OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN

    SciTech Connect

    Whittet, D. C. B.

    2010-02-20

    This paper assesses the implications of a recent discovery that atomic oxygen is being depleted from diffuse interstellar gas at a rate that cannot be accounted for by its presence in silicate and metallic oxide particles. To place this discovery in context, the uptake of elemental O into dust is considered over a wide range of environments, from the tenuous intercloud gas and diffuse clouds sampled by the depletion observations to dense clouds where ice mantles and gaseous CO become important reservoirs of O. The distribution of O in these contrasting regions is quantified in terms of a common parameter, the mean number density of hydrogen (n{sub H}). At the interface between diffuse and dense phases (just before the onset of ice-mantle growth) as much as {approx}160 ppm of the O abundance is unaccounted for. If this reservoir of depleted oxygen persists to higher densities it has implications for the oxygen budget in molecular clouds, where a shortfall of the same order is observed. Of various potential carriers, the most plausible appears to be a form of O-bearing carbonaceous matter similar to the organics found in cometary particles returned by the Stardust mission. The 'organic refractory' model for interstellar dust is re-examined in the light of these findings, and it is concluded that further observations and laboratory work are needed to determine whether this class of material is present in quantities sufficient to account for a significant fraction of the unidentified depleted oxygen.

  13. Turbo code carrier synchronization losses (Radio Losses)

    NASA Technical Reports Server (NTRS)

    Shanibayati, Shervin; Kinman, Peter; Tadjpour, Layla

    2001-01-01

    In this paper the radio loss results for (8920,1/3), (8920,1/6), (1783,1/3) and (1784,1/6) codes are presented. These radio losses were calculated through simulations for a range of data rates. These simulations included both suppressed carrier modulation and residual carrier modulation cases. The radio losses were calculated for a frame error rate of 3 x 10^-4 for (8920,1/3) and (8920,1/6) codes and 3 frame error rate of 6 x 10^-5 for (1764,1/3) and (1784,1/6) codes. The simulations for the residual carrier case were run for loop signal to noise ratios of 13dB, 15dB and 17dB with a loop bandwidth of 10Hz. The simulations for the suppressed carrier case were run for a loop of signal to noise ratio of 17dB. The results of these simulations indicate that the radio losses for turbo codes are low enough to warrant their use in deep space links (maximum of 1dB loss at 17dB loop signal to noise ratio for residual carrier and 1.3dB loss at 17dB loop signal to noise ratio for suppressed carrier at high data rates). Furthermore, these results indicate that by normalizing the radio losses for frame size, loop bandwidth and the loop signal to noise ratio, a single curve could be used for calculating the radio loss for any given data rate at any given loop signal to noise ratio.

  14. CONCENTRATION OF Pu USING OXALATE TYPE CARRIER

    DOEpatents

    Ritter, D.M.; Black, R.P.S.

    1960-04-19

    A method is given for dissolving and reprecipitating an oxalate carrier precipitate in a carrier precipitation process for separating and recovering plutonium from an aqueous solution. Uranous oxalate, together with plutonium being carried thereby, is dissolved in an aqueous alkaline solution. Suitable alkaline reagents are the carbonates and oxulates of the alkali metals and ammonium. An oxidizing agent selected from hydroxylamine and hydrogen peroxide is then added to the alkaline solution, thereby oxidizing uranium to the hexavalent state. The resulting solution is then acidified and a source of uranous ions provided in the acidified solution, thereby forming a second plutoniumcarrying uranous oxalate precipitate.

  15. Spacelab Hitchhiker, a quick reaction carrier

    NASA Technical Reports Server (NTRS)

    James, E. F.; Moye, J. E.; Lohman, R. L.

    1985-01-01

    It is pointed out that NASA is developing a new way to get payloads into orbit in a short time and at a low cost. The 'Spacelab Hitchhiker' is the carrier program which will accomplish this objective. The Spacelab Hitchhiker carrier is a Shuttle payload. The primary application of the considered program will be related to science and technology payloads. Attention is given to the Hitchhiker concept, details regarding the Hitchhiker-G and Hitchhiker-M, aspects of integration and operations, Orbiter resources and STS interfaces, the conduction of Hitchhiker flights as 'flights of opportunity', questions of payload selection, and organizational interfaces.

  16. Carrier molecules for use in veterinary vaccines.

    PubMed

    Gerdts, Volker; Mutwiri, George; Richards, James; van Drunen Littel-van den Hurk, Sylvia; Potter, Andrew A

    2013-01-11

    The practice of immunization of animals and humans has been carried out for centuries and is generally accepted as the most cost effective and sustainable method of infectious disease control. Over the past 20 years there have been significant changes in our ability to produce antigens by conventional extraction and purification, recombinant DNA and synthesis. However, many of these products need to be combined with carrier molecules to generate optimal immune responses. This review covers selected topics in the development of carrier technologies for use in the veterinary vaccine field, including glycoconjugate and peptide vaccines, microparticle and nanoparticle formulations, and finally virus-like particles.

  17. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  18. Transient carrier transfer in tunnel injection structures

    NASA Astrophysics Data System (ADS)

    Talalaev, V. G.; Tomm, J. W.; Zakharov, N. D.; Werner, P.; Gösele, U.; Novikov, B. V.; Sokolov, A. S.; Samsonenko, Y. B.; Egorov, V. A.; Cirlin, G. E.

    2008-07-01

    InGaAs tunnel injection nanostructures consisting of a single quantum well as injector and a quantum dot layer as emitter are studied by time-resolved photoluminescence spectroscopy. The quantum dot photoluminescence undergoes substantial changes when proceeding from direct quantum dot excitation to quantum well excitation, which causes an indirect population of the dot ground states. This results in a lowered effective carrier temperature within the dots. Results on the carrier transfer versus barrier thickness are discussed within the Wentzel-Kramers-Brillouin approximation. Deviations for barrier thicknesses <5nm are assigned to the formation of nanobridges that are actually detected by transmission electron microscopy.

  19. Viruses - from pathogens to vaccine carriers.

    PubMed

    Small, Juliana C; Ertl, Hildegund C J

    2011-10-01

    Vaccination is mankind's greatest public health success story. By now vaccines to many of the viruses that once caused fatal childhood diseases are routinely used throughout the world. Traditional methods of vaccine development through inactivation or attenuation of viruses have failed for some of the most deadly human pathogens, necessitating new approaches. Genetic modification of viruses not only allows for their attenuation but also for incorporation of sequences from other viruses, turning one pathogen into a vaccine carrier for another. Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors based on adenovirus, herpesvirus, flavivirus, and rhabdovirus as examples.

  20. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  1. Size dependence of carrier dynamics and carrier multiplication in PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Nootz, Gero; Padilha, Lazaro A.; Levina, Larissa; Sukhovatkin, Vlad; Webster, Scott; Brzozowski, Lukasz; Sargent, Edward H.; Hagan, David J.; van Stryland, Eric W.

    2011-04-01

    The time dynamics of the photoexcited carriers and carrier-multiplication efficiencies in PbS quantum dots (QDs) are investigated. In particular, we report on the carrier dynamics, including carrier multiplication, as a function of QD size and compare them to the bulk value. We show that the intraband 1P→1S decay becomes faster for smaller QDs, in agreement with the absence of a phonon bottleneck. Furthermore, as the size of the QDs decreases, the energy threshold for carrier multiplication shifts from the bulk value to higher energies. However, the energy threshold shift is smaller than the band-gap shift and, therefore, for the smallest QDs, the threshold approaches 2.35 Eg, which is close to the theoretical energy conservation limit of twice the band gap. We also show that the carrier-multiplication energy efficiency increases with decreasing QD size. By comparing to theoretical models, our results suggest that impact ionization is sufficient to explain carrier multiplication in QDs.

  2. Detachment factors for enhanced carrier to carrier transfer of CHO cell lines on macroporous microcarriers.

    PubMed

    Landauer, K; Dürrschmid, M; Klug, H; Wiederkum, S; Blüml, G; Doblhoff-Dier, O

    2002-05-01

    In this publication different detachment factors were tested for enhancing carrier to carrier transfer for scale-up of macroporous microcarrier based bioprocesses. Two Chinese hamster ovary cell lines, CHO-K1 and a genetically engineered CHO-K1 derived cell line (CHO-MPS), producing recombinant human Arylsulfatase B, were examined. The cells were grown on Cytoline 1microcarriers (Amersham Biosciences, Uppsala, Sweden) in protein-free and chemically defined medium respectively. Fully colonised microcarriers were used at passage ratios of approximately 1:10 for carrier to carrier transfer experiments. To accelerate the colonisation of the non-colonised, freshly added microcarriers the detachment reagents trypsin, papain, Accutasetrade mark (PAA, Linz, Austria), heparin and dextransulphate were used. Both cell lines showed good results with trypsin, Accutase and dextransulphate (Amersham Biosciences, Uppsala, Sweden), while papain failed to enhance carrier to carrier transfer in comparison to the non-treated reference. The maximum growth rate of cells on microcarriers with 2% dextransulphate in the medium was 0.25 +/- 0.02d(-1) and 0.27 +/- 0.03d(-1) for the CHO-MPS and CHO-K1, respectively. TheCHO-K1 grew best after detachment with trypsin (mu = 0.36 +/- 0.03d(-1)). This indicates, that one of the key parameters for carrier to carrier transfer is the uniform distribution of cells on the individual carriers during the initial phase. When this distribution can be improved, growth rate increases, resulting in a faster and more stable process.

  3. Atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Reynolds, John M.

    1991-01-01

    The passive Long Duration Exposure Facility (LDEF) Experiment A0034, Atomic Oxygen Simulated Outgassing, consisted of two identical one-sixth tray modules, exposing selected thermal control coatings to atomic oxygen and the combined space environment on the leading edge and, for reference, to the relative wake environment on the trailing edge. Optical mirrors were included adjacent to the thermal coatings for deposition of outgassing products. Ultraviolet grade windows and metal covers were provided for additional assessment of the effects of the various environmental factors. Preliminary results indicate that orbital atomic oxygen is both a degrading and a optically restorative factor in the thermo-optical properties of selected thermal coatings. There is evidence of more severe optical degradation on collector mirrors adjacent to coatings that were exposed to the RAM-impinging atomic oxygen. This evidence of atomic oxygen stimulated outgassing is discussed in relation to alternative factors that could affect degradation. The general effects of the space environment on the experiment hardware as well as the specimens are discussed.

  4. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  5. Venous oxygen saturation.

    PubMed

    Hartog, Christiane; Bloos, Frank

    2014-12-01

    Early detection and rapid treatment of tissue hypoxia are important goals. Venous oxygen saturation is an indirect index of global oxygen supply-to-demand ratio. Central venous oxygen saturation (ScvO2) measurement has become a surrogate for mixed venous oxygen saturation (SvO2). ScvO2 is measured by a catheter placed in the superior vena cava. After results from a single-center study suggested that maintaining ScvO2 values >70% might improve survival rates in septic patients, international practice guidelines included this target in a bundle strategy to treat early sepsis. However, a recent multicenter study with >1500 patients found that the use of central hemodynamic and ScvO2 monitoring did not improve long-term survival when compared to the clinical assessment of the adequacy of circulation. It seems that if sepsis is recognized early, a rapid initiation of antibiotics and adequate fluid resuscitation are more important than measuring venous oxygen saturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. 18 CFR 357.1 - Common carriers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Common carriers. 357.1 Section 357.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY APPROVED FORMS, INTERSTATE COMMERCE ACT ANNUAL SPECIAL OR PERIODIC REPORTS:...

  7. [Oxidative stress in porphyria and carriers].

    PubMed

    Aminaka, Masahito; Kondo, Masao; Takata, Ayako; Yamauchi, Hiroshi; Ikeda, Maki; Yoshida, Katsumi

    2008-05-01

    We sought to establish a causal relationship between oxidative stress and porphyria in patients and carriers. We reported changes in urinary porphyrin concentrations related to 8-hydroxy-2'-deoxyguanosine. We measured urinary 8-hydroxy-2'-deoxyguanosine concentration in porphyria patients and carriers with multifactorial inheritance as a possible marker of attack. The porphyria types included 10 patients with porphyria cutanea tarda, 5 with variegate porphyria, 8 with hereditary coproporphyria, 7 with congenital erythropoietic porphyria, 5 with erythropoietic protoporphyria, 5 with acute intermittent porphyria, 7 erythropoietic protoporphyria carriers, and 7 acute intermittent porphyria carriers. Urinary porphyrin concentrations in these patients were significantly higher than those in healthy subjects (p<0.001). Urinary 8-hydroxy-2'-deoxyguanosine concentrations were significantly high in dermatopathy porphyria types namely porphyria cutanea tarda (p<0.001), variegate porphyria (p<0.05), hereditary coproporphyria (p<0.05), congenital erythropoietic phyria (p<0.05), and erythropoietic protoporphyria (p<0.001). These results reveal that urinary 8-hydroxy-2'-deoxyguanosine concentration in cutis porphyria types is a good predictor of attack and abatement.

  8. Hot Carrier Extraction from Multilayer Graphene.

    PubMed

    Urcuyo, Roberto; Duong, Dinh Loc; Sailer, Patrick; Burghard, Marko; Kern, Klaus

    2016-11-09

    Hot carriers in semiconductor or metal nanostructures are relevant, for instance, to enhance the activity of oxide-supported metal catalysts or to achieve efficient photodetection using ultrathin semiconductor layers. Moreover, rapid collection of photoexcited hot carriers can improve the efficiency of solar cells, with a theoretical maximum of 85%. Because of the long lifetime of secondary excited electrons, graphene is an especially promising two-dimensional material to harness hot carriers for solar-to-electricity conversion. However, the photoresponse of thus far realized graphene photoelectric devices is mainly governed by thermal effects, which yield only a very small photovoltage. Here, we report a Gr-TiOx-Ti heterostructure wherein the photovoltaic effect is predominant. By doping the graphene, the open circuit voltage reaches values up to 0.30 V, 2 orders of magnitude larger than for devices relying upon the thermoelectric effect. The photocurrent turned out to be limited by trap states in the few-nanometer-thick TiOx layer. Our findings represent a first valuable step toward the integration of graphene into third-generation solar cells based upon hot carrier extraction.

  9. URANOUS IODATE AS A CARRIER FOR PLUTONIUM

    DOEpatents

    Miller, D.R.; Seaborg, G.T.; Thompson, S.G.

    1959-12-15

    A process is described for precipitating plutonium on a uranous iodate carrier from an aqueous acid solution conA plutonium solution more concentrated than the original solution can then be obtained by oxidizing the uranium to the hexavalent state and dissolving the precipitate, after separating the latter from the original solution, by means of warm nitric acid.

  10. Carrier recovery techniques on satellite mobile channels

    NASA Technical Reports Server (NTRS)

    Vucetic, B.; Du, J.

    1990-01-01

    An analytical method and a stored channel model were used to evaluate error performance of uncoded quadrature phase shift keying (QPSK) and M-ary phase shift keying (MPSK) trellis coded modulation (TCM) over shadowed satellite mobile channels in the presence of phase jitter for various carrier recovery techniques.

  11. Commercial Air Carrier Vulnerabilities to Information Operations

    DTIC Science & Technology

    2002-06-06

    GMO /ENS/02E-11 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio...AFIT/ GMO /ENS/02E-11 COMMERCIAL AIR CARRIER VULNERABILITIES TO INFORMATION OPERATIONS...addition, it may be easier and more desirable to provide force security at home rather than abroad. This requires rapid global mobility in order to

  12. OCP: Opportunistic Carrier Prediction for Wireless Networks

    DTIC Science & Technology

    2008-08-01

    Many protocols have been proposed for medium access control in wireless networks. MACA [13], MACAW [3], and FAMA [8] are the earlier proposals for...world performance of carrier sense. In Proceedings of ACM SIGCOMM E-WIND Workshop, 2005. [13] P. Karn. MACA : A new channel access method for packet radio

  13. Spatially resolved carrier dynamics in photoconductive switches

    NASA Astrophysics Data System (ADS)

    Feise, Michael Winfried

    Photoconductive switches gated by femtosecond laser pulses are convenient sources of short current pulses and bursts of electromagnetic radiation in the terahertz frequency range. In this work we study the spatio-temporal dynamics of the optically excited charge carriers in photoconductive switches in the framework of a drift-diffusion equation coupled to the Poisson equation to account for screening of the bias field by the carriers. Our treatment explicitly takes into account non-uniformities of the laser excitation spot in the quantum well direction normal to the bias field. Due to the non-uniform carrier density, the screening field varies and the dynamics of the charge carriers become dependent on the location with respect to the center of the excitation spot. We present simulations in relation to spatially resolved luminescence experiments performed by Bieler and coworkers [M. Bieler et al., Appl. Phys. Lett. 77, 1002 (2000).] and obtain very good agreement. We show results of the simulation for photoconductive switches with high quality, wide GaAs quantum wells.

  14. Suppressed Carrier Synchronizers for ISI Channels

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Simon, Marvin K.

    1996-01-01

    We demonstrate a class of suppressed carrier synchronization loops that are motivated by MAP estimation theory and in the presence of ISI outperform the conventional I-Q loop which is designed on the basis of zero ISI (wideband assumption). The measure of comparison used is the so-called.

  15. 14 CFR 223.6 - Carrier's rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS FREE AND REDUCED-RATE TRANSPORTATION General Provisions § 223.6 Carrier's rules. (a) Each air... interchange of free and reduced-rate transportation passes or a statement describing those practices. (b)...

  16. Managing photons and carriers for photocatalysis

    NASA Astrophysics Data System (ADS)

    Thomann, Isabell; Robatjazi, Hossein; Bahauddin, Shah; Doiron, Chloe; Liu, Xuejun; Tumkur, Thejaswi; Wang, Wei-Ren; Wray, Parker

    While small plasmonic nanoparticles efficiently generate energetic hot carriers, light absorption in a monolayer of such particles is inefficient, and practical utilization of the hot carriers in addition requires efficient charge-separation. Here we describe our approach to address both challenges. By designing an optical cavity structure for the plasmonic photoelectrode, light absorption in these particles can be significantly enhanced, resulting in efficient hot electron generation. Rather than utilizing a Schottky barrier to preserve the energy of the carriers, our structure allows for their direct injection into the adjacent electrolyte. On the substrate side, the plasmonic particles are in contact with a wide band gap oxide film that serves as an electron blocking layer but accepts holes and transfers them to the counter electrode. The observed photocurrent spectra follow the plasmon spectrum, and demonstrate that the extracted electrons are energetic enough to drive the hydrogen evolution reaction. A similar structure can be designed to achieve broadband absorption enhancement in monolayer MoS2. Time permitting, I will discuss charge carrier dynamics in hybrid nanoparticles composed of plasmonic / two-dimensional materials, and applications of photo-induced force microscopy to study photocatalytic processes.

  17. 7 CFR 35.4 - Carrier.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Carrier. 35.4 Section 35.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT...

  18. 7 CFR 35.4 - Carrier.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Carrier. 35.4 Section 35.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT...

  19. Suppressed Carrier Synchronizers for ISI Channels

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Simon, Marvin K.

    1996-01-01

    We demonstrate a class of suppressed carrier synchronization loops that are motivated by MAP estimation theory and in the presence of ISI outperform the conventional I-Q loop which is designed on the basis of zero ISI (wideband assumption). The measure of comparison used is the so-called.

  20. 7 CFR 35.4 - Carrier.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Carrier. 35.4 Section 35.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT...