Science.gov

Sample records for niobium oxide doping

  1. Electrochromic characteristics of niobium-doped titanium oxide film on indium tin oxide/glass by liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Chia-Jung

    2015-10-01

    Ammonium hexafluorotitanate and boric acid aqueous solutions were used as precursors for the growth of titanium oxide films on indium tin oxide (ITO)/glass substrate. For as-grown titanium oxide film used in an electrochromic device, Li+ ions from electrolyte will be trapped to hydroxyl groups and degrade the electrochromic durability during the cyclic voltammogram characterization. For niobium doped titanium oxide film, lower growth rate from more HF incorporation from the niobium doped solution and rougher surface morphology from the formation of nanocrystals were obtained. However, niobium doping reduces hydroxyl groups and the electrochromic durability is enhanced from 5 × 103 to 1 × 104 times. The transmittance is enhanced from 37 to 51% at the wavelength of 550 nm.

  2. Optimizing Hydrogen Storage by Doping the LiBH4 +MgH2 Reaction with Various Niobium Based Oxides

    NASA Astrophysics Data System (ADS)

    Hornung, Paul; Walko, Robert; Wenzel, Andrew; Wright, Richard; Dobbins, Tabbetha

    In this study, the effects of doping the dehydrogenation reaction of MgH2 + 2LiBH4 was combined with 5 mole% of three different Niobium based oxides (Nb2O5, NbO2, and LiNbO3). The compounds were mixed using high energy ball milling, and then heated using an air tight heating stage. We looked for changes in the Raman spectra as temperature increased (up to 350C) as an indication of hydrogen desorption reaction. We found that milled LiBH4 undergoes significant changes in Raman spectra during heating to 130C. MgH2 undergoes significant changes when comparing before and after milling--but in each case, the spectral peaks remain unchanged during heating to 350C. The sample with LiNbO3 exhibited a concrete change in Raman spectrum at 300 C while the sample doped with Nb2O5 underwent a change in spectra at 170C. The sample doped with NbO2 showed little change in spectra when the samples were heated up to 350C. Further studies are underway to examine the nature of the changes in the Raman spectra using X-ray diffraction and residual gas analysis.

  3. Proton conductivity of naphthalene sulfonate formaldehyde resin-doped mesoporous niobium and tantalum oxide composites.

    PubMed

    Turley, Jonathan P; Romer, Frederik; Trudeau, Michel L; Dias, Marcos L; Smith, Mark E; Hanna, John V; Antonelli, David M

    2015-01-01

    Proton conductivity in a series of mesoporous niobium and tantalum metal oxide (mX2 O5 ) composites of naphthalene sulfonic acid formaldehyde resin (NSF) that are resistant to moisture loss at temperatures greater than 50 °C is reported. The investigation focuses on the effect to proton conductivity by changing pore size and metal in the mesostructure of the mX2 O5 system and thus, a series of mX2 O5 -NSF composites were synthesized with C6 , C12 , and C18 templates. These were characterized by XRD, thermogravimetric analysis, nitrogen adsorption, and scanning TEM and then studied using impedance spectroscopy to establish proton conductivity values at various temperatures ranging from 25 to 150 °C. The most promising sample displayed a conductivity of 21.96 mS cm(-1) at 100 °C, surpassing the literature value for Nafion 117 (ca. 8 mS cm(-1) ). (1) H and (13) C solid state NMR studies the mX2 O5 -NSF composites demonstrate that the oligomeric nature of the NSF is preserved while in contact with the mX2 O5 surface, thus facilitating conductivity.

  4. Nitrogen doping study in ingot niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao; Makita, Junki

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  5. Free energy of hydration of niobium oxide

    SciTech Connect

    Plodinec, M.J.

    1996-08-21

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium.

  6. Tuning the charge state of Ag and Au atoms and clusters deposited on oxide surfaces by doping: a DFT study of the adsorption properties of nitrogen- and niobium-doped TiO2 and ZrO2.

    PubMed

    Schlexer, Philomena; Ruiz Puigdollers, Antonio; Pacchioni, Gianfranco

    2015-09-14

    The charge state of Ag and Au atoms and clusters (Ag4 and Au4, Ag5 and Au5) adsorbed on defective TiO2 anatase(101) and tetragonal ZrO2(101) has been systematically investigated as a function of oxide doping and defectivity using a DFT+U approach. As intrinsic defects, we have considered the presence of oxygen vacancies. As extrinsic defects, substitutional nitrogen- and niobium-doping have been investigated, respectively. Both surface and sub-surface defects and dopants have been considered. Whereas on surfaces with oxygen vacancies or Nb-doping, atoms and clusters may become negatively charged, N-doping always leads to the formation of positively charged adsorbates, independently of the supporting material (TiO2 or ZrO2). This suggests the possibility to tune the electronic properties of supported metal clusters by selective doping of the oxide support, an effect that may result in complete changes in chemical reactivity.

  7. Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Usui, Hiroyuki; Domi, Yasuhiro; Shimizu, Masahiro; Imoto, Akinobu; Yamaguchi, Kazuki; Sakaguchi, Hiroki

    2016-10-01

    The anode properties of Nb-doped rutile TiO2 electrodes were investigated in an ionic liquid electrolyte comprised of N-methyl-N-propylpyrrolidinium cation and bis(fluorosulfonyl)amide anion for use in a safe Na-ion battery. Although the electrolyte's conductivity was lower than that of a conventional organic electrolyte at 30 °C, it showed high conductivity comparable to that of the organic electrolyte at 60 °C. The Nb-doped TiO2 electrode showed excellent cyclability in the ionic liquid electrolyte at 60 °C: a high capacity retention of 97% was observed even at the 350th cycle, which is comparable to value in the organic electrolyte (91%). In a non-flammability test in a closed system, no ignition was observed with the ionic liquid electrolyte even at 300 °C. These results indicate that combination of a Nb-doped TiO2 anode and ionic liquid electrolyte gives not only an excellent cyclability but also high safety for a Na-ion battery operating at a temperature below the sodium's melting point of 98 °C.

  8. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead niobium titanium zirconium oxide... Specific Chemical Substances § 721.10602 Lead niobium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead niobium...

  9. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead niobium titanium zirconium oxide... Specific Chemical Substances § 721.10602 Lead niobium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead niobium...

  10. Niobium doped lanthanum calcium ferrite perovskite as a novel electrode material for symmetrical solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowei; Zhou, Xiaoliang; Tian, Yu; Wu, Xiaoyan; Zhang, Jun; Zuo, Wei

    2016-09-01

    Development of cost-effective and efficient electrochemical catalysts for the fuel cells electrode is of prime importance to emerging renewable energy technologies. Here, we report for the first time the novel La0.9Ca0.1Fe0.9Nb0.1O3-δ (LCFNb) perovskite with good potentiality for the electrode material of the symmetrical solid oxide fuel cells (SSOFC). The Sc0.2Zr0.8O2-δ (SSZ) electrolyte supported symmetrical cells with impregnated LCFNb and LCFNb/SDC (Ce0.8Sm0.2O2-δ) electrodes achieve relatively high power outputs with maximum power densities (MPDs) reaching up to 392 and 528.6 mW cm-2 at 850 °C in dry H2, respectively, indicating the excellent electro-catalytic activity of LCFNb towards both hydrogen oxidation and oxygen reduction. Besides, the MPDs of the symmetrical cells with LCFNb/SDC composite electrodes in CO and syngas (CO: H2 = 1:1) are almost identical to those in H2, implying that LCFNb material has similar catalytic activities to carbon monoxide compared with hydrogen. High durability in both H2, CO and syngas during the short term stability tests for 50 h are also obtained, showing desirable structure stability, and carbon deposition resistance of LCFNb based electrodes. The present results indicate that the LCFNb perovskite with remarkable cell performance is a promising electrode material for symmetrical SOFCs.

  11. Niobium oxide compositions and methods for using same

    DOEpatents

    Goodenough, John B; Han, Jian-Tao

    2014-02-11

    The disclosure relates a niobium oxide useful in anodes of secondary lithium ion batteries. Such niobium oxide has formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7, wherein 0.ltoreq.x.ltoreq.3, 0.ltoreq.y.ltoreq.1, and M represents Ti or Zr. The niobium oxide may be in the form of particles, which may be carbon coated. The disclosure also relates to an electrode composition containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. The disclosure further relates to electrodes, such as anodes, and batteries containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. Furthermore, the disclosure relates to methods of forming the above.

  12. Bismuth and niobium co-doped barium cobalt oxide as a promising cathode material for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    He, Shaofei; Le, Shiru; Guan, Lili; Liu, Tao; Sun, Kening

    2015-11-01

    Perovskite oxides BaBi0.05Co0.95-yNbyO3-δ (BBCNy, 0 ≤ y ≤ 0.2) are synthesized and evaluated as potential cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). Highly charged Nb5+ successfully stabilizes the cubic perovskite structure to room temperature with Nb substituting content y ≥ 0.1. The phase structure, thermal expansion behavior, electrical conductivity and electrochemical performance of BBCNy with cubic phase are systematically studied. The samples exhibit excellent chemical compatibility with GDC and have sufficiently high electrical conductivities. However, the thermal expansion coefficients of BBCNy samples are nearly twice those of the most commonly used electrolyte materials YSZ and GDC, which is a major drawback for application in IT-SOFCs. The polarization resistances of BBCNy with y = 0.10, 0.15 and 0.20 on GDC electrolyte are 0.086, 0.079 and 0.107 Ω cm2 at 700 °C, respectively. Even though the YSZ electrolyte membrane and GDC barrier layer are approximately 50 μm and 10 μm in thickness, the highest maximum power density (1.23 W cm-2) of the single cell Ni-YSZ|YSZ|GDC|BBCN0.15 is obtained at 750 °C. Good long-term stability of the single cell with BBCN0.15 cathode is also demonstrated. These results demonstrate that BBCNy perovskite oxides with cubic structure are very promising cathode materials for IT-SOFCs.

  13. Oxidation Behavior of Binary Niobium Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Corey, James L.

    1960-01-01

    This investigation concludes a study to determine the effects of up to 25 atomic percent of 55 alloying additions on the oxidation characteristics of niobium. The alloys were evaluated by oxidizing in an air atmosphere for 4 hours at 1000 C and 2 hours at 1200 C. Titanium and chromium improved oxidation resistance at both evaluation conditions. Vanadium and aluminum improved oxidation resistance at 1000 C, even though the V scale tended to liquefy and the Al specimens became brittle and the scale powdery. Copper, cobalt, iron, and iridium improved oxidation resistance at 1200 C. Other investigations report tungsten and molybdenum are protective up to about 1000 C, and tantalum at 1100 C. The most important factor influencing the rate of oxidation was the ion size of the alloy additions. Ions slightly smaller than the Nb(5+) ion are soluble in the oxide lattice and tend to lower the compressive stresses in the bulk scale that lead to cracking. The solubility of the alloying addition also depends on the valence to some extent. All of the elements mentioned that improve the oxidation resistance of Nb fit this size criterion with the possible exception of Al, whose extremely small size in large concentrations would probably lead to the formation of a powdery scale. Maintenance of a crack-free bulk scale for as long as possible may contribute to the formation of a dark subscale that ultimately is rate- controlling in the oxidation process. The platinum-group metals, especially Ir, appear to protect by entrapment of the finely dispersed alloying element by the incoming Nb2O5 metal-oxide interface. This inert metallic Ir when alloyed in a sufficient amount with Yb appears to give a ductile phase dispersed in the brittle oxide. This scale would then flow more easily to relieve the large compressive stresses to delay cracking. Complex oxide formation (which both Ti and Zr tend to initiate) and valence effects, which probably change the vacancy concentration in the scale

  14. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  15. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    SciTech Connect

    Makita, Junki; Ciovati, Gianluigi; Dhakal, Pashupati

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  16. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    SciTech Connect

    David Henry, M. Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-28

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 6–10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  17. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    NASA Astrophysics Data System (ADS)

    David Henry, M.; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-01

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6-10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetometer indicate that the tensile films maintained a Tc approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  18. Synthesis of piezoelectric and bioactive NaNbO3 from metallic niobium and niobium oxide.

    PubMed

    Prado da Silva, Marcelo Henrique; da Rocha, Daniel Navarro; de Andrade Gobbo, Luciano; Dos Santos Azevedo, Luciana Maria; Louro, Luís Henrique Leme; Machado Costa, Andréa; Brant de Campos, José

    2016-07-01

    NaNbO3 was synthesized by two different routes, one using metallic niobium powder, and another using niobium oxide (Nb2 O5 ) powder. In both routes an aqueous sodium hydroxide solution was used to hydrothermally treating the powders. In the first approach, the solution concentrations were 3M, 1M, and 0.5M. The second route used solution concentrations of 10M and 12.5M. After the hydrothermal treatments, the powders were heat treated in order to synthesize NaNbO3 . The products were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) with Rietveld refinement. The phases were identified by means of X-ray diffraction (XRD) with Rietveld refinement. It was observed that the molar concentrations of the solutions had opposing effects for each route. An antiferroelectric phase was found in both routes. In the niobium metallic route, a ferroelectric phase was also synthesized. This study proves that piezoelectric NaNbO3 can be obtained after alkali treatment of both Nb and Nb2 O5. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 979-985, 2016.

  19. Synthesis of piezoelectric and bioactive NaNbO3 from metallic niobium and niobium oxide.

    PubMed

    Prado da Silva, Marcelo Henrique; da Rocha, Daniel Navarro; de Andrade Gobbo, Luciano; Dos Santos Azevedo, Luciana Maria; Louro, Luís Henrique Leme; Machado Costa, Andréa; Brant de Campos, José

    2016-07-01

    NaNbO3 was synthesized by two different routes, one using metallic niobium powder, and another using niobium oxide (Nb2 O5 ) powder. In both routes an aqueous sodium hydroxide solution was used to hydrothermally treating the powders. In the first approach, the solution concentrations were 3M, 1M, and 0.5M. The second route used solution concentrations of 10M and 12.5M. After the hydrothermal treatments, the powders were heat treated in order to synthesize NaNbO3 . The products were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) with Rietveld refinement. The phases were identified by means of X-ray diffraction (XRD) with Rietveld refinement. It was observed that the molar concentrations of the solutions had opposing effects for each route. An antiferroelectric phase was found in both routes. In the niobium metallic route, a ferroelectric phase was also synthesized. This study proves that piezoelectric NaNbO3 can be obtained after alkali treatment of both Nb and Nb2 O5. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 979-985, 2016. PMID:25980635

  20. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    NASA Astrophysics Data System (ADS)

    Gautam, Subodh K.; Chettah, Abdelhak; Singh, R. G.; Ojha, Sunil; Singh, Fouran

    2016-07-01

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO2 composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb2O5) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb2O5 phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO2 and Nb2O5 phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO2 phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  1. Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping Recipes for High Q Cavities

    SciTech Connect

    Vostrikov, Alexander; Checchin, Mattia; Grassellino, Anna; Kim, Young-Kee; Romanenko, Alexander

    2015-06-01

    A study is presented on the superconducting properties of niobium used for the fabrication of the SRF cavities after treating by recently discovered nitrogen doping methods. Cylindrical niobium samples have been subjected to the standard surface treatments applied to the cavities (electro-polishing, l 20°C bake) and compared with samples treated by additional nitrogen doping recipes routinely used to reach ultra-high quality factor values (>3· 1010 at 2 K, 16 MV/m). The DC magnetization curves and the complex magnetic AC susceptibility have been measured. Evidence for the lowered field of first flux penetration after nitrogen doping is found suggesting a correlation with the lowered quench fields. Superconducting critical temperatures Tc = 9.25 K are found to be in agreement with previous measurements, and no strong effect on the critical surface field (Bd) from nitrogen doping was found.

  2. Cerium and niobium doped SrCoO3-δ as a potential cathode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Shouguo; Feng, Shuangjiu; Lu, Qiliang; Li, Yide; Wang, Hong; Wang, Chunchang

    2014-04-01

    Sr0.9Ce0.1Co0.9Nb0.1O3-δ (SCCN) has been synthesized using solid state reaction, and investigated as a new cathode material for intermediate temperature solid oxide fuel cells (ITSOFCs). SCCN material exhibits sufficiently high electronic conductivity and excellent chemical compatibility with SDC electrolyte. Highly charged Ce4+ and Nb5+ successfully stabilize the perovskite structure to avoid order-disorder phase transition. The electrical conductivity reaches a high value of 516 S cm-1 at 300 °C in air. The area specific resistances of the SCCN-50 wt.% Ce0.8Sm0.2O1.9 (SDC) cathode are as low as 0.027, 0.049, and 0.094 Ω cm2 at 700, 650, and 600 °C, respectively, with the corresponding peak power densities of 1074, 905, and 589 mW cm-2. A relatively low thermal expansion coefficient of SCCN-SDC is 14.3 × 10-6 K-1 in air. All these results imply that SCCN holds tremendous promise as a cathode material for ITSOFCs.

  3. Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers

    SciTech Connect

    Qi, Shishun; Zuo, Ruzhong; Liu, Yi; Wang, Yu

    2013-03-15

    Graphical abstract: Different morphologies are obtained for the electrospun niobium oxide nanofibers with different phase structures. The nanofibers of the two phase structures present different band gap value and the light absorption. Hexagonal phase nanofibers show better photocatalytic activity compared with the orthorhombic nanofibers. Highlights: ► Niobium oxide nanofibers of two phase structures were fabricated by electrospinning. ► Photocatalytic properties of the niobium oxide nanofibers were first explored. ► Nanofibers of different phase structures showed different photocatalytic activities. ► Reasons for the differences in the photocatalysis were carefully discussed. - Abstract: Niobium oxide (Nb{sub 2}O{sub 5}) nanofibers have been synthesized by sol–gel based electrospinning technique. Pure hexagonal phase (H-Nb{sub 2}O{sub 5}) and orthorhombic phase (O-Nb{sub 2}O{sub 5}) nanofibers were obtained by thermally annealing the electrospun Nb{sub 2}O{sub 5}/polyvinylpyrrolidone composite fibers in air at 500 °C and 700 °C, respectively. The fibers were characterized using the X-ray diffraction, scanning electron microscopy, specific surface area analyzer and UV–vis diffuse reflectance spectroscopy. Photocatalytic activities of the obtained nanofibers were evaluated depending on the degradation of methyl orange. The results indicate that the heat-treatment temperature, the crystalline structure and the morphology affected the physical and chemical properties of the as-prepared Nb{sub 2}O{sub 5} nanofibers. The H-Nb{sub 2}O{sub 5} nanofibers obtained at lower temperature showed better potential for the application as a promising photocatalyst.

  4. Pressure dependence of prototype structures of metastable niobium oxides

    NASA Astrophysics Data System (ADS)

    Obara, Kozo

    1993-03-01

    Faculty of Engineering, Kagoshima University, Korimoto, 1-21-40, Kagoshima 890, Japan Pressure dependences of prototypes of nonstoichiometric metastable niobium oxides formed by a magnetron sputtering system were investigated. The morphology of derived crystals depended strongly on the argon pressure. At argon pressure PAr< 0.2 Torr, thin microcrystals with five types of superlattice structures were derived. Observed lattice constants were transformed into one another by simple lattice deformations within 1% error. All types of superlattice structures were related to the cubic lattice a0 = 3.22 Å. At PAr > 0.3 Torr, metastable niobium oxide super-fine particles with a cubic lattice constant a = 3.44 Å were obtained. Unique relationships between lattice constants were found on the oxidized niobium super-fine particles, NbO and NbO2 formed above 0.3 Torr within 0.5% error. In this case, the lattice structure with a = 3.44 ,Å (BCC) is related to all structures. These lattices a0 = 3.22 ,Å and a = 3.44 Å seem to be the prototypes at PAr ≤ 0.2 Torr and PAr ≥ 0.3 Tort, respectively. These structural changes due to pressure difference depend on the density and the enthalpy of vacancies in as-grown crystals. The density of vacancies is related to the condensation rate of the crystals.

  5. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  6. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  7. Niobium-gallium oxide with a high concentration of Cr3+ ions: Photoluminescence and structural characteristics

    NASA Astrophysics Data System (ADS)

    Costa, G. K. B.; Pedro, S. S.; López, A.; Carvalho, I. C. S.; Cella, N.; Sosman, L. P.

    2016-10-01

    This work presents photoluminescence data for gallium-niobium oxide with chromium ion as an impurity. The samples were obtained by the solid-state method (SSM) and the wet-chemical method (WCM) and investigated by X-ray diffraction, photoluminescence, excitation, and photoacoustic and X-ray fluorescence. The color of the sample obtained by the SSM was pink, while the color of the sample prepared by the WCM was green. This dramatic difference was associated with Cr3+ concentration and with the neighborhood of the doping ions, obtained from crystallographic data, which is strongly dependent on the preparation method. The difference between the samples was also verified in the photoacoustic and excitation spectra, in which the energy bands were located at different energy levels; on the other hand, in the photoluminescence spectra, no band shift was observed. All spectra were assigned to chromium ions at nonequivalent octahedral sites.

  8. Structural, electronic and magnetic effects of Al-doped niobium clusters: a density functional theory study.

    PubMed

    Wang, Huai-Qian; Li, Hui-Fang; Wang, Jia-Xian; Kuang, Xiao-Yu

    2012-07-01

    The application of the ab initio stochastic search procedure with Saunders "kick" method has been carried out for the elucidation of global minimum structures of a series of Al-doped clusters, Nb(n)Al (1 ≤ n ≤ 10). We have studied the structural characters, growth behaviors, electronic and magnetic properties of Nb(n)Al by the density functional theory calculations. Unlike the previous literature reported on Al-doped systems where ground state structures undergo a structural transition from the Al-capped frame to Al-encapsulated structure, we found that Al atom always occupies the surface of Nb(n)Al clusters and structural transition does not take place until n = 10. Note that the fragmentation proceeds preferably by the ejection of an aluminum atom other than niobium atom. According to the natural population analysis, charges always transfer from aluminum to niobium atoms. Furthermore, the magnetic moments of the Nb(n)Al clusters are mainly located on the 4d orbital of niobium atoms, and aluminum atom possesses very small magnetic moments.

  9. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  10. Microstructure, oxidation behavior and mechanical behavior of lens deposited niobium-titanium-silicon and niobium-titanium-silicon based alloys

    NASA Astrophysics Data System (ADS)

    Dehoff, Ryan Richard

    With current high temperature structural materials such as nickel based superalloys being pushed to the limits of suitable operating conditions, there comes a need for replacement materials with even higher temperature capabilities. Niobium silicon based systems have been shown to have superior density normalized strength at elevated temperatures when compared to currently used alloys. The drawbacks associated with the niobium silicon system are due to catastrophic oxidation behavior at elevated temperatures. Alloying addition have been shown to increase the oxidation resistance near suitable levels, but also decrease the high temperature strength and increases creep rates when compared to the binary alloy system. The microstructure of the material is similar to metal matrix composites in which high melting temperature silicides are dispersed in a niobium based matrix phase. The silicides produce high temperature strength while the niobium based matrix increases the room temperature properties such as fracture toughness. The bulk of the research has been conducted on directionally solidified material which has a coarse microstructure due to the slow cooling rates associated with the processing condition. The current research uses a powder metallurgy process termed Laser Engineered Net Shaping, or LENS, to produce material with a significantly refined microstructure due to fast cooling rates associated with the laser process. Several compositions of alloys were examined and the ideal processing parameters were determined for each alloy. The resulting microstructures show a refinement of the microstructure as expected with a fine scale distribution of Nb5Si3 and Nb3Si dispersed in a niobium based matrix phase. The high temperature oxidation behavior of the LENS deposited alloys was comparable to alloys produced using other techniques. A non protective oxide scale formed on samples exposed for only 0.5 hours but was not protective and showed large amounts of

  11. Niobium Oxide-Metal Based Seals for High Temperature Applications

    SciTech Connect

    Ivar Reimanis

    2006-08-14

    The present final report describes technical progress made in regards to evaluating niobium oxide/alumina as a high temperature seal material. Fabrication and characterization of specimens comprising niobium oxide and alumina composites of various compositions was performed. The goal was to identify regions where a glass formed. There were no experimental conditions where a glassy phase was unequivocally identified. However, the results led to the formation of an interesting class of fibrous composites which may have applications where high compliance and high toughness are needed. It is clear that vapor phase sintering is an active mass transport mechanism in Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composites (Figure 1), and it may be possible to design porous materials by utilizing vapor phase sintering. The compositions evaluated in the present work are 52, 60, 73, 82 and 95 mol. % Nb{sub 2}O{sub 5} with the remainder Al{sub 2}O{sub 3}. These were chosen so that some eutectic composition was present during cooling, in an attempt to encourage glass formation. However, the presence of large, elongated crystals, both in the slow cool and the quench experiments indicates that the driving force for crystallization is very high. Several joints were formed between high purity alumina with two compositions (60 and 82 mol. %) forming the joint. These were created by grinding and polishing alumina surfaces and stacking them end-to-end with the powdered Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} material in between. Joining was accomplished in air at temperatures between 1400 C and 1450 C. The joints failed during subsequent machining for strength bars, indicating low strength. It may be possible to use the compositions evaluated here as a joint material, but it seems unlikely that a glassy phase could be produced while joining.

  12. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium.

    PubMed

    Sowa, Maciej; Greń, Katarzyna; Kukharenko, Andrey I; Korotin, Danila M; Michalska, Joanna; Szyk-Warszyńska, Lilianna; Mosiałek, Michał; Zak, Jerzy; Pamuła, Elżbieta; Kurmaev, Ernst Z; Cholakh, Seif O; Simka, Wojciech

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1moldm(-3) phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species.

  13. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium.

    PubMed

    Sowa, Maciej; Greń, Katarzyna; Kukharenko, Andrey I; Korotin, Danila M; Michalska, Joanna; Szyk-Warszyńska, Lilianna; Mosiałek, Michał; Zak, Jerzy; Pamuła, Elżbieta; Kurmaev, Ernst Z; Cholakh, Seif O; Simka, Wojciech

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1moldm(-3) phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. PMID:25063150

  14. Niobium oxide-polydimethylsiloxane hybrid composite coatings for tuning primary fibroblast functions.

    PubMed

    Young, Matthew D; Tran, Nhiem; Tran, Phong A; Jarrell, John D; Hayda, Roman A; Born, Chistopher T

    2014-05-01

    This study evaluates the potential of niobium oxide-polydimethylsiloxane (PDMS) composites for tuning cellular response of fibroblasts, a key cell type of soft tissue/implant interfaces. In this study, various hybrid coatings of niobium oxide and PDMS with different niobium oxide concentrations were synthesized and characterized using scanning electron microscopy, X-ray photoelectron spectrometry (XPS), and contact angle goniometry. The coatings were then applied to 96-well plates, on which primary fibroblasts were seeded. Fibroblast viability, proliferation, and morphology were assessed after 1, 2, and 3 days of incubation using WST-1 and calcein AM assays along with fluorescent microscopy. The results showed that the prepared coatings had distinct surface features with submicron spherical composites covered in a polymeric layer. The water contact angle measurement demonstrated that the hybrid surfaces were much more hydrophobic than the original pure niobium oxide and PDMS. The combination of surface roughness and chemistry resulted in a biphasic cellular response with maximum fibroblast density on substrate with 40 wt % of niobium oxide. The results of the current study indicate that by adjusting the concentration of niobium oxide in the coating, a desirable cell response can be achieved to improve tissue/implant interfaces.

  15. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    NASA Astrophysics Data System (ADS)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  16. Optoelectronic properties of valence-state-controlled amorphous niobium oxide.

    PubMed

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-29

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications. PMID:27168317

  17. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    SciTech Connect

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  18. Investigation of solution-processed bismuth-niobium-oxide films

    SciTech Connect

    Inoue, Satoshi; Ariga, Tomoki; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya; Chinone, Norimichi; Cho, Yasuo

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  19. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  20. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  1. Formation of oxide layers on aluminum, niobium, and tantalum in molten alkali metal carbonates

    NASA Astrophysics Data System (ADS)

    Nikitina, E. V.; Kazakovtseva, N. A.

    2013-08-01

    The electrochemical synthesis of niobium, tantalum, and aluminum oxide nanolayers is studied in the melt of lithium, sodium, and potassium carbonates with various additives to a salt phase in an oxidizing atmosphere at a temperature of 773 and 873 K. A scheme is proposed for high-temperature anion local activation of the process.

  2. Differentiation of human mesenchymal stem cells on niobium-doped fluorapatite glass-ceramics

    PubMed Central

    Kushwaha, Meenakshi; Pan, Xueliang; Holloway, Julie A.; Denry, Isabelle L.

    2011-01-01

    Objectives Our goal was to characterize the response of human mesenchymal stem cells (hMSCs) to a niobium-doped fluorapatite-based glass-ceramic (FAp). Methods The glass was prepared by twice melting at 1525°C for 3h, and cast into cylindrical ingots later sectioned into discs and heat-treated to promote crystallization of fluorapatite submicrometer crystals. Tissue culture polystyrene (TCP) was used as control. The surface of the FAp discs was either left as-heat treated, ground or etched. Initial cell attachment was assessed at 3h. Proliferation and alkaline phosphatase (ALP) expression data was collected at days 1, 4, and 8. Cell morphology was examined using SEM, at days 2 and 4. Mineralization was evaluated by Alizarin Red staining and SEM. Results Initial cell attachment on as heat-treated, etched, or ground surfaces was similar to that of the positive control group (p>0.05). The percentage of area covered by living cells increased significantly on as heat-treated, etched, or ground surfaces between days 1 and 8 (p<0.05). There was no significant difference amongst groups in cell coverage at day 8, compared to TCP control. SEM revealed well spread polygonal cells with numerous filopodia, either attached to the ceramic surface or connected to neighboring cells. ALP expression at day 8 was significantly higher in osteogenic media compared to growth media on both FAp and control. FAp discs stained positively with alizarin red and calcium-rich mineralized granules associated with fibrils were observed by SEM at day 35. Significance hMSCs displayed excellent attachment, proliferation, and differentiation on niobium-doped FAp glass-ceramic. PMID:22078764

  3. Nanoporous niobium oxide for label-free detection of DNA hybridization events.

    PubMed

    Choi, Jinsub; Lim, Jae Hoon; Rho, Sangchul; Jahng, Deokjin; Lee, Jaeyoung; Kim, Kyung Ja

    2008-01-15

    We found that DNA probes can be immobilized on anodically prepared porous niobium oxide without a chemical modification of both the DNA probes and the substrate. By using the porous niobium oxide with a positive surface charge, DNA hybridization events are detected on the basis of the blue-shift of a maximum absorption peak in UV-vis-NIR spectroscopy. The blue-shift is ascribed to the change of surface charge upon single- or double-stranded DNA. The method does not require a label and shows high sensitivity with the detection limit of the concentration of 1nM.

  4. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides.

    PubMed

    Ding, Xun-Lei; Wang, Dan; Wu, Xiao-Nan; Li, Zi-Yu; Zhao, Yan-Xia; He, Sheng-Gui

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N(+) clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N(+) clusters decreases as the N increases, and it is higher than that of (V 2O5)N(+) for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N(+) (N = 2-6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion.

  5. Development of a niobium-doped titania inert anode for titanium electrowinning in molten chloride salts.

    PubMed

    Snook, Graeme A; McGregor, Katherine; Urban, Andrew J; Lanyon, Marshall R; Donelson, R; Pownceby, Mark I

    2016-08-15

    The direct electrochemical reduction of solid titanium dioxide in a chloride melt is an attractive method for the production of titanium metal. It has been estimated that this type of electrolytic approach may reduce the costs of producing titanium sponge by more than half, with the additional benefit of a smaller environmental footprint. The process utilises a consumable carbon anode which releases a mixture of CO2 and CO gas during electrolysis, but suffers from low current efficiency due to the occurrence of parasitic side reactions involving carbon. The replacement of the carbon anode with a cheap, robust inert anode offers numerous benefits that include: elimination of carbon dioxide emissions, more efficient cell operation, opportunity for three-dimensional electrode configurations and reduced electrode costs. This paper reports a study of Nb-doped titania anode materials for inert anodes in a titanium electrolytic reduction cell. The study examines the effect of niobium content and sintering conditions on the performance of Nb-doped TiO2 anodes in laboratory-scale electrolysis tests. Experimental findings, including performance in a 100 h laboratory electrolysis test, are described. PMID:27265026

  6. Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide.

    PubMed

    Rho, Sangchul; Jahng, Deokjin; Lim, Jae Hoon; Choi, Jinsub; Chang, Jeong Ho; Lee, Sang Cheon; Kim, Kyung Ja

    2008-01-18

    Electrochemical DNA biosensors based on a thin gold film sputtered on anodic porous niobium oxide (Au@Nb(2)O(5)) are studied in detail here. We found that the novel DNA biosensor based on Au@Nb(2)O(5) is superior to those based on the bulk gold electrode or niobium oxide electrode. For example, the novel method does not require any time-consuming cleaning step in order to obtain reproducible results. The adhesion of gold films on the substrate is very stable during electrochemical biosensing, when the thin gold films are deposited on anodically prepared nanoporous niobium oxide. In particular, the novel biosensor shows enhanced biosensing performance with a 2.4 times higher resolution and a three times higher sensitivity. The signal enhancement is in part attributed to capacitive interface between gold films and nanoporous niobium oxide, where charges are accumulated during the anodic and cathodic scanning, and is in part ascribed to the structural stability of DNA immobilized at the sputtered gold films. The method allows for the detection of single-base mismatch DNA as well as for the discrimination of mismatch positions.

  7. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    SciTech Connect

    Chaleshtori, Maryam Zarei; Hosseini, Mahsa; Edalatpour, Roya; Masud, S.M. Sarif; Chianelli, Russell R.

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  8. Carbon monoxide tolerant platinum electrocatalysts on niobium doped titania and carbon nanotube composite supports

    NASA Astrophysics Data System (ADS)

    Rigdon, William A.; Huang, Xinyu

    2014-12-01

    In the anode of electrochemical cells operating at low temperature, the hydrogen oxidation reaction is susceptible to poisoning from carbon monoxide (CO) which strongly adsorbs on platinum (Pt) catalysts and increases activation overpotential. Adsorbed CO is removed by oxidative processes such as electrochemical stripping, though cleaning can also cause corrosion. One approach to improve the tolerance of Pt is through alloying with less-noble metals, but the durability of alloyed electrocatalysts is a critical concern. Without sacrificing stability, tolerance can be improved by careful design of the support composition using metal oxides. The bifunctional mechanism is promoted at junctions of the catalyst and metal oxides used in the support. Stable metal oxides can also form strong interactions with catalysts, as is the case for platinum on titania (TiOx). In this study, niobium (Nb) serves as an electron donor dopant in titania. The transition metal oxides are joined to functionalized multi-wall carbon nanotube (CNT) supports in order to synthesize composite supports. Pt is then deposited to form electrocatalysts which are characterized before fabrication into anodes for tests as an electrochemical hydrogen pump. Comparisons are made between the control from Pt-CNT to Pt-TiOx-CNT and Pt-Ti0.9Nb0.1Ox-CNT in order to demonstrate advantages.

  9. Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane.

    PubMed

    Weng, Weihao; Davies, Mathew; Whiting, Gareth; Solsona, Benjamin; Kiely, Christopher J; Carley, Albert F; Taylor, Stuart H

    2011-10-14

    Several niobium phosphate phases have been prepared, fully characterized and tested as catalysts for the selective oxidation of ethane to ethylene. Three distinct niobium phosphate catalysts were prepared, and each was comprised predominantly of a different bulk phase, namely Nb(2)P(4)O(15), NbOPO(4) and Nb(1.91)P(2.82)O(12). All of the niobium phosphate catalysts showed high selectivity towards ethylene, but the best catalyst was Nb(1.91)P(2.82)O(12), which was produced from the reduction of niobium oxide phosphate (NbOPO(4)) by hydrogen. It was particularly selective for ethylene, giving ca. 95% selectivity at 5% conversion, decreasing to ca. 90% at 15% conversion, and only produced low levels of carbon oxides. It was also determined that the only primary product from ethane oxidation over this catalyst was ethylene. Catalyst activity also increased with time-on-line, and this behaviour was ascribed to an increase of the concentration of the Nb(1.91)P(2.82)O(12) phase, as partially transformed NbOPO(4), formed during preparation, was converted to Nb(1.91)P(2.82)O(12) during use. Catalysts with predominant phases of Nb(2)P(4)O(15) and NbOPO(4) also showed appreciable activity and selectivities to ethylene with values around 75% and 85% respectively at 5% ethane conversion. The presence of phosphorous is required to achieve high ethylene selectivity, as orthorhombic and monoclinic Nb(2)O(5) catalysts showed similar activity, but displayed selectivities to ethylene that were <20% under the same reaction conditions. To the best of our knowledge, this is the first time that niobium phosphates have been shown to be highly selective catalysts for the oxidation of ethane to ethylene, and demonstrates that they are worthy candidates for further study. PMID:21881631

  10. Electrochromic properties of niobium oxide thin films prepared by radio-frequency magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiro; Arai, Susumu

    1993-08-01

    Electrochromic niobium oxide thin films were prepared by a radio-frequency magnetron sputtering method. Amorphous Nb2O5 thin films deposited at radio-frequency power 100 W showed the electrochromic behavior: Reduction and oxidation of the films in 0.1 M Na2CO3+0.1 M NaHCO3 buffer solution resulted in coloration and bleaching, respectively. Coulometry indicated that the coloration efficiency was 10 cm2/C.

  11. Electrostatic doping in oxide heterostructures.

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander A.; Lee, Jaekwang; Sai, Na

    2009-03-01

    Recent experiments on perovskite heterostructures grown by methods ranging from molecular beam epitaxy to pulsed laser deposition suggest the existence of two dimensional electron gas of high mobility at the oxide/oxide interface, and even a possibility of a superconducting state. Both p-type and n-type interfaces have been reported. However, the origin of charge in these insulating materials is still under debate. We report a first-principles study of several heterostructures where we employ the internal filed in a polar oxide LaAlO3 to demonstrate the possibility of the electrostatic doping, an effect similar to a well known polar catastrophe in e.g., III-V semiconductors. We use density functional theory at the LDA+U level. We mainly focus on the electronic structure of the oxide/oxide junctions. The results of our calculations suggest that once the critical thickness of the aluminate layer is reached the internal electric field is sufficient to produce the electrostatic doping. We will discuss simple estimates for the temperature of the superconducting transition and the role of oxygen-related defects such as vacancies in the electronic structure and thermodynamic stability of these fascinating oxide structures.

  12. Effect of crystallization heat treatment on the microstructure of niobium-doped fluorapatite glass-ceramics.

    PubMed

    Denry, I; Holloway, J A; Gupta, P K

    2012-07-01

    Our goal was to study the effect of heat treatment temperature and heating rate on the microstructure and crystalline phases and assess the domain of existence of submicrometer fluorapatite crystals in niobium-doped fluorapatite glass-ceramics for biomedical applications. Glass-ceramic specimens were prepared by casting and heat treatment between 700 and 1200°C using a fast or a slow heating rate. The microstructure was characterized by atomic force microscopy and scanning electron microscopy. Crystalline phases were analyzed by x-ray diffraction. AFM of the as-cast glass revealed that amorphous phase separation occurred in this system. XRD confirmed the presence of fluorapatite in all specimens, together with forsterite and enstatite at higher temperatures. Both heating rate and heat treatment temperature strongly influenced microstructure and crystallinity. A dual microstructure with submicrometer fluorapatite crystals and polygonal forsterite crystals was obtained when slow heating rates and crystallization temperatures between 950 and 1100°C were used. Needle-shaped fluorapatite crystals appeared after heat treatment above 1100°C. Fast heating rates led to an increase in crystal size. Heat treatment temperatures should remain below 1100°C, together with slow heating rates, to prevent crystal dissolution, and preserve a dual microstructure of finely dispersed submicrometer crystals without growth of needle-shaped crystals.

  13. Reduced thermal conductivity in niobium-doped calcium-manganate compounds for thermoelectric applications

    SciTech Connect

    Graff, Ayelet; Amouyal, Yaron

    2014-11-03

    Reduction of thermal conductivity is essential for obtaining high energy conversion efficiency in thermoelectric materials. We report on significant reduction of thermal conductivity in niobium-doped CaO(CaMnO{sub 3}){sub m} compounds for thermoelectric energy harvesting due to introduction of extra CaO-planes in the CaMnO{sub 3}-base material. We measure the thermal conductivities of the different compounds applying the laser flash analysis at temperatures between 300 and 1000 K, and observe a remarkable reduction in thermal conductivity with increasing CaO-planar density, from a value of 3.7 W·m{sup −1}K{sup −1} for m = ∞ down to 1.5 W·m{sup −1}K{sup −1} for m = 1 at 400 K. This apparent correlation between thermal conductivity and CaO-planar density is elucidated in terms of boundary phonon scattering, providing us with a practical way to manipulate lattice thermal conductivity via microstructural modifications.

  14. Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation

    NASA Astrophysics Data System (ADS)

    Chun-Xiao, Liu; Meng, Chen; Li-Li, Fu; Rui-Lin, Zheng; Hai-Tao, Guo; Zhi-Guang, Zhou; Wei-Nan, Li; She-Bao, Lin; Wei, Wei

    2016-04-01

    In this work, the fabrication and optical properties of a planar waveguide in a neodymium-doped calcium niobium gallium garnet (Nd:CNGG) crystal are reported. The waveguide is produced by proton (H+) implantation at 480 keV and a fluence of 1.0×1017 ions/cm2. The prism-coupling measurement is performed to obtain the dark mode of the waveguide at a wavelength of 632.8 nm. The reflectivity calculation method (RCM) is used to reconstruct the refractive index profile. The finite-difference beam propagation method (FD-BPM) is employed to calculate the guided mode profile of the waveguide. The stopping and range of ions in matter 2010 (SRIM 2010) code is used to simulate the damage profile induced by the ion implantation. The experimental and theoretical results indicate that the waveguide can confine the light propagation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 61405240, 61077070, 61177086, 51002181, and 61177084), the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY214159), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0401).

  15. Effect of crystallization heat treatment on the microstructure of niobium-doped fluorapatite glass-ceramics

    PubMed Central

    Denry, I.; Holloway, J.A.; Gupta, P.K.

    2012-01-01

    Our goal was to study the effect of heat treatment temperature and heating rate on the microstructure and crystalline phases and assess the domain of existence of sub-micrometer fluorapatite crystals in niobium-doped fluorapatite glass-ceramics for biomedical applications. Glass-ceramic specimens were prepared by casting and heat treatment between 700 and 1200°C using a fast or a slow heating rate. The microstructure was characterized by atomic force microscopy and scanning electron microscopy. Crystalline phases were analyzed by x-ray diffraction. AFM of the as-cast glass revealed that amorphous phase separation occurred in this system. XRD confirmed the presence of fluorapatite in all specimens, together with forsterite and enstatite at higher temperatures. Both heating rate and heat treatment temperature strongly influenced microstructure and crystallinity. A dual microstructure with sub-micrometer fluorapatite crystals and polygonal forsterite crystals was obtained when slow heating rates and crystallization temperatures between 950 and 1100°C were used. Needle-shaped fluorapatite crystals appeared after heat treatment above 1100°C. Fast heating rates led to an increase in crystal size. Heat treatment temperatures should remain below 1100°C, together with slow heating rates, to prevent crystal dissolution, and preserve a dual microstructure of finely dispersed sub-micrometer crystals without growth of needle-shaped crystals. PMID:22454333

  16. Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation

    NASA Astrophysics Data System (ADS)

    Chun-Xiao, Liu; Meng, Chen; Li-Li, Fu; Rui-Lin, Zheng; Hai-Tao, Guo; Zhi-Guang, Zhou; Wei-Nan, Li; She-Bao, Lin; Wei, Wei

    2016-04-01

    In this work, the fabrication and optical properties of a planar waveguide in a neodymium-doped calcium niobium gallium garnet (Nd:CNGG) crystal are reported. The waveguide is produced by proton (H+) implantation at 480 keV and a fluence of 1.0×1017 ions/cm2. The prism-coupling measurement is performed to obtain the dark mode of the waveguide at a wavelength of 632.8 nm. The reflectivity calculation method (RCM) is used to reconstruct the refractive index profile. The finite-difference beam propagation method (FD-BPM) is employed to calculate the guided mode profile of the waveguide. The stopping and range of ions in matter 2010 (SRIM 2010) code is used to simulate the damage profile induced by the ion implantation. The experimental and theoretical results indicate that the waveguide can confine the light propagation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 61405240, 61077070, 61177086, 51002181, and 61177084), the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY214159), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0401).

  17. Influence of niobium doping in hierarchically organized titania nanostructure on performance of dye-sensitized solar cells.

    PubMed

    Park, Jong Hoon; Noh, Jun Hong; Han, Byung Suh; Shin, Seong Sik; Park, Ik Jae; Kim, Dong Hoe; Hong, Kug Sun

    2012-06-01

    Niobium doped hierarchically organized TiO2 nanostructures composed of 20 nm size anatase nanocrystals were synthesized using pulsed laser deposition (PLD). The Nb doping concentration could be facilely controlled by adjusting the concentration of Nb in target materials. We could investigate the influence of Nb doping in the TiO2 photoelectrode on the cell performance of dye-sensitized solar cells (DSSCs) by the exclusion of morphological effects using the prepared Nb-doped TiO2 anostructures. We found no significant change in short circuit current density (Jsc) as a function of Nb doping concentration. However, open circuit voltage (Voc) and fill factor (FF) monotonously decrease with increasing Nb concentration. Dark current characteristics of the DSSCs reveal that the decrease in Voc and FF is attributed to the decrease in shunt resistance due to the increase in conductivity TiO2 by Nb doping. However, electrochemical impedance spectra (EIS) analysis at open circuit condition under illumination showed that the resistance at the TiO2/dye/electrolyte interface increases with Nb concentration, revealing that Nb doping suppress the charge recombination at the interface. In addition, electron life time obtained using characteristic frequency in Bode plot increases from 14 msec to 56 msec with increasing Nb concentration from 0 to 1.2 at%. This implies that the improved light harvesting can be achieved by increasing diffusion length through Nb-doping in the conventional TiO2 photoelectrode.

  18. New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis.

    PubMed

    Aufray, Maëlenn; Menuel, Stéphane; Fort, Yves; Eschbach, Julien; Rouxel, Didier; Vincent, Brice

    2009-08-01

    This work presents a new synthesis of nano-sized lithium niobate particles by a low temperature three steps procedure. The complete protocol implies a LiH induced reduction of NbCl5 followed by in situ spontaneous oxidation into low valence niobium nano-oxides. These niobium oxides are exposed to air atmosphere leading to pure Nb2O5 formation. Finally, the stable Nb2O5 is converted into lithium niobate LiNbO3 nanoparticles during the controlled hydrolysis of the LiH excess. The nano-sized lithium niobate particles as well as their formation processes were characterized using X-ray photoelectron spectroscopy. PMID:19928149

  19. Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.

    PubMed

    Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu

    2016-06-22

    A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2.

  20. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides

    SciTech Connect

    Ding, Xun-Lei E-mail: chemzyx@iccas.ac.cn; Wang, Dan; Wu, Xiao-Nan; Li, Zi-Yu; Zhao, Yan-Xia E-mail: chemzyx@iccas.ac.cn; He, Sheng-Gui

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters decreases as the N increases, and it is higher than that of (V {sub 2}O{sub 5}){sub N}{sup +} for N ≥ 4. Theoretical studies were conducted on (Nb{sub 2}O{sub 5}){sub N}{sup +} (N = 2–6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion.

  1. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides.

    PubMed

    Ding, Xun-Lei; Wang, Dan; Wu, Xiao-Nan; Li, Zi-Yu; Zhao, Yan-Xia; He, Sheng-Gui

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N(+) clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N(+) clusters decreases as the N increases, and it is higher than that of (V 2O5)N(+) for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N(+) (N = 2-6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion. PMID:26429016

  2. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    NASA Astrophysics Data System (ADS)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  3. The oxidation of TaBe sub 12 and NbBe sub 12 coatings on niobium

    SciTech Connect

    Courtright, E.L.

    1990-01-01

    The oxidation behavior of tantalum and niobium beryllide coatings on niobium were evaluated. Intermetallic bond layers consisting of Ir{sub 3}Ta and Ir{sub 3}Nb were used to butter the large thermal expansion mismatch between the beryllide coatings and underlying niobium substrate. All coatings were applied by Triode Sputtering except for a final environmental protection layer of stabilized zirconia deposited by RF Diode using a ceramic target. Severe delamination and spalling occurred during cyclic oxidation exposure, even at temperatures as low as 925{degrees}C, indicating that the bond layer did not prevent the differential expansion stresses from reaching the delamination failure threshold, particularly at the edges and corners. Hot pressed samples of the two beryllide compounds were also exposed to a similar cyclic oxidation history, but, in contrast to the coatings, exhibited excellent oxidation resistance to temperatures as high as 1370{degrees}C. 9 refs., 8 figs., 1 tab.

  4. Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.

    PubMed

    Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu

    2016-06-22

    A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2. PMID:27243944

  5. The role of nanoscale seed layers on the enhanced performance of niobium doped TiO2 thin films on glass

    DOE PAGES

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; O’Hayre, Ryan P.; Ginley, David S.; Berry, Joseph J.

    2016-09-09

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seedmore » layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Here, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.« less

  6. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass

    NASA Astrophysics Data System (ADS)

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; O’Hayre, Ryan P.; Ginley, David S.; Berry, Joseph J.

    2016-09-01

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.

  7. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass.

    PubMed

    Nikodemski, Stefan; Dameron, Arrelaine A; Perkins, John D; O'Hayre, Ryan P; Ginley, David S; Berry, Joseph J

    2016-01-01

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity. PMID:27610922

  8. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass

    PubMed Central

    Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; O’Hayre, Ryan P.; Ginley, David S.; Berry, Joseph J.

    2016-01-01

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity. PMID:27610922

  9. The Role of Nanoscale Seed Layers on the Enhanced Performance of Niobium doped TiO2 Thin Films on Glass.

    PubMed

    Nikodemski, Stefan; Dameron, Arrelaine A; Perkins, John D; O'Hayre, Ryan P; Ginley, David S; Berry, Joseph J

    2016-09-09

    Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.

  10. Passivated niobium cavities

    SciTech Connect

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  11. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.

    PubMed

    Sasaki, K; Zhang, L; Adzic, R R

    2008-01-01

    We demonstrate a new approach to synthesizing high-activity electrocatalysts for the O(2) reduction reaction with ultra low Pt content. The synthesis involves placing a small amount of Pt, the equivalent of a monolayer, on carbon-supported niobium oxide nanoparticles (NbO(2) or Nb(2)O(5)). Rotating disk electrode measurements show that the Pt/NbO(2)/C electrocatalyst has three times higher Pt mass activity for the O(2) reduction reaction than a commercial Pt/C electrocatalyst. The observed high activity of the Pt deposit is attributed to the reduced OH adsorption caused by lateral repulsion between PtOH and oxide surface species. The new electrocatalyst also exhibits improved stability against Pt dissolution under a potential cycling regime (30,000 cycles from 0.6 V to 1.1 V). These findings demonstrate that niobium-oxide (NbO(2)) nanoparticles can be adequate supports for Pt and facilitate further reducing the noble metal content in electrocatalysts for the oxygen reduction reaction.

  12. Preparation and characterization of cellulose/hydrous niobium oxide hybrid.

    PubMed

    Maschio, Leandro José; Pereira, Paulo Henrique Fernandes; Da Silva, Maria Lucia Caetano Pinto

    2012-07-01

    A composite of cellulose extracted from bagasse with Nb2O5·nH2O in three different proportions (16.67, 37.5 and 50.0 wt%) was prepared using the co-precipitation method. The materials were characterized by X-ray diffractometry (XRD), Fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TG/DTG), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). TG data obtained show that the presence of inorganic material influenced slightly the stability of the hybrid material. The precipitation of 16.67 wt.% of oxide was sufficient to inhibit the combustion peaks present in the DSC curve of cellulose. This work will help find new applications for these materials.

  13. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    SciTech Connect

    Särhammar, Erik Berg, Sören; Nyberg, Tomas

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition rate from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.

  14. Oxidation studies of niobium thin films at room temperature by X-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Sokhey, K. J. S.; Rai, S. K.; Lodha, G. S.

    2010-10-01

    We report the results of growth kinetics of oxidation process on niobium thin film surfaces exposed to air at room temperature by using a surface sensitive non-destructive X-ray reflectivity technique. The oxidation process follows a modified Cabrera-Mott model of thin films. We have shown that the oxide growth is limited by the internal field due to the contact potential which develops during the initial stage of oxidation. The calculated contact potential for 100 and 230 Å thick films is 0.81 ± 0.14 and 1.20 ± 0.11 V respectively. We report that 40% increase in the contact potential increases the growth rate for the first few mono layers of Nb 2O 5 from ˜2.18 to ˜2790 Å/s. The growth rates of oxidation on these samples become similar after the oxide thicknesses of ˜25 Å are reached. We report on the basis of our studies that a protective layer should be grown in situ to avoid oxidation of Nb thin film surface of Nb/Cu cavities.

  15. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  16. Coordintion and hydrogenation of 1,3-cyclohexadiene by niobium and tantalum aryl oxide compounds: Relevance to catalytic arene hydrogenation

    SciTech Connect

    Visciglio, V.M.; Clark, J.R.; Nguyen, M.T.; Mulford, D.R.; Fanwick, P.E.; Rothwell, I.P.

    1997-04-16

    In this paper we report the synthesis and chemistry of a series of new {eta}{sup 4}-cyclohexadiene derivatives of niobium and tantalum containing aryl oxide ligation. This synthetic work is complemented by an investigation of the reactivity of previously isolated tantalum hydride compounds as well as related niobium catalysts toward 1,3-cyclohexadiene and cyclohexene. The studies reported here focus on gaining a better insight into the overall mechanism of arene hydrogenation by this specific pedigree of catalyst. The mechanistic implications of stoichiometric and catalytic reactions are discussed. 48 refs., 8 figs., 6 tabs.

  17. Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts.

    PubMed

    García-Sancho, Cristina; Sádaba, Irantzu; Moreno-Tost, Ramón; Mérida-Robles, Josefa; Santamaría-González, José; López-Granados, Manuel; Maireles-Torres, Pedro

    2013-04-01

    A series of silica-based MCM-41-supported niobium-oxide catalysts are prepared, characterized by using XRD, N2 adsorption-desorption, X-ray photoelectron spectroscopy, Raman spectroscopy, and pyridine adsorption coupled to FTIR spectroscopy, and tested for the dehydration of D-xylose to furfural. Under the operating conditions used all materials are active in the dehydration of xylose to furfural (excluding the MCM-41 silica support). The xylose conversion increases with increasing Nb2 O5 content. At a loading of 16 wt % Nb2 O5 , 74.5 % conversion and a furfural yield of 36.5 % is achieved at 170 °C, after 180 min reaction time. Moreover, xylose conversion and furfural yield increase with the reaction time and temperature, attaining 82.8 and 46.2 %, respectively, at 190 °C and after 100 min reaction time. Notably, the presence of NaCl in the reaction medium further increases the furfural yield (59.9 % at 170 °C after 180 min reaction time). Moreover, catalyst reutilization is demonstrated by performing at least three runs with no loss of catalytic activity and without the requirement for an intermediate regeneration step. No significant niobium leaching is observed, and a relationship between the structure of the catalyst and the activity is proposed.

  18. Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films.

    PubMed

    Fiz, Raquel; Appel, Linus; Gutiérrez-Pardo, Antonio; Ramírez-Rico, Joaquín; Mathur, Sanjay

    2016-08-24

    We report here on the controlled synthesis, characterization, and electrochemical properties of different polymorphs of niobium pentoxide grown by CVD of new single-source precursors. Nb2O5 films deposited at different temperatures showed systematic phase evolution from low-temperature tetragonal (TT-Nb2O5, T-Nb2O5) to high temperature monoclinic modifications (H-Nb2O5). Optimization of the precursor flux and substrate temperature enabled phase-selective growth of Nb2O5 nanorods and films on conductive mesoporous biomorphic carbon matrices (BioC). Nb2O5 thin films deposited on monolithic BioC scaffolds produced composite materials integrating the high surface area and conductivity of the carbonaceous matrix with the intrinsically high capacitance of nanostructured niobium oxide. Heterojunctions in Nb2O5/BioC composites were found to be beneficial in electrochemical capacitance. Electrochemical characterization of Nb2O5/BioC composites showed that small amounts of Nb2O5 (as low as 5%) in conjunction with BioCarbon resulted in a 7-fold increase in the electrode capacitance, from 15 to 104 F g(-1), while imparting good cycling stability, making these materials ideally suited for electrochemical energy storage applications.

  19. Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films.

    PubMed

    Fiz, Raquel; Appel, Linus; Gutiérrez-Pardo, Antonio; Ramírez-Rico, Joaquín; Mathur, Sanjay

    2016-08-24

    We report here on the controlled synthesis, characterization, and electrochemical properties of different polymorphs of niobium pentoxide grown by CVD of new single-source precursors. Nb2O5 films deposited at different temperatures showed systematic phase evolution from low-temperature tetragonal (TT-Nb2O5, T-Nb2O5) to high temperature monoclinic modifications (H-Nb2O5). Optimization of the precursor flux and substrate temperature enabled phase-selective growth of Nb2O5 nanorods and films on conductive mesoporous biomorphic carbon matrices (BioC). Nb2O5 thin films deposited on monolithic BioC scaffolds produced composite materials integrating the high surface area and conductivity of the carbonaceous matrix with the intrinsically high capacitance of nanostructured niobium oxide. Heterojunctions in Nb2O5/BioC composites were found to be beneficial in electrochemical capacitance. Electrochemical characterization of Nb2O5/BioC composites showed that small amounts of Nb2O5 (as low as 5%) in conjunction with BioCarbon resulted in a 7-fold increase in the electrode capacitance, from 15 to 104 F g(-1), while imparting good cycling stability, making these materials ideally suited for electrochemical energy storage applications. PMID:27420568

  20. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  1. Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells.

    PubMed

    Kim, Dong Hoe; Han, Gill Sang; Seong, Won Mo; Lee, Jin-Wook; Kim, Byeong Jo; Park, Nam-Gyu; Hong, Kug Sun; Lee, Sangwook; Jung, Hyun Suk

    2015-07-20

    Perovskite solar cells (PSCs) are the most promising candidates as next-generation solar energy conversion systems. To design a highly efficient PSC, understanding electronic properties of mesoporous metal oxides is essential. Herein, we explore the effect of Nb doping of TiO2 on electronic structure and photovoltaic properties of PSCs. Light Nb doping (0.5 and 1.0 at %) increased the optical band gap slightly, but heavy doping (5.0 at %) distinctively decreased it. The relative Fermi level position of the conduction band is similar for the lightly Nb-doped TiO2 (NTO) and the undoped TiO2 whereas that of the heavy doped NTO decreased by as much as ∼0.3 eV. The lightly doped NTO-based PSCs exhibit 10 % higher efficiency than PSCs based on undoped TiO2 (from 12.2 % to 13.4 %) and 52 % higher than the PSCs utilizing heavy doped NTO (from 8.8 % to 13.4 %), which is attributed to fast electron injection/transport and preserved electron lifetime, verified by transient photocurrent decay and impedance studies.

  2. Growth and characterization of oxide films on zirconium-niobium alloys

    SciTech Connect

    Urbanic, V.F.; Chan, P.K.; Khatamian, D.; Woo, O.T.T.

    1994-12-31

    Pressure tubes for CANDU reactors are made from extruded and cold-drawn Zr-2.5Nb alloy. Their microstructure consists of elongated {alpha}-Zr grains containing about 1 atom % Nb, surrounded by a thin network of metastable {beta}-Zr phase, containing about 20 atom % Nb. Alloys of Zr-1Nb an Zr-20Nb were prepared, heat treated, and oxidized in 573 K water to produce bulk microstructures and oxides that would simulate those normally found on a much finer scale in pressure tubes. Oxidation of Zr-20Nb ({beta}-Zr phase) was more rapid than that for the Zr-1Nb (predominantly {alpha}-Zr phase) but, despite this, the hydrogen absorption was considerably lower. During corrosion testing, the metastable {beta}-Zr undergoes partial decomposition to omega phase. The oxides show contrasting morphologies in terms of crystallite size (20 to 60 nm for oxides on {alpha}-Zr versus about 15 nm for oxides on {beta}-Zr). In addition to monoclinic ZrO{sub 2}, there is evidence for either tetragonal ZrO{sub 2} or the mixed oxide, 6ZrO{sub 2}Nb{sub 2}O{sub 5} in the {beta}-Zr oxide. Scanning transmission electron microscopy (STEM) imaging shows niobium associated with the oxide formed over the {beta}-Zr phase in oxidized pressure tube material. Hydrogen depth profiling by {sup 15}N nuclear reaction analyses has been used to investigate the diffusion of hydrogen in these oxides. The oxide films were implanted with hydrogen and the progressive dispersion of the implanted hydrogen, as a result of annealing, was used to investigate hydrogen diffusion as a function of temperature. The nondispersive nature of the implanted hydrogen peaks in the Zr-1Nb oxide after annealing was suggestive of the presence of interconnected porosity in those oxides. The broadened peaks in the Zr-20Nb oxide after annealing are indicative of a normal diffusion process in a nonporous medium. The implications of these observations will be discussed in terms of corrosion and hydrogen uptake in Zr-2.5Nb pressure tubes.

  3. Doped palladium containing oxidation catalysts

    DOEpatents

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  4. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  5. Preparation and Characterization of Niobium Doped Lead-Telluride Glass Ceramics

    SciTech Connect

    Sathish, M.; Eraiah, B.; Anavekar, R. V.

    2011-07-15

    Niobium-lead-telluride glass ceramics of composition xNb{sub 2}O{sub 5}-(20-x) pbO-80TeO{sub 2}(where x = 0.1 mol% to 0.5 mol%) were prepared by using conventional melt quenching method. The prepared glass samples were initially amorphous in nature after annealed at 400 deg. c all samples were crystallized. This was confined by X-ray diffraction and scanning electron microscopy. The particle size of these glass ceramics have been calculated by using Debye-Scherer formula and the particle size is in the order of 15 nm to 60 nm. The scanning electron microscopy (SEM) photograph shows the presence of needle-like crystals in these samples.

  6. Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support

    SciTech Connect

    Huang, K; Li, YF; Yan, LT; Xing, YC

    2014-01-01

    We report an effective approach to synthesize nanoscale Nb2O5 coated on carbon nanotubes (CNTs) and transform it at low temperatures to the conductive form of NbO2. The latter, when used as a Pt electrocatalyst support, shows significant enhancement in catalyst activity and durability in the oxygen reduction reaction (ORR). Direct phase transformation of Nb2O5 to NbO2 often requires temperatures above 1000 degrees C. Here we show that this can be achieved at a much lower temperature (e.g. 700 degrees C) if the niobium oxide is first activated with carbon. Low temperature processing allows retaining nanostructures of the oxide without sintering, keeping its high surface areas needed for being a catalyst support. We further show that Pt supported on the conductive oxides on CNTs has two times higher mass activity for the ORR than on bare CNTs. The electrochemical stability of Pt was also outstanding, with only ca. 5% loss in electrochemical surface areas and insignificant reduction in half-wave potential in ORR after 5000 potential cycles.

  7. METHOD OF PRODUCING NIOBIUM METAL

    DOEpatents

    Wilhelm, H.A.; Stevens, E.R.

    1960-05-24

    A process is given for preparing ductile niobium metal by the reduction of niobium pentoxide with carbon. The invention resides in the addition, to the reaction mass, of from 0.05 to 0.4 atom of titanium (in the form of metallic titanium, titanium carbide, and/or titanium oxide) per one mole of niobium pentoxide. The mixture is heated under subatmospheric pressure to above 1300 deg C but below the melting point of niobium, and the carbon- and oxygen-free niobium sponge obtained is cooled under reduced pressure.

  8. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles

    PubMed Central

    MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria

    2014-01-01

    Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023

  9. A highly sensitive enzyme-amplified immunosensor based on a nanoporous niobium oxide (Nb2O5) electrode.

    PubMed

    Lee, Chang-Soo; Kwon, Dohyoung; Yoo, Jeng Eun; Lee, Byung Gun; Choi, Jinsub; Chung, Bong Hyun

    2010-01-01

    We report on the development of an enzyme-amplified sandwich-type immunosensor based on a thin gold film sputtered on an anodic nanoporous niobium oxide (Au@Nb(2)O(5)) electrode. The electrocatalytic activity of enzymatically amplified electroactive species and a stable electrode consisting of Au@Nb(2)O(5) were used to obtain a powerful signal amplification of the electrochemical immunobiosensor. The method using this electrochemical biosensor based on an Au@Nb(2)O(5) electrode provides a much better performance than those based on conventional bulk gold or niobium oxide electrodes. Our novel approach does not require any time-consuming cleaning steps to yield reproducible electrochemical signals. In addition, the strong adhesion of gold films on the niobium oxide electrodes offers a very stable substrate during electrochemical biosensing. Cyclic voltammetry measurements indicate that non-specific binding of proteins to the modified Au@Nb(2)O(5) surface is sufficiently low to be ignored in the case of our novel system. Finally, we demonstrated the ability of the biosensor based on an Au@Nb(2)O(5) offering the enhanced performance with a high resolution and sensitivity. Therefore, it is expected that the biosensor based on an Au@Nb(2)O(5) has great potential for highly efficient biological devices.

  10. Influence of addition of calcium oxide on physicochemical properties of Portland cement with zirconium or niobium oxide

    PubMed Central

    Tanomaru-Filho, Mario; Garcia, André Cresto; Bosso-Martelo, Roberta; Berbert, Fabio Luis Camargo V.; Nunes Reis, José Mauricio Santos; Guerreiro-Tanomaru, Juliane Maria

    2015-01-01

    Context: Calcium oxide (CaO) may be added to mineral trioxide aggregate (MTA) or Portland cement (PC) to improve physicochemical and biological properties. Aims: To evaluate the physicochemical properties of PC associated with radiopacifiers and CaO. Materials and Methods: MTA Angelus, PC + 30% zirconium oxide (Zr), or 30% niobium oxide (Nb) associated with 10 or 20% of CaO were evaluated. Gilmore needles were used to evaluate initial and final setting time. Compressive strength was evaluated after the periods of 24 hours and 21 days. pH was analyzed after 3, 12, 24 hours, 7, 14, 21 days. Solubility and flow tests were performed based on the ISO 6876. The data obtained were submitted to analysis of variance and Tukey tests (P ≤ 0.05). Results: The associations with 10% CaO showed greater strength that the associations with 20% CaO. The shortest initial setting time was observed for the association PC + Zr + 20% CaO and MTA. All the cements presented alkaline pH. The flow of all cements was similar. The highest solubility was found in the associations with 20% CaO. Conclusion: The addition of CaO to PC favored the alkaline property and the PC + Zr + 20% CaO presented setting time similar to MTA. PMID:25829686

  11. Niobium(V) oxide (Nb2O5): application to phosphoproteomics.

    PubMed

    Ficarro, Scott B; Parikh, Jignesh R; Blank, Nathaniel C; Marto, Jarrod A

    2008-06-15

    Proteomics-based analysis of signaling cascades relies on a growing suite of affinity resins and methods aimed at efficient enrichment of phosphorylated peptides from complex biological mixtures. Given the heterogeneity of phosphopeptides and the overlap in chemical properties between phospho- and unmodified peptides, it is likely that the use of multiple resins will provide the best combination of specificity, yield, and coverage for large-scale proteomics studies. Recently titanium and zirconium dioxides have been used successfully for enrichment of phosphopeptides. Here we report the first demonstration that niobium pentoxide (Nb 2O 5) provides for efficient enrichment and recovery ( approximately 50-100%) of phosphopeptides from simple mixtures and facilitates identification of several hundred putative sites of phosphorylation from cell lysate. Comparison of phosphorylated peptides identified from Nb 2O 5 and TiO 2 with sequences in the PhosphoELM database suggests a useful degree of divergence in the selectivity of these metal oxide resins. Collectively our data indicate that Nb 2O 5 provides efficient enrichment for phosphopeptides and offers a complementary approach for large-scale phosphoproteomics studies.

  12. Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide.

    PubMed

    Estrellan, Carl Renan; Salim, Chris; Hinode, Hirofumi

    2010-07-15

    The photocatalytic decomposition of perfluorooctanoic acid (PFOA) in aqueous solution using Fe and Nb co-doped TiO(2) (Fe:Nb-TiO(2)) prepared by sol-gel method was investigated. The photocatalytic activity of Fe:Nb-TiO(2) towards PFOA degradation was compared to that of pure TiO(2) synthesized using the same method, and that of the commercially available TiO(2) photocatalyst, Aeroxide TiO(2) P25 (AO-TiO(2) P25). The photocatalysts were characterized by XRD, DRS, BET-N(2) adsorption isotherm, and SEM-EDX techniques and the data were correlated to the photocatalytic activity. Fe:Nb-TiO(2) showed the highest activity compared to the undoped TiO(2) and the commercially available TiO(2). Such activity was attributable to the effects of co-doping both on the physico-chemical properties and surface interfacial charge transfer mechanisms. Perfluorocarboxylic acids (PFCAs) with shorter carbon chain length and fluoride ions were identified as photocatalytic reaction intermediates and products.

  13. Structural determination of niobium-doped silicon clusters by far-infrared spectroscopy and theory.

    PubMed

    Li, Xiaojun; Claes, Pieterjan; Haertelt, Marko; Lievens, Peter; Janssens, Ewald; Fielicke, André

    2016-02-17

    In this work, the structures of cationic SinNb(+) (n = 4-12) clusters are determined using the combination of infrared multiple photon dissociation (IR-MPD) and density functional theory (DFT) calculations. The experimental IR-MPD spectra of the argon complexes of SinNb(+) are assigned by comparison to the calculated IR spectra of low-energy structures of SinNb(+) that are identified using the stochastic 'random kick' algorithm in conjunction with the BP86 GGA functional. It is found that the Nb dopant tends to bind in an apex position of the Sin framework for n = 4-9 and in surface positions with high coordination numbers for n = 10-12. For the larger doped clusters, it is suggested that multiple isomers coexist and contribute to the experimental spectra. The structural evolution of SinNb(+) clusters is similar to V-doped silicon clusters (J. Am. Chem. Soc., 2010, 132, 15589-15602), except for the largest size investigated (n = 12), since V takes an endohedral position in Si12V(+). The interaction with a Nb atom, with its partially unfilled 4d orbitals leads to a significant stability enhancement of the Sin framework as reflected, e.g. by high binding energies and large HOMO-LUMO gaps. PMID:26853772

  14. Evaluation of nickel-titanium oxide-niobium pentoxide metal ceramic composite as interconnect for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Budur, Abhijith

    With increasing importance for clean energy, fuel cells have gained great significance in recent decades. Solid oxide fuel cells are easy to transport due to presence of solid electrolyte and also have requisite electrical properties,but have been obstructed by their limitation to be used at only temperatures greater than 6000C and less than 8000C. To construct a stack of cells, materials that are good electrical conductors and having necessary mechanical strengths at that temperatures are being considered as interconnects between the cells. Evaluation of Nickel-Titanium dioxide-Niobium pentoxide (NTN) as interconnect and comparison to Stainless Steel 441 alloy has been made in this research. The criteria for evaluation are the resistance, long-term stability and the power density characteristics of the cell for each interconnect. Electrical measurements by impedance spectroscopy techniques were conducted at variousworking temperatures using a gas mixture of 10 % hydrogen and 90% nitrogen to evaluate both interconnect materials in the working range of fuel cells. Scanning Electron Microscopy images of Lanthanum Strontium Manganite paste before and after the fuel cell measurements are shown.The results showed that both NTN and Stainless Steel 441 interconnects exhibit similar electrical properties under operating conditions of the fuel cell. Since theNTN interconnect is less prone to corrosion and does not have the effect of chromium poisoning, it can be considered as a viable interconnect material for solid oxide fuel cells.

  15. Improved performance of cylindrical hybrid supercapacitor using activated carbon/ niobium doped hydrogen titanate

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Hyun; Kim, Hong-Ki; Baek, Esther; Pecht, Michael; Lee, Seung-Hwan; Lee, Young-Hie

    2016-01-01

    A cylindrical hybrid supercapacitor is fabricated using activated carbon positive electrode and H2Ti12-xNbxO25 (0 ≤ x ≤ 0.6) negative electrode materials. The hybrid supercapacitor using H2Ti11.85Nb0.15O25 exhibits the best electrochemical performance. It has a capacitance of 78.4 F g-1, charge transfer resistance (Rct) of 0.03 Ω, capacitance retention of 91.4% after 1000 cycles at 3.0 A g-1 and energy density of 24.3 W h kg-1 at a power density of 1794.6 W kg-1. Therefore, the Nb doped HTO negative electrode material is a promising candidate as an energy storage system for electric vehicles (EVs).

  16. An Analysis of the Temperature and Field Dependence of the RF Surface Resistance of Nitrogen-Doped Niobium SRF Cavities with Respect to Existing Theoretical Models

    SciTech Connect

    Reece, Charles E.; Palczewski, Ari D.; Xiao, Binping

    2015-09-01

    Recent progress with the reduction of rf surface resistance (Rs) of niobium SRF cavities via the use of high temperature surface doping by nitrogen has opened a new regime for energy efficient accelerator applications. For particular doping conditions one observes dramatic decreases in Rs with increasing surface magnetic fields. The observed variations as a function of temperature may be analyzed in the context of recent theoretical treatments in hopes of gaining insight into the underlying beneficial mechanism of the nitrogen treatment. Systematic data sets of Q0 vs. Eacc vs. temperature acquired during the high Q0 R&D work of the past year will be compared with theoretical model predictions..

  17. DFT insights into the electronic and optical properties of fluorine-doped monoclinic niobium pentoxide (B-Nb2O5:F)

    NASA Astrophysics Data System (ADS)

    El-Shazly, Tamer S.; Hassan, Walid M. I.; Rehim, Sayed S. Abdel; Allam, Nageh K.

    2016-09-01

    We report on the effect of fluorine doping on the electronic structure and optical properties of monoclinic niobium pentoxide (B-Nb2O5) as revealed by the first principles calculations. Density functional theory (DFT) along with generalized gradient approximation (GGA) at the revised Perdew-Burke-Ernzerhof (PBEsol) exchange-correlation functional was used in this study. The band calculations revealed that the studied materials are indirect bandgap semiconductors, with bandgap energies of 2.67 and 2.28 eV for the undoped and F-doped B-Nb2O5, respectively. Upon doping B-Nb2O5, the Fermi level shifts towards the conduction band, allowing optical absorption in the visible region with enhanced transmittance in the wavelength range 400-1000 nm. The calculated static refractive index of the undoped B-Nb2O5 is in good agreement with the reported experimental value, which is enhanced upon F-incorporation resulting in cladding properties for the F-doped B-Nb2O5. Also, the effective mass of free charge carriers increased upon F-doping. The enhanced properties were attributed to the effect of the excessive valent electron of the incorporated F atom.

  18. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses.

    PubMed

    Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M

    2010-03-01

    Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported.

  19. Solution Grown Antimony Doped Zinc Oxide Films

    NASA Astrophysics Data System (ADS)

    Riley, Conor T.

    Zinc oxide is an extensively studied semiconducting material due to its versatile properties applicable to many technologies such as electronics, optoelectronics, sensing and renewable energy. Although zinc oxide films have been created for device fabrication, the methods used to synthesize them are expensive and unrealistic for affordable commercial devices. In addition, zinc oxide is intrinsically n-type making the realization of stable p-type materials a great challenge for light emitting diodes, solar cells and UV lasing. In this thesis zinc oxide films are created using low cost solution methods. To accomplish this, a previously unreported surfactant, tert-butanol, is used. Several controlled experiments vary the concentration of tert-butanol, zinc and oxygen sources to demonstrate the ability of tert-butanol to create low cost films. Further, small amounts of antimony glycolate are added to the reaction solution, to create antimony doped zinc oxide films on sapphire and silicon substrates. Although hall measurements indicate that the films are n-type, a discussion of antimony activation provides a feasible path for the realization of low cost, p-type zinc oxide films.

  20. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    PubMed

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure. PMID:26478387

  1. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    PubMed

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure.

  2. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    NASA Astrophysics Data System (ADS)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  3. Comparison of different structures of niobium oxide blocking layer for dye-sensitized solar cells.

    PubMed

    Chun, Jae Hwan; Kim, Jong Sung

    2014-08-01

    In this study, four different types of Nb2O5 thin layers were prepared using sol-gel process to improve energy conversion efficiency of dye sensitized solar cells (DSSCs). Nb2O5 layer was prepared on the fluorine-doped tin oxide (FTO) layer, TiO2 electrode layer, and inside of TiO2 layer, respectively. The Nb2O5 layer was used to reduce the recombination of photo induced electrons and holes. The DSSCs were assembled with platinum (Pt) coated counter electrode, ruthenium dye, and iodine based electrolyte. The photocurrent-voltage (I-V) characteristics of DSSCs with different types of Nb2O5 were studied. The efficiency depends not only on the structure of DSSCs but also on the initial compositions for the preparation of Nb2O5.

  4. Influence of doping with third group oxides on properties of zinc oxide thin films

    SciTech Connect

    Palimar, Sowmya Bangera, Kasturi V.; Shivakumar, G. K.

    2013-03-15

    The study of modifications in structural, optical and electrical properties of vacuum evaporated zinc oxide thin films on doping with III group oxides namely aluminum oxide, gallium oxide and indium oxide are reported. It was observed that all the films have transmittance ranging from 85 to 95%. The variation in optical properties with dopants is discussed. On doping the film with III group oxides, the conductivity of the films showed an excellent improvement of the order of 10{sup 3} {Omega}{sup -1} cm{sup -1}. The measurements of activation energy showed that all three oxide doped films have 2 donor levels below the conduction band.

  5. Molecular beam epitaxy growth of niobium oxides by solid/liquid state oxygen source and lithium assisted metal-halide chemistry

    NASA Astrophysics Data System (ADS)

    Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan

    2015-09-01

    In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.

  6. Zinc oxide doped graphene oxide films for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Chetna, Kumar, Shani; Garg, A.; Chowdhuri, A.; Dhingra, V.; Chaudhary, S.; Kapoor, A.

    2016-05-01

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer's method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheets play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.

  7. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  8. Iron oxide/niobium oxide core-shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis.

    PubMed

    Lin, Hong-Yi; Chen, Wei-Yu; Chen, Yu-Chie

    2009-04-01

    The feasibility of using niobium oxide-coated magnetic nanoparticles (NPs) as affinity probes for selectively trapping phosphopeptides from peptide mixtures including tryptic digest of caseins, serum, and cell lysate was demonstrated in this study. Phosphopeptide enrichment was rapid when subjecting these systems to microwave heating for 1 min; the probe-target species, which were readily isolated through magnetic separation, were then analyzed using matrix-assisted laser desorption/ ionization mass spectrometry (MALDI MS). Only signals for phosphopeptides were present in the resulting mass spectra. The detection limit for monophosphopeptide was as low as 5 fmol.

  9. Highly ytterbium-doped bismuth-oxide-based fiber.

    PubMed

    Ohara, Seiki; Kuroiwa, Yutaka

    2009-08-01

    Thermally stable highly ytterbium-doped bismuth-oxide-based glasses have been investigated. The absorbance increased linearly with Yb(2)O(3) concentration, reaching 7800 dB/m with 3 mol-% of Yb(2)O(3). An ytterbium-doped bismuth-oxide-based fiber has also been fabricated with a fiber loss of 0.24 dB/m. A fiber laser is also demonstrated, and it shows a slope efficiency of 36%.

  10. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices.

    PubMed

    Pickett, Matthew D; Williams, R Stanley

    2012-06-01

    We built and measured the dynamical current versus time behavior of nanoscale niobium oxide crosspoint devices which exhibited threshold switching (current-controlled negative differential resistance). The switching speeds of 110 × 110 nm(2) devices were found to be Δt(ON) = 700 ps and Δt(OFF) = 2:3 ns while the switching energies were of the order of 100 fJ. We derived a new dynamical model based on the Joule heating rate of a thermally driven insulator-to-metal phase transition that accurately reproduced the experimental results, and employed the model to estimate the switching time and energy scaling behavior of such devices down to the 10 nm scale. These results indicate that threshold switches could be of practical interest in hybrid CMOS nanoelectronic circuits.

  11. Effects of the duty ratio on the niobium oxide film deposited by pulsed-DC magnetron sputtering methods.

    PubMed

    Eom, Ji Mi; Oh, Hyun Gon; Cho, Il Hwan; Kwon, Sang Jik; Cho, Eou Sik

    2013-11-01

    Niobium oxide (Nb2O5) films were deposited on p-type Si wafers and sodalime glasses at a room temperature using in-line pulsed-DC magnetron sputtering system with various duty ratios. The different duty ratio was obtained by varying the reverse voltage time of pulsed DC power from 0.5 to 2.0 micros at the fixed frequency of 200 kHz. From the structural and optical characteristics of the sputtered NbOx films, it was possible to obtain more uniform and coherent NbOx films in case of the higher reverse voltage time as a result of the cleaning effect on the Nb2O5 target surface. The electrical characteristics from the metal-insulator-semiconductor (MIS) fabricated with the NbOx films shows the leakage currents are influenced by the reverse voltage time and the Schottky barrier diode characteristics.

  12. Chromium-niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kenichi; Shibuya, Keisuke; Suzuki, Megumi; Sakai, Kenichi; Fujita, Jun-ichi; Sawa, Akihito

    2016-05-01

    We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal-insulator transition of vanadium dioxide (VO2) films. We determined the TCR and thermal-hysteresis-width diagram of the V1-x-yCrxNbyO2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.

  13. Other Oxides Pre-removed from Bangka Tin Slag to Produce a High Grade Tantalum and Niobium Oxides Concentrate

    NASA Astrophysics Data System (ADS)

    Permana, S.; Soedarsono, J. W.; Rustandi, A.; Maksum, A.

    2016-05-01

    Indonesia, as the second largest tin producer in the world, has a byproduct from the production of tin. This byproduct is in the forms of tin slag containing tantalum pentoxide (Ta2O5) and niobium pentoxide (Nb2O5). This study focuses on the recovery of tantalum pentoxide and niobium pentoxide from the tin slag. In the process, one part of the tin slag sample was sieved only (BTS), and the other was roasted at 900°C, water quenched and then sieved (BTS-RQS). Samples BTS and BTS-RQS were characterized by thermo gravimetric analysis (TGA) and X-ray flourence (XRF). One part of BTS-RQS sample was dissolved in hydrofluoric acid (HF) and the other was dissolved in hydrochloric acid (HCl), washed with distilled water, then dissolved into sodium hydroxide (NaOH). Each sample was characterized by using XRF. The BTS sample produced the highest recovery of 0.3807 and 0.6978% for Ta2O5 and Nb2O5, respectively, from the particle size of -1.00+0.71 and a fraction of 47.29%, while BTS-RQS produced the highest recovery of 0.3931 and 0.8994% for Ta2O5 and Nb2O5, respectively, on the particle size of -0.71+0350 and a fraction of 21%. BTS-RQS, dissolved with 8% hydro fluoride acid, yields tantalum pentoxide and niobium pentoxide with a ratio of 2.01 and 2.09, respectively. For the sample BTS-RQS dissolve first with 6M hydrochloric acid, washed with distilled water, then dissolved with sodium hydroxide 10M, the yield ratios are 1.60 and 1.84 for tantalum pentoxide and niobium pentoxide, respectively. In this study, it is found that the dissolution by using hydrofluoric acid 8% yields the best ratio.

  14. One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide-carbon composites for fuel cell electrodes.

    PubMed

    Orilall, M Christopher; Matsumoto, Futoshi; Zhou, Qin; Sai, Hiroaki; Abruña, Héctor D; DiSalvo, Francis J; Wiesner, Ulrich

    2009-07-01

    Catalyst-electrode design is crucial for the commercialization and widespread use of polymer electrolyte membrane fuel cells. There are considerable challenges in making less expensive, more durable, and more active catalysts. Herein, we report the one-pot synthesis of Pt and Pt-Pb nanoparticles incorporated into the pores of mesoporous niobium oxide-carbon composites. The self-assembly of block copolymers with niobium oxide and metal precursors results in an ordered mesostructured hybrid. Appropriate heat treatment of this hybrid produces highly crystalline, well-ordered mesoporous niobium oxide-carbon composites with Pt (or Pt-Pb) nanoparticles incorporated into the mesopores. The in situ-generated graphitic-like carbon material prevents the collapse of the mesostructure, while the metal oxide crystallizes at high temperatures and enhances the electrical conductivity of the final material. Formic acid electrooxidation with this novel material shows 4 times higher mass activities (3.3 mA/microg) and somewhat lower onset potentials (-0.24 V vs Ag/AgCl) than the best previously reported values employing Pt-Pb intermetallic nanoparticles supported on conducting carbon (0.85 mA/microg and -0.18 V, respectively).

  15. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Yu, Zhiming; Wei, Qiuping; Long, HangYu; Xie, Youneng; Wang, Yijia

    2016-07-01

    In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH3sbnd N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm-2, pH 5.16, flow velocity 6 L h-1. Under these conditions, 87.5% COD and 74.06% NH3sbnd N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m-3. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  16. Doping in zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yang, Zheng

    Doping in zinc oxide (ZnO) thin films is discussed in this dissertation. The optimizations of undoped ZnO thin film growth using molecular-beam epitaxy (MBE) are discussed. The effect of the oxygen ECR plasma power on the growth rate, structural, electrical, and optical properties of the ZnO thin films were studied. It was found that larger ECR power leads to higher growth rate, better crystallinity, lower electron carrier concentration, larger resistivity, and smaller density of non-radiative luminescence centers in the ZnO thin films. Low-temperature photoluminescence (PL) measurements were carried out in undoped and Ga-doped ZnO thin films grown by molecular-beam epitaxy. As the carrier concentration increases from 1.8 x 1018 to 1.8 x 1020 cm-3, the dominant PL line at 9 K changes from I1 (3.368--3.371 eV), to IDA (3.317--3.321 eV), and finally to I8 (3.359 eV). The dominance of I1, due to ionized-donor bound excitons, is unexpected in n-type samples, but is shown to be consistent with the temperature-dependent Hall fitting results. We also show that IDA has characteristics of a donor-acceptor-pair transition, and use a detailed, quantitative analysis to argue that it arises from GaZn donors paired with Zn-vacancy (VZn) acceptors. In this analysis, the GaZn0/+ energy is well-known from two-electron satellite transitions, and the VZn0/- energy is taken from a recent theoretical calculation. Typical behaviors of Sb-doped p-type ZnO are presented. The Sb doping mechanisms and preference in ZnO are discussed. Diluted magnetic semiconducting ZnO:Co thin films with above room-temperature TC were prepared. Transmission electron microscopy and x-ray diffraction studies indicate the ZnO:Co thin films are free of secondary phases. The magnetization of the ZnO:Co thin films shows a free electron carrier concentration dependence, which increases dramatically when the free electron carrier concentration exceeds ˜1019 cm -3, indicating a carrier-mediated mechanism for

  17. MEASUREMENT OF THE HIGH-FIELD Q-DROP IN A LARGE-GRAIN NIOBIUM CAVITY FOR DIFFERENT OXIDATION PROCESSES

    SciTech Connect

    Gianluigi Ciovati; Peter Kneisel; Alex Gurevich

    2008-01-23

    In this contribution, we present the results from a series of RF tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes. After initial buffered chemical polishing, anodization, baking in pure oxygen atmosphere and baking in air up to 180 °C was applied with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system was used allowing to measure the local temperature rise of the cavity outer surface due to RF losses, which gives information about the losses location, their field dependence and space distribution on the RF surface. The results confirmed that the depth affected by baking is about 20 – 30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 °C in pure oxygen atmosphere or in air up to 180 °C. A statistic of the position of the “hot-spots” on the cavity surface showed that grain-boundaries are not the preferred location. An interesting correlation was found between the Q-drop onset, the quench field and the low-field energy gap, which supports the hypothesis of thermo-magnetic instability governing the Q-drop and the baking effect.

  18. MEASUREMENT OF THE HIGH-FIELD Q-DROP IN A LARGE-GRAIN NIOBIUM CAVITY FOR DIFFERENT OXIDATION PROCESSES

    SciTech Connect

    Ciovati, Gianluigi; Kneisel, Peter; Gurevich, Alex

    2008-01-23

    In this contribution, we present the results from a series of RF tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes. After initial buffered chemical polishing, anodization, baking in pure oxygen atmosphere and baking in air up to 180 °C was applied with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system was used allowing to measure the local temperature rise of the cavity outer surface due to RF losses, which gives information about the losses location, their field dependence and space distribution on the RF surface. The results confirmed that the depth affected by baking is about 20 – 30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 °C in pure oxygen atmosphere or in air up to 180 °C. A statistic of the position of the "hot-spots" on the cavity surface showed that grain-boundaries are not the preferred location. An interesting correlation was found between the Q-drop onset, the quench field and the low-field energy gap, which supports the hypothesis of thermomagnetic instability governing the Q-drop and the baking effect.

  19. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes.

    PubMed

    Zhang, Yuchao; Ji, Hongwei; Ma, Wanhong; Chen, Chuncheng; Song, Wenjing; Zhao, Jincai

    2016-01-01

    As one of the most promising materials for solar water oxidation, hematite has attracted intense research interest for four decades. Despite their desirable optical band gap, stability and other attractive features, there are great challenges for the implementation of hematite-based photoelectrochemical cells. In particular, the extremely low electron mobility leads to severe energy loss by electron hole recombination. Elemental doping, i.e., replacing lattice iron with foreign atoms, has been shown to be a practical solution. Here we review the significant progresses in metal and non-metal element doping-promoted hematite solar water oxidation, focusing on the role of dopants in adjusting carrier density, charge collection efficiency and surface water oxidation kinetics. The advantages and salient features of the different doping categories are compared and discussed. PMID:27376262

  20. Crystal field disorder effects in the optical spectra of Nd{sup 3+} and Yb{sup 3+}-doped calcium lithium niobium gallium garnets laser crystals and ceramics

    SciTech Connect

    Lupei, V.; Lupei, A.; Gheorghe, C.; Gheorghe, L.; Achim, A.; Ikesue, A.

    2012-09-15

    The optical spectroscopic properties of RE{sup 3+} (Nd, 1 at. % or Yb, 1 to 10 at. %)-doped calcium-lithium-niobium-gallium garnet (CLNGG) single crystals and ceramics in the 10 K-300 K range are analyzed. In these compositionally disordered materials, RE{sup 3+} substitute Ca{sup 2+} in dodecahedral sites and the charge compensation is accomplished by adjusting the proportion of Li{sup +}, Nb{sup 5+}, and Ga{sup 3+} to the doping concentration. The crystals and ceramics show similar optical spectra, with broad and structured (especially at low temperatures) bands whose shape depends on temperature and doping concentration. At 10 K, the Nd{sup 3+4}I{sub 9/2}{yields}{sup 4}F{sub 3/2,5/2} and Yb{sup 3+2}F{sub 7/2}{yields}{sup 2}F{sub 5/2} absorption bands, which show prospect for diode laser pumping, can be decomposed in several lines that can be attributed to centers with large differences in the crystal field. The positions of these components are the same, but the relative intensity depends on the doping concentration and two main centers dominate the spectra. Non-selective excitation evidences broad emission bands, of prospect for short-pulse laser emission, whereas the selective excitation reveals the particular emission spectra of the various centers. The modeling reveals that the nonequivalent centers correspond to RE{sup 3+} ions with different cationic combinations in the nearest octahedral and tetrahedral coordination spheres, and the most abundant two centers have 4Nb and, respectively, 3Nb1Li in the nearest octahedral sphere. At 300 K, the spectral resolution is lost. It is then inferred that the observed optical bands are envelopes of the spectra of various structural centers, whose resolution is determined by the relative contribution of the temperature-dependent homogeneous broadening and the effects of crystal field disordering (multicenter structure, inhomogeneous broadening). The relevance of spectroscopic properties for selection of pumping

  1. Superconducting and magnetic behaviour of niobium doped RuSr2Gd1.5Ce0.5Cu2O10-δ

    NASA Astrophysics Data System (ADS)

    Cardoso, C. A.; Araujo-Moreira, F. M.; Awana, V. P. S.; Kishan, H.; de Lima, O. F.

    2007-05-01

    Polycrystalline samples of Ru1-xNbxSr2Gd1.5Ce0.5Cu2O10-δ, 0<=x<=0.5, have been synthesized and structurally characterized by x-ray diffraction (XRD). Resistivity, magnetization and AC susceptibility measurements have been done and analysed considering a phase separation scenario. A strong suppression of the cluster glass (CG) transition associated with niobium doping was identified. In fact, the CG phase was not present in samples for x>=0.2, leading to changes in the magnetic hysteresis loops measured at low temperatures. These hysteresis loops can be explained as a result of the contribution of two distinct magnetic phases: the canted AFM phase and embedded Ru4+-rich clusters which order as a CG in low temperatures. Interestingly, the significant changes in the magnetic response of the material do affect the superconducting transition temperature Tc. It was found that both Tc and the superconducting fraction are reduced in samples which present the spin glass phase. Therefore, our results point to some coupling between magnetism and superconductivity in this ruthenocuprate family, the presence of the magnetic moment being deleterious for the superconductivity.

  2. CSA doped polypyrrole-zinc oxide thin film sensor

    NASA Astrophysics Data System (ADS)

    Chougule, M. A.; Jundale, D. M.; Raut, B. T.; Sen, Shashwati; Patil, V. B.

    2013-02-01

    The polypyrrole-zinc oxide (PPy-ZnO) hybrid sensor doped with different weight ratios of camphor sulphonic acid (CSA) were prepared by spin coating technique. These CSA doped PPy-ZnO hybrids were characterized by field emission scanning electron microscope (FESEM) and fourier transform infrared (FTIR) which proved the formation of polypyrrole, PPy-ZnO and the interaction between polypyrrole - ZnO (PPy-ZnO) hybrid with CSA doping. The gas sensing properties of the PPy-ZnO hybrid films doped with CSA have been studied for oxidizing (NO2) as well as reducing (H2S, NH3, CH4OH and CH3OH) gases at room temperature. We demonstrate that CSA doped PPy-ZnO hybrid films are highly selective to NO2 along with high-sensitivity at low concentration (80% to 100 ppm) and better stability, which suggested that the CSA doped PPy-ZnO hybrid films are potential candidate for NO2 detection at room temperature.

  3. Structural transformation in nickel doped zinc oxide nanostructures

    SciTech Connect

    Goswami, Navendu; Sahai, Anshuman

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A systematic study of 1–10% Ni doped ZnO nanostructures (Ni:ZnO NS). ► Effect of Ni concentration on properties of Ni:ZnO NS was intensively investigated. ► Structural transformation in Ni:ZnO NS demonstrated through characterizations. ► Alteration in vibrational modes of Ni:ZnO NS were meticulously analyzed. ► Intricacies of structural evolution, from particles to rods, were comprehended. -- Abstract: In this article, structural transformation in nickel doped zinc oxide nanostructures is reported. The ZnO nanostructures are synthesized with 1–10% of nickel doping through a chemical precipitation method. The undoped and doped nanostructures were systematically investigated employing X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM/SEM), Fourier transform infrared (FTIR) and micro-Raman spectroscopy (μRS). The wurtzite phase of the material and associated lattice parameters were ascertained through XRD analysis. TEM/SEM images reveal the structural transformation of ZnO nanostructures with variation in nickel doping. The study of vibrational modes of nanostructures at different stages of structural transformation, as performed through FTIR and Raman spectroscopy, assist in deciphering the pivotal role of doping concentration in gradual evolution of nickel doped ZnO structure from nanoparticles to nanorods.

  4. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  5. Growth and characterization of antimony doped tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Shanthi, S.; Subramanian, C.; Ramasamy, P.

    1999-03-01

    Pure and antimony doped tin oxide thin films were deposited on glass and quartz plates by spray pyrolysis method. Structural, electrical and optical properties of these films were studied by varying the substrate temperature and antimony concentration. The best electro-optic properties obtained were, resistivity as low as 9×10 -4 Ω cm and average transmission of 80% in the visible region, at the substrate temperature of 400°C with the antimony concentration of 9 at%. While doping, change in preferred orientation was observed from [1 1 0] to [2 0 0]. The optical investigation showed that, depending upon the doping concentration, the antimony doped films had direct allowed transitions in the range 4.13-4.22 eV and indirect allowed transitions in the range 2.54-2.65 eV.

  6. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan; Richter, Silke; Meckelburg, Angela

    Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H2SO4, and H3PO4. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes.

  7. Investigation of tungsten doped tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Meng, Ting; Yang, Zhao; Cui, Can; Zhang, Qun

    2015-11-01

    Tungsten doped tin oxide thin film transistors (TWO-TFTs) were fabricated by radio frequency magnetron sputtering. With TWO thin films as the channel layers, the TFTs show lower off-current and positive shift turn-on voltage than the intrinsic tin oxide TFTs, which can be explained by the reason that W doping is conducive to suppress the carrier concentration of the TWO channel layer. It is important to elect an appropriate channel thickness for improving the TFT performance. The optimum TFT performance in enhancement mode is achieved at W doping content of 2.7 at% and channel thickness of 12 nm, with the saturation mobility, turn-on voltage, subthreshold swing value and on-off current ratio of 5 cm2 V-1 s-1, 0.4 V, 0.4 V/decade and 2.4  ×  106, respectively.

  8. Highly NO2 sensitive caesium doped graphene oxide conductometric sensors.

    PubMed

    Piloto, Carlo; Notarianni, Marco; Shafiei, Mahnaz; Taran, Elena; Galpaya, Dilini; Yan, Cheng; Motta, Nunzio

    2014-01-01

    Here we report on the synthesis of caesium doped graphene oxide (GO-Cs) and its application to the development of a novel NO2 gas sensor. The GO, synthesized by oxidation of graphite through chemical treatment, was doped with Cs by thermal solid-state reaction. The samples, dispersed in DI water by sonication, have been drop-casted on standard interdigitated Pt electrodes. The response of both pristine and Cs doped GO to NO2 at room temperature is studied by varying the gas concentration. The developed GO-Cs sensor shows a higher response to NO2 than the pristine GO based sensor due to the oxygen functional groups. The detection limit measured with GO-Cs sensor is ≈90 ppb. PMID:25161842

  9. Self-limited kinetics of electron doping in correlated oxides

    SciTech Connect

    Chen, Jikun Zhou, You; Jiang, Jun; Shi, Jian; Ramanathan, Shriram; Middey, Srimanta; Chakhalian, Jak; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max

    2015-07-20

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni{sup 3+} are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  10. Niobium oxide dispersed on a carbon-ceramic matrix, SiO2/C/Nb2O5, used as an electrochemical ascorbic acid sensor.

    PubMed

    Arenas, Leliz T; Villis, Paulo C M; Arguello, Jacqueline; Landers, Richard; Benvenutti, Edilson V; Gushikem, Yoshitaka

    2010-11-15

    A film of niobium oxide was immobilized on a SiO(2)/C carbon-ceramic matrix (specific surface area 270 m(2)g(-1)) and characterized by N(2) adsorption-desorption isotherms, scanning electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy. This new carbon-ceramic material, SiO(2)/C/Nb(2)O(5), was used for construction of electrodes, and it shows ability to improve the electron-transfer between the electrode surface and ascorbic acid. The electrocatalytic oxidation of ascorbic acid was made by differential pulse and cyclic voltammetry techniques, making it potentially useful for developing a new ascorbic acid sensor.

  11. Process for fabricating doped zinc oxide microsphere gel

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1991-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  12. Process for fabricating doped zinc oxide microsphere gel

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1991-11-05

    Disclosed are a new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  13. Chemical vapor deposition of fluorine-doped zinc oxide

    DOEpatents

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  14. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  15. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films.

    PubMed

    Figueroa, A I; van der Laan, G; Harrison, S E; Cibin, G; Hesjedal, T

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi(3+) in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  16. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    PubMed Central

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  17. Photoemission studies of a clean and oxidized niobium-aluminum alloy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Oshima, M.; Pate, B. B.; Lu, Z. M.; Jupiter, P. J.; Lindau, I.; Spicer, W. E.

    1983-06-01

    The alloy formation and oxidation of a Nb-rich Nb-Al alloy has been studied using core level photoemission in combination with synchroton radiation as a surface sensitive probe. Exactly the same chemical shifts were observed from both the Nb-Al alloy and an Al-evaporated Nb surface, indicating similar structural arrangements. It is found that the oxidation rate of Nb in these structures is drastically decreased in comparison to either pure Nb metal or Nb 3Sn. Two stages in the oxidation of the Nb-Al alloy are clearly distinguished by chemical shifts of the Al 2 p, Nb 4 p and O 2 p levels.

  18. Effect of rhenium on short term oxidation of niobium based alloys for high temperature applications

    NASA Astrophysics Data System (ADS)

    Sierra, Ruth M.

    The effect of adding Re to Nb-based alloys and is intended to analyze in depth the microstructures of Nb based alloys with Re, Si and Cr additions, in atomic percentages. The binary alloys (Nb-5Re, Nb-5Si and Nb-5Cr) reveal the formation of a single phase, NbSS, NbSS + Nb3Si and NbSS+NbCr2 respectively. The formation of the single phase was confirmed by TEM studies for the Nb-5Re alloy. Addition of Re to form ternary alloys, has helped in the formation of Nb5Si 3 and (Nb, Re) Cr2, in Nb-5Re- 5Si and Nb-5Re-5Cr respectively. Quaternary alloy Nb-5Re-5Si-5Cr has Nb5Si3, NbCr2 and NbSS. The oxidation behavior has been studied and the formation of the oxides has been characterized using XRD, SEM, EDS. Nb-Re-Si-Cr-X (Al, B, W) alloy system has been examined at temperatures between 700 and 1400°C in air. The continued work was to develop and discover a new materials system capable of replacing nickel based super alloys. Additions of aluminum were found to provide limited oxidation resistance. A discontinuous layer of Al2O3 and SiO2 was observed to form at all temperatures adapted for this study. Alloy containing aluminum additions were observed to suffer from pest oxidation at intermediate temperatures due to the development of Nb2O5. Poor oxidation resistance at intermediate temperatures for alloys with aluminum additions was attributed to a transformation in the structure of Nb2O5 formed. Pesting was observed at 900°C, consuming the metal completely. Additions of chromium were observed to increase oxidation resistance through the development of a layered oxide structure containing SiO2 and CrNbO4. Internal oxidation layer was observed to develop oxides in the midst of the phases formed. Boron addition has helped in the formation of the 3, 5 silicides, NbSS, and Laves phase. The combination of oxides of Nb2O5, CrNbO4 and SiO2 has helped improve the oxidation resistance of the alloy. Rhenium in this alloy has been a major element in terms of forming Re-oxides which has

  19. Facile hydrothermal preparation of niobium pentaoxide decorated reduced graphene oxide nanocomposites for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Murugan, M.; Kumar, R. Mohan; Alsalme, Ali; Alghamdi, Abdulaziz; Jayavel, R.

    2016-04-01

    Facile synthesis of graphene-Nb2O5 composite has been reported. Graphene oxide was prepared by the modified Hummer's method. The metal oxide (Nb2O5) was introduced to the graphene to form the composite by the hydrothermal method. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared (FTIR) and thermo gravimetric analysis (TGA). SEM and TEM results revealed that the metal oxide particles are uniformly dispersed on the surface of thin sheets of well-defined multilayered graphene structure. Thermal stability of the graphene metal oxide nanocomposites was also investigated. The CV measurements reveal a significant enhancement in the specific capacitance reaching 321 Fg-1 at a scan rate of 10 mV s-1. With promising electrochemical characteristics, Nb2O5 decorated graphene nanocomposite are explored as potential electrode material for supercapacitor applications.

  20. Sulphur mustard degradation on zirconium doped Ti-Fe oxides.

    PubMed

    Štengla, Václav; Grygar, Tomáš Matys; Opluštil, František; Němec, Tomáš

    2011-09-15

    Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr(4+) dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr(4+) to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr(4+) doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.

  1. Photoluminescence characteristics of rare earth-doped nanoporous aluminum oxide

    NASA Astrophysics Data System (ADS)

    de Azevedo, W. M.; de Carvalho, D. D.; de Vasconcelos, E. A.; da Silva, E. F.

    2004-07-01

    In this work we present photoluminescence characterization of rare earth ion-doped nanoporous aluminum oxide synthesized by the anodization process in diverse solvents. We find that the luminescence of doped aluminum oxide strongly depends on the synthesis medium. When synthesized in an inorganic acid only rare earth fluorescence is present, whereas nanoporous aluminum oxide synthesized in organic solvent presents two strong unexpected luminescence emission lines, one at 429 nm and the other at 491 nm, with quite long decay time when excited with long wavelength ultraviolet light. The results suggest that light simulation of primary colors and chromaticity control of the emitted light can be done by the a combination of different rare earth ions present in the sample.

  2. Activity and selectivity control by niobium for the preferential oxidation of co on pt supported catalysts

    SciTech Connect

    Guerrero, S.; Miller, J.T.; Wolf, E.E.

    2010-10-22

    The promotional effect of Nb on Pt supported on alumina or on niobia, was studied for the preferential oxidation of CO (PROX) in hydrogen. The results show a unique effect of Nb as a promoter to Pt. At low Nb loadings on Pt/alumina, the CO oxidation activity and selectivity are significantly increased. The CO selectivity is 100% at conversions up to about 60%. For Pt supported on Nb{sub 2}O{sub 5}, however, the CO oxidation activity is strongly suppressed with low CO conversion but high H{sub 2} oxidation activity. Pt on niobia, therefore, is poorly selective for the PROX reaction, but is an active hydrogen oxidation catalyst, resistant to CO poisoning. For Pt supported on highly loaded Nb-alumina or Nb{sub 2}O{sub 5}, XPS indicate an increase in the Pt and Nb oxidation states. These surface changes also correlate with changes in the DRIFTS spectra suggesting that CO is more weakly adsorbed on Pt/Nb{sub 2}O{sub 5} compared to Pt/Al{sub 2}O{sub 3}, or Pt/Nb-Al{sub 2}O{sub 3}.

  3. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  4. Electronic structure modification and Fermi level shifting in niobium-doped anatase titanium dioxide thin films: a comparative study of NEXAFS, work function and stiffening of phonons.

    PubMed

    Gautam, Subodh K; Das, Arkaprava; Ojha, S; Shukla, D K; Phase, D M; Singh, Fouran

    2016-02-01

    The electronic structure and tuning of work function (WF) by electronic excitations (EEs) induced by swift heavy ions (SHIs) in anatase niobium-doped titanium dioxide (NTO) thin films is reported. The densities of EEs were varied using 80 MeV O, 130 MeV Ni and 120 MeV Ag ions for irradiation. The EE-induced modifications in electronic structure were studied by O K-edge and Ti L3,2 edge absorption spectra using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The reduction of hybridized O 2p and Ti 3d unoccupied states in the conduction band with a decrease in energy of the crystal field strength of ∼ 480 meV and the correlated effect on the decrease in the WF value of ∼ 520 meV upon increasing the total energy deposition in the lattice are evident from the study of NEXAFS and scanning Kelvin probe microscopy (SKPM), respectively. The observed stiffening in the low frequency Raman mode (LFRM) of ∼ 9 cm(-1) further validates the electronic structure modification under the influence of EE-induced strain in TiO6 octahedra. The reduction of hybridized valence states, stiffening behavior of LFRM and decrease in WF by nano-crystallization followed by amorphization and defects in NTO lattice are explained in terms of continuous, discontinuous amorphous ion tracks containing intestinally created defects and non-stoichiometry in the lattice. These studies are very appropriate for better insights of electronic structure modification during phase transformation and controlled Fermi level shifting, which plays a crucial role in controlling the charge carrier injection efficiency in opto-electronic applications and also provides a deeper understanding of the involved physical processes. PMID:26752253

  5. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports

  6. Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide

    NASA Astrophysics Data System (ADS)

    Palimar, Sowmya; Bangera, Kasturi V.; Shivakumar, G. K.

    2013-12-01

    The present paper reports observations made on investigations carried out to study structural, optical and electrical properties of thermally evaporated ZnO thin films and their modulations on doping with metallic indium and indium oxide separately. ZnO thin film in the undoped state is found to have a very good conductivity of 90 Ω-1 cm-1 with an excellent transmittance of up to 90 % in the visible region. After doping with metallic indium, the conductivity of the film is found to be 580 Ω-1 cm-1, whereas the conductivity of indium oxide-doped films is increased up to 3.5 × 103 Ω-1 cm-1. Further, the optical band gap of the ZnO thin film is widened from 3.26 to 3.3 eV when doped with indium oxide and with metallic indium it decreases to 3.2 eV. There is no considerable change in the transmittance of the films after doping. All undoped and doped films were amorphous in nature with smooth and flat surface without significant modifications due to doping.

  7. Effects of Lattice Defects and Niobium Doping on Thermoelectric Properties of Calcium Manganate Compounds for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Graff, Ayelet; Amouyal, Yaron

    2016-03-01

    We have investigated the thermoelectric (TE) properties of Ruddlesden-Popper (RP) CaO(CaMnO3) m n-type compounds, to be applied for TE waste heat recovery at elevated temperatures. We prepared several Nb-doped and undoped CaO(CaMnO3) m compounds having different CaO planar densities by controlling the Ca content via solid-state reaction, and characterized the resulting microstructures by x-ray diffraction analysis and high-resolution scanning electron microscopy. The thermal conductivity, electrical conductivity, and TE thermopower of the different compounds were measured in the range from 300 K through 1000 K. We observed a remarkable reduction in thermal conductivity as a result of increasing the CaO planar density for the Nb-doped RP compounds, from a value of 2.9 W m-1 K-1 for m = ∞ down to 1.3 W m-1 K-1 for m = 1 at 1000 K. This trend was, however, accompanied by a corresponding reduction in electrical conductivity from 76 Ω-1 cm-1 to 2.9 Ω-1 cm-1, which is associated with electron scattering. Finally, we propose an approach that enables optimization of the TE performance of these RP compounds.

  8. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.

    PubMed

    Carniato, Fabio; Bisio, Chiara; Psaro, Rinaldo; Marchese, Leonardo; Guidotti, Matteo

    2014-09-15

    A Nb(V)-containing saponite clay was designed to selectively transform toxic organosulfur chemical warfare agents (CWAs) under extremely mild conditions into nontoxic products with reduced environmental impact. Thanks to the insertion of Nb(V) sites within the saponite framework, a bifunctional catalyst with strong oxidizing and acid properties was obtained. Remarkable activity and high selectivity were observed for the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, at room temperature with aqueous hydrogen peroxide. This performance was significantly better compared to a conventional commercial decontamination powder.

  9. Effect of postdeposition annealing on the structure, composition, and the mechanical and optical characteristics of niobium and tantalum oxide films.

    PubMed

    Cetinörgü-Goldenberg, Eda; Klemberg-Sapieha, Jolanta-Ewa; Martinu, Ludvik

    2012-09-20

    Optical, mechanical, and thermal properties of optical thin films are very important for a reliable device performance. In the present work, the effect of annealing on the stability and the characteristics of niobium and tantalum oxide films grown at room temperature (RT) by dual ion beam sputtering were studied. The refractive index (n(λ)), extinction coefficient (k(λ)), hardness (H), reduced Young's modulus (E(r)), and film stress (σ) were investigated as a function of the annealing temperature (T(A)). X-ray diffraction analysis showed that all as-deposited films were amorphous, and crystallization was observed only after annealing at 700°C. Compositional analyses confirmed that the atomic ratio of oxygen to metal in as-deposited and annealed films was close to 2.5, indicating that the films were stoichiometric pentoxides of Nb and Ta. The properties of Nb(2)O(5) and Ta(2)O(5) films were, respectively, affected by postdeposition annealing: n(λ) values (at 550 nm) decreased from 2.30 to 2.20 and from 2.14 to 2.08, the average H and E(r) values increased from 5.6 to 7.4 GPa, and from 121 to 132 GPa for Nb(2)O(5), and from 6.5 to 8.3 GPa, and from 132 to 144 GPa for Ta(2)O(5), and the initial low compressive stress for both materials changed to tensile. We explain the variation of the coating material properties in terms of film stoichiometry, crystallinity, electronic structure, and possible reactions at the film-substrate interface.

  10. Radiopacity, pH and antimicrobial activity of Portland cement associated with micro- and nanoparticles of zirconium oxide and niobium oxide.

    PubMed

    Guerreiro Tanomaru, Juliane Maria; Storto, Inara; Da Silva, Guilherme Ferreira; Bosso, Roberta; Costa, Bernardo Cesar; Bernardi, Maria Inês Basso; Tanomaru-Filho, Mário

    2014-01-01

    The aim of this study was to evaluate some properties of the calcium silicate materials Mineral Trioxide Aggregate (MTA) and Portland cement (PC) with microparticulated (micro) and nanoparticulated (nano) zirconium oxide (ZrO2) or niobium oxide (Nb2O5). The experimental materials: White PC (PC), MTA-Angelus(®) (MTA), PC+ZrO2micro, PC+ZrO2nano, PC+Nb2O5micro and PC+Nb2O5nano were submitted to radiopacity and pH evaluations. Furthermore, the antimicrobial activity against different microorganisms was assessed by agar diffusion test. MTA presented higher radiopacity than other materials. However, all materials except PC presented higher radiopacity than recommended by ISO/ADA. MTA promoted higher pH values in all analyzed periods (p≤0.05). At the initial periods, PC and PC+ZrO2micro showed pH similar to MTA. All materials showed antimicrobial activity against the evaluated microorganisms. In conclusion, ZrO2 and Nb2O5 could be alternative radiopacifiers to be added to calcium silicate materials.

  11. Synthesis and catalytic properties of mesoporous, bifunctional, gallium-niobium mixed oxides.

    PubMed

    Deshmane, Chinmay A; Jasinski, Jacek B; Ratnasamy, Paul; Carreon, Moises A

    2010-09-14

    Thermally stable mesoporous Ga-Nb mixed oxides, active in both acid-catalysed and redox reactions have been synthesized via self-assembly hydrothermal assisted approach. Methyl oleate, a major component of biodiesels, undergoes double bond and skeletal isomerisation as well as dehydrogenation over these novel mesophases.

  12. [Lead adsorption and arsenite oxidation by cobalt doped birnessite].

    PubMed

    Yin, Hui; Feng, Xiong-Han; Qiu, Guo-Hong; Tan, Wen-Feng; Liu, Fan

    2011-07-01

    In order to study the effects of transition metal ions on the physic-chemical properties of manganese dioxides as environmental friendly materials, three-dimensional nano-microsphere cobalt-doped birnessite was synthesized by reduction of potassium permanganate by mixtures of concentrated hydrochloride and cobalt (II) chloride. Powder X-ray diffraction, chemical analysis, N2 physical adsorption, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectra (XPS) were used to characterize the crystal structure, chemical composition and micro-morphologies of products. In the range of molar ratios from 0.05 to 0.20, birnessite was fabricated exclusively. It was observed that cobalt incorporated into the layers of birnessite and had little effect on the crystal structure and micromorpholgy, but crystallinity decreased after cobalt doping. Both chemical analysis and XPS results showed that manganese average oxidation state decreased after cobalt doping, and the percentage of Mn3+ increased. Co(III) OOH existed mainly in the structure. With the increase of cobalt, hydroxide oxygen percentage in molar increased from 12.79% for undoped birnessite to 13.05%, 17.69% and 17.79% for doped samples respectively. Adsorption capacity for lead and oxidation of arsenite of birnessite were enhanced by cobalt doping. The maximum capacity of Pb2+ adsorption increased in the order HB (2 538 mmol/kg) < CoB5 (2798 mmol/kg) < CoB10 (2932 mmol/kg) < CoB20 (3 146 mmol/kg). Oxidation percentage of arsenite in simulated waste water by undoped birnessite was 76.5%, those of doped ones increased by 2.0%, 12.8% and 18.9% respectively. Partial of Co3+ substitution for Mn4+ results in the increase of negative charge of the layer and the content of hydroxyl group, which could account for the improved adsorption capacity of Pb2+. After substitution of manganese by cobalt, oxidation capacity of arsenite by birnessite increases likely due to the higher standard redox potential of

  13. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery.

    PubMed

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2014-01-01

    A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications.

  14. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery.

    PubMed

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2014-01-01

    A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications. PMID:24279888

  15. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys.

    PubMed

    da Silva, Luciano Monteiro; Claro, Ana Paula Rosifini Alves; Donato, Tatiani Ayako Goto; Arana-Chavez, Victor E; Moraes, João Carlos Silos; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto

    2011-05-01

    The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys. This article presents the effect of heat treatment and oxygen doping in some mechanical properties and the biocompatibility of three alloys of the Ti-Nb system, characterized by density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, in vitro cytotoxicity, and mechanical spectroscopy.

  16. Purification of Niobium by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.

    2016-06-01

    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  17. Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery

    SciTech Connect

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2014-01-01

    Graphite felts (GFs), as typical electrode materials for all vanadium redox flow batteries (VRBs), limit the cell operation to low current density because of their poor kinetic reversibility and electrochemical activity. Here, in order to address this issue we report an electrocatalyst, Nb2O5, decorating the surface of GFs to reduce the activation barrier for redox conversion. Nb2O5 nanofibers with monoclinic phases are synthesized by hydrothermal method and deposited on GFs, which is confirmed to have catalytic effects towards redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side, and thus applied in both electrodes of VRB cells. Due to the low conductivity of Nb2O5, the performance of electrodes heavily depends on the nano size and uniform distribution of catalysts on GFs surfaces. The addition of the water-soluble compounds containing W element into the precursor solutions facilitates the precipitation of nanofibers on the GFs. Accordingly, an optimal amount of W-doped Nb2O5 nanofibers with weaker agglomeration and better distribution on GFs surfaces are obtained, leading to significant improvement of the electrochemical performances of VRB cells particularly under the high power operation. The corresponding energy efficiency is enhanced by 10.7 % under the operation of high charge/discharge current density (150 mA•cm-2) owing to faster charge transfer as compared with that without catalysts. These results suggest that Nb2O5 based nanofibers-decorating GFs hold great promise as high-performance electrodes for VRB applications.

  18. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    PubMed

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  19. Characterization of Niobium Oxide Films Deposited by High Target Utilization Sputter Sources

    SciTech Connect

    Chow, R; Ellis, A D; Loomis, G E; Rana, S I

    2007-01-29

    High quality, refractory metal, oxide coatings are required in a variety of applications such as laser optics, micro-electronic insulating layers, nano-device structures, electro-optic multilayers, sensors and corrosion barriers. A common oxide deposition technique is reactive sputtering because the kinetic mechanism vaporizes almost any solid material in vacuum. Also, the sputtered molecules have higher energies than those generated from thermal evaporation, and so the condensates are smoother and denser than those from thermally-evaporated films. In the typical sputtering system, target erosion is a factor that drives machine availability. In some situations such as nano-layered capacitors, where the device's performance characteristics depends on thick layers, target life becomes a limiting factor on the maximizing device functionality. The keen interest to increase target utilization in sputtering has been addressed in a variety of ways such as target geometry, rotating magnets, and/or shaped magnet arrays. Also, a recent sputtering system has been developed that generates a high density plasma, directs the plasma beam towards the target in a uniform fashion, and erodes the target in a uniform fashion. The purpose of this paper is to characterize and compare niobia films deposited by two types of high target utilization sputtering sources, a rotating magnetron and a high density plasma source. The oxide of interest in this study is niobia because of its high refractive index. The quality of the niobia films were characterized spectroscopically in optical transmission, ellipsometrically, and chemical stoichiometry with X-ray photo-electron spectroscopy. The refractive index, extinction coefficients, Cauchy constants were derived from the ellipsometric modeling. The mechanical properties of coating density and stress are also determined.

  20. Electrical Properties of Electrospun Sb-Doped Tin Oxide Nanofibers

    NASA Astrophysics Data System (ADS)

    León-Brito, Neliza; Melendez, Anamaris; Ramos, Idalia; Pinto, Nicholas J.; Santiago-Aviles, Jorge J.

    2007-03-01

    Transparent and conducting tin oxide fibers are of considerable interest for solar energy conversion, sensors and in various electrode applications. Appropriate doping can further enhance the conductivity of the fibers without loosing optical transparency. Undoped and antimony-doped tin oxide fibers have been synthesized by our group in previous work using electrospinning and metallorganic decomposition techniques. The undoped tin oxide fibers were obtained using a mixture of pure tin oxide sol made from tin (IV) chloride : water : propanol : isopropanol at a molar ratio of 1:9:9:6, and a viscous solution made from poly(ethylene oxide) (PEO) and chloroform at a ratio of 200 mg PEO/10 mL chloroform. In this work, antimony doped fibers were obtained by adding a dopant solution of antimony trichloride and isopropanol at a ratio of 2.2812 g antimony trichloride/10 ml isopropanol to the original tin oxide precursor solution. The Sb concentration in the precursor solution is 1.5%. After deposition, the fibers were sintered 600°C in air for two hours. The electrical conductivity of single fibers measured at room temperature increases by up to three orders of magnitude when compared to undoped fibers prepared using the same method. The resistivity change as a function of the annealing temperature can be attributed to the thermally activated formation of a nearly stoichoimetric solid. The resistivity of the fibers changes monotonically with temperature from 714Ω-cm at 2 K to 0.1Ω-cm at 300 K. In the temperature range from 2 to 8 K the fibers have a positive magnetoresistance (MR) with the highest value of 155 % at 2 K and ±9 T. At temperatures of 10 and 12 K the sign of MR changes to negative values for low magnetic fields and positive for high magnetic fields. For higher temperatures (15 K and above) the MR becomes negative and its magnitude decreases with temperature.

  1. Photochemical doping of graphene oxide with nitrogen for photoluminescence enhancement

    SciTech Connect

    Liu, Fuchi; Tang, Nujiang; Tang, Tao; Liu, Yuan; Feng, Qian; Zhong, Wei; Du, Youwei

    2013-09-16

    Nitrogen-doped graphene oxide (NGO) was synthesized by irradiation of graphene oxide (GO) in NH{sub 3} atmosphere. NGO obtained by irradiation of GO for 10 min has high N content of 13.62 at. %. The photoluminescence (PL) properties of NGO were investigated. The results showed that compared with GO, NGO exhibits significant PL enhancement with a high enhancement ratio of approximately 1501.57%. It may attribute to the high content of amino-like N, which can effectively enhance PL of GO because of the amino conjugation effect.

  2. Macro- and microscopic properties of strontium doped indium oxide

    SciTech Connect

    Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I.; Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A.

    2014-07-28

    Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In{sub 2}O{sub 3}:(SrO){sub x} were investigated for materials with different doping levels at different temperatures (T = 20–300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn{sub 2}O{sub 4}. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100–200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10{sup −13} cm{sup 2}/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

  3. Raman Spectroscopy as a Probe of Surface Oxides and Hydrides on Niobium

    SciTech Connect

    J. Zasadzinski, B. Albee, S. Bishnoi, C. Cao, G. Ciovati, L.D. Cooley, D.C. Ford, Th. Proslier

    2011-07-01

    Raman microscopy/spectroscopy has been used in conjunction with AFM, tunneling and magnetic susceptibility to identify surface oxides and hydrides on annealed, recrystallized foils of high purity Nb and on single crystals of cavity grade Nb. Cold worked regions of the Nb foil as well as rough regions near grain boundaries showed clear evidence of ordered hydride phases which were identified by VASP phonon calculations. Cold worked regions also displayed enhanced surface paramagnetism. Surface enhanced Raman spectra have also been obtained using 1.0 nm Au depositon. The SERS spectra reveal hydride molecular species which are not observable by conventional Raman. These results indicate that Raman is a useful probe of Nb surfaces relevant for cavity performance

  4. Highly Conducting Transparent Indium-Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2014-09-01

    Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature ( T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm-3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10-4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.

  5. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    NASA Astrophysics Data System (ADS)

    Nasir, M. F.; Zainol, M. N.; Hannas, M.; Mamat, M. H.; Rahman, S. A.; Rusop, Mohamad

    2016-07-01

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 103 Ωcm-1. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.

  6. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  7. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  8. Are Magnetically Doped Transition-metal Oxides Spin-glasses?

    NASA Astrophysics Data System (ADS)

    Lussier, A.; Dvorak, J.; Idzerda, Y. U.; Ogale, S. B.; Shinde, S. R.; Venkatesan, T.; Lofland, S. E.

    2004-03-01

    Many magnetic impurity doped transition-metal oxides exhibit ferromagnetism at room temperature. Some also exhibit strange magnetic aging behavior. One such material is Co-doped SnO2 which displays a saturation magnetization decrease over time, as well as with successive field applications. From the theoretical perspective, there are two prerequisites for spin-glass behavior which are both satisfied for these samples: disorder and frustration. Disorder is readily satisfied because the dilute magnetic impurities are randomly scattered. Additionally, the suggested RKKY interaction between magnetic impurities, coupled with their random spacing, likely results in frustration. Magnetometry, XAS, and XMCD measurements, with temperature, measurement time, and history dependence help elucidate the magnetic order in these materials, and are consistent with spin-glass character. We would like to acknowledge the support of NSF (MSU), the Office of Naval Research (MSU), DARPA SpinS (UMD) and NSF-MRSEC (UMD).

  9. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  10. FETs Based on Doped Polyaniline/Polyethylene Oxide Fibers

    NASA Technical Reports Server (NTRS)

    Theofylaktos, Noulie; Robinson, Daryl; Miranda, Felix; Pinto, Nicholas; Johnson, Alan, Jr.; MacDiarmid, Alan; Mueller, Carl

    2006-01-01

    A family of experimental highly miniaturized field-effect transistors (FETs) is based on exploitation of the electrical properties of nanofibers of polyaniline/ polyethylene oxide (PANi/PEO) doped with camphorsulfonic acid. These polymer-based FETs have the potential for becoming building blocks of relatively inexpensive, low-voltage, highspeed logic circuits that could supplant complementary metal oxide/semiconductor (CMOS) logic circuits. The development of these polymerbased FETs offers advantages over the competing development of FETs based on carbon nanotubes. Whereas it is difficult to control the molecular structures and, hence, the electrical properties of carbon nanotubes, it is easy to tailor the electrical properties of these polymerbased FETs, throughout the range from insulating through semiconducting to metallic, through choices of doping levels and chemical manipulation of polymer side chains. A further advantage of doped PANi/PEO nanofibers is that they can be made to draw very small currents and operate at low voltage levels, and thus are promising for applications in which there are requirements to use many FETs to obtain large computational capabilities while minimizing power demands. Fabrication of an experimental FET in this family begins with the preparation of a substrate as follows: A layer of silicon dioxide between 50 and 200 nm thick is deposited on a highly doped (resistivity 0.01 W.cm) silicon substrate, then gold electrodes/contact stripes are deposited on the oxide. Next, one or more fibers of camphorsulphonic acid-doped PANi/PEO having diameters of the order of 100 nm are electrospun onto the substrate so as to span the gap between the gold electrodes (see Figure 1). Figure 2 depicts measured current-versus-voltage characteristics of the device of Figure 1, showing that saturation channel currents occur at source-todrain potentials that are surprisingly low, relative to those of CMOS FETs. The hole mobility in the depletion regime in

  11. Transparent conducting oxides: A δ-doped superlattice approach

    NASA Astrophysics Data System (ADS)

    Cooper, Valentino; Lee, Suyoun; Seo, Sung Seok; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-03-01

    Interfaces between dissimilar insulating oxides have been shown to exhibit intriguing phenomena such as metallic states, superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using first principles simulations we examine the effect of SrTiO3 (STO) spacer layer thickness on the physical and chemical properties of La δ-doped STO superlattices. In superlattices with relatively thin STO layers, we predict that three-dimensional conduction would occur due to appreciable overlap of the quantum mechanical wavefunctions between neighboring δ-doped layers. Experimentally these superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2 p and Ti d states. These results highlight the potential for using superlattice thickness as a means for tuning the properties of oxide heterostructures with demonstrated importance for optoelectronic devices; providing a unique route for creating transparent conducting oxides. Supported by: U.S. D.O.E, Basic Energy Sciences, Materials Sciences and Engineering Division (V.R.C., W.S.C., H.N.L., S.O., S.S.A.S), the Office of Science Early Career Research Program (V.R.C) and the Korea Insitute of Technology (SL).

  12. Significant improvement in electronic properties of transparent amorphous indium zinc oxide through yttrium doping

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Yu, Zhigen; Huang, Yanhua; Xia, Yijie; Lai, Weng Soon; Gong, Hao

    2014-04-01

    One big challenge in transparent conducting oxides (TCOs) is to achieve high conductivity and mobility at a low processing temperature. Although optimized conductivity has been achieved in indium zinc oxide (IZO) without doping, it is still interesting to find whether doping can improve conductivity of IZO further. In this paper, we report a low processing temperature achievement of high conductivity and mobility of IZO through yttrium (Y) doping. We found that with different Y doping levels, room temperature fabricated amorphous IZO (a-IZO) samples can be controlled to exhibit either metallic or semiconductor characteristics. Y2O3 is demonstrated to be an effective doping source to achieve conductivity 300% higher than the non-doped IZO sample. Anomalously improved mobility of certain Y2O3-doped IZO samples compared with the non-doped IZO sample is found and analyzed. Besides, a low-temperature resistivity anomaly (semiconductor metal transition) phenomenon is observed and discussed.

  13. Unusual dielectric response in cobalt doped reduced graphene oxide

    SciTech Connect

    Akhtar, Abu Jahid; Gupta, Abhisek; Kumar Shaw, Bikash; Saha, Shyamal K.

    2013-12-09

    Intensive research on cobalt doped reduced graphene oxide (Co-RGO) to investigate the modification in graphene magnetism and spin polarization due to presence of transition metal atom has been carried out, however, its dielectric spectroscopy, particularly, how capacitance changes with impurity levels in graphene is relatively unexplored. In the present work, dielectric spectroscopy along with magneto-dielectric effect are investigated in Co-RGO. Contrary to other materials, here permittivity increases abruptly with frequency in the low frequency region and continues to increase till 10{sup 7} Hz. This unusual behavior is explained on the basis of trap induced capacitance created due to impurity levels.

  14. Luminescent properties of alumina ceramics doped with chromium oxide

    NASA Astrophysics Data System (ADS)

    Kortov, V.; Kiryakov, A.; Pustovarov, V.

    2016-08-01

    Ceramics doped with chromium oxide were synthesized from alumina nanopowder at high heating and cooling rates. XRD analysis of the obtained samples shows that they consist mainly of Al2O3 α-phase. Photoluminescence (PL) spectra in the visible spectral region and thermoluminescence (TL) curves were measured. An effect of the dopant concentration on the intensity and shape of the PL bands as well as on the TL yield was found. Annealing of the quenching defects which emerged during the synthesis changed the PL spectra. The centers responsible for PL and TL in the synthesized ceramics were identified.

  15. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  16. Measurement of the high-field Q-drop in a high-purity large-grain niobium cavity for different oxidation processes

    SciTech Connect

    Ciovati, Gianluigi; Kneisel, Peter; gurevich, alex

    2007-06-01

    The most challenging issue for understanding the performance of superconducting radio-frequency (rf) cavities made of high-purity (residual resistivity ratio > 200) niobium is due to a sharp degradation (“Q-drop”) of the cavity quality factor Q0(Bp) as the peak surface magnetic field (Bp) exceeds about 90 mT, in the absence of field emission. In addition, a low-temperature (100 – 140 C) “in-situ” baking of the cavity was found to be beneficial in reducing the Q-drop. In this contribution, we present the results from a series of rf tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes, after initial buffered chemical polishing, such as anodization, baking in pure oxygen atmosphere and baking in air up to 180 °C, with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system allows measuring the local temperature rise of the cavity outer surface due to rf losses, which gives information about the losses location, their field dependence and space distribution. The results confirmed that the depth affected by baking is about 20 – 30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 °C in pure oxygen atmosphere or in air up to 180 °C. These treatments increased the oxide thickness and oxygen concentration, measured on niobium samples which were processed with the cavity and were analyzed with Transmission Electron Microscope (TEM) and Secondary Ion Mass Spectroscopy (SIMS). Nevertheless, the performance of the cavity after air baking at 180 °C degraded significantly and the temperature maps showed high losses, uniformly distributed on the surface, which could be completely recovered only by a post-purification treatment at 1250 °C. A statistic of the position of the “hot-spots” on the

  17. A new molecular precursor route for the synthesis of Bi-Y, Y-Nb and Bi-doped Y-Nb oxides at moderate temperatures

    SciTech Connect

    Bayot, D.A.; Dupont, A.M.; Devillers, Michel M.

    2007-03-15

    Yttrium-based multimetallic oxides containing bismuth and/or niobium were prepared by a method starting from pre-isolated stable water-soluble precursors which are complexes with the ethylenediaminetetraacetate ligand (edta). The cubic Bi{sub 1-} {sub x} Y {sub x} O{sub 1.5} (x=0.22, 0.25 and 0.3) and Y{sub 3}NbO{sub 7} oxides were obtained in a pure form in a range of moderate temperatures (600-650 deg. C). This preparation method also allowed to stabilize at room temperature, without quenching, the tetragonal YNbO{sub 4} oxide in a distorted form (T'-phase) by calcining the precursor at 800 deg. C. When heated up to 1000 deg. C, this metastable T'-phase transforms into the metastable 'high-temperature' T oxide, which converts on cooling down to room temperature into the thermodynamically stable monoclinic M oxide. Doping the YNbO{sub 4} oxide with Bi{sup 3+} cations (0.5% and 1% Bi with respect to total Bi+Y amount) led at 800 deg. C to a mixture of the T'-phase and the thermodynamically stable monoclinic one. At 900 deg. C, the almost pure monoclinic structure was obtained. - Graphical abstract: Bi-Y, Nb-Y and Bi-doped Nb-Y oxides were prepared by a molecular precursors method from pre-isolated water-soluble edta-based complexes. The cubic Bi{sub 1-} {sub x} Y {sub x} O{sub 1.5} and Y{sub 3}NbO{sub 7} oxides were obtained in a pure form at the moderate temperature of 650 deg. C. A distorted tetragonal YNbO{sub 4} phase was also stabilized at room temperature by calcining the precursor at 800 deg. C, and the pure corresponding monoclinic oxide has been obtained near 1100 deg. C.

  18. Energetics of Rare Earth Doped Uranium Oxide Solid Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    The physical and chemical properties of UO2 nuclear fuels are affected as fission products accumulate during irradiation. The lanthanides, a main group of fission products, form extensive solid solutions with uranium oxide in the fluorite structure. Thermodynamic studies of such solid solutions had been performed to obtain partial molar free energies of oxygen as a function of dopant concentration and temperature; however, direct measurement of formation enthalpies was hampered by the refractory nature of these oxides. In this work, high temperature oxide melt solution calorimetry was utilized to study the thermochemistry of various rare earth doped uranium oxide LnxU 1-xO2-0.5x+y (Ln = La, Y, Nd) over a wide range of dopant concentrations and oxygen contents. The sintered solid solutions were carefully characterized to determine their phase purity, chemical composition, and uranium oxidation state, with most of the materials in the oxygen excess regime. The enthalpies of formation of LnxU1-xO2-0.5x+y were calculated from the calorimetric data. The oxidation enthalpies of these solid solutions are similar to that of UO2. The formation enthalpies from constituent oxides (LnO1.5, UO2, and UO3) become increasingly negative with addition of dopant cations and appear relatively independent of the uranium oxidation state (oxygen content) when the type and concentration of the dopants are the same. This is valid in the oxygen excess regime; thus an estimation of formation enthalpies of LnxU1-xO2 materials can be made. The formation enthalpies from elements of hyperstoichiometric LnxU1-xO 2-0.5x+y materials obtained from calorimetric measurements are in good agreement with those calculated from free energy data. A direct comparison between the formation enthalpies from calorimetric study and computational research using density functional theory was also performed. The experimental and computational energies of LnxU 1-xO2 (Ln = La, Y, Nd) generally agree within 10 k

  19. Chemistry of (and on) transition metal clusters: a Fourier transform ion cyclotron resonance study of the reaction of niobium cluster cations with nitric oxide.

    PubMed

    Harding, Daniel J; Oliver, Thomas A A; Walsh, Tiffany R; Drewello, Thomas; Woodruff, D Phil; Derrick, Peter J; Mackenzie, Stuart R

    2009-01-01

    The reactions of niobium cluster cations, Nb(+)(n) (n = 2-19), with nitric oxide have been investigated using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR). The overall reaction rate constants are found to be in reasonable agreement with collision rates calculated using the surface charge capture model. The dominant reaction for small clusters (n <9) involves reaction-induced fragmentation resulting in the loss of either NbO or NbN. By contrast, the main reaction observed for the larger clusters (n> 11) is sequential NO chemisorption. Clusters n = 9, 10 exhibit both extremes of behaviour and are the only clusters upon which there is evidence of NO decomposition with N(2) loss observed whenever multiple NO molecules are co-adsorbed. The rate constants for each process have been determined as a function of cluster size.

  20. Assessment of the Morphological, Biochemical, and Kinetic Properties for Candida rugosa Lipase Immobilized on Hydrous Niobium Oxide to Be Used in the Biodiesel Synthesis

    PubMed Central

    Miranda, Michele; Urioste, Daniele; Andrade Souza, Livia T.; Mendes, Adriano A.; de Castro, Heizir F.

    2011-01-01

    Lipase from Candida rugosa (CRL) was immobilized by covalent attachment on hydrous niobium oxide. The matrix could effectively be attached to the enzyme with high retention of activity and prevent its leakage. Following immobilization, CRL exhibited improved storage stability and performed better at higher incubation temperatures. In addition, the enzyme retained most of its catalytic efficiency after successive operational cycles. The immobilized derivative was also fully characterized with respect to its morphological properties: particle size, surface specific area, and pore size distribution. Structural integrity and conformational changes, such as surface cavities in the support, set by the lipase procedure, were observed by Scanning Electron Microscopy. Additionally, a comparative study between free and immobilized lipases was provided in terms of pH, temperature, and thermal stability. CRL derivative was evaluated for the synthesis of biodiesel employing babassu oil and short chain alcohols. The process was feasible only for oil and butanol reaction system. PMID:21876790

  1. Effect of doping of tin on optoelectronic properties of indium oxide: DFT study

    SciTech Connect

    Tripathi, Madhvendra Nath

    2015-06-24

    Indium tin oxide is widely used transparent conductor. Experimentally observed that 6% tin doping in indium oxide is suitable for optoelectronic applications and more doping beyond this limit degrades the optoelectronic property. The stoichiometry (In{sub 32-x}Sn{sub x}O{sub 48+x/2}; x=0-6) is taken to understand the change in lattice parameter, electronic structure, and optical property of ITO. It is observed that lattice parameter increases and becomes constant after 6% tin doping that is in good agreement of the experimental observation. The electronic structure calculation shows that the high tin doping in indium oxide adversely affects the dispersive nature of the bottom of conduction band of pure indium oxide and decreases the carrier mobility. Optical calculations show that transmittance goes down upto 60% for the tin concentration more than 6%. The present paper shows that how more than 6% tin doping in indium oxide adversely affects the optoelectronic property of ITO.

  2. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys.

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modification of niobium alloys prior to coating with Si-20Cr-20Fe and slurry composition modification were investigated to improve performance in a 1370 C, ambient pressure, slow-cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe coated Cb-752 and FS-85 to 57 and 41 cycles, respectively (50 and 20 percent improvements in weight parity life, respectively).

  3. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, Steven A.; Creech, Edward T.; Northcutt, Walter G.

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  4. Charge Compensated (Al, N) Co-Doped Zinc Oxide (ZnO) Films for Photlelectrochemical Application

    SciTech Connect

    Shet, S.

    2012-01-01

    ZnO thin films with significantly reduced bandgaps were synthesized by doping N and co-doping Al and N at 100oC. All the films were synthesized by radio-frequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that co-doped ZnO:(Al,N) thin films exhibited significantly enhanced crystallinity as compared to ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N) films exhibited improved photocurrents than ZnO:N films grown with pure N doping, suggesting that charge-compensated donor-acceptor co-doping could be a potential method for bandgap reduction of wide-bandgap oxide materials to improve their photoelectrochemical performance.

  5. Method of preparing doped oxide catalysts for lean NOx exhaust

    DOEpatents

    Park, Paul W.

    2004-03-09

    The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  6. Growth study and photocatalytic properties of Co-doped tungsten oxide mesocrystals

    SciTech Connect

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2012-11-15

    Cobalt-doped tungsten oxide mesocrystals with different morphologies have been successfully generated using a solvothermal method with tungsten hexachloride and cobalt chloride salts as precursors. The resulting mesocrystals were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller analysis of nitrogen sorptometer, and UV-vis diffuse reflectance spectroscopy. The photocatalytic properties of the cobalt-doped tungsten oxide mesocrystals were evaluated on the basis of their ability to degrade methyl orange in an aqueous solution under simulated sunlight irradiation. Results showed that the cobalt doping had obvious effect on the morphologies of the final products, and lenticular and blocky cobalt-doped tungsten oxide mesocrystals could be obtained with 1.0 wt.% and 2.0 wt.% cobalt doping, respectively. The cobalt-doped tungsten oxides exhibited superior photocatalytic activities to that of the undoped tungsten oxide. - Graphical abstract: Schematic illustrations of the growth of the bundled nanowires, lenticular mesocrystals, and blocky mesocrystals. Highlights: Black-Right-Pointing-Pointer Co-doped W{sub 18}O{sub 49} mesocrystals were synthesized using a solvothermal method. Black-Right-Pointing-Pointer The Co doping has obvious effect on the morphology of the final mesocrystals. Black-Right-Pointing-Pointer The Co-doped W{sub 18}O{sub 49} exhibited superior photocatalytic activity to the undoped W{sub 18}O{sub 49}.

  7. Stabilizing the ferroelectric phase in doped hafnium oxide

    SciTech Connect

    Hoffmann, M.; Schroeder, U.; Schenk, T.; Shimizu, T.; Funakubo, H.; Sakata, O.; Pohl, D.; Drescher, M.; Adelmann, C.; Materlik, R.; Kersch, A.; Mikolajick, T.

    2015-08-21

    The ferroelectric properties and crystal structure of doped HfO{sub 2} thin films were investigated for different thicknesses, electrode materials, and annealing conditions. Metal-ferroelectric-metal capacitors containing Gd:HfO{sub 2} showed no reduction of the polarization within the studied thickness range, in contrast to hafnia films with other dopants. A qualitative model describing the influence of basic process parameters on the crystal structure of HfO{sub 2} was proposed. The influence of different structural parameters on the field cycling behavior was examined. This revealed the wake-up effect in doped HfO{sub 2} to be dominated by interface induced effects, rather than a field induced phase transition. TaN electrodes were shown to considerably enhance the stabilization of the ferroelectric phase in HfO{sub 2} compared to TiN electrodes, yielding a P{sub r} of up to 35 μC/cm{sup 2}. This effect was attributed to the interface oxidation of the electrodes during annealing, resulting in a different density of oxygen vacancies in the Gd:HfO{sub 2} films. Ab initio simulations confirmed the influence of oxygen vacancies on the phase stability of ferroelectric HfO{sub 2}.

  8. Strontium adsorption on tantalum-doped hexagonal tungsten oxide.

    PubMed

    Li, Xingliang; Mu, Wanjun; Xie, Xiang; Liu, Bijun; Tang, Hui; Zhou, Guanhong; Wei, Hongyuan; Jian, Yuan; Luo, Shunzhong

    2014-01-15

    Hexagonal tungsten oxide (hex-WO3) has the potential to separate (137)Cs and (90)Sr from nuclear power plant or fission (99)Mo production waste. This study aims to increase the capacity of hex-WO3 to adsorb Sr(2+). Ta-doped hex-WO3 was synthesized by the hydrothermal treatment of sodium tungstate dihydrate and tantalum chloride in concentrated HCl, in the presence of ammonium sulfate. Incorporating Ta into the WO3 framework caused the interlayer spacing to expand, and the band gap to shift to higher energy. The Sr(2+) adsorption capacity of Ta-doped hex-WO3 was significantly higher than that of hex-WO3. Sr(2+) adsorption reached equilibrium within 2h in acidic solution. Maximum Sr(2+) removal occurred at pH 4. Sr(2+) uptake by hex-WO3 was described better by the Freundlich model than by the Langmuir model. Sr(2+) adsorption on hex-WO3 was spontaneous under the studied conditions.

  9. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups.

    PubMed

    Dong, Haifeng; Zhao, Yong; Tang, Yifan; Burkert, Seth C; Star, Alexander

    2015-05-27

    We demonstrate a facile synthesis of different nanostructures by oxidative unzipping of stacked nitrogen-doped carbon nanotube cups (NCNCs). Depending on the initial number of stacked-cup segments, this method can yield graphene nanosheets (GNSs) or hybrid nanostructures comprised of graphene nanoribbons partially unzipped from a central nanotube core. Due to the stacked-cup structure of as-synthesized NCNCs, preventing complete exposure of graphitic planes, the unzipping mechanism is hindered, resulting in incomplete unzipping; however, individual, separated NCNCs are completely unzipped, yielding individual nitrogen-doped GNSs. Graphene-based materials have been employed as electrocatalysts for many important chemical reactions, and it has been proposed that increasing the reactive edges results in more efficient electrocatalysis. In this paper, we apply these graphene conjugates as electrocatalysts for the oxygen reduction reaction (ORR) to determine how the increase in reactive edges affects the electrocatalytic activity. This investigation introduces a new method for the improvement of ORR electrocatalysts by using nitrogen dopants more effectively, allowing for enhanced ORR performance with lower overall nitrogen content. Additionally, the GNSs were functionalized with gold nanoparticles (GNPs), resulting in a GNS/GNP hybrid, which shows efficient surface-enhanced Raman scattering and expands the scope of its application in advanced device fabrication and biosensing.

  10. High dielectric constant nickel-doped titanium oxide films prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Yen, Chih-Feng; Fan, Cho-Han

    2014-09-01

    The electrical characteristics of nickel-doped titanium oxide films prepared by liquid-phase deposition on p-type (100) silicon substrate were investigated. The aqueous solutions of ammonium hexafluorotitanate and boric acid were used as precursors for the growth of titanium oxide films and the dielectric constant is 29. The dielectric constant can be improved to 94 by nickel doping at the thermal annealing at 700 °C in nitrous oxide.

  11. Conductivity study of nitrogen-doped calcium zinc oxide prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Hsu, Yu-Ting; Lan, Wen-How; Huang, Kai-Feng; Lin, Jia-Ching; Chang, Kuo-Jen

    2016-01-01

    In this study, the spray pyrolysis method was used to prepare unintentionally doped and nitrogen-doped calcium zinc oxide films by using zinc acetate, calcium nitrate precursor, and ammonium acetate precursor. Morphological and structural analyses were conducted using scanning electron microscopy and X-ray diffraction. The results indicated that film grain size decreased as the nitrogen doping was increased. Both calcium oxide and zinc oxide structures were identified in the unintentionally doped calcium zinc oxide. When nitrogen doping was introduced, the film mainly exhibited a zinc oxide structure with preferred (002) and (101) orientations. The concentration and mobility were investigated using a Hall measurement system. P-type films with a mobility and concentration of 10.6 cm2 V-1 s-1 and 2.8×1017 cm-3, respectively, were obtained. Moreover, according to a temperature-dependent conductivity analysis, an acceptor state with activation energy 0.266 eV dominated the p-type conduction for the unintentionally doped calcium zinc oxide. By contrast, a grain boundary with a barrier height of 0.274-0.292 eV dominated the hole conduction for the nitrogen-doped calcium zinc oxide films.

  12. Doped titanium oxide photcatalysts: Preparation, structure and interaction with viruses

    NASA Astrophysics Data System (ADS)

    Li, Qi

    Since the discovery of photoelectrochemical splitting of water on n-titanium oxide (n-TiO2) electrodes by Fujishima and Honda in 1972, there has been much interest in semiconductor-based materials as photocatalysts for both solar energy conversion and environmental applications in the past several decades. Among various semiconductor-based photocatalysts, TiO2 is the only candidate suitable for industrial use because of its high chemical stability, good photoactivity, relatively low cost, and nontoxicity. However, the photocatalytic capability of TiO 2 is limited to only ultraviolet (UV) light (wavelength, lambda, < 400 nm), seriously limiting its solar efficiency. In this study, both chemical and physical modification approaches were developed to extend the absorption band-edge of TiO2 into the visible light region with improved stability, photocatalytic efficiency and ease of the doping process. Two major approaches were used in the material synthesis and processing, including the ion-beam-assisted-deposition (IBAD) technique and sol-gel based processes. Both nitrogen-doped TiO2 (TiON) and nitrogen/palladium co-doped TiO2 (TiON/PdO) photocatalysts were created and their photocatalytic activity was investigated by the degradation of methylene blue (MB) and disinfection of bacteria and viruses under visible light illumination. The sol-gel process was optimized to produce high quality TiON-based photocatalysts by carefully modulating the precursor ratio and calcination temperature. A TiON inverse opal structure was created, which demonstrated enhanced visible light absorption and subsequently improved photocatalytic efficiency by the combination of chemical and physical modifications on n-TiO2. The effect of palladium dopant on the optical and photocatalytic properties of TiON/PdO photocatalyst was examined, which suggests that a careful optimization of the transition metal ion dopant concentration is needed to achieve high photocatalytic efficiency in these anion

  13. A spiraled niobium tin superconductive ribbon

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1973-01-01

    Copper film is vapor-deposited on clean ribbon and sprayed with photosensitive etch-resistant material. Photographic film masks are placed on ribbon and exposed to ultraviolet light. Etchant removes copper and exposure to oxidizing atmosphere forms niobium oxide. Photosensitive material is removed and ribbon is immersed in molten temperatures.

  14. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    NASA Astrophysics Data System (ADS)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  15. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.

  16. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    PubMed Central

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  17. Gold on oxide-doped alumina supports as catalysts for CO oxidation

    NASA Astrophysics Data System (ADS)

    Carabineiro, Sónia A. C.; Tavares, Pedro B.; Figueiredo, José L.

    2012-03-01

    The effect of doping a commercial alumina support with metal oxides of Ce, Co, Cu, Fe, La, Mg, Mn, Ni and Zn was investigated. Doped δ-Al2O3 samples were obtained by simple physical mixture (PM) of the alumina with the desired commercial oxide and by traditional impregnation of alumina with precursor salts of the same metals followed by calcination (IC). The metal load (7% wt.) was the same in both cases. Gold (1% wt.) was loaded using a liquid phase reductive deposition method. The obtained materials were characterized by adsorption of N2 at -196°C, temperature programmed reduction, X-ray diffraction, energy-dispersive X-ray spectrometry and transmission electron microscopy. Both samples prepared by PM and IC showed a mixture of the δ-alumina phase with the respective metal oxide, but the BET surface areas of the IC samples were, in general, higher than those of the PM materials. The particle size of the oxide phases were larger for the PM samples than for the IC materials. Nevertheless, catalytic experiments for CO oxidation showed that PM samples were much more active than IC. That could be explained by the size of gold nanoparticles, well known to be related with catalytic activity, that was lower in samples prepared by PM (7-16 nm) than by IC (11-17 nm). Gold was found to be in the metallic state. The most active samples were aluminas containing Zn and Fe prepared by PM that had the smallest gold nanoparticles sizes (7-13 and 8-12 nm, respectively) and had room temperature activities for CO conversion of 0.62 and 1.34 mol CO h-1 g {Au/-1}, respectively, which are larger than those found in the literature for doped γ-alumina samples.

  18. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  19. Niobium based coatings for dental implants

    NASA Astrophysics Data System (ADS)

    Ramírez, G.; Rodil, S. E.; Arzate, H.; Muhl, S.; Olaya, J. J.

    2011-01-01

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb2O5 (a-Nb2O5), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  20. Nitrogen-doped carbon nanotube as a potential metal-free catalyst for CO oxidation.

    PubMed

    Lin, I-Hsiang; Lu, Yu-Huan; Chen, Hsin-Tsung

    2016-04-28

    We elucidate the possibility of nitrogen-doped carbon nanotube as a robust catalyst for CO oxidation. We have performed first-principles calculations considering the spin-polarization effect to demonstrate the reaction of CO oxidation catalyzed by the nitrogen-doped carbon nanotube. The calculations show that O2 species can be partially reduced with charge transfer from the nitrogen-doped carbon nanotube and directly chemisorbed on the C-N sites of the nitrogen-doped carbon nanotube. The partially reduced O2 species at the C-N sites can further directly react with a CO molecule via the Eley-Rideal mechanism with the barriers of 0.45-0.58 eV for the different diameter of nanotube. Ab initio molecular dynamics (AIMD) simulations were performed and showed that the oxidation of CO occurs by the Eley-Rideal mechanism. The relationship between the curvature and reactivity of the nitrogen doped carbon nanotube was also unraveled. It appears that the barrier height of the rate-limiting step depends on the curvature of the nitrogen-doped carbon nanotube in the trend of (3,3)-NCNT < (4,4)-NCNT < (5,5)-NCNT (decreases with increased curvature). Using this relationship, we can predict the barriers for other N-doped carbon nanotubes with different tube diameters. Our results reveal that the nitrogen doped carbon nanomaterials can be a good, low-cost, and metal-free catalyst for CO oxidation.

  1. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  2. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies.

    PubMed

    Kwon, Soon Gu; Chattopadhyay, Soma; Koo, Bonil; Dos Santos Claro, Paula Cecilia; Shibata, Tomohiro; Requejo, Félix G; Giovanetti, Lisandro J; Liu, Yuzi; Johnson, Christopher; Prakapenka, Vitali; Lee, Byeongdu; Shevchenko, Elena V

    2016-06-01

    Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design. PMID:27152970

  3. Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes

    SciTech Connect

    Kent, CA; Concepcion, JJ; Dares, CJ; Torelli, DA; Rieth, AJ; Miller, AS; Hoertz, PG; Meyer, TJ

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O-2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29 000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of similar to 5

  4. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  5. Coordination Compounds of Niobium(IV) Oxide Dihalides Including the Synthesis and the Crystallographic Characterization of NHC Complexes.

    PubMed

    Bortoluzzi, Marco; Ferretti, Eleonora; Marchetti, Fabio; Pampaloni, Guido; Pinzino, Calogero; Zacchini, Stefano

    2016-05-01

    The 1:1 molar reactions of NbOX3 with SnBu3H, in toluene at 0 °C in the presence of oxygen/nitrogen donors, resulted in the formation of NbOX2L2 (X = Cl, L2 = dme, 2a; X = Br, L2 = dme, 2b; X = Cl, L = thf, 2c; X = Cl, L = NCMe, 2d; dme = 1,2-dimethoxyethane, thf = tetrahydrofuran), in good yields. The 1:2 reactions of freshly prepared 2d and 2b with the bulky NHC ligands 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, Imes, and 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene, Ixyl, respectively, afforded the complexes NbOCl2(Imes)2, 3, and NbOBr2(Ixyl)2, 4, in 50-60% yields. The reactions of 2b with NaOR, in tetrahydrofuran, gave NbOCl(OR) (R = Ph, 5; R = Me, 6) in about 60% yields. All the products were characterized by analytical and spectroscopic techniques; moreover DFT calculations were carried out in order to shed light on synthetic and structural features. Compounds 3 and 4, whose molecular structures have been ascertained by X-ray diffraction, represent very rare examples of crystallographically characterized niobium-NHC systems. PMID:27082642

  6. Coordination Compounds of Niobium(IV) Oxide Dihalides Including the Synthesis and the Crystallographic Characterization of NHC Complexes.

    PubMed

    Bortoluzzi, Marco; Ferretti, Eleonora; Marchetti, Fabio; Pampaloni, Guido; Pinzino, Calogero; Zacchini, Stefano

    2016-05-01

    The 1:1 molar reactions of NbOX3 with SnBu3H, in toluene at 0 °C in the presence of oxygen/nitrogen donors, resulted in the formation of NbOX2L2 (X = Cl, L2 = dme, 2a; X = Br, L2 = dme, 2b; X = Cl, L = thf, 2c; X = Cl, L = NCMe, 2d; dme = 1,2-dimethoxyethane, thf = tetrahydrofuran), in good yields. The 1:2 reactions of freshly prepared 2d and 2b with the bulky NHC ligands 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, Imes, and 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene, Ixyl, respectively, afforded the complexes NbOCl2(Imes)2, 3, and NbOBr2(Ixyl)2, 4, in 50-60% yields. The reactions of 2b with NaOR, in tetrahydrofuran, gave NbOCl(OR) (R = Ph, 5; R = Me, 6) in about 60% yields. All the products were characterized by analytical and spectroscopic techniques; moreover DFT calculations were carried out in order to shed light on synthetic and structural features. Compounds 3 and 4, whose molecular structures have been ascertained by X-ray diffraction, represent very rare examples of crystallographically characterized niobium-NHC systems.

  7. Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.

    2008-01-01

    Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

  8. Different properties of aluminum doped zinc oxide nanostructured thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Bidmeshkipour, Samina Shahtahmasebi, Nasser

    2013-06-15

    Aluminium doped zinc oxide (AZO) nanostructured thin films are prepared by radio frequency magnetron sputtering on glass substrate using specifically designed ZnO target containing different amount of Al{sub 2}O{sub 3} powder as the Al doping source. The optical properties of the aluminium doped zinc oxide films are investigated. The topography of the deposited films were investigated by Atomic Force Microscopy. Variation of the refractive index by annealing temperature are considered and it is seen that the refractive index increases by increasing the annealing temperature.

  9. Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Kumar, Melvin David; Park, Yun Chang; Kim, Joondong

    2015-06-01

    The distinguished transparent conductive oxide (TCO) layers like indium-doped-tin oxide (ITO) and aluminum-doped-zinc oxide (AZO) layers were prepared in different combinations with and without thin Ni metal layer. The optical and electrical properties of prepared samples were analyzed and compared with the objective to understand the role and influence of the Ni layer in each TCO combination. The highest transmittance value of 91.49% was exhibited by prepared AZO layers. Even though if the transmittance of Ni inserting TCO layers was marginally reduced than that of the ordinary TCO samples, they exhibited balanced optical properties with enhanced electrical properties. Carrier concentration of indium doped tin-oxide and aluminum doped zinc oxide (ITO/AZO) bilayer sample is increased more than double the times when the Ni layer was inserted between ITO and AZO. Thin layer of Ni in between TCO layers reduced sheet resistance and offered substantial transmittance, so that the figure of merit (FOM) value of Ni embedding TCOs was greater than that of TCOs without Ni layer. The ITO/Ni/AZO combination provided optimum results in all the electrical properties. As compared to other TCO/metal combinations, the overall performance of ITO/Ni/AZO tri-layer combination was appreciable. These results show that the optical and electrical properties of TCO layers could be enhanced by inserting a Ni layer with optimum thickness in between them.

  10. Surface phonons and surface reconstruction in calcium doped magnesium oxide

    NASA Astrophysics Data System (ADS)

    Masri, P.; Tasker, P. W.

    1985-01-01

    Static lattice calculation of the structure and energy of calcium doped magnesium oxide have indicated that the surface will be heavily segregated with calcium in accordance with experimental measurement. At moderate temperatures the enthalpy of segregation is sufficient to produce a monolayer coverage of impurity at equilibrium. The phonons for the segregated surface reported here show an instability that was not found in the static calculation. A phonon of imaginary frequency over much of the Brillouin zone indicates that a lower energy structure of larger periodicity should exist. We propose a self-consistent static-dynamic procedure that uses the phonon results to suggest a restructuring that is calculated in a static calculation. The phonon calculation is then repeated. When a lowest energy static calculation gives surface phonons with no softening, we can be confident of the predicted structure. In this case we have predicted a segregation induced surface restructuring. The restructured cell is c(√2 × √2)R45° with half the oxygen ions pushed high out of the surface. The small long wavelength phonon anomaly which remains suggests that there may also be a longer range rumpling of surface cations.

  11. Fabrication of iron (III) oxide doped polystyrene shells

    NASA Astrophysics Data System (ADS)

    Cai, Pei-Jun; Tang, Yong-Jian; Zhang, Lin; Du, Kai; Feng, Chang-Gen

    2004-03-01

    A type of iron (III) oxide doped plastic shell used for inertial confinement fusion experiments has been fabricated by emulsion techniques. Three different phases of solution (W1, O, and W2) are used for the fabrication process. The W1 phase is a 1 wt % of sodium lauryl sulfate in water. This W1 phase solution is mixed with a 3 wt % Fe2O3-polystyrene (PS) solution in benzene-dichloroethane (O phase) while stirring. The resulting emulsion (W1/O) is poured into a 3 wt % aqueous polyvinyl alcohol solution (W2 phase) while stirring. The resulting emulsion (W1/O/W2) is then heated to evaporate benzene and dichloroethane, and thus a solid Fe2O3-PS shell is formed. The diameter and wall thickness of the shells range from 150 to 500 μm and 5 to 15 μm, respectively. The average surface roughness of the shells is 40 nm, similar to that of the usual PS shells. .

  12. Synthesis and characterization of N-doped zinc oxide nanotetrapods

    NASA Astrophysics Data System (ADS)

    Al Rifai, S. A.; Kulnitskiy, B. A.

    2016-05-01

    Nitrogen-doped (N-doped) self-assembled nanotetrapods ZnO were synthesized via chemical vapor deposition process using N2O as a dopant source via vapor-solid (VS) growth. The decomposition of N2O gas giving NO and NO2 during the synthesis provided successful N-doping of the sample. All samples (N-doped and undoped) were characterized by XRD, SEM, TEM, EDX, photoluminescence (PL), Fourier transform infrared (FT-IR), and diffuse reflection spectra. After nitrogen-doping process, N-doped ZnO samples show the change in structural and optical properties. The detailed structure and the growth mechanism of individual ZnO tetrapod is characterized by TEM and SEM investigations. The TEM study gives the direct assumption about the formation of zincblende (sphalerite) structure on the initial stage of growth of N-doped tetrapods. Besides, SEM observation indicated that tetrapods have perfect tetrahedral symmetry. N-Doped ZnO samples exhibit a broad orange-red PL emission band, peaking near 2.1 eV, in good agreement with the deep-acceptor model for the nitrogen impurity. An IR absorption peak at 3146 cm-1 at room temperature was observed for N-doped sample. This peak has been unambiguously assigned to N-H complex.

  13. Melting And Purification Of Niobium

    SciTech Connect

    Salles Moura, Hernane R.; Moura, Lourenco de

    2007-08-09

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  14. Melting And Purification Of Niobium

    NASA Astrophysics Data System (ADS)

    Moura, Hernane R. Salles; de Moura, Lourenço

    2007-08-01

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  15. The effect of sub-oxide phases on the transparency of tin-doped gallium oxide

    DOE PAGES

    Lim, K.; Schelhas, L. T.; Siah, S. C.; Brandt, R. E.; Zakutayev, A.; Lany, S.; Gorman, B.; Sun, C. J.; Ginley, D.; Buonassisi, T.; et al

    2016-10-07

    There have been a number of studies on the fabrication of Sn-doped gallium oxide (Ga2O3:Sn) films with both conductive and transparent properties using a variety of deposition methods. However, often, synthesis results in films that are not transparent. In this paper, we examine the mechanisms underlying these results in Ga2O3:Sn thin films prepared at various growth temperatures, Sn concentrations, and oxygen partial pressures. With X-ray absorption spectroscopy, transmission electron microscopy and energy dispersive spectroscopy, we find that when films are grown under the oxygen deficient conditions there are Ga sub-oxide and SnOx phases in the Ga2O3:Sn thin film. These Gamore » sub-oxide phases are only found in non-transparent films, and so we infer that the Ga sub-oxide is responsible for the non-transparency. Furthermore, these observations suggest that to obtain transparent Ga2O3:Sn, films deposition or subsequent annealing must be carefully controlled in both temperature and oxygen partial pressure to avoid the formation of Ga sub-oxide phases.« less

  16. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.

    PubMed

    Lin, Yan-Gu; Hsu, Yu-Kuei; Chen, Ying-Chu; Lee, Bing-Wei; Hwang, Jih-Shang; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-09-01

    We report the first demonstration of cobalt phosphate (Co-Pi)-assisted molybdenum-doped zinc oxide nanorods (Zn(1-x)Mo(x)O NRs) as visible-light-sensitive photofunctional electrodes to fundamentally improve the performance of ZnO NRs for photoelectrochemical (PEC) water splitting. A maximum photoconversion efficiency as high as 1.05% was achieved, at a photocurrent density of 1.4 mA cm(-2). More importantly, in addition to achieve the maximum incident photon to current conversion efficiency (IPCE) value of 86%, it could be noted that the IPCE of Zn(1-x)Mo(x)O photoanodes under monochromatic illumination (450 nm) is up to 12%. Our PEC performances are comparable to those of many oxide-based photoanodes in recent reports. The improvement in photoactivity of PEC water splitting may be attributed to the enhanced visible-light absorption, increased charge-carrier densities, and improved interfacial charge-transfer kinetics due to the combined effect of molybdenum incorporation and Co-Pi modification, contributing to photocatalysis. The new design of constructing highly photoactive Co-Pi-assisted Zn(1-x)Mo(x)O photoanodes enriches knowledge on doping and advances the development of high-efficiency photoelectrodes in the solar-hydrogen field.

  17. Effect of Niobium doping on structural, thermal, sintering and electrical properties of Bi{sub 4}V{sub 1.8}Cu{sub 0.2}O{sub 10.7}

    SciTech Connect

    Alga, M.; Ammar, A.; Tanouti, B.; Outzourhit, A.; Mauvy, F. . E-mail: mauvy@icmcb-bordeaux.cnrs.fr; Decourt, R.

    2005-09-15

    Doping Bi{sub 4}V{sub 1.8}Cu{sub 0.2}O{sub 10.7} with niobium has led to the formation of the Bi{sub 4}V{sub 1.8}Cu{sub 0.2-x}Nb{sub x}O{sub 10.7+3x/2} solid solution. X-ray diffraction and thermal analysis have shown that only the compound with x=0.05 presents a tetragonal symmetry with a {gamma}{sup '} polymorph while the other compositions are of {beta} polymorph. The influence of sintering temperature on the microstructure of the samples was investigated by the scanning electron microscopy (SEM). The ceramics sintered at temperatures higher than 820{sup o}C present micro-craks. The evolution of the electrical conductivity with temperature and the degree of substitution has been investigated by impedance spectroscopy. Among all compositions studied the sample with x=0.05 presents the highest value of the conductivity.

  18. Determination of bulk and surface superconducting properties of N2-doped cold worked, heat treated and electro-polished SRF grade niobium

    SciTech Connect

    Chetri, Santosh; Larbalestier, David C.; Lee, Peter J.; Dhakal, Pashupati; Sung, Zu -Hawn

    2015-12-01

    In this study, nitrogen-doped cavities show significant performance improvement in the medium accelerating field regime due to a lowered RF surface resistivity. However, the mechanism of enhancement has not been clearly explained. Our experiments explore how N2-doping influences Nb bulk and surface superconducting properties, and compare the N2-doped properties with those obtained previously with conventionally treated samples. High purity Nb-rod was mechanically deformed and post treated based on a typical SRF cavity treatment recipe. The onset of flux penetration at Hc1, and the upper and the surface critical fields, Hc2 and Hc3, were characterized by magnetic hysteresis and AC susceptibility techniques. The surface depth profile responsible for superconductivity was examined by changing AC amplitude in AC susceptibility, and the microstructure was directly observed with EBSD-OIM. We are also investigating surface chemistry for detailed composition using XPS. We have found that N2-doping at 800 °C significantly reduces the Hc3/Hc2 ratio towards the ideal value of ~1.7, and conclude that AC susceptibility is capable of following changes to the surface properties induced by N2-doping.

  19. Determination of bulk and surface superconducting properties of N2-doped cold worked, heat treated and electro-polished SRF grade niobium

    DOE PAGES

    Chetri, Santosh; Larbalestier, David C.; Lee, Peter J.; Dhakal, Pashupati; Sung, Zu -Hawn

    2015-12-01

    In this study, nitrogen-doped cavities show significant performance improvement in the medium accelerating field regime due to a lowered RF surface resistivity. However, the mechanism of enhancement has not been clearly explained. Our experiments explore how N2-doping influences Nb bulk and surface superconducting properties, and compare the N2-doped properties with those obtained previously with conventionally treated samples. High purity Nb-rod was mechanically deformed and post treated based on a typical SRF cavity treatment recipe. The onset of flux penetration at Hc1, and the upper and the surface critical fields, Hc2 and Hc3, were characterized by magnetic hysteresis and AC susceptibilitymore » techniques. The surface depth profile responsible for superconductivity was examined by changing AC amplitude in AC susceptibility, and the microstructure was directly observed with EBSD-OIM. We are also investigating surface chemistry for detailed composition using XPS. We have found that N2-doping at 800 °C significantly reduces the Hc3/Hc2 ratio towards the ideal value of ~1.7, and conclude that AC susceptibility is capable of following changes to the surface properties induced by N2-doping.« less

  20. Niobium matrix composites for high temperature turbine blades, phase 2

    NASA Technical Reports Server (NTRS)

    Heng, Sangvavann; Laferla, Raffaele; Tuffias, Robert H.

    1991-01-01

    This program demonstrated the feasibility of fabricating fiber-reinforced MMC (niobium matrix) turbine blades to net shape by chemical vapor infiltration (CVI). A controllable, repeatable niobium infiltration process was developed, and the kinetics of both deposition and infiltration were studied. Several continuous refractory fibers (Nicalon, Nextel 440, FP-Al2O3, HPZ, and tungsten mesh) were investigated as potential reinforcements for strengthening niobium. Thermodynamic and experimental evaluation indicated FP-Al2O3 and tungsten to be the most chemically compatible with niobium, while Nicalon, FP-Al2O3, and tungsten were found to be best with regard to reinforcing capability. Finally, a protective coating for iridium was found to provide substantial oxidation protection to the niobium blade matrix.

  1. Hazardous Doping for Photo-Electrochemical Conversion: The Case of Nb-Doped Fe₂O₃ from First Principles.

    PubMed

    Yatom, Natav; Toroker, Maytal Caspary

    2015-01-01

    The challenge of improving the efficiency of photo-electrochemical devices is often addressed through doping. However, this strategy could harm performance. Specifically, as demonstrated in a recent experiment, doping one of the most widely used materials for water splitting, iron (III) oxide (Fe₂O₃), with niobium (Nb) can still result in limited efficiency. In order to better understand the hazardous effect of doping, we use Density Functional Theory (DFT)+U for the case of Nb-doped Fe₂O₃. We find a direct correlation between the charge of the dopant, the charge on surface of the Fe₂O₃ material, and the overpotential required for water oxidation reaction. We believe that this work contributes to advancing our understanding of how to select effective dopants for materials. PMID:26556324

  2. Sol-gel deposited aluminum-doped and gallium-doped zinc oxide thin-film transparent conductive electrodes with a protective coating of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-04-01

    Using a traditional sol-gel deposition technique, we successfully fabricated aluminum-doped zinc oxide (AZO) and gallium-doped zinc oxide (GZO) thin films on glass substrates. Employing a plasma treatment method as the postannealing process, we produced thin-film transparent conductive electrodes exhibiting excellent optical and electrical properties, with transmittance greater than 90% across the entire visible spectrum and the near-infrared range, as well as good sheet resistance under 200 Ω/sq. More importantly, to improve the resilience of our fabricated thin-film samples at elevated temperatures and in humid environments, we deposited a layer of reduced graphene oxide (rGO) as protective overcoating. The stability of our composite AZO/rGO and GZO/rGO samples improved substantially compared to that of their counterparts with no rGO coating.

  3. Interaction of Human Osteoblast-Like Saos-2 and MG-63 Cells with Thermally Oxidized Surfaces of a Titanium-Niobium Alloy

    PubMed Central

    Vandrovcova, Marta; Jirka, Ivan; Novotna, Katarina; Lisa, Vera; Frank, Otakar; Kolska, Zdenka; Stary, Vladimir; Bacakova, Lucie

    2014-01-01

    An investigation was made of the adhesion, growth and differentiation of osteoblast-like MG-63 and Saos-2 cells on titanium (Ti) and niobium (Nb) supports and on TiNb alloy with surfaces oxidized at 165°C under hydrothermal conditions and at 600°C in a stream of air. The oxidation mode and the chemical composition of the samples tuned the morphology, topography and distribution of the charge on their surfaces, which enabled us to evaluate the importance of these material characteristics in the interaction of the cells with the sample surface. Numbers of adhered MG-63 and Saos-2 cells correlated with the number of positively-charged (related with the Nb2O5 phase) and negatively-charged sites (related with the TiO2 phase) on the alloy surface. Proliferation of these cells is correlated with the presence of positively-charged (i.e. basic) sites of the Nb2O5 alloy phase, while cell differentiation is correlated with negatively-charged (acidic) sites of the TiO2 alloy phase. The number of charged sites and adhered cells was substantially higher on the alloy sample oxidized at 600°C than on the hydrothermally treated sample at 165°C. The expression values of osteoblast differentiation markers (collagen type I and osteocalcin) were higher for cells grown on the Ti samples than for those grown on the TiNb samples. This was more particularly apparent in the samples treated at 165°C. No considerable immune activation of murine macrophage-like RAW 264.7 cells on the tested samples was found. The secretion of TNF-α by these cells into the cell culture media was much lower than for either cells grown in the presence of bacterial lipopolysaccharide, or untreated control samples. Thus, oxidized Ti and TiNb are both promising materials for bone implantation; TiNb for applications where bone cell proliferation is desirable, and Ti for induction of osteogenic cell differentiation. PMID:24977704

  4. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers

    SciTech Connect

    Bi, Kedong E-mail: kedongbi@seu.edu.cn; Weathers, Annie; Pettes, Michael T.; Shi, Li E-mail: kedongbi@seu.edu.cn; Matsushita, Satoshi; Akagi, Kazuo; Goh, Munju

    2013-11-21

    Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126 nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24 W m{sup −1} K{sup −1} near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350 K. Because of exposure to oxygen during sample preparation, the PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion.

  5. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors.

    PubMed

    Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei; Zhang, Limei; Ren, Jingzheng; Zheng, Mingtao; Dong, Lichun; Sun, Luyi

    2016-09-21

    In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors based on the as-synthesized B-rGO exhibited an outstanding specific capacitance.

  6. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors.

    PubMed

    Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei; Zhang, Limei; Ren, Jingzheng; Zheng, Mingtao; Dong, Lichun; Sun, Luyi

    2016-09-21

    In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors based on the as-synthesized B-rGO exhibited an outstanding specific capacitance. PMID:27534806

  7. Co2N(x)/nitrogen-doped reduced graphene oxide for enzymeless glucose detection.

    PubMed

    Kong, Lingjun; Ren, Zhiyu; Du, Shichao; Wu, Jun; Fu, Honggang

    2014-05-18

    Co2Nx/nitrogen-doped reduced graphene oxide (Co2Nx/NG) is synthesized by electrostatic co-precipitation of Co and rGO followed by high-temperature nitridation, which can serve as an efficient catalyst for sensitive glucose detection due to the unique electrocatalytic property of Co2Nx and synergistic effect between Co2Nx and N-doped rGO.

  8. Effects of erbium doping of indium tin oxide electrode in resistive random access memory

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsun; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Lin, Chih-Yang; Jin, Fu-Yuan; Chen, Min-Chen; Huang, Hui-Chun; Lo, Ikai; Zheng, Jin-Cheng; Sze, Simon M.

    2016-03-01

    Identical insulators and bottom electrodes were fabricated and capped by an indium tin oxide (ITO) film, either undoped or doped with erbium (Er), as a top electrode. This distinctive top electrode dramatically altered the resistive random access memory (RRAM) characteristics, for example, lowering the operation current and enlarging the memory window. In addition, the RESET voltage increased, whereas the SET voltage remained almost the same. A conduction model of Er-doped ITO is proposed through current-voltage (I-V) measurement and current fitting to explain the resistance switching mechanism of Er-doped ITO RRAM and is confirmed by material analysis and reliability tests.

  9. Introduction to Ingot Niobium

    SciTech Connect

    Myneni, Ganapati Rao; Hutton, Andrew

    2011-03-31

    Superconducting radiofrequency (SRF) technology using niobium accelerating cavities was first applied at large scale in the recirculating electron linear accelerator CEBAF--the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, USA, at what is now called Thomas Jefferson National Accelerator Facility, or Jefferson Lab. Building on the high quality factors and peak magnetic fields found in low residual resistivity ratio (low-RRR) solid niobium in the 1970s, Jefferson Lab has reintroduced ingot niobium technology. High tantalum content in ingot niobium is not expected to negatively impact cavity performance, but will reduce the cost of accelerator structures considerably. Optimized low-cost CW linear accelerators built with ingot niobium will show the way for future R and D and industrial applications. This paper portrays the Jefferson Lab SRF context, reviews the early history of ingot niobium technology from over a third of a century ago, explains the technical advantages of that technology's recent reintroduction, and presents the outlook for further development.

  10. Introduction to Ingot Niobium

    SciTech Connect

    Ganapati Rao Mynen, Andrew Hutton

    2011-03-01

    Superconducting radiofrequency (SRF) technology using niobium accelerating cavities was first applied at large scale in the recirculating electron linear accelerator CEBAF—the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, USA, at what is now called Thomas Jefferson National Accelerator Facility, or Jefferson Lab. Building on the high quality factors and peak magnetic fields found in low residual resistivity ratio (low-RRR) solid niobium in the 1970s, Jefferson Lab has reintroduced ingot niobium technology. High tantalum content in ingot niobium is not expected to negatively impact cavity performance, but will reduce the cost of accelerator structures considerably. Optimized low-cost CW linear accelerators built with ingot niobium will show the way for future R&D and industrial applications. This paper portrays the Jefferson Lab SRF context, reviews the early history of ingot niobium technology from over a third of a century ago, explains the technical advantages of that technology's recent reintroduction, and presents the outlook for further development.

  11. Contacts on n-type germanium using variably doped zinc oxide and highly doped indium tin oxide interfacial layers

    NASA Astrophysics Data System (ADS)

    Paramahans Manik, Prashanth; Lodha, Saurabh

    2015-05-01

    The impact of varying interfacial layer (IL) doping on the performance of Ti/IL/n-Ge contacts is demonstrated using undoped ZnO, aluminum-doped ZnO (AZO), and O-vacancy-doped n+-ZnO ILs having similar conduction band offsets ΔEc with respect to Ti and Ge. Diode and transfer length method measurements show Fermi-level unpinning for all the ILs; however, the contact resistance and its dependence on the IL thickness decrease with increasing IL doping owing to the reduction in the tunneling resistance. The contact resistivity depends on the IL doping (NIL) as ρ \\text{c-n + \\text{-ZnO}} < ρ \\text{c-AZO} < ρ \\text{c-ZnO} for N\\text{n + \\text{-ZnO}} > N\\text{AZO} > N\\text{ZnO}. Contacts using a highly doped, low ΔEc tin-doped In2O3 IL exhibit the lowest value, 1.4 × 10-7 Ω·cm2.

  12. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    PubMed

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  13. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    NASA Astrophysics Data System (ADS)

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  14. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    PubMed Central

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  15. Gadolinium doped cerium oxide for soot oxidation: Influence of interfacial metal-support interactions

    NASA Astrophysics Data System (ADS)

    Durgasri, D. Naga; Vinodkumar, T.; Lin, Fangjian; Alxneit, Ivo; Reddy, Benjaram M.

    2014-09-01

    The aim of the present investigation was to ascertain the role of Al2O3, SiO2, and TiO2 supports in modulating the catalytic performance of ceria-based solid solutions. In this study, we prepared nanosized Ce-Gd/Al2O3, Ce-Gd/SiO2, and Ce-Gd/TiO2 catalysts by a deposition coprecipitation method and evaluated for soot oxidation. The synthesized catalysts were calcined at two different temperatures to assess their thermal stability and extensively characterized by various techniques, namely, XRD, Raman, BET surface area, TEM, H2-TPR, and UV-vis DRS. XRD and TEM results indicate that Ce-Gd-oxide nanoparticles are in highly dispersed form on the surface of the supports. Raman results show a prominent sharp peak and a broad peak corresponding to the F2g mode of ceria and the presence of oxygen vacancies, respectively. The presence of a significant number of oxygen vacancies in all samples is also confirmed from UV-vis DRS measurements. The H2-TPR results suggest that Gd-doping facilitates the reduction of the materials and decreases the onset temperature of reduction. Among the prepared samples, Ce-Gd/TiO2 catalyst exhibited the highest activity, suggesting the existence of strong interfacial metal support interaction between the active metal oxide and the support.

  16. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor.

    PubMed

    Mphuthi, Ntsoaki G; Adekunle, Abolanle S; Ebenso, Eno E

    2016-01-01

    Glassy carbon electrode (GCE) was modified with metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56-5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6 μM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7 μM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples. PMID:27245690

  17. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor

    PubMed Central

    Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Ebenso, Eno E.

    2016-01-01

    Glassy carbon electrode (GCE) was modified with metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56–5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6 μM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7 μM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples. PMID:27245690

  18. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor

    NASA Astrophysics Data System (ADS)

    Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Ebenso, Eno E.

    2016-06-01

    Glassy carbon electrode (GCE) was modified with metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56–5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6 μM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7 μM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples.

  19. Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guan-Guang; Wang, Chong-Min; Nie, Zimin; Templeton, Joshua; Stevenson, Jeffry W.; Singh, Prabhakar

    As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, both bare AISI441 and AISI441 coated with (Mn,Co) 3O 4 protection layers were studied in terms of its metallurgical characteristics, oxidation behavior, and electrical performance. The addition of minor alloying elements, in particular Nb, led to formation of Laves phases both inside grains and along grain boundaries. In particular, the Laves phase which precipitated out along grain boundaries during exposure at intermediate SOFC operating temperatures was found to be rich in both Nb and Si. The capture of Si in the Laves phase minimized the Si activity in the alloy matrix and prevented formation of an insulating silica layer at the scale/metal interface, resulting in a reduction in area-specific electrical resistance (ASR). However, the relatively high oxidation rate of the steel, which leads to increasing ASR over time, and the need to prevent volatilization of chromium from the steel necessitates the application of a conductive protection layer on the steel. In particular, the application of a Mn 1.5Co 1.5O 4 spinel protection layer substantially improved the electrical performance of the 441 by reducing the oxidation rate.

  20. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide

    SciTech Connect

    Russo, V.; Ghidelli, M.; Gondoni, P.

    2014-02-21

    In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325 nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

  1. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers.

    PubMed

    Hazut, Ori; Agarwala, Arunava; Amit, Iddo; Subramani, Thangavel; Zaidiner, Seva; Rosenwaks, Yossi; Yerushalmi, Roie

    2012-11-27

    Contact doping method for the controlled surface doping of silicon wafers and nanometer scale structures is presented. The method, monolayer contact doping (MLCD), utilizes the formation of a dopant-containing monolayer on a donor substrate that is brought to contact and annealed with the interface or structure intended for doping. A unique feature of the MLCD method is that the monolayer used for doping is formed on a separate substrate (termed donor substrate), which is distinct from the interface intended for doping (termed acceptor substrate). The doping process is controlled by anneal conditions, details of the interface, and molecular precursor used for the formation of the dopant-containing monolayer. The MLCD process does not involve formation and removal of SiO(2) capping layer, allowing utilization of surface chemistry details for tuning and simplifying the doping process. Surface contact doping of intrinsic Si wafers (i-Si) and intrinsic silicon nanowires (i-SiNWs) is demonstrated and characterized. Nanowire devices were formed using the i-SiNW channel and contact doped using the MLCD process, yielding highly doped SiNWs. Kelvin probe force microscopy (KPFM) was used to measure the longitudinal dopant distribution of the SiNWs and demonstrated highly uniform distribution in comparison with in situ doped wires. The MLCD process was studied for i-Si substrates with native oxide and H-terminated surface for three types of phosphorus-containing molecules. Sheet resistance measurements reveal the dependency of the doping process on the details of the surface chemistry used and relation to the different chemical environments of the P═O group. Characterization of the thermal decomposition of several monolayer types formed on SiO(2) nanoparticles (NPs) using TGA and XPS provides insight regarding the role of phosphorus surface chemistry at the SiO(2) interface in the overall MLCD process. The new MLCD process presented here for controlled surface doping

  2. New insights into water oxidation reactions from photocatalysis, electrocatalysis to chemical catalysis: an example of iron-based oxides doped with foreign elements.

    PubMed

    Huang, Jingwei; Du, Xiaoqiang; Feng, YingYing; Zhao, Yukun; Ding, Yong

    2016-04-21

    We have examined the catalytic activity of four different iron-based oxides doped with foreign elements using three common driving forces. The data clearly demonstrate that their water oxidation catalytic activity differ widely under different driving forces.

  3. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    PubMed

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect.

  4. One hundred angstrom niobium wire

    NASA Technical Reports Server (NTRS)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1968-01-01

    Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing.

  5. N + doping of gallium arsenide by rapid thermal oxidation of a silicon cap

    NASA Astrophysics Data System (ADS)

    Sadana, D. K.; de Souza, J. P.; Cardone, F.

    1990-10-01

    Shallow (<200 nm) Si profiles with doping levels in excess of 2×1018 cm-3 were reproducively obtained in GaAs by rapid thermal oxidation (RTO) of Si caps (50 or 160 nm) in 0.1% O2/Ar ambient at 850-1050 °C. The doping level as well as distribution of the diffused Si can be controlled by the thickness of the Si cap, RTO temperature, RTO time, and oxygen level in the annealing ambient. It appears that the generation of Si interstitials at the oxidizing surface of the Si cap during RTO is responsible for the Si diffusion into the underlying GaAs substrate.

  6. Design and simulation of oxide and doping engineered lateral bipolar junction transistors for high power applications

    NASA Astrophysics Data System (ADS)

    Loan, Sajad A.; Bashir, Faisal; Akhoon, M. Saqib; Alamoud, Abdulrahman M.

    2016-01-01

    In this paper, we propose new structures of lateral bipolar junction transistor (LBJT) on silicon on insulator (SOI) with improved performance. The proposed devices are lateral bipolar transistors with multi doping zone collector drift region and a thick buried oxide under the collector region. Calibrated simulation studies have revealed that the proposed devices have higher breakdown voltage than the conventional device, that too at higher drift doping concentration. This has resulted in improved tradeoff between the on-resistance and the breakdown voltage of the proposed devices. It has been observed that the proposed device with two collector drift doping zones and a buried oxide thick step results in ∼190% increase in the breakdown voltage than the conventional device. The further increase in the number of collector drift doping zones from two to three has increased the breakdown voltage by 260% than the conventional one. On comparing the proposed devices with the buried oxide double step devices, it has been found that an increase of ∼15-19% in the breakdown voltage is observed in the proposed devices even at higher drift doping concentrations. The use of higher drift doping concentration reduces the on-resistance of the proposed device and thus improves the tradeoff between the breakdown voltage and the on-resistance of the proposed device in comparison to buried oxide double step devices. Further, the use of step doping in the collector drift region has resulted in the reduction of kink effect in the proposed device. Using the mixed mode simulations, the proposed devices have been tested at the circuit level, by designing and simulating inverting amplifiers employing the proposed devices. Both DC and AC analyses of the inverting amplifiers have shown that the proposed devices work well at the circuit level. It has been observed that there is a slight increase in ON delay in the proposed device; however, the OFF delay is more or less same as that of the

  7. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    NASA Astrophysics Data System (ADS)

    Denayer, Jessica; Bister, Geoffroy; Simonis, Priscilla; Colson, Pierre; Maho, Anthony; Aubry, Philippe; Vertruyen, Bénédicte; Henrist, Catherine; Lardot, Véronique; Cambier, Francis; Cloots, Rudi

    2014-12-01

    Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  8. Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping.

    PubMed

    Hu, Yuh-Chung; Hsu, Wei-Li; Wang, Yi-Ta; Ho, Cheng-Tao; Chang, Pei-Zen

    2014-01-01

    The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide. PMID:24743159

  9. Magnetic and electrical properties of transition-metal-doped oxide thin films

    NASA Astrophysics Data System (ADS)

    Lam, Ching Yee

    In this research programme, the electrical and magnetic properties of PLD and room temperature grown TM-doped TiO2 and TM-doped Cu xO thin films have been investigated. We used Co and Fe as the TM dopants for the TiO2 based films. Mn was however used to dope the Cu xO materials systems. Among the various electrical properties, resistive switching of transition-metal oxide thin films and electrical rectifying property of an all-oxide p-n diode have been studied. The resistive switching of anatase phase TM-doped TiO 2 has been determined using two top-down configurations of Ag/TM-doped TiO2/Pt and In/TM-doped TiO2/TiN. Despite the fact that same transition-metal oxide was used, the switching characteristics of these two configurations were significantly different. For example, both the unipolar and bipolar switching were observed in pure TiO2 films. Heterostructures of Ag/TiO2/Pt have also been deposited on flexible PET substrates at room temperature by PLD. These oxide films on flexible substrate not only show resistive switching, but produce an average switching ratio as high as over 6 orders of magnitude. The resistive switching in In/CuxO/Pt and In/Mn-doped CuxO/Pt films have also been demonstrated in the present study. Our results indicate clearly that the switching stability of the In/CuxO/Pt systems is improved by the Mn-doping. Our ultimate goal is to produce a ferromagnetic all-oxide p-n junction diode. We obtained room-temperature ferromagnetism in the epitaxially grown anatase n-type Co-doped TiO2 and possible p-type Fe-doped TiO 2 thin films. At the same time, the 3.7 at.% Mn-doped Cu2O epitaxial films have been prepared. They are p-type conducting and have been properly utilized to form good rectifying all-oxide heterojunction with the n-type Nb-SrTiO3 substrates. The p-type Mn-doped Cu2O films that we have made so far, although exhibit ferromagnetism at low temperatures <50K, do not reveal any room temperature ferromagnetic characteristics. It is

  10. Electrical and Optical Properties of Hydrogen Doped Aluminum-Doped Zinc Oxide Thin Films for Low Cost Applications.

    PubMed

    Park, Yong Seob; Park, Young; Kwon, Samyoung; Kim, Eung Kwon; Choi, Wonseok; Kim, Donguk; Kim, Minha; Lee, Jaehyeong

    2016-05-01

    Aluminum-doped zinc oxide (AZO) thin films were prepared on glass substrate using a magnetron sputtering system. In this work, a powder target was used as a source material for low cost applications, instead of a conventional sintered ceramic target. The effects of the hydrogen gas ratio on the electrical and optical properties of the AZO films. The hydrogen doped AZO (AZO:H) films had a hexagonal polycrystalline structure. A small amount of hydrogen gas deteriorated the electrical and optical properties of the AZO:H films. However, these properties improved, as the H2/(H2 + Ar) gas ratio increased. The AZO:H films grown at an H2/(H2+Ar) ratio of 10% showed good properties for low cost applications, such as a low resistivity of 1.35 x 10(-3) Ω-cm, high average transmittance of 83.1% in the visible range of light. PMID:27483879

  11. Influences of indium doping and annealing on microstructure and optical properties of cadmium oxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Yuankun; Lei, Pei; Zhu, Jiaqi; Han, Jiecai

    2016-04-01

    The influences of indium doping and subsequent annealing in nitrogen and air atmospheres on the microstructure and optical properties of cadmium oxide films were studied in detail with the aid of various characterizations. X-ray photoelectronic spectroscopy analysis shows that indium atom forms chemically oxidized bonds in Cd-O matrix. X-ray diffraction results demonstrate that CdO structure remains FCC structure with indium doping, whereas the preferential orientation transforms from (222) into (200) orientation. Indium doping prevents the large crystalline growth, and this role still works under both nitrogen and air annealing processes. Similarly, CdO films show rough surface under annealing conditions, but the force has been greatly weakened at high doping level. It is clear that refractive index and extinction coefficient are closely correlated with crystalline size for undoped films, whereas it turns to the doping level for doped films, which can be performed by the mechanism of indium atom substitution. This work provides a very useful guild for design and application of optical-electronic devices.

  12. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    SciTech Connect

    Stengl, Vaclav; Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika; Oplustil, Frantisek; Nemec, Tomas

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  13. Relationship Between Iron Whisker Growth and Doping Amount of Oxide During Fe2O3 Reduction

    NASA Astrophysics Data System (ADS)

    Gong, Xuzhong; Zhao, Zhilong; Wang, Zhi; Zhang, Ben; Guo, Lei; Guo, Zhancheng

    2016-04-01

    Iron whisker growth during Fe2O3 doped with oxide reduced by CO was investigated by using in situ observation and scanning electron microscopy. The results indicated that the minimum doping amount (MDA) of various oxides, hindering the iron whisker growth, was different. The MDA of Al2O3, Li2O, Na2O, and K2O was 0.5, 0.4, 4, and 12 pct, respectively. From the reduction rate, it was found that Li2O, MgO, and Al2O3 had some suppressive effects on the Fe2O3 reduction process, thus, confining the growth of iron whisker. However, other oxides had some catalytic effects on the Fe2O3 reduction process (Fe2O3-Fe3O4-FeO-Fe), such as CaO, SrO, BaO, Na2O, and K2O. As long as their doping amount was enough, these oxides could inhibit the diffusion of the Fe atom. When the metal ionic radius in doped oxide was bigger than that of Fe3+, such as Ca2+, Sr2+, Ba2+, Na+, and K+, there were lots of spaces left in Fe2O3 doped with oxide after reduction, improving Fe atom diffusion. Consequently, their MDA was more than that of small radius to restrain the growth of iron whisker. Finally, the relationship between corresponding metal ionic radius, electron layer number, valence electron number, and MDA of oxide was expressed by using data fitting as follows: N_{{{{A}}y {{O}}x }} = 1.3 × 10^{ - 5} × {r_{{{{A}}^{x + } }}2 × √{n_{{{{A}}^{x + } }} } }/{f_{q }}

  14. Harnessing the Cancer Radiation Therapy by Lanthanide-Doped Zinc Oxide Based Theranostic Nanoparticles.

    PubMed

    Ghaemi, Behnaz; Mashinchian, Omid; Mousavi, Tayebeh; Karimi, Roya; Kharrazi, Sharmin; Amani, Amir

    2016-02-10

    In this paper, doping of europium (Eu) and gadolinium (Gd) as high-Z elements into zinc oxide (ZnO) nanoparticles (NPs) was designed to optimize restricted energy absorption from a conventional radiation therapy by X-ray. Gd/Eu-doped ZnO NPs with a size of 9 nm were synthesized by a chemical precipitation method. The cytotoxic effects of Eu/Gd-doped ZnO NPs were determined using MTT assay in L929, HeLa, and PC3 cell lines under dark conditions as well as exposure to ultraviolet, X-ray, and γ radiation. Doped NPs at 20 μg/mL concentration under an X-ray dose of 2 Gy were as efficient as 6 Gy X-ray radiation on untreated cells. It is thus suggested that the doped NPs may be used as photoinducers to increase the efficacy of X-rays within the cells, consequently, cancer cell death. The doped NPs also could reduce the received dose by normal cells around the tumor. Additionally, we evaluated the diagnostic efficacy of doped NPs as CT/MRI nanoprobes. Results showed an efficient theranostic nanoparticulate system for simultaneous CT/MR imaging and cancer treatment.

  15. Doping-induced spectral shifts in two-dimensional metal oxides

    NASA Astrophysics Data System (ADS)

    Ylvisaker, E. R.; Pickett, W. E.

    2013-03-01

    Doping of strongly layered ionic oxides is an established paradigm for creating novel electronic behavior. This is nowhere more apparent than in superconductivity, where doping gives rise to high-temperature superconductivity in cuprates (hole doped) and to surprisingly high Tc in HfNCl (Tc = 25.5 K, electron doped). First-principles calculations of hole doping of the layered delafossite CuAlO2 reveal unexpectedly large doping-induced shifts in spectral density, strongly in opposition to the rigid-band picture that is widely used as an accepted guideline. These spectral shifts, of similar origin as the charge transfer used to produce negative electron affinity surfaces and adjust Schottky barrier heights, drastically alter the character of the Fermi level carriers, leading in this material to an O-Cu-O molecule-based carrier (or polaron, at low doping) rather than a nearly pure-Cu hole as in a rigid-band picture. First-principles linear response electron-phonon coupling (EPC) calculations reveal, as a consequence, net weak EPC and no superconductivity rather than the high Tc obtained previously using rigid-band expectations. These specifically two-dimensional dipole-layer-driven spectral shifts provide new insights into materials design in layered materials for functionalities besides superconductivity.

  16. Proton in SRF Niobium

    SciTech Connect

    Wallace, John Paul

    2011-03-31

    Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.

  17. Room temperature ferromagnetism in Mn- and Fe-doped indium tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Venkatesan, M.; Gunning, R. D.; Stamenov, P.; Coey, J. M. D.

    2008-04-01

    Undoped and transition-metal doped indium tin oxide films have been grown by pulsed laser deposition technique, on single crystalline c-plane (0001) and r-plane (1102) sapphire substrates maintained at 500-850°C. Magnetization measurements of films deposited at different temperatures indicate that ferromagnetism appears for deposition temperatures, Tdep>600°C, with the highest moment for films deposited around 750°C. Qualitative different ferromagnetic behavior has been observed at room temperature in Fe- and Mn-doped thin films. The stable, hysteretic ferromagnetism of the Fe-doped films is due to the presence of magnetite, as seen in transmission Mössbauer spectra. The Mn-doped films show anhysteretic ferromagnetism which decays over time. It is somehow intrinsic, but not due to the Mn ions, which remains paramagnetic down to 4K. No anomalous Hall effect is observed.

  18. Synthesis, characterization and study of band gap variations of vanadium doped indium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Parhoodeh, Saeed; Kowsari, Mohammad

    2016-10-01

    In this study, effects of vanadium doping in crystal lattice structure of indium oxide (In2O3) were investigated. Indium oxide nanoparticles with different amounts of dopant concentrations were fabricated by a facile and cost effective method. X-ray diffraction (XRD) analysis revealed the formation of cubic phase for doped and undoped samples. It was observed that the lattice parameters of doped samples were decreased respect to the pure indium oxide, but the crystallite sizes and the particles' sizes of doped samples were increased in result of substitution of vanadium in crystal lattice of In2O3. The scanning electron microscope (SEM) images of samples showed that all samples have spherical shapes, and their distribution sizes are between 10 and 70 nm. It was found that the average sizes of nanoparticles were increased linearly with the amounts of dopant concentration. A red shift was founded in the band gap of vanadium doped samples respect to pure In2O3. The maximum of the band gap shift was observed for samples with 0.025 M concentration of dopant. Based on impedance spectroscopy data, it was found that impedances of samples are increased by increasing of dopant concentration for all frequencies which were tested in this study.

  19. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.

    PubMed

    Poh, Hwee Ling; Šimek, Petr; Sofer, Zdeněk; Pumera, Martin

    2013-06-25

    Doping of graphene with heteroatoms is an effective way to tailor its properties. Here we describe a simple and scalable method of doping graphene lattice with sulfur atoms during the thermal exfoliation process of graphite oxides. The graphite oxides were first prepared by Staudenmaier, Hofmann, and Hummers methods followed by treatments in hydrogen sulfide, sulfur dioxide, or carbon disulfide. The doped materials were characterized by scanning electron microscopy, high-resolution X-ray photoelectron spectroscopy, combustible elemental analysis, and Raman spectroscopy. The ζ-potential and conductivity of sulfur-doped graphenes were also investigated in this paper. It was found that the level of doping is more dramatically influenced by the type of graphite oxide used rather than the type of sulfur-containing gas used during exfoliation. Resulting sulfur-doped graphenes act as metal-free electrocatalysts for an oxygen reduction reaction.

  20. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  1. A Terminally Bound Niobium Methylidyne.

    PubMed

    Kurogi, Takashi; Carroll, Patrick J; Mindiola, Daniel J

    2016-04-01

    Complex (PNP)Nb(CH3)2(OAr) (PNP = N[2-P(i)Pr2-4-methylphenyl]2(-), Ar = 2,6-(i)Pr2C6H3), prepared from treatment of (PNP)NbCl3 with NaOAr followed by 2 equiv of H3CMgCl, can be oxidized with [FeCp2][OTf] to afford (PNP)Nb(CH3)2(OAr)(OTf). While photolysis of the latter resulted in formation of a rare example of a niobium methylidene, (PNP)Nb═CH2(OAr)(OTf), treatment of the dimethyl triflate precursor with the ylide H2CPPh3 produced the mononuclear group 5 methylidyne complex, (PNP)Nb≡CH(OAr). Adding a Brønsted base to (PNP)Nb═CH2(OAr)(OTf) also resulted in formation of the methylidyne. Solid-state structural analysis confirms both methylidene and methylidyne moieties to be terminal, having very short Nb-C distances of 1.963(2) and 1.820(2) Å, respectively. It is also shown that methylidyne for nitride cross-metathesis between (PNP)Nb≡CH(OAr) and NCR (R = tert-butyl or 1-adamantyl) results in formation of a neutral and mononuclear niobium nitride, (PNP)Nb≡N(OAr), along with the terminal alkyne HC≡CR. PMID:26977892

  2. Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles

    SciTech Connect

    Djerdj, Igor Arcon, Denis; Jaglicic, Zvonko; Niederberger, Markus

    2008-07-15

    The liquid-phase synthesis of metal oxide nanoparticles in organic solvents under exclusion of water is nowadays a well-established alternative to aqueous sol-gel chemistry. In this article, we highlight some of the advantages of these routes based on selected examples. The first part reviews some recent developments in the synthesis of ternary metal oxide nanoparticles by surfactant-free nonaqueous sol-gel routes, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the presentation of structural peculiarities of manganese oxide nanoparticles with an ordered Mn vacancy superstructure. These examples show that nonaqueous systems, on the one hand, allow the preparation of compositionally complex oxides, and, on the other hand, make use of the organic components (initially present or formed in situ) in the reaction mixture to tailor the morphology. Furthermore, obviously even the crystal structure can differ from the corresponding bulk material like in the case of MnO nanoparticles. In the second part of the paper we present original results regarding the synthesis of dilute magnetic semiconductor TiO{sub 2} nanoparticles doped with cobalt and iron. The structural characterization as well as the magnetic properties with special attention to the doping efficiency is discussed. - Graphical abstract: In the first part of this article, nonaqueous sol-gel routes to ternary metal oxide nanoparticles are briefly reviewed, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the appearance of an unprecedented superstructure in MnO nanoparticles. In the second part, doping experiments of TiO{sub 2} with Fe and Co are presented, along with their characterization including magnetic measurements.

  3. Magnetic and Magneto-Optical Properties of Doped Oxides

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mohammed

    This thesis describes the growth, structural characterisation, magnetic and magneto-optics properties of lanthanum strontium manganite (LSMO), GdMnO3 and transition metal (TM)-doped In2O3 thin films grown under different conditions. The SrTiO3 has been chosen as a substrate because its structure is suitable to grow epitaxial LSMO and GdMnO3 films. However, the absorption of SrTiO3 above its band gap at about 3.26 eV is actually a limitation in this study. The LSMO films with 30% Sr, grown on both SrTiO3 and sapphire substrates, exhibit a high Curie temperature (Tc) of 340 K. The magnetic circular dichroism (MCD) intensity follows the magnetisation for LSMO on sapphire; however, the measurements on SrTiO3 were dominated by the birefringence and magneto-optical properties of the substrate. In the GdMnO3 thin films, there are two well-known features in the optical spectrum; the charge transfer transition between Mn d states at 2 eV and the band edge transition from the oxygen p band to d states at about 3 eV; these are observed in the MCD. This has been measured at remanence as well as in a magnetic field. The optical absorption at 3 eV is much stronger than at 2 eV, however, the MCD is considerably stronger at 2 eV. The MCD at 2 eV correlates well with the Mn spin ordering and it is very notable that the same structure appears in this spectrum, as is seen in LaMnO3. The results of the investigations of Co and Fe-doped In2O3 thin films show that TM ions in the films are TM2+ and substituted for In3+. The room temperature ferromagnetism observed in TM-doped In2O3 is due to the polarised electrons in localised donor states associated with oxygen vacancies. The formation of Fe3O4 nanoparticles in some Fe-doped films is due the fact that TM-doped In2O3 thin films are extremely sensitive to the growth method and processing condition. However, the origin of the magnetisation in these films is due to both the Fe-doped host matrix and also to the nanoparticles of Fe3O4.

  4. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    NASA Astrophysics Data System (ADS)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  5. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.

    PubMed

    Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing

    2015-07-13

    A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  6. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation.

    PubMed

    He, Yapeng; Lin, Haibo; Wang, Xue; Huang, Weimin; Chen, Rongling; Li, Hongdong

    2016-06-28

    A boron-doped diamond electrode with a three-dimensional network was fabricated on a mesh titanium substrate. Properties such as higher surface area, enhanced mass transfer and a hydrophobic surface endowed the prepared electrode with excellent electrochemical oxidation ability towards contaminants. PMID:27264247

  7. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2006-01-01

    Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.

  8. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation.

    PubMed

    He, Yapeng; Lin, Haibo; Wang, Xue; Huang, Weimin; Chen, Rongling; Li, Hongdong

    2016-06-28

    A boron-doped diamond electrode with a three-dimensional network was fabricated on a mesh titanium substrate. Properties such as higher surface area, enhanced mass transfer and a hydrophobic surface endowed the prepared electrode with excellent electrochemical oxidation ability towards contaminants.

  9. Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride

    NASA Technical Reports Server (NTRS)

    Schuon, S.

    1980-01-01

    The effect of tungsten and tungsten carbide contamination on the oxidation and cracking in air of yttria-doped silicon nitride ceramics is investigated. Silicon nitride powder containing 8 wt % Y2O3 was doped with 2 wt % W, 4 wt % W, 2 wt % WC or left undoped, and sintered in order to simulate contamination during milling, and specimens were exposed in air to 500, 750 and 1350 C for various lengths of time. Scanning electron and optical microscopy and X-ray diffraction of the specimens in the as-sintered state reveals that the addition of W or WC does not affect the phase relationships in the system, composed of alpha and beta Si3N4, melilite and an amorphous phase. Catastrophic oxidation is observed at 750 C in specimens containing 2 and 4 wt % W, accompanied by the disappearance of alpha Si3N4 and melilite from the structure. At 1350 C, the formation of a protective glassy oxide layer was observed on all specimens without catastrophic oxidation, and it is found that pre-oxidation at 1350 C also improved the oxidation resistance at 750 C of bars doped with 4 wt % W. It is suggested that tungsten contamination from WC grinding balls may be the major cause of the intermediate-temperature cracking and instability frequently observed in Si3N4-8Y2O3.

  10. Subwavelength structure for sound absorption from graphene oxide-doped polyvinylpyrrolidone nanofibers

    NASA Astrophysics Data System (ADS)

    Qamoshi, Khadijeh; Rasuli, Reza

    2016-09-01

    We study the sound absorption of the reinforced polyvinylpyrrolidone nanofibers with graphene oxide. It is shown that reinforced nanofibers can acquire impedance-matched surface to airborne sound at special frequencies. To obtain such surface, nanofibers were spun with polyvinylpyrrolidone polymer that was doped by graphene oxide with concentrations of 0, 6 and 12 wt%. It was found that fibers without graphene oxide were spun continuously and randomly, whereas by doping with graphene oxide, the mode of fibers is changed and some nodes form on the fibers coating. The sound absorption coefficient was measured by an impedance tube based on 105341-1 ISO standard. Measurements in the frequency range from 700 to 1600 Hz show that use of graphene oxide as a reinforcing phase increases sound absorption coefficient of the samples at a frequency ~1500 Hz up to ~40 %. Angular eigenfrequency and dissipation coefficient of the samples were obtained by impedance measurement for the prepared samples. Results show that doping the polymer with graphene oxide causes an increase in the angular eigenfrequency and the dissipation coefficient.

  11. Magnesium-doped zinc oxide nanorod-nanotube semiconductor/p-silicon heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Caglar, Yasemin; Görgün, Kamuran; Ilican, Saliha; Caglar, Mujdat; Yakuphanoğlu, Fahrettin

    2016-08-01

    Nanostructured zinc oxide material is usable in electronic device applications such as light-emitting diodes, heterojunction diode, sensors, solar cell due to its interesting electrical conductivity and optical properties. Magnesium-doped zinc oxide nanorod (NR)-nanotube (NT) films were grown by microwave-assisted chemical bath deposition to fabricate ZnO-based heterojunction diode. It is found that ZnO hexagonal nanorods turn into hexagonal nanotubes when the Mg doping ratio is increased from 1 to 10 %. The values of the optical band gap for 1 % Mg-doped ZnO NR and 10 % Mg-doped ZnO NT films are found to be 3.14 and 3.22 eV, respectively. The n-ZnO:Mg/p-Si heterojunction diodes were fabricated. The diodes exhibited a rectification behavior with ideality factor higher than unity due to the presence of surface states in the junction and series resistance. The obtained results indicate that Mg doping improves the electrical and optical properties of ZnO.

  12. Chromium and ruthenium-doped zinc oxide thin films for propane sensing applications.

    PubMed

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; Olvera, María de la Luz; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-03-12

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well.

  13. Growth of pure and tin-doped indium oxide crystals and their electrical properties

    SciTech Connect

    Shimado, S.; Kodaira, K.; Sato, I.; Matsushita, T.

    1988-12-01

    Indium oxide, In/sub 2/O/sub 3/, is an n-type semiconductor with the C-type oxide structure. Its electrical resistivity is greatly decreased by doping with Sn, so that Sn-doped In/sub 2/O/sub 3/(ITO) thin films are widely used as transparent conductive coating and as heat reflection filters. Single crystals of In/sub 2/O/sub 3/ have been grown by vapor phase, flux, chemical transport or hydrothermal method, but only one growth experiment by a vapor phase method has been reported and no growth experiment of Sn-doped In/sub 2/O/sub 3/ crystals from the vapor phase has been carried out. The authors have brown the In/sub 2/O/sub 3/ crystals by the vapor method, one of which utilized air-oxidation of indium or In/sub 2/O vapors which are produced by reduction of In/sub 2/O/sub 3/ with carbon in a closed crucible. With this growth experiment it was, however, difficult to control the crystallization of In/sub 2/O/sub 3/ since the generation of In/sub 2/O or In vapors and oxidation of their vapors by air spontaneously occur in the crucible. The successful growth experiments for ZnP, GeO/sub 2/ and CdO crystals have been performed using the sophisticated method of controlling air-oxidation of Zn, GeO, and Cd vapors, respectively, which are generated by reduction of the oxides with carbon. The purpose of the present paper is to perform the prolonged growth of pure and Sn-doped In/sub 2/O/sub 3/ crystals by utilizing such a controlled reduction-oxidation process and investigating their electrical properties.

  14. Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method

    SciTech Connect

    Li, Yuan-Qing; Wang, Jian-Lei; Fu, Shao-Yun; Mei, Shi-Gang; Zhang, Jian-Min; Yong, Kang

    2010-06-15

    In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 {sup o}C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as the Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10-13 mol% Sb-doped SnO{sub 2} nanoparticles is reduced by more than three orders compared with the pure SnO{sub 2} nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In{sub 2}O{sub 3}.

  15. Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-01-01

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091

  16. Boron-doped cadmium oxide composite structures and their electrochemical measurements

    SciTech Connect

    Lokhande, B.J.; Ambare, R.C.; Mane, R.S.; Bharadwaj, S.R.

    2013-08-01

    Graphical abstract: Conducting nano-fibrous 3% boron doped cadmium oxide thin films were prepared by SILAR and its super capacitive properties were studied. - Highlights: • Samples are of nanofibrous nature. • All samples shows pseudocapacitive behavior. • 3% B doped CdO shows good specific capacitance. • 3% B doped CdO shows maximum 74.93% efficiency at 14 mA/cm{sup 2}. • 3% B doped CdO shows 0.8 Ω internal resistance. - Abstract: Boron-doped and undoped cadmium oxide composite nanostructures in thin film form were prepared onto stainless steel substrates by a successive ionic layer adsorption and reaction method using aqueous solutions of cadmium nitrate, boric acid and 1% H{sub 2}O{sub 2}. As-deposited films were annealed at 623 K for 1 h. The X-ray diffraction study shows crystalline behavior for both doped and undoped films with a porous topography and nano-wires type architecture, as observed in SEM image. Wettability test confirms the hydrophilic surface with 58° contact angle value. Estimated band gap energy is around 1.9 eV. Electrochemical behavior of the deposited films is attempted in 1 M KOH electrolyte using cyclic voltammetry (CV), electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Maximum values of the specific capacitance, specific energy and specific power obtained for 3% B doped CdO film at 2 mV/s scan rate are 20.05 F/g, 1.22 Wh/kg and 3.25 kW/kg, respectively.

  17. Nonstoichiometric zinc oxide and indium-doped zinc oxide: Electrical conductivity and {sup 111}In-TDPAC studies

    SciTech Connect

    Wang, R.; Sleight, A.W.; Platzer, R.; Gardner, J.A.

    1996-02-15

    Indium-doped zinc oxide powders have been prepared which show room-temperature electrical conductivities as high as 30 {Omega}{sup {minus}1} cm{sup {minus}1}. The indium doping apparently occurs as Zn{sub 1-x}In{sub x}O,Zn{sub 1-y}In{sub y}O{sub 1+y/2}, or a combination of these. Optimum conductivity occurs for Zn{sub 1-x}In{sub x}O where the maximum value of x obtained was about 0.5 at%. The degrees of sample reduction were determined by iodimetric titration. Time differential perturbed angular correlation (TDPAC) spectroscopy on indium doped zinc oxide is consistent with indium substituting at normal zinc sites in the ZnO lattice. TDPAC studies on zinc oxide annealed under zinc vapors show a second environment for the {sup 111}In probe. In this case, there is an unusually high temperature dependence of the electric field gradient which may be caused by a nearby zinc interstitial. An important conclusion of this work is that zinc interstitials are not ionized and do not therefore contribute significantly to the increased conductivity of reduced zinc oxide.

  18. Sol-gel deposition and plasma treatment of intrinsic, aluminum-doped, and gallium-doped zinc oxide thin films as transparent conductive electrodes

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2015-09-01

    Zinc oxide and aluminum/gallium-doped zinc oxide thin films were deposited via sol-gel spin-coating technique. Employing plasma treatment as alternative to post thermal annealing, we found that the morphologies of these thin films have changed and the sheet resistances have been significantly enhanced. These plasma-treated thin films also show very good optical properties, with transmittance above 90% averaged over the visible wavelength range. Our best aluminum/gallium-doped zinc oxide thin films exhibit sheet resistances (Rs) of ~ 200 Ω/sq and ~ 150 Ω/sq, respectively.

  19. Method of forming supported doped palladium containing oxidation catalysts

    SciTech Connect

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  20. Phosphorus-Doped Graphene Oxide Layer as a Highly Efficient Flame Retardant.

    PubMed

    Some, Surajit; Shackery, Iman; Kim, Sun Jun; Jun, Seong Chan

    2015-10-26

    A simple and easy process has been developed to efficiently dope phosphorus into a graphene oxide surface. Phosphorus-doped graphene oxide (PGO) is prepared by the treatment of polyphosphoric acid with phosphoric acid followed by addition of a graphene oxide solution while maintaining a pH of around 5 by addition of NaOH solution. The resulting materials are characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The as-made PGO solution-coated cloth exhibits excellent flame retardation properties. The PGO-coated cloth emits some smoke at the beginning without catching fire for more than 120 s and maintains its initial shape with little shrinkage. In contrast, the pristine cloth catches fire within 5 s and is completely burned within 25 s, leaving trace amounts of black residue. The simple technique of direct introduction of phosphorus into the graphene oxide surface to produce phosphorus-doped oxidized carbon nanoplatelets may be a general approach towards the low-cost mass production of PGO for many practical applications, including flame retardation.

  1. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    SciTech Connect

    Dong, Qiang; Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin; Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Sato, Tsugio

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  2. Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent

    SciTech Connect

    Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

    2012-02-28

    A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

  3. Oxidative Recession, Sulfur Release, and Al203 Spallation for Y-Doped Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2001-01-01

    Second-order spallation phenomena have been noted for Y-doped Rene'N5 after long term oxidation at 1150 degrees C. The reason for this behavior has not been conclusively identified. A mass equivalence analysis has shown that the surface recession resulting from oxidation has the potential of releasing about 0.15 monolayer of sulfur for every 1 mg/sq cm of oxygen reacted for an alloy containing 5 ppmw of sulfur. This amount is significant in comparison to levels that have been shown to result in first-order spallation behavior for undoped alloys. Oxidative recession is therefore speculated to be a contributing source of sulfur and second-order spallation for Y-doped alloys.

  4. Surfactant Assisted Sonochemical Synthesis and Characterization of Gadolinium Doped Zinc Oxide Nanoparticles.

    PubMed

    Khajuria, Heena; Ladol, Jigmet; Singh, Rajinder; Khajuria, Sonika; Khajuria, Haq N

    2015-01-01

    Pure and Gd doped Zinc Oxide (ZnO) nanoparticles were synthesized by sonochemical method using different surfactants (PVP/CTAB). The nanoparticles were characterized by powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), particle size analysis by DLS technique and UV-Visible spectroscopy. The effect of Gd doping and nature of surfactants on crystallite size, morphology and band gap of ZnO nanoparticles have been investigated. In addition to this, the effect of nature of surfactant on amount of dopant inserted in the ZnO lattice was also studied.

  5. Structural and optical properties of Nd{sup 3+} doped gadolinium oxide 1D nanorods

    SciTech Connect

    Boopathi, G. Mohan, R.; Raj, S. Gokul; Kumar, G. Ramesh

    2014-04-24

    Neodymium doped gadolinium hydroxide [Nd:Gd(OH)3] nanorods were successfully synthesized at 60 °C through co-precipitation method. The dopant percentage was maintained at 5% and calcination was done at 750 °C temperature for 1 hour to form the respective neodymium doped gadolinium oxide [Nd:Gd{sub 2}O{sub 3}] nanorods. The as-formed and annealed products were investigated in detail by using powder X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) with an energy dispersive X-ray spectrum (EDX), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) spectrophotometry.

  6. Origin of ferromagnetism enhancement in bi-layer chromium-doped indium zinc oxides

    SciTech Connect

    Hsu, C. Y.

    2012-08-06

    This work demonstrates that by controlling the rapid thermal annealing temperature, amorphous chromium-doped indium zinc oxide films develop an amorphous-crystalline bi-layer structure and show magnetization up to {approx}30 emu/cm{sup 3}. The crystalline layer arises from significant out-diffusion of Zn from surfaces, leading to a large difference in the Zn:In ratio in amorphous and crystalline layers. Doped Cr ions in amorphous and crystalline layers form different valence configurations, creating a charge reservoir which transfers electrons through amorphous-crystalline interfaces and in turn enhances ferromagnetism.

  7. Structural, morphological and optical investigations on Sm{sup 3+} doped gadolinium oxide nanorods

    SciTech Connect

    Boopathi, G.; Mohan, R.; Raj, S. Gokul; Kumar, G. Ramesh

    2014-04-24

    One dimensional uniform Sm{sup 3+} doped gadolinium hydroxide nanorods have been prepared via simple co– precipitation technique at 60 °C temperature for 1 hour. The samples were calcinated at 750 °C to obtain Sm{sup 3+} doped gadolinium oxide nanorods. The 1D nanorods were then subjected to different characterization techniques to ascertain its structural stability and its morphology were investigated using high–resolution transmission electron microscopy. Photoluminescence (PL) spectrophotometry was investigated and the obtained results were discussed in detail.

  8. Oxidation studies on small atom doped TI*5*SI*3*

    SciTech Connect

    Thom, Andrew

    1995-01-01

    This report described the oxidation and oxidation resistance of Ti{sub 5}Si{sub 3}, along with a discussion on general material properties. Single crystal studies of Ti{sub 5}Si{sub 3}Z{sub x} are included.

  9. Synthesis and characterization of lanthanum doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Sonia, Suman, Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    La doped ZnO (Zn1-xLaxO, x = 0, 3, 6 and 9) were prepared via chemical co-precipitation method using Zinc Acetate, Lanthanum Acetate and Sodium Hydroxide at 50°C. Hydrate nanoparticles were annealed in air at 300°C for 3 hours. The synthesized samples have been characterized by powder X-ray diffraction and UV-Visiblespectrophotometer. The XRD measurement revealsthat the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The result shows the change in nanoparticles size with the increment of lanthanum concentration for lower concentration for x = 0 to 6 and decreases at x = 9.

  10. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser.

    PubMed

    Sobon, Grzegorz; Sotor, Jaroslaw; Jagiello, Joanna; Kozinski, Rafal; Zdrojek, Mariusz; Holdynski, Marcin; Paletko, Piotr; Boguslawski, Jakub; Lipinska, Ludwika; Abramski, Krzysztof M

    2012-08-13

    In this work we demonstrate comprehensive studies on graphene oxide (GO) and reduced graphene oxide (rGO) based saturable absorbers (SA) for mode-locking of Er-doped fiber lasers. The paper describes the fabrication process of both saturable absorbers and detailed comparison of their parameters. Our results show, that there is no significant difference in the laser performance between the investigated SA. Both provided stable, mode-locked operation with sub-400 fs soliton pulses and more than 9 nm optical bandwidth at 1560 nm center wavelength. It has been shown that GO might be successfully used as an efficient SA without the need of its reduction to rGO. Taking into account simpler manufacturing technology and the possibility of mass production, GO seems to be a good candidate as a cost-effective material for saturable absorbers for Er-doped fiber lasers.

  11. Method of surface preparation of niobium

    DOEpatents

    Srinivasan-Rao, Triveni; Schill, John F.

    2003-01-01

    The present invention is for a method of preparing a surface of niobium. The preparation method includes polishing, cleaning, baking and irradiating the niobium surface whereby the resulting niobium surface has a high quantum efficiency.

  12. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    SciTech Connect

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu; Chen, Fanglin; zur Loye, Hans-Conrad; Heyden, Andreas

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.

  13. Thermoelectric Properties of Hot-Pressed and PECS-Sintered Magnesium-Doped Copper Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Morelli, Donald T.

    2011-05-01

    Copper aluminum oxide (CuAlO2) is considered as a potential candidate for thermoelectric applications. Partially magnesium-doped CuAlO2 bulk pellets were fabricated using solid-state reactions, hot-pressing, and pulsed electric current sintering (PECS) techniques. X-ray diffraction and scanning electron microscopy were adopted for structural analysis. High-temperature transport property measurements were performed on hot-pressed samples. Electrical conductivity increased with Mg doping before secondary phases became significant, while the Seebeck coefficient displayed the opposite trend. Thermal conductivity was consistently reduced as the Mg concentration increased. Effects of Mg doping, preparation conditions, and future modification on this material's properties are discussed.

  14. Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride

    NASA Technical Reports Server (NTRS)

    Schuon, S.

    1980-01-01

    The effect of W and WC contamination on the oxidation and cracking in air of sintered Si3N4 - 8 w/o Y2O3 ceramics at 500, 750, and 1350 C is examined. A mixture of Si3N4 - 8Y2O3, milled with alumina balls, was divided into four portions. Three portions were doped with 2 w/o WC W, and 4 w/o W respectively, in order to simulate contamination during milling. The fourth portion was undoped and used on a control. The addition of W or WC did not affect the phase relationships in the system, as all bars with or without additions contained melilite as the major Si-Y-O-N phase after sintering. At 750 C, instability (rapid oxidation and cracking) of W-doped bars appears to have occurred as a result of oxidation of the tungsten containing melilite phase. No intermediate temperature instability was observed in bars containing 2 w/o WC or in bars with no additive. Specimens exposed at 1350 C had good oxidation resistance due to the formation of a protective siliceous oxide layer. A specimen containing 4 w/o W which was preoxidized at 1350 C had improved oxidation resistance at 750 C. The tendency towards oxidation and cracking of Si3N4 - 8 Y2O3 at 750 C is concluded to be related to tungsten content of the sintered bars.

  15. Niobium and niobium nitride contacts on semiconducting material

    SciTech Connect

    Cukauskas, E.; Carter, W.; Pond, J.; Newman, H.

    1989-06-30

    This invention related generally to a metallization layer of niobium or niobium nitride on a semiconductor in an integrated-circuit structure, which can function from the superconducting-temperature regime to above room temperature. Niobium or niobium nitride is deposited onto a heated gallium arsenide substrate. This metallization will maintain chemical stability after high-temperature post processing. These materials provide a low-resistivity metallization suitable for Schottky contacts used over a wide operating temperature range and are superconducting at low temperatures.

  16. Effects of helium on the mechanical properties and microstructure of niobium

    NASA Astrophysics Data System (ADS)

    Barmore, W. L.; Raymond, E. L.; Echer, C. J.; Vandervoort, R. R.

    1980-02-01

    Mechanical property specimens of niobium (Cb) were doped with helium by the tritium trick to concentrations as high as 500 appm. The tritium decays by the reaction3H →3He + β - at a rate that produces about 7 appm per day in the host microstructure. Tensile properties were measured from room temperature to 800°C, and creep properties from 700 to 1000°C at stresses from 45 to 75 MPa. Transmission electron microscopy was used to study the microstructure of the helium doped specimens, and the observations were correlated with the mechanical property results. The results of this investigation showed that niobium has a high tolerance to helium trapped in the microstructure. The tensile and creep strengths of niobium increased as helium concentration increased. The ductility decreased significantly as the helium concentration increased, but niobium retained substantial ductility even at a high helium concentration of 500 appm. This amount of helium would be generated by (n,α) reactions in the microstructure of a niobium first wall after a 20 y exposure in a D-T fusion reactor. Thus, niobium and niobium alloys are potential candidates for high temperature structural materials in D-T fusion reactors.

  17. Pd doped reduced graphene oxide for hydrogen storage

    SciTech Connect

    Das, Tapas; Banerjee, Seemita; Sudarsan, V.

    2015-06-24

    Pd nanoparticles dispersed reduced graphene oxide sample has been prepared by a simple chemical method using hydrazine as the reducing agent. Based on XRD and {sup 13}C MAS NMR studies it is confirmed that, Pd nanoparticles are effectively mixed with the reduced graphene oxide sample. Maximum hydrogen storage capacity has been estimated to be ∼1.36 wt % at 123K. Improved hydrogen storage capacity of Pd incorporated sample can be explained based on the phenomenon of spillover of atomic hydrogen.

  18. Fully transparent thin film transistors based on zinc oxide channel layer and molybdenum doped indium oxide electrodes

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2016-03-01

    In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.

  19. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity.

    PubMed

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui

    2015-09-01

    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls.

  20. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides

    NASA Astrophysics Data System (ADS)

    Kamisaka, Hideyuki; Adachi, Takahisa; Yamashita, Koichi

    2005-08-01

    The structure and optical properties of carbon-doped titanium oxides, TiO2, in the rutile and anatase forms have been investigated theoretically from first principles. Two possible doping sites were studied, carbon at an oxygen site (anion doping) and carbon at a titanium site (cation doping). The calculated structures suggest that cation-doped carbon atoms form a carbonate-type structure, whereas anion-doped carbon atoms do not invoke any significant structural change. A density-of-states analysis revealed three in-gap impurity states for anion doping. The optical properties of anion-doped cells qualitatively agree with the experimentally reported visible-light absorbance values. We ascribe part of the absorption to transitions from the valence band to one of the impurity states. These transitions should be able to promote photocatalytic reactions, because electron holes in the valence band are considered to be crucial for this process. Neither in-gap impurity states nor visible-light absorbance were observed in the case of cation doping. The effect of oxygen vacancies was also investigated. Introduction of oxygen vacancies into anion-doped TiO2 populates the impurity states and thus suppresses photocatalysis. The interaction of a doped carbon atom with an oxygen vacancy at a finite spatial separation was also carried out. The possibility of either a carbon-oxygen vacancy pair or higher carbon-oxygen vacancy complex existing is discussed.

  1. Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Azam, Ameer; Ahmed, Arham S.; Chaman, M.; Naqvi, A. H.

    2010-11-01

    Manganese doped tin oxide nanoparticles with manganese content varying from 0 to 15 mol % were synthesized using sol-gel method. The structural and compositional analysis was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive x-ray analysis (EDAX). Dielectric and impedance spectroscopy was carried out at room temperature to explore the electrical properties of Mn doped SnO2. XRD analysis indicated the formation of single phase rutile type tetragonal structure of all the samples. The crystallite size was observed to vary from 16.2 to 7.1 nm as the Mn content was increased. The XRD, SEM, and EDAX results corroborated the successful doping of Mn in the SnO2 matrix. Complex impedance analysis was used to distinguish the grain and grain boundary contributions to the system, suggesting the dominance of grain boundary resistance in the doped samples. The dielectric constant ɛ', dielectric loss tan δ and ac conductivity σac were studied as a function of frequency and composition and the behavior has been explained on the basis of Maxwell-Wagner interfacial model. All the dielectric parameters were found to decrease with the increase in doping concentration. Moreover, it has been observed that the dielectric loss approaches to zero in case of high dopant concentration (9%, 15%) at high frequencies.

  2. Vapor deposition of hardened niobium

    DOEpatents

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  3. The Structure and Properties of Plasma Sprayed Iron Oxide Doped Manganese Cobalt Oxide Spinel Coatings for SOFC Metallic Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri

    2011-01-01

    Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.

  4. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-01

    Gallium oxide and more particularly β-Ga2O3 matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  5. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    SciTech Connect

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-15

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  6. Reactivity enhancement of oxide skins in reversible Ti-doped NaAlH{sub 4}

    SciTech Connect

    Delmelle, Renaud; Borgschulte, Andreas; Gehrig, Jeffrey C.; Züttel, Andreas

    2014-12-15

    The reversibility of hydrogen sorption in complex hydrides has only been shown unambiguously for NaAlH{sub 4} doped with transition metal compounds. Despite a multitude of investigations of the effect of the added catalyst on the hydrogen sorption kinetics of NaAlH{sub 4}, the mechanism of catalysis remains elusive so far. Following the decomposition of TiCl{sub 3}-doped NaAlH{sub 4} by in-situ X-ray photoelectron spectroscopy (XPS), we link the chemical state of the dopant with those of the hydride and decomposition products. Titanium and aluminium change their oxidation states during cycling. The change of the formal oxidation state of Al from III to zero is partly due to the chemical reaction from NaAlH{sub 4} to Al. Furthermore, aluminium oxide is formed (Al{sub 2}O{sub 3}), which coexists with titanium oxide (Ti{sub 2}O{sub 3}). The interplay of metallic and oxidized Ti with the oxide skin might explain the effectiveness of Ti and similar dopants (Ce, Zr…)

  7. Optical constants of amorphous, transparent titanium-doped tungsten oxide thin films.

    PubMed

    Ramana, C V; Baghmar, Gaurav; Rubio, Ernesto J; Hernandez, Manuel J

    2013-06-12

    We report on the optical constants and their dispersion profiles determined from spectroscopic ellipsometry (SE) analysis of the 20%-titanium (Ti) doped of tungsten oxide (WO3) thin films grown by sputter-deposition. The Ti-doped WO3 films grown in a wide range of temperatures (25-500 °C) are amorphous and optically transparent. SE data indicates that there is no significant interdiffusion at the film-substrate interface for a W-Ti oxide film growth of ~90 nm. The index refraction (n) at λ = 550 nm vary in the range of 2.17-2.31 with a gradual increase in growth temperature. A correlation between the growth conditions and optical constants is discussed. PMID:23682744

  8. Tungsten-doped tin oxide thin films prepared by pulsed plasma deposition

    SciTech Connect

    Huang Yanwei; Zhang Qun Li Guifeng; Yang Ming

    2009-05-15

    Transparent conductive oxide tungsten-doped tin oxide thin films were deposited on glass substrates from ceramic targets by the pulsed plasma deposition method. The structural, electrical and optical properties have been investigated as functions of tungsten doping content and oxygen partial pressure. The lowest resistivity of 2.1 x 10{sup -3} {omega}{center_dot}cm was reproducibly obtained, with carrier mobility of 30 cm{sup 2}V{sup -1}s{sup -1} and carrier concentration of 9.6 x 10{sup 19} cm{sup -3} at the oxygen partial pressure of 1.8 Pa. The average optical transmission was in excess of 80% in the visible region from 400 to 700 nm, with the optical band gap ranging from 3.91 to 4.02 eV.

  9. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    PubMed Central

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M.; Eastman, Jeffrey A.

    2016-01-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment. PMID:27283250

  10. Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides.

    PubMed

    Nie, Xiliang; Wei, Su-Huai; Zhang, S B

    2002-02-11

    Doping wide-gap materials p type is highly desirable but often difficult. This makes the recent discovery of p-type delafossite oxides, CuM(III)O2, very attractive. The CuM(III)O2 also show unique and unexplained physical properties: Increasing band gap from M(III) = Al,Ga, to In, not seen in conventional semiconductors. The largest gap CuInO2 can be mysteriously doped both n and p type but not the smaller gaps CuAlO2 and CuGaO2. Here, we show that both properties are results of a large disparity between the fundamental gap and the apparent optical gap, a finding that could lead to a breakthrough in the study of bipolarly dopable wide-gap semiconductor oxides. PMID:11863832

  11. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  12. Electronically conductive magnesia doped oxide ceramics for use in sodium sulfur batteries

    SciTech Connect

    Crosbie, G.M.; Tennenhouse, G.J.; Tischer, R.P.; Wroblowa, H.S.

    1984-06-26

    This invention relates to electrically conductive current collectors suitable for use at high temperatures and in the presence of corrosive environments, e.g., the sodium-sulfur battery. The current collectors comprises metal or metal alloys coated with ceramic material comprising chromium oxides doped with at least 0.05 mole percent magnesia. The corrosion resistant current collectors may be container/current collectors.

  13. Resistance Measurements and Activation Energies Calculations of Pure and Platinum Doped Stannic Oxide Ceramics in Air

    SciTech Connect

    Ibrahim, Zuhairi; Othman, Zulkafli; Karim, Mohd Mustamam Abd; Holland, Diane

    2007-05-09

    Pure SnO2 and Pt-SnO2 ceramics were fabricated by the dry pressing method using a pressure of 40 Mpa and sintered at 1000 deg. C. Electrical resistance measurements were made using an impedance analyzer, in air and temperatures between 25 deg. C and 450 deg. C. The change in resistance in both pure and platinum-doped stannic oxide ceramics was discussed.

  14. Ethylene Glycol Assisted Synthesis of Fluorine Doped Tin Oxide Nanorods Using Improved Spray Pyrolysis Deposition Method

    NASA Astrophysics Data System (ADS)

    Liyanage, Devinda; Mudiyanselage Navaratne Bandara, Herath; Jayaweera, Viraj; Murakami, Kenji

    2013-08-01

    Fluorine-doped tin oxide nanorod transparent thin films were fabricated with SnCl4·5H2O, NH4F, and ethylene glycol (EG) using an improved spray pyrolysis deposition technique. The fabricated nanorods showed a low resistance of 15.3 Ω/sq and a good transparency of 70.8%. The nanorods have a higher surface area than the conventionally used thin films.

  15. Co-doped titanium oxide foam and water disinfection device

    DOEpatents

    Shang, Jian-Ku; Wu, Pinggui; Xie, Rong-Cai

    2016-01-26

    A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.

  16. Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Muruganantham, G.; Sakthivel, B.

    2009-11-01

    Doubly doped (simultaneous doping of antimony and fluorine) tin oxide films (SnO 2:Sb:F) have been fabricated by employing an inexpensive and simplified spray technique using perfume atomizer from aqueous solution of SnCl 2 precursor. The structural studies revealed that the films are highly crystalline in nature with preferential orientation along the (2 0 0) plane. It is found that the size of the crystallites of the doubly doped tin oxide films is larger (69 nm) than that (27 nm) of their undoped counterparts. The dislocation density of the doubly doped film is lesser (2.08×10 14 lines/m 2) when compared with that of the undoped film (13.2×10 14 lines/m 2), indicating the higher degree of crystallinity of the doubly doped films. The SEM images depict that the films are homogeneous and uniform. The optical transmittance in the visible range and the optical band gap of the doubly doped films are 71% and 3.56 eV respectively. The sheet resistance (4.13 Ω/□) attained for the doubly doped film in this study is lower than the values reported for spray deposited fluorine or antimony doped tin oxide films prepared from aqueous solution of SnCl 2 precursor (without using methanol or ethanol).

  17. Manipulating electrochemical performance through doping beyond the solubility limit.

    PubMed

    Yatom, Natav; Toroker, Maytal Caspary

    2016-06-28

    Improving water splitting efficiency has been the holy grail of hydrogen fuel production. Major efforts have been invested in an attempt to enhance efficiency of a common water oxidation catalyst, α-Fe2O3, through doping and alloying. Recent experiments show that higher efficiency is achieved when niobium (Nb) is added beyond the solubility limit to generate a mixture of two phases: Nb-doped and Nb-alloyed α-Fe2O3. In order to understand why adding high concentrations of Nb is beneficial, we provide a thorough first principles study of the bulk and the surface of pure, Nb-doped, and Nb-alloyed α-Fe2O3 with several surface facets and terminations. We find that the addition of Nb changes the band edge and Fermi level positions. Therefore, we propose a mechanism by which having different Nb doping levels within and above the solubility limit has an advantage: electrons and holes could separate better between doped and alloyed regions that have different band edge positions or between regions with different doping concentrations. Furthermore, the holes' driving force to oxidize water can be increased by placing on the surface the undoped or alloyed phases, since they have a lower valence band maximum. We suggest that obtaining two material phases or gradual doping can be used as a design strategy for next generation catalysts. PMID:27080975

  18. Application of factorial design and Doehlert matrix for determination of trace lead in environmental samples by on-line column preconcentration FAAS using silica gel chemically modified with niobium(V) oxide.

    PubMed

    Roux, Kalya Cravo Di Pietro; Maltez, Heloisa França; Carletto, Jeferson Schneider; Martendal, Edmar; Carasek, Eduardo

    2008-03-01

    In this study a new method for Pb determination in water using solid phase extraction coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Pb preconcentration and extraction was silica gel chemically modified with niobium(V) oxide. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were buffer type, eluent concentration, and sample and eluent flow rates. It was verified that the aforementioned factors as well as their interactions were statistically significant at the 95% confidence level. The effect of foreign ions was evaluated using a fractionary factorial experimental design. The detection limit was 0.35 microg L(-1) and the precision was 1.6%. Results for recovery tests using different environmental samples were between 90 and 104%. Certified reference materials were analyzed in order to check the accuracy of the proposed method. PMID:18332544

  19. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  20. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  1. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  2. Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances.

    PubMed

    Cheng, Hefeng; Wen, Meicheng; Ma, Xiangchao; Kuwahara, Yasutaka; Mori, Kohsuke; Dai, Ying; Huang, Baibiao; Yamashita, Hiromi

    2016-07-27

    Heavily doped semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals; however, controlled manipulation of their surface plasmon bands toward short wavelengths, especially in the visible light spectrum, still remains a challenge. Here we demonstrate that hydrogen doped given MoO3 and WO3 via a facile H-spillover approach, namely, hydrogen bronzes, exhibit strong localized surface plasmon resonances in the visible light region. Through variation of their stoichiometric compositions, tunable plasmon resonances could be observed in a wide range, which hinge upon the reduction temperatures, metal species, the nature and the size of metal oxide supports in the synthetic H2 reduction process as well as oxidation treatment in the postsynthetic process. Density functional theory calculations unravel that the intercalation of hydrogen atoms into the given host structures yields appreciable delocalized electrons, enabling their plasmonic properties. The plasmonic hybrids show potentials in heterogeneous catalysis, in which visible light irradiation enhanced catalytic performance toward p-nitrophenol reduction relative to dark condition. Our findings provide direct evidence for achieving plasmon resonances in hydrogen doped metal oxide semiconductors, and may allow large-scale applications with low-price and earth-abundant elements.

  3. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGES

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  4. Microwave absorption properties of Mn- and Ni-doped zinc oxides

    SciTech Connect

    Wu Qibai; Zhao Wei; Zeng Guoxun; Zhang Haiyan; Wei Aixiang; Wang Jia

    2011-05-15

    Microwave absorption properties of Mn- and Ni-doped zinc oxides were assessed in this study. Samples were prepared by the decomposition of acetate solid solutions. By changing the concentration of dopant ions in the reaction solutions, zinc oxides with different amounts of dopant were obtained. The morphologies, chemical compositions, and structures of the samples were investigated by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray powder diffraction. Electromagnetic characteristics of the doped samples were assessed by vector network analysis at a frequency range of 2-16 GHz. Both the real and imaginary parts of the complex permittivity decreased as Mn or Ni concentration increased. Results indicate that, compared with pure ZnO, Mn- and Ni-doped zinc oxides exhibit excellent microwave absorption properties. The highest level of microwave absorption observed was 80.7 dB at a frequency of 9.8 GHz, and the best frequency bandwidth was 8.6 GHz at reflection loss values below -10 dB.

  5. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  6. Gd(III) doping effect on magnetization and water proton relaxivities in ultra small iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Choi, Eun Sook; Xu, Wenlong; Baek, Myung Ju; Park, Ja Young; Kim, Joo Hyun; Chang, Yongmin; Kim, Tae Jeong; Lee, Gang Ho

    2013-07-01

    Two samples of ultra small Gd(III) doped iron oxide nanoparticles were prepared to investigate Gd(III) doping effect on longitudinal (r1) and transverse (r2) water proton relaxivities. Gd(III) doping mole percents were 0.2 and 0.4 for samples 1 and 2, respectively. Average particle diameters were 2.5 to 2.1 nm for samples 1 and 2, respectively. Reduced r1 and r2 values were observed in both samples. We attributed this to reduced magnetizations arising from opposing effect of Gd(III) to net magnetizations of Fe(III)/Fe(II) in oxide nanoparticles.

  7. Ferromagnetism in carbon-doped zinc oxide systems.

    PubMed

    Nagare, B J; Chacko, Sajeev; Kanhere, D G

    2010-02-25

    We report spin-polarized density functional calculations of ferromagnetic properties for a series of ZnO clusters and ZnO solid containing one or two substitutional carbon impurities. We analyze the eigenvalue spectra, spin densities, molecular orbitals, and induced magnetic moments for ZnC, Zn(2)C, Zn(2)OC, carbon-substituted Zn(n)O(n) (n = 3-10, 12) clusters and the bulk ZnO. The results show that the doping induces magnetic moment of approximately 2 mu(B) in all the cases. All systems with two carbon impurities show ferromagnetic interaction, except when carbon atoms share the same zinc atom as the nearest neighbor. This ferromagnetic interaction is predominantly mediated via pi-bonds in the ring structures and through pi- and sigma-bonds in the three-dimensional structure. The calculations also show that the interaction is significantly enhanced in the solid, bringing out the role of dimensionality of the Zn-O network connecting two carbon atoms.

  8. Tailoring ferromagnetism in chromium-doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Haq, Bakhtiar Ul; Ahmed, Rashid; Goumri-Said, Souraya

    2014-03-01

    The simultaneous manipulation of both charge and spin has made diluted magnetic semiconductors (DMS) a potential material for the fabrication of spintronic devices. We report DMSs based on ZnO doped with Cr in wurtzite (WZ) and zinc-blend (ZB) geometries. The injection of Cr impurities at a concentration of 6.25% has successfully tuned ferromagnetism in ZnO. To recognize the nature of magnetic interactions, two spatial configurations are investigated, where the impurity atoms are placed at minimum and maximum separation distances. The material favors the short-range magnetic coupling and has a tendency towards Cr clustering. The injection of a Cr impurity into ZnO strongly influences the electronic properties in terms of band structure, dependent on the impurity spatial distribution. It is half metallic for both structural geometries when impurity atoms have minimum separation and is metallic when they are placed far apart. Moreover, replacing Zn with Cr does not show a significant effect on the structural geometries. Our results endorse that Cr:ZnO can be efficiently used for spin-polarized transport and other spin-dependent applications in both hexagonal and cubic phases.

  9. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  10. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    SciTech Connect

    Zhang, Tian Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  11. Copper oxide and selenide nanoparticles embedded into sol-gel-derived silica glasses doped with europium

    NASA Astrophysics Data System (ADS)

    Gurin, Valerij S.; Yumashev, Konstantin V.; Prokoshin, P. V.; Zolotovskaya, S. A.; Alexeenko, A. A.

    2002-11-01

    The silica sol-gel derived glasses co-doped with CuxO and CuxSe nanoparticles and Eu3+ ions have been fabricated. The analysis of luminescence spectra of a series of glasses with different composition allows us to suppose the direct energy transfer between copper oxide nanoparticle and Eu3+ ion. A luminescence signal of europium ions occurs as the result of excitation of the complex active centres (SiO2:Cu2O:Eu3+) in the absorption range of copper oxide.

  12. Comparison of beryllium oxide and pyrolytic graphite crucibles for boron doped silicon epitaxy

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2012-11-15

    This article reports on the comparison of beryllium oxide and pyrolytic graphite as crucible liners in a high-temperature effusion cell used for boron doping in silicon grown by molecular beam epitaxy. Secondary ion mass spectroscopy analysis indicates decomposition of the beryllium oxide liner, leading to significant incorporation of beryllium and oxygen in the grown films. The resulting films are of poor crystal quality with rough surfaces and broad x-ray diffraction peaks. Alternatively, the use of pyrolytic graphite crucible liners results in higher quality films.

  13. Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser.

    PubMed

    Xu, Jia; Wu, Sida; Li, Huihui; Liu, Jiang; Sun, Ruoyu; Tan, Fangzhou; Yang, Quan-Hong; Wang, Pu

    2012-10-01

    We demonstrated dissipative soliton obtained from a graphene oxide mode-locked Er-doped fiber laser, which operated in normal dispersion cavity by employing the dispersion compensation fiber. The highly chirped pulses at the repetition rate of 19.5 MHz can be compressed from 11 ps to 542 fs by using single mode fiber. Numerical simulations were in good agreement with the experimental results. The hydrophilic graphene oxide with easier fabrication shows great potential to be a novel low-cost saturable absorber in reliable and compact mode-locked fiber laser system.

  14. Cytotoxic, hematologic and histologic effects of niobium pentoxide in Swiss mice.

    PubMed

    Dsouki, Nuha Ahmad; de Lima, Maurício Pereira; Corazzini, Roseli; Gáscon, Thaís Moura; Azzalis, Ligia Ajaime; Junqueira, Virgínia Berlanga Campos; Feder, David; Fonseca, Fernando Luiz Affonso

    2014-05-01

    The use of metal devices in medical application is increasing but it remains incompletely understood the physiological effects of component degradation. Niobium (Nb) alloys have already been investigated in the 1980's and recent studies demonstrated the potential of Nb as an implant material. The purpose of this study was to determine cytotoxic, hematologic and histologic effects of niobium in Swiss mice. Animals were treated with a single dose of 3 % niobium oxide (Nb2O5) diluted in PBS, i.p. Cytotoxic assay, hematologic and histologic evaluation were done 3, 7 and 12 days after niobium treatment. Data have shown increased number of cells after niobium treatment, but there was no difference in cell viability. Furthermore, it was not observed hematological modification 3, 7 or 12 days after niobium treatment. Despite the fact that animals treated with niobium for 3 and 7 days showed mild degeneration in hepatocytes, mice kept alive for 12 days showed liver cells regeneration. Our results suggested that niobium cytotoxicity was not progressive because 12 days after treatment there was an evident liver regeneration. Data obtained indicated that niobium may be promising alternatives to biomedical applications.

  15. Physical properties of antimony-doped tin oxide thick films

    NASA Astrophysics Data System (ADS)

    Kaneko, H.; Miyake, K.

    1982-05-01

    The physical properties of Sb-doped SnO2 thick films, prepared by a repeating chemical spray deposition method, have been investigated. The films 1000-14 000-Å thick were deposited on fused quartz, borosilicate glass, and soda lime glass substrates at 600 °C using an aqueous solution of a mixture of SnCl4 and SbCl3. The films prepared by the method are homogeneous, and the electrical resistivity of the films on fused quartz and borosilicate glass substrates were found to be independent of the film thickness, and are 9.5×10-4 Ω cm, and 8.6×10-4 Ω cm, respectively. The resistivity of the films thicker than 4000 Å on soda lime glass substrates is almost constant, and is 1.8×10-3 Ω cm, although a large increase in the resistivity of the thinner films was observed. The optical band gap of the films on fused quartz and borosilicate glass substrates is also independent of the film thickness, and is almost the same: 3.75 eV. But the band gap of the films on soda lime glass substrates depends on the film thickness, and increases from 2.85 to 3.08 eV with increasing thickness from 2250 to 13 000 Å. The Hall mobility and carrier concentration of the films were also measured. The results of x-ray diffraction analysis and observations by SEM are described.

  16. SRF niobium characterization using SIMS and FIB-TEM

    NASA Astrophysics Data System (ADS)

    Stevie, F. A.

    2015-12-01

    Our understanding of superconducting radio frequency (SRF) accelerator cavities has been improved by elemental analysis at high depth resolution and by high magnification microscopy. This paper summarizes the technique development and the results obtained on poly-crystalline, large grain, and single crystal SRF niobium. Focused ion beam made possible sample preparation using transmission electron microscopy and the images obtained showed a very uniform oxide layer for all samples analyzed. Secondary ion mass spectrometry indicated the presence of a high concentration of hydrogen and the hydrogen content exhibited a relationship with improvement in performance. Depth profiles of carbon, nitrogen, and oxygen did not show major differences with heat treatment. Niobium oxide less than 10 nm thick was shown to be an effective hydrogen barrier. Niobium with titanium contamination showed unexpected performance improvement.

  17. SRF niobium characterization using SIMS and FIB-TEM

    SciTech Connect

    Stevie, F. A.

    2015-12-04

    Our understanding of superconducting radio frequency (SRF) accelerator cavities has been improved by elemental analysis at high depth resolution and by high magnification microscopy. This paper summarizes the technique development and the results obtained on poly-crystalline, large grain, and single crystal SRF niobium. Focused ion beam made possible sample preparation using transmission electron microscopy and the images obtained showed a very uniform oxide layer for all samples analyzed. Secondary ion mass spectrometry indicated the presence of a high concentration of hydrogen and the hydrogen content exhibited a relationship with improvement in performance. Depth profiles of carbon, nitrogen, and oxygen did not show major differences with heat treatment. Niobium oxide less than 10 nm thick was shown to be an effective hydrogen barrier. Niobium with titanium contamination showed unexpected performance improvement.

  18. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.

    PubMed

    Di Valentin, Cristiana; Pacchioni, Gianfranco

    2014-11-18

    CONSPECTUS: Very rarely do researchers use metal oxides in their pure and fully stoichiometric form. In most of the countless applications of these compounds, ranging from catalysis to electronic devices, metal oxides are either doped or defective because the most interesting chemical, electronic, optical, and magnetic properties arise when foreign components or defects are introduced in the lattice. Similarly, many metal oxides are diamagnetic materials and do not show a response to specific spectroscopies such as electron paramagnetic resonance (EPR) spectroscopy. However, doped or defective oxides may exhibit an interesting and informative paramagnetic behavior. Doped and defective metal oxides offer an expanding range of applications in contemporary condensed matter science; therefore researchers have devoted enormous effort to the understanding their physical and chemical properties. The interplay between experiment and computation is particularly useful in this field, and contemporary simulation techniques have achieved high accuracies with these materials. In this Account, we show how the direct comparison between spectroscopic experimental and computational data for some selected and relevant materials provides ways to understand and control these complex systems. We focus on the EPR properties and electronic transitions that arise from the presence of dopants and defects in bulk metal oxide materials. We analyze and compare the effect of nitrogen doping in TiO2 and ZnO (two semiconducting oxides) and MgO (a wide gap insulator) and examine the effect of oxygen deficiency in the semiconducting properties of TiO2-x, ZnO1-x, and WO3-x materials. We chose these systems because of their relevance in applications including photocatalysis, touch screens, electrodes in magnetic random access memories, and smart glasses. Density functional theory (DFT) provides the general computational framework used to illustrate the electronic structure of these systems. However

  19. Tuning the Electrical and Thermal Conductivities of Thermoelectric Oxides through Impurity Doping

    NASA Astrophysics Data System (ADS)

    Torres Arango, Maria A.

    Waste heat and thermal gradients available at power plants can be harvested to power wireless networks and sensors by using thermoelectric (TE) generators that directly transform temperature differentials into electrical power. Oxide materials are promising for TE applications in harsh industrial environments for waste heat recovery at high temperatures in air, because they are lightweight, cheaply produced, highly efficient, and stable at high temperatures in air. Ca3Co4O9(CCO) with layered structure is a promising p-type thermoelectric oxide with extrapolated ZT value of 0.87 in single crystal form [1]. However the ZT values for the polycrystalline ceramics remain low of ˜0.1-0.3. In this research, nanostructure engineering approaches including doping and addition of nanoinclusions were applied to the polycrystalline CCO ceramic to improve the energy conversion efficiency. Polycrystalline CCO samples with various Bi doping levels were prepared through the sol-gel chemical route synthesis of powders, pressing and sintering of the pellets. Microstructure features of Bi doped ceramic bulk samples such as porosity, development of crystal texture, grain boundary dislocations and segregation of Bi dopants at various grain boundaries are investigated from microns to atomic scale. The results of the present study show that the Bi-doping is affecting both the electrical conductivity and thermal conductivity simultaneously, and the optimum Bi doping level is strongly correlated with the microstructure and the processing conditions of the ceramic samples. At the optimum doping level and processing conditions of the ceramic samples, the Bi substitution of Ca results in the increase of the electrical conductivity, decrease of the thermal conductivity, and improvement of the crystal texture. The atomic resolution Scanning Transmission Electron Microscopy (STEM) Z-contrast imaging and the chemistry analysis also reveal the Bi-segregation at grain boundaries of CCO

  20. Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing

    PubMed Central

    Wongchoosuk, Chatchawal; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Kerdcharoen, Teerakiat

    2010-01-01

    In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT)-doped tungsten oxide (WO3) thin films by means of the powder mixing and electron beam (E-beam) evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO3 thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO3 hydrogen sensor prepared by the E-beam method. PMID:22163623

  1. Structural and photoluminescence properties of terbium-doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ningthoujam Surajkumar, Singh; Shougaijam Dorendrajit, Singh; Sanoujam Dhiren, Meetei

    2014-05-01

    We present in this paper a study of the structural and photoluminescence (PL) properties of terbium (Tb) doped zinc oxide (ZnO) nanoparticles synthesized by a simple low temperature chemical precipitation method, using zinc acetate and terbium nitrate in an isopropanol medium with diethanolamine (DEA) as the capping agent at 60 °C. The as-prepared samples were heat treated and the PL of the annealed samples were studied. The prepared nanoparticles were characterized with X-ray diffraction (XRD). The XRD patterns show the pattern of typical ZnO nanoparticles and correspond with the standard XRD pattern given by JCPDS card No. 36-1451, showing the hexagonal phase structure. The PL intensity was enhanced due to Tb3+ doping, and it decreased at higher concentrations of Tb3+ doping after reaching a certain optimum concentration. The PL spectra of Tb3+ doped samples exhibited blue, bluish green, and green emissions at 460 nm (5D3 - 7F3), 484 nm (5D4 - 7F6), and 530 nm (5D4 - 7F5), respectively, which were more intense than the emissions for the undoped ZnO sample. Based on the results, an energy level schematic diagram was proposed to explain the possible electron transition processes.

  2. Large grain cavities from pure niobium ingot

    SciTech Connect

    Myneni, Ganapati Rao; Kneisel, Peter; Cameiro, Tadeu

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  3. P-Doped Porous Carbon as Metal Free Catalysts for Selective Aerobic Oxidation with an Unexpected Mechanism.

    PubMed

    Patel, Mehulkumar A; Luo, Feixiang; Khoshi, M Reza; Rabie, Emann; Zhang, Qing; Flach, Carol R; Mendelsohn, Richard; Garfunkel, Eric; Szostak, Michal; He, Huixin

    2016-02-23

    An extremely simple and rapid (seconds) approach is reported to directly synthesize gram quantities of P-doped graphitic porous carbon materials with controlled P bond configuration. For the first time, it is demonstrated that the P-doped carbon materials can be used as a selective metal free catalyst for aerobic oxidation reactions. The work function of P-doped carbon materials, its connectivity to the P bond configuration, and the correlation with its catalytic efficiency are studied and established. In direct contrast to N-doped graphene, the P-doped carbon materials with higher work function show high activity in catalytic aerobic oxidation. The selectivity trend for the electron donating and withdrawing properties of the functional groups attached to the aromatic ring of benzyl alcohols is also different from other metal free carbon based catalysts. A unique catalytic mechanism is demonstrated, which differs from both GO and N-doped graphene obtained by high temperature nitrification. The unique and unexpected catalytic pathway endows the P-doped materials with not only good catalytic efficiency but also recyclability. This, combined with a rapid, energy saving approach that permits fabrication on a large scale, suggests that the P-doped porous materials are promising materials for "green catalysis" due to their higher theoretical surface area, sustainability, environmental friendliness, and low cost.

  4. Modeling of oxidation kinetics of Y-doped Fe-Cr-Al alloys

    SciTech Connect

    Liu, Z.; Gao, W.; He, Y.

    2000-04-01

    Studies using advanced analytical techniques indicated that the reactive elements (RE) segregate along the oxide grain boundaries and at the oxide-alloy interface during oxidation of {alpha}-Al{sub 2}O{sub 3} forming alloys. The segregation results in inward oxygen diffusion along the oxide grain boundaries as the predominant transport process in the oxide growth. The present work establishes a mathematical model based on the mechanisms of inward oxygen diffusion along the grain boundaries and oxide grain coarsening. This model has been used to describe the oxidation kinetics of Y-doped Fe-Cr-Al alloys. The results showed a much better agreement with the experimental data than the parabolic rate law. By using this model, the exponential number for the grain coarsening of alumina scales during oxidation was calculated to be {approximately}3. The activation energy for oxygen diffusing along the grain boundaries was 450 kJ/mol. They are also in good agreement with values reported in the literatures.

  5. Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells.

    PubMed

    Li, Mei; Wang, Yao; Wang, Yunlong; Chen, Fanglin; Xia, Changrong

    2014-07-23

    Bismuth is doped to lanthanum strontium ferrite to produce ferrite-based perovskites with a composition of La(0.8-x)Bi(x)Sr0.2FeO(3-δ) (0 ≤ x ≤ 0.8) as novel cathode material for intermediate-temperature solid oxide fuel cells. The perovskite properties including oxygen nonstoichiometry coefficient (δ), average valence of Fe, sinterability, thermal expansion coefficient, electrical conductivity (σ), oxygen chemical surface exchange coefficient (K(chem)), and chemical diffusion coefficient (D(chem)) are explored as a function of bismuth content. While σ decreases with x due to the reduced Fe(4+) content, D(chem) and K(chem) increase since the oxygen vacancy concentration is increased by Bi doping. Consequently, the electrochemical performance is substantially improved and the interfacial polarization resistance is reduced from 1.0 to 0.10 Ω cm(2) at 700 °C with Bi doping. The perovskite with x = 0.4 is suggested as the most promising composition as solid oxide fuel cell cathode material since it has demonstrated high electrical conductivity and low interfacial polarization resistance.

  6. A DFT study of phenol adsorption on a low doping Mn-Ce composite oxide model

    NASA Astrophysics Data System (ADS)

    D´Alessandro, Oriana; Pintos, Delfina García; Juan, Alfredo; Irigoyen, Beatriz; Sambeth, Jorge

    2015-12-01

    Density functional theory calculations (DFT + U) were performed on a low doping Mn-Ce composite oxide prepared from experimental data, including X-ray diffraction (XRD) and temperature-programmed reduction (TPR). We considered a 12.5% Mn-doped CeO2 solid solution with fluorite-type structure, where Mn replaces Ce4+ leading to an oxygen-deficient bulk structure. Then, we modeled the adsorption of phenol on the bare Ce0.875Mn0.125O1.9375(1 1 1) surface. We also studied the effect of water adsorption and dissociation on phenol adsorption on this surface, and compared the predictions of DFT + U calculations with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements. The experimental results allowed us to both build a realistic model of the low doping Mn-Ce composite oxide and support the prediction that phenol is adsorbed as a phenoxy group with a tilt angle of about 70° with respect to the surface.

  7. Antimony-Doped Tin Oxide Thin Films Grown by Home Made Spray Pyrolysis Technique

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo; Babatola, Babatunde Keji; Ishola, Abdulahi Dimeji; Awodugba, Ayodeji O.; Solar cell Collaboration

    2016-03-01

    Transparent conducting antimony-doped tin oxide (ATO) films have been deposited on glass substrates by home made spray pyrolysis technique. The structural, electrical and optical properties of the ATO films have been investigated as a function of Sb-doping level and annealing temperature. The optimum target composition for high conductivity and low resistivity was found to be 20 wt. % SnSb2 + 90 wt. ATO. Under optimized deposition conditions of 450oC annealing temperature, electrical resistivity of 5.2×10-4 Ω -cm, sheet resistance of 16.4 Ω/sq, average optical transmittance of 86% in the visible range, and average optical band-gap of 3.34eV were obtained. The film deposited at lower annealing temperature shows a relatively rough, loosely bound slightly porous surface morphology while the film deposited at higher annealing temperature shows uniformly distributed grains of greater size. Keywords: Annealing, Doping, Homemade spray pyrolysis, Tin oxide, Resistivity

  8. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics

    DOE PAGES

    Sachet, Edward; Shelton, Christopher T.; Harris, Joshua S.; Gaddy, Benjamin E.; Irving, Douglas L.; Curtarolo, Stefano; Donovan, Brian F.; Hopkins, Patrick E.; Sharma, Peter A.; Sharma, Ana Lima; et al

    2015-02-16

    The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet–visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate ‘defect equilibrium engineering’. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomesmore » the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm2 V–1 s–1 for carrier densities above 1020 cm–3. As a result, our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.« less

  9. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics.

    PubMed

    Sachet, Edward; Shelton, Christopher T; Harris, Joshua S; Gaddy, Benjamin E; Irving, Douglas L; Curtarolo, Stefano; Donovan, Brian F; Hopkins, Patrick E; Sharma, Peter A; Sharma, Ana Lima; Ihlefeld, Jon; Franzen, Stefan; Maria, Jon-Paul

    2015-04-01

    The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet-visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate 'defect equilibrium engineering'. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomes the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm(2) V(-1) s(-1) for carrier densities above 10(20) cm(-3). Our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.

  10. Aqueous Co-precipitation of Pd-doped Cerium Oxide Nanoparticles: Chemistry Structure and Particle Growth

    SciTech Connect

    Liang H.; Zhang L.; Raitano J.M.; He G.; Akey A.J.; Herman I.P.; Chan S.-W.

    2012-01-01

    Nanoparticles of palladium-doped cerium oxide (Pd-CeO{sub 2}) have been prepared by aqueous co-precipitation resulting in a single phase cubic structure after calcination according to X-ray diffraction (XRD). Inhomogeneous strain, calculated using the Williamson-Hall method, was found to increase with palladium content, and the lattice contracts slightly, relative to nano-cerium oxide, as palladium content is increased. Moreover, high resolution transmission electron microscopy reveals some instances of defective microstructure. These factors combined imply that palladium is in solid solution with CeO{sub 2} in these nanoparticles, but palladium (II) oxide (PdO) peaks in the Raman spectra indicate that solid solution formation is partial and that highly dispersed PdO is present as well as the solid solution. Nevertheless, the addition of palladium to the CeO{sub 2} lattice inhibits the growth of the 6% Pd-CeO{sub 2} particles compared to pure CeO{sub 2} between 600 and 850 C. Activation energies for grain growth of 54 {+-} 7 and 79 {+-} 8 kJ/mol were determined for 6% Pd-CeO{sub 2} and pure CeO{sub 2}, respectively, along with pre-exponential Arrhenius factors of 10 for the doped sample and 600 for pure cerium oxide.

  11. NIOBIUM-TANTALUM SEPARATION

    DOEpatents

    Wilhelm, H.A.; Foos, R.A.

    1959-01-27

    The usual method for the separation of tantalum and niobium consists of a selective solvent extraction from an aqueous hydrofluoric acid solution of the metals. A difficulty encountered in this process is the fact that the corrosion problems associated with hydrofluoric acid are serious. It has been found that the corrosion caused by the hydrofluoric acid may be substantially reduced by adding to the acidic solution an amine, such as phenyl diethanolamine or aniline, and adjusting pH value to between 4 and 6.

  12. Effect of magnetic and nonmagnetic nano metal oxides doping on the critical temperature of a YBCO superconductor

    NASA Astrophysics Data System (ADS)

    Salama, A. H.; El-Hofy, M.; Rammah, Y. S.; Elkhatib, M.

    2015-12-01

    Bulk superconductor samples of YBa2Cu3O7-δ (YBCO) doped with nano metal oxides of Mn3O4, Co3O4, Cr2O3, CuO and SnO2 respectively with 0.2 wt% are synthesized by a solid-state reaction route. The structural characterization of all samples has been carried out by x-ray diffraction (XRD) and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The XRD patterns indicate that the magnetic doping of nano metal oxides ≤ft({{{Mn}}}{{3}}{{{O}}}{{4}}, {{{Co}}}{{3}}{{{O}}}{{4}}, {{{Cr}}}{{2}}{{{O}}}{{3}}\\right) gives a high value of orthorhombicity of the YBCO samples which is the result of high oxygen content, and consequently could give better superconducting properties contrary to the non magnetic nano oxides (CuO, SnO2). The critical temperature (Tc) of the studied samples was found to improve by nano magnetic doping and lower with nano nonmagnetic doping. The superconducting transition temperature Tc determined from electrical resistivity measurements was found to increase for Mn3O4 (5.27 μB) doping and decrease for other metal oxides doping.

  13. Comparison study of electrochemical properties of porous zinc oxide/N-doped carbon and pristine zinc oxide polyhedrons

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenfang; Zhang, Kun; Liu, Jinghao; Peng, Hongrui; Li, Guicun

    2015-07-01

    An in-situ calcination strategy has been developed for the synthesis of porous zinc oxide/N-doped carbon (ZnO/NC) polyhedrons, in which zeolitic imidazolate framework-8 (ZIF-8) serves as the precursor. The ZnO/NC polyhedrons with a hierarchical architecture possess a high specific surface area of 390.7 m2 g-1, high nitrogen content (19.99 at%), and robust pore structures. The porous N-doped carbon frameworks can not only increase the electronic conductivity of ZnO, but also provide interior space for the fast diffusion of Li+ ions and accommodate the volume variations during the charge and discharge cycles. When evaluated for lithium storage capacity, the hierarchical ZnO/NC polyhedrons exhibit high reversible discharge capacity (834.3 mAh g-1 at the initial low rate of 0.5C, 1C = 978 mA g-1), superior rate performance (399.2 mAh g-1 at 5C and 253.5 mAh g-1 at 10C), and excellent cycling stability (677.9 mAh g-1 at 1C after 400 cycles). The reasons are explored in terms of the well-confined primary nanocrystals (5 nm), and the finely constructed interconnected pores of the N-doped carbon networks, which facilitate the fast and effective transfer of Li+ ions and electrons, and accommodate the large volume expansions.

  14. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    NASA Astrophysics Data System (ADS)

    Cantatore, Valentina; Panas, Itai

    2016-04-01

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O- act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N2 + O2 product channels, one of which favoring N2O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N2 + O2 formation pathways are contrasted by a side reaction that brings to N3O3- formation and decomposition into N2O + NO2-.

  15. Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique

    NASA Astrophysics Data System (ADS)

    Abed, S.; Bouchouit, K.; Aida, M. S.; Taboukhat, S.; Sofiani, Z.; Kulyk, B.; Figa, V.

    2016-06-01

    ZnO doped Bi thin films were grown on glass substrates by spray ultrasonic technique. This paper presents the effect of Bi doping concentration on structural and nonlinear optical properties of zinc oxide thin films. These thin films were characterized by X-ray diffractometer technique. XRD analysis revealed that the ZnO:Bi thin films indicated good preferential orientation along c-axis perpendicular to the substrate. The nonlinear optical properties such as nonlinear absorption coefficient (β) and third order nonlinear susceptibility (Imχ(3)) are investigated. The calculations have been performed with a Z scan technique using Nd:YAG laser emitting 532 nm. The reverse saturable absorption (RSA) mechanism was responsible for the optical limiting effect. The results suggest that this material considered as a promising candidate for future optical device applications.

  16. Permanent optical doping of amorphous metal oxide semiconductors by deep ultraviolet irradiation at room temperature

    SciTech Connect

    Seo, Hyungtak; Cho, Young-Je; Bobade, Santosh M.; Park, Kyoung-Youn; Choi, Duck-Kyun; Kim, Jinwoo; Lee, Jaegab

    2010-05-31

    We report an investigation of two photon ultraviolet (UV) irradiation induced permanent n-type doping of amorphous InGaZnO (a-IGZO) at room temperature. The photoinduced excess electrons were donated to change the Fermi-level to a conduction band edge under the UV irradiation, owing to the hole scavenging process at the oxide interface. The use of optically n-doped a-IGZO channel increased the carrier density to approx10{sup 18} cm{sup -3} from the background level of 10{sup 16} cm{sup -3}, as well as the comprehensive enhancement upon UV irradiation of a-IGZO thin film transistor parameters, such as an on-off current ratio at approx10{sup 8} and field-effect mobility at 22.7 cm{sup 2}/V s.

  17. Influence of morphological transformation on luminescence properties of europium-doped gadolinium oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Dondapati, Hareesh; Holloway, Terence; Cao, Wei; Kar, Arik; Patra, Amitava; Pradhan, Aswini K.

    2010-09-01

    Low dimensional europium (Eu3+)-doped gadolinium oxide (Gd2O3) lanthanide nanostructures are synthesized by an effective and simple coprecipitation process followed by subsequent heat treatments. Transmission electron microscope (TEM) images indicate Eu3+-doped Gd2O3 nanostructures undergo significant morphological changes from nanorods to nanoparticles during thermal treatments. Nanostructures with different morphology, including nanotubes, strongly influence the photoluminescence properties. The dependence of luminescence lifetime on morphological nature of the nanostructures demonstrates that the one dimensional nanostructures such as nanorods and nanotubes have higher emission intensity with shorter lifetime. Our analysis suggests that the morphological transformation of the nanostructures plays the most important role in the behavior of radiative and nonradiative relaxation mechanisms, resulting in the overall photoluminescence properties.

  18. Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state.

    PubMed

    Wang, Xiang-lei; Liu, Zhi-qiang; Stevens-Kalceff, Marion A; Riesen, Hans

    2014-09-01

    We report a facile mechanochemical preparation method for nanocrystalline BaFCl doped with samarium in the 2+ oxidation state by ball milling BaCl2, BaF2, and SmI2 under a nitrogen atmosphere. The resulting phosphors were characterized by powder X-ray diffraction; electron microscopy, X-ray photoelectron spectroscopy; and photoluminescence, photoexcitation, cathodoluminescence, and diffuse reflectance spectroscopy. This is the first report of a direct preparation method of Sm(2+) doped alkaline earth fluorohalides at room temperature and points to a significant potential for the preparation of a wide range of related X-ray storage phosphors containing rare earth ions in divalent and trivalent cationic states by mechanochemical methods.

  19. High methanol oxidation activity of well-dispersed pt nanoparticles on carbon nanotubes using nitrogen doping.

    PubMed

    Fang, Wei-Chuan

    2009-10-09

    Pt nanoparticles (NPs) with the average size of 3.14 nm well dispersed on N-doped carbon nanotubes (CNTs) without any pretreatment have been demonstrated. Structural properties show the characteristic N bonding within CNTs, which provide the good support for uniform distribution of Pt NPs. In electrochemical characteristics, N-doped CNTs covered with Pt NPs show superior current density due to the fact that the so-called N incorporation could give rise to the formation of preferential sites within CNTs accompanied by the low interfacial energy for immobilizing Pt NPs. Therefore, the substantially enhanced methanol oxidation activity performed by N-incorporation technique is highly promising in energy-generation applications.

  20. Raman and Photoluminescence Spectroscopy of Er(3+) Doped Heavy Metal Oxide Glasses

    NASA Technical Reports Server (NTRS)

    Dyer, Keith; Pan, Zheng-Da; Morgan, Steve

    1997-01-01

    The potential applications of rare-earth ion doped materials include fiber lasers which can be pumped conveniently by infrared semiconductor laser diodes. The host material systems most widely studied are fluoride crystals and glasses because fluorides have low nonradiative relaxation rates due to their lower phonon energies. However, the mechanical strength, chemical durability and temperature stability of the oxide glasses are generally much better than fluoride glasses. The objective of this research was to investigate the optical and spectroscopic properties of Er(3+)-doped lead-germanate and lead-tellurium-germanate glasses. The maximum vibrational energy of lead-tellurium-germanate glasses are in the range of 740-820/cm, intermediate between those of silicate (1150/cm) and fluoride (530/cm) glasses.

  1. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  2. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    SciTech Connect

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-21

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness R{sub q} evolves with film thickness as a power law, R{sub q} ∼ d{sub f}{sup β}, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β{sub 1} = 0.14 and β{sub 2} = 0.64 for RT, and β{sub 1} = 0.89 and β{sub 2} = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  3. Thermoelectric Properties of Barium Plumbate Doped by Alkaline Earth Oxides

    NASA Astrophysics Data System (ADS)

    Eufrasio, Andreza; Bhatta, Rudra; Pegg, Ian; Dutta, Biprodas

    Ceramic oxides are now being considered as a new class of thermoelectric materials because of their high stability at elevated temperatures. Such materials are especially suitable for use as prospective thermoelectric power generators because high temperatures are encountered in such operations. The present investigation uses barium plumbate (BaPbO3) as the starting material, the thermoelectric properties of which have been altered by judicious cation substitutions. BaPbO3 is known to exhibit metallic properties which may turn semiconducting as a result of compositional changes without precipitating a separate phase and/or altering the basic perovskite crystal structure. Perovskite structures are noted for their large interstitial spaces which can accommodate a large variety of ``impurity'' ions. As BaPbO3 has high electrical conductivity, σ = 2.43x105Ω-1 m-1 at room temperature, its thermopower, S, is relatively low, 23 μV/K, as expected. With a thermal conductivity, k, of 4.83Wm-1K-1, the figure of merit (ZT =S2 σ Tk-1) of BaPbO3 is only 0.01 at T = 300K. The objective of this investigation is to study the variation of thermoelectric properties of BaPbO3 as Ba and Pb ions are systematically substituted by alkaline earth ions.

  4. Charge mobility increase in indium-molybdenum oxide thin films by hydrogen doping

    NASA Astrophysics Data System (ADS)

    Catalán, S.; Álvarez-Fraga, L.; Salas, E.; Ramírez-Jiménez, R.; Rodriguez-Palomo, A.; de Andrés, A.; Prieto, C.

    2016-11-01

    The increase of charge mobility in transparent conductive indium molybdenum oxide (IMO) films is correlated with the presence of hydroxyl groups. The introduction of H2 in the chamber during sputtering deposition compensates the excess charge introduced by cationic Mo doping of indium oxide either by oxygen or hydroxyl interstitials. Films present a linear increase of carrier mobility correlated with H2 content only after vacuum annealing. This behavior is explained because vacuum annealing favors the removal of oxygen interstitials over that of hydroxyl groups. Since hydroxyl groups offer lower effective charge and smaller lattice distortions than those associated with interstitial oxygen, this compensation mechanism offers the conditions for the observed increase in mobility. Additionally, the short-range order around molybdenum is evaluated by extended X-ray absorption fine structure (EXAFS) spectroscopy, showing that Mo4+ is placed at the In site of the indium oxide.

  5. Epitaxial aluminum-doped zinc oxide thin films on sapphire. 1: Effect of substrate orientation

    SciTech Connect

    Srikant, V.; Sergo, V.; Clarke, D.R.

    1995-07-01

    Epitaxial thin films of Al-doped zinc oxide have been grown on sapphire substrates by pulsed laser ablation. The effect of substrate temperature, background pressure of oxygen, and substrate orientation (A, M, R, C) on the orientation relationships between ZnO and sapphire have been evaluated using on- and off-axis X-ray diffractometry. Under all growth conditions zinc oxide, on A- and C-plane sapphire, grew with the c-axis perpendicular to the substrate. In contrast, on M and R orientations of sapphire, ZnO grew with its c-axis parallel or perpendicular to the substrate depending on the substrate temperature and background pressure employed during growth. In all cases only one unique in-plane relationship between the sapphire substrate and the zinc oxide film was found with the exception of the M-plane at high substrate temperatures.

  6. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    PubMed Central

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system. PMID:22221518

  7. First Principles Study of Effect of 3d Transition Metal-Doped Zinc Oxide on Gas Sensitivity

    NASA Astrophysics Data System (ADS)

    Qiu, Zhiyong; Murakami, Ri-Ichi

    Two series models were developed in order to investigate the gas sensitivity of 3d transition metal-doped zinc oxide (ZnO) materials. Software based on a discrete variation method (DVM) within the framework of density functional theory was used to calculate the electronic structures of the models. It was possible to determine gas sensitivity using the calculated results, from which a relationship between electronic properties and gas sensitivity was formed. The results showed that doping the transition metals greatly affected the gas sensitivity of ZnO-based materials. The main effect was attributed to the change in carrier concentration. On the contrary, the doping of transition metals had a negligible effect on the mobility of ZnO-based materials. Titanium or iron doped-ZnO is thus expected to have the best gas sensitivity of all of the 3d transition metal-doped ZnO materials.

  8. Design, synthesis, and characterization of materials for controlled line deposition, environmental remediation, and doping of porous manganese oxide material

    NASA Astrophysics Data System (ADS)

    Calvert, Craig A.

    This thesis covers three topics: (1) coatings formed from sol-gel phases, (2) environmental remediation, and (3) doping of a porous manganese oxide. Synthesis, characterization, and application were investigated for each topic. Line-formations were formed spontaneously by self-assembly from vanadium sol-gels and other metal containing solutions on glass substrates. The solutions were prepared by the dissolution of metal oxide or salt in water. A more straightforward method is proposed than used in previous work. Analyses using optical microscopy, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and infrared spectroscopy showed discreet lines whose deposition could be controlled by varying the concentration. A mechanism was developed from the observed results. Microwave heating, the addition of graphite rods, and oxidants, can enhance HCB remediation from soil. To achieve remediation, a TeflonRTM vessel open to the atmosphere along with an oxidant, potassium persulfate (PerS) or potassium hydroxide, along with uncoated or aluminum oxide coated, graphite rods were heated in a research grade microwave oven. Microwave heating was used to decrease the heating time, and graphite rods were used to increase the absorption of the microwave energy by providing thermal centers. The results showed that the percent HCB removed was increased by adding graphite rods and oxidants. Tungsten, silver, and sulfur were investigated as doping agents for K--OMS-2. The synthesis of these materials was carried out with a reflux method. The doping of K--OMS-2 led to changes in the properties of a tungsten doped K--OMS-2 had an increased resistivity, the silver doped material showed improved epoxidation of trans-stilbene, and the addition of sulfur produced a paper-like material. Rietveld refinement of the tungsten doped K--OMS-2 showed that the tungsten was doped into the framework.

  9. Characterization of molybdenum doped indium oxide/aluminum doped zinc oxide thin film stacks for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Elamurugu, Elangovan; Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2014-03-01

    Multilayer (ML) thin films, based on indium molybdenum oxide (IMO) and aluminum zinc oxide (AZO), having different stacking were deposited using RF sputtering at room temperature (RT). The total-layer thickness of the MLs ranges between 93 nm and 98 nm. The deposited films were characterized by their structural, electrical, microstructural, and optical properties. X-ray diffraction (XRD) peaks obtained at 2θ of around 30.6° and 34.27° are matched with cubic-In2O3 (222) and hexagonal-ZnO (002), respectively. The MLs have both nano-crystalline and polycrystalline structures depending on the layer properties. A conspicuous feature of XRD analysis is the absence of diffraction peak from 50 nm thick IMO layer when it is stacked below 50 nm thick AZO, whereas it appears significantly when the stacking is reversed to place IMO above AZO layer. Hall measurements confirmed that the deposited MLs are n- type conducting and the electrical properties are varied as a function of layer properties. The deposited MLs show high shortwavelength infrared transmittance (SWIRT) even at 3300 nm, which is ranging as high as 75 % - 90 %. Overall, the MLs show high transmittance in the entire Vis-SWIR region. The optical band gap (Eg) calculated using the absorption coefficient (α) and photon energy (hν) of the deposited MLs is ranging between 3.19 eV and 3.56 eV, depending on the layer properties. Selected as- deposited films were annealed in open air at 400 °C for 1 h; the transmittance of annealed films was improved but their electrical properties deteriorated. Atomic force microscopy (AFM) analysis shows that the root-mean-square (RMS) roughness of the MLs ranges between 0.8 nm and 1.5 nm.

  10. A room temperature nitric oxide gas sensor based on a copper-ion-doped polyaniline/tungsten oxide nanocomposite.

    PubMed

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-03-24

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu(2+)/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu(2+)/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases.

  11. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    PubMed Central

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  12. A room temperature nitric oxide gas sensor based on a copper-ion-doped polyaniline/tungsten oxide nanocomposite.

    PubMed

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu(2+)/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu(2+)/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  13. Oxidation Behavior and Chlorination Treatment to Improve Oxidation Resistance of Nb-Mo-Si-B Alloys

    SciTech Connect

    Behrani, Vikas

    2004-01-01

    This thesis is written in an alternate format. The thesis is composed of a general introduction, two original manuscripts, and a general conclusion. References cited within each chapter are given at the end of each chapter. The general introduction starts with the driving force behind this research, and gives an overview of previous work on boron doped molybdenum silicides, Nb/Nb5Si3 composites, boron modified niobium silicides and molybdenum niobium silicides. Chapter 2 focuses on the oxidation behavior of Nb-Mo-Si-B alloys. Chapter 3 contains studies on a novel chlorination technique to improve the oxidation resistance of Nb-Mo-Si-B alloys. Chapter 4 summarizes the important results in this study.

  14. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy

    PubMed Central

    Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058

  15. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy

    PubMed Central

    Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.

  16. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors.

    PubMed

    Banger, Kulbinder K; Peterson, Rebecca L; Mori, Kiyotaka; Yamashita, Yoshihisa; Leedham, Timothy; Sirringhaus, Henning

    2014-01-28

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm(2) V(-1) s(-1). We show that it is possible to solution-process these materials at low process temperature (225-200 °C yielding mobilities up to 4.4 cm(2) V(-1) s(-1)) and demonstrate a facile "ink-on-demand" process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184

  17. Rare-earth metal oxide doped transparent mesoporous silica plates under non-aqueous condition as a potential UV sensor.

    PubMed

    Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik

    2013-11-01

    Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.

  18. Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants.

    PubMed

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Ziarani, Ghodsi Mohammadi

    2016-01-01

    Pure and samarium doped ZnO nanoparticles were synthesized by a sonochemical method and characterized by TEM, SEM, EDX, XRD, Pl, and DRS techniques. The average crystallite size of pure and Sm-doped ZnO nanoparticles was about 20 nm. The sonocatalytic activity of pure and Sm-doped ZnO nanoparticles was considered toward degradation of phenazopyridine as a model organic contaminant. The Sm-doped ZnO nanoparticles with Sm concentration of 0.4 mol% indicated a higher sonocatalytic activity (59%) than the pure ZnO (51%) and other Sm-doped ZnO nanoparticles. It was believed that Sm(3+) ion with optimal concentration (0.4 mol%) can act as superficial trapping for electrons in the conduction band of ZnO and delayed the recombination of charge carriers. The influence of the nature and concentration of various oxidants, including periodate, hydrogen peroxide, peroxymonosulfate, and peroxydisulfate on the sonocatalytic activity of Sm-doped ZnO nanoparticles was studied. The influence of the oxidants concentration (0.2-1.4 g L(-1)) on the degradation rate was established by the 3D response surface and the 2D contour plots. The results demonstrated that the utilizing of oxidants in combination with Sm-doped ZnO resulting in rapid removal of contaminant, which can be referable to a dual role of oxidants; (i) scavenging the generated electrons in the conduction band of ZnO and (ii) creating highly reactive radical species under ultrasonic irradiation. It was found that the Sm-doped ZnO and periodate combination is the most efficient catalytic system under ultrasonic irradiation.

  19. Polaronic contributions to oxidation and hole conductivity in acceptor-doped BaZrO3

    NASA Astrophysics Data System (ADS)

    Lindman, Anders; Erhart, Paul; Wahnström, Göran

    2016-08-01

    Acceptor-doped perovskite oxides like BaZrO3 are showing great potential as materials for renewable energy technologies where hydrogen acts an energy carrier, such as solid oxide fuel cells and hydrogen separation membranes. While ionic transport in these materials has been investigated intensively, the electronic counterpart has received much less attention and further exploration in this field is required. Here, we use density functional theory (DFT) to study hole polarons and their impact on hole conductivity in Y-doped BaZrO3. Three different approaches have been used to remedy the self-interaction error of local and semilocal exchange-correlation functionals: DFT +U , pSIC-DFT, and hybrid functionals. Self-trapped holes are found to be energetically favorable by about -0.1 eV and the presence of yttrium results in further stabilization. Polaron migration is predicted to occur through intraoctahedral transfer and polaron rotational processes, which are associated with adiabatic barriers of about 0.1 eV. However, the rather small energies associated with polaron formation and migration suggest that the hole becomes delocalized and bandlike at elevated temperatures. These results together with an endothermic oxidation reaction [A. Lindman, P. Erhart, and G. Wahnström, Phys. Rev. B 91, 245114 (2015), 10.1103/PhysRevB.91.245114] yield a picture that is consistent with experimental data for the hole conductivity. The results we present here provide new insight into hole transport in acceptor-doped BaZrO3 and similar materials, which will be of value in the future development of sustainable technologies.

  20. CRYSTALLINE CHROMIUM DOPED ALUMINUM OXIDE (RUBY) USE AS A LUMINESCENT SCREEN FOR PROTON BEAMS.

    SciTech Connect

    BROWN,K.A.; GASSNER,D.M.

    1999-03-29

    In our search for a better luminescent screen material, we tested pieces of mono-crystalline chromium doped aluminum oxide (more commonly known as a ruby) using a 24 GeV proton beam. Due to the large variations in beam intensity and species which are run at the Alternating Gradient Synchrotron (AGS), we hope to find a material which can sufficiently luminesce, is compatible in vacuum, and maintain its performance level over extended use. Results from frame grabbed video camera images using a variety of neutral density filters are presented.

  1. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    NASA Astrophysics Data System (ADS)

    Liu, Zhimeng; Zhu, Mengfu; Wang, Zheng; Wang, Hong; Deng, Cheng; Li, Kui

    2016-05-01

    A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2)/carbon aerogel (CA) for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  2. SOLID-STATE SYNTHESIS AND SOME PROPERTIES OF MAGNESIUM-DOPED COPPER ALUMINUM OXIDES

    SciTech Connect

    Liu, Chang; Ren, Fei; Wang, Hsin; Case, Eldon D; Morelli, Donald

    2010-01-01

    Copper aluminum oxide (CuAlO2) with delafossite structure is a promising candidate for high temperature thermoelectric applications because of its modest band gap, high stability and low cost. We investigate magnesium doping on the aluminum site as a means of producing higher electrical conductivity and optimized Seebeck coefficient. Powder samples were synthesized using solid-state reaction and bulk samples were prepared using both cold-pressing and hot-pressing techniques. Composition analysis, microstructural examination and transport property measurements were performed, and the results suggest that while hot-pressing can achieve high density samples, secondary phases tend to form and lower the performance of the materials.

  3. Localized electropolymerization on oxidized boron-doped diamond electrodes modified with pyrrolyl units.

    PubMed

    Actis, Paolo; Manesse, Mael; Nunes-Kirchner, Carolina; Wittstock, Gunther; Coffinier, Yannick; Boukherroub, Rabah; Szunerits, Sabine

    2006-11-14

    This paper describes the functionalization of oxidized boron-doped diamond (BDD) electrodes with N-(3-trimethoxysilylpropyl)pyrrole (TMPP) and the influence of this layer on the electrochemical transfer kinetics as well as on the possibility of forming strongly adhesive polypyrrole films on the BDD interface through electropolymerization. Furthermore, localized polymer formation was achieved on the TMPP-modified BDD interface using the direct mode of a scanning electrochemical microscope (SECM) as well as an electrochemical scanning near-field optical microscope (E-SNOM). Depending on the method used polypyrrole dots with diameters in the range of 1-250 microm are electrogenerated.

  4. Effect of nitrogen doping on structural, morphological, optical and electrical properties of radio frequency magnetron sputtered zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-06-01

    Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.

  5. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    SciTech Connect

    Marina, Olga A; Stevenson, Jeffry W

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  6. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  7. Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker.

    PubMed

    Kim, Choong Sun; Lee, Kyung Eun; Lee, Jung-Min; Kim, Sang Ouk; Cho, Byung Jin; Choi, Jung-Woo

    2016-08-31

    We built a thermoacoustic loudspeaker employing N-doped three-dimensional reduced graphene oxide aerogel (N-rGOA) based on a simple template-free fabrication method. A two-step fabrication process, which includes freeze-drying and reduction/doping, was used to realize a three-dimensional, freestanding, and porous graphene-based loudspeaker, whose macroscopic structure can be easily modulated. The simplified fabrication process also allows the control of structural properties of the N-rGOAs, including density and area. Taking advantage of the facile fabrication process, we fabricated and analyzed thermoacoustic loudspeakers with different structural properties. The anlayses showed that a N-rGOA with lower density and larger area can produce a higher sound pressure level (SPL). Furthermore, the resistance of the proposed loudspeaker can be easily controlled through heteroatom doping, thereby helping to generate higher SPL per unit driving voltage. Our success in constructing an array of optimized N-rGOAs able to withstand input power as high as 40 W demonstrates that a practical thermoacoustic loudspeaker can be fabricated using the proposed mass-producible solution-based process.

  8. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    SciTech Connect

    Lo, Fang-Yuh Ting, Yi-Chieh; Chou, Kai-Chieh; Hsieh, Tsung-Chun; Ye, Cin-Wei; Hsu, Yung-Yuan; Liu, Hsiang-Lin; Chern, Ming-Yau

    2015-06-07

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescence spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.

  9. Magneto-optical effect of TEB30A liquid crystal doped with thulium oxides

    NASA Astrophysics Data System (ADS)

    Liu, Gui-Xiang; Jin, Xiang

    2014-04-01

    The influences of an external magnetic field on the optical properties of the TEB30A nematic liquid crystal doped with thulium oxides (Gd2O3, Dy2O3, Nd2O3, Y2O3, and Sm2O3) are studied. It is shown that a magnetic field applied parallelly to the sample cell surface leads to the rotational orientation of mesogenes. All samples except for the sample doped with Sm2O3 nanoparticles undergo structural deformations. The behavior of the TEB30A/Sm2O3 differs from those of the TEB30A liquid crystal doped with other four nanoparticles. The presence of Sm2O3 nanoparticles in the TEB30A liquid crystal does not cause the structural deformation of the liquid crystal matrix. At the same time, the anchoring type of the liquid crystal molecules on the nanoparticle surface is different. The director n is parallel to the magnetic moment μ in the TEB30A/Sm2O3, and inclined to the magnetic moment μ in the TEB30A/Nd2O3, and perpendicular to the magnetic moment μ in each of TEB30A/Gd2O3, TEB30A/Dy2O3, and TEB30A/Y2O3. Besides, the dependence of the structural deformation on the critical magnetic field for the TEB30A is obtained.

  10. Significant Enhancement in the Conductivity of Al-Doped Zinc Oxide thin Films for TCO Application

    NASA Astrophysics Data System (ADS)

    Mohite, R. M.; Ansari, J. N.; Roy, A. S.; Kothawale, R. R.

    2016-03-01

    Nanostructured Al-doped Zinc oxide (ZnO) thin films were deposited on glass substrate by chemical bath deposition (CBD) using aqueous zinc nitrate solution and subjected for different characterizations. Effect of Al3+ substitution on the properties of ZnO annealed at 400∘C was studied by XRD and UV-Vis for structural studies, SEM and TEM for surface morphology and DC four probe resistivity measurements for electrical properties. Al3+ substitution does not influence the morphology and well-known peaks related to wurtzite structure of ZnO. Electron microscopy (SEM and TEM) confirms rod shaped Al-doped ZnO nanocrystals with average width of 50nm. The optical band gap determined by UV-Visible spectroscopy was found to be in the range 3.37eV to 3.44eV. An EPR spectrum of AZO reveals peak at g=1.96 is due to shallow donors Zn interstitial. The DC electrical resistivity measurements of Al-doped ZnO show a minimum resistivity of 3.77×10-2Ω-cm. Therefore, these samples have potential use in n-type window layer in optoelectronic devices, organic solar cells, photonic crystals, photo-detectors, light emitting diodes (LEDs), gas sensors and chemical sensors.

  11. Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker.

    PubMed

    Kim, Choong Sun; Lee, Kyung Eun; Lee, Jung-Min; Kim, Sang Ouk; Cho, Byung Jin; Choi, Jung-Woo

    2016-08-31

    We built a thermoacoustic loudspeaker employing N-doped three-dimensional reduced graphene oxide aerogel (N-rGOA) based on a simple template-free fabrication method. A two-step fabrication process, which includes freeze-drying and reduction/doping, was used to realize a three-dimensional, freestanding, and porous graphene-based loudspeaker, whose macroscopic structure can be easily modulated. The simplified fabrication process also allows the control of structural properties of the N-rGOAs, including density and area. Taking advantage of the facile fabrication process, we fabricated and analyzed thermoacoustic loudspeakers with different structural properties. The anlayses showed that a N-rGOA with lower density and larger area can produce a higher sound pressure level (SPL). Furthermore, the resistance of the proposed loudspeaker can be easily controlled through heteroatom doping, thereby helping to generate higher SPL per unit driving voltage. Our success in constructing an array of optimized N-rGOAs able to withstand input power as high as 40 W demonstrates that a practical thermoacoustic loudspeaker can be fabricated using the proposed mass-producible solution-based process. PMID:27532328

  12. Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides

    SciTech Connect

    Damas, Pedro; Coelho, João; Hungerford, Graham; Hussain, N. Sooraj

    2012-11-15

    Graphical abstract: [TeO{sub 4}] trigonal bipyramid structural unit, which is formed by two unequivalent pair of oxygen atoms: two equatorial oxygens (O{sub eq}) and two axial oxygens (O{sub ax}). Highlights: ► Pr{sup 3+} and Sm{sup 3+} doped LBT glasses have been prepared and characterized. ► LBT glasses present normal surfaces without metallic clusters. ► Raman spectra revealed the network modifying behaviour of dopant ions. -- Abstract: This paper reports the preparation and structural studies of praseodymium and samarium (0.5, 2 and 4 mol%) oxide doped lithium boro tellurite glasses. These materials were prepared by the quenching technique in a ceramic crucible at 950 °C. Structural characterization was performed by Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy techniques. Results from Raman analysis are in good agreement with those reported in the literature, revealing a normal glass structure for the host material. Understanding on how the glasses internal structure changed when the doping concentration increases was also assessed.

  13. Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Snure, Michael; Leedy, Kevin D.; Look, David C.; Eyink, Kurt; Tiwari, Ashutosh

    2012-09-01

    This work investigates properties of surface plasmons on doped metal oxides in the 2-20 μm wavelength regime. By varying the stoichiometry in pulse laser deposited Ga and Al doped ZnO, the plasmonic properties can be controlled via a fluctuating free carrier concentration. This deterministic approach may enable one to develop the most appropriate stoichometry of ZnAlO and ZnGaO in regards to specific plasmonic applications for particular IR wavelengths. Presented are theoretical and experimental investigations pertaining to ZnAlO and ZnGaO as surface plasmon host materials. Samples are fabricated via pulsed laser deposition and characterized by infrared ellipsometry and Hall-effect measurements. Complex permittivity spectra are presented, as well as plasmon properties such as the field propagation lengths and penetration depths, in the infrared range of interest. Drude considerations are utilized to determine how the optical properties may change with doping. Finite element simulations verify these plasmonic properties. These materials not only offer potential use as IR plasmon hosts for sensor applications, but also offer new integrated device possibilities due to stoichiometric control of electrical and optical properties.

  14. Gallium-doped indium oxide nanoleaves: Structural characterization, growth mechanism and optical properties

    NASA Astrophysics Data System (ADS)

    Liu, Lizhu; Chen, Yiqing; Guo, Linliang; Guo, Taibo; Zhu, Yunqing; Su, Yong; Jia, Chong; Wei, Meiqin; Cheng, Yinfen

    2011-11-01

    The novel two-dimensional (2-D) Ga-doped In2O3 nanoleaves are synthesized by a simple one-step carbonthermal evaporation method using Cu-Sn alloy as the substrates. Two basic parts construct this leaf-like nanostructure: a long central trunk and two tapered nanoribbons in symmetric distribution in relation to the trunk. The Ga-In-O alloy particles are located at or close to the tips of the central trunks and serve as catalysts for the central trunk growth by the self-catalytic vapor-liquid-solid (VLS) mechanism. And the homoepitaxial growth of tapered nanoribbon on the surface of the central trunk can be explained by vapor-solid (VS) mechanism. The room-temperature photoluminescence (PL) measurement of this nanoscaled Ga-doped In2O3 transparent conducting oxide (TCO) detected two blue peaks located at 432 nm and 481 nm, respectively, which can be used by Ru-based dye and indicates potential application in dye-sensitized solar cells (DSSCs). The successful preparation of this novel 2-D Ga-doped In2O3 nanoleaves not only enriches the synthesis of TCO materials, but also provides new blocks in future architecture of functional nano-devices.

  15. Niobium Production at Tokyo Denkai

    SciTech Connect

    Umezawa, Hiroaki

    2011-03-31

    In recent years, single-crystal/large-grain niobium has received much attention. It has the following advantages: rolling-annealing is unnecessary, and superconducting cavities made from large-grain niobium discs may not require electropolishing. However, to obtain a large-grain disc, an ingot must be sliced using a saw and finished smooth by using a lathe. Slicing a disc takes several hours and produces niobium shavings. KEK, Tokyo Denkai, and TKX Corporation have developed a new niobium ingot slicing technique, and Tokyo Denkai has installed the slicing machine. This study describes the new ingot slicing technology, which ensures state-of-the-art productivity for the superconducting radio frequency (SRF) cavity material industry.

  16. First-principles study of doping and band gap anomalies in delafossite transparent conductive oxides

    NASA Astrophysics Data System (ADS)

    Nie, Xiliang; Wei, Su-Huai; Zhang, S. B.

    2002-03-01

    Despite the success of n-type transparent conductive oxides (TCOs) in flat panel display, solar cell, and touch panel applications, p-type TCOs are rare. Recently, however, several p-type TCO films such as SrCu_2O2 and delafossite CuM^IIIO2 where M^III=Al, Ga, and In have been successfully demonstrated. These materials have some very unusual properties: (i) The band gaps increase with increasing atomic number. This contradicts the trend in normal semiconductors including those with the same group III elements. (ii) Bipolar doping (namely both p- and n-type doping) is observed only in the largest band gap CuInO_2. This contradicts the doping limit rule [1] as no similar trend has ever been observed in any other semiconductors. Here, using first-principles method, we calculate the electronic and optical properties of CuM^IIIO_2. We found that the fundamental direct gap decreases with the increase of the atomic number, following the general trend in conventional semiconductors. But the optical band gap (which has been used in the above experiments to define the band gap) follows an opposite trend. This happens because optical transition at the fundamental direct gap is forbidden as both states have the same parity (even). On the other hand, CuInO2 has exceptionally low conduction band minimum (CBM), 1.48 eV lower than CuAlO_2. According to the doping limit rule [1], low CBM implies good n-type dopability. Our findings explain the puzzling combination of good transparency with bipolar dopability in CuInO_2. This work was supported by the U. S. DOE-SC-BES under contract No. DE-AC36-99GO10337. [1] S. B. Zhang, S. -H. Wei, and A. Zunger, J. Appl. Phys. 83, 3192 (1998).

  17. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  18. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes

    SciTech Connect

    Starschich, S.; Griesche, D.; Schneller, T.; Böttger, U.; Waser, R.

    2014-05-19

    Ferroelectric hafnium oxide films were fabricated by chemical solution deposition with a remnant polarization of >13 μC/cm{sup 2}. The samples were prepared with 5.2 mol. % yttrium-doping and the thickness varied from 18 nm to 70 nm. The hafnium oxide layer was integrated into a metal-insulator-metal capacitor using platinum electrodes. Due to the processing procedure, no thickness dependence of the ferroelectric properties was observed. To confirm the ferroelectric nature of the deposited samples, polarization, capacitance, and piezoelectric displacement measurements were performed. However, no evidence of the orthorhombic phase was found which has been proposed to be the non-centrosymmetric, ferroelectric phase in HfO{sub 2}.

  19. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Morales-Masis, M.; Ding, L.; Dauzou, F.; Jeangros, Q.; Hessler-Wyser, A.; Nicolay, S.; Ballif, C.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2)-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  20. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    SciTech Connect

    Zhang Jianrong; Gao Lian . E-mail: Liangaoc@online.sh.cn

    2004-12-02

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb{sub 2}O{sub 3}. The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size shows that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m{sup 2}/g when the citric acid to tin ratio was about 6.

  1. Characterization of Monolayer Formation on Aluminum-Doped Zinc Oxide Thin Films

    SciTech Connect

    Rhodes,C.; Lappi, S.; Fischer, D.; Sambasivan, S.; Genzer, J.; Franzen, S.

    2008-01-01

    The optical and electronic properties of aluminum-doped zinc oxide (AZO) thin films on a glass substrate are investigated experimentally and theoretically. Optical studies with coupling in the Kretschmann configuration reveal an angle-dependent plasma frequency in the mid-IR for p-polarized radiation, suggestive of the detection of a Drude plasma frequency. These studies are complemented by oxygen depletion density functional theory studies for the calculation of the charge carrier concentration and plasma frequency for bulk AZO. In addition, we report on the optical and physical properties of thin film adlayers of n-hexadecanethiol (HDT) and n-octadecanethiol (ODT) self-assembled monolayers (SAMs) on AZO surfaces using reflectance FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), contact angle, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Our characterization of the SAM deposition onto the AZO thin film reveals a range of possible applications for this conducting metal oxide.

  2. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    SciTech Connect

    Morales-Masis, M. Ding, L.; Dauzou, F.; Jeangros, Q.; Hessler-Wyser, A.; Nicolay, S.; Ballif, C.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  3. Indium doped zinc oxide nanowire thin films for antireflection and solar absorber coating applications

    SciTech Connect

    Shaik, Ummar Pasha; Krishna, M. Ghanashyam

    2014-04-24

    Indium doped ZnO nanowire thin films were prepared by thermal oxidation of Zn-In metal bilayer films at 500°C. The ZnO:In nanowires are 20-100 nm in diameter and several tens of microns long. X-ray diffraction patterns confirm the formation of oxide and indicate that the films are polycrystalline, both in the as deposited and annealed states. The transmission which is <2% for the as deposited Zn-In films increases to >90% for the ZnO:In nanowire films. Significantly, the reflectance for the as deposited films is < 10% in the region between 200 to 1500 nm and < 2% for the nanowire films. Thus, the as deposited films can be used solar absorber coatings while the nanowire films are useful for antireflection applications. The growth of nanowires by this technique is attractive since it does not involve very high temperatures and the use of catalysts.

  4. Electronic Structure and Doping of P-Type Transparent Conducting Oxides: Preprint

    SciTech Connect

    Wei, S.-H.; Nie, X.; Zhang, S. B.

    2002-05-01

    Transparent conducting oxides (TCOs) are a group of materials that are widely used in solar cells and other optoelectronic devices. Recently, Cu-containing p-type TCOs such as MII Cu2 O2 (MIII=Mg, Ca, Sr, Ba) and CuMIII O2 (MIII=Al, Ga, In) have been proposed. Using first-principles band structure methods, we have systematically studied the electronic and optical properties of these p-type transparent oxides. For MII Cu2 O2 , we predict that adding a small amount of Ca into Sr Cu2 O2 can increase the transparency and conductivity. For CuMIII O2 , we explained the doping and band gap anomalies in this system and proposed a new approach to search for bipolar dopable wide-gap materials.

  5. Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode.

    PubMed

    Murugananthan, M; Yoshihara, S; Rakuma, T; Shirakashi, T

    2008-06-15

    Anodic oxidation of bisphenol A (BPA), a representative endocrine disrupting chemical, was carried out using boron-doped diamond (BDD) electrode at galvanostatic mode. The electro-oxidation behavior of BPA at BDD electrode was investigated by means of cyclic voltammetric technique. The extent of degradation and mineralization of BPA were monitored by HPLC and total organic carbon (TOC) value, respectively. The results obtained, indicate that the BPA removal at BDD depends on the applied current density (Iappl), initial concentration of BPA, pH of electrolyte and supporting medium. Galvanostatic electrolysis at BDD anode cause concomitant generation of hydroxyl radical that leads to the BPA destruction. The kinetics for the BPA degradation follows a pseudo-first order reaction with a higher rate constant 12.8x10(-5) s(-1) for higher Iappl value 35.7 mA cm(-2), indicating that the oxidation reaction is limited by Iappl control. Complete mineralization of BPA was achieved regardless of the variables and accordingly the mineralization current efficiency was calculated from the TOC removal measurements. Considering global oxidation process, the effect of supporting electrolytes has been discussed in terms of the electro generated inorganic oxidants. The better performance of BDD anode was proved on a comparative study with Pt and glassy carbon under similar experimental conditions. A possible reaction mechanism for BPA degradation involving three main aromatic intermediates, identified by GC-MS analysis, was proposed.

  6. Niobium and tantalum: indispensable twins

    USGS Publications Warehouse

    Schulz, Klaus; Papp, John

    2014-01-01

    Niobium and tantalum are transition metals almost always paired together in nature. These “twins” are difficult to separate because of their shared physical and chemical properties. In 1801, English chemist Charles Hatchett uncovered an unknown element in a mineral sample of columbite; John Winthrop found the sample in a Massachusetts mine and sent it to the British Museum in London in 1734. The name columbium, which Hatchet named the new element, came from the poetic name for North America—Columbia—and was used interchangeably for niobium until 1949, when the name niobium became official. Swedish scientist Anders Ekberg discovered tantalum in 1802, but it was confused with niobium, because of their twinned properties, until 1864, when it was recognized as a separate element. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion. These special properties determine their primary uses and make niobium and tantalum indispensable.

  7. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    SciTech Connect

    Anand, S. E-mail: darak.mayur@gmail.com Darak, Mayur Sudesh E-mail: darak.mayur@gmail.com Kumar, D. Sriram E-mail: darak.mayur@gmail.com

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cell antenna used in satellite systems.

  8. Physical properties of zinc doped tin oxide films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S.; Venkataraj, S.; Subramanian, M.; Jayavel, R.

    2008-02-01

    The structural and optical properties of pure and zinc doped tin oxide (SnO2) thin films have been studied in detail. Thin films of pure and zinc doped tin oxide (Zn : SnO2) were prepared on Si(1 0 0) and quartz substrates by the spray pyrolysis technique at a substrate temperature of 400 °C. The zinc dopant concentration was varied from 0 to 25 wt%. The films were systematically characterized by different methods to understand their structural and optical property variations, and the results were correlated. The x-ray diffraction (XRD) method shows that pure SnO2 films possess tetragonal crystalline structure with the preferred (1 1 0) orientation. Upon increasing the zinc concentration the preferred orientation changes from the (1 1 0) plane to the (2 0 0) plane, and at the same time the crystalline quality was found to be deteriorated. The Raman measurements also confirm the tetragonal structure of the films for the entire range of Zn doping. High resolution scanning electron microscopy measurements reveal that upon increasing the Zn concentration, the surface morphology of the films changes continuously and the grains also deteriorate. The elemental analysis of the films measured by energy dispersive XRD spectroscopy shows that the Zn concentration in the solid film is slightly less than that of the starting solution. Optical transmittance measurements of the films reveal that the films are fully transparent in the visible region. Upon increasing the Zn concentration, the band gap of the films decreases from 3.85 to 3.57 eV. Thus, the structural study performed by XRD and Raman spectroscopy clearly indicates the incorporation of Zn ion into SnO2 lattice, and the change in the optical properties of the films was directly attributed to the effect of Zn ion incorporation into SnO2 lattice.

  9. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics

    SciTech Connect

    Sachet, Edward; Shelton, Christopher T.; Harris, Joshua S.; Gaddy, Benjamin E.; Irving, Douglas L.; Curtarolo, Stefano; Donovan, Brian F.; Hopkins, Patrick E.; Sharma, Peter A.; Sharma, Ana Lima; Ihlefeld, Jon; Franzen, Stefan; Maria, Jon -Paul

    2015-02-16

    The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet–visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate ‘defect equilibrium engineering’. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomes the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm2 V–1 s–1 for carrier densities above 1020 cm–3. As a result, our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.

  10. Fluorescence in nanocomposites based on polyethylene oxides and block copolymers of polyethylene oxide-polypropylene oxide loaded with rare earth doped fluorides

    NASA Astrophysics Data System (ADS)

    Yust, Brian; Pedraza, Francisco; Sardar, Dhiraj; Saenz, Aaron; Chipara, Mircea

    2015-03-01

    Rare earth doped fluoride nanoparticles with a size of about 25 nm have been synthesized by a solvothermal process. Polymer-based nanocomposites, containing various weight fraction of nanofillers, have been obtained by dissolving the polymeric matrix (polyethylene oxide) within a solvent (deionized water), adding the nanoparticles, sonicating the mixture, and finally removing the solvent. The complete removal of the solvent has been confirmed by Thermogravimetric Analysis. Additional information about the thermal features have been obtained by Differential Scanning Calorimetry, Wide Angle X-Ray Scattering, FTIR, UV-Visible, and Raman. The effect of the loading with nanoparticles on the glass, crystallization, and melting transition temperatures of the polymeric matrix are reported. Fluorescence of rare earth doped nanoparticles dispersed within the polymeric matrix has been tested by laser spectroscopy. The dependence of fluorescence intensity on the concentration of nanofillers and on temperature in the range 300 to 400 K is analyzed.

  11. Implications of the band gap problem on oxidation and hydration in acceptor-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Lindman, Anders; Erhart, Paul; Wahnström, Göran

    2015-06-01

    Charge carrier concentrations in acceptor-doped proton-conducting perovskites are to a large extent determined by the hydration and oxidation of oxygen vacancies, which introduce protons and holes, respectively. First-principles modeling of these reactions involves calculation of formation energies of charged defects, which requires an accurate description of the band gap and the position of the band edges. Since density-functional theory (DFT) with local and semilocal exchange-correlation functionals (LDA and GGA) systematically fails to predict these quantities this can have serious implications on the modeling of defect reactions. In this study we investigate how the description of band gap and band-edge positions affects the hydration and oxidation in acceptor-doped BaZrO3. First-principles calculations are performed in combination with thermodynamic modeling in order to obtain equilibrium charge carrier concentrations at different temperatures and partial pressures. Three different methods have been considered: DFT with both semilocal (PBE) and hybrid (PBE0) exchange-correlation functionals, and many-body perturbation theory within the G0W0 approximation. All three methods yield similar results for the hydration reaction, which are consistent with experimental findings. For the oxidation reaction, on the other hand, there is a qualitative difference. PBE predicts the reaction to be exothermic, while the two others predict an endothermic behavior. Results from thermodynamic modeling are compared with available experimental data, such as enthalpies, concentrations, and conductivities, and only the results obtained with PBE0 and G0W0 , with an endothermic oxidation behavior, give a satisfactory agreement with experiments.

  12. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Alver, Ü.; Tanrıverdi, A.

    2016-08-01

    In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  13. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciTech Connect

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S.

    2015-08-28

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was in the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.

  14. UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires

    NASA Astrophysics Data System (ADS)

    Gao, J.; Chen, R.; Li, D. H.; Jiang, L.; Ye, J. C.; Ma, X. C.; Chen, X. D.; Xiong, Q. H.; Sun, H. D.; Wu, T.

    2011-05-01

    Multifunctional single crystalline tin-doped indium oxide (ITO) nanowires with tuned Sn doping levels are synthesized via a vapor transport method. The Sn concentration in the nanowires can reach 6.4 at.% at a synthesis temperature of 840 °C, significantly exceeding the Sn solubility in ITO bulks grown at comparable temperatures, which we attribute to the unique feature of the vapor-liquid-solid growth. As a promising transparent conducting oxide nanomaterial, layers of these ITO nanowires exhibit a sheet resistance as low as 6.4~\\Omega /\\square and measurements on individual nanowires give a resistivity of 2.4 × 10 - 4 Ω cm with an electron density up to 2.6 × 1020 cm - 3, while the optical transmittance in the visible regime can reach ~ 80%. Under the ultraviolet excitation the ITO nanowire samples emit blue light, which can be ascribed to transitions related to defect levels. Furthermore, a room temperature ultraviolet light emission is observed in these ITO nanowires for the first time, and the exciton-related radiative process is identified by using temperature-dependent photoluminescence measurements.

  15. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.

    PubMed

    Li, Ying; Mei, Yuan; Zhang, Lin-Qun; Wang, Jian-Hai; Liu, An-Ran; Zhang, Yuan-Jian; Liu, Song-Qin

    2015-10-01

    In this study, manganese oxide nanowires wrapped by nitrogen-doped carbon layers (MnO(x)@NCs) were prepared by carbonization of poly(o-phenylenediamine) layer coated onto MnO2 nanowires for high performance supercapacitors. The component and structure of the MnO(x)@NCs were controlled through carbonization procedure under different temperatures. Results demonstrated that this composite combined the high conductivity and high specific surface area of nitrogen-doped carbon layers with the high pseudo-capacitance of manganese oxide nanowires. The as-prepared MnO(x)@NCs exhibited superior capacitive properties in 1 M Na2SO4 aqueous solution, such as high conductivity (4.167×10(-3) S cm(-1)), high specific capacitance (269 F g(-1) at 10 mV s(-1)) and long cycle life (134 F g(-1) after 1200 cycles at a scan rate of 50 mV s(-1)). It is reckoned that the present novel hybrid nanowires can serve as a promising electrode material for supercapacitors and other electrochemical devices.

  16. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  17. The influence of magnetic nano metal oxides doping on structure and electrical properties of YBCO superconductor

    NASA Astrophysics Data System (ADS)

    Salama, A. H.; El-Hofy, M.; Rammah, Y. S.; Elkhatib, M.

    2016-03-01

    Superconductor samples of YBa2Cu3O7-δ (YBCO) + x where x = 0.1, 0.2, 0.3, 0.4 and 0.5 wt% of nano metal oxides namely Cr2O3, Co3O4 and Mn3O4 namely are synthesized by the solid-state reaction route. Both x-ray diffraction and electron microscopy have been employed to study the phase identification and the microstructure of these samples. Transition temperature of the samples has been determined by four probe resistivity measurements. The x-ray diffraction patterns indicate that the gross structure of YBCO does not change with the substitution of three types of nano metal oxides with different doping level. The critical transition temperature (Tc) is found to decrease with the increases of doping level. Mn3O4 has highest Tc value which may be due to flux pinning from some defects and the rapid suppression in Tc with increasing concentration of Mn3O4 may be due to the cooper pair breaking and the hole filling in the CuO2 planes.

  18. Effect of doping and chemical ordering on the optoelectronic properties of complex oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Nayyar, Iffat; Sara, Chamberlin; Kaspar, Tiffany; Govind, Niranjan; Chambers, Scott; Sushko, Peter

    2015-03-01

    Transition metal oxide hematite, α-Fe2O3, is of interest in photovoltaic and photoelectrochemical applications due to its natural abundance, narrow band gap and electrochemical stability. Doping of α-Fe2O3 may lead to conductivity enhancement and band-gap reduction. In this work, we have studied the electronic and optical properties of α-(Fe1-xVx)2 O3(0 <= x <= ~0.5) solid-solution epitaxial thin films using advanced theoretical models employing embedded cluster approach and time-dependent density functional theory. We observe that V doping results in localized, occupied V 3d states which are hybridized with Fe 3d and are located in the midgap of pure α-Fe2O3. The lowest energy transitions for α-(Fe1-xVx)2O3 films are the electronic excitations from these levels to the unoccupied Fe 3d* orbitals, reducing the onset of α-Fe2O3photoconductivity by nearly 1.2 eV. Our calculated optical absorption spectra are in good agreement with the experiment. This insight into the atomic, electronic and spin ordering provides guiding principles for the design of new oxide semiconducting materials for efficient visible light harvesting, thus enabling the technological growth of alternate energy sources for solving the renewable solar energy and photo-chemical organic waste remediation problems.

  19. Preparation and characterization of thermoluminescent aluminium oxide doped with Tb3+ and Tb3+-Mg2+

    NASA Astrophysics Data System (ADS)

    Barros, V. S. M.; Azevedo, W. M.; Khoury, H. J.; Linhares Filho, P.

    2010-11-01

    This paper presents the preparation method and the thermoluminescence analysis of aluminium oxide doped with Tb3+ and Tb3+-Mg2+ obtained by Combustion Synthesis (CS). An aqueous solution containing stoichiometric amounts of aluminium, terbium, magnesium nitrates and urea were mixed and introduced in a muffle furnace pre-heated to 500°C. After combustion, the samples were thermally treated at 1300°C and irradiated with a Co-60 gamma radiation source. The TL glow curves of the annealed Al2O3:Tb and Al2O3:Tb,Mg samples presented a well defined TL peak at approximately 200 °C, whereas the samples without heat-treatment presented a large number of TL peaks in the range from 150 to 500°C. These peaks were attributed to amorphous and phase impurities (γ-Al2O3 mixed with the α-phase) still present in the sample. Dose response analysis showed a linear response in the dose range from 0.5 to 5 Gy. These results strongly suggest that CS is a suitable technique to prepare doped aluminium oxide for TL dosimetric applications.

  20. Physical characterization of a new composition of oxidized zirconium-2.5 wt% niobium produced using a two step process for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pawar, V.; Weaver, C.; Jani, S.

    2011-05-01

    Zirconium and particularly Zr-2.5 wt%Nb (Zr2.5Nb) alloy are useful for engineering bearing applications because they can be oxidized in air to form a hard surface ceramic. Oxidized zirconium (OxZr) due to its abrasion resistant ceramic surface and biocompatible substrate alloy has been used as a bearing surface in total joint arthroplasty for several years. OxZr is characterized by hard zirconium oxide (oxide) formed on Zr2.5Nb using one step thermal oxidation carried out in air. Because the oxide is only at the surface, the bulk material behaves like a metal, with high toughness. The oxide, furthermore, exhibits high adhesion to the substrate because of an oxygen-rich diffusion hardened zone (DHZ) interposing between the oxide and the substrate. In this study, we demonstrate a two step process that forms a thicker DHZ and thus increased depth of hardening than that can be obtained using a one step oxidation process. The first step is thermal oxidation in air and the second step is a heat treatment in vacuum. The second step drives oxygen from the oxide formed in the first step deeper into the substrate to form a thicker DHZ. During the process only a portion of the oxide is dissolved. This new composition (DHOxZr) has approximately 4-6 μm oxide similar to that of OxZr. The nano-hardness of the oxide is similar but the DHZ is approximately 10 times thicker. The stoichiometry of the oxide is similar and a secondary phase rich in oxygen is present through the entire thickness. Due to the increased depth of hardening, the critical load required for the onset of oxide cracking is approximately 1.6 times more than that of the oxide of OxZr. This new composition has a potential to be used as a bearing surface in applications where greater depth of hardening is required.

  1. Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine.

    PubMed

    Enache, T A; Oliveira-Brett, A M

    2011-04-01

    The electrochemical oxidation behaviour at boron doped diamond and glassy carbon electrodes of the sulphur-containing amino acids cysteine and methionine, using cyclic and differential pulse voltammetry over a wide pH range, was compared. The oxidation reactions of these amino acids are irreversible, diffusion-controlled pH dependent processes, and occur in a complex cascade mechanism. The amino acid cysteine undergoes similar three consecutive oxidation reactions at both electrodes. The first step involves the oxidation of the sulfhydryl group with radical formation, that undergoes nucleophilic attack by water to give an intermediate species that is oxidized in the second step to cysteic acid. The oxidation of the sulfhydryl group leads to a disulfide bridge between two similar cysteine moieties forming cysteine. The subsequent oxidation of cystine occurs at a higher potential, due to the strong disulfide bridge covalent bond. The electro-oxidation of methionine at a glassy carbon electrode occurs in two steps, corresponding to the formation of sulfoxide and sulfone, involving the adsorption and protonation/deprotonation of the thiol group, followed by electrochemical oxidation. Methionine undergoes a one-step oxidation reaction at boron doped diamond electrodes due to the negligible adsorption, and the oxidation also leads to the formation of methionine sulfone. PMID:21377428

  2. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOEpatents

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  3. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system.

    PubMed

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-05-21

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron-hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems.

  4. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system.

    PubMed

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-01-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron-hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems. PMID:25994309

  5. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system

    PubMed Central

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-01-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron–hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems. PMID:25994309

  6. Electrocatalytic oxidation of nitrite using metal-free nitrogen-doped reduced graphene oxide nanosheets for sensitive detection.

    PubMed

    Chen, Dong; Jiang, Jingjing; Du, Xuezhong

    2016-08-01

    Nitrite can become poisonous to animals and human beings as it can lead to generation of carcinogenic N-nitrosamines. Metal-free nitrogen-doped reduced graphene oxide (NrGO) exhibited a good electrocatalytic activity toward oxidation of nitrite with the relatively low oxidation potential of 0.68V (v.s. saturated calomel electrode), thus, a facile electrochemical sensor based on metal-free NrGO was fabricated for sensitive detection of nitrite for the first time. The novel sensor showed a wide linear concentration range from 0.5 to 5000μM and a low detection limit of 0.2μM at the signal-to-noise ratio of 3 with good selectivity, stability, and reproducibility. This fabricated sensor was used for the determination of nitrite in pickled garlic and river water. These results demonstrate that the facile metal-free NrGO-modified electrochemical sensor has promising applications for the determination of nitrite in food and environment. PMID:27216690

  7. Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.

    PubMed

    Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun

    2012-10-24

    The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.

  8. Mechanical Properties of Silicone Rubber Acoustic Lens Material Doped with Fine Zinc Oxide Powders for Ultrasonic Medical Probe

    NASA Astrophysics Data System (ADS)

    Yamamoto, Noriko; Yohachi; Yamashita; Itsumi, Kazuhiro

    2009-07-01

    The mechanical properties of high-temperature-vulcanization silicone (Q) rubber doped with zinc oxide (ZnO) fine powders have been investigated to develop an acoustic lens material with high reliability. The ZnO-doped Q rubber with an acoustic impedance (Z) of 1.46×106 kg·m-2·s-1 showed a tear strength of 43 N/mm and an elongation of 560%. These mechanical property values were about 3 times higher than those of conventional acoustic Q lens materials. The ZnO-doped Q rubbers also showed a lower abrasion loss. These superior characteristics are attributable to the microstructure with fewer origins of breaks; few pores and spherical fine ZnO powder. The high mechanical properties of ZnO-doped Q rubber acoustic lenses enable higher performance during long-life and safe operation during diagnosis using medical array probe applications.

  9. Structure and electronic properties of pure and nitrogen doped nanocrystalline tungsten oxide thin films

    NASA Astrophysics Data System (ADS)

    Vemuri, Venkata Rama Sesha Ravi Kumar

    Tungsten oxide (WO3) is a multifunctional material which has applications in electronics, sensors, optoelectronics, and energy-related technologies. Recently, electronic structure modification of WO3 to design novel photocatalysts has garnered significant attention. However, a fundamental understanding of nitrogen-induced changes in the structure, morphology, surface/ interface chemistry, and electronic properties of WO 3 is a prerequisite to producing materials with the desired functionality and performance. Also, understanding the effect of thermodynamic and processing variables is highly desirable in order to derive the structure-property relationships in the W-O/W-O-N material system. The present work was, therefore, focused on studying the effects of processing parameters on the microstructure, optical properties, electrical conductivity, and electronic structures of pure and nitrogen-doped (N-doped) WO3 films grown by sputter deposition. Efforts were made to understand the properties and phenomena of pure and N-doped WO3 at reduced dimensionality (i.e., nanoscale dimensions). The results and analyses indicate that the growth temperature (Ts) has a significant effect on the microstructure of WO3 films. The grain size increases from 9 to 50 nm coupled with a phase transformation in the following sequence: amorphous (a) to monoclinic (m) to tetragonal (t) with increasing Ts (25--500°C). The nanocrystalline t-WO 3 films exhibit a strong (001) texturing. The band gap narrowing from 3.25 to 2.92 eV with grain size occurs due to quantum confinement effects. Correlated with the structure and optical properties, electrical conductivity also increases. Physical properties such as thickness, grain size, and density are also sensitive to oxygen/ nitrogen partial pressure during W-O/W-O-N sample fabrications. A direct relationship between film density and band gap is evident in nanocrystalline t-WO3 films grown at various oxygen pressures. It is observed that nitrogen

  10. Optical properties of erbium-doped aluminum-gallium-arsenide native oxides

    NASA Astrophysics Data System (ADS)

    Kou, Leigang

    In this study, native oxides of Al-bearing III-V compound semiconductors are explored as a host material for erbium ions with potential for integration in the AlGaAs alloy system. Using room temperature photoluminescence and lifetime measurements, the AlGaAs native oxide has been shown to be a much better host for Er 3+ than the unoxidized semiconductors themselves. Furthermore, various luminescence quench ing mechanisms, including arsenic quenching, hydroxyl (OH) group quenching and concentration quenching, are investigated in order to optimize the process. Ampoule annealing with arsenic overpressure has been used to show the effect of arsenic quenching. Fourier transform infrared (FTIR) transform spectra of oxide films thermally oxidized in water (H2O) vapor reveal the existence of OH groups, which act as luminescence quenching centers. However, such OH groups may not be intrinsic to the wet oxidation process, but appear instead to come primarily from the adsorption of moisture from the atmosphere due to the porous nature of the native oxide and strong affinity of OH radical to the oxide. This is supported by the fact that FTIR spectra of oxide films oxidized in deuterated water (D2O) show the presence of OH groups instead of OD groups. In order to fabricate an Er-doped planar waveguide amplifier, a high Er concentration is essential. However, the photoluminescence intensity of Er3+ does not increase linearly as the Er concentration increases because the shorter distance among Er 3+ ions introduces strong ion-ion interactions which reduce the excited Er3+ ion population through non-radiative transitions. High-temperature annealing has been employed as an effective post-processing step to activate Er3+ ions and remove OH groups. The annealing process parameters (temperature, time and gas ambient) have been optimized. The optimal annealing temperature, however, is reduced by arsenic quenching mechanism particular to AlGaAs oxide/semiconductor system. The oxidation

  11. Preparation of cubic niobium pyrophosphate containing Nb(IV) and topatactic extraction of phosphorus atoms

    SciTech Connect

    Fukuoka, Hiroshi; Imoto, Hideo; Saito, Taro

    1995-10-01

    A reduced phase of niobium pyrophosphate containing Nb{sup 4+} has been prepared from the reaction of Nb{sup 6}Cl{sub 14}{center_dot}8H{sub 2}O and phosphoric acid. The X-ray powder diffraction and electron diffraction studies have shown that the compound belongs to the Pa3 space group and has the ZrP{sub 2}O{sub 7} structure with a cubic superstructure (a{prime} = 3a{sub 0}). Magnetic susceptibility was measured for two samples, and the mean oxidation numbers of niobium in them are deduced to by + 4.66 and +4.88. The cell constants of these samples are a = 8.0830(4) and 8.0705(2) {angstrom}, respectively. As the mean oxidation number of niobium increases, the color of the compound varies from brown to gray. When the compound is heated in oxygen, it changes into the known white niobium pyrophosphate, in which all niobium is in the +5 oxidation state. Rietveld refinements indicate that niobium pyrophosphates have defects in the phosphorus sites. The topotactic extraction of the phosphorus atoms in the reaction with oxygen was confirmed by the analysis of phosphorus oxide generated during the reaction.

  12. Surface Composition, Work Function, and Electrochemical Characteristics of Gallium-Doped Zinc Oxide

    SciTech Connect

    Ratcliff, E. L.; Sigdel, A. K.; Macech, M. R.; Nebesny, K.; Lee, P. A.; Ginley, D. S.; Armstrong, N. R.; Berry, J. J.

    2012-06-30

    Gallium-doped zinc oxide (GZO) possesses the electric conductivity, thermal stability, and earth abundance to be a promising transparent conductive oxide replacement for indium tin oxide electrodes in a number of molecular electronic devices, including organic solar cells and organic light emitting diodes. The surface chemistry of GZO is complex and dominated by the hydrolysis chemistry of ZnO, which influences the work function via charge transfer and band bending caused by adsorbates. A comprehensive characterization of the surface chemical composition and electrochemical properties of GZO electrodes is presented, using both solution and surface adsorbed redox probe molecules. The GZO surface is characterized using monochromatic X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy after the following pretreatments: (i) hydriodic acid etch, (ii) potassium hydroxide etch, (iii) RF oxygen plasma etching, and (iv) high-vacuum argon-ion sputtering. The O 1s spectra for the GZO electrodes have contributions from the stoichiometric oxide lattice, defects within the lattice, hydroxylated species, and carbonaceous impurities, with relative near-surface compositions varying with pretreatment. Solution etching procedures result in an increase of the work function and ionization potential of the GZO electrode, but yield different near surface Zn:Ga atomic ratios, which significantly influence charge transfer rates for a chemisorbed probe molecule. The near surface chemical composition is shown to be the dominant factor in controlling surface work function and significantly influences the rate of electron transfer to both solution and tethered probe molecules.

  13. Work Function Modification of Tungsten-Doped Indium Oxides Deposited by the Co-Sputtering Method.

    PubMed

    Oh, Gyujin; Jeon, Jia; Lee, Kyoung Su; Kim, Eun Kyu

    2016-05-01

    We have studied the work function modification of tungsten-doped indium oxides (IWOs) through the co-sputtering of indium oxide (In2O3) and indium tungsten oxide (In2O3 80 wt% + WO3 20 wt%) via a radio frequency (RF) magnetron sputtering system. By controlling the elemental deposition of IWOs, the resultant work functions varied from 4.37 eV to 4.1 eV. The IWO thin films showed excellent properties for application as transparent conducting oxide materials in the region of 0 to 2.43 at.% of tungsten versus the total metal content. The carrier concentration of n-type IWO thin films varied from 8.39 x 10(19) cm(-3) to 8.58 x 10(21) cm(-3), while the resistivity varied from 3.15 x 10(-4) Ωcm to 2.26 x 10(-3) Ωcm. The largest measured optical band gap was 3.82 eV determined at 2.43 at.% of tungsten atoms relative to the total amount of metal atoms, while the smallest optical band gap was 3.6 eV at 4.78 at.% of tungsten. IWO films containing more than 2.43 at.% of tungsten atoms relative to the total number of metal atoms revealed an average transmittance of over 80% within the visible light region.

  14. Site Determination and Magnetism of Mn Doping in Protein Encapsulated Iron Oxide Nanoparticles

    SciTech Connect

    Pool, V.; Klem, M.; Jolley, J.; Arenholz, E.A.; Douglas, T.; Young, M.; Idzerda, Y.U.

    2010-01-11

    Soft-X-ray absorption spectroscopy, soft-X-ray magnetic circular dichroism, and alternating current magnetic susceptibility were performed on 6.7 nm iron oxide nanoparticles doped with (5-33%) Mn grown inside the horse-spleen ferritin protein cages and compared to similarly protein encapsulated pure Fe-oxide and Mn-oxide nanoparticles to determine the site of the Mn dopant and to quantify the magnetic behavior with varying Mn concentration. The Mn dopant is shown to substitute preferentially as Mn{sup +2} and prefers the octahedral site in the defected spinel structure. The Mn multiplet structure for the nanoparticles is simpler than for the bulk standards, suggesting that the nanoparticle lattices are relaxed from the distortions present in the bulk. Addition of Mn is found to alter the host Fe-oxide lattice from a defected ferrimagnetic spinel structure similar to {gamma}-Fe{sub 2}O{sub 3} to an non-ferromagnetic spinel structure with a local Fe environment similar to Fe{sub 3}O{sub 4}.

  15. CO catalytic oxidation on Pt-doped single wall boron nitride nanotube: first-principles investigations

    NASA Astrophysics Data System (ADS)

    Abdel Aal, S.

    2016-02-01

    The catalytic oxidation of CO at Pt-doped BNNT (5,5) has been investigated theoretically using density functional theory. The electronic structures and thermochemical properties of CO and O2 that adsorbed on Pt embedded at the B- and N-vacancy sites of BNNTs are analyzed. It is demonstrated that the different BNNT substrates can modify the electronic structure of the Pt catalysts and cause different effects in the catalytic activities. With the N-vacancy (Pt(N)-BNNT), the Pt behaves as a Lewis acid for accepting an electron from the substrate, thus O2 binds stronger than CO molecules, thus alleviating the CO poisoning of the platinum catalysts. Coadsorption of CO and O2 on Pt(N)-BNNT results in additional charge transfer to O2. CO oxidation proceeds via the Eley-Rideal (ER) mechanism entails lower activation barrier and higher reaction rate than that of Langmuir-Hinshelwood (LH) mechanism suggesting the superiority of the ER mechanism for CO oxidation at Pt(N)-BNNT. Therefore, Pt(N)-BNNT might be a good candidate for low-cost, highly active, and stable catalysts for CO oxidation.

  16. Work Function Modification of Tungsten-Doped Indium Oxides Deposited by the Co-Sputtering Method.

    PubMed

    Oh, Gyujin; Jeon, Jia; Lee, Kyoung Su; Kim, Eun Kyu

    2016-05-01

    We have studied the work function modification of tungsten-doped indium oxides (IWOs) through the co-sputtering of indium oxide (In2O3) and indium tungsten oxide (In2O3 80 wt% + WO3 20 wt%) via a radio frequency (RF) magnetron sputtering system. By controlling the elemental deposition of IWOs, the resultant work functions varied from 4.37 eV to 4.1 eV. The IWO thin films showed excellent properties for application as transparent conducting oxide materials in the region of 0 to 2.43 at.% of tungsten versus the total metal content. The carrier concentration of n-type IWO thin films varied from 8.39 x 10(19) cm(-3) to 8.58 x 10(21) cm(-3), while the resistivity varied from 3.15 x 10(-4) Ωcm to 2.26 x 10(-3) Ωcm. The largest measured optical band gap was 3.82 eV determined at 2.43 at.% of tungsten atoms relative to the total amount of metal atoms, while the smallest optical band gap was 3.6 eV at 4.78 at.% of tungsten. IWO films containing more than 2.43 at.% of tungsten atoms relative to the total number of metal atoms revealed an average transmittance of over 80% within the visible light region. PMID:27483882

  17. Synthesis and characterization of homo- and heterobimetallic niobium{sup v} and tantalum{sup v} peroxo-polyaminocarboxylato complexes and their use as single or multiple molecular precursors for Nb-Ta mixed oxides

    SciTech Connect

    Bayot, Daisy . E-mail: devillers@chim.ucl.ac.be

    2005-09-15

    New water-soluble bimetallic peroxo complexes of niobium{sup V} and/or tantalum{sup V} with high-denticity polyaminocarboxylate ligands have been prepared, characterized from the spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Four new homobimetallic complexes (gu){sub 3}[Nb{sub 2}(O{sub 2}){sub 4}(dtpaO{sub 3})].3H{sub 2}O 1 (gu){sub 3}[Ta{sub 2}(O{sub 2}){sub 4}(dtpaO{sub 3})].5H{sub 2}O 2 (gu){sub 3}[Nb{sub 2}(O{sub 2}){sub 4}(HtthaO{sub 4})].2H{sub 2}O 4 and (gu){sub 3}[Ta{sub 2}(O{sub 2}){sub 4}(HtthaO{sub 4})].3H{sub 2}O 5 and the corresponding heterometallic complexes (gu){sub 3}[NbTa(O{sub 2}){sub 4}(dtpaO{sub 3})].2.5H{sub 2}O 3 and (gu){sub 3}[NbTa(O{sub 2}){sub 4}(HtthaO{sub 4)}].2H{sub 2}O 6 have been obtained. In these compounds, the in situ oxidation of the nitrogen atoms of the PAC ligands into N-oxide groups has been evidenced by IR spectroscopy and mass spectrometry. The thermal treatment of the homonuclear complexes in air at 700 or 800 deg. C, depending on the Ta content, provided Nb{sub 2}O{sub 5} or Ta{sub 2}O{sub 5} while the heteronuclear compounds led to the solid solution TaNbO{sub 5}. BET and SEM measurements have been carried out and comparison of the morphology of the samples prepared from homo- and heterometallic precursors is discussed.

  18. Niobium - Proceedings of the international symposium

    SciTech Connect

    Stuart, H.

    1984-01-01

    This book presents the papers given at a symposium on niobium. Topics considered at the symposium included niobium mining, ore processing, uses, fabrication, microstructure, mechanical properties, physical properties, corrosion, physical radiation effects, and marketing.

  19. Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Material.

    PubMed

    Mao, Jing; Dai, Kehua; Xuan, Minjie; Shao, Guosheng; Qiao, Ruimin; Yang, Wanli; Battaglia, Vincent S; Liu, Gao

    2016-04-13

    Undoped, Cr-doped, and Nb-doped LiMn(1.5)Ni(0.5)O4 (LNMO) is synthesized via a PVP (polyvinylpyrrolidone)-combustion method by calcinating at 1000 °C for 6 h. SEM images show that the morphology of LNMO particles is affected by Cr and Nb doping. Cr doping results in sharper edges and corners and smaller particle size, and Nb doping leads to smoother edges and corners and more rounded and larger particles. The crystal and electron structure is investigated by XRD- and synchrotron-based soft X-ray absorption spectroscopy (sXAS). Cr doping and light Nb doping (LiNb(0.02)Ni(0.49)Mn(1.49)O4) improve the rate performance of LNMO. To explore the reason for rate-performance improvement, we conducted potential intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS) tests. The Li(+) chemical diffusion coefficient at different state of charge (SOC) is calculated and suggests that both Cr and light Nb doping speeds up Li(+) diffusion in LNMO particles. The impedance spectra show that both R(SEI) and R(ct) are reduced by Cr and light Nb doping. The cycling performance is improved by Cr or Nb doping, and Cr doping increases both Coulombic efficiency and energy efficiency of LNMO at 1 C cycling. The LiCr(0.1)Ni(0.45)Mn(1.45)O4 remains at 94.1% capacity after 500 cycles at 1 C, and during the cycling, the Coulombic efficiency and energy efficiency remain at over 99.7% and 97.5%, respectively.

  20. Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Material.

    PubMed

    Mao, Jing; Dai, Kehua; Xuan, Minjie; Shao, Guosheng; Qiao, Ruimin; Yang, Wanli; Battaglia, Vincent S; Liu, Gao

    2016-04-13

    Undoped, Cr-doped, and Nb-doped LiMn(1.5)Ni(0.5)O4 (LNMO) is synthesized via a PVP (polyvinylpyrrolidone)-combustion method by calcinating at 1000 °C for 6 h. SEM images show that the morphology of LNMO particles is affected by Cr and Nb doping. Cr doping results in sharper edges and corners and smaller particle size, and Nb doping leads to smoother edges and corners and more rounded and larger particles. The crystal and electron structure is investigated by XRD- and synchrotron-based soft X-ray absorption spectroscopy (sXAS). Cr doping and light Nb doping (LiNb(0.02)Ni(0.49)Mn(1.49)O4) improve the rate performance of LNMO. To explore the reason for rate-performance improvement, we conducted potential intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS) tests. The Li(+) chemical diffusion coefficient at different state of charge (SOC) is calculated and suggests that both Cr and light Nb doping speeds up Li(+) diffusion in LNMO particles. The impedance spectra show that both R(SEI) and R(ct) are reduced by Cr and light Nb doping. The cycling performance is improved by Cr or Nb doping, and Cr doping increases both Coulombic efficiency and energy efficiency of LNMO at 1 C cycling. The LiCr(0.1)Ni(0.45)Mn(1.45)O4 remains at 94.1% capacity after 500 cycles at 1 C, and during the cycling, the Coulombic efficiency and energy efficiency remain at over 99.7% and 97.5%, respectively. PMID:27008976

  1. Effect of boron doping on optical properties of sol-gel based nanostructured zinc oxide films on glass

    SciTech Connect

    Jana, Sunirmal; Vuk, Angela Surca; Mallick, Aparajita; Orel, Boris; Biswas, Prasanta Kumar

    2011-12-15

    Graphical abstract: Room temperature fine structured UV-vis PL emissions (a) as phonon replicas in 1 at.% boron doped film originated from LO phonon evidenced from Near Grazing Incidence Angle (NGIA) IR spectral study (b). Highlights: Black-Right-Pointing-Pointer Sol-gel based boron doped nanostructured ZnO thin films deposited on pure silica glass using crystalline boric acid as boron source. Black-Right-Pointing-Pointer Observed first time, room temperature fine structured PL emissions in 1 at.% doped film as phonon replicas originated from LO phonon (both IR and Raman active). Black-Right-Pointing-Pointer Boron doping controls the LO phonon energy in addition to visible reflection, band gap and grain size. Black-Right-Pointing-Pointer The films possessed mixed crystal phases with hexagonal as major phase. -- Abstract: Boron doped zinc oxide thin films ({approx}80 nm) were deposited onto pure silica glass by sol-gel dip coating technique from the precursor sol/solution of 4.0 wt.% equivalent oxide content. The boron concentration was varied from 0 to 2 at.% w.r.t. Zn using crystalline boric acid. The nanostructured feature of the films was visualized by FESEM images and the largest cluster size of ZnO was found in 1 at.% boron doped film (B1ZO). The presence of mixed crystal phases with hexagonal as major phase was identified from XRD reflections of the films. Particle size, optical band gap, visible specular reflection, room temperature photoluminescence (PL) emissions (3.24-2.28 eV), infra-red (IR) and Raman active longitudinal optical (LO) phonon vibration were found to be dependent on dopant concentration. For the first time, we report the room temperature fine structured PL emissions as phonon replicas originated from the LO phonon (both IR and Raman active) in 1 at.% boron doped zinc oxide film.

  2. Influence of Cr doping on the stability and structure of small cobalt oxide clusters

    SciTech Connect

    Tung, Nguyen Thanh; Lievens, Peter; Janssens, Ewald; Tam, Nguyen Minh; Nguyen, Minh Tho

    2014-07-28

    The stability of mass-selected pure cobalt oxide and chromium doped cobalt oxide cluster cations, Co{sub n}O{sub m}{sup +} and Co{sub n−1}CrO{sub m}{sup +} (n = 2, 3; m = 2–6 and n = 4; m = 3–8), has been investigated using photodissociation mass spectrometry. Oxygen-rich Co{sub n}O{sub m}{sup +} clusters (m ⩾ n + 1 for n = 2, 4 and m ⩾ n + 2 for n = 3) prefer to photodissociate via the loss of an oxygen molecule, whereas oxygen poorer clusters favor the evaporation of oxygen atoms. Substituting a single Co atom by a single Cr atom alters the dissociation behavior. All investigated Co{sub n−1}CrO{sub m}{sup +} clusters, except CoCrO{sub 2}{sup +} and CoCrO{sub 3}{sup +}, prefer to decay by eliminating a neutral oxygen molecule. Co{sub 2}O{sub 2}{sup +}, Co{sub 4}O{sub 3}{sup +}, Co{sub 4}O{sub 4}{sup +}, and CoCrO{sub 2}{sup +} are found to be relatively difficult to dissociate and appear as fragmentation product of several larger clusters, suggesting that they are particularly stable. The geometric structures of pure and Cr doped cobalt oxide species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and compared with the experimental observations. The influence of the dopant atom on the structure and the stability of the clusters is discussed.

  3. Rare-Earth Doped Wide Bandgap Oxide Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Wellenius, Ian Patrick

    Amorphous oxide semiconductors composed of indium gallium zinc oxide are transparent to visible light and have higher electron mobilities than conventional amorphous semiconductors, such as amorphous silicon. The advantages of higher switching speed, lack of dangling bonds leading to good electronic stability and visible spectrum transparency of amorphous oxide semiconductor devices are expected to lead to numerous applications, including transparent displays and flexible electronics. In this thesis the integration of transparent thin film transistors with transparent electroluminescent pixels was investigated. Compared with display technologies employing organic semiconductors that degrade with exposure to moisture and ultraviolet light, the all-oxide structure of this device is expected to be environmentally robust. This is believed to be the first demonstration of an integrated active matrix pixel using amorphous oxide semiconductor materials as both the light emitter and addressing circuit elements. The transparent active matrix pixel was designed, fabricated and characterized, that integrated amorphous indium gallium zinc oxide (IGZO) thin film transistors (TFTs) with a europium-doped IGZO thin film electroluminescent (TFEL) device. The integrated circuits were fabricated using room temperature pulsed laser deposition (PLD) of IGZO and ITO thin films onto substrates of Corning 7059 glass, sputter coated with an ITO back contact and subsequent atomic layer deposited ATO high-k dielectric. A second ITO layer is deposited by PLD as a contact and interconnect layer. All deposition steps were carried out at room temperature. In addition to the integration task, an important part of this thesis concerns the investigation of europium as a dopant in different oxide hosts including gallium oxide, gadolinium oxide, and amorphous IGZO. Amorphous IGZO was chosen for the integration task since it could be deposited at room temperature, however it was found that the

  4. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Lai, Peng

    2009-09-01

    Electrochemical oxidation is a promising technology to treatment of bio-refractory wastewater. Coking wastewater contains high concentration of refractory and toxic compounds and the water quality usually cannot meet the discharge standards after conventional biological treatment processes. This paper initially investigated the electrochemical oxidation using boron-doped diamond (BDD) anode for advanced treatment of coking wastewater. Under the experimental conditions (current density 20-60mAcm(-2), pH 3-11, and temperature 20-60 degrees C) using BDD anode, complete mineralization of organic pollutants was almost achieved, and surplus ammonia-nitrogen (NH(3)-N) was further removed thoroughly when pH was not adjusted or at alkaline value. Moreover, the TOC and NH(3)-N removal rates in BDD anode cell were much greater than those in other common anode systems such as SnO(2) and PbO(2) anodes cells. Given the same target to meet the National Discharge Standard of China, the energy consumption of 64kWhkgCOD(-1) observed in BDD anode system was only about 60% as much as those observed in SnO(2) and PbO(2) anode systems. Further investigation revealed that, in BDD anode cell, organic pollutants were mainly degraded by reaction with free hydroxyl radicals and electrogenerated oxidants (S(2)O(8)(2-), H(2)O(2), and other oxidants) played a less important role, while direct electrochemical oxidation and indirect electrochemical oxidation mediated by active chlorine can be negligible. These results showed great potential of BDD anode system in engineering application as a final treatment of coking wastewater.

  5. Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Zeng, Jian-Jhou; Tsai, Cheng-Lung

    2012-07-01

    The investigation of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) having the reduced graphene oxide (RGO), denoted RGO-doped PEDOT:PSS shows that conductivity of RGO-doped PEDOT:PSS samples is 27 times higher than that of PEDOT:PSS at 300 K. The improved electrical conductivity is considered to mainly come from the mobility enhancement. The carrier mobility in RGO-doped PEDOT:PSS samples exhibits unexpectedly strong temperature dependence, implying the domination of tunneling (hopping) at low (high) temperatures. An exhibition of high mobility of RGO-doped PEDOT:PSS samples is attributed to the increased spacing between molecules.

  6. Effect of niobium on the structure and photoactivity of anatase (TiO2) nanoparticles.

    PubMed

    Hirano, Masanori; Matsushima, Kazumasa

    2006-03-01

    Anatase-type TiO2 nanoparticles doped with 0-30 mol% niobium were directly formed from precursor solutions of TiOSO4 and NbCl5 under mild hydrothermal conditions at 120-180 degrees C for 5 h using the hydrolysis of urea. When the niobium content increased from 0 to 30 mol%, the crystallite size of anatase increased from 8.5 to 19 nm. The band gap of anatase was slightly decreased by making solid solutions with niobium. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution after maintained in the dark or under UV-light irradiation. To form anatase-type solid solutions by doping 5-15 mol% niobium into TiO2 was effective for improvement of the photoactivity of TiO2. The photocatalytic activity (the photooxidation rate) and the adsorption amount of MB for the sample containing 15 mol% niobium became more than approximately nine times and six times as much as those of the hydrothermal anatase-type pure TiO2, respectively.

  7. Effect of niobium on the structure and photoactivity of anatase (TiO2) nanoparticles.

    PubMed

    Hirano, Masanori; Matsushima, Kazumasa

    2006-03-01

    Anatase-type TiO2 nanoparticles doped with 0-30 mol% niobium were directly formed from precursor solutions of TiOSO4 and NbCl5 under mild hydrothermal conditions at 120-180 degrees C for 5 h using the hydrolysis of urea. When the niobium content increased from 0 to 30 mol%, the crystallite size of anatase increased from 8.5 to 19 nm. The band gap of anatase was slightly decreased by making solid solutions with niobium. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution after maintained in the dark or under UV-light irradiation. To form anatase-type solid solutions by doping 5-15 mol% niobium into TiO2 was effective for improvement of the photoactivity of TiO2. The photocatalytic activity (the photooxidation rate) and the adsorption amount of MB for the sample containing 15 mol% niobium became more than approximately nine times and six times as much as those of the hydrothermal anatase-type pure TiO2, respectively. PMID:16573134

  8. TEM and SIMS Analysis of (100), (110), and (111) Single Crystal Niobium

    SciTech Connect

    Batchelor, A. D.; Stevie, F. A.; Leonard, D. N.; Russell, P. E.; Griffis, D. P.; Myneni, G. R.

    2007-08-09

    Single crystal niobium specimens of (100), (110) and (111) crystal orientations have been analyzed using TEM and SIMS. The TEM specimens were prepared using Focused Ion Beam (FIB) and show niobium oxide thicknesses ranging from 4.9 to 8.3 nm for the three specimens after buffer chemical polishing. The oxide layers appear uniform and no significant sub-oxide region was noted. SIMS analysis was made for all three orientations on hydrogen, carbon, and oxygen before and after heat treatments at 90, 600, and 1250 deg. C. Hydrogen is at a high level between the oxide layer and niobium, but at a relatively low level in the oxide. No high oxygen concentration region was noted in the niobium below the oxide. C contamination on the surface is detected mainly at the surface. Analysis after heat treatments showed some decrease in hydrogen after the 600 deg. C heat treatment, and significant oxidation of the niobium after the 1250 deg. C heat treatment.

  9. Effects of vanadium- and iron-doping on crystal morphology and electrochemical properties of 1D nanostructured manganese oxides

    NASA Astrophysics Data System (ADS)

    Yoo, Ha Na; Park, Dae Hoon; Hwang, Seong-Ju

    One-dimensional (1D) nanostructures of vanadium- and iron-doped manganese oxides, Mn 1- xM xO 2 (M = V and Fe), are synthesized via one-pot hydrothermal reactions. The results of X-ray diffraction studies and electron microscopic analyses demonstrate that all the present 1D nanostructured materials possess α-MnO 2-type structure. While the vanadium dopants produce 1D nanorods with a smaller aspect ratio of ∼3-5, iron dopants produce 1D nanowires with a high aspect ratio of >20. X-ray absorption spectroscopy clearly shows that the dopant vanadium ions are stabilized in tetravalent oxidation state with distorted octahedral symmetry, while the iron ions are stabilized in trivalent oxidation state with regular octahedral symmetry. Significant local structural distortion and size mismatch of dopant vanadium ions are responsible for the low aspect ratio of the vanadium-doped nanorods through the less effective growth of a 1D nanostructure. According to electrochemical measurements, doping with Fe and V can improve the electrode performance of 1D nanostructured manganate and such a positive effect is much more prominent for the iron dopant. The present study clearly indicates that doping with Fe and V provides an effective way of tailoring the crystal dimension and electrochemical properties of 1D nanostructured manganese oxides.

  10. One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality graphene oxide.

    PubMed

    Parvez, Khaled; Rincón, Rosalba A; Weber, Nils-Eike; Cha, Kitty C; Venkataraman, Shyam S

    2016-04-28

    High-quality graphene oxide (GO) with high crystallinity and electrical conductivity as well as in situ doped with nitrogen and sulfur is obtained via the electrochemical exfoliation of graphite. Furthermore, iron incorporated GO sheets show promising catalytic activity and stable methanol tolerance durability when used as electrocatalysts for the oxygen reduction reaction.

  11. REPLY: Reply to 'Comments on "Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films"'

    NASA Astrophysics Data System (ADS)

    Shinde, S. S.; Shinde, P. S.; Bhosale, C. H.; Rajpure, K. Y.

    2008-11-01

    This communication is a response to the comments made by Tiburcio-Silver and Castañeda on our recently published paper entitled 'Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films'. Each one of the points questioned is clarified in order to give the respective reasons, and additional information is given that supports the content of our paper.

  12. Nanogold supported on manganese oxide doped alumina microspheres as a highly active and selective catalyst for CO oxidation in a H2-rich stream.

    PubMed

    Miao, Yu-Xin; Li, Wen-Cui; Sun, Qiang; Shi, Lei; He, Lei; Wang, Jing; Deng, Gao-Ming; Lu, An-Hui

    2015-12-28

    Manganese oxide-doped Al2O3 microspheres were synthesized via a redox method, and were then deposited with Au nanoparticles using a deposition-precipitation method. The obtained catalyst is not only highly active and selective for the preferential oxidation of CO in a H2-rich stream, but also shows excellent stability in the co-presence of H2O and CO2 at 80 °C.

  13. Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction

    NASA Astrophysics Data System (ADS)

    Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-09-01

    Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.

  14. Optical, luminescent and laser properties of highly transparent ytterbium doped yttrium lanthanum oxide ceramics

    NASA Astrophysics Data System (ADS)

    Ivanov, M.; Kopylov, Yu.; Kravchenko, V.; Li, Jiang; Pan, Yubai; Kynast, U.; Leznina, M.; Strek, W.; Marciniak, Lukasz; Palashov, O.; Snetkov, I.; Mukhin, I.; Spassky, D.

    2015-12-01

    This paper describes the fabrication and investigation of highly transparent Yb-doped yttrium lanthanum oxide ceramics. For sintering of the ceramics we used a technology, which consists of several consecutive steps: (a) synthesis of weakly agglomerated nanopowder by laser ablation, (b) compacting of the green body with cold isostatic pressing (CIP), and (c) sintering in vacuum. After calcinations of the synthesized nanopowder at 1200 °C, a pure single-phase solid solution Yb3+:(LaxY1-x)2O3 was formed. The lanthanum ions proved to be a good aid to sinter yttria ceramics doped with Yb3+ at comparatively moderate temperatures of about 1650 °C. The ceramics have a relative density higher than 99.99% and grain sizes around 40 μm. The absorption coefficient of 3.2 mm thick Yb0.12La0.27Y1.61O3 ceramics is 0.01 cm-1 at 1150 nm. Laser oscillation at a wavelength of 1033 nm is demonstrated.

  15. Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers

    NASA Astrophysics Data System (ADS)

    Xie, Haiting; Wu, Qi; Xu, Ling; Zhang, Lei; Liu, Guochao; Dong, Chengyuan

    2016-11-01

    The amorphous oxide semiconductor (AOS) thin film transistors (TFTs) with the double-stacked channel layers (DSCL) combing the amorphous InZnO (a-IZO) films and the nitrogen-doped amorphous InGaZnO (a-IGZO:N) films were proposed and fabricated, which showed the excellent performance with the field-effect mobility of 49.6 cm2 V-1 s-1 and the subthreshold swing of 0.5 V/dec. More interestingly, very stable properties were observed in the bias stress and light illumination tests for these a-IZO/a-IGZO:N TFTs, as seemed to be the evident improvements over the prior arts. The improved performance and stability might be mainly due to the hetero-junctions in the channel layers and less interface/bulk trap density from the in situ nitrogen doping process in the a-IGZO layers. In addition, the passivation effect of the a-IGZO:N films also made some contributions to the stable properties exhibited in these novel DSCL TFTs.

  16. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide.

    PubMed

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-12-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules. PMID:27637896

  17. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    DOE PAGES

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, André

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 Ωcm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nmmore » (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.« less

  18. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    SciTech Connect

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, André

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 Ωcm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.

  19. Properties of cadmium-doped tin oxide thin films prepared by spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Choudhury, M. G. M.; Hossain, M. Mortuza; Rahman, M. Mozibur; Hakim, M. O.; Khan, M. K. R.

    2003-10-01

    Cadmium doped Tin Oxide Thin Films have been prepared by Spray Pyrolysis Method on glass substrates at 350°C. Structural, electrical and optical properties have been measured. From XRD it is found that films deposited are crystalline in nature with tetragonal structure having lattice constant a=b=3.86 A° and c=5.62A°. Hall effect measurements show that films prepared are of n-type and the carrier concentration (~1018 cm-3) and room temperature conductivity decreases with the increases in cadmium concentration in the films. Activation energy has been calculated from conductivity measurements and it was found that conduction within the temperature range we have measured is due to hoping of carriers through the spectrum of localized states. Band gap of the un-doped films calculated from transmission spectrum is about 3.1 eV and the value decrease slightly with the addition of cadmium. The refractive index, extinction coefficient, real and imaginary parts of the dielectric constant have been calculated from the optical spectra. The refractive index decreases with photon energy and also decreases slightly with cadmium concentration while extinction coefficient increases with photon energy.

  20. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-09-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

  1. The preparation of fluorine doped cadmium oxide thin film by sol-gel process.

    PubMed

    Kim, In Yea; Kim, Jong Sung

    2014-11-01

    During the several decades, CdO thin film has attracted many attentions as a candidate for the transparent conducting electrodes due to its high electrical conductivity and high optical transmittance. Various dopants such as F, In, Al, Sn, and Cr have been used to improve the optical and electrical properties of the film. Generally, the optical and electrical property of the thin film is dependent on its oxidation state, the amount of dopant materials, and the fabrication process. In this study, fluorine doped CdO thin films were prepared by using sol-gel process with various atomic ratios of Cd:F, and their electrical and optical properties were investigated. The precursor solution for sol-gel film was prepared with pH 5 and pH 8, and the film was annealed at 350 degrees C. X-ray diffraction pattern confirmed the cubic CdO:F phase formation, and the 10% fluorine doped film prepared with pH 8 precursor solution showed the lowest resistivity of 0.01574 Ω cm.

  2. Lattice-mismatch Strain Effects in Electron-Doped Calcium Manganese Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Hart, Cacie; Yong, Grace; Warecki, Zoey; Chaudhry, Adeel; Sharma, Prakash; Johnson, Anthony; Schaefer, David; Kolagani, Rajeswari

    2015-03-01

    Electron-doped Calcium Manganese Oxide (CaMnO3-δ) thin films are of interest for use as photocatalysts and fuel cell electrodes in renewable energy applications. Oxygen stoichiometry of the films is a key parameter for the functionality in these applications. Currently, we are investigating the properties of (CaMnO3-δ) films grown by pulsed laser deposition. The thin films are epitaxially grown on LaAlO3 and SrTiO3 substrates. Both of these substrates have larger in-plane lattice parameters than CaMnO3-δ, which leads to bi-axial tensile strain in the thin films. We have characterized the thickness dependence of structural, electrical, and morphological properties of these films using high resolution x-ray diffraction, temperature dependent electrical resistivity measurements, and atomic force microscopy. The thickness dependence is characteristically different from what has been preciously observed in thin films of hole-doped manganites. Our results suggest that coupling between tensile strain and oxygen deficiency affect the electrical and structural properties of the material. NSF Grant ECCS1128586.

  3. The role of Mn oxide doping in phosphate removal by Al-based bimetal oxides: adsorption behaviors and mechanisms.

    PubMed

    Wu, Kun; Liu, Ting; Ma, Chao; Chang, Bing; Chen, Rong; Wang, Xiaochang

    2014-01-01

    This study investigated the behaviors and mechanisms of phosphate adsorbed onto manganese (Mn) oxide-doped aluminum (Al) oxide (MODAO). The isotherm results demonstrated that the maximum amount of phosphorus (P) adsorbed onto MODAO was 59.8 mg/g at T = 298 K (pH 6.0). This value was nearly twice the amount of singular AlOOH and could increase with rising temperatures. The kinetic results illustrated that most of the P was adsorbed onto MODAO within 5 h, which was shorter than the equilibrium time of phosphate adsorption onto AlOOH. The Elovich model effectively described the adsorption kinetic data of MODAO because of its heterogeneous surface. The optimal solution pH for phosphate removal was approximately 5.0 because of electrostatic interaction effects. Meanwhile, the decrease in P uptake with increasing ion strength suggested that phosphate adsorption occurred through an outer-sphere complex. Phosphates would compete for adsorption sites on the surface of MODAO in the presence of fluoride ion or sulfate. In addition, the spectroscopic analysis results of Fourier transform infrared spectroscopy and X-ray photoemission spectroscopy indicated that removal mechanisms of phosphate primarily include adhesion to surface hydroxyl groups and ligand exchange.

  4. Simultaneous hydrogen production and electrochemical oxidation of organics using boron-doped diamond electrodes.

    PubMed

    Jiang, Juyuan; Chang, Ming; Pan, Peng

    2008-04-15

    This paper presents advantages of using a boron-doped diamond (BDD) electrode for hydrogen production and wastewater treatment in a single electrochemical cell. Results indicated that the BDD electrode possessed the widest known electrochemical window, allowing new possibilities for both anodic and cathodic reactions to simultaneously take place. The BDD electrode exhibited high anodic potential, generating high oxidation state radicals that facilitated oxidation of toxic waste organic compounds such as 4-nitrophenols. In contrast, because of widening of potential windows, the rate of hydrogen evolution at the cathode was significantly increased. Time-on-stream concentrations of reaction intermediates were monitored to elucidate mechanism involved in 4-nitrophenol oxidation. Spalling, fouling, or reduction in the thickness of thin-film diamond coating was not observed. Overall, the BDD electrode exhibits unique properties including chemical inertness, anticorrosion, and extended service life. These properties are especially important in wastewater treatment. Economic advantages were attributed to the low cost and long duration BDD electrode and the valuable hydrogen byproduct produced. Analysis has shown that technology associated with the BDD electrode could be effectively implemented with minimum energy input and capital requirements. When combined with solar energy and fuel cells, electrochemical wastewater processing can become energy efficient and cost-effective.

  5. Au ↔ N Synergy and N-Doping of Metal Oxide-Based Photocatalysts

    SciTech Connect

    Graciani,J.; Nambu, A.; Evans, J.; Rodruguez, J.; Sanz, J.

    2008-01-01

    N-doping of titania makes photocatalytic activity possible for the splitting of water, and other reactions, under visible light. Here, we show from both theory and experiment that Au preadsorption on TiO2 surfaces significantly increases the reachable amount of N implanted in the oxide. The stabilization of the embedded N is due to an electron transfer from the Au 6s levels toward the N 2p levels, which also increases the Au-surface adhesion energy. Theoretical calculations predict that Au can also stabilize embedded N in other metal oxides with photocatalytic activity, such as SrTiO3 and ZnO, producing new states above the valence band or below the conduction band of the oxide. In experiments, the Au/TiNxO2-y system was found to be more active for the dissociation of water than TiO2, Au/TiO2, or TiO2-y. Furthermore, the Au/TiNxO2-y surfaces were able to catalyze the production of hydrogen through the water-gas shift reaction (WGS) at elevated temperatures (575-625 K), displaying a catalytic activity superior to that of pure copper (the most active metal catalysts for the WGS) or Cu nanoparticles supported on ZnO.

  6. Surface-directed synthesis of erbium-doped yttrium oxide nanoparticles within organosilane zeptoliter containers.

    PubMed

    Englade-Franklin, Lauren E; Morrison, Gregory; Verberne-Sutton, Susan D; Francis, Asenath L; Chan, Julia Y; Garno, Jayne C

    2014-09-24

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis.

  7. Thermal transport properties of polycrystalline tin-doped indium oxide films

    SciTech Connect

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-04-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In{sub 2}O{sub 3} and 10 wt %SnO{sub 2}). The resistivity and carrier density of the ITO films ranged from 2.9x10{sup -4} to 3.2x10{sup -3} {omega} cm and from 1.9x10{sup 20} to 1.2x10{sup 21} cm{sup -3}, respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10{sup -6} m{sup 2}/s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant ({lambda}{sub ph}=3.95 W/m K), which was about twice that for amorphous indium zinc oxide films.

  8. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials.

    PubMed

    Carabineiro, Sónia A C; Santos, Vera P; Pereira, M Fernando R; Órfão, José J M; Figueiredo, José L

    2016-10-15

    Cryptomelane-type manganese oxides were synthesized by redox reaction under acid and reflux conditions. Different metals (cesium, lithium and titanium) were incorporated into the tunnel structure by the ion-exchange technique. Gold was loaded onto these materials (1wt%) by a double impregnation method. The obtained catalysts were characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, scanning electron microscopy, X-ray diffraction and temperature-programmed reduction. The catalytic activity of these materials was evaluated in the oxidation of carbon monoxide. The incorporation of Cs, Li or Ti into cryptomelane was detrimental in terms of catalytic activity. Further addition of gold to cryptomelane doped materials significantly improved the catalytic performance, especially for Cs-K-OMS-2 and Li-K-OMS-2 (to a smaller extent). Addition of gold to the Ti containing material did not show a significant improvement. The observed trends are related to the effect of gold on samples reducibility and to the gold particle size. The lattice oxygen can also be considered accountable for the activity of the materials, since the most active cryptomelane catalysts are those with higher lattice oxygen donating ability for the oxidation of the CO molecule.

  9. Electrochemical oxidation and electroanalytical determination of xylitol at a boron-doped diamond electrode.

    PubMed

    Lourenço, Anabel S; Sanches, Fátima A C; Magalhães, Renata R; Costa, Daniel J E; Ribeiro, Williame F; Bichinho, Kátia M; Salazar-Banda, Giancarlo R; Araújo, Mário C U

    2014-02-01

    Xylitol is a reduced sugar with anticariogenic properties used by insulin-dependent diabetics, and which has attracted great attention of the pharmaceutical, cosmetics, food and dental industries. The detection of xylitol in different matrices is generally based on separation techniques. Alternatively, in this paper, the application of a boron-doped diamond (BDD) electrode allied to differing voltammetric techniques is presented to study the electrochemical behavior of xylitol, and to develop an analytical methodology for its determination in mouthwash. Xylitol undergoes two oxidation steps in an irreversible diffusion-controlled process (D=5.05 × 10(-5)cm(2)s(-1)). Differential pulse voltammetry studies revealed that the oxidation mechanism for peaks P1 (3.4 ≤ pH ≤ 8.0), and P2 (6.0 ≤ pH ≤ 9.0) involves transfer of 1H(+)/1e(-), and 1e(-) alone, respectively. The oxidation process P1 is mediated by the (•)OH generated at the BDD hydrogen-terminated surface. The maximum peak current was obtained at a pH of 7.0, and the electroanalytical method developed, (employing square wave voltammetry) yielded low detection (1.3 × 10(-6) mol L(-1)), and quantification (4.5 × 10(-6) mol L(-1)) limits, associated with good levels of repeatability (4.7%), and reproducibility (5.3%); thus demonstrating the viability of the methodology for detection of xylitol in biological samples containing low concentrations.

  10. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials.

    PubMed

    Carabineiro, Sónia A C; Santos, Vera P; Pereira, M Fernando R; Órfão, José J M; Figueiredo, José L

    2016-10-15

    Cryptomelane-type manganese oxides were synthesized by redox reaction under acid and reflux conditions. Different metals (cesium, lithium and titanium) were incorporated into the tunnel structure by the ion-exchange technique. Gold was loaded onto these materials (1wt%) by a double impregnation method. The obtained catalysts were characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, scanning electron microscopy, X-ray diffraction and temperature-programmed reduction. The catalytic activity of these materials was evaluated in the oxidation of carbon monoxide. The incorporation of Cs, Li or Ti into cryptomelane was detrimental in terms of catalytic activity. Further addition of gold to cryptomelane doped materials significantly improved the catalytic performance, especially for Cs-K-OMS-2 and Li-K-OMS-2 (to a smaller extent). Addition of gold to the Ti containing material did not show a significant improvement. The observed trends are related to the effect of gold on samples reducibility and to the gold particle size. The lattice oxygen can also be considered accountable for the activity of the materials, since the most active cryptomelane catalysts are those with higher lattice oxygen donating ability for the oxidation of the CO molecule. PMID:27399615

  11. Surface-directed synthesis of erbium-doped yttrium oxide nanoparticles within organosilane zeptoliter containers.

    PubMed

    Englade-Franklin, Lauren E; Morrison, Gregory; Verberne-Sutton, Susan D; Francis, Asenath L; Chan, Julia Y; Garno, Jayne C

    2014-09-24

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  12. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for selective oxidation.

    PubMed

    Chizari, Kambiz; Deneuve, Adrien; Ersen, Ovidiu; Florea, Ileana; Liu, Yu; Edouard, David; Janowska, Izabela; Begin, Dominique; Pham-Huu, Cuong

    2012-01-01

    Catalytic reactions are generally carried out on supported metals or oxides, which act as an active phase and require impregnation and thermal treatment steps. During tests, the metal or oxide nanoparticles could be further sintered, which would induces deactivation. Direct incorporation of the active phase into the matrix of a support could be an elegant alternative to prevent catalyst deactivation. Here, we report that nitrogen-doped carbon nanotubes (N-CNTs) can be efficiently employed as a metal-free catalyst for oxidative reactions that allow the selective transformation of the harmful, gaseous H(2)S into solid sulfur. The catalyst exhibits a high stability during the test at high space velocity. The macroscopic shaping of the catalyst on the silicon carbide foam also increases its catalytic activity by improving the contact between the reactants and the catalyst. Such macroscopic shaping allows the avoidance of problems linked with transport and handling of nanoscopic materials and also reduces the pressure drop across the catalyst bed to a large extent.

  13. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  14. A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials.

    PubMed

    Lehr, Daniela; Wagner, Markus R; Flock, Johanna; Reparaz, Julian S; Sotomayor Torres, Clivia M; Klaiber, Alexander; Dekorsy, Thomas; Polarz, Sebastian

    2015-01-01

    Numerous applications in optoelectronics require electrically conducting materials with high optical transparency over the entire visible light range. A solid solution of indium oxide and substantial amounts of tin oxide for electronic doping (ITO) is currently the most prominent example for the class of so-called TCOs (transparent conducting oxides). Due to the limited, natural occurrence of indium and its steadily increasing price, it is highly desired to identify materials alternatives containing highly abundant chemical elements. The doping of other metal oxides (e.g., zinc oxide, ZnO) is a promising approach, but two problems can be identified. Phase separation might occur at the required high concentration of the doping element, and for successful electronic modification it is mandatory that the introduced heteroelement occupies a defined position in the lattice of the host material. In the case of ZnO, most attention has been attributed so far to n-doping via substitution of Zn(2+) by other metals (e.g., Al(3+)). Here, we present first steps towards n-doped ZnO-based TCO materials via substitution in the anion lattice (O(2-) versus halogenides). A special approach is presented, using novel single-source precursors containing a potential excerpt of the target lattice 'HalZn·Zn3O3' preorganized on the molecular scale (Hal = I, Br, Cl). We report about the synthesis of the precursors, their transformation into halogene-containing ZnO materials, and finally structural, optical and electronic properties are investigated using a combination of techniques including FT-Raman, low-T photoluminescence, impedance and THz spectroscopies. PMID:26665089

  15. A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

    PubMed Central

    Lehr, Daniela; Wagner, Markus R; Flock, Johanna; Reparaz, Julian S; Sotomayor Torres, Clivia M; Klaiber, Alexander; Dekorsy, Thomas

    2015-01-01

    Summary Numerous applications in optoelectronics require electrically conducting materials with high optical transparency over the entire visible light range. A solid solution of indium oxide and substantial amounts of tin oxide for electronic doping (ITO) is currently the most prominent example for the class of so-called TCOs (transparent conducting oxides). Due to the limited, natural occurrence of indium and its steadily increasing price, it is highly desired to identify materials alternatives containing highly abundant chemical elements. The doping of other metal oxides (e.g., zinc oxide, ZnO) is a promising approach, but two problems can be identified. Phase separation might occur at the required high concentration of the doping element, and for successful electronic modification it is mandatory that the introduced heteroelement occupies a defined position in the lattice of the host material. In the case of ZnO, most attention has been attributed so far to n-doping via substitution of Zn2+ by other metals (e.g., Al3+). Here, we present first steps towards n-doped ZnO-based TCO materials via substitution in the anion lattice (O2− versus halogenides). A special approach is presented, using novel single-source precursors containing a potential excerpt of the target lattice 'HalZn·Zn3O3' preorganized on the molecular scale (Hal = I, Br, Cl). We report about the synthesis of the precursors, their transformation into halogene-containing ZnO materials, and finally structural, optical and electronic properties are investigated using a combination of techniques including FT-Raman, low-T photoluminescence, impedance and THz spectroscopies. PMID:26665089

  16. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films

    SciTech Connect

    Zhou, Dayu; Xu, Jin; Li, Qing; Guan, Yan; Cao, Fei; Dong, Xianlin; Müller, Johannes; Schenk, Tony; Schröder, Uwe

    2013-11-04

    Hafnium oxide based ferroelectric thin films have shown potential as a promising alternative material for non-volatile memory applications. This work reports the switching stability of a Si-doped HfO{sub 2} film under bipolar pulsed-field operation. High field cycling causes a “wake-up” in virgin “pinched” polarization hysteresis loops, demonstrated by an enhancement in remanent polarization and a shift of negative coercive voltage. The rate of wake-up is accelerated by either reducing the frequency or increasing the amplitude of the cycling field. We suggest de-pinning of domains due to reduction of the defect concentration at bottom electrode interface as origin of the wake-up.

  17. W-doped anatase TiO{sub 2} transparent conductive oxide films: Theory and experiment

    SciTech Connect

    Chen Deming; Xu Gang; Miao Lei; Chen Lihua; Nakao, Setsuo; Jin, Ping

    2010-03-15

    W-doped anatase TiO{sub 2} films were deposited on glass substrate by magnetron cosputtering. The minimum resistivity, 1.5x10{sup -2} {Omega} cm, for Ti{sub 1-x}W{sub x}O{sub 2} film (x=0.063) was obtained. X-ray photoelectron spectroscopy analysis shows W incorporated in the Ti lattice position is mostly in the W{sup 6+} state. Theoretical calculations based upon the density-functional theory were applied to analyze the electronic structure and conducting mechanism. The strong hybridization of Ti 3d states with W 5d states is the dominate factor to cause the shifting in Fermi level into conduction band. Our results suggest that tungsten is a favorable dopant to form TiO{sub 2}-based transparent conducting oxide materials.

  18. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    DOEpatents

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  19. Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles.

    PubMed

    Khezami, L; Taha, Kamal K; Ghiloufi, Imed; El Mir, Lassaad

    2016-01-01

    Herein the degradation of malachite green (MG) dye from aqueous medium by vanadium doped zinc oxide (ZnO:V3%) nanopowder was investigated. The specific surface area and pore volume of the nanopowder was characterized by nitrogen adsorption method. Batch experimental procedures were conducted to investigate the adsorption and photocatalytic degradation of MG dye. Adsorption kinetics investigations were performed by varying the amount of the catalyst and the initial dye concentrations. Adsorption and photocatalytic degradation data were modeled using the Lagergren pseudo-first-order and second-order kinetic equation. The results showed that the ZnO:V3% nanopowder was particularly effective for the removal of MG and data were found to comply with Lagergreen pseudo-first-order kinetic model. PMID:26901732

  20. Synthesis and photocatalytic applications of nano-sized zinc-doped mesoporous titanium oxide

    SciTech Connect

    Sánchez-Muñoz, Sergio; Pérez-Quintanilla, Damián

    2013-02-15

    Graphical abstract: Nano-sized mesoporous titanium oxide (T0) and zinc-doped nano-sized mesoporous titanium oxides (TA–TD) were synthesized by a simple method and characterized by different techniques. All materials have been studied in the photocatalytic degradation of methylene blue under UV light, observing that the decrease in the band gap of the materials seems to have a positive influence in the photocatalytic activity. Display Omitted Highlights: ► Nano-sized mesoporous TiO{sub 2} and Zn-doped TiO{sub 2} have been synthesized and characterized. ► Band gap of the Zn-doped TiO{sub 2} decreases when the Zn amount increases. ► Materials consist of porous particles (10–20 nm). ► The photocatalytic degradation of MB has been studied for these materials. ► A decrease in the band gap of the materials enhances the photocatalytic activity. -- Abstract: The synthesis of nano-sized mesoporous titanium oxide (T0) is described by an easy synthetic method which consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and the subsequent elimination of the volatiles by simple distillation. On the other hand, zinc-doped mesoporous titanium oxides (TA–TD) were synthesized using the same method but adding increasing amounts of Zn(NO{sub 3}){sub 2} to give materials which contain between 0.12 and 6.17 wt.% Zn. Upon the calcinations of all the obtained materials, characterization has been carried out by using N{sub 2} adsorption–desorption isotherms, powder X-ray diffraction, X-ray fluorescence, UV–vis spectrometry, solid state {sup 47,49}Ti NMR spectroscopy and transmission electronic microscopy (TEM). The results show that all these materials are mesoporous, with BET surfaces between 54 and 121 m{sup 2}/g and similar pore diameters between 6.4 and 9.1 nm. XRD studies show that these materials mainly consist of anatase and very small amounts of brookite. TEM technique shows the small particle sizes of the

  1. Ultrasonic study on some borosilicate glasses doped with different transition metal oxides

    NASA Astrophysics Data System (ADS)

    Marzouk, S. Y.; Gaafar, M. S.

    2007-12-01

    Longitudinal and shear ultrasonic wave velocities were measured in borosilicate glasses doped with different transition metal oxides (TMOs) (where TMO=NiO, V 2O 5, Fe 2O 3, MnO 2, TiO 2, Cr 2O 3, CoO, CuO) using the pulse echo technique. Measurements were carried out at 4 MHz frequency and at room temperature. Elastic moduli and some other physical parameters such as acoustic impedance, softening temperature, Debye temperature, thermal expansion coefficient, and latent heat of melting have been calculated. Results indicated that these parameters depend upon the TMO modifier, i.e., the ionic radius of the transition metal cation. A quantitative analysis has been carried out, in order to obtain more information about the structure of these glasses, based on bond compression model, and the Makishima and Mackenzie model, i.e., the cation-anion bond of each TMO.

  2. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol.

    PubMed

    Warner, Genoa; Hansen, Thomas S; Riisager, Anders; Beach, Evan S; Barta, Katalin; Anastas, Paul T

    2014-06-01

    An isolated, solvent-extracted lignin from candlenut (Aleurites moluccana) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin conversion to methanol-soluble products, without char formation, were based on copper in combination with other dopants based on relatively earth-abundant metals. Nearly complete conversion of lignin to bio-oil composed of monomers and low-mass oligomers with high aromatic content was obtained in 6h at 310°C using a catalyst based on a Cu- and La-doped hydrotalcite-like precursor. Product mixtures were characterized by NMR spectroscopy, gel permeation chromatography, and GC-MS. PMID:24686374

  3. Fast Responsive Gas Sensor of Vertically Aligned Fluorine-Doped Tin Oxide Nanorod Thin Film

    NASA Astrophysics Data System (ADS)

    Cho, Chan-Woo; Lee, Jong-Heun; Riu, Doh-Hyung; Kim, Chang-Yeoul

    2012-04-01

    We prepared fluorine-doped tin oxide (FTO) nanorod films and a conventional FTO thin film for the application of a semiconducting gas sensor by spray pyrolysis method. The lengths of FTO nanorods (FTON, 100 and 500 nm) were controlled by changing deposition times, and FTO thin film (FTOT) was also prepared as a reference. The gas sensitivity test shows FTON with long nanorods had higher sensitivity for both hydrogen and ethanol gases but slow response and recovery times, despite an advantage of the higher gas sensitivity. FTO nanorod film with short length about 100 nm showed relatively lower sensitivity, but fast gas response and recovery characteristics. The fast response and recovery for the analyte gases are attributed to the conductance of FTO nanorods, which is closely related to the diameter and length of nanorods.

  4. Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications

    NASA Astrophysics Data System (ADS)

    Bhosle, V.; Prater, J. T.; Yang, Fan; Burk, D.; Forrest, S. R.; Narayan, J.

    2007-07-01

    We report microstructural characteristics and properties of gallium-doped ZnO films deposited on glass by pulsed laser deposition. The Zn0.95Ga0.05O film deposited at 200 °C and 1×10-3 Torr showed predominant ⟨0001⟩ orientation with a metallic behavior and a resistivity of 2×10-4 Ω cm at room temperature. Low resistivity of the ZnGaO films has been explained in terms of optimal combination of carrier concentration and minimized scattering, and is correlated with the microstructure and the deposition parameters. Power conversion efficiency comparable to indium tin oxide-based devices (1.25±0.05%) is achieved on a Zn0.95Ga0.05O/Cu-phthalocyanine/C60 double-heterojunction solar cell.

  5. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    PubMed

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  6. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    NASA Astrophysics Data System (ADS)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2), (CoO),(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  7. Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics

    SciTech Connect

    Carranza, Arturo; Gewin, Mariah; Pojman, John A.

    2014-06-15

    In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity, while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.

  8. Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles.

    PubMed

    Khezami, L; Taha, Kamal K; Ghiloufi, Imed; El Mir, Lassaad

    2016-01-01

    Herein the degradation of malachite green (MG) dye from aqueous medium by vanadium doped zinc oxide (ZnO:V3%) nanopowder was investigated. The specific surface area and pore volume of the nanopowder was characterized by nitrogen adsorption method. Batch experimental procedures were conducted to investigate the adsorption and photocatalytic degradation of MG dye. Adsorption kinetics investigations were performed by varying the amount of the catalyst and the initial dye concentrations. Adsorption and photocatalytic degradation data were modeled using the Lagergren pseudo-first-order and second-order kinetic equation. The results showed that the ZnO:V3% nanopowder was particularly effective for the removal of MG and data were found to comply with Lagergreen pseudo-first-order kinetic model.

  9. Low-threshold and broadly tunable lasers of Yb3+-doped yttrium lanthanum oxide ceramic

    NASA Astrophysics Data System (ADS)

    Hao, Qiang; Li, Wenxue; Zeng, Heping; Yang, Qiuhong; Dou, Chuanguo; Zhou, Hongxu; Lu, Wei

    2008-05-01

    We experimentally demonstrated diode-pumped continuous wave and tunable laser operation of Yb3+-doped yttrium lanthanum oxide transparent ceramic [Yb:(Y1-xLax)2O3,x=0.1], which was fabricated with nanopowders and sintered in H2 atmosphere. As low as 400mW pumping threshold and a slope efficiency of 52% were realized at 1080nm under a high-brightness 976nm diode pump with a fiber core of 50μm and a numerical aperture of 0.22. A maximum output power of 2.1W was obtained when the non-lasing absorbed pump power was 19.5W at 976nm with diode laser of 400μm fiber core. A smooth tunable curve from 1018to1086nm was achieved at 940nm diode pump. Broadband lasing spectra up to 30nm were observed in the tunable laser experiment.

  10. Novel fabrication of an electrochromic antimony-doped tin oxide film using a nanoparticle deposition system

    NASA Astrophysics Data System (ADS)

    Kim, Hyungsub; Park, Yunchan; Choi, Dahyun; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2016-07-01

    Novel deposition method of Antimony-doped tin oxide (ATO) thin films was introduced using a nanoparticle deposition system (NPDS) to fabricate an electrochromic (EC) device. NPDS is a dry deposition method that simplifies the ATO deposition process by eliminating the need for solvents or binders. In this study, an ATO EC layer was deposited using NPDS. The surface morphology and electrochemical and optical transmittance properties were characterized. The optical transmittance change in the ATO EC device was ∼35% over the wavelength range of 350-800 nm, and the cyclic transmittance was stable. The ATO film deposited using NPDS, exhibited a coloration efficiency of 15.5 cm2 C-1. Therefore, our results suggest that ATO EC devices can be fabricated using a simple, cost-effective NPDS, which allows nanoparticles to be deposited directly without pre- or post-processing.

  11. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen

    NASA Astrophysics Data System (ADS)

    Ma, Quanxin; Li, Ruhong; Zheng, Rujuan; Liu, Yuanlong; Huo, Hua; Dai, Changsong

    2016-11-01

    To improve the rate performance and decelerate the voltage decay of Li-rich layered oxide cathode materials, a series of cathode materials Li1.2[Mn0.7Ni0.2Co0.1]0.8-xSexO2 (x = 0, 0.07, 0.14 and 0.21) was synthesized via co-precipitation. Based on the characterization results, it can be concluded that uniform Se6+ doping can improve the degree of crystallinity of Li2MnO3, resulting in a better ordering of atoms in the transition metal layer of this type of cathode materials. In the electrochemical experiments, compared to un-doped samples, one of the Se doped samples (LLMO-Se0.14) exhibited a longer sloping region and shorter potential plateau in the initial charge curves, a larger first coulombic efficiency (ca. 77%), better rate capability (178 mAhm g-1 at 10 C) and higher mid-point voltage (MPV) retention (ca. 95%) after 100 cycles. These results prove that Se doping can effectively improve the rate capability and decelerate the voltage decay process of these cathode materials during cycling via suppressing the oxidation process of O2- to O2 and curbing a layered-to-spinel phase transformation. The above-mentioned functions of Se doping are probably due to the higher bonding energy of Sesbnd O than that of Mnsbnd O.

  12. Effect of Cr doping on the structural, morphological, optical and electrical properties of indium tin oxide films

    NASA Astrophysics Data System (ADS)

    Mirzaee, Majid; Dolati, Abolghasem

    2015-03-01

    We report on the preparation and characterization of high-purity chromium (0.5-2.5 at.%)-doped indium tin oxide (ITO, In:Sn = 90:10) films deposited by sol-gel-mediated dip coating. The effects of different Cr-doping contents on structural, morphological, optical and electrical properties of the films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and four-point probe methods. XRD showed high phase purity cubic In2O3 and indicated a contraction of the lattice with Cr doping. FESEM micrographs show that grain size decreased with increasing the Cr-doping content. A method to determine chromium species in the sample was developed through the decomposition of the Cr 2 p XPS spectrum in Cr6+ and Cr3+ standard spectra. Optical and electrical studies revealed that optimum opto-electronic properties, including minimum sheet resistance of 4,300 Ω/Sq and an average optical transmittance of 85 % in the visible region with a band gap of 3.421 eV, were achieved for the films doped with Cr-doping content of 2 at.%.

  13. Novel method for fabrication of metal- or oxide-nanoparticle doped silica-based specialty optical fibers

    NASA Astrophysics Data System (ADS)

    Lenardič, Borut; Kveder, Miha; Lisjak, Darja; Guillon, Herve; Bonnafous, Samuel

    2011-03-01

    Nanoparticle-doped optical fibers are causing significant scientific interest in different application fields. Nanoparticle-doping of silica glass layers during optical fiber preform fabrication was so far reported by sol-gel and solution doping processes, by flame hydrolysis spraying and by pulling hollow cylinders from nanoparticle suspensions. A new method for fabrication of high quality nanoparticle-doped fibers is suggested. Proposed method is based on "flash vaporization" deposition process, previously reported as method to fabricate rare earth- and metal ion-doped specialty optical fibers. Experiments were made where SiO2 layers were deposited using "flash vaporization"-equipped MCVD system, adding vapors carrying metal or oxide nanoparticles into deposition zone. Analysis of produced preforms confirms presence of nanoparticles in deposited layers, albeit with low deposition rate due to weak thermophoretic forces acting on very small particles or agglomerations. Based on results, a number of improvements were suggested and implemented in fabrication process, device design and choice of precursor materials. "Flash vaporization" method was demonstrated as suitable method for deposition of nanoparticles in silica layers, permitting in-situ fabrication of complete preforms, providing easy upgrade path for existing MCVD and OVD deposition systems and allowing simultaneous co-doping by a wide range of other co-dopants.

  14. Calcium- and Cobalt-doped Yttrium Chromites as an Interconnect Material for Solid Oxide Fuel Cells

    SciTech Connect

    Yoon, Kyung J.; Cramer, Carolyn N.; Thomsen, Edwin C.; Coyle, Christopher A.; Coffey, Greg W.; Marina, Olga A.

    2010-04-23

    The structural, thermal and electrical characteristics of calcium- and cobalt-doped yttrium chromites were studied for a potential use as the interconnect material in high temperature solid oxide fuel cells (SOFCs) as well as other high temperature electrochemical and thermoelectric devices. The Y0.8Ca0.2Cr1-xCoxO3±δ (x=0, 0.1, 0.2, 0.3) compositions had single phase orthorhombic perovskite structures in the wide range of oxygen pressures. Sintering behavior was remarkably enhanced upon cobalt doping and densities 95% and 97% of theoretical density were obtained after sintering at 1300oC in air, when x was 0.2 and 0.3, respectively. The electrical conductivity in both oxidizing and reducing atmospheres was significantly improved with cobalt content, and values of 49 and 10 S/cm at 850oC and 55 and 14 S/cm at 950oC in air and forming gas, respectively, were reported for x=0.2. The conductivity increase was attributed to the charge carrier density increase upon cobalt substitution for chromium confirmed with Seebeck measurements. The thermal expansion coefficient (TEC) was increased with cobalt content and closely matched to that of an 8 mol% yttria-stabilized zirconia (YSZ) electrolyte for 0.1 ≤ x ≤ 0.2. The chemical compatibility between Y0.8Ca0.2Cr1-xCoxO3±δ and YSZ was evaluated firing the two at 1400oC and no reaction products were found if x value was kept lower than 0.2.

  15. High performance of graphene oxide-doped silicon oxide-based resistance random access memory

    PubMed Central

    2013-01-01

    In this letter, a double active layer (Zr:SiO x /C:SiO x ) resistive switching memory device with outstanding performance is presented. Through current fitting, hopping conduction mechanism is found in both high-resistance state (HRS) and low-resistance state (LRS) of double active layer RRAM devices. By analyzing Raman and FTIR spectra, we observed that graphene oxide exists in C:SiO x layer. Compared with single Zr:SiO x layer structure, Zr:SiO x /C:SiO x structure has superior performance, including low operating current, improved uniformity in both set and reset processes, and satisfactory endurance characteristics, all of which are attributed to the double-layer structure and the existence of graphene oxide flakes formed by the sputter process. PMID:24261454

  16. Doped graphene as a metal-free carbocatalyst for the selective aerobic oxidation of benzylic hydrocarbons, cyclooctane and styrene.

    PubMed

    Dhakshinamoorthy, Amarajothi; Primo, Ana; Concepcion, Patricia; Alvaro, Mercedes; Garcia, Hermenegildo

    2013-06-01

    Nitrogen (N)-, boron (B)-, and boron,nitrogen (B,N)-doped graphene (G) act as carbocatalysts, promoting the aerobic oxidation of the benzylic positions of aromatic hydrocarbons and cyclooctane to the corresponding alcohol/ketone mixture with more than 90 % selectivity. The most active material was the co-doped (B,N)G, which, in the absence of solvent and with a substrate/(B,N)G ratio of 200, achieved 50 % tetralin conversion in 24 h with a alcohol/ketone selectivity of 80 %. An FT-Raman spectroscopic study of a sample of (B,N)G heated at 100 °C in the presence of oxygen revealed new bands that disappeared upon evacuation and that have been attributed to hydroperoxide-like species formed on the G sheet based on the isotopic shift of the peak from 819 to 779 cm(-1) when (18)O2 was used as the oxidizing reagent. Furthermore, (B)G and (N)G exhibited high catalytic activity in the aerobic oxidation of styrene to benzaldehyde (BA) in 4 h. However, the product distribution changed over time and after 10 h a significant percentage of styrene oxide (SO) was observed under the same conditions. The use of doped G as catalyst appears to offer broad scope for the aerobic oxidation of benzylic compounds and styrene, for which low catalyst loading, mild reaction temperatures, and no additional solvents are required.

  17. Perovskite Sr-doped LaCrO3 as a new p-type transparent conducting oxide

    SciTech Connect

    Zhang, Hongliang; Du, Yingge; Papadogianni, Alexandra; Bierwagen, Oliver; Sallis, Shawn; Piper, Louis F. J.; Bowden, Mark E.; Shutthanandan, V.; Sushko, Petr; Chambers, Scott A.

    2015-09-16

    Transparent conducting oxides (TCOs) constitute a unique class of materials which combine the seemingly mutually exclusive properties of electrical conductivity and optical transparency in a single material. TCOs are useful for a wide range of applications including solar cells, displays, light emitting diodes and transparent electronics. Simple post-transition metal oxides such as ZnO, In2O3 and SnO2 are wide gap insulators in which the ionic character generates an oxygen 2p-derived valence band (VB) and a metal s-derived conduction band (CB), resulting in large optical band gaps (>3.0 eV) and excellent n-type conductivity when donor doped. In contrast, the development of efficient p-type TCOs remains a global materials challenge. Converting n-type oxides to p-type analogs by acceptor doping is extremely difficult and these materials display poor conductivity.

  18. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    SciTech Connect

    Hendrickson, Joshua R. Leedy, Kevin; Cleary, Justin W.; Vangala, Shivashankar; Nader, Nima; Guo, Junpeng

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  19. Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides

    SciTech Connect

    Baylon, Rebecca A.; Sun, Junming; Wang, Yong

    2016-01-01

    Despite numerous studies on different oxide catalysts for the ethanol to 1,3-butadiene reaction, few have identified active sites (i.e., type of acidity) correlated to the catalytic performances. In this work, the type of acidity needed for ethanol to 1,3-butadiene conversion has been studied over Zn/Zr mixed oxide catalysts. Specifically, synthesis method, Zn/Zr ratio, and Na doping have been used to control the surface acid-base properties, as confirmed by characterizations such as NH3-TPD and IR-Py techniques. The 2000 ppm Na doped Zn1Zr10Oz-H with balanced base and weak Bronsted acid sites was found to give not only high selectivity to 1,3-butadiene (47%) at near complete ethanol conversion (97%), but also exhibited a much higher 1,3-butadiene productivity than other mixed oxides studied.

  20. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    NASA Astrophysics Data System (ADS)

    Hendrickson, Joshua R.; Vangala, Shivashankar; Nader, Nima; Leedy, Kevin; Guo, Junpeng; Cleary, Justin W.

    2015-11-01

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.