Science.gov

Sample records for niobium superconducting strip

  1. Dissipative hydride precipitates in superconducting niobium cavities

    SciTech Connect

    Romanenko, A.; Cooley, L.D.; Ciovati, G.; Wu, G.; /Argonne

    2011-10-01

    We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

  2. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  3. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  4. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  5. Developing of superconducting niobium cavities for accelerators

    NASA Astrophysics Data System (ADS)

    Pobol, I. L.; Yurevich, S. V.

    2015-11-01

    The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The paper also describes the results of testing of the RF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS Belarus.

  6. Electroplating and stripping copper on molybdenum and niobium

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  7. Research & Development on Superconducting Niobium Materials via Magnetic Measurements

    SciTech Connect

    S. B. Roy, V. C. Sahni, and G. R. Myneni

    2011-03-01

    We present a study of superconducting properties of both large grain (1 mm average grain size) and small grain (50 micron average grain size) Niobium materials containing varying amounts of Tantalum impurities that have been used in the fabrication of high accelerating gradient superconducting radio frequency cavities. We found that a buffered chemical polishing of these Niobium samples causes a distinct reduction in the superconducting parameters like TC, wt- ppm to 1300 wt-ppm. Implications of these results on the performance of niobium superconducting radio frequency cavities are discussed, especially the anomalous high field RF losses that have been reported in the literature.

  8. Tuning of superconducting niobium nitride terahertz metamaterials.

    PubMed

    Wu, Jingbo; Jin, Biaobing; Xue, Yuhua; Zhang, Caihong; Dai, Hao; Zhang, Labao; Cao, Chunhai; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2011-06-20

    Superconducting planar terahertz (THz) metamaterials (MMs), with unit cells of different sizes, are fabricated on 200 nm-thick niobium nitride (NbN) films deposited on MgO substrates. They are characterized using THz time domain spectroscopy over a temperature range from 8.1 K to 300 K, crossing the critical temperature of NbN films. As the gap frequency (f(g) = 2Δ0/h, where Δ0 is the energy gap at 0 K and h is the Plank constant) of NbN is 1.18 THz, the experimentally observed THz spectra span a frequency range from below f(g) to above it. We have found that, as the resonance frequency approaches f(g), the relative tuning range of MMs is quite wide (30%). We attribute this observation to the large change of kinetic inductance of superconducting film.

  9. Method for etching thin films of niobium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, Robert T.; Schuller, Ivan K.; Falco, Charles M.

    1981-01-01

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate, and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  10. Superconducting niobium thin film slow-wave structures

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Petty, S. M.; Allen, L. H.; Beasley, M. R.; Hammond, R. H.

    1983-01-01

    A superconducting comb structure as a slow-wave element in a traveling-wave maser will significantly improve maser noise temperature and gain by reducing the insertion loss. The results of the insertion loss measurements of superconducting niobium slow-wave structures subjected to maser operating conditions at X-Band frequencies are presented.

  11. Superconducting nano-strip particle detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Casaburi, A.; Zen, N.; Ohkubo, M.

    2015-12-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2-5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications.

  12. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    SciTech Connect

    David Henry, M. Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-28

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 6–10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  13. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    NASA Astrophysics Data System (ADS)

    David Henry, M.; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-01

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6-10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetometer indicate that the tensile films maintained a Tc approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  14. America's Overview of Superconducting Science and Technology of Ingot Niobium

    SciTech Connect

    Gianluigi Ciovati, Peter Kneisel, Ganapati Myneni

    2011-03-01

    This contribution will present an overview of the results from R&D programs in the USA over the past four years towards the development of ingot Niobium as a viable alternative material to fabricate SRF cavities for particle accelerators. Activities at several laboratories and universities include fabrication, surface treatment and RF testing of single- and multi-cell cavities and studies of the thermal, mechanical and superconducting properties of samples from ingots of different purity. Possible advantages of ingot niobium over standard fine-grain (ASTM 6) are discussed and a streamlined treatment procedure to fully exploit those advantages is proposed.

  15. A spiraled niobium tin superconductive ribbon

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1973-01-01

    Copper film is vapor-deposited on clean ribbon and sprayed with photosensitive etch-resistant material. Photographic film masks are placed on ribbon and exposed to ultraviolet light. Etchant removes copper and exposure to oxidizing atmosphere forms niobium oxide. Photosensitive material is removed and ribbon is immersed in molten temperatures.

  16. Superconducting DC and RF Properties of Ingot Niobium

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Peter Kneisel, Ganapati Rao Myneni

    2011-07-01

    The thermal conductivity, DC magnetization and penetration depth of large-grain niobium hollow cylindrical rods fabricated from ingots, manufactured by CBMM subjected to chemical and heat treatment were measured. The results confirm the influence of chemical and heat-treatment processes on the superconducting properties, with no significant dependence on the impurity concentrations in the original ingots. Furthermore, RF properties, such as the surface resistance and quench field of the niobium rods were measured using a TE{sub 011} cavity. The hollow niobium rod is the center conductor of this cavity, converting it to a coaxial cavity. The quench field is limited by the critical heat flux through the rods' cooling channel.

  17. A bulk niobium superconducting quarter wave resonator

    SciTech Connect

    Ben-Zvi, I. ); Chiaveri, E. ); Elkonin, B.V. ); Facco, A.; Sokolowski, J.S. . Lab. Nazionale di Legnaro)

    1990-01-01

    A bath-cooled all-niobium 160 MHz quarter wave resonator prototype was constructed and tested. The objective of this research has been the development of a high performance accelerating element with {beta}{sub opt} {approx equal} 0.11 for the ALPI linac at the Laboratori Nazionali di Legnaro. The design of this resonator was based upon a previous 150 MHz model, with minor changes due to the different frequency and to modified welding procedure. An accelerating field of 5 MV/m was achieved at a power dissipation of 10 W and the low power Q was 2.4 {times} 10{sup 8}. The resonator could dissipate 70 W of power without thermal breakdown. 16 refs., 2 figs., 1 tab.

  18. The ``Q disease'' in Superconducting Niobium RF Cavities

    NASA Astrophysics Data System (ADS)

    Knobloch, J.

    2003-07-01

    Superconducting niobium cavities can achieve quality (Q0) factors of 1010-1011, more than six orders of magnitude higher than conventional copper cavities. However, to maintain this performance at high accelerating gradient (20 MV/m) the radio-frequency (rf) surface must be damage and dust free. Cavity preparation techniques therefore routinely include a chemical etch or electropolishing. Under certain conditions, these (and other) treatments can contaminate the niobium with hydrogen. Hydrides may then form when the cavity is cooled through 150 K, even if only a few atomic percent hydrogen are present. If hydrides are formed, the cavity quality can degrade substantially (Q disease). A rapid cooldown often inhibits the hydride formation. Other "cures" include degassing cavities at 900 °C to eliminate the hydrogen. A historical review of the Q disease is provided here, with the emphasis being placed on its discovery, symptoms, mechanism, and cures.

  19. Cathodic arc grown niobium films for RF superconducting cavity applications

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Lorkiewicz, J.; Tazzari, S.; Langner, J.; Strzyzewski, P.; Sadowski, M.; Andreone, A.; Cifariello, G.; Di Gennaro, E.; Lamura, G.; Russo, R.

    2006-07-01

    Experimental results on the characterization of the linear and non-linear microwave properties of niobium film produced by UHV cathodic arc deposition are presented. Surface impedance Zs as a function of RF field and intermodulation distortion (IMD) measurement have been carried out by using a dielectrically loaded resonant cavity operating at 7 GHz. The experimental data show that these samples have a lower level of intrinsic non-linearities at low temperature and low circulating power in comparison with Nb samples grown by sputtering. These results make UHV cathodic arc deposition a promising technique for the improvement of RF superconducting cavities for particle accelerators.

  20. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOEpatents

    Wang, John L.; Pickus, Milton R.; Douglas, Kent E.

    1980-01-01

    A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  1. Surface characterization of niobium for superconducting RF cavities

    NASA Astrophysics Data System (ADS)

    Cao, Chaoyue

    Surface characterization techniques including point contact tunneling (PCT) spectroscopy and Raman spectroscopy have been employed to study the surface of niobium (Nb) superconducting radio frequency (SRF) cavities. PCT spectroscopy provides a direct means of measuring the surface superconductivity, which is closely correlated with the cavity's performance characterized by the quality factor Q. Cavities with remarkably high Q show near ideal tunneling spectra with sharp coherent peaks and low zero bias conductance, consistent with the Bardeen-Cooper-Schrieffer (BCS) density of stats (DOS), and bulk gap parameter, Delta = 1.55-1.6 meV. Cavities with Q-drop often exhibit strong non-uniform heating during RF operations, with high loss regions identified as hot spots. PCT spectra on hot spots reveal suppressed superconductivity, broadened DOS and Kondo tunneling, consistent with magnetic impurities on the surface. Raman spectra on hot spots indicate the presence of various impurities on the surface including amorphous carbon, C-H chain compounds and NbC, providing insights into the formation of hot spots. The origin of the impurities is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible.

  2. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    SciTech Connect

    Makita, Junki; Ciovati, Gianluigi; Dhakal, Pashupati

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  3. Low-loss terahertz metamaterial from superconducting niobium nitride films.

    PubMed

    Zhang, C H; Wu, J B; Jin, B B; Ji, Z M; Kang, L; Xu, W W; Chen, J; Tonouchi, M; Wu, P H

    2012-01-01

    This paper reports a type of low Ohmic loss terahertz (THz) metamaterials made from low-temperature superconducting niobium nitride (NbN) films. Its resonance properties are studied by THz time domain spectroscopy. Our experiments show that its unloaded quality factor reaches as high as 178 at 8 K with the resonance frequency at around 0.58 THz, which is about 24 times that of gold metamaterial at the same temperature. The unloaded quality factor keeps at a high level, above 90, even when the resonance frequency increases to 1.02 THz, which is close to the gap frequency of NbN film. All these experimental observations fit well into the framework of Bardeen-Copper-Schrieffer theory and equivalent circuit model. These new metamaterials offer an efficient way to the design and implementation of high performance THz electronic devices.

  4. Synthesis and characterization of superconducting nanocrystalline niobium nitride.

    PubMed

    Shi, Liang; Gu, Yunle; Chen, Luyang; Yang, Zeheng; Ma, Jianhua; Qian, Yitai

    2005-02-01

    Nanocrystalline niobium nitride (NbN0.9) was successfully synthesized at 600 degrees C through a solid-state reaction. The synthesis was carried out in an autoclave by using NbCl5 and NaN3 as the reactants. The X-ray powder diffraction pattern indicates the formation of cubic NbN0.9. Transmission electron microscopy images show that typical NbN0.9 crystallites are composed of uniform particles with an average size of about 30 nm and nanorod crystallites with a typical size of about 40 x 2500 nm. Magnetic measurements exhibited that a superconducting transition occurred at 15.4 K for the NbN0.9 product. PMID:15853151

  5. High-gradient, pulsed operation of superconducting niobium cavities

    SciTech Connect

    Campisi, I.E.; Farkas, Z.D.

    1984-02-01

    Tests performed on several Niobium TM/sub 010/ cavities at frequencies of about 2856 MHz using a high-power, pulsed method indicate that, at the end of the charging pulse, peak surface magnetic fields of up to approx. 1300 Oe, corresponding to a peak surface electric field of approx. 68 MV/m, can be reached at 4.2/sup 0/K without appreciable average losses. Further studies of the properties of superconductors under pulsed operation might shed light on fundamental properties of rf superconductivity, as well as lead to the possibility of applying the pulse method to the operation of high-gradient linear colliders. 7 references, 30 figures, 2 tables.

  6. Method of nitriding niobium to form a superconducting surface

    DOEpatents

    Kelley, Michael J.; Klopf, John Michael; Singaravelu, Senthilaraja

    2014-08-19

    A method of forming a delta niobium nitride .delta.-NbN layer on the surface of a niobium object including cleaning the surface of the niobium object; providing a treatment chamber; placing the niobium object in the treatment chamber; evacuating the chamber; passing pure nitrogen into the treatment chamber; focusing a laser spot on the niobium object; delivering laser fluences at the laser spot until the surface of the niobium object reaches above its boiling temperature; and rastering the laser spot over the surface of the niobium object.

  7. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    SciTech Connect

    Dhakal, Pashupati Ciovati, Gianluigi Myneni, Ganapati R.

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  8. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    SciTech Connect

    Roy, S. B.; Myneni, G. R.

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  9. Method for etching thin films of niboium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, R.T.; Schuller, I.K.; Falco, C.M.

    1979-11-23

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds is provided in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid, and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  10. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    SciTech Connect

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  11. Superconducting RF materials other than bulk niobium: a review

    NASA Astrophysics Data System (ADS)

    Valente-Feliciano, Anne-Marie

    2016-11-01

    For the past five decades, bulk niobium (Nb) has been the material of choice for superconducting RF (SRF) cavity applications. Alternatives such as Nb thin films and other higher-T c materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transition temperature T c for application to SRF cavities. This paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a superconductor-insulator-superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field H c of higher-T c superconductors without being limited with their lower H c1.

  12. Weber Blockade Theory of Magnetoresistance Oscillations in Superconducting Strips

    NASA Astrophysics Data System (ADS)

    Pekker, David; Refael, Gil; Goldbart, Paul M.

    2011-07-01

    Recent experiments on the conductance of thin, narrow superconducting strips have found periodic fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to approximately two flux quanta per strip area [A. Johansson , Phys. Rev. Lett. 95, 116805 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.116805]. We argue that the low-energy degrees of freedom responsible for dissipation correspond to vortex motion. Using vortex-charge duality, we show that the superconducting strip behaves as the dual of a quantum dot, with the vortices, magnetic field, and bias current respectively playing the roles of the electrons, gate voltage, and source-drain voltage. In the bias-current versus magnetic-field plane, the strip conductance displays regions of small vortex conductance (i.e., small electrical resistance) that we term “Weber blockade” diamonds, which are dual to Coulomb blockade diamonds in quantum dots.

  13. Superconducting Niobium-Titanium: Enabler for Affordable MRI and the Search for the Higgs Boson

    NASA Astrophysics Data System (ADS)

    Berlincourt, T. G.

    2016-01-01

    In 1961, Bell Telephone Laboratories researchers startled the world of physics by reporting that, at temperatures near absolute zero, a superconducting niobium-tin compound could support enormous electric current densities without resistance in the presence of very high magnetic fields. Suddenly, it became possible to fabricate supermagnets that generate high magnetic fields with unprecedented efficiency and economy. Scientists raced to find additional such materials and also to account theoretically for their behavior. Disregarded early on as unpromising, niobium-titanium alloys eventually emerged from among thousands of superconductors to become the most widely used, finding application in many thousands of MRI medical imaging systems and in huge particle accelerator magnets. In 1962, at Atomics International, experiments that revealed the supermagnet promise of niobium-titanium alloys also made essential contributions to the confirmation of the initially overlooked superconductivity theories of Soviet scientists Ginzburg, Landau, Abrikosov, and Gor'kov as the appropriate framework for understanding the physics of high magnetic field superconductivity.

  14. A study on the effect of tantalum-impurity content on the superconducting properties of niobium materials used for making superconducting radio frequency cavities

    SciTech Connect

    S B Roy, L S Sharath Chandra, M K Chattopadhyay, M K Tiwari, G S Lodha, G R Myneni

    2012-10-01

    Niobium materials in highly pure form are used in the fabrication of superconducting radio frequency cavities. We present here a study of the superconducting properties of such niobium materials that have been used in the fabrication of high accelerating gradient superconducting radio frequency cavities after determining their tantalum-impurity contents using a synchrotron-based x-ray fluorescence spectroscopy technique. Our results show that there is a small change in superconducting parameters such as T{sub C},H{sub C1} and H{sub C2} when the tantalum-impurity content varies from ≈150 to ≈1300 ppm. In contrast, a buffered chemical polishing of the same niobium samples changes all these superconducting parameters more significantly. The implications of these results on the performance of niobium superconducting radio frequency cavities are discussed.

  15. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    SciTech Connect

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.; Abdel-Fattah, Tarek M.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.

  16. An evolutionary yield function based on Barlat 2000 yield function for the superconducting niobium sheet

    SciTech Connect

    Darbandi, Payam; Pourboghrat, Farhang

    2011-08-22

    Superconducting radio frequency (SRF) niobium cavities are widely used in high-energy physics to accelerate particle beams in particle accelerators. The performance of SRF cavities is affected by the microstructure and purity of the niobium sheet, surface quality, geometry, etc. Following optimum strain paths in the forming of these cavities can significantly control these parameters. To select these strain paths, however, information about the mechanical behavior, microstructure, and formability of the niobium sheet is required. In this study the Barlat 2000 yield function has been used as a yield function for high purity niobium. Results from this study showed that, due to intrinsic behavior, it is necessary to evolve the anisotropic coefficients of Barlat's yield function in order to properly model the plastic behavior of the niobium sheet. The accuracy of the newly developed evolutionary yield function was verified by applying it to the modeling of the hydrostatic bulging of the niobium sheet. Also, in a separate attempt crystal plasticity finite element method was use to model the behavior of the polycrystalline niobium sheet with a particular initial texture.

  17. Laser nitriding for niobium superconducting radio-frequency accelerator cavities

    SciTech Connect

    Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley

    2010-10-01

    Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appears to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant

  18. Electrical modulation of superconducting critical temperature in liquid-gated thin niobium films

    SciTech Connect

    Choi, Jiman; Pradheesh, R.; Chong, Yonuk Chae, Dong-Hun; Kim, Hyungsang; Im, Hyunsik

    2014-07-07

    We demonstrate that the superconducting critical temperature (T{sub c}) of thin niobium films can be electrically modulated in a liquid-gated geometry device. T{sub c} can be suppressed and enhanced by applying positive and negative gate voltage, respectively, in a reversible manner within a range of about 0.1 K. At a fixed temperature below T{sub c}, we observed that the superconducting critical current can be modulated by gate voltage. This result suggests a possibility of an electrically controlled switching device operating at or above liquid helium temperature, where superconductivity can be turned on or off solely by the applied gate voltage.

  19. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE PAGES

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  20. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    SciTech Connect

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  1. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  2. Dependence of the microwave surface resistance of superconducting niobium on the magnitude of the rf field

    SciTech Connect

    Romanenko, A.; Grassellino, A.

    2013-06-24

    Utilizing difference in temperature dependencies we decoupled Bardeen-Cooper-Schrieffer (BCS) and residual components of the microwave surface resistance of superconducting niobium at all rf fields up to B{sub rf}{approx}115 mT. We reveal that the residual resistance decreases with field at B{sub rf} Less-Than-Or-Equivalent-To 40 mT and strongly increases in chemically treated niobium at B{sub rf}>80 mT. We find that BCS surface resistance is weakly dependent on field in the clean limit, whereas a strong and peculiar field dependence emerges after 120 Degree-Sign C vacuum baking.

  3. Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2016-03-01

    A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (Rs ) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field Hc , small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we have estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q0 performance differences for fine grain niobium. We describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.

  4. Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping Recipes for High Q Cavities

    SciTech Connect

    Vostrikov, Alexander; Checchin, Mattia; Grassellino, Anna; Kim, Young-Kee; Romanenko, Alexander

    2015-06-01

    A study is presented on the superconducting properties of niobium used for the fabrication of the SRF cavities after treating by recently discovered nitrogen doping methods. Cylindrical niobium samples have been subjected to the standard surface treatments applied to the cavities (electro-polishing, l 20°C bake) and compared with samples treated by additional nitrogen doping recipes routinely used to reach ultra-high quality factor values (>3· 1010 at 2 K, 16 MV/m). The DC magnetization curves and the complex magnetic AC susceptibility have been measured. Evidence for the lowered field of first flux penetration after nitrogen doping is found suggesting a correlation with the lowered quench fields. Superconducting critical temperatures Tc = 9.25 K are found to be in agreement with previous measurements, and no strong effect on the critical surface field (Bd) from nitrogen doping was found.

  5. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    SciTech Connect

    Tyagi, P. V.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Hayano, H.; Noguchi, T.; Kato, S.

    2010-07-15

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb{sub 2}O{sub 5}) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  6. Structure, texture, and properties of superconductive electrolytic niobium coatings on nickel and copper substrates

    NASA Astrophysics Data System (ADS)

    Kolosov, V. N.; Shevyrev, A. A.

    2015-05-01

    Structure, texture, chemical purity, and other characteristics of superconductive niobium coatings prepared via electrochemical deposition onto nickel and copper substrates in (LiF + NaF + KF)eut + 5 wt % K2NbF7 molten salt are studied. It is shown that, when depositing the coatings onto nickel, the intermediate layer of Ni3Nb and NiNb intermetallides is formed at the substrate-coating interface, which inhibits the diffusion of nickel in niobium. The nickel concentration in niobium coatings above this layer is (2-7) × 10-2 wt %. In coatings deposited onto the copper substrate the copper content does not exceed 1.5 × 10-4 wt %, and from the viewpoint of the amount of impurities, niobium is considered as a high purity metal. The dynamics of structure modifications in niobium coatings and changes in microdeformations and dislocation density in the deposited metal are explored depending on the current density at the cathode.

  7. Structure, texture, and properties of superconductive electrolytic niobium coatings on glassy carbon

    NASA Astrophysics Data System (ADS)

    Kolosov, V. N.; Shevyrev, A. A.

    2016-01-01

    Superconductive electrolytic niobium coatings 0.1-100 μm thick are prepared via electrochemical deposition onto SU-2000 glassy carbon substrates in (LiF + NaF + KF)eut-K2NbF7 molten salt. Their structure, texture, and residual stresses are investigated by X-ray diffraction methods. It is shown that, when depositing the coatings, the diffusion superconductive layer of niobium carbide is formed at the substrate-coating interface. The sequence of changes in the axis of the texture of niobium coating from <100> through <211> to a textureless state with an increase in their thickness is established. It is found that, in the interval 0.5-5 μm, the sign of the stress changes (compressive stresses change into tensile stresses) and it reaches its maximum value. With an increase in the coating thickness from 5 to 100 μm, tensile stresses decrease from 345 to 80 MPa. It is shown that the coatings formed can be used as the material for creating a working layer of a superconducting cryogenic gyroscope rotor.

  8. 2D barrier in a superconducting niobium square

    SciTech Connect

    Joya, Miryam R. Barba-ortega, J.; Sardella, Edson

    2014-11-05

    The presence of barriers changes the vortex structure in superconducting Nb square in presence of a uniform applied magnetic field. The Cooper pair configurations in a mesoscopics superconducting square of Nb with a barrier are calculated within the nonlinear Ginzburg Landau equations. We predict the nucleation of multi-vortex states into the sample and a soft entry of the magnetic field inside and around into the barrier. A novel and non-conventional vortex configurations occurs at determined magnetic field.

  9. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOEpatents

    Wang, J.L.F.; Pickus, M.R.; Douglas, K.E.

    A method for manufacturing flexible Nb/sub 3/ (Al,Ge) multifilamentary superconductive material in which a sintered porous Nb compact is infiltrated with an Al-Ge alloy. It is deformed and heat treated in a series of steps at successively higher temperatures preferably below 1000/sup 0/C during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to serve as a temperature stabilizer for the superconductive material produced. These lower heat treatment temperatures favor formation of filaments with reduced grain size and with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  10. Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities

    SciTech Connect

    Antoine, C.; Foley, M.; Dhanaraj, N.; /Fermilab

    2011-07-01

    It is important to distinguish among the properties of niobium, the ones that are related to the cavity's SRF performances, the formability of the material, and the mechanical behavior of the formed cavity. In general, the properties that dictate each of the above mentioned characteristics have a detrimental effect on one another and in order to preserve the superconducting properties without subduing the mechanical behavior, a balance has to be established. Depending on the applications, some parameters become less important and an understanding of the physical origin of the requirements might help in this optimization. SRF applications require high purity niobium (high RRR), but pure niobium is very soft from fabrication viewpoint. Moreover conventional fabrication techniques tend to override the effects of any metallurgical process meant to strengthen it. As those treatments dramatically affect the forming of the material they should be avoided. These unfavorable mechanical properties have to be accounted for in the design of the cavities rather than in the material specification. The aim of this paper is to review the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values. Most of the following information deals with the specification of sheets for cell forming unless otherwise noted.

  11. Progress on the Development of a Superconducting Connection for Niobium Cavities

    SciTech Connect

    Peter Kneisel, Gianluigi Ciovati, Jacek Sekutowicz ,Larry Turlington

    2009-06-01

    The availability of a superconducting connection between adjacent niobium radio-frequency (RF) cavities with the capability to carry up to 30 mT of the magnetic flux would be particularly of great benefit to layouts of long accelerators like the International Linear Collider (ILC). It would shorten the distances between structures and therefore the total length of an accelerator with the associated cost reductions. In addition, the superconducting connection would be ideal for a superstructure – two multi-cell cavities connected through a half wavelength long beam pipe providing the coupling. Two single-cell niobium cavities have been designed with Nb-1Zr flanges welded to one of the irises to allow a connection between them with a niobium gasket. A transition to the normal-conducting state of the connection due to the applied RF field causes a reduction of the cavities’ quality factor. The cavity design will be presented in this contribution along with possible choices of materials for the joint.

  12. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    SciTech Connect

    Roychowdhury, A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-07-07

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF₆ plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100), and Nb(100), as well as a doped topological insulator Bi₂Se₃ at temperatures ranging from 30 mK to 9 K.

  13. Analysis of the medium field Q-slope in superconducting cavities made of bulk niobium

    SciTech Connect

    Gianluigi Ciovati; J. Halbritter

    2005-07-10

    The quality factor of superconducting radio-frequency cavities made of high purity, bulk niobium increases with rf field in the medium field range (peak surface magnetic field between 20 and about 100 mT). The causes for this effect are not clear yet. The dependence of the surface resistance on the peak surface magnetic field is typically linear and quadratic. This contribution will present an analysis of the medium field Q-slope data measured on cavities treated with buffered chemical polishing (BCP) at Jefferson Lab, as function of different treatments such as post-purification and low-temperature baking. The data have been compared with a model involving a combination of heating and of hysteresis losses due to ''strong-links'' formed or weakened at niobium surfaces during oxidation, which correlate to {delta}{Delta}/kT{sub c} changes by baking.

  14. Laser polishing of niobium for application to superconducting radio frequency cavities

    SciTech Connect

    Singaravelu, Senthil; Klopf, John Michael; Xu, Chen; Krafft, Geoffrey; Kelley, Michael J.

    2012-09-01

    Superconducting radio frequency niobium cavities are at the heart of an increasing number of particle accelerators. Their performance is dominated by a several nanometer thick layer at the interior surface. Maximizing the smoothness of this surface is critical, and aggressive chemical treatments are now employed to this end. The authors describe laser-induced surface melting as an alternative 'greener' approach. Selection of laser parameters guided by modeling achieved melting that reduced the surface roughness from the fabrication process. The resulting topography was examined by scanning electron microscope and atomic force microscope (AFM). Plots of power spectral density computed from the AFM data give further insight into the effect of laser melting on the topography of the mechanically polished (only) niobium.

  15. Effect of low temperature baking on the RF properties of niobium superconducting cavities for particle accelerators

    SciTech Connect

    Gianluigi Ciovati

    2004-03-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models

  16. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    SciTech Connect

    Zhao, Liang

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by

  17. Laser Processing on the Surface of Niobium Superconducting Radio-Frequency Accelerator Cavities

    NASA Astrophysics Data System (ADS)

    Singaravelu, Senthilraja; Klopf, Michael; Krafft, Geoffrey; Kelley, Michael

    2011-03-01

    Superconducting Radio frequency (SRF) niobium cavities are at the heart of an increasing number of particle accelerators.~ Their performance is dominated by a several nm thick layer at the interior surface. ~Maximizing its smoothness is found to be critical and aggressive chemical treatments are employed to this end.~ We describe laser-induced surface melting as an alternative ``greener'' approach.~ Modeling guided selection of parameters for irradiation with a Q-switched Nd:YAG laser.~ The resulting topography was examined by SEM, AFM and Stylus Profilometry.

  18. Ga lithography in sputtered niobium for superconductive micro and nanowires

    SciTech Connect

    Henry, M. David; Wolfley, Steve; Monson, Todd; Lewis, Rupert

    2014-08-18

    This work demonstrates the use of focused ion beam (FIB) implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 μm by 10 μm and 100 μm by 100 μm, demonstrate that doses above than 7.5 × 10{sup 15 }cm{sup −2} at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75 nm wide by 10 μm long connected to 50 μm wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature (T{sub c}) = 7.7 K was measured using a magnetic properties measurement system. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.

  19. Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.

    SciTech Connect

    Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; Monson, Todd C.

    2014-08-18

    This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.

  20. Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.

    DOE PAGES

    Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; Monson, Todd C.

    2014-08-18

    This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less

  1. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    SciTech Connect

    High Current Electronics Institute, Tomsk, Russia; Anders, Andre; Mendelsberg, Rueben J.; Lim, Sunnie; Mentink, Matthijs; Slack, Jonathan L.; Wallig, Joseph G.; Nollau, Alexander V.; Yushkov, Georgy Yu.

    2011-07-24

    Niobium coatings on copper cavities have been considered as a cost-efficient replacement of bulk niobium RF cavities, however, coatings made by magnetron sputtering have not quite lived up to high expectations due to Q-slope and other issues. High power impulse magnetron sputtering (HIPIMS) is a promising emerging coatings technology which combines magnetron sputtering with a pulsed power approach. The magnetron is turned into a metal plasma source by using very high peak power density of ~ 1 kW/cm{sup 2}. In this contribution, the cavity coatings concept with HIPIMS is explained. A system with two cylindrical, movable magnetrons was set up with custom magnetrons small enough to be inserted into 1.3 GHz cavities. Preliminary data on niobium HIPIMS plasma and the resulting coatings are presented. The HIPIMS approach has the potential to be extended to film systems beyond niobium, including other superconducting materials and/or multilayer systems.

  2. Experimental evidence of photoinduced vortex crossing in current carrying superconducting strips

    NASA Astrophysics Data System (ADS)

    Casaburi, A.; Heath, R. M.; Ejrnaes, M.; Nappi, C.; Cristiano, R.; Hadfield, R. H.

    2015-12-01

    We report an experimental investigation that shows how magnetic vortices are generated and cross a current carrying superconducting strip when illuminated by a bright (˜MeV) and fast (<500 ps duration) infrared light pulse. The work has been carried out using a strike-and-probe electro-optic technique on a device consisting of a parallel superconducting strip configuration, with wide spacing between the strips to allow the interaction of the photons with a single strip. We find that photons hitting one strip induce a collective current redistribution in the parallel strips, which we can quantitatively account for in the framework of the London model by including the effect of generated and trapped magnetic vortices in the superconducting loops formed by the two adjacent slots. The amount of trapped vorticity and its dependence on increasing current density flowing in the illuminated strip is in good agreement with the photon-assisted unbinding of vortex-antivortex pairs. This work allows us to gain a deeper understanding of the interaction between photons and current carrying superconducting strips.

  3. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  4. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.

    PubMed

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  5. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao; Rigby, Wayne; Wallace, John

    2012-06-15

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  6. Temperature dependence of clusters with attracting vortices in superconducting niobium studied by neutron scattering.

    PubMed

    Pautrat, A; Brûlet, A

    2014-06-11

    We investigated the intermediate mixed state of a superconducting niobium sample using very small angle neutron scattering. We show that this state is stabilized through a sequence where a regular vortex lattice appears, which then coexists with vortex clusters before vanishing at low temperature. Vortices in clusters have a constant periodicity regardless of the applied field and exhibit a temperature dependence close to the one of the penetration depth. The clusters disappear in the high temperature limit. All the results agree with an explanation in terms of vortex attraction due to non-local effects and indicate a negligible role for pinning. Phase coexistence between the Abrikosov vortex lattice and vortex clusters is reported, showing the first-order nature of the boundary line.

  7. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    SciTech Connect

    Zhao, Liang; Klopf, John M.; Reece, Charles E.; Kelley, Michael J.

    2014-08-01

    Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  8. Method for determining hydrogen mobility as a function of temperature in superconducting niobium cavities

    DOEpatents

    May, Robert

    2008-03-11

    A method for determining the mobility of hydrogen as a function of temperature in superconducting niobium cavities comprising: 1) heating a cavity under test to remove free hydrogen; 2) introducing hydrogen-3 gas into the cavity; 3) cooling the cavity to allow absorption of hydrogen-3; and 4) measuring the amount of hydrogen-3 by: a) cooling the cavity to about 4.degree. K while flowing a known and regulated amount of inert carrier gas such as argon or helium into the cavity; b) allowing the cavity to warm at a stable rate from 4.degree. K to room temperature as it leaves the chamber; and c) directing the exit gas to an ion chamber radiation detector.

  9. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    SciTech Connect

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  10. Investigation of the superconducting properties of niobium radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi

    Radio-frequency (rf) superconducting cavities are widely used to increase the energy of a charged particle beam in particle accelerators. The maximum gradients of cavities made of bulk niobium have constantly improved over the last ten years and they are approaching the theoretical limit of the material. Nevertheless, rf tests of niobium cavities are still showing some "anomalous" losses (so-called "Q-drop"), characterized by a marked increase of the surface resistance at high rf fields, in absence of field emission. A low temperature "in-situ" baking under ultra-high vacuum has been successfully applied by several laboratories to reduce those losses and improve the cavity's quality factor. Several models have been proposed to explain the cause of the Q-drop and the baking effect. We investigated the effect of baking on niobium material parameters by measuring the temperature dependence of a cavity's surface impedance and comparing it with the Bardeen-Cooper-Schrieffer's theory of superconductivity. It was found that baking allows interstitial oxygen to diffuse from the surface deeper into the bulk. This produces a significant reduction of the normal electrons' mean free path, which causes an increase of the quality factor. The optimum baking parameters are 120°C for 24-48 h. We were also able to identify the origin of the Q-drop as due to a high magnetic field, rather then electric field, by measuring the quality factor of a cavity as function of the rf field in a resonant mode with only magnetic field present on the surface. With the aid of a thermometry system, we were able to localize the losses in the high magnetic field region. We measured the Q-drop in cavities which had undergone different treatments, such as anodization, electropolishing and post-purification, and with different metallurgical properties and we study the effectiveness of baking in each case. As a result, none of the models proposed so far can explain all the experimental observations. We

  11. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-06-01

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0-values. In this contribution we present the results from cryogenic RF tests of 1.3-1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100-150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0-value of 2 × 1010 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.

  12. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-04-07

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb ofmore » medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q0-value of 2 × 1010 at 2 K after standard processing treatments. As a result, the performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.« less

  13. Integrated Surface Topography Characterization of Variously Polished Niobium for Superconducting Particle Accelerators

    SciTech Connect

    Hui Tian, Charles Reece, Michael Kelley, G. Ribeill

    2009-05-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro-and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents flow. Interior surface chemical polishing (BCP/EP) to remove mechanical damage leaves surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely-used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is being used to distinguish the scale-dependent smoothing effects. The topographical evolution of the Nb surface as a function of different steps of EP is reported, resulting in a novel qualitative and quantitative description of Nb surface topography.

  14. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    SciTech Connect

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  15. Defect-controlled vortex generation in current-carrying narrow superconducting strips

    NASA Astrophysics Data System (ADS)

    Vodolazov, D. Yu; Ilin, K.; Merker, M.; Siegel, M.

    2016-02-01

    We experimentally study the effect of a single circular hole on the critical current I c of narrow superconducting strip with width W much smaller than Pearl penetration depth Λ. We found non-monotonous dependence of I c on the location of a hole across the strip and a weak dependence of I c on the radius of a hole in the case of a hole with ξ \\ll R\\ll W (ξ is a superconducting coherence length) which is placed in the center of strip. The observed effects are caused by competition of two mechanisms of destruction of superconductivity—the entrance of vortex via the edge of the strip and the nucleation of the vortex-antivortex pair near the hole. The mechanisms are clearly distinguishable by a difference in dependence of I c on weak magnetic field.

  16. Preliminary studies of Electric and Magnetic Field Effects in Superconducting Niobium Cavities

    SciTech Connect

    Gianluigi Ciovati; Peter Kneisel; Ganapati Myneni; Jacek Sekutowicz; A. Brinkmann; W. Singer; J. Halbritter

    2003-05-01

    Superconducting cavities made from high purity niobium with RRR > 200 often show pronounced features in the Q vs. E{sub acc} dependence such as a peak at low gradients, a B{sup 2}-slope at intermediate fields and a steep degradation of Q-values (''Q-drop'') at gradients above E{sub acc} {approx} 20 MV/m without field emission loading. Whereas the B{sup 2}-slope is in line with ''global'' heating [2] there are still different models to explain the observed ''Q-drop''. The model of ref. [1] is based on magnetic field enhancements at grain boundaries in the equator weld region of the cavity and local heating. These grain boundaries become normal conducting, when their critical magnetic field is reached and contribute gradually to the losses in the cavity as long as they are thermally stable. The model proposed in ref. [2] is based on effects taking place in the metal-oxide interface on the niobium surface. The major contribution to the RF absorption is coming from interface tunnel exchange between electronic states of superconducting Nb with their energy gap and localized states of the dielectric Nb{sub 2}O{sub 5}. An experimental program was started at JLab to settle the mechanisms behind B{sup 2}-slope and the Q-drop. A modified CEBAF single cell cavity is excited in either TM{sub 010} or TE{sub 011} modes and the Q vs. E{sub acc} dependences are measured as a function of various surface treatments such as BCP, electropolishing, high temperature heat treatment and ''in-situ'' baking. In addition, a special two-cell cavity was designed, which allows the excitation of the 0- and {pi}-modes of the TM{sub 010} passband, which ''scan'' different areas of the cavity surface with high electric and magnetic fields, respectively. This contribution reports about the design and first measurements with both types of cavities.

  17. Conversion gain and noise of niobium superconducting hot-electron-mixers

    NASA Technical Reports Server (NTRS)

    Ekstrom, Hans; Karasik, Boris S.; Kollberg, Erik L.; Yngvesson, Sigfrid

    1995-01-01

    A study has been done of microwave mixing at 20 GHz using the nonlinear (power dependent) resistance of thin niobium strips in the resistive state. Our experiments give evidence that electron-heating is the main cause of the nonlinear phenomenon. Also a detailed phenomenological theory for the determination of conversion properties is presented. This theory is capable of predicting the frequency-conversion loss rather accurately for arbitrary bias by examining the I-V-characteristic. Knowing the electron temperature relaxation time, and using parameters derived from the I-V-characteristic also allows us to predict the -3 dB IF bandwidth. Experimental results are in excellent agreement with the theoretical predictions. The requirements on the mode of operation and on the film parameters for minimizing the conversion loss (and even achieving conversion gain) are discussed in some detail. Our measurements demonstrate an intrinsic conversion loss as low as 1 dB. The maximum IF frequency defined for -3 dB drop in conversion gain, is about 80 MHz. Noise measurements indicate a device output noise temperature of about 50 K and SSB mixer noise temperature below 250 K. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.

  18. Development of vertical electropolishing process applied on 1300 and 704 MHz superconducting niobium resonators

    NASA Astrophysics Data System (ADS)

    Eozénou, F.; Boudigou, Y.; Carbonnier, P.; Charrier, J.-P.; Gasser, Y.; Maurice, L.; Peauger, F.; Roudier, D.; Servouin, C.; Muller, K.

    2014-08-01

    An advanced setup for vertical electropolishing of superconducting radio-frequency niobium elliptical cavities has been installed at CEA Saclay. Cavities are vertically electropolished with circulating standard HF-HF-H2SO4 electrolytes. Parameters such as voltage, cathode shape, acid flow, and temperature have been investigated. A low voltage (between 6 and 10 V depending on the cavity geometry), a high acid flow (25 L /min), and a low acid temperature (20° C) are considered as promising parameters. Such a recipe has been tested on single-cell and nine-cell International Linear Collider (ILC) as well as 704 MHz five-cell Super Proton Linac (SPL) cavities. Single-cell cavities showed similar performances at 1.6 K being either vertically or horizontally electropolished. The applied baking process provides similar benefit. An asymmetric removal is observed with faster removal in the upper half-cells. Multicell cavities (nine-cell ILC and five-cell SPL cavities) exhibit a standard Q0 value at low and medium accelerating fields though limited by power losses due to field emitted electrons.

  19. Effect of non-uniform surface resistance on the quality factor of superconducting niobium cavity

    NASA Astrophysics Data System (ADS)

    Tan, Weiwei; Lu, Xiangyang; Yang, Ziqin; Zhao, Jifei; Yang, Deyu; Yang, Yujia

    2016-08-01

    The formula Rs = G /Q0 is commonly used in the calculation of the surface resistance of radio frequency niobium superconducting cavities. The applying of such equation is under the assumption that surface resistance is consistent over the cavity. However, the distribution of the magnetic field varies over the cavity. The magnetic field in the equator is much higher than that in the iris. According to Thermal Feedback Theory, it leads non-uniform distribution of the density of heat flux, which results in a different temperature distribution along the cavity inter surface. The BCS surface resistance, which depends largely on the temperature, is different in each local inner surface. In this paper, the effect of surface non-uniform resistance on the quality factor has been studied, through the calculation of Q0 in the original definition of it. The results show that it is necessary to consider the non-uniform distribution of magnetic field when the accelerating field is above 20 MV/m for TESLA cavities. Also, the effect of inhomogeneity of residual resistance on the quality factor is discussed. Its distribution barely affects the quality factor.

  20. Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG

    SciTech Connect

    Romanenko, A. Grassellino, A.; Crawford, A. C.; Sergatskov, D. A.; Melnychuk, O.

    2014-12-08

    Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here, we show that a complete expulsion of the magnetic flux can be performed and leads to: (1) record quality factors Q > 2 × 10{sup 11} up to accelerating gradient of 22 MV/m; (2) Q ∼ 3 × 10{sup 10} at 2 K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findings open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.

  1. Etching of Niobium Sample Placed on Superconducting Radio Frequency Cavity Surface in Ar/CL2 Plasma

    SciTech Connect

    Janardan Upadhyay, Larry Phillips, Anne-Marie Valente

    2011-09-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. It has been proven with flat samples that the bulk Niobium (Nb) removal rate and the surface roughness after the plasma etchings are equal to or better than wet etching processes. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders serve the purpose of diagnostic ports for the measurement of the plasma parameters and for the holding of the Nb sample to be etched. The plasma properties at RF (100 MHz) and MW (2.45 GHz) frequencies are being measured with the help of electrical and optical probes at different pressures and RF power levels inside of this cavity. The niobium coupons placed on several holders around the cell are being etched simultaneously. The etching results will be presented at this conference.

  2. Observations of flux motion in niobium films. [study of magnetic field trapped in superconducting coatings of gyroscope rotor

    NASA Technical Reports Server (NTRS)

    Xiao, Y. M.; Keiser, G. M.

    1991-01-01

    A magnetic field trapped in a superconducting sphere was examined at temperatures from 4.6 K to 5.5 K. The sphere was the rotor of a precision gyroscope and was made of fused quartz and coated with a sputtered niobium film. The rotor diameter was 3.8 cm. The film thickness was 2.5 microns. The tests were carried out at an ambient magnetic field of about 1 mG. Unexpected instability of the trapped field was observed. The experimental results and possible explanations are presented.

  3. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    SciTech Connect

    Tong Wang

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  4. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators.

    PubMed

    Ricker, R E; Myneni, G R

    2010-01-01

    During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles.

  5. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    SciTech Connect

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  6. Passivated niobium cavities

    SciTech Connect

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  7. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    SciTech Connect

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  8. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators

    PubMed Central

    Ricker, R. E.; Myneni, G. R.

    2010-01-01

    During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles. PMID:27134791

  9. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    NASA Astrophysics Data System (ADS)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  10. Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection.

    PubMed

    Delacour, Cécile; Pannetier, Bernard; Villegier, Jean-Claude; Bouchiat, Vincent

    2012-07-11

    We present low-temperature electronic transport properties of superconducting nanowires obtained by nanolithography of 4-nm-thick niobium nitride (NbN) films epitaxially grown on sapphire substrate. Below 6 K, clear evidence of phase slippages is observed in the transport measurements. Upon lowering the temperature, we observe the signatures of a crossover between a thermal and a quantum behavior in the phase slip regimes. We find that phase slips are stable even at the lowest temperatures and that no hotspot is formed. The photoresponse of these nanowires is measured as a function of the light irradiation wavelength and temperature and exhibits a behavior comparable with previous results obtained on thicker films.

  11. Investigating ion-surface collisions with a niobium superconducting tunnel junction detector in a time-of-flight mass spectrometer

    SciTech Connect

    Westmacott, G.; Zhong, F.; Frank, M.; Friedrich, S.; Labov, S.; Benner, W.H.

    1999-12-01

    The performance of an energy sensitive, niobium superconducting tunnel junction detector is investigated by measuring the pulse height produced by impacting molecular and atomic ions at different kinetic energies. Ions are produced by laser resorption and matrix-assisted laser desorption in a time-of-flight mass spectrometer. Results show that the STJ detector pulse height decreases for increasing molecular ion mass, passes through a minimum at around 2000 Da, and the increases with increasing mass of molecular ions above 2000Da. The detector does not show a decline in sensitivity for high mass ions as is observed with microchannel plate ion detectors. These detector plus height measurements are discussed in terms of several physical mechanisms involved in an ion-surface collision.

  12. Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis

    SciTech Connect

    Casaburi, A.; Ejrnaes, M.; Cristiano, R.; Zen, N.; Ohkubo, M.; Pagano, S.

    2011-01-10

    Fast detectors with large area are required in time-of-flight mass spectrometers for high throughput analysis of biological molecules. We fabricated and characterized subnanosecond 1x1 mm{sup 2} NbN superconducting strip-line detectors. The influence of the strip-line thickness on the temporal characteristics and efficiency of the detector for the impacts of keV accelerated molecules is investigated. We find that the increase of thickness improves both efficiency and response time. In the thicker sample we achieved a rise time of 380 ps, a fall time of 1.38 ns, and a higher count rate. The physics involved in this behavior is investigated.

  13. Interaction of Josephson Junction and Distant Vortex in Narrow Thin-Film Superconducting Strips

    SciTech Connect

    Kogan, V. G.; Mints, R. G.

    2014-01-31

    The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who showed that the vortex may turn the junction into π type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a π junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

  14. Interaction of Josephson junction and distant vortex in narrow thin-film superconducting strips

    NASA Astrophysics Data System (ADS)

    Kogan, V. G.; Mints, R. G.

    2014-01-01

    The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010), 10.1103/PhysRevLett.104.227003], who showed that the vortex may turn the junction into π type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a π junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

  15. The First Observation of Intra Beam Stripping of Negative Hydrogen in a Superconducting Linear Accelerator

    SciTech Connect

    Aleksandrov, Alexander V; Plum, Michael A; Shishlo, Andrei P; Galambos, John D

    2012-01-01

    We report on an experiment in which a negative hydrogen ions beam in the Spallation Neutron Source (SNS) linear accelerator was replaced with a beam of protons with similar size and dynamics. Beam loss in the superconducting part of the SNS accelerator was at least an order of magnitude lower for the proton beam. Also beam loss has a stronger dependence on intensity with H- than with proton beams. These measurements verify a recent theoretical explanation of unexpected beam losses in the SNS superconducting linear accelerator based on an intra beam stripping mechanism for negative hydrogen ions. An identification of the new physics mechanism for beam loss is important for the design of new high current linear ion accelerators and the performance improvement of existing machines

  16. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    SciTech Connect

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  17. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    NASA Astrophysics Data System (ADS)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  18. Low-noise 1 THz niobium superconducting tunnel junction mixer with a normal metal tuning circuit

    NASA Astrophysics Data System (ADS)

    Bin, M.; Gaidis, M. C.; Zmuidzinas, J.; Phillips, T. G.; LeDuc, H. G.

    1996-03-01

    We describe a 1 THz quasioptical SIS mixer which uses a twin-slot antenna, an antireflection-coated silicon hyperhemispherical lens, Nb/Al-oxide/Nb tunnel junctions, and an aluminum normal-metal tuning circuit in a two-junction configuration. Since the mixer operates substantially above the gap frequency of niobium (ν≳2Δ/h˜700 GHz), a normal metal is used in the tuning circuit in place of niobium to reduce the Ohmic loss. The frequency response of the device was measured using a Fourier transform spectrometer and agrees reasonably well with the theoretical prediction. At 1042 GHz, the uncorrected double-sideband receiver noise temperature is 840 K when the physical temperature of the mixer is 2.5 K. This is the first SIS mixer which outperforms GaAs Schottky diode mixers by a large margin at 1 THz.

  19. Cold RF test and associated mechanical features correlation of a TESLA-style 9-cell superconducting niobium cavity built in China

    SciTech Connect

    Dai, Jing; Quan, Sheng-Wen; Zhang, Bao-Cheng; Lin, Lin; Hao, Jian-Kui; Zhu, Feng; Xu, Wen-Can; He, Fei-Si; Jin, Song; Wang, Fang; Liu, Ke-Xin; Geng, R L; Zhao, Kui

    2012-02-01

    The RF performance of a 1.3 GHz 9-cell superconducting niobium cavity was evaluated at cryogenic temperatures following surface processing by using the standard ILC-style recipe. The cavity is a TESLA-style 9-cell superconducting niobium cavity, with complete end group components including a higher order mode coupler, built in China for practical applications. An accelerating gradient of 28.6 MV/m was achieved at an unloaded quality factor of 4 x 10{sup 9}. The morphological property of mechanical features on the RF surface of this cavity was characterized through optical inspection. Correlation between the observed mechanical features and the RF performance of the cavity is attempted.

  20. Single trapped vortices induced in a superconducting film by laser switching

    NASA Astrophysics Data System (ADS)

    Park, George S.; Cunningham, Charles E.; Cabrera, Blas; Huber, Martin E.

    1993-03-01

    Light pulses from an infrared laser can momentarily drive a superconducting strip of niobium normal. Under certain conditions, a single vortex may be trapped while the strip returns to the superconducting state. It was determined that the speckle pattern due to modal interference in the incident light is the most probable cause of vortex trapping. By changing the relative contrast of the speckle pattern, we can change the trapping probability from 0 percent to about 5 percent per pulse.

  1. Design of a 10-T superconducting dipole magnet using niobium-tin conductor

    SciTech Connect

    Taylor, C.; Meuser, R.; Caspi, S.; Gilbert, W.; Hassenzahl, W.; Peters, C.; Schafer, R.; Wolgast, R.

    1982-11-01

    In order to minimize the size and cost of conventional facilities - land, tunneling, shielding, cryogenic and vacuum system - the dipole magnets for the next generation of particle accelerators must produce as strong a magnetic field as possible. Ten tesla seems to be a reasonable goal, and can be attained by using either niobium-tin conductor at 4.2 K or niobium-titanium at 1.8 K. The beam diameter in a multi-TeV accelerator, can in principle, be quite small, say 20 mm, depending on the design of the injection and extraction systems, and on beam-cooling technology. Magnet cost is strongly dependent on bore diameter, so there is a strong incentive to minimize that. We believe that a 40-mm bore diameter - about 60-mm winding inside diameter is feasible and is a reasonable goal for initial research and development. For such a high field and small bore, there is an incentive to achieve a high overall current density in order to minimize the amount of superconductor. Our design is based on an overall current density of 400 A/sq mm. LBL has undertaken the development of a magnet using niobium-tin conductor intended to meet the above specifications. The conductor is a Rutherford-type cable consisting of twelve strands of 1.71-mm-dia wire. Dimensions of the uninsulated cable are 11.0 x 3.0 mm. The configuration chosen consists of flat race-track layers - four per pole - with the ends bent up and down to clear the bore. Two coils are wound from a single piece of cable with a cross-over at the inside: the familiar double pancake arrangement.

  2. Large Superconducting Spin Valve Effect and Ultrasmall Exchange Splitting in Epitaxial Rare-Earth-Niobium Trilayers

    NASA Astrophysics Data System (ADS)

    Gu, Yuanzhou; Halász, Gábor B.; Robinson, J. W. A.; Blamire, M. G.

    2015-08-01

    Epitaxial Ho /Nb /Ho and Dy /Nb /Dy superconducting spin valves show a reversible change in the zero-field critical temperature (Δ Tc 0 ) of ˜400 mK and an infinite magnetoresistance on changing the relative magnetization of the Ho or Dy layers. Unlike transition-metal superconducting spin valves, which show much smaller Δ Tc 0 values, our results can be quantitatively modeled. However, the fits require an extraordinarily low induced exchange splitting which is dramatically lower than known values for rare-earth Fermi-level electrons, implying that new models for the magnetic proximity effect may be required.

  3. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    SciTech Connect

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced by crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.

  4. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    DOE PAGES

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less

  5. Investigation of local losses as a function of material removal in a large-grain superconducting niobium cavity

    SciTech Connect

    G. Ciovati, P. Kneisel

    2008-01-02

    The performance of a superconducting radio-frequency (RF) cavity made of residual resistivity ratio (RRR) > 200 large-grain niobium has been investigated as a function of material removal, between 70 and 240 mu-m, by buffered chemical polishing (BCP). Temperature maps of the cavity surface at 1.7 and 2 K were taken for each step of chemical etching and revealed localized losses (hot-spots), which contribute to the degradation of the cavity quality factor as a function of the RF surface field. It was found that the number of hot-spots decreased for larger material removal. Interestingly, the losses at the hot-spots at different locations evolved differently for successive material removal. The cavity achieved peak surface magnetic fields of about of 130 mT and was limited mostly by thermal quench. By measuring the temperature dependence of the surface resistance (Rs) at low field between 4.2 K and 1.7 K, the variation of material parameters such as the energy gap at 0 K, the residual resistance and the mean free path as a function of material removal could also be investigated. This contribution shows the results of the RF tests along with the temperature maps and the analysis of the losses caused by the "hot-spots."

  6. Large Superconducting Spin Valve Effect and Ultrasmall Exchange Splitting in Epitaxial Rare-Earth-Niobium Trilayers.

    PubMed

    Gu, Yuanzhou; Halász, Gábor B; Robinson, J W A; Blamire, M G

    2015-08-01

    Epitaxial Ho/Nb/Ho and Dy/Nb/Dy superconducting spin valves show a reversible change in the zero-field critical temperature (ΔT(c0)) of ∼400  mK and an infinite magnetoresistance on changing the relative magnetization of the Ho or Dy layers. Unlike transition-metal superconducting spin valves, which show much smaller ΔT(c0) values, our results can be quantitatively modeled. However, the fits require an extraordinarily low induced exchange splitting which is dramatically lower than known values for rare-earth Fermi-level electrons, implying that new models for the magnetic proximity effect may be required. PMID:26296128

  7. Niobium and niobium nitride contacts on semiconducting material

    SciTech Connect

    Cukauskas, E.; Carter, W.; Pond, J.; Newman, H.

    1989-06-30

    This invention related generally to a metallization layer of niobium or niobium nitride on a semiconductor in an integrated-circuit structure, which can function from the superconducting-temperature regime to above room temperature. Niobium or niobium nitride is deposited onto a heated gallium arsenide substrate. This metallization will maintain chemical stability after high-temperature post processing. These materials provide a low-resistivity metallization suitable for Schottky contacts used over a wide operating temperature range and are superconducting at low temperatures.

  8. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    SciTech Connect

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J.-M.; Zasadzinski, J. F.

    2015-04-21

    Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  9. Mechanical properties as an indicator of interstitials in niobium for superconducting accelerator cavities

    SciTech Connect

    Ricker, R. E. Pitchure, D. J.; Myneni, G. R.

    2015-12-04

    A preliminary investigation was conducted into the feasibility of using simple mechanical properties experiments to evaluate interstitial impurity uptake from processing environments. Two types of tests were examined: tensile tests and complex modulus measurements using a dynamic mechanical analyzer (DMA). For the tensile tests, samples were cut from a single crystal of niobium, with the same orientation, and then prepared following different procedures. Significant differences were observed during tensile tests, with yielding strength and strain-to-failure clearly related to interstitial uptake. When the strain rate was reduced by an order of magnitude, the strain-to-failure was reduced by 18 % indicating that interstitial hydrogen is responsible for this behavior. For the complex modulus measurement, polycrystalline samples from different locations of two different ingots were examined at a frequency of 1.0 Hz while the temperature was increased at the rate of 1.0 °C per minute. Anaelastic peaks were found for C, N, and O in all samples, but the lower limit of the system did not allow for detection of a peak for H. It is concluded that mechanical properties could be developed as a measurement tool to guide the development of processing methods for producing reduced interstitial content material, but additional research, and uncertainty analysis, is required for these tools to be reliable in this application.

  10. Metallurgical characterization of niobium/tin superconducting multifilamentary wires. Final report 1 Apr-31 Dec 1982

    SciTech Connect

    Roberts, J.M.

    1983-03-31

    The origin of a high incidence of discontinuous Nb filaments in Niobium/bronze multifilamentary drawn wires is discussed. It is suggested their occurrence is most likely an intrinsic part of the manufacturing process. Studies on the application of the limiting grain size concept in the bronze by the Nb filaments, suggests this effect only sets an upper bound on the attainable grain size and in reality, the actually observed grain size and sub-grain size is lower than this upper bound. This leads to extensive hardening of the bronze phase as the Nb/bronze multifilamentary wires are progressively reduced to ultra-fine dimensions. Preliminary ageing studies of a 13 wt % Sn bronze alloy, suggest the alpha bronze may exhibit some age hardening decomposition phenomena in the 300 to 400 degree C temperature range for unprestrained solution heat treated and quenched material. An even stronger hardening phenomena in this temperature range occurs if the material is prestrained 65% in compression after solution heat treatment but prior to ageing. Contemplated further studies in the area are presented.

  11. Width dependence of resistance and currents in series arrays of superconducting niobium/indium arsenide junctions

    NASA Astrophysics Data System (ADS)

    Thomas, Mason L.

    In the present research we have fabricated and measured arrays of Nb/InAs junctions with large electrode separations ({>}0.4mum). To couple the superconducting Nb over such distances requires ballistic electron transport in the InAs and barrier-free Nb/InAs interfaces. To guarantee the former, we use InAs/(Al,Ga)Sb quantum wells grown by MBE. InAs naturally lacks a Schottky barrier, so as long as the InAs surface is kept clean, the Nb/InAs interface will also be barrier-free. Under the above conditions, the superconducting Nb electrodes will be coupled by ballistic electron transport and Andreev reflections at the interfaces. The Nb/InAs junction arrays exhibit the Josephson effects due to phase coupling, but they also exhibit features due to the Andreev reflections. Multiple Andreev reflections between superconducting electrodes are manifested as a subharmonic gap structure in the current-voltage characteristics. In addition, there is an excess current that persists down to zero bias. At zero bias, the differential resistance is thermally activated. The activation energy may vary from sample to sample due to uncontrolled parameters, but there is also a reproducible variation of the activation energy with width. Wider arrays show a proportionally higher activation energy than narrower arrays and are thus fundamentally different from a parallel connection of narrow arrays. This behavior appears to be related to the excess current due to multiple Andreev reflections. A simple noise model (augmented by Andreev reflections) is proposed to explain these observations.

  12. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  13. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  14. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  15. Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots

    SciTech Connect

    Ciovati, Gianluigi Dhakal, Pashupati Kneisel, Peter Myneni, Ganapati R.

    2015-12-04

    Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ∼1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR∼260 and RRR∼100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material.

  16. Phase noise analysis of the sapphire loaded superconducting niobium cavity oscillator

    NASA Astrophysics Data System (ADS)

    Tobar, Michael; Blair, David G.

    1994-02-01

    Measured phase noise of two GaAs FET amplifiers and a varactor phase shifter at 9.7 GHz reveal that optimum bias conditions change when cooling from room to liquid helium temperatures. This understanding enables optimization of the electronic noise in an all cryogenic tunable sapphire loaded superconducting cavity (SLOSC) X-Band loop oscillator. The measured phase noise was limited by vibrations of the tuning mechanism. In a fixed frequency SLOSC oscillator the phase noise was limited by the amplifier noise, and has been measured to be -140 dBc/Hz at 1 kHz from the unfiltered port of loop oscillator. Comparison of component and oscillator phase noise allows us to calculate the phase noise at the filtered port to be -175 dBc/ Hz at 1 kHz offset.

  17. Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Gurevich, Alexander V.

    2014-03-03

    Measurements of the quality factor, Q, of Nb superconducting microwave resonators often show that Q increases by {approx_equal} 10%–30% with increasing radio-frequency (rf) field, H, up to {approx} 15-20 mT. Recent high temperature heat treatments can amplify this rf field-induced increase of Q up to {approx_equal} 50%–100% and extend it to much higher fields, but the mechanisms of the enhancement of Q(H) remain unclear. Here, we suggest a method to reveal these mechanisms by measuring temperature dependencies of Q at different rf field amplitudes. We show that the increase of Q(H) does not come from a field dependent quasi-particles activation energy or residual resistance, but rather results from the smearing of the density of state by the rf field.

  18. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    SciTech Connect

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe

    2013-12-15

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  19. Probing the low-frequency vortex dynamics in a nanostructured superconducting strip

    NASA Astrophysics Data System (ADS)

    Silva, C. C. de Souza; Raes, B.; Brisbois, J.; Cabral, L. R. E.; Silhanek, A. V.; Van de Vondel, J.; Moshchalkov, V. V.

    2016-07-01

    We investigate by scanning susceptibility microscopy the response of a thin Pb strip, with a square array of submicron antidots, to a low-frequency ac magnetic field applied perpendicularly to the film plane. By mapping the local permeability of the sample within the field range where vortices trapped by the antidots and interstitial vortices coexist, we observed two distinct dynamical regimes occurring at different temperatures. At a temperature just below the superconducting transition, T /Tc=0.96 , the sample response is essentially dominated by the motion of highly mobile interstitial vortices. However, at a slightly lower temperature, T /Tc=0.93 , the interstitial vortices freeze up leading to a strong reduction of the ac screening length. We propose a simple model for the vortex response in this system which fits well to the experimental data. Our analysis suggests that the observed switching to the high mobility regime stems from a resonant effect, where the period of the ac excitation is just large enough to allow interstitial vortices to thermally hop through the weak pinning landscape produced by random material defects. This argument is further supported by the observation of a pronounced enhancement of the out-of-phase response at the crossover between both dynamical regimes.

  20. Parallel Configuration For Fast Superconducting Strip Line Detectors With Very Large Area In Time Of Flight Mass Spectrometry

    SciTech Connect

    Casaburi, A.; Zen, N.; Suzuki, K.; Ohkubo, M.; Ejrnaes, M.; Cristiano, R.; Pagano, S.

    2009-12-16

    We realized a very fast and large Superconducting Strip Line Detector based on a parallel configuration of nanowires. The detector with size 200x200 {mu}m{sup 2} recorded a sub-nanosecond pulse width of 700 ps in FWHM (400 ps rise time and 530 ps relaxation time) for lysozyme monomers/multimers molecules accelerated at 175 keV in a Time of Flight Mass Spectrometer. This record is the best in the class of superconducting detectors and comparable with the fastest NbN superconducting single photon detector of 10x10 {mu}m{sup 2}. We succeeded in acquiring mass spectra as the first step for a scale-up to {approx}mm pixel size for high throughput MS analysis, while keeping a fast response.

  1. Niobium-germanium superconducting tapes for high-field magnet applications

    NASA Technical Reports Server (NTRS)

    Braginski, A. I.; Roland, G. W.; Daniel, M. R.; Woolam, J. A.

    1977-01-01

    A process of fabricating superconducting Nb3Ge tapes by chemical vapor deposition (CVD) has been developed and tapes up to 10 meters long fabricated. The typical properties achieved were: critical temperature T sub c = 20 K, upper critical field H sub c2 = 29 tesla at 4.2 K, and J sub c = 3 to 4 x 10 to the 8th power A m(-2) at 4.2 K, 18 tesla. The relative depression of T sub c and H sub c2 compared with the best thin film samples sputtered on sapphire was due to the presence of Nb5Ge3 second-phase particles used as flux pinning centers and to strains induced by thermal mixmatch with Hastelloy B tape substrates. A peculiar field dependence of flux pinning force that was observed in both CVD and sputtered Nb3Ge indicated a premature pin-breaking mechanism or a phase inhomogeneity. Directions of further optimization work were defined.

  2. Superconducting and magnetic behaviour of niobium doped RuSr2Gd1.5Ce0.5Cu2O10-δ

    NASA Astrophysics Data System (ADS)

    Cardoso, C. A.; Araujo-Moreira, F. M.; Awana, V. P. S.; Kishan, H.; de Lima, O. F.

    2007-05-01

    Polycrystalline samples of Ru1-xNbxSr2Gd1.5Ce0.5Cu2O10-δ, 0<=x<=0.5, have been synthesized and structurally characterized by x-ray diffraction (XRD). Resistivity, magnetization and AC susceptibility measurements have been done and analysed considering a phase separation scenario. A strong suppression of the cluster glass (CG) transition associated with niobium doping was identified. In fact, the CG phase was not present in samples for x>=0.2, leading to changes in the magnetic hysteresis loops measured at low temperatures. These hysteresis loops can be explained as a result of the contribution of two distinct magnetic phases: the canted AFM phase and embedded Ru4+-rich clusters which order as a CG in low temperatures. Interestingly, the significant changes in the magnetic response of the material do affect the superconducting transition temperature Tc. It was found that both Tc and the superconducting fraction are reduced in samples which present the spin glass phase. Therefore, our results point to some coupling between magnetism and superconductivity in this ruthenocuprate family, the presence of the magnetic moment being deleterious for the superconductivity.

  3. Proton in SRF Niobium

    SciTech Connect

    Wallace, John Paul

    2011-03-31

    Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.

  4. A-15 Superconducting composite wires and a method for making

    DOEpatents

    Suenaga, Masaki; Klamut, Carl J.; Luhman, Thomas S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  5. Wrapping process for fabrication of A-15 superconducting composite wires

    DOEpatents

    Suenaga, M.; Klamut, C.J.; Luhman, T.S.

    1980-08-15

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  6. Control of ballistic electrons in (AlGa)As/GaAs heterostructures by means of superconducting niobium gate structures

    NASA Astrophysics Data System (ADS)

    Schäpers, T.; Müller, F.; Förster, A.; Lengeler, B.; Lüth, H.

    1994-03-01

    Superconducting gate structures on a modulation doped (AlGa)As/GaAs heterostructure were used to control a ballistic electron beam within the high mobility 2DEG. A local and variable magnetic field was produced by superconducting current loops. The magnetic field induced by the loops was analysed by means of an external magnetic field as well as by an electron interference experiment. The maximum field obtained by two superconducting loops was 0.4 mT. In addition, a gate structure containing a superconducting ring between two opposite split gates was prepared in order to detect magnetic flux quantisation.

  7. Introduction to Ingot Niobium

    SciTech Connect

    Myneni, Ganapati Rao; Hutton, Andrew

    2011-03-31

    Superconducting radiofrequency (SRF) technology using niobium accelerating cavities was first applied at large scale in the recirculating electron linear accelerator CEBAF--the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, USA, at what is now called Thomas Jefferson National Accelerator Facility, or Jefferson Lab. Building on the high quality factors and peak magnetic fields found in low residual resistivity ratio (low-RRR) solid niobium in the 1970s, Jefferson Lab has reintroduced ingot niobium technology. High tantalum content in ingot niobium is not expected to negatively impact cavity performance, but will reduce the cost of accelerator structures considerably. Optimized low-cost CW linear accelerators built with ingot niobium will show the way for future R and D and industrial applications. This paper portrays the Jefferson Lab SRF context, reviews the early history of ingot niobium technology from over a third of a century ago, explains the technical advantages of that technology's recent reintroduction, and presents the outlook for further development.

  8. Introduction to Ingot Niobium

    SciTech Connect

    Ganapati Rao Mynen, Andrew Hutton

    2011-03-01

    Superconducting radiofrequency (SRF) technology using niobium accelerating cavities was first applied at large scale in the recirculating electron linear accelerator CEBAF—the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, USA, at what is now called Thomas Jefferson National Accelerator Facility, or Jefferson Lab. Building on the high quality factors and peak magnetic fields found in low residual resistivity ratio (low-RRR) solid niobium in the 1970s, Jefferson Lab has reintroduced ingot niobium technology. High tantalum content in ingot niobium is not expected to negatively impact cavity performance, but will reduce the cost of accelerator structures considerably. Optimized low-cost CW linear accelerators built with ingot niobium will show the way for future R&D and industrial applications. This paper portrays the Jefferson Lab SRF context, reviews the early history of ingot niobium technology from over a third of a century ago, explains the technical advantages of that technology's recent reintroduction, and presents the outlook for further development.

  9. Direct observation of the current distribution in thin superconducting strips using magneto-optic imaging

    SciTech Connect

    Johansen, T.H.; Baziljevich, M.; Bratsberg, H.; Galperin, Y.; Lindelof, P.E.

    1996-12-01

    Magneto-optic imaging was used for a detailed study of the flux and current distribution of a long thin strip of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} placed in a perpendicular external magnetic field. The inverse magnetic problem, i.e., that of deriving from a field map the underlying current distribution, is formulated and solved for the strip geometry. Applying the inversion to the magneto-optically found field map we find on a model-independent basis the current distribution across the strip to be in remarkable agreement with the profile predicted by the Bean model. The paper also presents results on the behavior of the Bi-doped YIG film with in-plane anisotropy which we use as field indicator, explaining why previous measurements of flux density profiles have displayed surprisingly large deviations from the expected behavior. {copyright} {ital 1996 The American Physical Society.}

  10. Niobium Production at Tokyo Denkai

    SciTech Connect

    Umezawa, Hiroaki

    2011-03-31

    In recent years, single-crystal/large-grain niobium has received much attention. It has the following advantages: rolling-annealing is unnecessary, and superconducting cavities made from large-grain niobium discs may not require electropolishing. However, to obtain a large-grain disc, an ingot must be sliced using a saw and finished smooth by using a lathe. Slicing a disc takes several hours and produces niobium shavings. KEK, Tokyo Denkai, and TKX Corporation have developed a new niobium ingot slicing technique, and Tokyo Denkai has installed the slicing machine. This study describes the new ingot slicing technology, which ensures state-of-the-art productivity for the superconducting radio frequency (SRF) cavity material industry.

  11. Effect of Electropolishing and Low-Temperature Baking on the Superconducting Properties of Large-Grain Niobium

    SciTech Connect

    A. S. Dhavale, G. Ciovati, G. R. Myneni

    2011-03-01

    Measurements of superconducting properties such as bulk and surface critical fields and thermal conductivity have been carried out in the temperature range from 2 K to 8 K on large-grain samples of different purity and on a high-purity fine-grain sample, for comparison. The samples were treated by electropolishing and low temperature baking (120° C, 48 h). While the residual resistivity ratio changed by a factor of ~3 among the samples, no significant variation was found in their superconducting properties. The onset field for flux penetration at 2 K, Hffp, measured within a ~30 µm depth from the surface, was ~160 mT, close to the bulk value. The baking effect was mainly to increase the field range up to which a coherent superconducting phase persists on the surface, above the upper critical field.

  12. Production of High Purity Niobium Ingots at CBMM

    NASA Astrophysics Data System (ADS)

    de Moura, Lourenço; de Faria Sousa, Clovis Antonio; Cruz, Edmundo Burgos

    2011-03-01

    CBMM is a fully integrated company, from the mine to the end line of the production chain, supplying different niobium products to the world market: ferroniobium, nickelniobium, niobium pentoxide and high purity metallic niobium. This high purity metallic niobium has long been known to exhibit superconductivity below 9.25 Kelvin. This characteristic has the potential to bring technological benefits for many different areas such as medicine, computing and environment. This paper presents the raw material requirements as well as CBMM experience on producing high purity niobium ingots. The results prove that CBMM material can be the best solution for special applications such as low cost superconductive radiofrequency cavities.

  13. Production of High Purity Niobium Ingots at CBMM

    SciTech Connect

    Moura, Lourenco de; Faria Sousa, Clovis Antonio de; Burgos Cruz, Edmundo

    2011-03-31

    CBMM is a fully integrated company, from the mine to the end line of the production chain, supplying different niobium products to the world market: ferroniobium, nickelniobium, niobium pentoxide and high purity metallic niobium. This high purity metallic niobium has long been known to exhibit superconductivity below 9.25 Kelvin. This characteristic has the potential to bring technological benefits for many different areas such as medicine, computing and environment. This paper presents the raw material requirements as well as CBMM experience on producing high purity niobium ingots. The results prove that CBMM material can be the best solution for special applications such as low cost superconductive radiofrequency cavities.

  14. SUPERCONDUCTING PHOTOCATHODES.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  15. Probing the fundamental limit of niobium in high radiofrequency fields by dual mode excitation in superconducting radiofrequency cavities

    SciTech Connect

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari

    2011-07-01

    We have studied thermal breakdown in several multicell superconducting radiofrequency cavity by simultaneous excitation of two TM{sub 010} passband modes. Unlike measurements done in the past, which indicated a clear thermal nature of the breakdown, our measurements present a more complex picture with interplay of both thermal and magnetic effects. JLab LG-1 that we studied was limited at 40.5 MV/m, corresponding to B{sub peak} = 173 mT, in 8{pi}/9 mode. Dual mode measurements on this quench indicate that this quench is not purely magnetic, and so we conclude that this field is not the fundamental limit in SRF cavities.

  16. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. . Inst. for Particle Physics); Ellison, J.A. ); Ferguson, P. ); Giubellino

    1990-01-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  17. Modulation of superconducting critical temperature in niobium film by using all-solid-state electric-double-layer transistor

    SciTech Connect

    Tsuchiya, Takashi E-mail: TERABE.Kazuya@nims.go.jp; Moriyama, Satoshi; Terabe, Kazuya E-mail: TERABE.Kazuya@nims.go.jp; Aono, Masakazu

    2015-07-06

    An all-solid-state electric-double-layer transistor (EDLT) was fabricated for electrical modulation of the superconducting critical temperature (T{sub c}) of Nb film epitaxially grown on α-Al{sub 2}O{sub 3} (0001) single crystal. In an experiment, T{sub c} was modulated from 8.33 to 8.39 K while the gate voltage (V{sub G}) was varied from 2.5 to −2.5 V. The specific difference of T{sub c} for the applied V{sub G} was 12 mK/V, which is larger than that of an EDLT composed of ionic liquid. A T{sub c} enhancement of 300 mK was found at the Li{sub 4}SiO{sub 4}/Nb film interface and is attributed to an increase in density of states near the Fermi level due to lattice constant modulation. This solid electrolyte gating method should enable development of practical superconducting devices highly compatible with other electronic devices.

  18. The guidance of kinematic vortices in a mesoscopic superconducting strip with artificial defects

    NASA Astrophysics Data System (ADS)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe

    2016-06-01

    Within the time-dependent Ginzburg–Landau (TDGL) theory, we theoretically investigated the dynamic properties of vortex–antivortex (V–Av) pairs in a current-carrying superconductor strip with one tilted slit or two transversely/longtitudinally arranged slits in the presence of a weak magnetic field. The effect of the rotation angle on the resistive state in the sample with one tilted slit was considered. The location of phase slippage in the sample can be predetermined by the rotation angle of the tilted slit. We found the coalescence of the phase-slip lines (PSLs) during a periodic multiharmonic voltage oscillation. This leads to two stages of voltage oscillation at zero applied field and three stages at weak magnetic field since the coalescence of left and right PSLs are staggered in the latter case. Moreover, the influence of relative position and size of the two slits on the transport properties of the sample are also studied. The dynamic behavior of V–Av pairs depends on not only the slit length but also their horizontal or vertical interval distance between the two slits. Since the geometry of sample has an important influence on the distribution of supercurrent across the sample, we demonstrate the possibility to efficiently guide the kinematic vortices by adjusting the relevant parameters.

  19. The guidance of kinematic vortices in a mesoscopic superconducting strip with artificial defects

    NASA Astrophysics Data System (ADS)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe

    2016-06-01

    Within the time-dependent Ginzburg-Landau (TDGL) theory, we theoretically investigated the dynamic properties of vortex-antivortex (V-Av) pairs in a current-carrying superconductor strip with one tilted slit or two transversely/longtitudinally arranged slits in the presence of a weak magnetic field. The effect of the rotation angle on the resistive state in the sample with one tilted slit was considered. The location of phase slippage in the sample can be predetermined by the rotation angle of the tilted slit. We found the coalescence of the phase-slip lines (PSLs) during a periodic multiharmonic voltage oscillation. This leads to two stages of voltage oscillation at zero applied field and three stages at weak magnetic field since the coalescence of left and right PSLs are staggered in the latter case. Moreover, the influence of relative position and size of the two slits on the transport properties of the sample are also studied. The dynamic behavior of V-Av pairs depends on not only the slit length but also their horizontal or vertical interval distance between the two slits. Since the geometry of sample has an important influence on the distribution of supercurrent across the sample, we demonstrate the possibility to efficiently guide the kinematic vortices by adjusting the relevant parameters.

  20. Vortex trapping and expulsion in thin-film YBa2Cu3O7-δ strips

    NASA Astrophysics Data System (ADS)

    Kuit, K. H.; Kirtley, J. R.; van der Veur, W.; Molenaar, C. G.; Roesthuis, F. J. G.; Troeman, A. G. P.; Clem, J. R.; Hilgenkamp, H.; Rogalla, H.; Flokstra, J.

    2008-04-01

    A scanning superconducting quantum interference device microscope was used to image vortex trapping as a function of the magnetic induction during cooling in thin-film YBa2Cu3O7-δ (YBCO) strips for strip widths W from 2 to 50μm . We found that vortices were excluded from the strips when the induction Ba was below a critical induction Bc . We present a simple model for the vortex exclusion process which takes into account the vortex-antivortex pair production energy as well as the vortex Meissner and self-energies. This model predicts that the real density n of trapped vortices is given by n=(Ba-BK)/Φ0 with BK=1.65Φ0/W2 and Φ0=h/2e the superconducting flux quantum. This prediction is in good agreement with our experiments on YBCO, as well as with previous experiments on thin-film strips of niobium. We also report on the positions of the trapped vortices. We found that at low densities the vortices were trapped in a single row near the centers of the strips, with the relative intervortex spacing distribution width decreasing as the vortex density increased, a sign of longitudinal ordering. The critical induction for two rows forming in the 35μm wide strip was (2.89+1.91-0.93)Bc , consistent with a numerical prediction.

  1. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  2. Nb-Pb Superconducting RF Gun

    SciTech Connect

    Sekutowicz, J.; Iversen, J.; Kreps, G.; Moller, W.D.; Singer, W.; Singer, X.; Ben-Zvi, I.; Burrill, A.; Smedley, J.; Rao, T.; Ferrario, M.; Kneisel, P.; Langner, J.; Strzyzewski, P.; Lefferts, R.; Lipski, A.; Szalowski, K.; Ko, K.; Xiao, L.; /SLAC

    2006-03-29

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  3. Nb-Pb superconducting RF gun

    SciTech Connect

    J. Sekutowicz; J. Iversen; G. Kreps; W.D. Moller; W. Singer; X. Singer; I. Ben-Zvi; A. Burrill; J. Smedley; T. Rao; M. Ferrario; P. Kneisel; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; K. Szalowski; K. Ko; L. Xiao

    2006-04-14

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  4. Local structure around the flux pinning centers in superconducting niobium silicon oxynitride (Nb{sub 0.87}Si{sub 0.09}□{sub 0.04})(N{sub 0.87}O{sub 0.13})

    SciTech Connect

    Ohashi, Y.; Masubuchi, Y.; Venkateshwarlu, D.; Ganesan, V.; Yakhmi, J.V.; Yoshida, T.; Kikkawa, S.

    2014-02-15

    The superconducting transition temperature of niobium silicon oxynitride (Nb{sub 0.87}Si{sub 0.09}□{sub 0.04})(N{sub 0.87}O{sub 0.13}) exhibits a gradual reduction from 16.8 K to around 11 K under an increasing applied magnetic field of up to 14 T. This relatively small T{sub c} reduction under an applied magnetic field suggests a robustness of its superconducting behavior in comparison to that in the parent niobium oxynitride. It was similar to the flux pinning effect observed in the large magnetic hysteresis of the niobium-silicon oxynitrides in our previous study. Both Si K-edge XANES and {sup 29}Si MAS-NMR indicated that the local structure of pinning centers around the silicon atoms close to cationic vacancies was similar to that of Si in amorphous SiO{sub 2} in the rock-salt structure of niobium oxynitride. - Graphical abstract: Potential energy scan of the Si atom in the most stable Si{sub 3}□O{sub 3}N cube around the vacancy in our preliminary simulation on niobium silicon oxynitride (Nb{sub 0.87}Si{sub 0.09}□{sub 0.04})(N{sub 0.87}O{sub 0.13}). A possible distortion of the Si atom was suggested from its octahedral towards tetrahedral position forming the local structure similar to that in amorphous SiO{sub 2}. Display Omitted - Highlights: • Critical current density was enhanced in superconducting niobium oxynitride. • The robustness was introduced by forming rock-salt type niobium silicon oxynitride. • The silicon atom had a local structure similar to that in amorphous SiO{sub 2} in the rock-salt type lattice. • The local structure was formed together with its neighboring cationic vacancy. • It contributed as the flux pinning center in the NbSiNO.

  5. Study of AC/RF properties of SRF ingot niobium

    SciTech Connect

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  6. Precipitation of hydrides in high purity niobium after different treatments

    SciTech Connect

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  7. Solvent extraction-absorptiometric determination of niobium in steels with bromopyrogallol red.

    PubMed

    Ramakrishna, T V; Rahim, S A; West, T S

    1969-07-01

    A simple and rapid method is described for the determination of niobium in steel with Bromopyrogallol Red. After dissolution of the sample, niobium is extracted along with iron from concentrated hydrochloric acid into isopentyl acetate. Niobium and iron are stripped into an aqueous solution containing sodium acetate, and EDTA, ammonium chloride, tartaric acid, and Bromopyrogallol Red are added to complex the niobium. The niobium-Bromopyro-gallol Red complex along with excess of reagent is extracted into isopentyl acetate containing di-n-octylmethylamine, and measured at 610 nm. The molar absorptivity is 2.50 x 10(4) and Beer's law is obeyed up to 27 mug of niobium. The method is free from interferences and can be applied to the analysis of samples containing as little as 0.01 % niobium. PMID:18960586

  8. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, Steven A.; Creech, Edward T.; Northcutt, Walter G.

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  9. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  10. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  11. Variation of Mechanical Properties of High RRR And Reactor Grade Niobium With Heat Treatments

    SciTech Connect

    Ganapati Myneni; H. Umezawa

    2003-06-01

    Superconducting rf cavities used as accelerating structures in particle accelerators are made from high purity niobium with residual resistance ratios greater than 250. Reactor grade niobium is also used to make wave-guide and/or end group components for these accelerating structures. The major impurities in this type of niobium are interstitially dissolved gases such as hydrogen, nitrogen, and oxygen in addition to carbon. After fabricating the niobium accelerating structures, they are subjected to heat treatments for several hours in vacuum at temperatures of up to 900 C for degassing hydrogen or up to 1400 C for improving the thermal conductivity of niobium considerably. These heat treatments are affecting the mechanical properties of niobium drastically. In this paper the variation of the mechanical properties of high purity and reactor grade niobium with heat treatments in a vacuum of {approx} 10{sup -6} Torr and temperatures from 600 C to 1250 C for periods of 10 to 6 hours are presented.

  12. Determination of bulk and surface superconducting properties of N2-doped cold worked, heat treated and electro-polished SRF grade niobium

    SciTech Connect

    Chetri, Santosh; Larbalestier, David C.; Lee, Peter J.; Dhakal, Pashupati; Sung, Zu -Hawn

    2015-12-01

    In this study, nitrogen-doped cavities show significant performance improvement in the medium accelerating field regime due to a lowered RF surface resistivity. However, the mechanism of enhancement has not been clearly explained. Our experiments explore how N2-doping influences Nb bulk and surface superconducting properties, and compare the N2-doped properties with those obtained previously with conventionally treated samples. High purity Nb-rod was mechanically deformed and post treated based on a typical SRF cavity treatment recipe. The onset of flux penetration at Hc1, and the upper and the surface critical fields, Hc2 and Hc3, were characterized by magnetic hysteresis and AC susceptibility techniques. The surface depth profile responsible for superconductivity was examined by changing AC amplitude in AC susceptibility, and the microstructure was directly observed with EBSD-OIM. We are also investigating surface chemistry for detailed composition using XPS. We have found that N2-doping at 800 °C significantly reduces the Hc3/Hc2 ratio towards the ideal value of ~1.7, and conclude that AC susceptibility is capable of following changes to the surface properties induced by N2-doping.

  13. Determination of bulk and surface superconducting properties of N2-doped cold worked, heat treated and electro-polished SRF grade niobium

    DOE PAGES

    Chetri, Santosh; Larbalestier, David C.; Lee, Peter J.; Dhakal, Pashupati; Sung, Zu -Hawn

    2015-12-01

    In this study, nitrogen-doped cavities show significant performance improvement in the medium accelerating field regime due to a lowered RF surface resistivity. However, the mechanism of enhancement has not been clearly explained. Our experiments explore how N2-doping influences Nb bulk and surface superconducting properties, and compare the N2-doped properties with those obtained previously with conventionally treated samples. High purity Nb-rod was mechanically deformed and post treated based on a typical SRF cavity treatment recipe. The onset of flux penetration at Hc1, and the upper and the surface critical fields, Hc2 and Hc3, were characterized by magnetic hysteresis and AC susceptibilitymore » techniques. The surface depth profile responsible for superconductivity was examined by changing AC amplitude in AC susceptibility, and the microstructure was directly observed with EBSD-OIM. We are also investigating surface chemistry for detailed composition using XPS. We have found that N2-doping at 800 °C significantly reduces the Hc3/Hc2 ratio towards the ideal value of ~1.7, and conclude that AC susceptibility is capable of following changes to the surface properties induced by N2-doping.« less

  14. Quench-age method for the fabrication of niobium-aluminum superconductors

    DOEpatents

    Pickus, Milton R.; Ciardella, Robert L.

    1978-01-01

    A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.

  15. Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity

    SciTech Connect

    Dhakal, P.; Ciovati, G.; Myneni, G. R.; Gray, K. E.; Groll, N.; Maheshwari, P.; McRae, D. M.; Pike, R.; Proslier, T.; Stevie, F.; Walsh, R. P.; Yang, Q.; Zasadzinzki, J.

    2013-04-01

    Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of “medium purity” Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800–1400°C was done in a newly designed vacuum induction furnace. Q{sub 0} values of the order of 2×10{sup 10} at 2.0 K and peak surface magnetic field (B{sub p}) of 90 mT were achieved reproducibly. A Q{sub 0} value of (5±1)×10{sup 10} at 2.0 K and B{sub p}=90mT was obtained after heat treatment at 1400°C. This is the highest value ever reported at this temperature, frequency, and field. Samples heat treated with the cavity at 1400°C were analyzed by secondary ion mass spectrometry, x-ray photoelectron spectroscopy, energy dispersive x ray, point-contact tunneling, and x-ray diffraction, and revealed a complex surface composition which includes titanium oxide, increased carbon, and nitrogen content but reduced hydrogen concentration compared to a non-heat-treated sample.

  16. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  17. Buffered Electrochemical Polishing of Niobium

    SciTech Connect

    Gianluigi Ciovati; Tian, Hui; Corcoran, Sean

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  18. Melting And Purification Of Niobium

    SciTech Connect

    Salles Moura, Hernane R.; Moura, Lourenco de

    2007-08-09

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  19. Melting And Purification Of Niobium

    NASA Astrophysics Data System (ADS)

    Moura, Hernane R. Salles; de Moura, Lourenço

    2007-08-01

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  20. Nitrogen doping study in ingot niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao; Makita, Junki

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  1. Status of Nb-Pb superconducting RF-gun cavities

    SciTech Connect

    J. Sekutowicz; J. Iversen; D. Klinke; D. Kostin; W. Möller; A. Muhs; P. Kneisel; J. Smedley; T. Rao; P. Strzyżewski; Z. Li; K. Ko; L. Xiao; R. Lefferts; A. Lipski; M. Ferrario

    2007-06-01

    We report on the progress in the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead. Measured values of quantum efficiency for lead at 2K and the RF-performance of three half-cell niobium cavities with the lead spot exposed to high electric fields are reported in this contribution.

  2. Recent developments in high purity niobium metal production at CBMM

    SciTech Connect

    Abdo, Gustavo Giovanni Ribeiro Sousa, Clovis Antonio de Faria Guimarães, Rogério Contato Ribas, Rogério Marques Vieira, Alaércio Salvador Martins Menezes, Andréia Duarte Fridman, Daniel Pallos Cruz, Edmundo Burgos

    2015-12-04

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  3. Recent developments in high purity niobium metal production at CBMM

    NASA Astrophysics Data System (ADS)

    Abdo, Gustavo Giovanni Ribeiro; Sousa, Clovis Antonio de Faria; Guimarães, Rogério Contato; Ribas, Rogério Marques; Vieira, Alaércio Salvador Martins; Menezes, Andréia Duarte; Fridman, Daniel Pallos; Cruz, Edmundo Burgos

    2015-12-01

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM's position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM's ingots is for the manufacture of particle accelerators (superconducting radio frequency - SRF - cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world's largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  4. Observations of flux motion in niobium films

    SciTech Connect

    Xiao, Y.M.; Keiser, G.M. . W.W. Hansen Labs. of Physics)

    1991-03-01

    In this paper magnetic field trapped in a superconducting sphere is examined at temperatures from 4.6 K to 5.5 K The sphere is the rotor of a precision gyroscope, and is made of fused quartz and coated with a sputtered niobium film. The rotor diameter is 3.8 centimeters. The film thickness is 2.5 micrometers. The tests are carried out at ambient magnetic field of about 1 milligauss. Unexpected instability of the trapped field is observed. The experimental results and possible explanations are presented.

  5. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  6. One hundred angstrom niobium wire

    NASA Technical Reports Server (NTRS)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1968-01-01

    Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing.

  7. ROUGHNESS ANALYSIS OF VARIOUSLY POLISHED NIOBIUM SURFACES

    SciTech Connect

    Ribeill, G.; Reece, C.

    2008-01-01

    Niobium superconducting radio frequency (SRF) cavities have gained widespread use in accelerator systems. It has been shown that surface roughness is a determining factor in the cavities’ effi ciency and maximum accelerating potential achievable through this technology. Irregularities in the surface can lead to spot heating, undesirable local electrical fi eld enhancement and electron multipacting. Surface quality is typically ensured through the use of acid etching in a Buffered Chemical Polish (BCP) bath and electropolishing (EP). In this study, the effects of these techniques on surface morphology have been investigated in depth. The surface of niobium samples polished using different combinations of these techniques has been characterized through atomic force microscopy (AFM) and stylus profi lometry across a range of length scales. The surface morphology was analyzed using spectral techniques to determine roughness and characteristic dimensions. Experimentation has shown that this method is a valuable tool that provides quantitative information about surface roughness at different length scales. It has demonstrated that light BCP pretreatment and lower electrolyte temperature favors a smoother electropolish. These results will allow for the design of a superior polishing process for niobium SRF cavities and therefore increased accelerator operating effi ciency and power.

  8. SRF niobium characterization using SIMS and FIB-TEM

    NASA Astrophysics Data System (ADS)

    Stevie, F. A.

    2015-12-01

    Our understanding of superconducting radio frequency (SRF) accelerator cavities has been improved by elemental analysis at high depth resolution and by high magnification microscopy. This paper summarizes the technique development and the results obtained on poly-crystalline, large grain, and single crystal SRF niobium. Focused ion beam made possible sample preparation using transmission electron microscopy and the images obtained showed a very uniform oxide layer for all samples analyzed. Secondary ion mass spectrometry indicated the presence of a high concentration of hydrogen and the hydrogen content exhibited a relationship with improvement in performance. Depth profiles of carbon, nitrogen, and oxygen did not show major differences with heat treatment. Niobium oxide less than 10 nm thick was shown to be an effective hydrogen barrier. Niobium with titanium contamination showed unexpected performance improvement.

  9. SRF niobium characterization using SIMS and FIB-TEM

    SciTech Connect

    Stevie, F. A.

    2015-12-04

    Our understanding of superconducting radio frequency (SRF) accelerator cavities has been improved by elemental analysis at high depth resolution and by high magnification microscopy. This paper summarizes the technique development and the results obtained on poly-crystalline, large grain, and single crystal SRF niobium. Focused ion beam made possible sample preparation using transmission electron microscopy and the images obtained showed a very uniform oxide layer for all samples analyzed. Secondary ion mass spectrometry indicated the presence of a high concentration of hydrogen and the hydrogen content exhibited a relationship with improvement in performance. Depth profiles of carbon, nitrogen, and oxygen did not show major differences with heat treatment. Niobium oxide less than 10 nm thick was shown to be an effective hydrogen barrier. Niobium with titanium contamination showed unexpected performance improvement.

  10. Low-gravity processing of superconducting compounds

    NASA Technical Reports Server (NTRS)

    Otto, G. H.

    1976-01-01

    Low gravity conditions can be sustained on earth for several seconds in an evacuated drop tube. Because radiation cooling is most effective at high temperatures, the refractive metals and alloys are prime candidates for free fall solidification. The results of initial experiments on droplet formation, droplet release, critical size and evaporation losses are given. The time required for free fall solidification of different size droplets is calculated. The materials studied were copper, niobium and vanadium, and a niobium-tin alloys. Improvements in purity, composition, homogeneity and stoichiometry are expected during free fall solidification of niobium based alloys which should become evident in an increase in the superconducting transition temperature.

  11. METHOD OF PRODUCING NIOBIUM METAL

    DOEpatents

    Wilhelm, H.A.; Stevens, E.R.

    1960-05-24

    A process is given for preparing ductile niobium metal by the reduction of niobium pentoxide with carbon. The invention resides in the addition, to the reaction mass, of from 0.05 to 0.4 atom of titanium (in the form of metallic titanium, titanium carbide, and/or titanium oxide) per one mole of niobium pentoxide. The mixture is heated under subatmospheric pressure to above 1300 deg C but below the melting point of niobium, and the carbon- and oxygen-free niobium sponge obtained is cooled under reduced pressure.

  12. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  13. Superconducting Radio Frequency Technology: An Overview

    SciTech Connect

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  14. Temperature dependence of penetration depth in thin film niobium

    NASA Technical Reports Server (NTRS)

    More, N.; Muhlfelder, B.; Lockhart, J.

    1989-01-01

    A novel technique is presented which should allow precise determination of the temperature dependence of the inductance, and hence of the penetration depth, of superconducting niobium thin-film structures. Four niobium thin-film stripline inductors are arranged in a bridge configuration, and inductance differences are measured using a potentiometric technique with a SQUID (superconducting quantum interference device) as the null detector. Numerical simulations of the stripline inductances are presented which allow the performance of the measurement technique to be evaluated. The prediction of the two-fluid model for the penetration-depth temperature dependence is given for reduced temperatures of 0.3 to 0.9. The experimental apparatus and its resolution and accuracy are discussed.

  15. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  16. Method of surface preparation of niobium

    DOEpatents

    Srinivasan-Rao, Triveni; Schill, John F.

    2003-01-01

    The present invention is for a method of preparing a surface of niobium. The preparation method includes polishing, cleaning, baking and irradiating the niobium surface whereby the resulting niobium surface has a high quantum efficiency.

  17. Nonlinear terahertz superconducting plasmonics

    SciTech Connect

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  18. Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Masuda, Kohei; Moriyama, Satoshi; Morita, Yoshifumi; Komatsu, Katsuyoshi; Takagi, Tasuku; Hashimoto, Takayuki; Miki, Norihisa; Tanabe, Takasumi; Maki, Hideyuki

    2016-05-01

    Superconducting nanowires have attracted considerable attention due to their unique quantum-mechanical properties, as well as their potential as next-generation quantum nanodevices, such as single-photon detectors, phase-slip (PS) qubits, and other hybrid structures. In this study, we present the results of one-dimensional (1D) superconductivity in nanowires fabricated by coating suspended carbon nanotubes with a superconducting thin niobium nitride (NbN) film. In the resistance-temperature characteristic curves, hallmarks of 1D superconductivity with PS events are observed with unconventional negative magnetoresistance. We also confirm that a crossover occurs between thermal and quantum PSs as the temperature is lowered.

  19. Vapor deposition of hardened niobium

    DOEpatents

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  20. Residual charge of niobium spheres

    SciTech Connect

    Phillips, J.D.

    1984-01-01

    In 1964, Gell-Mann and Zweig hypothesized that the particles inside nuclei are composed of quarks with electric charges of {plus minus} 1/3 e and {plus minus} 1/2 e. Since then, many searches have been made for stable fractional charges. The experiment described in a Millikan-type electrometer with a sample 10{sup 7} times heavier. A 0.28 mm diameter superconducting niobium ball is levitated magnetically between capacitor plates. The ball oscillates vertically on this magnetic spring and an electric field is applied at the oscillation frequency. The rate of change of the ball's oscillation amplitude is proportional to the force exerted on the ball by the electric field. The force on the ball is measured as a function of its position between the capacitor plates to discriminate against the background force due to the patch effect field gradient of the plates. There is one other background effect, due to the tilting of the ball's magnetic moment, which has sometimes manifested itself as a drift or occasionally as an offset in the measured force. An analysis presented in this thesis explains a mechanism for this effect and shows that we can eliminate it in our next run by spinning the ball about the vertical axis. The results are strong evidence for the existence of stable fractional charges of {plus minus} 1/3 e in matter. Out of 58 measurements on 20 balls, 9 have yielded results near - 1/3 e, 34 near 0, 13 near + 1/3e, one of the 0.19 e, and one of 0.44 e. Out of 38 repeat measurements, there have been 12 residual charge changes, 5 near - 1/3e and 7 near + 1/3 e.

  1. Enhanced characterization of niobium surface topography

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Tian, Hui; Reece, Charles E.; Kelley, Michael J.

    2011-12-01

    Surface topography characterization is a continuing issue for the superconducting radio frequency (SRF) particle accelerator community. Efforts are under way to both improve surface topography and its characterization and analysis using various techniques. In measurement of topography, power spectral density (PSD) is a promising method to quantify typical surface parameters and develop scale-specific interpretations. PSD can also be used to indicate how the process modifies topography at different scales. However, generating an accurate and meaningful topographic PSD of an SRF surface requires careful analysis and optimization. In this report, niobium surfaces with different process histories are sampled with atomic force microscopy and stylus profilometry and analyzed to trace topography evolution at different scales. An optimized PSD analysis protocol to serve SRF needs is presented.

  2. Large grain cavities from pure niobium ingot

    SciTech Connect

    Myneni, Ganapati Rao; Kneisel, Peter; Cameiro, Tadeu

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  3. NIOBIUM-TANTALUM SEPARATION

    DOEpatents

    Wilhelm, H.A.; Foos, R.A.

    1959-01-27

    The usual method for the separation of tantalum and niobium consists of a selective solvent extraction from an aqueous hydrofluoric acid solution of the metals. A difficulty encountered in this process is the fact that the corrosion problems associated with hydrofluoric acid are serious. It has been found that the corrosion caused by the hydrofluoric acid may be substantially reduced by adding to the acidic solution an amine, such as phenyl diethanolamine or aniline, and adjusting pH value to between 4 and 6.

  4. Status of Nb-Pb Superconducting RF-Gun Cavities

    SciTech Connect

    Sekutowicz, J.; Iversen, J.; Klinke, D.; Kostin, D.; Moller, W.; Muhs, A.; Kneisel, P.; Smedley, J.; Rao, T.; Strzyzewski, P.; Li, Z.; Ko, K.; Xiao, L.; Lefferts, R.; Lipski, A.; Ferrario, M.; /Frascati

    2007-11-09

    We report on the progress and status of an electron RFgun made of two superconductors: niobium and lead [1]. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead. The design of RF-gun and performance of 3 test cavities without and with the emitting lead spot are reported in this contribution. Measured quantum efficiency for lead at 2K is presented briefly. More details are reported in [9].

  5. Method of making an improved superconducting quantum interference device

    DOEpatents

    Wu, Cheng-Teh; Falco, Charles M.; Kampwirth, Robert T.

    1977-01-01

    An improved superconducting quantum interference device is made by sputtering a thin film of an alloy of three parts niobium to one part tin in a pattern comprising a closed loop with a narrow region, depositing a thin film of a radiation shield such as copper over the niobium-tin, scribing a narrow line in the copper over the narrow region, exposing the structure at the scribed line to radiation and removing the deposited copper.

  6. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    SciTech Connect

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  7. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  8. Photoemission tests of a Pb/Nb superconducting photoinjector

    SciTech Connect

    J. Smedley; J. Iversen; D. Klinke; D. Kostin; W.-D. Moller; A. Muhs; J. S. Sekutowicz; P. Kneisel; R. S. Lefferts, A. R. Lipski; T. Rao

    2007-06-01

    We report recent progress in the development of a hybrid lead/niobium superconducting (SC) injector. The goal of this effort is to produce an all-SC injector with the SCRF properties of a niobium cavity along with the superior quantum efficiency (QE) of a lead photocathode. Two prototype hybrid injectors have been constructed, one utilizing a cavity with a removable cathode plug, and a second consisting of an all-niobium cavity arc-deposited with lead in the cathode region. We present the results of QE measurements on these cavities, along with tests of the effect of the laser on the cavity RF performance.

  9. Ultrasonic examination of JBK-75 strip material

    SciTech Connect

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material (1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)), feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches (0.28 mm deep (0.011 in., about 17% of the strip thickness)) were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests.

  10. Theoretical study of the ground-state structures and properties of niobium hydrides under pressure

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Hoffmann, Roald; Ashcroft, N. W.; Liu, Hanyu; Bergara, Aitor; Ma, Yanming

    2013-11-01

    As part of a search for enhanced superconductivity, we explore theoretically the ground-state structures and properties of some hydrides of niobium over a range of pressures and particularly those with significant hydrogen content. A primary motivation originates with the observation that under normal conditions niobium is the element with the highest superconducting transition temperature (Tc), and moreover some of its compounds are metals again with very high Tc's. Accordingly, combinations of niobium with hydrogen, with its high dynamic energy scale, are also of considerable interest. This is reinforced further by the suggestion that close to its insulator-metal transition, hydrogen may be induced to enter the metallic state somewhat prematurely by the addition of a relatively small concentration of a suitable transition metal. Here, the methods used correctly reproduce some ground-state structures of niobium hydrides at even higher concentrations of niobium. Interestingly, the particular stoichiometries represented by NbH4 and NbH6 are stabilized at fairly low pressures when proton zero-point energies are included. While no paired H2 units are found in any of the hydrides we have studied up to 400 GPa, we do find complex and interesting networks of hydrogens around the niobiums in high-pressure NbH6. The Nb-Nb separations in NbHn are consistently larger than those found in Nb metal at the respective pressures. The structures found in the ground states of the high hydrides, many of them metallic, suggest that the coordination number of hydrogens around each niobium atom grows approximately as 4n in NbHn (n = 1-4), and is as high as 20 in NbH6. NbH4 is found to be a plausible candidate to become a superconductor at high pressure, with an estimated Tc ˜ 38 K at 300 GPa.

  11. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  12. Niobium and tantalum: indispensable twins

    USGS Publications Warehouse

    Schulz, Klaus; Papp, John

    2014-01-01

    Niobium and tantalum are transition metals almost always paired together in nature. These “twins” are difficult to separate because of their shared physical and chemical properties. In 1801, English chemist Charles Hatchett uncovered an unknown element in a mineral sample of columbite; John Winthrop found the sample in a Massachusetts mine and sent it to the British Museum in London in 1734. The name columbium, which Hatchet named the new element, came from the poetic name for North America—Columbia—and was used interchangeably for niobium until 1949, when the name niobium became official. Swedish scientist Anders Ekberg discovered tantalum in 1802, but it was confused with niobium, because of their twinned properties, until 1864, when it was recognized as a separate element. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion. These special properties determine their primary uses and make niobium and tantalum indispensable.

  13. Niobium - Proceedings of the international symposium

    SciTech Connect

    Stuart, H.

    1984-01-01

    This book presents the papers given at a symposium on niobium. Topics considered at the symposium included niobium mining, ore processing, uses, fabrication, microstructure, mechanical properties, physical properties, corrosion, physical radiation effects, and marketing.

  14. Robotic Stripping

    NASA Technical Reports Server (NTRS)

    2000-01-01

    UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.

  15. Propagation characteristics of superconducting microstrip lines

    SciTech Connect

    Mao, S.G.; Ke, J.Y.; Chen, C.H.

    1996-01-01

    The modified spectral-domain approach is applied to study the propagation characteristics of high temperature superconducting microstrip lines whose signal strip and ground plane are of arbitrary thickness. In this study, numerical results for effective dielectric constant, attenuation constant, and strip current distribution are presented to discuss the effects due to frequency, temperature, strip thickness, and substrate loss tangent. In particular, the conductor and dielectric attenuation constants of superconducting microstrip line are depicted separately to discuss the mechanism of the line losses. A comparison with published theoretical and experimental results is also included to check the accuracy of the new approach`s results.

  16. Effect of low temperature baking on niobium cavities

    SciTech Connect

    Peter Kneisel; Ganapati Myneni; William Lanford; Gianluigi Ciovati

    2003-09-01

    A low temperature (100 C-150 C) ''in situ'' baking under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor and a recovery from the so-called ''Q-drop'' without field emission at high field. A series of experiments with a CEBAF single cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37K-280K and resonant frequency shift between 6K-9.3K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity using a modified version of the computer code originally written by J. Halbritter [1] . Small niobium samples inserted in the cavity during its surface preparation were analyzed with respect to their hydrogen content with a Nuclear Reaction Analysis (NRA). The single cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper describes the results from these experiments and comments on the existing models to explain the effect of baking on the performance of niobium RF cavities.

  17. Field dependent surface resistance of niobium on copper cavities

    NASA Astrophysics Data System (ADS)

    Junginger, T.

    2015-07-01

    The surface resistance RS of superconducting cavities prepared by sputter coating a niobium film on a copper substrate increases significantly stronger with the applied rf field compared to cavities of bulk material. A possible cause is that the thermal boundary resistance between the copper substrate and the niobium film induces heating of the inner cavity wall, resulting in a higher RS. Introducing helium gas in the cavity, and measuring its pressure as a function of applied field allowed to conclude that the inner surface of the cavity is heated up by less than 120 mK when RS increases with Eacc by 100 n Ω . This is more than one order of magnitude less than what one would expect from global heating. Additionally, the effects of cooldown speed and low temperature baking have been investigated in the framework of these experiments. It is shown that for the current state of the art niobium on copper cavities there is only a detrimental effect of low temperature baking. A fast cooldown results in a lowered RS.

  18. CRADA 2009S001: Investigation of the Supercondcuting RF Properties of Large Grain Ingot Niobium

    SciTech Connect

    Grimm, Terry; Hollister, Jerry L.; Kolka, Ahren; Myneni, Ganapati Rao

    2012-12-18

    This CRADA intended to explore the properties of large grain ingot niobium by fabricating four single cell TESLA shaped accelerating cavities. Once the cavities were fabricated, SRF performance would be measured. Niowave received four discs of large grain ingot niobium from JLAB in February 2009. Niowave cut samples from each disc and tested the RRR. After the RRR was measured with disappointing results, the project lost interest. A no cost extension was signed in July 2009 to allow progress until June 2010, but ultimately no further work was accomplished by either party. No firm conclusions were drawn, as further investigations were not made. Large grain ingot niobium has shown real potential for high accelerating gradient superconducting cavities. However, this particular CRADA did not gather enough data to reach any conclusions in this regard.

  19. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  20. Method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.; Finnemore, Douglas K.; Ostenson, Jerome E.; Schmidt, Frederick A.; Owen, Charles V.

    1985-08-06

    An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  1. Improved method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.

    1979-10-17

    An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  2. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    SciTech Connect

    Ford, Denise Christine

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  3. Mechanical Properties of High Purity Niobium - Novel Measurements

    SciTech Connect

    Ganapati Myneni

    2003-09-01

    One of the procedures to improve the performance of superconducting niobium cavities is a heat treatment for several hours in an ultrahigh vacuum at temperatures between 800C and 1400C for hydrogen degassing or post-purification, respectively. However, it was recently observed with Spallation Neutron Source Project (SNS) prototype cavities, that a heat treatment at 800 C for even 1 hour degraded the mechanical properties of RRR niobium, in particular the yield strength. This lower strength resulted in cavity deformations during handling thus affecting both their resonant frequency and field profile. In addition to lowering the yield strength, it was observed in some lots of material that the Young's modulus was also apparently reduced by a factor of 2 as a result of the hydrogen outgassing at 800 C. Surprisingly, material received at other national laboratories exhibited similar anomalous behavior even without any heat treatments in vacuum. Based on these observations a multi-institutional collaborative basic research activity on high RRR niobium (determination of Nb yield strength as a function of grain size, work hardening, chemical composition, and heat treatment temperature) has been initiated by JLAB to gain a better understanding of the material properties affecting the mechanical behavior In this contribution, a brief review of the measurements at JLAB, at the Materials Science and Engineering Department of the University of Virginia, at the Analytical Chemistry and Metallurgy Divisions of the National Institute of Standard and Technology, Gaithersburg and in the Department of Physics, SUNY, Albany are presented. The measurements include yield strength, hardness, ultrasonic velocity, crystallographic structure, microstructure, determination of interstitial contents using internal friction; particular emphasis is placed on determining the hydrogen concentration in the niobium via Cold Neutron Prompt Gamma-Ray Activation Analysis and Neutron Incoherent

  4. Development of a Niobium Bellow for Beamline Connections

    SciTech Connect

    Larry Turlington; John Brawley; Robert Manus; Stephen Manning; Samuel Morgan; Gary Slack; Peter Kneisel

    2003-09-01

    Superconducting cavities in an accelerator assembly are usually connected at the beampipes by stainless steel bellows. They operate at an intermediate temperature, compensating for alignment tolerances on the cavity beamlines and for thermal contraction during cooldown to cryogenic temperatures. This transition from one cavity to the next in a cavity string is typically of the order of 3/2 wavelength along with approximately half a wavelength taken up by the bellows. If one could incorporate a niobium bellows in the beam pipe, this distance could be reduced by half a wave length. In the case of a big accelerator such as TESLA the overall cavity length for the accelerator could be reduced by roughly 10% or 2000 m. In terms of cost savings this would amount to several million dollars. Based on this estimate we have begun to develop a niobium bellows to be used on a 2.75 inch diameter beamline. It is made from 0.3 mm thick niobium sheet, rolled into a tube and secured by a longitudinal full penetration electron beam weld; the weld is made with a high speed a narrow, focused beam reducing the heat affected zone, thus limiting the grain growth, which could affect the formability. Subsequently, two convolutions have been pressed into this tube in a 2-stage process, using an external die and a polyurethane internal expander. Niobium cuffs and flanges were electron beam welded to the formed bellows, which facilitated leak testing and allowed some measurements of compression/expansion and bending. In this contribution the fabrication process and the subsequent mechanical and vacuum tests with the bellows will be described.

  5. Plasma Treatment of Single-Cell Niobium SRF Cavities

    SciTech Connect

    J. Upadhyay, M. Nikolić, S. Popović, L. Vušković, H.L. Phillips, A-M. Valente-Feliciano

    2011-03-01

    Superconducting radio frequency cavities of bulk Niobium are integral components of particle accelerators based on superconducting technology. Wet chemical processing is the commonly used procedure for impurities and surface defects removal and surface roughness improvement , both required to improve the RF performance of the cavity. We are studying plasma etching as an alternate technique to process these cavities. The uniformity of the plasma sheath at the inner wall of the cavity is one prerequisite for its uniform etching. We are developing electro-optic diagnostic techniques to assess the plasma uniformity. Multiple electro-optical probes are placed at different locations of the single cell cavity to diagnose the electrical and optical properties of the plasma. The electrical parameters are required to understand the kinetic nature of the plasma and the optical emission spectroscopy provides the spatial distribution of radicals in the plasma. The spatial variation of the plasma parameters inside the cavity and their effect on the etching of niobium samples placed at different locations in the cavity will be presented.

  6. Using helium as background gas to avoid hydrogen brittleness for MgB2 film fabrication on niobium substrate by HPCVD

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Ni, Zhimao; Chen, Lizhi; Hu, Hui; Yang, Can; Feng, Qingrong; Liu, Kexin

    2016-05-01

    Magnesium diboride has shown potential as an alternative material for the application of superconducting RF cavities. However, if MgB2 films are fabricated on niobium substrates with HPCVD method, hydrogen brittleness will cause cracks on MgB2 film when it is bent. In this work, we have investigated the possibility of depositing MgB2 film on niobium in other background gases rather than hydrogen to avoid hydrogen brittleness. Though MgB2 films fabricated in nitrogen and argon have impurities and show poor superconducting properties, the MgB2 film fabricated in helium has similar morphology and superconducting properties of that prepared in hydrogen and no cracks are observed after bending. The problem of hydrogen brittleness can be solved by using helium as the background gas when fabricating MgB2 films on niobium substrates.

  7. Effect of interstitial impurities on the field dependent microwave surface resistance of niobium

    NASA Astrophysics Data System (ADS)

    Martinello, M.; Grassellino, A.; Checchin, M.; Romanenko, A.; Melnychuk, O.; Sergatskov, D. A.; Posen, S.; Zasadzinski, J. F.

    2016-08-01

    Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. This effect is attributed to the lowering of the Mattis-Bardeen surface resistance with increasing accelerating field; however, the microscopic origin of this phenomenon is poorly understood. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper, we conduct a systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobium resonators. Adding these results together, we are able to show which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. These results also provide insights on the physics behind the change in the field dependence of the Mattis-Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.

  8. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  9. Testing of HOM coupler designs on a single cell niobium cavity

    SciTech Connect

    Peter Kneisel; Gianluigi Ciovati; ganapati rao myneni; Genfa Wu; Jacek Sekutowicz

    2005-05-01

    Coaxial higher order mode (HOM) couplers were developed initially for HERA cavities and subsequently for TESLA cavities. They were adopted later for SNS and Jlab upgrade cavities. The principle of operation is the rejection of the fundamental mode by the tunable filter and the transmission of the HOMs. It has been recognized recently that for continuous wave or high duty factor applications of the TESLA coupler the output pick-up probe must stay superconducting in order to avoid its heating by the fundamental mode residual magnetic field leading to deterioration of the cavity quality factor. In addition, the thermal conduction of existing rf feedthrough designs is only marginally sufficient to keep even the niobium probe tip superconducting in cw operation. We have equipped a single-cell niobium cavity with the modified HOM couplers and tested the new designs by measuring Q vs Eacc behavior at 2 K for different feedthroughs and probe tip materials.

  10. Single Crystal and Large Grain Niobium Research at Michigan State University

    SciTech Connect

    Compton, Chris; Aizaz, Ahmad; Baars, Derek; Bieler, Tom; Bierwagen, John; Bricker, Steve; Grimm, Terry; Hartung, Walter; Jiang, Hairong; Johnson, Matt; Popielarski, John; Saxton, Laura; Antoine, Claire; Wagner, Bob; Kneisel, Peter

    2007-09-01

    As Superconducting Radio Frequency (SRF) technology is used in more accelerator designs, research has focused on increasing the efficiency of these accelerators by pushing gradients and investigating cast reduction options. Today, most SRF structures are fabricated from high purity niobium. Over years of research, a material specification has been derived that defines a uniaxial, fine gain structure for SRF cavity fabrication. Most recently a push has been made to investigate the merits of using single or large grain niobium as a possible alternative to fine grain niobium. Michigan State University (MSU), in collaboration with Fermi National Accelerator Laboratory (FNAL) and Thomas Jefferson National Accelerator Facility (JLAB), is researching large grain niobium via cavity fabrication processes end testing, as well as exploring materials science issues associated with recrystallization and heat transfer. Single-cell 1.3 GHz (Beta=0.081) cavities made from both fine end large grain niobium were compared both in terms of fabrication procedures and performance. Two 7-cell cavities are currently being fabricated.

  11. First-Principles Study of Carbon and Vacancy Structures in Niobium

    DOE PAGES

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes withmore » other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.« less

  12. First-Principles Study of Carbon and Vacancy Structures in Niobium

    SciTech Connect

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes with other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.

  13. Microtube Strip Heat Exchanger

    SciTech Connect

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)

  14. Spectrophotometric determination of niobium and its application to niobium-stabilized stainless steel.

    PubMed

    Dutta, R K; Banerjee, S

    1974-10-01

    A spectrophotometric method is described for the determination of niobium by means of its reaction with tannin and thioglycollic acid. The yellow-orange colour developed with the reagent mixture at pH 4 is measured at 410-420 nm and obeys Beer's law between 0.5 and 10 ppm niobium. The method is suitable for the determination of niobium in niobium-stabilized stainless steel and other types of steels containing niobium, but a prior separation of niobium is necessary. Titanium interferes even in traces. PMID:18961571

  15. Superconductive thin film makes convenient liquid helium level sensor

    NASA Technical Reports Server (NTRS)

    Becker, H. H.

    1968-01-01

    Sensor consisting of superconductive film mounted on a dipstick measures the level of liquid helium in a Dewar flask. The sensor is made by depositing a thin film of niobium metal to a thickness of 2000 angstroms on a quartz substrate, which is then mounted on a graduated dipstick.

  16. Static and dynamic analysis of the APT superconducting cavities

    SciTech Connect

    Schrage, D.; Swensen, E.; Rusnak, B.

    1995-09-01

    Static and dynamic analysis of 4-, 6-, and 12-cell {beta}=0.428 niobium cavities proposed for the superconducting linac for the Accelerator Production of Tritium were carried out using COSMOS/M{copyright}, a commercial finite-element code. The benefits of external stiffeners, the tuning sensitivities, and the mechanical resonant frequencies are reported.

  17. PROGRESS ON LEAD PHOTOCATHODES FOR SUPERCONDUCTING INJECTORS.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; SEKUTOWICZ, J.; KNEISEL, P.; LANGNER, J.; STRZYZEWSKI, P.; LEFFERTS, R.; LIPSKI, A.

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.

  18. Progress on lead photocathodes for superconducting injectors

    SciTech Connect

    Smedley, John; Rao, Triveni; Sekutowicz, Jacek; Kneisel, Peter; Langner, J; Strzyzewski, P; Lefferts, Richard; Lipski, Andrzej

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead plated cathode is underway.

  19. Superconducting, fast rise-time voltage source

    SciTech Connect

    Lumley, R.M.

    1983-01-25

    A pulse generator comprises a toroid of a superconducting material such as niobium on a glass or ceramic substrate. A cryogenic source such as liquid helium cools the toroid to within a few degrees of absolute zero and a perpetually circulatory current is set up in the toroid. A laser beam is fired at the toroid to cause localized heating and the resultant current drop due to the material resistance causes an output pulse to be induced in an adjacent current winding.

  20. 1 mm ultrafast superconducting stripline molecule detector

    NASA Astrophysics Data System (ADS)

    Zen, N.; Casaburi, A.; Shiki, S.; Suzuki, K.; Ejrnaes, M.; Cristiano, R.; Ohkubo, M.

    2009-10-01

    Superconducting stripline detectors (SSLDs) are promising for detecting keV molecules at nanosecond response times and with mass-independent detection efficiency. However, a fast response time is incompatible with practical centimeter detector size. A parallel configuration of striplines provides a means to address this problem. Experimental results and simulation for promisingly large 1-mm-square parallel niobium SSLDs show that nanosecond pulses are produced by superconducting-normal transition within only one of the parallel striplines instead of cascade switching of all the parallel striplines. Successful detection of a series of multimers of immunoglobulin G up to 584 kDa supports the mass-independent efficiency for mass spectrometry.

  1. Superconducting Thin Films for SRF Cavity Applications: A Route to Higher Field Gradient Linacs

    NASA Astrophysics Data System (ADS)

    Roach, Wiliam Michael

    Many linear accelerator (linac) applications rely on the use of superconducting radio frequency (SRF) cavities. In order to overcome the current field gradient limits imposed by the use of bulk niobium, a model involving the deposition of alternating superconducting-insulating-superconducting (SIS) thin films onto the interior surface of SRF cavities has been proposed. Since SRF performance is a surface phenomenon, the critical surface of these cavities is less than 1 micron thick, thus enabling the use of thin films. Before such approach can successfully be implemented fundamental studies correlating the microstructure and superconducting properties of thin films are needed. To this end the effect of grain boundary density and interfacial strain in thin films has been explored. Thin films with a smaller grain boundary density were found to have better superconducting properties than films with a larger grain boundary density. Interfacial strain due to a lattice mismatch between the film and substrate lead to two regions in films, one strained region near the interface and one relaxed region away from the interface. The presence of two regions in the film resulted in two types of superconducting behavior. Niobium films were deposited onto copper surfaces to help understand why previous attempts of implementing niobium coated copper cavities in order to exploit the better thermal properties of copper had varying degrees of success. It was found that an increased growth temperature produced niobium films with larger grains and correspondingly better superconducting properties. Proof of principle multilayer samples were prepared to test the SIS model. For the first time, multilayers were produced that were capable of shielding an underlying niobium film from vortex penetration beyond the lower critical field of bulk niobium. This result provides evidence supporting the feasibility of the SIS model.

  2. Superconducting heavy ion injector linac

    SciTech Connect

    Shepard, K.W.

    1985-01-01

    A conceptual design for a very low velocity (.007 < v/c < .07) superconducting heavy-ion linac is reviewed. This type of linac may have significant cost and performance advantages over room-temperature linacs, at least for applications requiring modest beam currents. Some general features of the design of very-low velocity superconducting accelerating structures are discussed and a design for a 48.5 MHz, v/c = .009 structure, together with the status of a niobium prototype, is discussed in detail. Preliminary results of a beam dynamics study indicate that the low velocity linac may be able to produce heavy-ion beams with time-energy spreads of a few keV-nsec. 11 refs, 4 figs.

  3. Niobium content of soils from West Africa

    USGS Publications Warehouse

    Grimaldi, F.S.; Berger, I.A.

    1961-01-01

    Analysis of twenty lateritic soil samples from West Africa has shown them to contain an average 24 p.p.m. of niobium; four similar samples taken from within a few miles from a niobium deposit contain from 79 to 87 p.p.m. niobium. It has been shown that as the aluminum content of the soils increases, the following depletion sequence is obtained: Si > Nb > Al = Fe The data indicate that, in general, high enrichments of niobium are not to be expected in lateritic soils. ?? 1961.

  4. Process for alloying uranium and niobium

    DOEpatents

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  5. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  6. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  7. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  8. Tunneling study of SRF cavity-grade niobium.

    SciTech Connect

    Proslier, T.; Zasadzinski, J.; Cooley, L.; Pellin, M.; Norem, J.; Elam, J.; Antonine, C. Z.; Rimmer, R.; Kneisel, P.; Illinois Inst. of Tech.; FNL; Thomas Jefferson Lab.; CEA-Saclay

    2009-06-01

    Niobium, with its very high H{sub C1}, has been used in superconducting radio frequency (SRF) cavities for accelerator systems for 40 years with continual improvement. The quality factor of cavities (Q) is governed by the surface impedance R{sub BCS}, which depends on the quasiparticle gap, delta, and the superfluid density. Both of these parameters are seriously affected by surface imperfections (metallic phases, dissolved oxygen, magnetic impurities). Loss mechanism and surface treatments of Nb cavities found to improve the Q factor are still unsolved mysteries. We present here an overview of the capabilities of the point contact tunneling spectroscopy and Atomic layer deposition methods and how they can help understanding the High field Q-drop and the mild baking effect. Tunneling spectroscopy was performed on Nb pieces from the same processed material used to fabricate SRF cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap Delta = 1.55 meV, characteristic of clean, bulk Nb, however the tunneling density of states (DOS) was broadened significantly. Nb pieces treated with the same mild baking used to improve the Q-slope in SRF cavities revealed a much sharper DOS. Good fits to the DOS are obtained using Shiba theory suggesting that magnetic scattering of quasiparticles is the origin of the degraded surface superconductivity and the Q-slope problem of Nb SRF cavities.

  9. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  10. On new possibilities in microwave superconductivity

    NASA Astrophysics Data System (ADS)

    Canabal, Alberto

    Superconductivity is a phenomenon that has been fascinating scientists, engineers, and the general public since its discovery in 1911. Many people associate the properties of superconductors with the astonishing demonstration of a levitating magnet over a superconductor when it is cooled down below its transition temperature. We now know that superconductivity is a very common phenomenon present in many metals in the periodic table. It was not until 1986 that superconductivity above about 30 K was discovered, giving birth to the era of high temperature superconductors. Today many applications take advantage of this property, ranging from medical instrumentation, transportation, high energy particle accelerators, to digital and analog electronics. Most of the applications fall within two well differentiated uses of superconductors, for which different properties are being exploited. One example is the use of superconductors to generate very large static magnetic fields, which usually employ newly discovered high temperature superconductors, taking advantage of their very large upper critical magnetic field. Alternatively, applications involving high-power microwaves usually rely on superconductors with high lower critical magnetic field, for which niobium is commonly the material of choice. Almost a century after the discovery of superconductivity, this dissertation explores potential new possibilities for high power microwave superconducting applications. First, we study and model a new method of determining the magnetic critical field of superconducting materials at microwave frequencies. Subsequently, we numerically study the theoretical performance of multilayer structures composed of alternating superconducting and dielectric materials. These structures theoretically allow us to sustain higher magnetic fields than niobium at microwave frequencies.

  11. Superconductive microstrip exhibiting negative differential resistivity

    DOEpatents

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  12. VLSI Superconducting Particle Detectors (With 7 Figures)

    NASA Astrophysics Data System (ADS)

    Liengme, O.

    The purpose of this paper is to present the hotspot model and define its validity range. This concept leads to a class of superconducting detectors. Predictions on particle-induced switching of Josephson junctions and superconducting strips or wires are obtained from this hotspot model. These results agree well with experimental data from the literature. Finally, the propagating hotspot is suggested as a method for very high resolution particle position detection and imaging.

  13. Purification of Niobium by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.

    2016-06-01

    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  14. Free energy of hydration of niobium oxide

    SciTech Connect

    Plodinec, M.J.

    1996-08-21

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium.

  15. SIMS analysis of high-performance accelerator niobium

    SciTech Connect

    Maheshwari, P.; Stevie, F. A.; Myneni, Ganapati Rao; Rigsbee, J, M.; Dhakal, Pashupati; Ciovati, Gianluigi; Griffis, D. P.

    2014-11-01

    Niobium is used to fabricate superconducting radio frequency accelerator modules because of its high critical temperature, high critical magnetic field, and easy formability. Recent experiments have shown a very significant improvement in performance (over 100%) after a high-temperature bake at 1400 degrees C for 3h. SIMS analysis of this material showed the oxygen profile was significantly deeper than the native oxide with a shape that is indicative of diffusion. Positive secondary ion mass spectra showed the presence of Ti with a depth profile similar to that of O. It is suspected that Ti is associated with the performance improvement. The source of Ti contamination in the anneal furnace has been identified, and a new furnace was constructed without Ti. Initial results from the new furnace do not show the yield improvement. Further analyses should determine the relationship of Ti to cavity performance.

  16. Unanticipated results in the uranium niobium alloy system

    SciTech Connect

    Cooley, J. C.; Hults, W. L.; Dauelsberg, L. B.; Thoma, D. J.; Peterson, E. J.; Teter, D. F.; Smith, J. L.; Kelly, A. M.; Lashley, J. C.

    2002-01-01

    The uranium niobium binary alloy system exhibits a rich collection of phenomena for study. The composition range from 0 wt.% Nb to 10 wt.% Nb exhibits multiple crystallographic phases with interesting properties such as superconductivity, charge density waves and shape memory effects. We have measured the resistivity and heat capacity as a function of temperature from 2 to 325K in the above composition range in an effort to map out the phase boundaries of interest. Surprisingly the temperature dependence of the resistivity transitions from metallic (decreasing with decreasing temperature) to nonmetallic (increasing with decreasing temperature). It is not clear if the nonmetallic resistivity is caused by strongly correlated electronic effects or is the result of some other effect such as disorder driven scattering.

  17. Thermodynamic Evaluation of Hydrogen Absorption by Niobium During SRF Fabrication

    SciTech Connect

    R.E. Ricker, G.R. Myneni

    2011-03-01

    The properties and performance of the ultra high purity Nb used to fabricate superconducting radio frequency (SRF) particle accelerator cavities have been found to vary with processing conditions. One hypothesis for these variations is that hydrogen, absorbed during processing, is responsible for this behavior. The key assumption behind this hypothesis is that niobium can absorb hydrogen from one or more of the processing environments. This paper reviews work examining the validity of this assumption. It was determined that Nb will spontaneously react with water producing adsorbed atomic hydrogen that is readily absorbed into the metal. The passivating oxide film normally prevents this reaction, but this film is frequently removed during processing and it is attacked by the fluoride ion used in the polishing solutions for SRF cavities. However, during electropolishing that cathodic reduction of hydrogen is transferred to the auxiliary electrode and this should suppress hydrogen absorption.

  18. Thermodynamic Evaluation of Hydrogen Absorption by Niobium During SRF Fabrication

    SciTech Connect

    Ricker, R. E.; Myneni, G. R.

    2011-03-31

    The properties and performance of the ultra high purity Nb used to fabricate superconducting radio frequency (SRF) particle accelerator cavities have been found to vary with processing conditions. One hypothesis for these variations is that hydrogen, absorbed during processing, is responsible for this behavior. The key assumption behind this hypothesis is that niobium can absorb hydrogen from one or more of the processing environments. This paper reviews work examining the validity of this assumption. It was determined that Nb will spontaneously react with water producing adsorbed atomic hydrogen that is readily absorbed into the metal. The passivating oxide film normally prevents this reaction, but this film is frequently removed during processing and it is attacked by the fluoride ion used in the polishing solutions for SRF cavities. However, during electropolishing that cathodic reduction of hydrogen is transferred to the auxiliary electrode and this should suppress hydrogen absorption.

  19. Quantum Phase Slips in 6 mm Long Niobium Nanowire.

    PubMed

    Zhao, Weiwei; Liu, Xin; Chan, M H W

    2016-02-10

    Transport measurements were made to study the superconducting transition of four 6 mm long niobium nanowires with different cross-sectional dimensions. A low-temperature residual resistance tail measured with an excitation current of 5 nA is found in the thinnest wire down to 50 mK or 7.7% of Tc of Nb. The functional form of the residual resistance is consistent with quantum phase slip (QPS) processes. Resistance measured at high bias excitation current switches among many discrete values that are well below the normal state resistance. These discrete resistance values as a function of temperature fall into several parallel curves all showing QPS-like decay in the low temperature limit similar to that found at low current. The coexistence of QPS-like resistance tails and resistance jumps found in the same wire unifies results from previous experiments where these two distinct sets of evidence for QPS are exclusive of each other. PMID:26788964

  20. Improved surface treatment of the superconducting TESLA cavities

    NASA Astrophysics Data System (ADS)

    Lilje, L.; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmüser, P.; Trines, D.; Visentin, B.; Wenninger, H.

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  1. Flux Pinning in Superconducting Niobium-Titanium Alloys

    NASA Astrophysics Data System (ADS)

    McKinnell, James Charles

    1990-01-01

    By studying Nb-Ti alloys from Nb44wt%Ti to Nb62wt%Ti the low field (2T) current density has been raised from 6500A/mm^2 (4.2^ circK) with standard Nb46.5wt%Ti to 7400A/mm ^2 with Nb58wt%Ti. When standard processing sequences were used, the alloys containing more than 46.5wt%Ti exhibited non-uniform microstructures following a precipitation heat treatment and the hardness rose from 200 DPN to over 300 DPN. By increasing the cold work prior to heat treatment the non-uniform precipitation was avoided. The amount of cold work needed prior to heat treatment to suppress non-uniform precipitation increased as the Ti content of the alloy increased. The volume fraction of precipitate produced during a given heat treatment also increased as the Ti content of the alloy increased. As the Ti content increased, the peak in the reduced pinning force curve shifted from b = 0.5 to b = 0.25. In order to determine whether the change in the flux pinning properties was due to the change in microstructure or due to enhanced Delta H_{c} pinning as the Ti content was increased, a set of wires with similar microstructures was developed. Their flux pinning behavior showed that the higher Ti alloys have pinning force curves which peak at progressively lower reduced fields. Thus Delta H_{c} pinning becomes the dominant pinning mechanism as the Ti content is increased.

  2. Reduced T(sub c) Niobium Superconducting HEB Mixers

    NASA Technical Reports Server (NTRS)

    Siddiqi, I.; Prober, D. E.; Bumble, B.; LeDuc, H. G.

    2001-01-01

    A reduction in the mixer noise is expected when using superconductors with a lower transition temperature (T(sub c)) since the thermal noise components of the mixer noise should scale with T(sub c). Also, the local oscillator (LO) power required for a diffusion-cooled device should decrease as T(sub c) when T(sub bath) << T(sub c). We previously studied mixing in aluminum based hot-electron bolometers (HEBs) at microwave frequencies (approximately 30 GHz), and observed a significant improvement in noise performance, and a reduction in LO power as predicted. However, the bias voltage range over which good mixer performance was observed was approximately 5 - 10 microV. These devices are thus susceptible to saturation effects, in particular output saturation. In the present work, we have investigated Nb HEBs whose T(sub c) is lowered by applying a magnetic field. The goal is to study a case intermediate between Nb and Al, and hopefully to find properties that will allow use in practical receivers. A 15 kOe perpendicular magnetic field was applied to a Nb HEB (L = 0.16 micrometers, W = 0.08 micrometers, R(sub N) = 90 ohms) to reduce T(sub c) from 5.2 K to 2.4 K. The mixer noise, as inferred from the output noise and the conversion efficiency, decreased from 390 K, DSB to 171 K, DSB. The LO power required for near optimum mixer conversion efficiency (eta(sub mixer) = -9 dB in this device) was 8 nW in zero field, and approximately 2 nW when T(sub c) was reduced to 2.4 K. T(sub bath) = 0.22 K. The conversion bandwidth was previously measured to be 2.4 GHz and the same bandwidth was observed in the presence of a magnetic field. By lowering T(sub c), the voltage range over which good mixing was observed also decreased. However, even with T(sub c) reduced to 2.4 K, the conversion efficiency dropped by 3 dB from its maximum value only when the bias voltage was changed by approximately 90 microV. Saturation effects should thus be much less of a concern in these devices than in Al HEBS. In situations where the application of a large magnetic field is not feasible, we suggest using Ta based HEBS. Ta HEBs should have T(sub c) = 3 - 3.5 K and material properties very similar to Nb.

  3. RF superconducting properties of thin films on niobium

    SciTech Connect

    Campisi, I.E.; Deruyter, H.; Farkas, Z.D.; Garwin, E.L.; Hogg, H.A.; King, F.; Kirby, R.E.

    1983-03-01

    We are investigating the RF properties of thin films of materials which are known to have low secondary emission coefficients, such as NbC, NbN and TiN. Preliminary measurements on the latter material have been performed by depositing a 15 nm film on parts of a doubly re-entrant Nb cavity designed to favor electron multipacting which, in the uncoated cavity, occurs copiously between the posts' tips. The measurements performed with TiN films sputtered onto Nb indicate that the RF current losses are increased by the presence of the films while the dielectric losses are negligible, within the measurement sensitivity of the system. The electron multipacting cannot be excited between the posts coated with the material tested.

  4. Segmented superconducting tape having reduced AC losses and method of making

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Holesinger, Terry G.; Wang, Haiyan

    2009-09-22

    A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.

  5. Binary and ternary niobium-base superconductors by the infiltration process

    SciTech Connect

    Pickus, M.R.; Holthius, J.T.; Rosen, M.

    1980-06-01

    This report summarizes the work on high field superconducting materials and processes performed at the Materials and Molecular Research Division of the Lawrence Berkeley Laboratory. Two major interrelated focal points characterize this research. One was the decision to restrict the effort to A-15 compounds because of their superior critical temperatures and critical fields. The inherent brittleness of these compounds along with the requirement for a filamentary morphology led to the second focal point: a heavy reliance on a powder approach for the fabrication of superconducting tapes and wires. There have been exceptions to the use of powder techniques where special circumstances such as the nature of a particular alloy system suggested on alternative approach. The quench-age technique described herein is an example of a non-powder approach. Here the niobium-aluminum system is involved and the methodology is based on the fact that in a certain composition range a solid solution of aluminum in niobium is the stable phase at elevated temperatures (1950/sup 0/C), whereas at lower temperatures (< 1100/sup 0/C) the stable phase is the desired A-15 compound. Additionally, niobium forms deformation twins which were found to be effective sites for the nucleation of the A-15 phase.

  6. Structural/magnetic phase transitions and superconductivity in Ba(Fe1-xTMx)2As2 (TM=Co, Ni, Cu, Co/Cu, Rh and Pd) single crystals

    SciTech Connect

    Ni, Ni

    2009-01-01

    Since its discovery in 1911, superconductivity has been one of the most actively studied fields in condensed matter physics and has attracted immense experimental and theoretical effort. At this point in time, with more and more superconductors discovered in elements, alloys, intermetallic compounds and oxides, it is becoming clear that superconductivity is actually not so rare in nature. Almost half of the elements in the periodic table and hundreds of compounds have been found to be superconducting. Fig. 1.1 shows the milestones in discovering higher Tc superconductors. Among the elemental superconductors, Niobium has the highest superconducting transition temperature, Tc, of 9.5 K. This record held for more than ten years, until the discovery of niobium nitride which superconducts below 16 K. It took another thirty years for Tc to increase from 16 K in niobium nitride to 23 K in niobium germanium.

  7. Lateral flow strip assay

    DOEpatents

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  8. A Survey of Pressure Vessel Code Compliance for Superconducting RF Cryomodules

    SciTech Connect

    Peterson, Thomas; Klebaner, Arkadiy; Nicol, Tom; Theilacker, Jay; Hayano, Hitoshi; Kako, Eiji; Nakai, Hirotaka; Yamamoto, Akira; Jensch, Kay; Matheisen, Axel; Mammosser, John; /Jefferson Lab

    2011-06-07

    Superconducting radio frequency (SRF) cavities made from niobium and cooled with liquid helium are becoming key components of many particle accelerators. The helium vessels surrounding the RF cavities, portions of the niobium cavities themselves, and also possibly the vacuum vessels containing these assemblies, generally fall under the scope of local and national pressure vessel codes. In the U.S., Department of Energy rules require national laboratories to follow national consensus pressure vessel standards or to show ''a level of safety greater than or equal to'' that of the applicable standard. Thus, while used for its superconducting properties, niobium ends up being treated as a low-temperature pressure vessel material. Niobium material is not a code listed material and therefore requires the designer to understand the mechanical properties for material used in each pressure vessel fabrication; compliance with pressure vessel codes therefore becomes a problem. This report summarizes the approaches that various institutions have taken in order to bring superconducting RF cryomodules into compliance with pressure vessel codes. In Japan, Germany, and the U.S., institutions building superconducting RF cavities integrated in helium vessels or procuring them from vendors have had to deal with pressure vessel requirements being applied to SRF vessels, including the niobium and niobium-titanium components of the vessels. While niobium is not an approved pressure vessel material, data from tests of material samples provide information to set allowable stresses. By means of procedures which include adherence to code welding procedures, maintaining material and fabrication records, and detailed analyses of peak stresses in the vessels, or treatment of the vacuum vessel as the pressure boundary, research laboratories around the world have found methods to demonstrate and document a level of safety equivalent to the applicable pressure vessel codes.

  9. Modulating sub-THz radiation with current in superconducting metamaterial.

    PubMed

    Savinov, V; Fedotov, V A; Anlage, S M; de Groot, P A J; Zheludev, N I

    2012-12-14

    We show that subterahertz transmission of the superconducting metamaterial, an interlinked two-dimensional network of subwavelength resonators connected by a continuous superconducting wire loop, can be dynamically modulated by passing electrical current through it. We have identified the main mechanisms of modulation that correspond to the suppression of the superconductivity in the network by magnetic field and heat dissipation. Using the metamaterial fabricated from thin niobium film, we were able to demonstrate a transmission modulation depth of up to 45% and a bandwidth of at least 100 kHz. The demonstrated approach may be implemented with other superconducting materials at frequencies below the superconducting gap in the THz and subterahertz bands. PMID:23368321

  10. Ultrathin niobium nanofilms on fiber optical tapers – a new route towards low-loss hybrid plasmonic modes

    PubMed Central

    Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A.

    2015-01-01

    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3–4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices. PMID:26593209

  11. Ultrathin niobium nanofilms on fiber optical tapers--a new route towards low-loss hybrid plasmonic modes.

    PubMed

    Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A

    2015-01-01

    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3-4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices. PMID:26593209

  12. Niobium thin film coating on a 500-MHz copper cavity by plasma deposition

    SciTech Connect

    Haipeng Wang; Genfa Wu; H. Phillips; Robert Rimmer; Anne-Marie Valente; Andy Wu

    2005-05-16

    A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system and this system. Engineering work progress toward the first plasma creation will be reported here.

  13. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  14. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  15. A Terminally Bound Niobium Methylidyne.

    PubMed

    Kurogi, Takashi; Carroll, Patrick J; Mindiola, Daniel J

    2016-04-01

    Complex (PNP)Nb(CH3)2(OAr) (PNP = N[2-P(i)Pr2-4-methylphenyl]2(-), Ar = 2,6-(i)Pr2C6H3), prepared from treatment of (PNP)NbCl3 with NaOAr followed by 2 equiv of H3CMgCl, can be oxidized with [FeCp2][OTf] to afford (PNP)Nb(CH3)2(OAr)(OTf). While photolysis of the latter resulted in formation of a rare example of a niobium methylidene, (PNP)Nb═CH2(OAr)(OTf), treatment of the dimethyl triflate precursor with the ylide H2CPPh3 produced the mononuclear group 5 methylidyne complex, (PNP)Nb≡CH(OAr). Adding a Brønsted base to (PNP)Nb═CH2(OAr)(OTf) also resulted in formation of the methylidyne. Solid-state structural analysis confirms both methylidene and methylidyne moieties to be terminal, having very short Nb-C distances of 1.963(2) and 1.820(2) Å, respectively. It is also shown that methylidyne for nitride cross-metathesis between (PNP)Nb≡CH(OAr) and NCR (R = tert-butyl or 1-adamantyl) results in formation of a neutral and mononuclear niobium nitride, (PNP)Nb≡N(OAr), along with the terminal alkyne HC≡CR. PMID:26977892

  16. Ductile alloy and process for preparing composite superconducting wire

    DOEpatents

    Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  17. Ductile alloy and process for preparing composite superconducting wire

    DOEpatents

    Verhoeven, John D.; Finnemore, Douglas K.; Gibson, Edwin D.; Ostenson, Jerome E.

    1983-03-29

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and orientated dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritric particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  18. Fatigue of niobium. Technical progress report

    SciTech Connect

    Stoloff, N. S.

    1980-01-31

    Tests to determine the effects of frequency, test temperature, and hydrogen content on the fatigue life and crack propagation behavior of polycrystalline niobium are described. Unalloyed niobium is nearly insensitive to test frequency at 25/sup 0/C, while hydrided alloys exhibit a strong frequency effect. Increasing test temperature decreases fatigue life, consistent with decreasing tensile strength. A brief survey of irradiation effects on fatigue of refractory metal alloys suggests that fatigue resistance of irradiated niobium should increase in proportion to effects on strength.

  19. Anatomy comic strips.

    PubMed

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective imagination. The comics were drawn on paper and then recreated with digital graphics software. More than 500 comic strips have been drawn and labeled in Korean language, and some of them have been translated into English. All comic strips can be viewed on the Department of Anatomy homepage at the Ajou University School of Medicine, Suwon, Republic of Korea. The comic strips were written and drawn by experienced anatomists, and responses from viewers have generally been favorable. These anatomy comic strips, designed to help students learn the complexities of anatomy in a straightforward and humorous way, are expected to be improved further by the authors and other interested anatomists.

  20. High upper critical field in disordered niobium nitride superconductor

    SciTech Connect

    Baskaran, R. Thanikai Arasu, A. V.; Amaladass, E. P.; Janawadkar, M. P.

    2014-10-28

    Superconducting Niobium Nitride thin films have been deposited on glass, aluminum nitride buffered glass, and oxidized silicon substrates by reactive DC magnetron sputtering at ambient substrate temperatures. The crystal structure of these thin films has been determined to be cubic fcc B1 structure by Glancing Incidence X-Ray Diffraction analysis. The superconducting transition temperatures of the thin films were measured to be greater than 11.6 K with a maximum of 13.4 K. The negative temperature coefficient of resistance observed in these thin films indicates the presence of disorder. Magneto-resistance measurements have been carried out on these thin films patterned into standard four probe geometry upto a maximum magnetic field of 12 T for two films and upto 15 T for the other two films. The dependence of transition temperature on the applied field is analyzed to estimate the upper critical field. The upper critical field for most of the films was estimated to exceed 35 T, while one of the most disordered films had an estimated upper critical field greater than 70 T.

  1. Multifilamentary niobium tin superconductor tape

    NASA Technical Reports Server (NTRS)

    Brisbin, P. H.; Coles, W. D.

    1975-01-01

    In the method proposed for fabricating multifilamentary Nb3Sn tape, filamentary superconducting paths are produced in standard commercial superconductor tape by chemical milling of separator slots through the Nb3Sn layer. The multifilament configuration features a matrix of ten 1.2 mm wide parallel helical superconducting paths along the length of the tape. The paths are spaced 0.4 mm apart. Tapes tested as small pancake coils demonstrated the integrity and continuity of the matrix, and showed that critical current was sustained in direct proportion to retained superconductor.

  2. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  3. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  4. Mineral Resource of the Month: Niobium

    USGS Publications Warehouse

    Papp, John F.

    2014-01-01

    Niobium, also called columbium, is a transition metal with a very high melting point. It is in greatest demand in industrialized countries, like the United States, because of its defense-related uses in the aerospace, energy and transportation industries. Niobium is used mostly to make high-strength, low-alloy (HSLA) steel and stainless steel. HSLA steels are used in large-diameter pipes for oil and natural gas pipelines and automobile wheels.

  5. Mineral resource of the month: niobium (columbium)

    USGS Publications Warehouse

    Papp, John F.

    2007-01-01

    It’s not just diamonds associated with conflict in Africa. Coltan, short for columbite-tantalite (a blend of niobium — also called columbium — and tantalum minerals), is linked with the recent conflicts in the Congo that involved several African countries. The metallic ore, which is processed to separate out niobium and the very valuable tantalum (see Geotimes, August 2004), is believed to be smuggled out and sold to help finance the armed conflicts.

  6. Enhancement in Quality Factor of SRF Niobium Cavities by Material Diffusion

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter K.; Myneni, Ganapati Rao

    2015-06-01

    An increase in the quality factor of superconducting radiofrequency cavities is achieved by minimizing the surface resistance during processing steps. The surface resistance is the sum of temperature independent residual resistance and temperature/material dependent Bardeen-Cooper-Schrieffer (BCS) resistance. High temperature heat treatment usually reduces the impurities concentration from the bulk niobium, lowering the residual resistance. The BCS part can be reduced by selectively doping non-magnetic impurities. The increase in quality factor, termed as Q-rise, was observed in cavities when titanium or nitrogen thermally diffused in the inner cavity surface.

  7. Status of the first batch of niobium resonator production for the New Delhi booster linac.

    SciTech Connect

    Potukuchi, P. N.

    1999-03-16

    This paper reports the status and details of the costs of construction of niobium superconducting resonant cavities for a linear accelerator, presently being built as a booster for the 15 UD tandem Pelletron accelerator at the Nuclear Science Centre, New Delhi. The linear accelerator will have three cryostat modules, each holding eight quarter-wave resonators. Construction of a batch of ten resonators for the linac started at Argonne National Laboratory in May 1997. For production, all fabrication and all electron beam welding is being done through commercial vendors. Details of construction and present status of the project are presented.

  8. Improving the work function of the niobium surface of SRF cavities by plasma processing

    DOE PAGES

    Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; et al

    2016-01-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature was developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5₋1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  9. Electrical and infrared properties of thin niobium microbolometers near T(sub c)

    NASA Technical Reports Server (NTRS)

    Grossman, E. N.; Sauvageau, J. E.; Mcdonald, D. G.

    1992-01-01

    Niobium microbolometers approximately 1 micron wide x 2 micron long x 10 nm thick have been integrated at the feeds of equiangular spiral antennas made of 200 nm thick Nb. The device's current-voltage characteristics and infrared responsivity as a function of DC bias voltage were measured over a range of temperature spanning approximately plus or minus 2 percent around T(sub c). The greatest voltage responsivity occurs well below T(sub c), in a regime where the I-V curve is significantly hysteretic due to self-heating and resembles the I-V curve of a superconducting microbridge.

  10. Quasiparticle Self-Recombination in Double STJs Strip X-ray Detectors

    SciTech Connect

    Andrianov, V. A.; Gorkov, V. P.

    2009-12-16

    The quasiparticle self-recombination was considered in the frame of 2D diffusion model of the strip X-ray detectors. The detector consists of a long superconducting strip, which is ended by the trapping layers and superconducting tunnel junctions at each end. The model takes into account the 2D-diffusion of the excess quasiparticles, quasiparticle trapping at the tunnel junctions and quasiparticle losses in the volume of the strip and at the strip boundaries. Self-recombination was described by a quadratic term. As the analytical solution is absent, the numeric calculations were carried out. It has been shown that the self-recombination as well as quasiparticle losses at the strip boundaries caused the dependence of the signals on the photon absorption site in transverse direction. The latter worsens the energy resolution and transforms the spectral line of the detector to nongaussian shape.

  11. Prefix Stripping Revisited.

    ERIC Educational Resources Information Center

    Taft, Marcus

    1981-01-01

    Presents and analyzes three experiments on prefix stripping. Results show that pseudoprefixed words are indiscriminately treated as prefixed words and concludes that prefix stripping does occur in word recognition and that prefixed words are accessed through a representation of their stem. (Author/BK)

  12. Anatomy Comic Strips

    ERIC Educational Resources Information Center

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  13. Science Comic Strips

    ERIC Educational Resources Information Center

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  14. A nanoemitter based on a superconducting material

    NASA Astrophysics Data System (ADS)

    Hou, Jin-Long; Chang, Wei-Tse; Shih, Chih-Chiang; Yu, Yu-Fong; Fu, Tsu-Yi; Hwang, Ing-Shouh

    2016-06-01

    The coherence of an electron beam is crucial for the performance of electron microscopy, coherent diffractive imaging, holography, and many other advanced instrumentation methods that rely on the phase coherence of electron waves. Here we present a reliable method for preparing a niobium nanoemitter, which is thermally and chemically stable. The tip apex is a (100) facet with a lateral dimension of ˜1 nm, surrounded by four (310) facets. Adsorption of one monolayer of noble gas, particularly Xe, onto the nanoemitter greatly enhances the emission current and current stability. This electron source will probably possess both spatial and temporal coherence if the emitter is cooled below the superconducting temperature.

  15. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  16. Bipolaronic superconductivity

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose systems. They represent an example of the "molecular" superconductivity proposed by Schafroth, Butler, and Blatt

    [Helv. Phys. Acta 30 93 (1957)]
    . The Meissner effect and the penetration depth of bipolaronic superconductors are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  17. Bipolaronic superconductivity

    SciTech Connect

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose system. They represent an example of the ''molecular'' superconductivity proposed by Schafroth, Butler, and Blatt. The Meissner effect and the penetration depth of bipolaronic superconductor are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  18. Stripping with dry ice

    NASA Astrophysics Data System (ADS)

    Malavallon, Olivier

    1995-04-01

    Mechanical-type stripping using dry ice (solid CO2) consists in blasting particles of dry ice onto the painted surface. This surface can be used alone or in duplex according to type of substrate to be treated. According to operating conditions, three physical mechanisms may be involved when blasting dry ice particles onto a paint system: thermal shock, differential thermal contraction, and mechanical shock. The blast nozzle, nozzle travel speed, blast angle, stripping distance, and compressed air pressure and media flow rate influence the stripping quality and the uniformity and efficiency obtained.

  19. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead niobium titanium zirconium oxide... Specific Chemical Substances § 721.10602 Lead niobium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead niobium...

  20. 40 CFR 721.10602 - Lead niobium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead niobium titanium zirconium oxide... Specific Chemical Substances § 721.10602 Lead niobium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead niobium...

  1. Niobium based coatings for dental implants

    NASA Astrophysics Data System (ADS)

    Ramírez, G.; Rodil, S. E.; Arzate, H.; Muhl, S.; Olaya, J. J.

    2011-01-01

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb2O5 (a-Nb2O5), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  2. Pulsed rf superconductivity program at SLAC

    SciTech Connect

    Campisi, I.E.; Farkas, Z.D.

    1984-08-01

    Recent tests performed at SLAC on superconducting TM/sub 010/ caavities using short rf pulses (less than or equal to 2.5 ..mu..s) have established that at the cavity surface magnetic fields can be reached in the vicinity of the theoretical critical fields without an appreciable increase in average losses. Tests on niobium and lead cavities are reported. The pulse method seems to be best suited to study peak field properties of superconductors in the microwave band, without the limitations imposed by defects. The short pulses also seem to be more effective in decreasing the causes of field emission by rf processing. Applications of the pulsed rf superconductivity to high-gradient linear accelerators are also possible.

  3. Composite arrays of superconducting microstrip line resonators

    SciTech Connect

    Mohebbi, H. R. Miao, G. X.; Benningshof, O. W. B.; Taminiau, I. A. J.; Cory, D. G.

    2014-03-07

    A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

  4. Hydrocarbon product stripping

    SciTech Connect

    Harandi, M.N.; Owen, H.; Siuta, M.T.

    1989-04-18

    A method is described for stripping light gasiform components from the liquid effluent of a catalytic hydrodesulfurization process, which comprises separating the liquid effluent containing relatively low boiling hydrocarbon components, relatively high boiling hydrocarbon components, hydrogen, and hydrogen sulfide.

  5. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    NASA Astrophysics Data System (ADS)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  6. The superconducting magnet system for the Tokamak Physics Experiment

    SciTech Connect

    Lang, D.D.; Bulmer, R.J.; Chaplin, M.R.

    1994-06-18

    The superconducting magnet system for the Tokamak Physics experiment (TPX) will be the first all superconducting magnet system for a Tokamak, where the poloidal field coils, in addition to the toroidal field coils are superconducting. The magnet system is designed to operate in a steady state mode, and to initiate the plasma discharge ohmically. The toroidal field system provides a peak field of 4.0 Tesla on the plasma axis at a plasma major radius of 2.25 m. The peak field on the niobium 3-tin, cable-in-conduit (CIC) conductor is 8.4 Tesla for the 16 toroidal field coils. The toroidal field coils must absorb approximately 5 kW due to nuclear heating, eddy currents, and other sources. The poloidal field system provides a total of 18 volt seconds to initiate the plasma and drive a plasma current up to 2 MA. The poloidal field system consists of 14 individual coils which are arranged symmetrically above and below the horizontal mid plane. Four pairs of coils make up the central solenoid, and three paris of poloidal ring coils complete the system. The poloidal field coils all use a cable-in-conduit conductor, using either niobium 3-tin (NB{sub 3}Sn) or niobium titanium (NbTi) superconducting strands depending on the operating conditions for that coil. All of the coils are cooled by flowing supercritical helium, with inlet and outlet connections made on each double pancake. The superconducting magnet system has gone through a conceptual design review, and is in preliminary design started by the LLNL/MIT/PPPL collaboration. A number of changes have been made in the design since the conceptual design review, and are described in this paper.

  7. Radioactivity analysis in niobium activation foils

    SciTech Connect

    Mueller, G.E.

    1995-06-01

    The motivation for this study was to measure and analyze the activity of six (6) niobium (Nb) foils (the x-rays from an internal transition in Nb-93m) and apply this information with previously obtained activation foil data. The niobium data was used to determine the epithermal to MeV range for the neutron spectrum and fluence. The foil activation data was re-evaluated in a spectrum analysis code (STAY`SL) to provide new estimates of the exposure at the Los Alamos Spallation Radiation Effect Facility (LASREF). The activity of the niobium foils was measured and analyzed at the University of Missouri-Columbia (UMC) under the direction of Professor William Miller. The spectrum analysis was performed at the University of Missouri-Rolla (UMR) by Professor Gary Mueller.

  8. Recovery of niobium from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  9. Position resolution of a double junction superconductive detector based on a single material

    NASA Astrophysics Data System (ADS)

    Samedov, V. V.

    2008-02-01

    The Naples group from Istituto Nazionale di Fisica Nucleare presented the results of theoretical investigations of a new class of superconductive radiation detectors - double junction superconductive detector based on a single material [1]. In such detectors, the absorption of energy occurs in a long superconductive strip while two superconductive tunnel junctions positioned at the ends of the strip provide the readout of the signals. The main peculiarity of this type of detectors is that they are based on a single superconducting material, i.e., without trapping layers at the ends of the strip. In this paper, general approach to the position resolution of this type of detectors has been attempted. The formula for the position resolution is derived. It is shown that the application of the aluminium for the absorber may be the best possible way not only due to the small gap energy, but also mainly for STJ fabrication technology based on the aluminium oxide tunnel barrier.

  10. Physics and material science of ultra-high quality factor superconducting resonator

    SciTech Connect

    Vostrikov, Alexander

    2015-08-01

    The nitrogen doping into niobium superconducting radio frequency cavity walls aiming to improve the fundamental mode quality factor is the subject of the research in the given work. Quantitative nitrogen diffusion into niobium model calculating the concentration profile was developed. The model estimations were confirmed with secondary ion mass spectrometry technique measurements. The model made controlled nitrogen doping recipe optimization possible. As a result the robust reproducible recipe for SRF cavity walls treatment with nitrogen doping was developed. The cavities produced with optimized recipe met LCLS–II requirements on quality factor of 2.7 ∙ 1010 at acceleration field of 16 MV/m. The microscopic effects of nitrogen doping on superconducting niobium properties were studied with low energy muon spin rotation technique and magnetometer measurements. No significant effect of nitrogen on the following features was found: electron mean free path, magnetic field penetration depth, and upper and surface critical magnetic fields. It was detected that for nitrogen doped niobium samples magnetic flux starts to penetrate inside the superconductor at lower external magnetic field value compared to the low temperature baked niobium ones. This explains lower quench field of SRF cavities treated with nitrogen. Quality factor improvement of fundamental mode forced to analyze the high order mode (HOM) impact on the particle beam dynamics. Both resonant and cumulative effects caused by monopole and dipole HOMs respectively are found to be negligible within the requirements for LCLS–II.

  11. Physics and material science of ultra-high quality factor superconducting resonator

    NASA Astrophysics Data System (ADS)

    Vostrikov, Alexander

    The nitrogen doping into niobium superconducting radio frequency cavity walls aiming to improve the fundamental mode quality factor is the subject of the research in the given work. Quantitative nitrogen diffusion into niobium model calculating the concentration profile was developed. The model estimations were confirmed with secondary ion mass spectrometry technique measurements. The model made controlled nitrogen doping recipe optimization possible. As a result the robust reproducible recipe for SRF cavity walls treatment with nitrogen doping was developed. The cavities produced with optimized recipe met LCLS--II requirements on quality factor of 2. · 10 10 at acceleration field of 16~MV/m. The microscopic effects of nitrogen doping on superconducting niobium properties were studied with low energy muon spin rotation technique and magnetometer measurements. No significant effect of nitrogen on the following features was found: electron mean free path, magnetic field penetration depth, and upper and surface critical magnetic fields. It was detected that for nitrogen doped niobium samples magnetic flux starts to penetrate inside the superconductor at lower external magnetic field value compared to the low temperature baked niobium ones. This explains lower quench field of SRF cavities treated with nitrogen. Quality factor improvement of fundamental mode forced to analyze the high order mode (HOM) impact on the particle beam dynamics. Both resonant and cumulative effects caused by monopole and dipole HOMs respectively are found to be negligible within the requirements for LCLS--II.

  12. Study of the effect of NbN on microwave Niobium cavities for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Liccardo, V.; França, E. K.; Aguiar, O. D.; Oliveira, R. M.; Ribeiro, K. L.; Silva, M. M. N. F.

    2016-07-01

    Superconducting reentrant cavities may be used in parametric transducers for resonant-mass gravitational wave detectors. When coupled to a spherical resonant antenna, transducers will monitor its mechanical quadrupolar modes, working as a mass-spring system. In this paper we will investigate the effect of the Niobium Nitride (NbN), produced through plasma immersion ion implantation (PIII), on the quality factor of reentrant Niobium (Nb) cavities. With the PIII surface treatment unloaded electrical Q-factors (Q0) of the order of 105 were obtained in cryogenic conditions. These results indicated a significant increase in the effect of superconductivity after the cavity surfaces have been heavily attacked by a concentrated acid mixture and after suffering successive PIII processes. Q0's ~ 3.0 × 105 at 4.2 K are expected to be obtained using Nb RRR399 with a suitable surface treatment. These cavities, with high Q0, are already installed and being tested in the Gravitational Wave Detector Mario Schenberg. The experimental tests have been carried out at the laboratories of the National Institute for Space Research (INPE).

  13. Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges

    SciTech Connect

    Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A.; Vacelet, T.

    2014-02-03

    We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film.

  14. Magnetic Ordering In Superconducting Nb-doped Bi2Se3

    NASA Astrophysics Data System (ADS)

    Corbae, Paul; Lawson, Benjamin; Li, Gang; Yu, Fan; Asaba, Tomoya; Tinsman, Colin; Qui, Yusheng; Hor, Yew San; Li, Lu

    Coexistence of superconductivity and magnetic order has been suggested by early studies of topological superconductor candidate, niobium doped Bi2Se3. In order to elucidate the interesting physics of this coexistence, we performed highly sensitive torque magnetometry to study the material's magnetization. We observed a bump feature in the magnetization around 8 Tesla in both the superconducting and non-superconducting samples. This is distinct from the paramagnetic torque response of the parent compound, Bi2Se3, suggesting some interesting magnetic order in Nb-doped Bi2Se3.

  15. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1994-03-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

  16. Crystallization of niobium germanosilicate glasses

    SciTech Connect

    Santos, Rodrigo; Wondraczek, Lothar

    2010-01-15

    Niobium germanosilicate glasses are potential candidates for the fabrication of transparent glass ceramics with interesting non-linear optical properties. A series of glasses in the (Ge,Si)O{sub 2}-Nb{sub 2}O{sub 5}-K{sub 2}O system were prepared by melting and casting and their characteristic temperatures were determined by differential thermal analysis. Progressive replacement of GeO{sub 2} by SiO{sub 2} improved the thermal stability of the glasses. Depending on the composition and the crystallization heat-treatment, different nanocrystalline phases-KNbSi{sub 2}O{sub 7}, K{sub 3}Nb{sub 3}Si{sub 2}O{sub 13} and K{sub 3.8}Nb{sub 5}Ge{sub 3}O{sub 20.4} could be obtained. The identification and characterization of these phases were performed by X-ray diffraction and Raman spectroscopy. The 40 GeO{sub 2}-10 SiO{sub 2}-25 Nb{sub 2}O{sub 5}-25 K{sub 2}O (mol%) composition presented the higher ability for volume crystallization and its nucleation temperature was determined by the Marotta's method. An activation energy for crystal growth of {approx}529 kJ/mol and a nucleation rate of 9.7x10{sup 18} m{sup -3} s{sup -1} was obtained, for this composition. Transparent glass ceramics with a crystalline volume fraction of {approx}57% were obtained after a 2 h heat-treatment at the nucleation temperature, with crystallite sizes of {approx}20 nm as determined by transmission electron microscopy. - Abstract: TEM image and XRD pattern of the glass ceramic produced (circles indicate nanocrystals).

  17. Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    A method for fabricating an edge geometry superconducting tunnel junction device is discussed. The device is comprised of two niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier sandwiched between the two electrodes. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  18. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  19. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    by different techniques. Specifically, this work provides the results of SEY from the plasma cleaned cavity grade niobium (Nb) samples. Pure niobium is currently the material of choice for the fabrication of Superconducting Radio Frequency (SRF) cavities. The effect of plasma processing with two different gases will be examined in two groups of samples. The first group of samples is made from cavity grade niobium. The second group of samples is made from the same material, but include a welded joint made by electron beam welding, since in niobium SRF cavities the peak electric and magnetic field are seen in close proximity to the welded joints. Both groups of samples will be exposed to nitrogen (N2) and a mixture of argon with oxygen (Ar/O2) plasma. It is the goal of this research to determine the SEY on these two groups of samples before and after plasma processing as a function of the energy of primary electrons. The SEY as a function of the angle of incidence of the primary electrons is tested on the samples treated with Ar/O2 plasma.

  20. Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz.

    PubMed

    Xiao, B P; Reece, C E; Phillips, H L; Geng, R L; Wang, H; Marhauser, F; Kelley, M J

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a novel sapphire-loaded niobium cavity operating at 7.5 GHz has been developed as a tool to measure the RF surface impedance of flat superconducting material samples. The SIC system can presently make direct calorimetric RF surface impedance measurements on the central 0.8 cm(2) area of 5 cm diameter disk samples from 2 to 20 K exposed to RF magnetic fields up to 14 mT. To illustrate system utility, we present first measurement results for a bulk niobium sample. PMID:21639552

  1. Pulsed laser deposition of niobium nitride thin films

    SciTech Connect

    Farha, Ashraf Hassan Elsayed-Ali, Hani E.; Ufuktepe, Yüksel; Myneni, Ganapati

    2015-12-04

    Niobium nitride (NbN{sub x}) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbN{sub x} films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ∼40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbN{sub x} films from mixed β-Nb{sub 2}N and cubic δ-NbN phases to single hexagonal β-Nb{sub 2}N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbN{sub x} deposited on Si(100) were also investigated. The NbN{sub x} films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbN{sub x} film morphology and phase.

  2. Fastest Electropolishing Technique on Niobium for Particle Accelerators

    SciTech Connect

    A.T. Wu, S. Jin, R.A. Rimmer, X.Y. Lu, K. Zhao

    2011-09-01

    Field emission on the inner surfaces of niobium (Nb) superconducting radio frequency (SRF) cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results [1] seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3nm up to 460nm. A home-made scanning field emission microscope (SFEM) was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The experimental results could be understood by a simple model calculation based on classic electromagnetic theory as shown in Ref.1. Possibly implications for Nb SRF cavity applications from this study will be discussed.

  3. Optimization of chemical etching process in niobium cavities

    SciTech Connect

    Tajima, T.; Trabia, M.; Culbreth, W.; Subramanian, S.

    2004-01-01

    Superconducting niobium cavities are important components of linear accelerators. Buffered chemical polishing (BCP) on the inner surface of the cavity is a standard procedure to improve its performance. The quality of BCP, however, has not been optimized well in terms of the uniformity of surface smoothness. A finite element computational fluid dynamics (CFD) model was developed to simulate the chemical etching process inside the cavity. The analysis confirmed the observation of other researchers that the iris section of the cavity received more etching than the equator regions due to higher flow rate. The baffle, which directs flow towards the walls of the cavity, was redesigned using optimization techniques. The redesigned baffle significantly improves the performance of the etching process. To verify these results an experimental setup for flow visualization was created. The setup consists of a high speed, high resolution CCD camera. The camera is positioned by a computer-controlled traversing mechanism. A dye injecting arrangement is used for tracking the fluid path. Experimental results are in general agreement with CFD and optimization results.

  4. Pulsed laser deposition of niobium nitride thin films

    NASA Astrophysics Data System (ADS)

    Farha, Ashraf Hassan; Ufuktepe, Yüksel; Myneni, Ganapati; Elsayed-Ali, Hani E.

    2015-12-01

    Niobium nitride (NbNx) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbNx films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ˜40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbNx films from mixed β-Nb2N and cubic δ-NbN phases to single hexagonal β-Nb2N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbNx deposited on Si(100) were also investigated. The NbNx films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbNx film morphology and phase.

  5. Advance in Vertical Buffered Electropolishing on Niobium for Particle Accelerators*

    SciTech Connect

    A.T. Wu, S. Jin, J.D. Mammosser, C.E. Reece, R.A. Rimmer,L. Lin, X.Y. Lu, K. Zhao

    2011-09-01

    Niobium (Nb) is the most popular material that has been employed for making superconducting radio frequency (SRF) cavities to be used in various particle accelerators over the last couple of decades. One of the most important steps in fabricating Nb SRF cavities is the final chemical removal of 150 {mu}m of Nb from the inner surfaces of the SRF cavities. This is usually done by either buffered chemical polishing (BCP) or electropolishing (EP). Recently a new Nb surface treatment technique called buffered electropolishing (BEP) has been developed at Jefferson Lab. It has been demonstrated that BEP can produce the smoothest surface finish on Nb ever reported in the literature while realizing a Nb removal rate as high as 10 {mu}m/min that is more than 25 and 5 times quicker than those of EP and BCP(112) respectively. In this contribution, recent advance in optimizing and understanding BEP treatment technique is reviewed. Latest results from RF measurements on BEP treated Nb single cell cavities by our unique vertical polishing system will be reported.

  6. RF Sputtering of Gold Contacts On Niobium

    NASA Technical Reports Server (NTRS)

    Barr, D. W.

    1983-01-01

    Reliable gold contacts are deposited on niobium by combination of RF sputtering and photolithography. Process results in structures having gold only where desired for electrical contact. Contacts are stable under repeated cycling from room temperature to 4.2 K and show room-temperature contact resistance as much as 40 percent below indium contacts made by thermalcompression bonding.

  7. Superconducting materials

    SciTech Connect

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La{sub 2-x}Sr{sub x}CuO{sub 4}; source of high transition temperatures; and prospects for new superconductors.

  8. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  9. Superconducting magnets

    SciTech Connect

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  10. Method of fabricating composite superconducting wire

    DOEpatents

    Strauss, Bruce P.; Reardon, Paul J.; Remsbottom, Robert H.

    1977-01-01

    An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.

  11. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    SciTech Connect

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-12-01

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  12. Air stripping industrial wastewater

    SciTech Connect

    Lamarre, B.; Shearouse, D.

    1994-09-01

    Industrial wastewater can be quickly, efficiently and economically treated using air strippers. Air stripping removes a range of volatile and semi-volatile contaminants from water. And the performance of various types and sizes of tray-type air stripper for treating contaminated water now is highly predictable because of laboratory studies. Air stripping can be a fast, efficient and economical approach to treating industrial wastewater. However, since every industrial wastewater stream is unique, each must be evaluated to determine its constituents, its potentially adverse effects on treatability, and any pretreatment steps necessary to ensure desired results. The general principles of air stripping are simple. In an air stripper, the surfaces area of a film of contaminated water is maximized while air is directed across it. Contaminants at the air/water interface volatilize and are discharged to the atmosphere or to an off-gas treatment system.

  13. Niobium carbide and tin precipitation in continuously cast microalloyed steels

    NASA Astrophysics Data System (ADS)

    Stock, Julian

    With high yield strength, toughness and good weldability, microalloyed steels are widely used in the automotive, pipeline and transportation industries. Microalloying elements such as niobium (Nb), titanium (Ti) and vanadium (V) in concentrations of less than 0.1 wt. pct. are typical. For optimal benefits in the final product, it is usually desired for Ti to form fine precipitates during and after solidification and for Nb to be in solution prior to hot-rolling. Vanadium precipitates at lower temperatures and is less involved in the solidification/casting process. In one aspect of the investigation, the effects of cooling rate on the titanium nitride (TiN) precipitation size distribution were investigated in a Ti-added low-carbon steel. Prior research reported an inverse relationship between the average TiN precipitation size and the post-solidification cooling rate and the present work was undertaken to examine this behavior over a wider range of cooling rates. Using the GleebleRTM 3500's casting simulation capabilities along with controlled cooling rates, the TiN precipitation behavior in thick-slab, thin-slab and thin-strip material was simulated using a commercially produced 0.04C, 1.23Mn steel with near-stoichiometric Ti and N levels. Transmission electron microscopy (TEM) investigation of carbon extraction replicas was carried out to characterize the influence of cooling rates on precipitate size distributions. Decreasing particle sizes with increasing cooling rates were found. Average particle sizes as low as 6.7 nm were present in thin-strip simulations and might be of interest, as fine particles could contribute to strengthening of rapidly cooled steels. In a second aspect of the investigation, niobium carbide (NbC) precipitation during the compact strip production (CSP) process was investigated in two Nb-added low-carbon steels. Instead of industrial sampling, the GleebleRTM was used for casting simulations using two CMn(Nb) steels with high and low- Nb

  14. Retractable barrier strip

    DOEpatents

    Marts, D.J.; Barker, S.G.; McQueen, M.A.

    1996-04-16

    A portable barrier strip is described having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use. 13 figs.

  15. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; Wowczuk, Andrew; Vellenoweth, Thomas E.

    2002-01-01

    A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.

  16. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; McQueen, Miles A.

    1996-01-01

    A portable barrier strip having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests stable in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use.

  17. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  18. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  19. Strip interpolation in silicon and germanium strip detectors.

    SciTech Connect

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM.

  20. PROCESS OF COATING GRAPHITE WITH NIOBIUM-TITANIUM CARBIDE

    DOEpatents

    Halden, F.A.; Smiley, W.D.; Hruz, F.M.

    1961-07-01

    A process of coating graphite with niobium - titanium carbide is described. It is found that the addition of more than ten percent by weight of titanium to niobium results in much greater wetting of the graphite by the niobium and a much more adherent coating. The preferred embodiment comprises contacting the graphite with a powdered alloy or mixture, degassing simultaneously the powder and the graphite, and then heating them to a high temperature to cause melting, wetting, spreading, and carburization of the niobium-titanium powder.

  1. Field Emission Measurements from Niobium Electrodes

    SciTech Connect

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  2. Microstructures in rapidly solidified niobium aluminides

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Locci, Ivan E.

    1988-01-01

    The microstructures of niobium aluminides produced by chill block melt spinning were compared to those of niobium aluminides produced by conventional casting. The rapidly solidified alloys were rapidly solidified by melt spinning in an argon atmosphere, and the melt-spun ribbons were examined by optical, X-ray, and TEM techniques. Microstructures were found to range from single-phase for Nb-75 at. pct Al (NbAl3) to two phase for Nb-46 at. pct Al (NbAl3 + Nb2Al). It was found that the melt spinning of Nb-aluminides produced finer grained microstructures than those produced in induction-melted ingots or in powders produced by the rotating electrode process. Ternary additions such as Cr, Ti, and Si tended to form intermetallic phases along the grain boundaries.

  3. Microwave mixing with niobium variable thickness bridges

    NASA Technical Reports Server (NTRS)

    Wang, L.-K.; Callegari, A.; Deaver, B. S., Jr.

    1977-01-01

    Niobium thin-film bridges 300-A thick, 1-micron wide, and 0.5-micron long joining two bulk films 5000-A thick and having normal resistance of the order of 1 ohm have been fabricated and used for microwave mixing at 10 GHz. They exhibit Josephson, bolometric, and multiple-flux-flow mixing and have useful response at 100-200 GHz. The data show in a direct way limitations imposed by flux flow and heating.

  4. Mechanical properties of carbon-implanted niobium

    SciTech Connect

    Zinkle, S.J. ); Huang, J.S. )

    1990-01-01

    Polycrystalline niobium specimens were implanted with either 200 keV carbon ions or a combination of 50, 100, and 200 keV carbon ions to peak concentrations of 0.6 to 50 at. {percent}. Microindentation techniques were used to measure the hardness and elastic modulus of the implanted layer. Both the hardness (H) and modulus (E) showed dramatic increases due to the carbon implantation. The measured peak hardness and modulus following uniform implantation with 16 at. {percent} C were 15{times} and 3{times} that of niobium, respectively, which is comparable to the literature values for NbC. The peak hardness and modulus for the implanted specimens were observed at an indent depth of {approximately}40 nm, which is about one-eighth of the depth of the implanted carbon layer. The decrease in the indentation mechanical properties at deeper indent depths is due to the interaction of long-ranging strain fields underneath the indenter with the niobium substrate. 17 refs., 6 figs.

  5. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  6. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  7. Atomic layer deposition of amorphous niobium carbide-based thin film superconductors.

    SciTech Connect

    Klug, J. A.; Prolier, T.; Elam, J. W.; Becker, N. G.; Pellin, M. J.

    2011-01-01

    Niobium carbide thin films were synthesized by atomic layer deposition (ALD) using trimethylaluminum (TMA), NbF{sub 5}, and NbCl{sub 5} precursors. In situ quartz crystal microbalance (QCM) measurements performed at 200 and 290 C revealed controlled, linear deposition with a high growth rate of 5.7 and 4.5 {angstrom}/cycle, respectively. The chemical composition, growth rate, structure, and electronic properties of the films were studied over the deposition temperature range 125-350 C. Varying amounts of impurities, including amorphous carbon (a-C), AlF{sub 3}, NbF{sub x}, and NbCl{sub x}, were found in all samples. A strong growth temperature dependence of film composition, growth rate, and room temperature DC resistivity was observed. Increasing film density, decreasing total impurity concentration, and decreasing resistivity were observed as a function of increasing deposition temperature for films grown with either NbF{sub 5} or NbCl{sub 5}. Superconducting quantum interference device (SQUID) magnetometry measurements down to 1.2 K revealed a superconducting transition at T{sub c} = 1.8 K in a 75 nm thick film grown at 350 C with TMA and NbF{sub 5}. The superconducting critical temperature could be increased up to 3.8 K with additional use of NH{sub 3} during ALD film growth.

  8. atomic layer deposition of amorphous niobium carbide-based thin film superconductors.

    SciTech Connect

    Prolier, T.; Klug, J. A.; Elam, J. W.; Claus, H.; Becker, N. G.; Pellin, M. J.

    2011-01-01

    Niobium carbide thin films were synthesized by atomic layer deposition (ALD) using trimethylaluminum (TMA), NbF{sub 5}, and NbCl{sub 5} precursors. In situ quartz crystal microbalance (QCM) measurements performed at 200 and 290 C revealed controlled, linear deposition with a high growth rate of 5.7 and 4.5 {angstrom}/cycle, respectively. The chemical composition, growth rate, structure, and electronic properties of the films were studied over the deposition temperature range 125-350 C. Varying amounts of impurities, including amorphous carbon (a-C), AlF{sub 3}, NbF{sub x}, and NbCl{sub x}, were found in all samples. A strong growth temperature dependence of film composition, growth rate, and room temperature DC resistivity was observed. Increasing film density, decreasing total impurity concentration, and decreasing resistivity were observed as a function of increasing deposition temperature for films grown with either NbF{sub 5} or NbCl{sub 5}. Superconducting quantum interference device (SQUID) magnetometry measurements down to 1.2 K revealed a superconducting transition at T{sub c} = 1.8 K in a 75 nm thick film grown at 350 C with TMA and NbF{sub 5}. The superconducting critical temperature could be increased up to 3.8 K with additional use of NH{sub 3} during ALD film growth.

  9. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Titran, R. H.

    1988-01-01

    A study was conducted to determine the feasibility of using tungsten fiber reinforced niobium or niobium-1 percent zirconium matrix composites to meet the anticipated increased temperature and creep resistance requirements imposed by advanced space power systems. The results obtained on the short time tensile properties indicated that W/Nb composites showed significant improvements in high temperature strength and offer significant mass reductions for high temperature space power systems. The prime material requirement for space power systems applications is long time creep resistance. A study was conducted to determine the effect of high temperature exposure on the properties of these composites, with emphasis upon their creep behavior at elevated temperatures.

  10. Resolving the morphology of niobium carbonitride nano-precipitates in steel using atom probe tomography.

    PubMed

    Breen, Andrew J; Xie, Kelvin Y; Moody, Michael P; Gault, Baptiste; Yen, Hung-Wei; Wong, Christopher C; Cairney, Julie M; Ringer, Simon P

    2014-08-01

    Atom probe is a powerful technique for studying the composition of nano-precipitates, but their morphology within the reconstructed data is distorted due to the so-called local magnification effect. A new technique has been developed to mitigate this limitation by characterizing the distribution of the surrounding matrix atoms, rather than those contained within the nano-precipitates themselves. A comprehensive chemical analysis enables further information on size and chemistry to be obtained. The method enables new insight into the morphology and chemistry of niobium carbonitride nano-precipitates within ferrite for a series of Nb-microalloyed ultra-thin cast strip steels. The results are supported by complementary high-resolution transmission electron microscopy.

  11. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    NASA Astrophysics Data System (ADS)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  12. Superconducting cavity material for the European XFEL

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Brinkmann, A.; Iversen, J.; Matheisen, A.; Navitski, A.; Tamashevich, Y.; Michelato, P.; Monaco, L.

    2015-08-01

    Analysis of the strategy for superconducting cavity material procurement and quality management is done on the basis of the experience with the cavity production for the European x-ray free electron laser (EXFEL) facility. An adjustment of the material specification to EXFEL requirements, procurement of material, quality control (QC), documentation, and shipment to cavity producers have been worked out and carried out by DESY. A multistep process of qualification of the material suppliers included detailed material testing, single- and nine-cell cavity fabrication, and cryogenic radiofrequency tests. Production of about 25 000 semi-finished parts of high purity niobium and niobium-titanium alloy in a period of three years has been divided finally between companies Heraeus, Tokyo Denkai, Ningxia OTIC, and PLANSEE. Consideration of large-grain (LG) material as a possible option for the EXFEL has resulted in the production of one cryogenic module consisting of seven (out of eight) LG cavities. LG materials fulfilled the EXFEL requirements and showed even 25% to 30% higher unloaded quality factor. A possible shortage of the required quantity of LG material on the market led, however, to the choice of conventional fine-grain (FG) material. Eddy-current scanning (ECS) has been applied as an additional QC tool for the niobium sheets and contributed significantly to the material qualification and sorting. Two percent of the sheets have been rejected, which potentially could affect up to one-third of the cavities. The main imperfections and defects in the rejected sheets have been analyzed. Samples containing foreign material inclusions have been extracted from the sheets and electrochemically polished. Some inclusions remained even after 150 μm surface layer removal. Indications of foreign material inclusions have been found in the industrially fabricated and treated cavities and a deeper analysis of the defects has been performed.

  13. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams.

  14. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-12-31

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams.

  15. Strong Meissner screening change in superconducting radio frequency cavities due to mild baking

    SciTech Connect

    Romanenko, A. Grassellino, A.; Barkov, F.; Suter, A.; Salman, Z.; Prokscha, T.

    2014-02-17

    We investigate “hot” regions with anomalous high field dissipation in bulk niobium superconducting radio frequency cavities for particle accelerators by using low energy muon spin rotation (LE-μSR) on corresponding cavity cutouts. We demonstrate that superconducting properties at the hot region are well described by the non-local Pippard/BCS model for niobium in the clean limit with a London penetration depth λ{sub L}=23±2 nm. In contrast, a cutout sample from the 120 ∘C baked cavity shows a much larger λ>100 nm and a depth dependent mean free path, likely due to gradient in vacancy concentration. We suggest that these vacancies can efficiently trap hydrogen and hence prevent the formation of hydrides responsible for rf losses in hot regions.

  16. Development of semi-rigid cables for low temperature superconducting detectors

    NASA Astrophysics Data System (ADS)

    Kushino, Akihiro; Kasai, Soichi

    We are developing semi-rigid cables for accurate readout of superconducting radiation/particle detectors and other low temperature experiments. The center conductor with a diameter of 0.86 mm is separated with seamless metal outer conductor by dielectric material, polytetrafluoroethylene. We used various metal materials with low thermal conductivity for the electrical conductors such as stainless-steel, cupro-nickel, brass, beryllium-copper, phosphor-bronze, niobium-titanium, and niobium. In addition to the conventional semi-rigid cables, low-pass-filter type cables were manufactured and evaluated to cut the high frequency noise into superconducting detectors. We measured their low thermal conductance and attenuation property up to 10 GHz below the liquid helium temperature.

  17. Fabrication and characterization of scanning tunneling microscopy superconducting Nb tips having highly enhanced critical fields

    NASA Astrophysics Data System (ADS)

    Kohen, A.; Noat, Y.; Proslier, T.; Lacaze, E.; Aprili, M.; Sacks, W.; Roditchev, D.

    2005-02-01

    We report a simple method for the fabrication of Niobium superconducting (SC) tips for scanning tunneling microscopy which allow atomic resolution. The tips, formed in situ by the mechanical breaking of a niobium wire, reveal a clear SC gap of 1.5 meV and a critical temperature Tc = 9.2 ± 0.3 K, as deduced from Superconductor Insulator Normal metal (SIN) and Superconductor Insulator Superconductor (SIS) spectra. These match the values of bulk Nb samples. We systematically find an enhanced value of the critical magnetic field in which superconductivity in the tip is destroyed (around 1 T for some tips) up to five times larger than the critical field of bulk Nb (0.21 T). Such enhancement is attributed to a size effect at the tip apex.

  18. Investigation of proton induced reactions on niobium at low and medium energies

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Hermanne, A.; Corniani, E.; Takács, S.; Tárkányi, F.; Csikai, J.; Shubin, Yu. N.

    2009-10-01

    Niobium is a metal with important technological applications: use as alloying element to increase strength of super alloys, as thin layer for tribological applications, as superconductive material, in high temperature engineering systems, etc. In the frame of a systematic study of activation cross-sections of charged particle induced reactions on structural materials proton induced excitation functions on Nb targets were determined with the aim of applications in accelerator and reactor technology and for thin layer activation (TLA). The charged particle activation cross-sections on this element are also important for yield calculation of medical isotope production ( 88,89Zr, 86,87,88Y) and for dose estimation in PET targetry. As niobium is a monoisotopic element it is an ideal target material to test nuclear reaction theories. We present here the experimental excitation functions of 93Nb(p,x) 90,93mMo, 92m,91m,90Nb, 88,89Zr and 88Y in the energy range 0-37 MeV. The results were compared with the theoretical cross-sections calculated by means of the code ALICE-IPPE, EMPIRE-3, TALYS and with the literature data. The theory reproduces the shape of the measured results well and magnitude is also acceptable. Thick target yields calculated from our fitted cross-section give reliable estimations for production of medically relevant radioisotopes and for dose estimation in accelerator technology.

  19. A path to higher Q0 with large grain niobium cavities

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Ganapati Rao Myneni

    2012-07-01

    The improvement of the quality factor Q{sub 0} of superconducting radio-frequency (SRF) cavities at medium accelerating gradients ({approx} 20 MV/m) is important in order to reduce the cryogenic losses in continuous wave accelerators for a variety of applications. In recent years, SRF cavities fabricated from ingot niobium have become a viable alternative to standard high-purity fine-grain Nb for the fabrication of high-performing SRF cavities with the possibility of significant cost reduction. Initial studies demonstrated the improvement of Q{sub 0} at medium field in cavities heat treated at 800-1000 C without subsequent chemical etching. To further explore this treatment procedure, a new induction furnace with an all-niobium hot-zone was commissioned. A single-cell 1.5 GHz cavity fabricated from ingot material from CBMM, Brazil, with RRR {approx} 200, was heat treated with the new furnace in the temperature range 600-1200 C for several hours. Residual resistance values 1-5 nano-ohm have been consistently achieved on this cavity as well as Q{sub 0} values above {approx} 2 x 10{sup 11} at 2 K and 100 mT peak surface magnetic field. Q{sub 0}-values of the order of 10{sup 11} have been measured at 1.5 K.

  20. MEASUREMENT OF RF LOSSES DUE TO TRAPPED FLUX IN A LARGE-GRAIN NIOBIUM CAVITY

    SciTech Connect

    Gianluigi Ciovati; Alex Gurevich

    2008-01-23

    Trapped magnetic field in superconducting niobium is a well known cause of radio-frequency (RF) residual losses. In this contribution, we present the results of RF tests on a single-cell cavity made of high-purity large grain niobium before and after allowing a fraction of the Earth’s magnetic field to be trapped in the cavity during the cooldown below the critical temperature Tc. This experiment has been done on the cavity before and after a low temperature baking. Temperature mapping allowed us to determine the location of hot-spots with high losses and to measure their field dependence. The results show not only an increase of the low-field residual resistance, but also a larger increase of the surface resistance for intermediate RF field (higher "medium field Qslope"), which depends on the amount of the trapped flux. These additional field-dependent losses can be described as losses of pinned vortices oscillating under the applied RF magnetic field.

  1. MEASUREMENT OF RF LOSSES DUE TO TRAPPED FLUX IN A LARGE-GRAIN NIOBIUM CAVITY

    SciTech Connect

    Gianluigi Ciovati; Alex Gurevich

    2008-01-23

    Trapped magnetic field in superconducting niobium is a well known cause of radio-frequency (RF) residual losses. In this contribution, we present the results of RF tests on a single-cell cavity made of high-purity large grain niobium before and after allowing a fraction of the Earth magnetic field to be trapped in the cavity during the cooldown below the critical temperature Tc. This experiment has been done on the cavity before and after a low temperature baking. Temperature mapping allowed us to determine the location of hot-spots with high losses and to measure their field dependence. The results show not only an increase of the low-field residual resistance, but also a larger increase of the surface resistance for intermediate RF field (higher “medium field Q-slope”), which depends on the amount of the trapped flux. These additional field-dependent losses can be described as losses of pinned vortices oscillating under the applied RF magnetic field.

  2. RRR characteristics of niobium along the welding directions for SRF cavities

    NASA Astrophysics Data System (ADS)

    Jung, Yoochul; Joung, Mijoung

    2016-09-01

    Prototype cavities for the superconducting LINAC, named RAON, have been made and tested by the rare isotope science project (RISP) in South Korea. The cavities are quarter-wave resonators (QWRs), half-wave resonators (HWRs) and two types of single-spoke resonators (SSR1, SSR2). All cavities have been made of niobium (Nb) of high residual resistance ratio (RRR) grade. The RRR value decreased (degraded) during electron-beam welding due to the incorporation of impurities from the surroundings. Therefore, the RRR value must be maintained to ensure the cavity's performance. Conventional e-beam welding, a process to join two niobium parts thermally, has been performed so that the cavity can be fabricated in a structurally-favorable way without considering a preferential welding direction. Thus, we analyzed the RRR characteristics in terms of the welding direction, if any favorable direction existed, to improve the RRR value. Also, we analyzed the RRR results as a function of the vacuum level, the distance from welding center, and the type of welded side. In this study, the RRR along the welding direction, including as a function of the welded side and the vacuum level, will be discussed.

  3. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around T{sub c}

    SciTech Connect

    Romanenko, A. Grassellino, A. Melnychuk, O.; Sergatskov, D. A.

    2014-05-14

    We report a strong effect of the cooling dynamics through T{sub c} on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120 °C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance, while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.

  4. Extraction spectrophotometric determination of niobium in rocks with sulfochlorophenol S

    USGS Publications Warehouse

    Childress, A.E.; Greenland, L.P.

    1980-01-01

    After acid decomposition and potassium pyrosulfate fusion, niobium (1-26 ppm) is separated from interfering elements by extraction into methyl isobutyl ketone from 6 M H2SO4-2 M HF and back-extracted into water. The niobium-sulfochloro-phenol S complex is extracted into amyl alcohol. ?? 1980.

  5. Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma

    SciTech Connect

    Upadhyay, Janardan; Im, Do; Popovic, Svetozar; Valente-Feliciano, Anne -Marie; Phillips, H. Larry; Vuskovic, Leposova

    2015-03-18

    The understanding of the Ar/Cl2 plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl2 concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. Furthermore, to understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  6. Etching mechanism of niobium in coaxial Ar/Cl{sub 2} radio frequency plasma

    SciTech Connect

    Upadhyay, J.; Im, Do; Popović, S.; Vušković, L.; Valente-Feliciano, A.-M.; Phillips, L.

    2015-03-21

    The understanding of the Ar/Cl{sub 2} plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl{sub 2} concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. To understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  7. Fabrication and Characterization of Superconducting NbN Nanowire Single Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stern, Jeffrey A.; Farr, William H.

    2006-01-01

    This viewgraph presentation describes the fabrication of large area superconducting Niobium Nitride nanowire single photon detectors. The topics include: 1) Introduction and Motivation; 2) Operation of SNSPD Detectors; 3) NbTiN Deposition; 4) Fabrication Details; 5) Backside Coupled SNSPD; 6) Measurement Apparatus; 7) Electrical Response of a 15x15 micrometer SNSPD to 1064nm radiation; 8) Detector Efficiency vs Bias Current; 9) Interarrival Time Plot; 10) Detector Linearity; and 11) Conclusion.

  8. First results of testing 3.9 GHz TM(010) superconducting cavity

    SciTech Connect

    Solyak, N.A.; Bellantoni, L.; Berenc, T.G.; Edwards, H.T.; Gonin, I.V.; Khabiboulline, T.N.; /Fermilab

    2004-10-01

    Fermilab is developing third harmonic 3.9 GHz superconducting cavity to improve performances of A0 and TTF photoinjectors. In frame of this project we have built and tested two nine-cell copper models and one 3-cell niobium cavity. Properties of the high order modes were carefully studied in a chain of two copper cavities at room temperature. In paper we discuss results of cold tests of the 3-cell cavity before and after BCP.

  9. Method of producing high T(subc) superconducting NBN films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Lamb, James L. (Inventor); Thakoor, Anilkumar P. (Inventor); Khanna, Satish K. (Inventor)

    1988-01-01

    Thin films of niobium nitride with high superconducting temperature (T sub c) of 15.7 K are deposited on substrates held at room temperature (approx 90 C) by heat sink throughout the sputtering process. Films deposited at P sub Ar 12.9 + or - 0.2 mTorr exhibit higher T sub c with increasing P sub N2,I with the highest T sub c achieved at P sub n2,I= 3.7 + or - 0.2 mTorr and total sputtering pressure P sub tot = 16.6 + or - 0.4. Further increase of N2 injection starts decreasing T sub c.

  10. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  11. Niobium oxide compositions and methods for using same

    DOEpatents

    Goodenough, John B; Han, Jian-Tao

    2014-02-11

    The disclosure relates a niobium oxide useful in anodes of secondary lithium ion batteries. Such niobium oxide has formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7, wherein 0.ltoreq.x.ltoreq.3, 0.ltoreq.y.ltoreq.1, and M represents Ti or Zr. The niobium oxide may be in the form of particles, which may be carbon coated. The disclosure also relates to an electrode composition containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. The disclosure further relates to electrodes, such as anodes, and batteries containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. Furthermore, the disclosure relates to methods of forming the above.

  12. The Manufacturing of Niobium Powder by Hunter Process

    NASA Astrophysics Data System (ADS)

    Yoon, Jae-Sik

    Niobium powder was fabricated by metallothermic reduction process using K2NbF7 as the raw material, KCl and KF as the diluents and Na as the reducing agent. The apparatus for the experiment was designed and built specifically for the present study. Varying properties of niobium powder depending on reaction temperature and excess of reducing agent were analyzed. The niobium particle size increased significantly as the reduction temperature increased from 993 to 1093 K. The particle size was fairly uniform at a given reaction temperature, varying from 0.2 μ m to 50 nm depending on the reaction temperature. The yield of niobium powder increased from 58 to 83% with an increase in reaction temperature. The average particle size of niobium powder was improved from 70 nm to 0.2 μ m with the increase in the amount of Na excess. In addition, the yield rate of Nb powder was 82% in the 5% excess sodium.

  13. Niobium matrix composites for high temperature turbine blades, phase 2

    NASA Technical Reports Server (NTRS)

    Heng, Sangvavann; Laferla, Raffaele; Tuffias, Robert H.

    1991-01-01

    This program demonstrated the feasibility of fabricating fiber-reinforced MMC (niobium matrix) turbine blades to net shape by chemical vapor infiltration (CVI). A controllable, repeatable niobium infiltration process was developed, and the kinetics of both deposition and infiltration were studied. Several continuous refractory fibers (Nicalon, Nextel 440, FP-Al2O3, HPZ, and tungsten mesh) were investigated as potential reinforcements for strengthening niobium. Thermodynamic and experimental evaluation indicated FP-Al2O3 and tungsten to be the most chemically compatible with niobium, while Nicalon, FP-Al2O3, and tungsten were found to be best with regard to reinforcing capability. Finally, a protective coating for iridium was found to provide substantial oxidation protection to the niobium blade matrix.

  14. Industrial Superconducting Quantum Computer Development in Canada

    NASA Astrophysics Data System (ADS)

    Rose, Geordie

    2002-05-01

    Quantum computation is one of the most active areas of research in academia. Nearly every university in the world that has a science department has researchers who are working on either trying to build hardware or develop algorithms for these machines. In this talk I will describe D-Wave's goals and achievements in assembling a global research network, centered in Canada, whose purpose is the development of superconducting quantum computer hardware. In addition I will describe the technical approach that we are concentrating on, involving cuprate-based flux qubits and niobium RSFQ control circuitry. Finally I will introduce a very important application of these machines, namely their use as simulators of other quantum systems, in the context of human pharmaceutical drug and vaccine design.

  15. Twisted, multifilament Nb3Sn superconductive ribbon

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1972-01-01

    An experimental study of superconductor stabilization has resulted in the successful application of the concepts of filamentary structure and conductor twist to Nb3Sn ribbon. The Nb3Sn is formed in parallel, helical paths, which are continuous around the ribbon. Short lengths (12-18cm) of 1.27 cm wide superconductive ribbon were produced. The filamentary and twist characteristics are incorporated in the ribbon by means of an inert mask formed on the ribbon surface early in the fabrication process. Diffusion reaction of the niobium and tin is prevented at the filament boundaries. Described are the conductor methods of fabrication, and test results obtained. The technology required to adapt the processes for the production of long lengths of ribbon is available.

  16. Superconductive silicon nanowires using gallium beam lithography.

    SciTech Connect

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  17. Superconducting heavy-ion linac at Argonne

    SciTech Connect

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.G.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Pardo, R.C.; Shepard, K.W.

    1981-01-01

    The design, status, and performance of the first operating superconducting heavy-ion accelerator, a linac used to boost the energies of beams from a 9-MV tandem, is summarized. When completed in 1981, the linac will consist of 24 independently-phased split-ring niobium resonators operating at 97 MHz. This linac is designed to provide 29 MV of acceleration. Because of the modular character of the system, the linac has been operable and useful since mid-1978, when a beam was accelerated through 2 units and the first nuclear-physics experiments were preformed. Now, 16 resonators are in use, and a beam has been accelerated for approx. 6000 h. Resonator performance has been remarkably stable, in spite of vacuum accidents, and the linac as a whole operates reliably without operators in attendance during nights and weekends. The ease and speed with which the beam energy can be changed is proving to be unexpectedly valuable to users.

  18. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  19. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  20. Paresev on Taxi Strip

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Test pilot Milton Thompson sitting in NASA Flight Research Center-built Paresev 1 (Paraglider Research Vehicle) on the taxi strip in front of the NASA Flight Research Center in 1962. In this photo the control stick can be seen coming from overhead and hanging in front of the pilot. The control system was a direct link with the wing membrane made of doped Irish linen. By maintaining simplicity during construction, it was possible to make control and configuration changes overnight and, in many instances, in minutes.

  1. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  2. Space applications of superconductivity - Resonators for high stability oscillators and other applications

    NASA Technical Reports Server (NTRS)

    Stein, S. R.

    1980-01-01

    The potential applications of superconductivity in space are examined. It is shown that superconducting oscillators have achieved better frequency stability that any other device for averaging times of 10 s to 1000 s. Such a high stability results from the use of solid niobium resonators having Q factors greater that 10 to the 10th. Oscillators of this type have direct applications as clocks and spectrally pure sources. In addition, they may also be used for accurate measurements of many physical quantities and to perform a variety of experiments on fundamental constants, relativity, and gravity waves.

  3. Strip casting apparatus and method

    DOEpatents

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  4. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  5. Superconducting cable

    SciTech Connect

    Benz, H.

    1983-03-22

    A superconducting cable containing a plurality of individual wires which are stranded or plaited to wire bundles and ropes, wherein in order to avoid relative movement and/or deformation between the wire bundles and/or ropes as, for example, may otherwise be caused by high current loading, the individual wire bundles and the ropes are materially joined together at their points of contact, preferably by soldering, to form a mechanically rigid structure, in which the parts between the soldered areas can as well as possible deform elastically, thereby avoiding all disadvantages associated with freely movable wire bundles. In a preferred embodiment, the ropes are made from wire bundles arranged in a lattice.

  6. In-situ proton irradiation and measurement of superconducting rf cavities under cryogenic conditions

    SciTech Connect

    Rusnak, B.; Haynes, W.B.; Chan, K.C.D.

    1997-08-01

    The Accelerator Production of Tritium (APT) Project is investigating using a superconducting linac for the high-energy portion of the accelerator. As this accelerator would be used to accelerate a high-current (100-mA) CW proton beam up to 1700 MeV, it is important to determine the effects of stray-beam impingement on the superconducting properties of a 700-MHz niobium cavity. To accomplish this, two 3000-MHz elliptical niobium cavities were placed in a cryostat, cooled to nominally 2 K in sub-atmospheric liquid helium, and irradiated with 798-MeV protons at up to 490 {pi}A average current. The elliptically shaped beam passed through the equatorial regions of both cavities in order to maximize sensitivity to any changes in the superconducting-surface resistance. Over the course of the experiment, 6x10{sup 16} protons were passed through the cavities. After irradiation, the cavities were warmed to 250 K, then recooled to investigate the effects of a room-temperature annealing cycle on the superconducting properties of the irradiated cavities. A detailed description of the experiment and the results shall be presented. These results are important to employing superconducting-rf technology to future high-intensity proton accelerators for use in research and transmutation technologies.

  7. High-T/sub c/ superconductor and its use in superconducting magnets

    SciTech Connect

    Green, M.A.

    1988-02-01

    Many of the proposed uses for the high-T/sub c/ superconductor involve the creation of a magnetic field using superconducting coils. This report will assess what is known about the high-T/sub c/ superconductors and take a realistic look at their potential use in various kinds of superconducting magnets. Based on what is known about the high-T/sub c/ superconductors, one can make a ''wish list'' of things that will make such materials useful for magnets. Then, the following question is asked. If one had a high-T/sub c/ superconductor with the same properties as modern niobium-titanium superconductor, how would the superconductor work in a magnet environment. Finally, this report will show the potential impact of the ideal high-T/sub c/ superconductor on: 1) accelerator dipole and quadrupole magnets, 2) superconducting magnets for use in space, and 3) superconducting solenoids for magnetic resonance imaging. 78 refs., 11 tabs.

  8. Multi-orbits observed in superconducting Nb-doped Bi2Se3

    NASA Astrophysics Data System (ADS)

    Lawson, Benjamin; Corbae, Paul; Li, Gang; Yu, Fan; Asaba, Tomoya; Tinsman, Colin; Qiu, Yunsheng; Hor, Yew San; Li, Lu

    Recently discovered superconducting niobium doped Bi2Se3 shows promise to realize new physical phenomenon including the coexistence of superconductivity and magnetic ordering and possibly topological superconductivity. To understand the new physics showcased in this system, a detailed knowledge of the electronic structure is needed. We present the first observation of quantum oscillations in the magnetization (the de Haas-van Alphen effect) of Nb-doped Bi2Se3. In the fully superconducting crystal, two distinct orbits are observed, in sharp contrast to Bi2Se3, Cu-doped Bi2Se3, and Sr-doped Bi2Se3. The multiple frequencies observed in our quantum oscillations, combined with our electrical transport studies, indicate the multi-orbit nature of the electronic state of Nb-doped Bi2Se3.

  9. Electronic rumble strip

    NASA Astrophysics Data System (ADS)

    Stauffer, Donald R.; Lenz, James

    1997-02-01

    Single vehicle run-off-road accidents are responsible for significant numbers of injuries and fatalities, and significant property damage. This fact spurs interest in warning systems to alert drivers that vehicles are drifting towards the edge of the road, and that a run-off road accident is imminent. An early attempt at such a warning system is the use of machined grooves on the shoulder to create a rumble strip. Such a system only provides warning, however, as the vehicle actually leaves the traffic lane. More desirable is a system that warns in anticipation of such departure. Honeywell has under development a magnetic lateral guidance system that couples a sensitive magnetoresistive transducer with a magnetic traffic marking tape being developed by 3M. While this development was initially undertaken for use in automated highways, or for special tasks such as guiding snowplow owners, the system can provide an effective, all-weather warning system to provide alert of impending departure from the roadway. This electronic rumble strip is actually a simpler system than the baseline guidance system, and can monitor both distance from the traffic lane edge and the speed of approach to the edge with a low cost sensor.

  10. Laser polishing of niobium for SRF applications

    SciTech Connect

    Zhao, Liang; Klopf, J. Michael; Reece, Charles E.; Kelley, Michael

    2013-09-01

    Smooth interior surfaces are desired for niobium SRF cavities, now obtained by buffered chemical polish (BCP) and/or electropolish (EP). Laser polishing is a potential alternative, having advantages of speed, freedom from chemistry and in-process inspection. Here we show that laser polishing can produce smooth topography with Power Spectral Density (PSD) measurements similar to that obtained by EP. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damaging it. Computational modeling was used to simulate the surface temperature and explain the mechanism of laser polishing.

  11. Germanium-overcoated niobium Dayem bridges

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Peters, P. N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at least 20 steps could be counted at 4.2 K. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature.

  12. Support-electrode torque on a spherical superconducting gyroscope

    SciTech Connect

    Holdeman, L.B.; Holdeman, J.T. Jr.

    1982-01-01

    In 1960, L.I. Schiff observed that precise measurement of the precession of a spherical gyroscope orbiting the earth could provide a test of general relativity. The current effort to implement this experiment was initiated shortly thereafter by W.M. Fairbank. The gyroscope will be a fused-quartz sphere coated with superconductive niobium. The spinning superconducting coating generates a small magnetic field (the London field) which outside the rotor is that of a magnetic dipole and inside is uniform and parallel to the spin axis. The magnetic flux that this field produces in superconducting loops encompassing the rotor will change as the gyroscope precesses; the precession of the gyroscope will be measured by measuring the change in flux. Because the anticipated relativistic precession is extremely small, it is essential that no significant torques be coupled to the gyroscope through its London field. The torque on a superconducting sphere rotating in an arbitrary magnetic field can be expressed in terms of the l = 1 coefficients of the expansion of the field in spherical harmonic functions. In general, a boundary-value problem must be solved in order to obtain these coefficients. The diamagnetic torque produced by superconducting support electrodes is calculated. (WHK)

  13. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  14. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    SciTech Connect

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J.; Chaudhuri, S.; Bockstiegel, C.

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  15. Atomic spin decoherence near conducting and superconducting films

    NASA Astrophysics Data System (ADS)

    Scheel, S.; Rekdal, P. K.; Knight, P. L.; Hinds, E. A.

    2005-10-01

    We derive scaling laws for the spin decoherence of neutral atoms trapped near conducting and superconducting plane surfaces. A result for thin films sheds light on the measurement of Y. J. Lin, I. Teper, C. Chin, and V. Vuletić [Phys. Rev. Lett. 92, 050404 (2004)]. Our calculation is based on a quantum-theoretical treatment of electromagnetic radiation near metallic bodies [P. K. Rekdal, S. Scheel, P. L. Knight, and E. A. Hinds, Phys. Rev. A 70, 013811 (2004)]. We show that there is a critical atom-surface distance that maximizes the spin relaxation rate and we show how this depends on the skin depth and thickness of the metal surface. In the light of this impedance-matching effect we discuss the spin relaxation to be expected above a thin superconducting niobium layer.

  16. Single photon source characterization with a superconducting single photon detector.

    PubMed

    Hadfield, Robert H; Stevens, Martin J; Gruber, Steven S; Miller, Aaron J; Schwall, Robert E; Mirin, Richard P; Nam, Sae Woo

    2005-12-26

    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g(2)( ?). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

  17. Design optimization of superconducting magnetic energy storage coil

    NASA Astrophysics Data System (ADS)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-05-01

    An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb-Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  18. Numerical evaluation of AC loss properties in assembled superconductor strips exposed to perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2009-10-01

    AC losses in superconductor strips assembled face-to-face are numerically evaluated by means of a finite element method. The external magnetic field is applied perpendicular to their flat face. It is also assumed that the superconductor strips have the voltage-current characteristics represented by the critical state model with constant critical current density. The influences of the number of strips and the gap length between strips on the losses are quantitatively discussed as compared with the conventional theoretical expressions for some special cases in order to understand only the geometrical effects on the perpendicular-field losses in actual assembled conductors with the finite numbers of Y-based superconducting tapes.

  19. Bismuth-based electrochemical stripping analysis

    DOEpatents

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  20. Stripped Crater Floor

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 February 2004 This full-resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows details on the floor of an ancient meteor crater in the northeastern part of Noachis Terra. After the crater formed, layers of material--perhaps sediment--were deposited in the crater. These materials became somewhat solidified, but later were eroded to form the patterns shown here. Many windblown ripples in the scene indicate the presence of coarse-grained sediment that was not completely stripped away by wind. The picture is located near 22.1oS, 307.0oW. Sunlight illuminates this scene from the left/upper left; the image covers an area 3 km (1.9 mi) wide.

  1. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  2. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  3. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1988-01-01

    The creep behavior and microstructural stability of tungsten fiber reinforced niobium and niobium 1 percent zirconium was determined at 1400 and 1500 K in order to assess the potential of this material for use in advanced space power systems. The creep behavior of the composite materials could be described by a power law creep equation. A linear relationship was found to exist between the minimum creep rate of the composite and the inverse of the composite creep rupture life. The composite materials had an order of magnitude increase in stress to achieve 1 percent creep strain and in rupture strength at test temperatures of 1400 and 1500 K compared to unreinforced material. The composite materials were also stronger than the unreinforced materials by an order of magnitude when density was taken into consideration. Results obtained on the creep behavior and microstructural stability of the composites show significant potential improvement in high temperature properties and mass reduction for space power system components.

  4. Superconductivity: Squash and sandwiches

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio

    2008-12-01

    Externally applied pressure induces superconductivity in the layer compound 1T-TaS2. Similarities to, and differences from, other superconducting systems promise exciting future experiments on this old, but suddenly rejuvenated, compound.

  5. Synthesis of piezoelectric and bioactive NaNbO3 from metallic niobium and niobium oxide.

    PubMed

    Prado da Silva, Marcelo Henrique; da Rocha, Daniel Navarro; de Andrade Gobbo, Luciano; Dos Santos Azevedo, Luciana Maria; Louro, Luís Henrique Leme; Machado Costa, Andréa; Brant de Campos, José

    2016-07-01

    NaNbO3 was synthesized by two different routes, one using metallic niobium powder, and another using niobium oxide (Nb2 O5 ) powder. In both routes an aqueous sodium hydroxide solution was used to hydrothermally treating the powders. In the first approach, the solution concentrations were 3M, 1M, and 0.5M. The second route used solution concentrations of 10M and 12.5M. After the hydrothermal treatments, the powders were heat treated in order to synthesize NaNbO3 . The products were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) with Rietveld refinement. The phases were identified by means of X-ray diffraction (XRD) with Rietveld refinement. It was observed that the molar concentrations of the solutions had opposing effects for each route. An antiferroelectric phase was found in both routes. In the niobium metallic route, a ferroelectric phase was also synthesized. This study proves that piezoelectric NaNbO3 can be obtained after alkali treatment of both Nb and Nb2 O5. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 979-985, 2016.

  6. Synthesis of piezoelectric and bioactive NaNbO3 from metallic niobium and niobium oxide.

    PubMed

    Prado da Silva, Marcelo Henrique; da Rocha, Daniel Navarro; de Andrade Gobbo, Luciano; Dos Santos Azevedo, Luciana Maria; Louro, Luís Henrique Leme; Machado Costa, Andréa; Brant de Campos, José

    2016-07-01

    NaNbO3 was synthesized by two different routes, one using metallic niobium powder, and another using niobium oxide (Nb2 O5 ) powder. In both routes an aqueous sodium hydroxide solution was used to hydrothermally treating the powders. In the first approach, the solution concentrations were 3M, 1M, and 0.5M. The second route used solution concentrations of 10M and 12.5M. After the hydrothermal treatments, the powders were heat treated in order to synthesize NaNbO3 . The products were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) with Rietveld refinement. The phases were identified by means of X-ray diffraction (XRD) with Rietveld refinement. It was observed that the molar concentrations of the solutions had opposing effects for each route. An antiferroelectric phase was found in both routes. In the niobium metallic route, a ferroelectric phase was also synthesized. This study proves that piezoelectric NaNbO3 can be obtained after alkali treatment of both Nb and Nb2 O5. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 979-985, 2016. PMID:25980635

  7. FIONDA (Filtering Images of Niobium Disks Application): Filter application for Eddy Current Scanner data analysis

    SciTech Connect

    Boffo, C.; Bauer, P.; /Fermilab

    2005-05-01

    As part of the material QC process, each Niobium disk from which a superconducting RF cavity is built must undergo an eddy current scan [1]. This process allows to discover embedded defects in the material that are not visible to the naked eye because too small or under the surface. Moreover, during the production process of SC cavities the outer layer of Nb is removed via chemical or electro-chemical etching, thus it is important to evaluate the quality of the subsurface layer (in the order of 100nm) where superconductivity will happen. The reference eddy current scanning machine is operated at DESY; at Fermilab we are using the SNS eddy current scanner on loan, courtesy of SNS. In the past year, several upgrades were implemented aiming at raising the SNS machine performance to that of the DESY reference machine [2]. As part of this effort an algorithm that enables the filtering of the results of the scans and thus improves the resolution of the process was developed. The description of the algorithm and of the software used to filter the scan results is presented in this note.

  8. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    PubMed Central

    Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.

    2016-01-01

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb. PMID:27775087

  9. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  10. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  11. Diffusion of hydrogen, deuterium, and tritium in niobium

    SciTech Connect

    Matusiewicz, Gerald Robert

    1981-01-01

    The diffusion of hydrogen in niobium was investigated over the temperature range 148 to 500 degrees Kelvin, using measurements of the elastic after effect caused by long range diffusion (the Gorsky Effect). Relaxation curves for pure annealed niobium were generally not of the single exponential form expected from the Gorsky Effect theory, but were described well by a sum of two exponential curves with different amplitudes and relaxation times. The effects of oxygen and nitrogen interstitials on the diffusion were studied and were not in agreement with conventional trapping models. Deuterium and tritium diffusion in niobium were also studied, and a non-classical isotope effect was observed. Hydrogen diffusion coefficients in several Nb-Ta alloys were measured, and the diffusivity in all these alloys exhibited a non-Arrhenius temperature dependence. Experimental results were compared to several models for diffusion and trapping. A model is presented which can account for the form of the relaxation curves observed in pure, annealed niobium.

  12. Studies of Niobium Thin Film Produced by Energetic Vacuum Deposition

    SciTech Connect

    Genfa Wu; Anne-Marie Valente; H. Phillips; Haipeng Wang; Andy Wu; T. J. Renk; P Provencio

    2004-05-01

    An energetic vacuum deposition system has been used to study deposition energy effects on the properties of niobium thin films on copper and sapphire substrates. The absence of working gas avoids the gaseous inclusions commonly seen with sputtering deposition. A biased substrate holder controls the deposition energy. Transition temperature and residual resistivity ratio of the niobium thin films at several deposition energies are obtained together with surface morphology and crystal orientation measurements by AFM inspection, XRD and TEM analysis. The results show that niobium thin films on sapphire substrate exhibit the best cryogenic properties at deposition energy around 123 eV. The TEM analysis revealed that epitaxial growth of film was evident when deposition energy reaches 163 eV for sapphire substrate. Similarly, niobium thin film on copper substrate shows that film grows more oriented with higher deposition energy and grain size reaches the scale of the film thickness at the deposition energy around 153 eV.

  13. Effects of Impurities on Alumina-Niobium InterfacialMicrostructures

    SciTech Connect

    McKeown, Joseph T.; Sugar, Joshua D.; Gronsky, Ronald; Glaeser,Andreas M.

    2005-06-20

    Optical microscopy, scanning electron microscopy, and transmission electron microscopy were employed to examine the interfacial microstructural effects of impurities in alumina substrates used to fabricate alumina-niobium interfaces via liquid-film-assisted joining. Three types of alumina were used: undoped high-purity single-crystal sapphire; a high-purity, high-strength polycrystalline alumina; and a lower-purity, lower-strength polycrystalline alumina. Interfaces formed between niobium and both the sapphire and high-purity polycrystalline alumina were free of detectable levels of impurities. In the lower-purity alumina, niobium silicides were observed at the alumina-niobium interface and on alumina grain boundaries near the interface. These silicides formed in small-grained regions of the alumina and were found to grow from the interface into the alumina along grain boundaries. Smaller silicide precipitates found on grain boundaries are believed to form upon cooling from the bonding temperature.

  14. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  15. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  16. Superconducting heterostructures: from antipinning to pinning potentials

    NASA Astrophysics Data System (ADS)

    Carreira, S. J.; Chiliotte, C.; Bekeris, V.; Rosen, Y. J.; Monton, C.; Schuller, Ivan K.

    2014-08-01

    We study vortex lattice dynamics in a heterostructure that combines two type-II superconductors: a niobium film and a dense triangular array of submicrometric vanadium (V) pillars. Magnetic ac susceptibility measurements reveal a sudden increase in ac penetration, related to an increase in vortex mobility above a magnetic field, {{H}^{*}}\\left( T \\right), that decreases linearly with temperature. Additionally, temperature independent matching effects that occur when the number of vortices in the sample is an integer of the number of V pillars, strongly reduce vortex mobility, and were observed for the first and second matching fields, {{H}_{1}} and {{H}_{2}}. The angular dependence of {{H}_{1}}, {{H}_{2}} and {{H}^{*}}\\left( T \\right) shows that matching is determined by the normal applied field component, while {{H}^{*}}\\left( T \\right) is independent of the applied field orientation. This important result identifies {{H}^{*}}\\left( T \\right) with the critical field boundary for the normal to superconducting transition of V pillars. Below {{H}^{*}}\\left( T \\right), superconducting V pillars repel vortices, and the array becomes an ‘antipinning’ landscape that is more effective in reducing vortex mobility than the ‘pinning’ landscape of the normal V sites above {{H}^{*}}\\left( T \\right). Matching effects are observed both below and above {{H}^{*}}\\left( T \\right), implying the presence of ordered vortex configurations for ‘antipinning’ or ‘pinning’ arrays.

  17. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  18. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  19. A thin superconducting solenoid magnet for the WASA detector

    SciTech Connect

    Yamaoka, H.; Yamamoto, A.; Makida, Y.

    1996-07-01

    A thin superconducting solenoid magnet has been developed for the WASA detector. The magnet consists of a pair of coils and it provides a central magnetic field of 1.3T at 900A in a cylindrical volume of 0.65m in diameter and 0.555m in length. The features of this solenoid magnet are the excellent transparency for particles, conducting cooling, thermo siphon method, applying aluminum strip for conduction cooling and corrugated outer wall. Recently, the performance test was successfully carried out. In this report, magnet design and fabrication of the WASA superconducting solenoid magnet will be presented and the test results will be described.

  20. Parameter Optimization for Laser Polishing of Niobium for SRF Applications

    SciTech Connect

    Zhao, Liang; Klopf, John Michael; Reece, Charles E.; Kelley, Michael J.

    2013-06-01

    Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surfaces. Results shows that microsmoothing of the surface without ablation is achievable.

  1. International strategic minerals inventory summary report; niobium (columbium) and tantalum

    USGS Publications Warehouse

    Crockett, R.N.; Sutphin, D.M.

    1993-01-01

    Major world resources of niobium and tantalum are described in this summary report of information in the International Strategic Minerals Inventory (ISMI). ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States of America. Part I of this report presents an overview of the resources and potential supply of niobium and tantalum based on inventory information; Part II contains tables of both geologic and mineral-resource information and includes production data collected by ISMI participants. Niobium is used principally as an alloying element in special steels and superalloys, and tantalum is used mainly in electronics. Minerals in the columbite-tantalite series are principal ore minerals of niobium and tantalum. Pyrochlore is a principal source of niobium. These minerals are found in carbonatite, certain rocks in alkaline igneous complexes, pegmatite, and placer deposits. ISMI estimates show that there are over 7 million metric tons of niobium and almost 0.5 million metric tons of tantalum in known deposits, outside of China and the former Soviet Union, for which reliable estimates have been made. Brazilian deposits, followed by Canadian deposits, contain by far the largest source of niobium. Tantalum production is spread widely among several countries, and Brazil and Canada are the most significant of these producers. Brazil's position is further strengthened by potential byproduct columbite from tin mining. Present economically exploitable resources of niobium appear to be sufficient for the near future, but Brazil will continue to be the predominant world supplier of ferrocolumbium. Tantalum, a byproduct of tin production, has been captive to the fluctuations of that market, but resources in pegmatite in Canada and Australia make it likely that future increases in the present modest demand will be met.

  2. Characterization of electron beam melted uranium - 6% niobium ingots

    SciTech Connect

    McKoon, R.H.

    1997-10-31

    A study was undertaken at Lawrence Livermore National Laboratory to characterize uranium, 6{percent} niobium ingots produced via electron beam melting,hearth refining and continuous casting and to compare this material with conventional VIM/skull melt /VAR material. Samples of both the ingot and feed material were analyzed for niobium, trace metallic elements, carbon, oxygen and nitrogen. Ingot samples were also inspected metallographically and via microprobe analysis.

  3. The lateral tarsal strip revisited. The enhanced tarsal strip.

    PubMed

    Jordan, D R; Anderson, R L

    1989-04-01

    The lateral tarsal strip procedure was originally designed for the treatment of upper and lower eyelid laxity, or lateral canthal tendon laxity or malposition. Despite the excellent results with a standard tarsal strip procedure for those eyelids with laxity and excess skin, we have encountered a number of patients with lower eyelid or canthal malpositions or both who would benefit from a tarsal strip, but who do not have lax tissues (especially skin), and may in fact have a shortage of skin. These include cases of lower lid retraction or canthal malposition following trauma, blepharoplasty, or other operations, and patients with tendency toward or having cicatricial ectropion. Any anterior lamella removal in such patients would aggravate the lid malposition and weaken the lateral canthal tissues to be sutured. We suggest a modification of the tarsal strip (developed by one of us [R.L.A.]) to treat many such patients without requiring additional anterior lamella (skin graft) or more formidable procedures. We refer to this technique as the "enhanced tarsal strip" technique, and we use this technique more frequently than the original tarsal strip procedure.

  4. Determination of niobium in the parts per million range in rocks

    USGS Publications Warehouse

    Grimaldi, F.S.

    1960-01-01

    A modified niobium thiocyanate spectrophotometric procedure relatively insensitive to titanium interference is presented. Elements such as tungsten, molybdenum, vanadium, and rhenium, which seriously interfere in the spectrophotometric determination of niobium, are separated by simple sodium hydroxide fusion and leach; iron and magnesium are used as carriers for the niobium. Tolerance limits are given for 28 elements in the spectrophotometric method. Specific application is made to the determination of niobium in the parts per million range in rocks. The granite G-1 contains 0.0022% niobium and the diabase W-1 0.00096% niobium.

  5. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOEpatents

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  6. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOEpatents

    Ciszek, T.F.

    1994-04-19

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8], is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate. 8 figures.

  7. Niobium (columbium) and tantalum resources of Brazil

    USGS Publications Warehouse

    White, Max Gregg

    1975-01-01

    Most of the niobium resources of Brazil occur as pyrochlore in carbonatites within syenitic intrusives of Late Cretaceous to early Tertiary age in western Minas Gerais and southeastern Goils. Minor amounts of it are produced together with tantalum from columbite-tantalite concentrates from pegmatites and placers adjacent to them, in the Sao Joao del Rei district in south-central Minas Gerais. All the niobium and tantalum produced in Brazil is exported. The only pyrochlore mined is from the Barreiro carbonatite deposit near Araxa in Minas Gerais where concentrates and ferroniobium are produced. Exploration work for pyrochlore and other mineral resources are being undertaken on other carbonatites, particularly at Catalao I in southeast Goias and at Tapira and Serra Negra in western Minas Gerais. Annual production and export from the Barreiro deposit are about 8,000 metric tons of pyrochlore concentrate containing about 60 percent Nb205 and about 2,700 metric tons of ferroniobium with 63 percent Nb2O5. The annual production capacity of the Barreiro plant is 18,000 tons of concentrate and 4,000 tons of ferroniobium. Ore reserves of the Barreiro deposit in all categories are 380 million tons with percent Nb2O5. Annual production of tantalite-columbite from the Sao Joao del Rei district, most of which is exported to the United States, is about 290 tons, of which about 79 percent is tantalite and about percent is columbite. Reserves of tantalite-columbite in the Sao Joao del Rei district are about 43,000 tons of proved and 73,000 tons of probable ore.

  8. Titanium-niobium, a new finishing wire alloy.

    PubMed

    Dalstra, M; Denes, G; Melsen, B

    2000-02-01

    The mechanical properties of the newly introduced titanium-niobium finishing wires were investigated. Both in bending and torsional loading mode, the stiffness, yield point, post-yield behavior, and springback of titanium-niobium wires were experimentally determined and compared to those of equally sized stainless steel wires. The experimentally obtained values were also validated with theoretical values from engineering formulas of cantilever deformations. The ratios for these parameters for the two materials proved to be different in bending and torsion. The stiffness of titanium-niobium in bending is roughly half of that of stainless steel, whereas in torsion it is roughly one-third. These characteristics enable the clinician to use titanium-niobium for creative bends without the excessive force levels of steel wires. The springback of titanium-niobium in bending is 14% lower than that of steel, whereas in torsion it is about the same or even slightly higher than that of steel, thus making it possible to utilize the wire for even major third-order corrections. Finally, the weldability of titanium-niobium wires was found to be good, so it is possible to weld wires of different dimensions together for the generation of differentiated force systems. PMID:11168279

  9. Field determination of microgram quantities of niobium in rocks

    USGS Publications Warehouse

    Ward, F.N.; Marranzino, A.P.

    1955-01-01

    A rapid, simple, and moderately accurate method was needed for the determination of traces of niobium in rocks. The method developed is based on the reaction of niobium(V) with thiocyanate ion in a 4M hydrochloric acid and 0.5M tartaric acid medium, after which the complex is extracted with ethyl ether. The proposed procedure is applicable to rocks containing from 50 to 2000 p.p.m. of niobium, and, with modifications, can be used on rocks containing larger amounts. Five determinations on two rocks containing 100 p.p.m. or less of niobium agree within 5 p.p.m. of the mean, and the confidence limits at the 95% level are, respectively, ??6 and ??4 p.p.m. The addition of acetone to the ether extract of the niobium thiocyanate inhibits the polymerization of the thiocyanate ion and stabilizes the solution for at least 20 hours. The proposed procedure permits the determination of 20 ?? of niobium in the presence of 1000 ?? of iron, titanium, or uranium; 500 ?? of vanadium; or 100 ?? of tungsten or molybdenum or both.

  10. Thermal transport properties of niobium and some niobium base alloys from 80 to 1600/sup 0/K

    SciTech Connect

    Moore, J.P.; Graves, R.S.; Williams, R.K.

    1980-01-01

    The electrical resistivities and absolute Seebeck coefficients of 99.8 at. % niobium with a RRR of 36, Nb-4.8 at. % W, Nb-5 at. % Mo, Nb-10 at. % Mo, and Nb-2.4 at. % Mo-2.4 at. % Zr were measured from 80 to 1600/sup 0/K, and the thermal conductivities of the niobium and Nb-5 at. % W were measured from 80 to 1300/sup 0/K. A technique is described for measuring the electrical resistivity and Seebeck coefficient of a specimen during radial heat flow measurements of the thermal conductivity. The transport property results, which had uncertainties of +-0.4%for electrical resistivity and +-1.4% for thermal conductivity, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures.

  11. Superconductivity fact vs. fancy

    SciTech Connect

    Fitzgerald, K.

    1988-05-01

    The author says great advances have been made in superconductivity. However, the rush to secure recognition combined with public confusion over superconductivity has tainted the field with misconceptions. Some people are saying little progress towards practical use of the ceramics has been made over the last year and many researchers have left what they were doing to study superconductivity. All the hype surrounding the new found ceramic superconductors could give way to a period of disillusionment and frustration. This article discusses recent work in the field of superconductivity. IEEE Spectrum has adopted an attitude of ''just the facts'' in reporting superconductivity news.

  12. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    SciTech Connect

    Nakai, H.; Hara, K.; Honma, T.; Hosoyama, K.; Kojima, Y.; Nakanishi, K.; Kanekiyo, T.; Morita, S.

    2014-01-29

    Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium, which can generate high gradient acceleration field. Since the operation temperature of these cavities is selected to be 2 K, we have developed two 2 K superfluid helium cryogenic systems for stable operation of superconducting RF cavities for each of STF and cERL. These two 2 K superfluid helium cryogenic systems are identical in principle. Since the operation mode of the cavities is different for STF and cERL, i.e. the pulse mode for STF and the continuous wave mode for cERL, the heat loads from the cavities are quite different. The 2 K superfluid helium cryogenic systems mainly consists of ordinary helium liquefiers/refrigerators, 2 K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. The 2 K refrigerators and the high-performance transfer lines are designed by KEK. Some superconducting RF cavity cryomodules have been already connected to the 2 K superfluid helium cryogenic systems for STF and cERL respectively, and cooled down to 2 K successfully.

  13. Density functional theory for plasmon-assisted superconductivity

    NASA Astrophysics Data System (ADS)

    Akashi, Ryosuke; Arita, Ryotaro

    2014-03-01

    The predictive calculation of superconducting transition temperatures (Tc) is a fascinating but extremely difficult problem in the field of superconductivity. For a conventional phonon-induced superconducting mechanism, an accurate predictive scheme to calculate Tc is established by the recent progress in the density functional theory for superconductors (SCDFT) [Lueders et al., PRB 72, 024545 (2005); Marques et al., PRB 72, 024546 (2005)]; the current SCDFT-based scheme systematically reproduces Tc observed by experiments in the conventional systems such as niobium and MgB2, with discrepancies no more than a few kelvin. However, further extensions including other mechanisms are essential to treat more general materials. Recently, we extended the SCDFT-based scheme to include a plasmon mechanism of superconductivity [Akashi and Arita, PRL 111, 057006 (2013)]. The plasmon mechanism, which has been considered solely in rather dilute electron systems, is also expected to be relevant in a wider range of materials because it can cooperate with the conventional phonon mechanism. Our extended scheme enables us to evaluate the effects on Tc of the plasmon and phonon mechanisms on equal footing. In the talk, we present recent applications to elemental metals.

  14. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  15. Mobius Strip underlying Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Lopaz, Edaurdo; Satija, Indubala

    2004-03-01

    Geometrical and topolgocial aspects of phase space orbits of driven nonlinear oscillators are shown to share many features with the circuits on the mobius strips. Most important characteristic shared by nonlinear oscillators and the mobius strip is the first order geometrical phase transition characterized in terms of local variable torsion and the global variable the geometrical phase . These geometrical transitions are geometrical resonances and lead to geometrical localization that underlie not only limit cycles but also the strange attractors.

  16. The Dark Side of the Moebius Strip.

    ERIC Educational Resources Information Center

    Schwarz, Gideon E.

    1990-01-01

    Discussed are various models proposed for the Moebius strip. Included are a discussion of a smooth flat model and two smooth flat algebraic models, some results concerning the shortest Moebius strip, the Moebius strip of least elastic energy, and some observations on real-world Moebius strips. (KR)

  17. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  18. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  19. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGES

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; Lukaszew, Rosa A.; Valente-Feliciano, Anne -Marie; Reece, Charles

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.« less

  20. Enhanced FEL performance from superconducting undulators

    NASA Astrophysics Data System (ADS)

    Gottschalk, S. C.; Pindroh, A. L.; Quimby, D. C.; Robinson, K. E.; Slater, J. M.

    1991-07-01

    Superconducting undulators offer potentially higher field strengths than either pure rare-earth permanent magnet (Pure-REPM) undulators or wedged pole hybrid (WPH) undulators. In FELs, optimum extraction is obtained for values of the rms undulator vector potential, aw, near unity. Superconducting undulators are capable of achieving a unity aw at smaller wavelengths than either Pure-REPM or WPH undulators, leading to improved extraction at the same optical wavelength and E field, while the e-beam energy is reduced slightly. The degree of improvement depends on whether the e-beam energy spread (including equivalent energy spread due to emittance) is much smaller or larger than the FEL bucket height. When the bucket is much larger than the energy spread, the extraction (at fixed gain) improves by up to 70% over that which can be achieved by the WPH design. When the energy spread is larger than the bucket, the extraction improvement is up to 35%. The superferric superconducting undulator design consists of a holmium back plane and poles with racetrack niobium-titanium multifilamentary windings. Magnetic field wavelength scalings have been determined using PANDIRA. Maximum current density vs wavelength was based on quench stability considerations. An important end result is that the forces and stresses present in undulators are much smaller than in dipoles, such as those of the SSC, so complex mechanical designs to constrain windings are not needed. The low stored energy in short wavelength undulators should keep temperatures during a quench under 150 K and voltages below 500 V. Point designs for both superferric and WPH undulators at both energy spread limits are presented.

  1. Review of superconducting booster linacs

    NASA Astrophysics Data System (ADS)

    Storm, D. W.

    1993-04-01

    Several superconducting boosters have been built and more are planned or under construction. These all use a number of independently phased resonators to permit acceleration of a wide variety of ion masses. For heavy ions, vhf frequencies are involved, and operation of the superconductors at 4.3 K, the normal boiling point of He, is practical. (Because fundamental losses in superconductors depend on frequency, some electron accelerators using much higher frequencies require colder resonators.) For boosters the resonator technology has evolved toward the use of quarter wave resonators with straight loading arms. The superconducting material is either niobium or lead. The latter is deposited as a film on copper, while the former may be sheet metal, may be bonded to copper, or may be (in principle) applied as a film on copper. The trade-offs involved and the successes of the various techniques are discussed. The rf must be controlled accurately both with regard to amplitude and phase. Because of the high unloaded Q of the resonators, additional loading is provided at some temperature well above that of the superconductor, in order to increase the bandwidth to a manageable point. Most boosters provide active control of phase by shifting the driving phase, although at least one system uses a frequency switching technique. Cross talk between independent resonator control systems must be avoided. The cryogenic systems have evolved toward a system based on a large helium refrigerator using turbine expansion and providing gas cooling to heat shields. Conservative design provides excess capacity beyond the expected requirements of the accelerator. Cryogenic distribution must be done carefully to avoid losses, and the system should be designed with capacity to match that of anticipated upgrades of the refrigerator. Most boosters use an approximately periodic focusing system with radial phase advance near 90° per unit cell. At Legnaro, however, waist to waist focusing is

  2. Thermo-electromagnetic properties of a magnetically shielded superconductor strip: theoretical foundations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Ma, G. T.; Rauh, H.

    2013-10-01

    Numerical simulations of thermo-electromagnetic properties of a thin type-II superconductor strip surrounded by open cavity soft-magnetic shields and exposed to an oscillating transverse magnetic field are performed by resorting to the quasistatic approximation of a vector potential approach in conjunction with the classical description of conduction of heat. The underlying definition of the superconducting constituent makes use of an extended ‘smoothed’ Bean model of the critical state, which includes the field and temperature dependence of the induced supercurrent as well. The delineation of the magnetic shields exploits the reversible-paramagnet approximation in the Langevin form, as appropriate for magnetizations with narrow Z-type loops, and considers induced eddy currents too. The coolant is envisaged as acting like a bath that instantly takes away surplus heat. Based on the Jacobian-free Newton-Krylov approach and the backward Euler scheme, the numerical analysis at hand is tailored to the problem of a high width/thickness aspect ratio of the superconductor strip. Assigning representative materials characteristics and conditions of the applied magnetic field, the main findings for a practically relevant magnet configuration include: (i) an overall rise of the maximum temperature of the superconductor strip tending to saturation in a superconducting thermo-electromagnetic steady state above the operating temperature, magnetic shielding lending increased stability and smoothing the temperature profile along the width of the superconductor strip; (ii) a washing out of the profile of the magnetic induction and a lowering of its strength, a relaxation of the profile of the supercurrent density and an increase of its strength, a tightening of the power loss density and a reduction of its strength, all inside the superconductor strip. The hysteretic ac loss suffered by the superconductor strip is seen to be cut back or, at most, to converge on that of an

  3. Study of proton induced reactions on niobium targets up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Tárkányi, F.; Baba, M.; Corniani, E.; Shubin, Yu. N.

    2008-12-01

    Niobium is a metal with important technological applications: use as alloying element to increase strength of super alloys, as thin layer for tribological applications, as superconductive material, in high temperature engineering systems, etc. In the frame of a systematic study of activation cross-sections of charged particle induced reactions on structural materials proton induced excitation functions on Nb targets were determined with the aim of applications in accelerator and reactor technology and for thin layer activation (TLA). The charged particle activation cross-sections on this element are also important for yield calculation of medical isotope production ( 88,89Zr, 86,87,88Y) and for dose estimation in PET targetry. As Niobium is a monoisotopic element it is an ideal target material to test nuclear reaction theories. We present here the integral excitation functions of 93Nb(p,x) 90,93mMo, 92m,91m,90Nb, 86,88,89Zr, 86,87mg,88Y and 85Sr in the energy range 30-70 MeV, some measured for the first time at this energy range. The results were compared with the theoretical cross-sections calculated by means of the code ALICE-IPPE and with the literature data. The calculations have been carried out without any parameter adjustment. The theory reproduces the shape of the measured results well and magnitude is also acceptable. Thick target yields calculated from our fitted cross-section give reliable estimations for production of medically relevant radioisotopes and for dose estimation in accelerator technology.

  4. Effect of Different Cutting Techniques on the Surface Morphology and Composition of Niobium

    SciTech Connect

    Cooper, C.A.; Wu, A.; Bauer, P.; Antoine, C.; /Fermilab

    2009-01-01

    The surface morphology and chemical purity of superconducting radio frequency (SRF) niobium cavities are very important for proper accelerator operation. Typically on the order of 120 micrometers of niobium (Nb) is removed from cavities to remove damage done during the forming of Nb sheets and cavities. A study was done to find the effect of cutting or finishing Nb with a band saw, diamond saw, electrical discharge machining (EDM) wire, garnet water jet, sheer, and mill. Surface contamination of the samples was measured before and after buffered chemical polish (BCP) by secondary ion mass spectroscopy (SIMS), energy dispersive spectroscopy (EDS), and by measuring relative resistivity ratios (RRRs). Surface morphology was examined with a digital microscope, a surface profilometer and scanning electron microscope (SEM). It was found that all techniques altered the top 3-5 micrometers of the Nb. It was also found by SIMS that the water jet technique introduced the most hydrogen and oxygen to the Nb in the first 2.5 micrometers of the sample. The EDM wire cutting technique introduced the least amount of hydrogen to the Nb. After 5 micrometers were etched away by BCP on the various samples, no contaminants were found except on the water jet cut samples. Even after 20 micrometers of Nb removal silica could be seen on the surface with EDS. The water jet produced the roughest surface with 50-100 micrometer deep pits made from embedded garnet particles. It was found that the garnet water jet damages the surface to the point where even the typical 120 micrometers of BCP etching may not remove all the defects created.

  5. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  6. Physical and Mechanical Properties of Niobium for SRF Science and Technology

    SciTech Connect

    Ganapati Rao Myneni

    2006-10-31

    Optimized mechanical and physical properties of high purity niobium are crucial for obtaining high performance SRF particle beam accelerator structures consistently. This paper summarizes these important material properties for both high purity polycrystalline and single crystal niobium.

  7. Note: Control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron

    SciTech Connect

    Bhattacharyya, T. K. Pal, G.

    2015-02-15

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  8. Note: control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron.

    PubMed

    Bhattacharyya, T K; Pal, G

    2015-02-01

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters. PMID:25725894

  9. Note: control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron.

    PubMed

    Bhattacharyya, T K; Pal, G

    2015-02-01

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  10. A Qubit-Coupled Nanomechanical Resonator Integrated with a Superconducting CPW Cavity

    NASA Astrophysics Data System (ADS)

    Hao, Yu; Rouxinol, Francisco; Shim, Seung-Bo; Lahaye, Matt

    2014-03-01

    In this work we discuss some of our first results integrating a qubit-coupled nanomechanical resonator with a superconducting transmission line resonator. This hybrid circuit QED system is composed of a capacitively-coupled superconducting charge-type qubit and UHF-range flexural nanoresonator, which are both embedded within a superconducting niobium coplanar waveguide (CPW) cavity. Phase-sensitive transmission measurements of the CPW cavity are used to spectroscopically probe the qubit-coupled nanoresonator via the qubit-state-dependent dispersive shift of the cavity frequency. We will discuss the design and measurement of the latest generation of these devices and the prospects for using this system to read-out the number-states statistics of a nanomechanical resonator at low thermal occupancy. NSF-DMR Career Award 1056423.

  11. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  12. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  13. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  14. Sulfuric acid-methanol electrolytes as an alternative to sulfuric-hydrofluoric acid mixtures for electropolishing of niobium

    SciTech Connect

    Zhao, Xin; Corcoran, Sean G.; Kelley, Michael J.

    2011-06-01

    Attainment of the greatest possible interior surface smoothness is critical to meeting the performance demands placed upon niobium superconducting radiofrequency (SRF) accelerator cavities by next generation projects. Electropolishing with HF-H{sub 2}SO{sub 4} electrolytes yields cavities that meet SRF performance goals, but a less-hazardous, more environmentally-friendly process is desirable. Reported studies of EP on chemically-similar tantalum describe the use of sulfuric acid-methanol electrolytes as an HF-free alternative. Reported here are the results of experiments on niobium samples with this electrolyte. Voltammetry experiments indicate a current plateau whose voltage range expands with increasing acid concentration and decreasing temperature. Impedance spectroscopy indicates that a compact salt film is responsible for the current plateau. Equivalent findings in electropolishing chemically-similar tantalum with this electrolyte were interpreted due to as mass transfer limitation by diffusion of Ta ions away from the anode surface. We infer that a similar mechanism is at work here. Conditions were found that yield leveling and brightening comparable to that obtained with HF-H{sub 2}SO{sub 4} mixtures.

  15. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  16. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  17. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  18. Performance analysis of superconducting rf cavities for the CERN rare isotope accelerator

    NASA Astrophysics Data System (ADS)

    Calatroni, S.; Miyazaki, A.; Rosaz, G.; Sublet, A.; Venturini Delsolaro, W.; Vaglio, R.; Palmieri, V.

    2016-09-01

    The first cryomodule of the new HIE-ISOLDE rare isotope accelerator has recently been commissioned with beam at CERN, with the second cryomodule ready for installation. Each cryomodule contains five superconducting low-beta quarter wave cavities, produced with the technology of sputtering a thin niobium film onto the copper substrate (Nb /Cu ). This technology has several benefits compared to the bulk niobium solution, but also drawbacks among which the most relevant is the increase of surface resistance with accelerating field. Recent work has established the possible connection of this phenomenon to local defects in the Nb /Cu interface, which may lead to increased thermal impedance and thus local thermal runaway. We have analyzed the performance of the HIE-ISOLDE cavities series production, as well as of a few prototypes', in terms of this model, and found a strong correlation between the rf properties and one of the model characteristic quantities, namely the total surface having increased interface thermal impedance.

  19. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    SciTech Connect

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  20. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    DOE PAGES

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  1. Dry etching of niobium using CCl sub 2 F sub 2 and CF sub 4 : A comparison

    SciTech Connect

    Sasserath, J.N. )

    1990-11-15

    Freon 12 is compared to freon 14 as an etchant for patterning of high density superconductive circuits. Both reactive ion and plasma regimes are examined. CCl{sub 2}F{sub 2} is observed to be an excellent niobium etchant, offering significant advantages over similar CF{sub 4} processes. Improvements include a six-fold increase of Nb:photoresist selectivity, while Nb:SiO{sub 2} selectivity is increased by over 1400%. Critical dimension control was also enhanced through the reduction of photo to etch bias from between 1.09 and 0.5 {mu}m to 0.14 {mu}m. Diminished photoresist loss and the elimination of photoresist undercut are the reasons for this improvement. SiO{sub 2} surface texturing is not observed with either of the two etchants. Finally, data are presented that demonstrate the importance of electrode cooling in obtaining etch rate repeatability.

  2. Elucidating the Band Gap of Niobium Dioxide

    NASA Astrophysics Data System (ADS)

    O'Hara, Andrew; Vigil-Fowler, Derek; Louie, Steven G.; Demkov, Alexander A.

    2015-03-01

    Like VO2, niobium dioxide (NbO2) belongs to the family of transition metal oxides with a temperature-driven metal-to-insulator transition. However, NbO2 has received considerably less attention, and several open questions about the material remain. One such question, of both practical and fundamental importance, is the nature and size of the band gap in the low-temperature, distorted rutile phase with a range reported for the gap of 0.5 eV to 1.2 eV. In this work, we investigate the low-temperature phase, utilizing several methodologies - density functional theory within the standard local density approximation (LDA), LDA +U, hybrid functional, and the GW approximation, to better understand the physics of the band gap in NbO2. Comparisons of the calculations are made to recent experimental work on NbO2 utilizing photoemission spectroscopy and ellipsometry. This work is supported by DOE under the SciDAC program, the NSF, and SRC.

  3. Density Prediction of Uranium-6 Niobium Ingots

    SciTech Connect

    D.F.Teter; P.K. Tubesing; D.J.Thoma; E.J.Peterson

    2003-04-15

    The densities of uranium-6 niobium (U-Nb) alloys have been compiled from a variety of literature sources such as Y-12 and Rocky Flats datasheets. We also took advantage of the 42 well-pedigreed, homogeneous baseline U-Nb alloys produced under the Enhanced Surveillance Program for density measurements. Even though U-Nb alloys undergo two-phase transitions as the Nb content varies from 0 wt. % to 8 wt %, the theoretical and measured densities vary linearly with Nb content. Therefore, the effect of Nb content on the density was modeled with a linear regression. From this linear regression, a homogeneous ingot of U-6 wt.% Nb would have a density of 17.382 {+-} 0.040 g/cc (95% CI). However, ingots produced at Y-12 are not homogeneous with respect to the Nb content. Therefore, using the 95% confidence intervals, the density of a Y-12 produced ingot would vary from 17.310 {+-} 0.043 g/cc at the center to 17.432 {+-} 0.039 g/cc at the edge. Ingots with larger Nb inhomogeneities will also have larger variances in the density.

  4. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  5. Superconducting imaging surface magnetometer

    SciTech Connect

    Overton, W.C. Jr.; van Hulsteyn, D.B.; Flynn, E.R.

    1991-04-16

    This patent describes an improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. Another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  6. Highly flexible, mechanically robust superconducting wire consisting of NbN-carbon-nanotube nanofibril composites

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyun; Kang, Haeyong; Kim, Joonggyu; Lee, Young Hee; Suh, Dongseok

    A flexible superconducting fiber is prepared by twisting carbon nanotube (CNT) sheets coated with sputter-deposited niobium nitride (NbN) layer to form the shape of yarn. Twisted CNT yarn, which has been extensively studied due to its high flexibility as well as excellent mechanical properties, and NbN, which is a superconducting material with high transition temperature (Tc) and critical magnetic field (Hc), are combined together by the deposition of NbN layer on free-standing CNT-sheet substrate followed by the biscrolling process. We tried many experimental conditions to investigate the superconducting properties of NbN-CNT yarn as a function of NbN thickness and number of CNT-sheet layers, and found out that the superconducting property of NbN on CNT-sheet can be comparable to that of NbN thin film on the normal solid substrate. In addition, the superconducting property survived even under the condition of severe mechanical deformation such as knotting. These results show the potential application of this technology as a large-scale fabrication method of flexible, mechanically robust, high performance superconducting wire. This work is supported by the Institute for Basic Science (IBS-R011-D1), and by the National Research Foundation (BSR-2013R1A1A1076063) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea.

  7. Characteristics of laminates with delamination control strips

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Goering, J. C.; Alper, J. M.; Gause, L. W.

    1992-01-01

    Tough resin is needed to resist delamination crack propagation. However, modulus often has to be compromised because it is difficult to retain both high modulus and toughness in a matrix material. A potential solution is to use a hybrid system in which tough resin strips are included within a conventional matrix composite. By adjusting the spacing of the tough resin strips, maximum delamination size can be controlled. Experimental results for impact damage and subsequent damage propagation in laminates containing tough resin strips are reported. Plain adhesive strips and fiber-reinforced tough resin composite strips were used in constructing the hybrid laminates. Test results indicated that size of delamination inflicted by impact was confined between the tough resin strips. As a result, significantly increased residual compressive strength was obtained. Impacted laminates containing tough resin strips were also fatigue tested. It was found that these strips reduced the growth of the impact damage area relative to the growth seen in coupons with no tough resin strips. Damage growth from an open hole under tension fatigue was evaluated using both tough resin strips and glass fiber reinforced tough resin strips. Unreinforced tough resin strips retarded delamination growth from the open hole, but did not stop matrix cracks growing in the fiber direction. Fiber reinforced tough resin strips did not contain axial delamination growth from the open hole. However, they did act as crack arresters, stopping the through-the-thickness tension crack originating from the hole.

  8. Interfacial fracture toughness of alumina/niobium systems

    SciTech Connect

    Stout, M.G. ); O'Dowd, N.P.; Shih, C.F. . Div. of Engineering)

    1991-01-01

    The interfacial fracture toughness of an alumina/niobium composite has been measured as a function of phase angle. The interface was formed by solid-state bonding bulk Coor's AD-999 fine-grain alumina with a commercial purity niobium at 1600{degrees}C for 0.5 hr under a pressure of 10.5 MPa. The alumina/niobium system has a number of features which makes it ideal for an investigation of interfacial fracture toughness. From HREM data we estimate that the width of the interface is no more than 10 atomic planes. Furthermore the thermal expansion coefficients of the two materials differ by less than 5% so residual stresses due to the bonding process are small. Using symmetric and asymmetric four point bend specimens we have measured the fracture toughness of homogenous alumina and that of the alumina/niobium bimaterial in combinations of in-plane shear and tension. The fracture toughness of the homogenous alumina is relatively insensitive to the loading phase. The measured fracture toughness K{sub c} of the interface, however, depended strongly on phase angle. We were unable to obtain valid alumina/niobium interfacial toughness data at negative phase angles as the fracture initiates in the alumina and not at the interface. In symmetric bending at a phase angle {approx}5{degrees}, we measured a nominal interface toughness of 4.0 MPa{radical}m, comparable to the homogeneous alumina. We found that the toughness increased with loading phase angle to a value of K{sub c} {approx} 9 MPa{radical}m at a phase between 25{degrees} and 40{degrees}. Preliminary calculations and experiments suggest that this effect is due to an asymmetric stress distribution, with respect to the interface, and plastic deformation in the niobium. 12 refs., 9 figs., 1 tab.

  9. Three-dimensional magnetic optimization of accelerator magnets using an analytic strip model

    SciTech Connect

    Rochepault, Etienne Aubert, Guy; Vedrine, Pierre

    2014-07-14

    The end design is a critical step in the design of superconducting accelerator magnets. First, the strain energy of the conductors must be minimized, which can be achieved using differential geometry. The end design also requires an optimization of the magnetic field homogeneity. A mechanical and magnetic model for the conductors, using developable strips, is described in this paper. This model can be applied to superconducting Rutherford cables, and it is particularly suitable for High Temperature Superconducting tapes. The great advantage of this approach is analytic simplifications in the field computation, allowing for very fast and accurate computations, which save a considerable computational time during the optimization process. Some 3D designs for dipoles are finally proposed, and it is shown that the harmonic integrals can be easily optimized using this model.

  10. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  11. Niobium-Matrix-Composite High-Temperature Turbine Blades

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Heng, Sangvavann; Harding, John T.

    1995-01-01

    High-temperture composite-material turbine blades comprising mainly niobium matrices reinforced with refractory-material fibers being developed. Of refractory fibrous materials investigated, FP-AL(2)0(3), tungsten, and polymer-based SiC fibers most promising. Blade of this type hollow and formed in nearly net shape by wrapping mesh of reinforcing refractory fibers around molybdenum mandrel, then using thermal-gradient chemical-vapor infiltration (CVI) to fill interstices with niobium. CVI process controllable and repeatable, and kinetics of both deposition and infiltration well understood.

  12. Effect of Surface Flow on Topography in Niobium Electropolishing

    SciTech Connect

    M.J. Kelley, C.E. Reece, L. Zhao

    2011-03-01

    Electropolishing (EP) is reliably delivering improved performance of multi-celled niobium SRF accelerator cavities, attributed to the smoother surface obtained. This superior leveling is a consequence of an etchant concentration gradient layer that arises in the HF-H2SO4 electrolyte adjacent to the niobium surface during polishing. Electrolyte circulation raises the prospect that fluid flow adjacent to the surface might affect the diffusion layer and impair EP performance. In this study, preliminary bench-top experiments with a moving electrode apparatus were conducted. We find that flow conditions approximating cavity EP show no effects attributable to depletion layer disruption.

  13. PROCESS OF PRODUCING A NIOBIUM-TIN COMPOUND

    DOEpatents

    Zegler, S.T.; Darby, J.B. Jr.

    1963-04-01

    This patent deals with a process of preparing pure Nb/sub 3/Sn. The process comprises heating powders of niobium and excess tin to 900 to 1000 deg C, whereby niobium reacts with the molten tin under the formation of Nb/sub 3/Sn; cooling and powdering the product and immersing the powder in concentrated hydrochloric acid for removal of excessive tin; separating the Nb/sub 3/Sn, rinsing and drying it and sintering it in an inert atmosphere at 900 to 1300 deg C. (AEC)

  14. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  15. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element.

  16. Graphene: Carbon's superconducting footprint

    NASA Astrophysics Data System (ADS)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  17. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element. PMID:17750320

  18. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  19. Superconductivity of magnesium diboride

    DOE PAGES

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  20. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  1. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  2. Superconductivity: Finding a direction

    NASA Astrophysics Data System (ADS)

    Fu, Liang

    2016-09-01

    The experimental observation of superconductivity that breaks spin-rotation symmetry in copper-doped Bi2Se3 provides a qualitatively distinct kind of unconventional superconducting behaviour -- one that brings the importance of the spin-orbit interaction to the fore.

  3. The Perils of Strip Searches.

    ERIC Educational Resources Information Center

    Trotter, Andrew

    1995-01-01

    Every year, a few administrators mishandle school searches and create spectacles similar to the New Castle, Pennsylvania, incident involving six illegally strip-searched students. Principals using "cops-and-robber" techniques to unearth contraband may not realize the potential for infringing on students' constitutional privacy rights. Strip…

  4. Bimaterial Thermal Strip With Increased Flexing

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1994-01-01

    In proposed bimaterial thermal strip, one layer has negative coefficient of thermal expansion, thereby increasing difference between coefficients of thermal expansion of two outer layers and consequently increasing flexing caused by change in temperature. Proposed bimaterial strips used in thermostats.

  5. Superconducting Mixers for Far-Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Boreiko, R. T.; Grossman, E. R.; Reintsema, C. D.; Ono, R. H.; Gerecht, E.

    2002-01-01

    The goal of this project was to fabricate and test planar arrays of superconducting mixers for the 2-6 THz band. The technology is intended for multi-beam receivers aboard Explorer-class missions and the SOFIA Airborne Observatory. The mixer technology is the superconducting transition-edge microbolometer, which is more commonly known as the Hot-Electron micro-Bolometer (HEB). As originally proposed, two superconducting technologies were to be developed: (1) low-Tc niobium HEBs which could approach quantum-noise-limited sensitivities but require cooling to 2- 4 K, and (2) high-Tc YBCO HEBs with sensitivities 10 times worse but with a relaxed cooling requirement of 30-60 K. The low-Tc devices would be best for astronomy applications on SOFIA, whereas the high-Tc devices would be more suitable for planetary missions using systems without stored cryogens. The work plan called for planar micro-fabrication and initial testing of HEB devices at the NIST Boulder clean-room facility. Subsequent assembly and RF testing of selected devices would be done at the CASA laboratory at U. Colorado. Approximately 1-year after work began on this project, Dr. Eyal Gerecht joined the NIST group, and assumed day-to-day responsibility for Nb-HEB development at NIST outside of micro-fabrication. The YBCO-HEB work was to be guided by Dr. Ron Ono, who was the NIST expert in YBCO technology. Unfortunately, recurrent health problems limited the time Ron could devote to the project in its first year. These problems became aggravated in early 2001, and sadly led to Ron's death in October, 2001. His loss was not only a blow to his friends and associates at NIST, but was mounted by the US superconductivity community at large. With his passing, work on high-Tc HEBs ceased at NIST. There was no one to replace him or his expertise. Our work subsequently shifted solely to Nb-HEB devices. In the sections which follow, our progress in the development of diffusion-cooled Nb-HEB mixers is detailed. To

  6. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.

    PubMed

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-01-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.

  7. Integrated superconducting detectors on semiconductors for quantum optics applications

    NASA Astrophysics Data System (ADS)

    Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.

    2016-05-01

    Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

  8. Duality picture of Superconductor-insulator transitions on Superconducting nanowire

    PubMed Central

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-01-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory. PMID:27311595

  9. Superconducting magnetic sensors for mine detection and classification

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.; Koch, Roger H.; Keefe, George A.

    1995-06-01

    Sensors incorporating Superconducting Quantum Interference Devices (SQUIDs) provide the greatest sensitivity for magnetic anomaly detection available with current technology. During the 1980's, the Naval Surface Warfare Center Coastal Systems Station (CSS) developed a superconducting magnetic sensor capable of operation outside of the laboratory environment. This sensor demonstrated rugged, reliable performance even onboard undersea towed platforms. With this sensor, the CSS was able to demonstrate buried mine detection for the US Navy. Subsequently the sensor was incorporated into a multisensor suite onboard an underwater towed vehicle to provide a robust mine hunting capability for the Magnetic and Acoustic Detection of Mines (MADOM) project. This sensor technology utilized niobium superconducting componentry cooled by liquid helium to temperatures on the order of 4 degrees Kelvin (K). In the late 1980's a new class of superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen (77K). This advance has opened up new opportunities, especially for mine reconnaissance and hunting from small unmanned underwater vehicles (UUVs). This paper describes the magnetic sensor detection and classification concept developed for MADOM. In addition, opportunities for UUV operations made possible with high Tc technology and the Navy's current efforts in this area will be addressed.

  10. Cryogenic techniques for large superconducting magnets in space

    NASA Technical Reports Server (NTRS)

    Green, M. A.

    1989-01-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points.

  11. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.

    PubMed

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-01-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory. PMID:27311595

  12. Duality picture of Superconductor-insulator transitions on Superconducting nanowire

    NASA Astrophysics Data System (ADS)

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-06-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.

  13. HIGH RESOLUTION AND FAST SCANNING SQUID BASED NON-DESTRUCTIVE INSPECTION SYSTEM OF NIOBIUM SHEETS FOR SRF CAVITIES

    SciTech Connect

    SHU, QUAN-SHENG

    2008-06-08

    Applications in high energy physics accelerators and other fields require the use of thousands of superconducting RF (SRF) cavities that are made of high purity Nb material and the purity of niobium is critical for these cavities to reach the highest accelerating fields. Tantalum is the most prolific of metal inclusions, which can cause thermal breakdown and prevent the cavities from reaching their theoretical performance limits of 45-50 MV/m, and DOE Labs are searching for a technology that could detect small impurities in superconducting Nb sheets reaching the highest possible accelerating fields. The proposed innovative SQUID-based Nondestructive system can scan Niobium sheets used in the manufacturing of SRF cavities with both high speed and high resolution. A highly sensitive SQUID system with a gradiometer probe, non-magnetic dewar, data acquisition system, and a scanning system will be developed for fast detection of impurities in planar Nb sheets. In phase I, we will modify our existing SQUID-based eddy current system to detect 100 micron size Ta defects and a great effort will focus on achieving fast scanning of a large number of niobium sheets in a shorter time and with reasonable resolution. An older system operated by moving the sample 1 mm, stopping and waiting for 1-2 seconds, then activating a measurement by the SQUID after the short settle time is modified. A preliminary designed and implemented a SQUID scanning system that is fast and is capable of scanning a 30 cm x 30 cm Nb sheet in 15 minutes by continuously moving the table at speeds up to 10 mm/s while activating the SQUID at 1mm interval is modified and reached the Phase I goal of 100mm resolution. We have successfully demonstrated the feasibility that a fast speed SQUID scanner without sacrificing the resolution of detection can be done, and a data acquisition and analysis system is also preliminary developed. The SQUID based scanner will help reach the highest accelerating field in SRF

  14. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  15. Carbon monoxide tolerant platinum electrocatalysts on niobium doped titania and carbon nanotube composite supports

    NASA Astrophysics Data System (ADS)

    Rigdon, William A.; Huang, Xinyu

    2014-12-01

    In the anode of electrochemical cells operating at low temperature, the hydrogen oxidation reaction is susceptible to poisoning from carbon monoxide (CO) which strongly adsorbs on platinum (Pt) catalysts and increases activation overpotential. Adsorbed CO is removed by oxidative processes such as electrochemical stripping, though cleaning can also cause corrosion. One approach to improve the tolerance of Pt is through alloying with less-noble metals, but the durability of alloyed electrocatalysts is a critical concern. Without sacrificing stability, tolerance can be improved by careful design of the support composition using metal oxides. The bifunctional mechanism is promoted at junctions of the catalyst and metal oxides used in the support. Stable metal oxides can also form strong interactions with catalysts, as is the case for platinum on titania (TiOx). In this study, niobium (Nb) serves as an electron donor dopant in titania. The transition metal oxides are joined to functionalized multi-wall carbon nanotube (CNT) supports in order to synthesize composite supports. Pt is then deposited to form electrocatalysts which are characterized before fabrication into anodes for tests as an electrochemical hydrogen pump. Comparisons are made between the control from Pt-CNT to Pt-TiOx-CNT and Pt-Ti0.9Nb0.1Ox-CNT in order to demonstrate advantages.

  16. The production of niobium-tin powders by vapor-deposition processes

    NASA Astrophysics Data System (ADS)

    Yorucu, H.; Sale, F. R.

    1992-01-01

    The concomitant reduction of SnCl2 and NbCl5 with hydrogen has been investigated for the production of NbSn2 upon static Nb substrates and upon fluidized Nb and A12O3 seed particles. The maximum reaction temperature studied was 800 °C since NbSn2 is not stable above 845 °C. NbSn2 has been produced on niobium strip at 700 °C from a vapor phase containing SnCl2 and NbCl5 of ratio 2.6:1. However, the same vapor phase, and ones containing a ratio of up to 5:1, SnCl2 to NbCl5, have been shown to yield only Nb3Sn upon fluidized particles over the temperature range 650 to 750 °C. This observation is explained in terms of an enhanced vapor etching reaction that occurs with Nb seed particles and the inability to nucleate a tin-rich liquid phase, which appears to be necessary for the growth of NbSn2, upon the alumina seed particles.

  17. The production of niobium-tin powders by vapor-deposition processes

    NASA Astrophysics Data System (ADS)

    Yorucu, H.; Sale, F. R.

    1982-12-01

    The concomitant reduction of SnCl2 and NbCl5 with hydrogen has been investigated for the production of NbSn2 upon static Nb substrates and upon fluidized Nb and Al2O3 seed particles. The maximum reaction temperature studied was 800°C since NbSn2 is not stable above 845°C. NbSn2 has been produced on niobium strip at 700°C from a vapor phase containing SnCl2 and NbCl5 of ratio 2.6:1. However, the same vapor phase, and ones containing a ratio of up to 5:1, SnCl2 to NbCl5, have been shown to yield only Nb3Sn upon fluidized particles over the temperature range 650 to 750°C. This observation is explained in terms of an enhanced vapor etching reaction that occurs with Nb seed particles and the inability to nucleate a tin-rich liquid phase, which appears to be necessary for the growth of NbSn2, upon the alumina seed particles.

  18. Measurements of Modulus of Elasticity and Thermal Contraction of Epoxy Impregnated Niobium-Tin and Niobium-Titanium Composites

    SciTech Connect

    Chow, K.P.; Millos, G.A.

    1998-09-01

    In the high field magnet program at Lawrence Berkeley National Laboratory, accelerator magnet prototypes are designed with epoxy impregnated niobium-tin and niobium-titanium superconductor. Accurate mechanical property values are essential for magnet mechanical design and prediction of conductor performance. Two key mean property values are measured on coil samples: modulus of elasticity (Young's modulus) and mean thermal contraction. Measurements are made in compression and are conducted in three orthogonal directions. Modulus of elasticity measurements are currently conducted at room temperature and the mean thermal contraction is measured from room temperature to liquid nitrogen temperature. Room temperature values are compared with values estimated using the individual coil components.

  19. Air stripping for treatment of produced water

    SciTech Connect

    Fang, C.S.; Lin, J.H.

    1988-05-01

    In a laboratory study, air stripping shows a promising potential for treatment of produced water to meet new government regulations on total organic carbon (TOC). Reservoir hydrocarbons dissolved in water, such as volatile paraffins and aromatics, can be removed by air stripping through interphase mass transfer. However, air stripping cannot remove many chemicals added to crude oil by the operator.

  20. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Stripping system. 157.128 Section... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  1. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Stripping system. 157.128 Section... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  2. Using Comic Strips in Language Classes

    ERIC Educational Resources Information Center

    Csabay, Noémi

    2006-01-01

    The author believes that using comic strips in language-learning classes has three main benefits. First, comic strips motivate younger learners. Second, they provide a context and logically connected sentences to help language learning. Third, their visual information is helpful for comprehension. The author argues that comic strips can be used in…

  3. High sensitivity niobium parametric transducer for the Mario Schenberg gravitational wave detector

    NASA Astrophysics Data System (ADS)

    de Paula, L. A. N.; Ferreira, E. C.; Carvalho, N. C.; Aguiar, O. D.

    2015-03-01

    Parametric transducers can work below the quantum limit of sensitivity for resonant mass gravitational wave detectors. This makes them a promising alternative for electromechanical transductance for such detectors. These transducers consist of a reentrant superconducting niobium cavity coupled to a mass-spring system with three mechanical modes. These cavities have a central post responsible for creating a narrow axial gap between its top and the cavity wall, which is a resonant membrane. Their displacement sensitivity (df/dx) increases as the gap spacing decreases. However, this is not a linear relationship and the dimensioning of the cavity becomes critical if the gap is of the order of a few microns. In this paper, we describe how to obtain a gap spacing of ~ 3 μ m and also the development of parametric transducers that will be employed in the coming experimental runs of the Schenberg gravitational wave antenna. Mechanical thinning methods were performed followed by mechanical and electrical frequency measurements to tune the device to operate at the required frequencies. The main results present better frequency stability and an improvement of df/dx by one order of magnitude higher than the preceding models. These results will allow us to reach the quantum limit of detector sensitivity of ~ 10-22 Hz-1/2 in the near future, making it possible to search for gravitational waves around 3.2 kHz.

  4. Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers

    DOEpatents

    Jablonski, Paul D.; Larbalestier, David C.

    1993-01-01

    Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire. The resulting superconducting wire has second phase flux pinning centers distributed therein which provide enhanced J.sub.ct due to the flux pinning effects.

  5. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    NASA Astrophysics Data System (ADS)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  6. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    SciTech Connect

    Thomas Gnäupel-Herold; Ganapati Rao Myneni; Richard E. Ricker

    2007-06-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2..3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (< 100 MPa) and the large thickness (compared to typical thicknesses in sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  7. Mechanical properties of niobium radio-frequency cavities

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao; Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W.

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysismore » of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.« less

  8. Mechanical properties of niobium radio-frequency cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao; Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W.

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.

  9. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  10. Influence of pressure on the Fermi surface of niobium

    NASA Astrophysics Data System (ADS)

    Anderson, J. R.; Papaconstantopoulos, D. A.; Schirber, J. E.

    1981-12-01

    The effects of pressure on selected de Haas - van Alphen frequencies in niobium have been measured. The frequency shifts, including a relatively large negative shift for the jungle-gym arms, can be explained by a model which uses a Slater-Koster interpolation of augmented-plane-wave Xα bands which had been calculated for two lattice spacings.

  11. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  12. Cantilever anemometer based on a superconducting micro-resonator: Application to superfluid turbulence

    SciTech Connect

    Salort, J.; Monfardini, A.; Roche, P.-E.

    2012-12-15

    We present a new type of cryogenic local velocity probe that operates in liquid helium (1 K < T < 4.2 K) and achieves a spatial resolution of Almost-Equal-To 0.1 mm. The operating principle is based on the deflection of a micro-machined silicon cantilever which reflects the local fluid velocity. Deflection is probed using a superconducting niobium micro-resonator sputtered on the sensor and used as a strain gauge. We present the working principle and the design of the probe, as well as calibration measurements and velocity spectra obtained in a turbulent helium flow above and below the superfluid transition.

  13. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE PAGES

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; et al

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  14. Prototype superconducting triple-spoke cavity for beta = 0.63.

    SciTech Connect

    Shepard, K. W.; Kelly, M. P.; Fuerst, J. D.; Kedzie, M.; Conway, Z. A.; Physics

    2005-01-01

    This paper reports the development status of a 345 MHz, three-spoke-loaded, TEM-class superconducting cavity with a transit-time factor peaked at = v/c = 0.63. The cavity has a 4 cm diameter beam aperture, a transverse diameter of 45.8 cm, and an interior length of 85 cm. The cavity is the second of two three-spoke loaded cavities being developed for the RIA driver linac and other high-intensity ion linac applications. Construction of a prototype niobium cavity has been completed and the cavity has been chemically processed. Results of initial cold tests are discussed.

  15. Superconducting triple-spoke cavity for beta = 0.5 ions.

    SciTech Connect

    Shepard, K. W.; Kelly, M. P.; Fuerst, J. D.; Kedzie, M.; Conway, Z. A.; Physics

    2005-01-01

    This paper reports the development status of a 345 MHz, three-spoke-loaded, TEM-class superconducting cavity with a transit-time factor peaked at = v/c = 0.63. The cavity has a 4 cm diameter beam aperture, a transverse diameter of 45.8 cm, and an interior length of 85 cm. The cavity is the second of two three-spoke loaded cavities being developed for the RIA driver linac and other high-intensity ion linac applications. Construction of a prototype niobium cavity has been completed and the cavity has been chemically processed. Results of initial cold tests are discussed.

  16. Magnetic flux studies in horizontally cooled elliptical superconducting cavities

    SciTech Connect

    Martinello, M. Checchin, M.; Grassellino, A. Crawford, A. C.; Melnychuk, O.; Romanenko, A.; Sergatskov, D. A.

    2015-07-28

    Previous studies on magnetic flux expulsion as a function of cooldown procedures for elliptical superconducting radio frequency (SRF) niobium cavities showed that when the cavity beam axis is placed parallel to the helium cooling flow and sufficiently large thermal gradients are achieved, all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper, we investigate flux trapping for the case of resonators positioned perpendicularly to the helium cooling flow, which is more representative of how SRF cavities are cooled in accelerators and for different directions of the applied magnetic field surrounding the resonator. We show that different field components have a different impact on the surface resistance, and several parameters have to be considered to fully understand the flux dynamics. A newly discovered phenomenon of concentration of flux lines at the cavity top leading to temperature rise at the cavity equator is presented.

  17. Superconducting RF Technology R&D for Future Accelerator Applications

    SciTech Connect

    Reece, Charles E.; Ciovati, Gianluigi

    2012-09-01

    Superconducting rf (SRF) technology is evolving rapidly, as are its applications. While there is active exploitation of what one may call the current state-of-the-practice, there is also rapid progress in expanding in several dimensions the accessible and useful parameter space. While state-of-the-art performance sometimes outpaces thorough understanding, the improving scientific understanding from active SRF research is clarifying routes to obtain optimum performance from present materials and opening avenues beyond the standard bulk niobium. The improving technical basis understanding is enabling process engineering to improve both performance confidence and reliability and also unit implementation costs. Increasing confidence in the technology enables the engineering of new creative application designs. We attempt to survey this landscape to highlight the potential for future accelerator applications.

  18. Construction of superconducting RFQs at INFN-LNL

    NASA Astrophysics Data System (ADS)

    Bisoffi, G.; Andreev, V.; Bissiato, E.; Comunian, M.; Chiurlotto, F.; Corradin, E.; Lollo, M.; Lombardi, A.; Pisent, A.; Porcellato, A. M.; Shirai, T.; Tovo, E.; Tovo, R.

    1999-04-01

    The tests on the stainless steel prototype for one of the two superconducting RFQs (SRFQs) for PIAVE (SRFQ2), the being built heavy ion injector for the Legnaro booster, were completed in summer 1998, while the construction of the first niobium resonator started in February 1998 and is expected to be completed by April 1999. The structure, resonating at 80 MHz, is 0.8 m long and 0.76 m in diameter. All technological aspects connected with the construction of the SRFQs, and the corresponding tests on the stainless steel model, are reviewed: development of the parts, assembly sequence, electron beam welding (EBW) steps, rough and fine adjustment of the resonant frequency, bead-pull measurements, characterization of the mechanical vibration modes, frequency change due to cooling down and chemical etching tests. The updated development of SRFQ1 is briefly reviewed.

  19. Fast variation method for elastic strip calculation.

    PubMed

    Biryukov, Sergey V

    2002-05-01

    A new, fast, variation method (FVM) for determining an elastic strip response to stresses arbitrarily distributed on the flat side of the strip is proposed. The remaining surface of the strip may have an arbitrary form, and it is free of stresses. The FVM, as well as the well-known finite element method (FEM), starts with the variational principle. However, it does not use the meshing of the strip. A comparison of FVM results with the exact analytical solution in the special case of shear stresses and a rectangular strip demonstrates an excellent agreement.

  20. Plasma Treatment of Niobium SRF Cavity Surfaces

    SciTech Connect

    J. Upadhyay, M. Raskovic, L. Vuskovic, S. Popovic, A.-M. Valente-Feliciano, L. Phillips

    2010-05-01

    Plasma based surface modification provides an excellent opportunity to eliminate non- superconductive pollutants in the penetration depth region of the SRF cavity surface and to remove mechanically damaged surface layer improving surface roughness. We have demonstrated on flat samples that plasma etching in Ar / Cl2 of bulk Nb is a viable alternative surface preparation technique to BCP and EP methods, with comparable etching rates. The geometry of SRF cavities made of bulk Nb defines the use of asymmetric RF discharge configuration for plasma etching. In a specially designed single cell cavity with sample holders, discharge parameters are combined with etched surface diagnostics to obtain optimum combination of etching rates, roughness and homogeneity in a variety of discharge types, conditions, and sequences. The optimized experimental conditions will ultimately be applied to single cell SRF cavities.