Science.gov

Sample records for niobium superconducting strip

  1. Superconductive niobium films coating carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Vecchione, A.; Fittipaldi, R.; Corato, V.

    2014-11-01

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm-2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm.

  2. Dissipative hydride precipitates in superconducting niobium cavities

    SciTech Connect

    Romanenko, A.; Cooley, L.D.; Ciovati, G.; Wu, G.; /Argonne

    2011-10-01

    We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

  3. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  4. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  5. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  6. Developing of superconducting niobium cavities for accelerators

    NASA Astrophysics Data System (ADS)

    Pobol, I. L.; Yurevich, S. V.

    2015-11-01

    The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The paper also describes the results of testing of the RF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS Belarus.

  7. Electroplating and stripping copper on molybdenum and niobium

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  8. Research & Development on Superconducting Niobium Materials via Magnetic Measurements

    SciTech Connect

    S. B. Roy, V. C. Sahni, and G. R. Myneni

    2011-03-01

    We present a study of superconducting properties of both large grain (1 mm average grain size) and small grain (50 micron average grain size) Niobium materials containing varying amounts of Tantalum impurities that have been used in the fabrication of high accelerating gradient superconducting radio frequency cavities. We found that a buffered chemical polishing of these Niobium samples causes a distinct reduction in the superconducting parameters like TC, wt- ppm to 1300 wt-ppm. Implications of these results on the performance of niobium superconducting radio frequency cavities are discussed, especially the anomalous high field RF losses that have been reported in the literature.

  9. Tuning of superconducting niobium nitride terahertz metamaterials.

    PubMed

    Wu, Jingbo; Jin, Biaobing; Xue, Yuhua; Zhang, Caihong; Dai, Hao; Zhang, Labao; Cao, Chunhai; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2011-06-20

    Superconducting planar terahertz (THz) metamaterials (MMs), with unit cells of different sizes, are fabricated on 200 nm-thick niobium nitride (NbN) films deposited on MgO substrates. They are characterized using THz time domain spectroscopy over a temperature range from 8.1 K to 300 K, crossing the critical temperature of NbN films. As the gap frequency (f(g) = 2Δ0/h, where Δ0 is the energy gap at 0 K and h is the Plank constant) of NbN is 1.18 THz, the experimentally observed THz spectra span a frequency range from below f(g) to above it. We have found that, as the resonance frequency approaches f(g), the relative tuning range of MMs is quite wide (30%). We attribute this observation to the large change of kinetic inductance of superconducting film.

  10. Method for etching thin films of niobium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, Robert T.; Schuller, Ivan K.; Falco, Charles M.

    1981-01-01

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate, and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  11. Superconducting niobium thin film slow-wave structures

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Petty, S. M.; Allen, L. H.; Beasley, M. R.; Hammond, R. H.

    1983-01-01

    A superconducting comb structure as a slow-wave element in a traveling-wave maser will significantly improve maser noise temperature and gain by reducing the insertion loss. The results of the insertion loss measurements of superconducting niobium slow-wave structures subjected to maser operating conditions at X-Band frequencies are presented.

  12. Surface processing for bulk niobium superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2–4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  13. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    SciTech Connect

    David Henry, M. Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-28

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 6–10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  14. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    NASA Astrophysics Data System (ADS)

    David Henry, M.; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-01

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6-10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetometer indicate that the tensile films maintained a Tc approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  15. America's Overview of Superconducting Science and Technology of Ingot Niobium

    SciTech Connect

    Gianluigi Ciovati, Peter Kneisel, Ganapati Myneni

    2011-03-01

    This contribution will present an overview of the results from R&D programs in the USA over the past four years towards the development of ingot Niobium as a viable alternative material to fabricate SRF cavities for particle accelerators. Activities at several laboratories and universities include fabrication, surface treatment and RF testing of single- and multi-cell cavities and studies of the thermal, mechanical and superconducting properties of samples from ingots of different purity. Possible advantages of ingot niobium over standard fine-grain (ASTM 6) are discussed and a streamlined treatment procedure to fully exploit those advantages is proposed.

  16. A spiraled niobium tin superconductive ribbon

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1973-01-01

    Copper film is vapor-deposited on clean ribbon and sprayed with photosensitive etch-resistant material. Photographic film masks are placed on ribbon and exposed to ultraviolet light. Etchant removes copper and exposure to oxidizing atmosphere forms niobium oxide. Photosensitive material is removed and ribbon is immersed in molten temperatures.

  17. Superconducting DC and RF Properties of Ingot Niobium

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Peter Kneisel, Ganapati Rao Myneni

    2011-07-01

    The thermal conductivity, DC magnetization and penetration depth of large-grain niobium hollow cylindrical rods fabricated from ingots, manufactured by CBMM subjected to chemical and heat treatment were measured. The results confirm the influence of chemical and heat-treatment processes on the superconducting properties, with no significant dependence on the impurity concentrations in the original ingots. Furthermore, RF properties, such as the surface resistance and quench field of the niobium rods were measured using a TE{sub 011} cavity. The hollow niobium rod is the center conductor of this cavity, converting it to a coaxial cavity. The quench field is limited by the critical heat flux through the rods' cooling channel.

  18. Measurement of Microwave Parameters of a Superconducting Niobium Cavity

    NASA Astrophysics Data System (ADS)

    Azaryan, N. S.; Baturitskii, M. A.; Budagov, Yu. A.; Demin, D. L.; Dem‧yanov, S. E.; Karpovich, V. A.; Kniga, V. V.; Krivosheev, R. M.; Lyubetskii, N. V.; Maksimov, S. I.; Pobol‧, I. L.; Rodionova, V. N.; Shirkov, G. D.; Shumeiko, N. M.; Yurevich, S. V.

    2017-01-01

    This paper describes a method for direct measurement of the amplitude-frequency characteristics and the Q factor of empty superconducting niobium radio frequency Tesla-type cavities. An automated measuring complex that permits recording the superconductivity effect and measuring high Q values has been developed. Measurements have been made of the Q factors of the investigated objects (the first domestic 1.3-GHz niobium cavities) at a level no lower than 0.1·109 (with a maximum value of 1.2·1010) and a level of relative losses lower than 130 dB (with a minimum factor of 139.7 dB) at liquid nitrogen temperature.

  19. High-Q superconducting niobium cavities for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    de Paula, L. A. N.; Furtado, S. R.; Aguiar, O. D.; Oliveira, N. F., Jr.; Castro, P. J.; Barroso, J. J.

    2014-10-01

    The main purpose of this work is to optimize the electric Q-factor of superconducting niobium klystron cavities to be used in parametric transducers of the Mario Schenberg gravitational wave detector. Many cavities were manufactured from niobium with relatively high tantalum impurities (1420 ppm) and they were cryogenically tested to determine their resonance frequencies, unloaded electrical quality factors (Q0) and electromagnetic couplings. These cavities were closed with a flat niobium plate with tantalum impurities below 1000 ppm and an unloaded electrical quality factors of the order of 105 have been obtained. AC conductivity of the order of 1012 S/m has been found for niobium cavities when matching experimental results with computational simulations. These values for the Q-factor would allow the detector to reach the quantum limit of sensitivity of ~ 10-22 Hz-1/2 in the near future, making it possible to search for gravitational waves around 3.2 kHz. The experimental tests were performed at the laboratories of the National Institute for Space Research (INPE) and at the Institute for Advanced Studies (IEAv - CTA).

  20. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    NASA Astrophysics Data System (ADS)

    Cantergiani, E.; Atieh, S.; Léaux, F.; Perez Fontenla, A. T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-11-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulic forming (EHF). In EHF, half-cells are obtained through ultrahigh-speed deformation of blank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHF on high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half-cells produced by EHF and by spinning have been compared in terms of damage created in the material during the forming operation. The damage was assessed through hardness measurements, residual resistivity ratio (RRR) measurements, and electron backscattered diffraction analyses. It was found that EHF does not worsen the damage of the material during forming and instead, some areas of the half-cell have shown lower damage compared to spinning. Moreover, EHF is particularly advantageous to reduce the forming time, preserve roughness, and to meet the final required shape accuracy.

  1. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOEpatents

    Wang, John L.; Pickus, Milton R.; Douglas, Kent E.

    1980-01-01

    A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  2. Change of surface critical current in the surface superconductivity and mixed states of superconducting niobium

    NASA Astrophysics Data System (ADS)

    Aburas, Muhamad; Pautrat, Alain; Bellido, Natalia

    2017-01-01

    A systematic study of irreversible magnetization was performed in bulk niobium after different surface treatments. Starting with smooth surfaces and abrading them, a strong increase of the critical current is observed up to an apparent limiting value. An impressive change of the critical current is also observed in the surface superconductivity (SSC) state, reaching values of the same order of magnitude as in the mixed state. We explain also the observation of strong SSC for magnetic fields perpendicular to large facets in terms of nucleation of superconductivity along bumps of a corrugated surface.

  3. Suppressed Superconductivity on the Surface of Superconducting RF Quality Niobium for Particle Accelerating Cavities

    SciTech Connect

    Sung, Z. H.; Polyanskii, A. A.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.

    2011-03-31

    Significant performance degradation of superconducting RF (radio frequency) niobium cavities in high RF field is strongly associated with the breakdown of superconductivity on localized multi-scale surface defects lying within the 40 nm penetration depth. These defects may be on the nanometer scale, like grain boundaries and dislocations or even at the much larger scale of surface roughness and welding pits. By combining multiple superconducting characterization techniques including magneto-optical (MO) imaging and direct transport measurement with non-contact characterization of the surface topology using scanning confocal microscopy, we were able to show clear evidence of suppression of surface superconductivity at chemically treated RF-quality niobium. We found that pinning of vortices along GBs is weaker than pinning of vortices in the grains, which may indicate suppressed superfluid density on GBs. We also directly measured the local magnetic characteristics of BCP-treated Nb sample surface using a micro-Hall sensor in order to further understanding of the effect of surface topological features on the breakdown of superconducting state in RF mode.

  4. Low-loss terahertz metamaterial from superconducting niobium nitride films.

    PubMed

    Zhang, C H; Wu, J B; Jin, B B; Ji, Z M; Kang, L; Xu, W W; Chen, J; Tonouchi, M; Wu, P H

    2012-01-02

    This paper reports a type of low Ohmic loss terahertz (THz) metamaterials made from low-temperature superconducting niobium nitride (NbN) films. Its resonance properties are studied by THz time domain spectroscopy. Our experiments show that its unloaded quality factor reaches as high as 178 at 8 K with the resonance frequency at around 0.58 THz, which is about 24 times that of gold metamaterial at the same temperature. The unloaded quality factor keeps at a high level, above 90, even when the resonance frequency increases to 1.02 THz, which is close to the gap frequency of NbN film. All these experimental observations fit well into the framework of Bardeen-Copper-Schrieffer theory and equivalent circuit model. These new metamaterials offer an efficient way to the design and implementation of high performance THz electronic devices.

  5. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    SciTech Connect

    Makita, Junki; Ciovati, Gianluigi; Dhakal, Pashupati

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  6. Method of nitriding niobium to form a superconducting surface

    DOEpatents

    Kelley, Michael J.; Klopf, John Michael; Singaravelu, Senthilaraja

    2014-08-19

    A method of forming a delta niobium nitride .delta.-NbN layer on the surface of a niobium object including cleaning the surface of the niobium object; providing a treatment chamber; placing the niobium object in the treatment chamber; evacuating the chamber; passing pure nitrogen into the treatment chamber; focusing a laser spot on the niobium object; delivering laser fluences at the laser spot until the surface of the niobium object reaches above its boiling temperature; and rastering the laser spot over the surface of the niobium object.

  7. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    SciTech Connect

    Dhakal, Pashupati Ciovati, Gianluigi Myneni, Ganapati R.

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  8. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    SciTech Connect

    Roy, S. B.; Myneni, G. R.

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  9. Doped niobium superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Kang, Lin; Zhang, Labao; Zhao, Qingyuan; Gu, Min; Qiu, Jian; Chen, Jian; Jin, Biaobing

    2014-09-01

    We designed and fabricated a special doped niobium (Nb*) superconducting nanowire single-photon detector (SNSPD) on MgO substrate. The superconductivity of this ultra-thin Nb* film was further improved by depositing an ultra-thin aluminum nitride protective layer on top. Compared with traditional Nb films, Nb* films present higher T C and J C. We investigated the dependence of the characteristics of devices, such as cut-off wavelength, response bandwidth, and temperature, on their geometrical dimensions. Results indicate that reduction in both the width and thickness of Nb* nanowires extended the cut-off wavelength and improved the sensitivity. The Nb* SNSPD (50 nm width and 4.5 nm thickness) exhibited single-photon sensitivities at 1,310, 1,550, and 2,010 nm. We also demonstrated an enhancement in the detection efficiency by a factor of 10 in its count rate by lowering the working temperature from 2.26 K to 315 mK.

  10. Method for etching thin films of niboium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, R.T.; Schuller, I.K.; Falco, C.M.

    1979-11-23

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds is provided in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid, and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  11. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    SciTech Connect

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  12. Superconducting RF materials other than bulk niobium: a review

    DOE PAGES

    Valente-Feliciano, Anne-Marie

    2016-09-26

    For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transitionmore » temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less

  13. Superconducting RF materials other than bulk niobium: a review

    SciTech Connect

    Valente-Feliciano, Anne-Marie

    2016-09-26

    For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transition temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.

  14. Superconducting Niobium-Titanium: Enabler for Affordable MRI and the Search for the Higgs Boson

    NASA Astrophysics Data System (ADS)

    Berlincourt, T. G.

    2016-01-01

    In 1961, Bell Telephone Laboratories researchers startled the world of physics by reporting that, at temperatures near absolute zero, a superconducting niobium-tin compound could support enormous electric current densities without resistance in the presence of very high magnetic fields. Suddenly, it became possible to fabricate supermagnets that generate high magnetic fields with unprecedented efficiency and economy. Scientists raced to find additional such materials and also to account theoretically for their behavior. Disregarded early on as unpromising, niobium-titanium alloys eventually emerged from among thousands of superconductors to become the most widely used, finding application in many thousands of MRI medical imaging systems and in huge particle accelerator magnets. In 1962, at Atomics International, experiments that revealed the supermagnet promise of niobium-titanium alloys also made essential contributions to the confirmation of the initially overlooked superconductivity theories of Soviet scientists Ginzburg, Landau, Abrikosov, and Gor'kov as the appropriate framework for understanding the physics of high magnetic field superconductivity.

  15. The Surface Resistance of Superconducting A15 Niobium-Tin Films at 8.6 GHZ

    NASA Astrophysics Data System (ADS)

    Allen, Laura Henrietta

    A calorimetric technique for measuring the temperature dependence of the surface resistance of high-T(,c) superconducting thin films at 8.6 GHz has been developed. The technique has been applied to study electron-beam, co-deposited films of the A15 phase of Niobium-Tin with the goal of optimizing the microwave losses of the material. In addition, films of sputtered Niobium-Tin, a Niobium-Zirconium alloy, and Niobium-Nitride were also studied. For the evaporated Niobium-Tin films, carefully controlled deposition temperatures of greater than 900 C are necessary to obtain the lowest losses. A sharp transition is observed for stoichiometric material (25 percent Tin), but for the understoichiometric compositions the transitions are wider, yielding excessive losses in the material. Films prepared by magnetron sputtering behave similarly. A procedure, phase-locking, for preparing the stoichiometric composition which does not require exact control of the deposition rates has been developed and successfully demonstrated with the evaporated films. The experimental data are compared with two theoretical predictions: one for the superconducting state based on the BCS theory and a normal-state calculation in the classical skin-depth limit. When the residual losses (10 micro-ohms) are subtracted from the data, the behavior predicted for the superconducting state is observed. The normal-state losses, however, are anomalously large for the Niobium -Tin films. Possible explanations of this result are discussed. Reduced gaps are also obtained for the samples from their low temperature surface resistance. Values obtained for the Niobium-Tin films are lower than those from other measurements and may be due to poor material near the substrate interface. Even at the present level of material development, the prognosis for the application of Niobium-Tin films to microwave devices appears favorable. When compared with Niobium, the most common material choice, Niobium -Tin films as

  16. A study on the effect of tantalum-impurity content on the superconducting properties of niobium materials used for making superconducting radio frequency cavities

    SciTech Connect

    S B Roy, L S Sharath Chandra, M K Chattopadhyay, M K Tiwari, G S Lodha, G R Myneni

    2012-10-01

    Niobium materials in highly pure form are used in the fabrication of superconducting radio frequency cavities. We present here a study of the superconducting properties of such niobium materials that have been used in the fabrication of high accelerating gradient superconducting radio frequency cavities after determining their tantalum-impurity contents using a synchrotron-based x-ray fluorescence spectroscopy technique. Our results show that there is a small change in superconducting parameters such as T{sub C},H{sub C1} and H{sub C2} when the tantalum-impurity content varies from ≈150 to ≈1300 ppm. In contrast, a buffered chemical polishing of the same niobium samples changes all these superconducting parameters more significantly. The implications of these results on the performance of niobium superconducting radio frequency cavities are discussed.

  17. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    SciTech Connect

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.; Abdel-Fattah, Tarek M.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.

  18. An evolutionary yield function based on Barlat 2000 yield function for the superconducting niobium sheet

    SciTech Connect

    Darbandi, Payam; Pourboghrat, Farhang

    2011-08-22

    Superconducting radio frequency (SRF) niobium cavities are widely used in high-energy physics to accelerate particle beams in particle accelerators. The performance of SRF cavities is affected by the microstructure and purity of the niobium sheet, surface quality, geometry, etc. Following optimum strain paths in the forming of these cavities can significantly control these parameters. To select these strain paths, however, information about the mechanical behavior, microstructure, and formability of the niobium sheet is required. In this study the Barlat 2000 yield function has been used as a yield function for high purity niobium. Results from this study showed that, due to intrinsic behavior, it is necessary to evolve the anisotropic coefficients of Barlat's yield function in order to properly model the plastic behavior of the niobium sheet. The accuracy of the newly developed evolutionary yield function was verified by applying it to the modeling of the hydrostatic bulging of the niobium sheet. Also, in a separate attempt crystal plasticity finite element method was use to model the behavior of the polycrystalline niobium sheet with a particular initial texture.

  19. Laser nitriding for niobium superconducting radio-frequency accelerator cavities

    SciTech Connect

    Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley

    2010-10-01

    Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appears to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant

  20. Electrical modulation of superconducting critical temperature in liquid-gated thin niobium films

    SciTech Connect

    Choi, Jiman; Pradheesh, R.; Chong, Yonuk Chae, Dong-Hun; Kim, Hyungsang; Im, Hyunsik

    2014-07-07

    We demonstrate that the superconducting critical temperature (T{sub c}) of thin niobium films can be electrically modulated in a liquid-gated geometry device. T{sub c} can be suppressed and enhanced by applying positive and negative gate voltage, respectively, in a reversible manner within a range of about 0.1 K. At a fixed temperature below T{sub c}, we observed that the superconducting critical current can be modulated by gate voltage. This result suggests a possibility of an electrically controlled switching device operating at or above liquid helium temperature, where superconductivity can be turned on or off solely by the applied gate voltage.

  1. Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    SciTech Connect

    Proslier, T.; Zasadzinski, J.; Moore, J.; Pellin, M.; Elam, J.; Cooley, L.; Antoine, C.; /Saclay

    2008-11-01

    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.

  2. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  3. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE PAGES

    Kneisel, P.; Ciovati, G.; Dhakal, P.; ...

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  4. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    SciTech Connect

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  5. Dependence of the microwave surface resistance of superconducting niobium on the magnitude of the rf field

    SciTech Connect

    Romanenko, A.; Grassellino, A.

    2013-06-24

    Utilizing difference in temperature dependencies we decoupled Bardeen-Cooper-Schrieffer (BCS) and residual components of the microwave surface resistance of superconducting niobium at all rf fields up to B{sub rf}{approx}115 mT. We reveal that the residual resistance decreases with field at B{sub rf} Less-Than-Or-Equivalent-To 40 mT and strongly increases in chemically treated niobium at B{sub rf}>80 mT. We find that BCS surface resistance is weakly dependent on field in the clean limit, whereas a strong and peculiar field dependence emerges after 120 Degree-Sign C vacuum baking.

  6. Investigation of niobium surface structure and composition for improvement of superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Trenikhina, Yulia

    Nano-scale investigation of intrinsic properties of niobium near-surface is a key to control performance of niobium superconducting radio-frequency cavities. Mechanisms responsible for the performance limitations and their empirical remedies needs to be justified in order to reproducibly control fabrication of SRF cavities with desired characteristics. The high field Q-slope and mechanism behind its cure (120°C mild bake) were investigated by comparison of the samples cut out of the cavities with high and low dissipation regions. Material evolution during mild field Q-slope nitrogen treatment was characterized using the coupon samples as well as samples cut out of nitrogen treated cavity. Evaluation of niobium near-surface state after some typical and novel cavity treatments was accomplished. Various TEM techniques, SEM, XPS, AES, XRD were used for the structural and chemical characterization of niobium near-surface. Combination of thermometry and structural temperature-dependent comparison of the cavity cutouts with different dissipation characteristics revealed precipitation of niobium hydrides to be the reason for medium and high field Q-slopes. Step-by-step effect of the nitrogen treatment processing on niobium surface was studied by analytical and structural characterization of the cavity cutout and niobium samples, which were subject to the treatment. Low concentration nitrogen doping is proposed to explain the benefit of nitrogen treatment. Chemical characterization of niobium samples before and after various surface processing (Electropolishing (EP), 800°C bake, hydrofluoric acid (HF) rinsing) showed the differences that can help to reveal the microscopic effects behind these treatments as well as possible sources of surface contamination.

  7. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    SciTech Connect

    Tyagi, P. V.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Hayano, H.; Noguchi, T.; Kato, S.

    2010-07-15

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb{sub 2}O{sub 5}) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  8. Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping Recipes for High Q Cavities

    SciTech Connect

    Vostrikov, Alexander; Checchin, Mattia; Grassellino, Anna; Kim, Young-Kee; Romanenko, Alexander

    2015-06-01

    A study is presented on the superconducting properties of niobium used for the fabrication of the SRF cavities after treating by recently discovered nitrogen doping methods. Cylindrical niobium samples have been subjected to the standard surface treatments applied to the cavities (electro-polishing, l 20°C bake) and compared with samples treated by additional nitrogen doping recipes routinely used to reach ultra-high quality factor values (>3· 1010 at 2 K, 16 MV/m). The DC magnetization curves and the complex magnetic AC susceptibility have been measured. Evidence for the lowered field of first flux penetration after nitrogen doping is found suggesting a correlation with the lowered quench fields. Superconducting critical temperatures Tc = 9.25 K are found to be in agreement with previous measurements, and no strong effect on the critical surface field (Bd) from nitrogen doping was found.

  9. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    SciTech Connect

    Beebe, Melissa R. Beringer, Douglas B.; Burton, Matthew C.; Yang, Kaida; Lukaszew, R. Alejandra

    2016-03-15

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB{sub 2} thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T{sub C}, the authors are the first to report on the correlation between stoichiometry and the lower critical field H{sub C1}.

  10. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOEpatents

    Wang, J.L.F.; Pickus, M.R.; Douglas, K.E.

    A method for manufacturing flexible Nb/sub 3/ (Al,Ge) multifilamentary superconductive material in which a sintered porous Nb compact is infiltrated with an Al-Ge alloy. It is deformed and heat treated in a series of steps at successively higher temperatures preferably below 1000/sup 0/C during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to serve as a temperature stabilizer for the superconductive material produced. These lower heat treatment temperatures favor formation of filaments with reduced grain size and with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  11. Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities

    SciTech Connect

    Antoine, C.; Foley, M.; Dhanaraj, N.; /Fermilab

    2011-07-01

    It is important to distinguish among the properties of niobium, the ones that are related to the cavity's SRF performances, the formability of the material, and the mechanical behavior of the formed cavity. In general, the properties that dictate each of the above mentioned characteristics have a detrimental effect on one another and in order to preserve the superconducting properties without subduing the mechanical behavior, a balance has to be established. Depending on the applications, some parameters become less important and an understanding of the physical origin of the requirements might help in this optimization. SRF applications require high purity niobium (high RRR), but pure niobium is very soft from fabrication viewpoint. Moreover conventional fabrication techniques tend to override the effects of any metallurgical process meant to strengthen it. As those treatments dramatically affect the forming of the material they should be avoided. These unfavorable mechanical properties have to be accounted for in the design of the cavities rather than in the material specification. The aim of this paper is to review the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values. Most of the following information deals with the specification of sheets for cell forming unless otherwise noted.

  12. Progress on the Development of a Superconducting Connection for Niobium Cavities

    SciTech Connect

    Peter Kneisel, Gianluigi Ciovati, Jacek Sekutowicz ,Larry Turlington

    2009-06-01

    The availability of a superconducting connection between adjacent niobium radio-frequency (RF) cavities with the capability to carry up to 30 mT of the magnetic flux would be particularly of great benefit to layouts of long accelerators like the International Linear Collider (ILC). It would shorten the distances between structures and therefore the total length of an accelerator with the associated cost reductions. In addition, the superconducting connection would be ideal for a superstructure – two multi-cell cavities connected through a half wavelength long beam pipe providing the coupling. Two single-cell niobium cavities have been designed with Nb-1Zr flanges welded to one of the irises to allow a connection between them with a niobium gasket. A transition to the normal-conducting state of the connection due to the applied RF field causes a reduction of the cavities’ quality factor. The cavity design will be presented in this contribution along with possible choices of materials for the joint.

  13. Surface Characterization of Impurities in Superconducting Niobium for Radio Frequency (RF) Cavities used in Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Maheshwari, Prateek

    Niobium (Nb) is the material of choice for Superconducting Radio Frequency (SRF) Cavities used in particle accelerators owing to its high critical temperature (Tc = 9.2 K) and critical magnetic field (≈ 200mT). However, niobium tends to harbor interstitial impurities such as H, C, O and N, which are detrimental to cavity performance. Since the magnetic field penetration depth (lambda) of niobium is 40nm, it is important to characterize these impurities using surface characterization techniques. Also, it is known that certain heat treatments improve cavity efficiency via interstitial impurity removal from the surface of niobium. Thus, a systematic study on the effect of these heat treatments on the surface impurity levels is needed. In this work, surface analysis of both heat treated and non heat treated (120°C-1400°C) large grain (single crystal) bulk niobium samples was performed using secondary ion mass spectrometry (SIMS) and Transmission Electron Microscopy (TEM). Impurity levels were compared on the surface using SIMS after various types of heat treatments expected to improve cavity performance, and the effect of these heat treatments on the surface impurities were examined. SIMS characterization of ion implanted standards of C, N, O, D showed that quantification of C, N and O impurities in Nb is achievable and indicated that H is very mobile in Nb. It was hence determined that quantification of H in Nb is not possible using SIMS due to its high diffusivity in Nb. However, a comparative study of the high temperature heat treated (600°C-1400°C) and non heat treated (control) samples revealed that hydrogen levels decreased by upto a factor of 100. This is attributed to the dissociation of the niobium surface oxide layer, which acts as a passivating film on the surface, and subsequent desorption of hydrogen. Reformation of this oxide layer on cool down disallows any re-absorption of hydrogen, indicating that the oxide acts as a surface barrier for

  14. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    SciTech Connect

    Roychowdhury, A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-07-07

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF₆ plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100), and Nb(100), as well as a doped topological insulator Bi₂Se₃ at temperatures ranging from 30 mK to 9 K.

  15. Analysis of the medium field Q-slope in superconducting cavities made of bulk niobium

    SciTech Connect

    Gianluigi Ciovati; J. Halbritter

    2005-07-10

    The quality factor of superconducting radio-frequency cavities made of high purity, bulk niobium increases with rf field in the medium field range (peak surface magnetic field between 20 and about 100 mT). The causes for this effect are not clear yet. The dependence of the surface resistance on the peak surface magnetic field is typically linear and quadratic. This contribution will present an analysis of the medium field Q-slope data measured on cavities treated with buffered chemical polishing (BCP) at Jefferson Lab, as function of different treatments such as post-purification and low-temperature baking. The data have been compared with a model involving a combination of heating and of hysteresis losses due to ''strong-links'' formed or weakened at niobium surfaces during oxidation, which correlate to {delta}{Delta}/kT{sub c} changes by baking.

  16. Transient high-field behavior of niobium superconducting cavities

    SciTech Connect

    Campisi, I.E.; Farkas, Z.D.; Deruyter, H.; Hogg, H.A.

    1983-03-01

    Tests have been performed on the breakdown behavior of a TM/sub 010/ mode, S-band niobium cavity at low temperatures. Unloaded Q's of 9 x 10/sup 7/ at 4.2 K and of 7 x 10/sup 9/ at 1.35 K were measured during several tests performed using pulses long enough for the cavity to reach steady state. The breakdown field at 1.35 K was increased from 15 to 20 MV/m by processing the cavity at room temperature using 1 MW, 2.5 ..mu..s pulses. The response of the cavity at 4.2 K to 1 MW, 2.5..mu..s pulses was also tested in several cool-downs. In these tests the cavity was heavily overcoupled to lower its time constant to a value of 0.80 times the RF pulse length of 2.5 ..mu..s. This condition maximizes the energy transfer from the klystron source to the cavity. Measurements made during these experiments clearly indicated that fields of about 50 MV/m were being reached in the cavity without breakdown.

  17. Effect of low temperature baking on the RF properties of niobium superconducting cavities for particle accelerators

    SciTech Connect

    Gianluigi Ciovati

    2004-03-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models

  18. Suppression of geometric barrier in type-II superconducting strips

    NASA Astrophysics Data System (ADS)

    Willa, R.; Geshkenbein, V. B.; Blatter, G.

    2014-03-01

    We study the magnetic response of a superconducting double strip, i.e., two parallel coplanar thin strips of width 2w, thickness d ≪w, and infinite length, separated by a gap of width 2s and subject to a perpendicular magnetic field H. The magnetic properties of this system are governed by the presence of a geometric energy barrier for vortex penetration which we investigate as a function of applied field H and gap parameter s. The new results deal with the case of a narrow gap s ≪w, where the field penetration from the inner edges is facilitated by large flux focusing. Upon reducing the gap width 2s, we observe a considerable rearrangement of the screening currents, leading to a strong reduction of the penetration field and the overall magnetization loop, with a suppression factor reaching ˜(d/w)1/2 as the gap drops below the sample thickness, 2sstrips, we determine the specific sequence of flux penetrations into the different strips. Our studies are relevant for the understanding of platelet-shaped samples with cracks or the penetration into layered superconductors at oblique magnetic fields.

  19. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    SciTech Connect

    Zhao, Liang

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by

  20. Design, Construction and Status of an All Niobium Superconducting Photoinjector at BNL

    SciTech Connect

    T. Srinivasan-Rao; I. Ben-Zvi; A. Burrill; G. Citver; A. Hershcovitch; D. Pate; A. Reuter; J. Scaduto; Q. Zhao; Y. Zhao; J. Delayen; P. Kneisel; H. Bluem; M. Cole; A. Favale; J. Rathke; T. Schultheiss

    2003-05-01

    We present here the design and construction of an all niobium superconducting RF injector to generate high average current, high brightness electron beam. A 1/2 cell superconducting cavity has been designed, built, and tested. A cryostat has been built to cool the cavity to {approx}2 K. The RF system can deliver up to 500 W at 1.3 GHz to the cavity. A mode-locked Nd:YVO4 laser, operating at 266 nm with 0.15 W average power, phase locked to the RF, will irradiate a laser cleaned Nb surface at the back wall of the cavity. Description of critical components and their status are presented in the paper.

  1. Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.

    DOE PAGES

    Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; ...

    2014-08-18

    This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less

  2. Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.

    SciTech Connect

    Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; Monson, Todd C.

    2014-08-18

    This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.

  3. Ga lithography in sputtered niobium for superconductive micro and nanowires

    SciTech Connect

    Henry, M. David; Wolfley, Steve; Monson, Todd; Lewis, Rupert

    2014-08-18

    This work demonstrates the use of focused ion beam (FIB) implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 μm by 10 μm and 100 μm by 100 μm, demonstrate that doses above than 7.5 × 10{sup 15 }cm{sup −2} at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75 nm wide by 10 μm long connected to 50 μm wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature (T{sub c}) = 7.7 K was measured using a magnetic properties measurement system. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.

  4. Ga lithography in sputtered niobium for superconductive micro and nanowires

    NASA Astrophysics Data System (ADS)

    Henry, M. David; Wolfley, Steve; Monson, Todd; Lewis, Rupert

    2014-08-01

    This work demonstrates the use of focused ion beam (FIB) implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 μm by 10 μm and 100 μm by 100 μm, demonstrate that doses above than 7.5 × 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75 nm wide by 10 μm long connected to 50 μm wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature (Tc) = 7.7 K was measured using a magnetic properties measurement system. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.

  5. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    SciTech Connect

    High Current Electronics Institute, Tomsk, Russia; Anders, Andre; Mendelsberg, Rueben J.; Lim, Sunnie; Mentink, Matthijs; Slack, Jonathan L.; Wallig, Joseph G.; Nollau, Alexander V.; Yushkov, Georgy Yu.

    2011-07-24

    Niobium coatings on copper cavities have been considered as a cost-efficient replacement of bulk niobium RF cavities, however, coatings made by magnetron sputtering have not quite lived up to high expectations due to Q-slope and other issues. High power impulse magnetron sputtering (HIPIMS) is a promising emerging coatings technology which combines magnetron sputtering with a pulsed power approach. The magnetron is turned into a metal plasma source by using very high peak power density of ~ 1 kW/cm{sup 2}. In this contribution, the cavity coatings concept with HIPIMS is explained. A system with two cylindrical, movable magnetrons was set up with custom magnetrons small enough to be inserted into 1.3 GHz cavities. Preliminary data on niobium HIPIMS plasma and the resulting coatings are presented. The HIPIMS approach has the potential to be extended to film systems beyond niobium, including other superconducting materials and/or multilayer systems.

  6. Phonon scattering in the thermal conductivity of large-grain superconducting niobium as a function of heat treatment temperature

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Saravan Kumar; Bieler, Tom; Compton, Chris; Wright, Neil T.

    2012-06-01

    Production of niobium ingots and subsequent fabrication and processing of superconducting radio frequency (SRF) cavities affect the thermal conductivity of superconducting niobium in an as yet unknown way. Here, parameters of a theoretically-based model are used to relate thermal conductivity to the heat treatment temperature of niobium. Temperature and heat flux measurements on large grain niobium specimens with different heat treatment histories are used to estimate the parameters in the model. The parameter associated with the scattering of phonons by normal conducting electrons, β3, deviates from its theoretical value at cooler heat treatment temperatures, but converges to the theoretical value at hotter heat treatment temperatures. The parameter associated with the scattering of phonons by lattice defects and boundaries, β4, correlates well with the heat treatment temperature. The parameter associated with the condensation of electrons to form Cooper pairs, β5, is shown to be unaffected by the heat treatment temperature. These results show promise for relating thermal conductivity to the material processing of niobium.

  7. Direct Observation of the Superconducting Energy Gap in the Conductivity Spectra of Thin Niobium Films.

    NASA Astrophysics Data System (ADS)

    Pronin, A. V.; Dressel, M.; Pimenov, A.; Loidl, A.; Roshchin, I. V.; Greene, L. H.

    1998-03-01

    High-quality niobium thin films are grown by planar magnetron sputter deposition on sapphire substrates. The electrodynamic response of Nb in the frequency range above and below the energy gap 2Δ is studied in both the normal and superconducting states. The amplitude and the phase of the transmission through the Nb film measured in the 5-30cm-1 frequency range using a coherent source interferometer allowed direct determination of both components of the complex conductivity. Below the superconducting transition temperature (T_c=8.3K for a 150Åthick film) the superconducting energy gap is observed to increase when the temperature is decreased. The temperature dependence of the conductivity spectra is described by BCS formalism with finite scattering. The gap is estimated to be 2Δ(0)=24cm-1 (3 meV) at T=0, therefore 2Δ(0)=4.1 k_bT_c. [1] ^Present Address: General Phys. Inst., RAS, Russia. Support: ^#BMBF (EKM 13N6917), Deutsche Forschungsgemeinschaft, Russian Foundation for Basic Research; ^*DoE through MRL (DEFG02-91ER45439). [1] A.V. Pronin et al., Phys.Rev.B (submitted).

  8. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    NASA Astrophysics Data System (ADS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (˜120 °C) and high (˜800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ˜1 × 10-5 Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ˜2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  9. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.

    PubMed

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  10. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao; Rigby, Wayne; Wallace, John

    2012-06-15

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  11. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  12. Evidence of surface paramagnetism in niobium and consequences for the superconducting cavity surface impedance.

    SciTech Connect

    Prolier, T.; Kharitonov, M.; Pellin, M.; Zasadzinski, J.; Ciovati, G.

    2011-06-01

    The presence of magnetic impurities in native niobium oxides have been confirmed by Point contact spectroscopy (PCT), SQUID magnetometry and Electron paramagnetic resonance (EPR). All niobium (Nb) samples displayed a small impurity contribution to the magnetic susceptibility at low temperatures which exhibited Curie-Weiss behavior, indicative of weakly coupled localized paramagnetic moments. By examining Nb samples with widely varying surface-to-volume ratios (rods, foils, wires, powders) it was found that the impurity contribution is correlated with surface area. Tunneling measurements which use the native oxide layers as barriers exhibit a zero-bias conductance peak which splits in a magnetic field >; 4T, consistent with the Appelbaum-Anderson model for spin flip tunneling. Viewed together the experiments strongly suggest that the native oxides of Nb are intrinsically defective, and consistently exhibit localized paramagnetic moments caused by oxygen vacancies in Nb{sub 2}O{sub 5}. The computation of the surface impedance (R{sub s}) in presence of magnetic impurities in the Shiba approximation reveals the saturation at low temperature of R{sub s}, suggesting that magnetic impurities are responsible for the so-called residual resistance. These properties may have an impact on Nb based superconducting devices and shine a new light on the origin of the paramagnetic Meissner effect (PME).

  13. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    SciTech Connect

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  14. Comparison of Deformation in High-Purity Single/Large Grain and Polycrystalline Niobium Superconducting Cavities

    SciTech Connect

    Ganapati Rao Myneni; Peter Kneisel

    2005-07-10

    The current approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Recently, a new technique was developed at Jefferson Laboratory that enables the fabrication of single-crystal high-purity Nb SRF cavities. To better understand the differences between SRF cavities fabricated out of fine-grained polycrystalline sheet in the standard manner and single crystal cavities fabricated by the new technique, two half-cells were produced according to the two different procedures and compared using a variety of analytical techniques including optical microscopy, scanning laser confocal microscopy, profilometry, and X-ray diffraction. Crystallographic orientations, texture, and residual stresses were determined in the samples before and after forming and this poster presents the results of this ongoing study.

  15. Temperature dependence of clusters with attracting vortices in superconducting niobium studied by neutron scattering.

    PubMed

    Pautrat, A; Brûlet, A

    2014-06-11

    We investigated the intermediate mixed state of a superconducting niobium sample using very small angle neutron scattering. We show that this state is stabilized through a sequence where a regular vortex lattice appears, which then coexists with vortex clusters before vanishing at low temperature. Vortices in clusters have a constant periodicity regardless of the applied field and exhibit a temperature dependence close to the one of the penetration depth. The clusters disappear in the high temperature limit. All the results agree with an explanation in terms of vortex attraction due to non-local effects and indicate a negligible role for pinning. Phase coexistence between the Abrikosov vortex lattice and vortex clusters is reported, showing the first-order nature of the boundary line.

  16. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Klopf, J. Michael; Reece, Charles E.; Kelley, Michael J.

    2014-08-01

    Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  17. Method for determining hydrogen mobility as a function of temperature in superconducting niobium cavities

    DOEpatents

    May, Robert

    2008-03-11

    A method for determining the mobility of hydrogen as a function of temperature in superconducting niobium cavities comprising: 1) heating a cavity under test to remove free hydrogen; 2) introducing hydrogen-3 gas into the cavity; 3) cooling the cavity to allow absorption of hydrogen-3; and 4) measuring the amount of hydrogen-3 by: a) cooling the cavity to about 4.degree. K while flowing a known and regulated amount of inert carrier gas such as argon or helium into the cavity; b) allowing the cavity to warm at a stable rate from 4.degree. K to room temperature as it leaves the chamber; and c) directing the exit gas to an ion chamber radiation detector.

  18. Investigation of the superconducting properties of niobium radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi

    Radio-frequency (rf) superconducting cavities are widely used to increase the energy of a charged particle beam in particle accelerators. The maximum gradients of cavities made of bulk niobium have constantly improved over the last ten years and they are approaching the theoretical limit of the material. Nevertheless, rf tests of niobium cavities are still showing some "anomalous" losses (so-called "Q-drop"), characterized by a marked increase of the surface resistance at high rf fields, in absence of field emission. A low temperature "in-situ" baking under ultra-high vacuum has been successfully applied by several laboratories to reduce those losses and improve the cavity's quality factor. Several models have been proposed to explain the cause of the Q-drop and the baking effect. We investigated the effect of baking on niobium material parameters by measuring the temperature dependence of a cavity's surface impedance and comparing it with the Bardeen-Cooper-Schrieffer's theory of superconductivity. It was found that baking allows interstitial oxygen to diffuse from the surface deeper into the bulk. This produces a significant reduction of the normal electrons' mean free path, which causes an increase of the quality factor. The optimum baking parameters are 120°C for 24-48 h. We were also able to identify the origin of the Q-drop as due to a high magnetic field, rather then electric field, by measuring the quality factor of a cavity as function of the rf field in a resonant mode with only magnetic field present on the surface. With the aid of a thermometry system, we were able to localize the losses in the high magnetic field region. We measured the Q-drop in cavities which had undergone different treatments, such as anodization, electropolishing and post-purification, and with different metallurgical properties and we study the effectiveness of baking in each case. As a result, none of the models proposed so far can explain all the experimental observations. We

  19. Precise slit-width control of niobium apertures for superconducting LEDs.

    PubMed

    Huh, Jae-Hoon; Hermannstädter, Claus; Sato, Hiroyasu; Ito, Saki; Idutsu, Yasuhiro; Sasakura, Hirotaka; Tanaka, Kazunori; Akazaki, Tatsushi; Suemune, Ikuo

    2011-01-28

    We introduce a novel three-step procedure for precise niobium (Nb)-etching on the nanometer-scale, including the design of high contrast resist patterning and sacrifice layer formation under high radio frequency (RF) power. We present the results of precise slit fabrication using this technique and discuss its application for the production of superconducting devices, such as superconductor-semiconductor-superconductor (S-Sm-S) Josephson junctions. For the reactive ion etching (RIE) of Nb, we selected CF(4) as etchant gas and a positive tone resist to form the etching mask. We found that the combination of resist usage and RIE process allows for etching of thicker Nb layers when utilizing the opposite dependence of the etching rate (ER) on the CF(4) pressure in the case of Nb as compared to the resist. Precise slit-width control of 80 and 200 nm thick Nb apertures was performed with three kinds of ER control, for the resist, the Nb, and the underlying layer. S-Sm-S Josephson junctions were fabricated with lengths as small as 80 nm, which can be considered clean and short and thus exhibit critical currents as high as 50 µA. Moreover, possible further applications, such as for apertures of superconducting light emitting diodes (SC LEDs), are addressed.

  20. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-04-07

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q0-value of 2 × 1010 at 2 K after standard processing treatments. As a result, the performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.

  1. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-04-07

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb ofmore » medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q0-value of 2 × 1010 at 2 K after standard processing treatments. As a result, the performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.« less

  2. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    SciTech Connect

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  3. Integrated Surface Topography Characterization of Variously Polished Niobium for Superconducting Particle Accelerators

    SciTech Connect

    Hui Tian, Charles Reece, Michael Kelley, G. Ribeill

    2009-05-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro-and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents flow. Interior surface chemical polishing (BCP/EP) to remove mechanical damage leaves surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely-used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is being used to distinguish the scale-dependent smoothing effects. The topographical evolution of the Nb surface as a function of different steps of EP is reported, resulting in a novel qualitative and quantitative description of Nb surface topography.

  4. Superconducting radio-frequency cavities made from medium and low-purity niobium ingots

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.

    2016-06-01

    Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0-values. In this contribution we present the results from cryogenic RF tests of 1.3-1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100-150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0-value of 2 × 1010 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.

  5. Preliminary studies of Electric and Magnetic Field Effects in Superconducting Niobium Cavities

    SciTech Connect

    Gianluigi Ciovati; Peter Kneisel; Ganapati Myneni; Jacek Sekutowicz; A. Brinkmann; W. Singer; J. Halbritter

    2003-05-01

    Superconducting cavities made from high purity niobium with RRR > 200 often show pronounced features in the Q vs. E{sub acc} dependence such as a peak at low gradients, a B{sup 2}-slope at intermediate fields and a steep degradation of Q-values (''Q-drop'') at gradients above E{sub acc} {approx} 20 MV/m without field emission loading. Whereas the B{sup 2}-slope is in line with ''global'' heating [2] there are still different models to explain the observed ''Q-drop''. The model of ref. [1] is based on magnetic field enhancements at grain boundaries in the equator weld region of the cavity and local heating. These grain boundaries become normal conducting, when their critical magnetic field is reached and contribute gradually to the losses in the cavity as long as they are thermally stable. The model proposed in ref. [2] is based on effects taking place in the metal-oxide interface on the niobium surface. The major contribution to the RF absorption is coming from interface tunnel exchange between electronic states of superconducting Nb with their energy gap and localized states of the dielectric Nb{sub 2}O{sub 5}. An experimental program was started at JLab to settle the mechanisms behind B{sup 2}-slope and the Q-drop. A modified CEBAF single cell cavity is excited in either TM{sub 010} or TE{sub 011} modes and the Q vs. E{sub acc} dependences are measured as a function of various surface treatments such as BCP, electropolishing, high temperature heat treatment and ''in-situ'' baking. In addition, a special two-cell cavity was designed, which allows the excitation of the 0- and {pi}-modes of the TM{sub 010} passband, which ''scan'' different areas of the cavity surface with high electric and magnetic fields, respectively. This contribution reports about the design and first measurements with both types of cavities.

  6. Conversion gain and noise of niobium superconducting hot-electron-mixers

    NASA Technical Reports Server (NTRS)

    Ekstrom, Hans; Karasik, Boris S.; Kollberg, Erik L.; Yngvesson, Sigfrid

    1995-01-01

    A study has been done of microwave mixing at 20 GHz using the nonlinear (power dependent) resistance of thin niobium strips in the resistive state. Our experiments give evidence that electron-heating is the main cause of the nonlinear phenomenon. Also a detailed phenomenological theory for the determination of conversion properties is presented. This theory is capable of predicting the frequency-conversion loss rather accurately for arbitrary bias by examining the I-V-characteristic. Knowing the electron temperature relaxation time, and using parameters derived from the I-V-characteristic also allows us to predict the -3 dB IF bandwidth. Experimental results are in excellent agreement with the theoretical predictions. The requirements on the mode of operation and on the film parameters for minimizing the conversion loss (and even achieving conversion gain) are discussed in some detail. Our measurements demonstrate an intrinsic conversion loss as low as 1 dB. The maximum IF frequency defined for -3 dB drop in conversion gain, is about 80 MHz. Noise measurements indicate a device output noise temperature of about 50 K and SSB mixer noise temperature below 250 K. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.

  7. Effect of non-uniform surface resistance on the quality factor of superconducting niobium cavity

    NASA Astrophysics Data System (ADS)

    Tan, Weiwei; Lu, Xiangyang; Yang, Ziqin; Zhao, Jifei; Yang, Deyu; Yang, Yujia

    2016-08-01

    The formula Rs = G /Q0 is commonly used in the calculation of the surface resistance of radio frequency niobium superconducting cavities. The applying of such equation is under the assumption that surface resistance is consistent over the cavity. However, the distribution of the magnetic field varies over the cavity. The magnetic field in the equator is much higher than that in the iris. According to Thermal Feedback Theory, it leads non-uniform distribution of the density of heat flux, which results in a different temperature distribution along the cavity inter surface. The BCS surface resistance, which depends largely on the temperature, is different in each local inner surface. In this paper, the effect of surface non-uniform resistance on the quality factor has been studied, through the calculation of Q0 in the original definition of it. The results show that it is necessary to consider the non-uniform distribution of magnetic field when the accelerating field is above 20 MV/m for TESLA cavities. Also, the effect of inhomogeneity of residual resistance on the quality factor is discussed. Its distribution barely affects the quality factor.

  8. Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG

    SciTech Connect

    Romanenko, A. Grassellino, A.; Crawford, A. C.; Sergatskov, D. A.; Melnychuk, O.

    2014-12-08

    Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here, we show that a complete expulsion of the magnetic flux can be performed and leads to: (1) record quality factors Q > 2 × 10{sup 11} up to accelerating gradient of 22 MV/m; (2) Q ∼ 3 × 10{sup 10} at 2 K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findings open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.

  9. Detection of surface carbon and hydrocarbons in hot spot regions of niobium superconducting rf cavities by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cao, C.; Ford, D.; Bishnoi, S.; Proslier, T.; Albee, B.; Hommerding, E.; Korczakowski, A.; Cooley, L.; Ciovati, G.; Zasadzinski, J. F.

    2013-06-01

    Raman microscopy/spectroscopy measurements are presented on high purity niobium (Nb) samples, including pieces from hot spot regions of a tested superconducting rf cavity that exhibit a high density of etch pits. Measured spectra are compared with density functional theory calculations of Raman-active, vibrational modes of possible surface Nb-O and Nb-H complexes. The Raman spectra inside particularly rough pits in all Nb samples show clear differences from surrounding areas, exhibiting enhanced intensity and sharp peaks. While some of the sharp peaks are consistent with calculated NbH and NbH2 modes, there is better overall agreement with C-H modes in chain-type hydrocarbons. Other spectra reveal two broader peaks attributed to amorphous carbon. Niobium foils annealed to >2000°C in high vacuum develop identical Raman peaks when subjected to cold working. Regions with enhanced C and O have also been found by SEM/EDX spectroscopy in the hot spot samples and cold-worked foils, corroborating the Raman results. Such regions with high concentrations of impurities are expected to suppress the local superconductivity and this may explain the correlation between hot spots in superconducting rf (SRF) cavities and the observation of a high density of surface pits. The origin of localized high carbon and hydrocarbon regions is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible.

  10. Observations of flux motion in niobium films. [study of magnetic field trapped in superconducting coatings of gyroscope rotor

    NASA Technical Reports Server (NTRS)

    Xiao, Y. M.; Keiser, G. M.

    1991-01-01

    A magnetic field trapped in a superconducting sphere was examined at temperatures from 4.6 K to 5.5 K. The sphere was the rotor of a precision gyroscope and was made of fused quartz and coated with a sputtered niobium film. The rotor diameter was 3.8 cm. The film thickness was 2.5 microns. The tests were carried out at an ambient magnetic field of about 1 mG. Unexpected instability of the trapped field was observed. The experimental results and possible explanations are presented.

  11. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    SciTech Connect

    Wang, Tong

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  12. A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities

    NASA Astrophysics Data System (ADS)

    Kumar, Abhay; Ganesh, P.; Kaul, R.; Bhatnagar, V. K.; Yedle, K.; Ram Sankar, P.; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Singh, M. K.; Rai, S. K.; Bose, A.; Veerbhadraiah, T.; Ramteke, S.; Sridhar, R.; Mundra, G.; Joshi, S. C.; Kukreja, L. M.

    2015-02-01

    The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate <1.1 × 10-10 mbar l/s) for service in ultra-high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.

  13. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators.

    PubMed

    Ricker, R E; Myneni, G R

    2010-01-01

    During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles.

  14. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    SciTech Connect

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  15. Passivated niobium cavities

    DOEpatents

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  16. The fundamental science of nitrogen-doping of niobium superconducting cavities

    NASA Astrophysics Data System (ADS)

    Gonnella, Daniel Alfred

    Doping of niobium superconducting RF cavities with impurities has been demonstrated to have the ability to significantly improve the cryogenic efficiency of the accelerating structures. Doping SRF cavities with nitrogen is a relatively simple additional step to cavity preparation that can make drastic improvements in a cavity's intrinsic quality factor, Q0. Nitrogen-doping consists of treating SRF cavities at high temperatures in a low nitrogen-atmosphere. This leads to two important effects: an improvement in Q0 at low fields, and the presence of an "anti-Q slope" in which the cryogenic efficiency of doped cavities actually improves at higher fields. After its initial discovery, nitrogen-doping showed real promise but many fundamental scientific questions remained about the process. Nitrogen-doped cavities consistently quenched at lower fields than un-doped cavities, cooling the cavities through their critical temperature slowly led to poor performance, and the mechanism behind the Q0 improvement was not well understood. This dissertation focuses on addressing these issues. Single-cell 1.3 GHz cavities were prepared with different nitrogen-dopings and their effects studied systematically. It was found that nitrogen-doping drastically lowers the mean free path of the RF penetration layer of the niobium, leading to a lowering of the temperature-dependent BCS resistance, RBCS, at low fields. Theoretical work to predict the anti-Q slope was compared with experimental results to more fundamentally understand the nature of the field dependence of RBCS. Nitrogen-doped cavities were found to have a much larger sensitivity of residual resistance from trapped magnetic flux than un-doped cavities. Fast cool downs with large spatial temperature gradients through Tc were found to more efficiently expel magnetic flux. The full dependence of this sensitivity to trapped magnetic flux was studied as a function of changing mean free path and found to be in good agreement with

  17. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    SciTech Connect

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  18. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators

    PubMed Central

    Ricker, R. E.; Myneni, G. R.

    2010-01-01

    During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles. PMID:27134791

  19. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    NASA Astrophysics Data System (ADS)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  20. A fast, self-recovering superconducting strip particle detector made with granular tungsten

    NASA Astrophysics Data System (ADS)

    Gabutti, A.; Gray, K. E.; Pugh, G. M.; Tiberio, R.

    1992-02-01

    The ability of detectors to automatically recover (self-recovery) in a short period of time after sensing a particle is a very valuable advantage for their use as microvertex detectors at high energy particle colliders. Using a superconducting strip detector made of granular tungsten, we have observed such behavior with pulse amplitudes of few 100 μV and recovery times fo 10-50 ns. A 1.8 μm wide thin film was used to detect the superconducting-to-normal transitions induced by the absorption of 55Fe, 6 keV X-rays. For high bias currents the detector did not self-recover and a constant efficiency estimated to ˜65% was found, but with good indications that such a rate would persist in the self-recovery mode at lower bias currents. The threshold between self-recovering and propagating hotspots is discussed within the thermal propagation model, developed previously for normal regions which bridge the width of the strip. These results also confirm the potential applications of superconducting strips for high resolution X-rays detectors.

  1. Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection.

    PubMed

    Delacour, Cécile; Pannetier, Bernard; Villegier, Jean-Claude; Bouchiat, Vincent

    2012-07-11

    We present low-temperature electronic transport properties of superconducting nanowires obtained by nanolithography of 4-nm-thick niobium nitride (NbN) films epitaxially grown on sapphire substrate. Below 6 K, clear evidence of phase slippages is observed in the transport measurements. Upon lowering the temperature, we observe the signatures of a crossover between a thermal and a quantum behavior in the phase slip regimes. We find that phase slips are stable even at the lowest temperatures and that no hotspot is formed. The photoresponse of these nanowires is measured as a function of the light irradiation wavelength and temperature and exhibits a behavior comparable with previous results obtained on thicker films.

  2. TOPICAL REVIEW: Advances in high-field superconducting composites by addition of artificial pinning centres to niobium-titanium

    NASA Astrophysics Data System (ADS)

    Cooley, L. D.; Motowidlo, L. R.

    1999-08-01

    Artificial pinning-centre (APC) niobium-titanium composites attain critical current density Jc values higher than 4000 A mm-2 at 5 T, 4.2 K, surpassing the barrier reached by the conventional Nb-Ti composite process. At 2 T APC composites achieve more than double the Jc of conventional composites, making them particularly well suited for low-field applications. On the other hand, APC composites are inferior to conventional composites at 8 T, due to weak high-field pinning and reduced upper critical field. This review discusses fabrication techniques, microstructural development and superconducting and flux-pinning properties of APC composites. Key elements and underlying issues for achieving higher Jc are identified and discussed in terms of the current state of the art.

  3. Investigating ion-surface collisions with a niobium superconducting tunnel junction detector in a time-of-flight mass spectrometer

    SciTech Connect

    Westmacott, G.; Zhong, F.; Frank, M.; Friedrich, S.; Labov, S.; Benner, W.H.

    1999-12-01

    The performance of an energy sensitive, niobium superconducting tunnel junction detector is investigated by measuring the pulse height produced by impacting molecular and atomic ions at different kinetic energies. Ions are produced by laser resorption and matrix-assisted laser desorption in a time-of-flight mass spectrometer. Results show that the STJ detector pulse height decreases for increasing molecular ion mass, passes through a minimum at around 2000 Da, and the increases with increasing mass of molecular ions above 2000Da. The detector does not show a decline in sensitivity for high mass ions as is observed with microchannel plate ion detectors. These detector plus height measurements are discussed in terms of several physical mechanisms involved in an ion-surface collision.

  4. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    SciTech Connect

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  5. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    NASA Astrophysics Data System (ADS)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  6. Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    SciTech Connect

    Beringer, D. B.; Roach, W. M.; Clavero, C.; Reece, C. E.; Lukaszew, R. A.

    2013-02-05

    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ~500 MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [ Appl. Phys. Lett. 88 012511 (2006)] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.

  7. Cold RF test and associated mechanical features correlation of a TESLA-style 9-cell superconducting niobium cavity built in China

    SciTech Connect

    Dai, Jing; Quan, Sheng-Wen; Zhang, Bao-Cheng; Lin, Lin; Hao, Jian-Kui; Zhu, Feng; Xu, Wen-Can; He, Fei-Si; Jin, Song; Wang, Fang; Liu, Ke-Xin; Geng, R L; Zhao, Kui

    2012-02-01

    The RF performance of a 1.3 GHz 9-cell superconducting niobium cavity was evaluated at cryogenic temperatures following surface processing by using the standard ILC-style recipe. The cavity is a TESLA-style 9-cell superconducting niobium cavity, with complete end group components including a higher order mode coupler, built in China for practical applications. An accelerating gradient of 28.6 MV/m was achieved at an unloaded quality factor of 4 x 10{sup 9}. The morphological property of mechanical features on the RF surface of this cavity was characterized through optical inspection. Correlation between the observed mechanical features and the RF performance of the cavity is attempted.

  8. Interaction of Josephson Junction and Distant Vortex in Narrow Thin-Film Superconducting Strips

    SciTech Connect

    Kogan, V. G.; Mints, R. G.

    2014-01-31

    The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who showed that the vortex may turn the junction into π type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a π junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

  9. The First Observation of Intra Beam Stripping of Negative Hydrogen in a Superconducting Linear Accelerator

    SciTech Connect

    Aleksandrov, Alexander V; Plum, Michael A; Shishlo, Andrei P; Galambos, John D

    2012-01-01

    We report on an experiment in which a negative hydrogen ions beam in the Spallation Neutron Source (SNS) linear accelerator was replaced with a beam of protons with similar size and dynamics. Beam loss in the superconducting part of the SNS accelerator was at least an order of magnitude lower for the proton beam. Also beam loss has a stronger dependence on intensity with H- than with proton beams. These measurements verify a recent theoretical explanation of unexpected beam losses in the SNS superconducting linear accelerator based on an intra beam stripping mechanism for negative hydrogen ions. An identification of the new physics mechanism for beam loss is important for the design of new high current linear ion accelerators and the performance improvement of existing machines

  10. Niobium Thin Film Characterization for Thin Film Technology Used in Superconducting Radiofrequency Cavities

    NASA Astrophysics Data System (ADS)

    Dai, Yishu; Valente-Feliciano, Anne-Marie

    2015-10-01

    Superconducting RadioFrequency (SRF) penetrates about 40-100 nm of the top surface, making thin film technology possible in producing superconducting cavities. Thin film is based on the deposition of a thin Nb layer on top of a good thermal conducting material such as Al or Cu. Thin film allows for better control of the surface and has negligible response to the Earth's magnetic field, eliminating the need for magnetic shielding of the cavities. Thin film superconductivity depends heavily on coating process conditions, involving controllable parameters such as crystal plane orientation, coating temperature, and ion energy. MgO and Al2O3 substrates are used because they offer very smooth surfaces, ideal for studying film growth. Atomic Force Microscopy is used to characterize surface's morphology. It is evident that a lower nucleation energy and a long coating time increases the film quality in the r-plane sapphire crystal orientation. The quality of the film increases with thickness. Nb films coated on r-plane, grow along the (001) plane and yield a much higher RRR compared to the films grown on a- and c-planes. This information allows for further improvement on the research process for thin film technology used in superconducting cavities for the particle accelerators. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  11. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    SciTech Connect

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced by crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.

  12. Investigation of local losses as a function of material removal in a large-grain superconducting niobium cavity

    SciTech Connect

    G. Ciovati, P. Kneisel

    2008-01-02

    The performance of a superconducting radio-frequency (RF) cavity made of residual resistivity ratio (RRR) > 200 large-grain niobium has been investigated as a function of material removal, between 70 and 240 mu-m, by buffered chemical polishing (BCP). Temperature maps of the cavity surface at 1.7 and 2 K were taken for each step of chemical etching and revealed localized losses (hot-spots), which contribute to the degradation of the cavity quality factor as a function of the RF surface field. It was found that the number of hot-spots decreased for larger material removal. Interestingly, the losses at the hot-spots at different locations evolved differently for successive material removal. The cavity achieved peak surface magnetic fields of about of 130 mT and was limited mostly by thermal quench. By measuring the temperature dependence of the surface resistance (Rs) at low field between 4.2 K and 1.7 K, the variation of material parameters such as the energy gap at 0 K, the residual resistance and the mean free path as a function of material removal could also be investigated. This contribution shows the results of the RF tests along with the temperature maps and the analysis of the losses caused by the "hot-spots."

  13. Investigation of local losses as a function of material removal in a large-grain superconducting niobium cavity

    SciTech Connect

    Gianluigi Ciovati; Peter Kneisel

    2006-08-02

    The performance of a superconducting radio-frequency (RF) cavity made of residual resistivity ratio (RRR) > 200 large-grain niobium has been investigated as a function of material removal, between 70 and 240 ?m, by buffered chemical polishing (BCP). Temperature maps of the cavity surface at 1.7 and 2.0 K were taken for each step of chemical etching and revealed localized losses (''hot-spots''), which contribute to the degradation of the cavity quality factor as a function of the RF surface field. It was found that the number of ''hot-spots'' decreased for larger material removal. Interestingly, the losses at the ''hot-spots'' at different locations evolved differently for successive material removal. The cavity achieved peak surface magnetic fields of about of 130 mT and was limited mostly by thermal quench. By measuring the temperature dependence of the surface resistance (Rs) at low field between 4.2 K and 1.7 K, the variation of material parameters such as the energy gap at 0 K, the residual resistance and the mean free path as a function of material removal could also be investigated. This contribution presents the results of the RF tests along with the temperature maps and the analysis of the losses caused by the ''hot-spots''.

  14. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    DOE PAGES

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less

  15. Effects of strain on the superconducting properties of niobium-tin conductors

    SciTech Connect

    Hoard, R.W.

    1980-11-01

    Investigations were performed to ascertain additional information on the connection between the cubic to tetragonal martensitic phase transformation and the phenomenon of superconductivity in Nb/sub 3/Sn. Of particular interest is the degradation of the critical parameters, such as T/sub c/, H/sub c2/, and J/sub c/, with mechanical straining of the superconductor. These studies yielded information that assisted in the derivation of the critical current-strain scaling laws mentioned above.

  16. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    SciTech Connect

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J.-M.; Zasadzinski, J. F.

    2015-04-21

    Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  17. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Trenikhina, Y.; Romanenko, A.; Kwon, J.; Zuo, J.-M.; Zasadzinski, J. F.

    2015-04-01

    Nanoscale defect structure within the magnetic penetration depth of ˜100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  18. Mechanical properties as an indicator of interstitials in niobium for superconducting accelerator cavities

    SciTech Connect

    Ricker, R. E. Pitchure, D. J.; Myneni, G. R.

    2015-12-04

    A preliminary investigation was conducted into the feasibility of using simple mechanical properties experiments to evaluate interstitial impurity uptake from processing environments. Two types of tests were examined: tensile tests and complex modulus measurements using a dynamic mechanical analyzer (DMA). For the tensile tests, samples were cut from a single crystal of niobium, with the same orientation, and then prepared following different procedures. Significant differences were observed during tensile tests, with yielding strength and strain-to-failure clearly related to interstitial uptake. When the strain rate was reduced by an order of magnitude, the strain-to-failure was reduced by 18 % indicating that interstitial hydrogen is responsible for this behavior. For the complex modulus measurement, polycrystalline samples from different locations of two different ingots were examined at a frequency of 1.0 Hz while the temperature was increased at the rate of 1.0 °C per minute. Anaelastic peaks were found for C, N, and O in all samples, but the lower limit of the system did not allow for detection of a peak for H. It is concluded that mechanical properties could be developed as a measurement tool to guide the development of processing methods for producing reduced interstitial content material, but additional research, and uncertainty analysis, is required for these tools to be reliable in this application.

  19. Field emitter activation on cleaned crystalline niobium surfaces relevant for superconducting rf technology

    NASA Astrophysics Data System (ADS)

    Navitski, A.; Lagotzky, S.; Reschke, D.; Singer, X.; Müller, G.

    2013-11-01

    The influence of heat treatments at 122, 400, and 800°C on the field emission of large-grain and single-crystal high-purity niobium samples has been investigated. Buffered chemical polishing of 40μm and high pressure ultrapure water rinsing under clean-room conditions resulted in smooth surfaces with a linear surface roughness of 46 to 337 nm. By means of field emission scanning microscopy, an increasing number of emitters up to 40/cm2 with temperature were found at surface fields up to 160MV/m. Two different mechanisms of emitter activation were found, i.e. activation by the applied electric field and activation by temperature. Some emitters with an onset surface field of 50 to 100MV/m appeared already after the low-temperature bakeout. Correlated scanning-electron-microscopy/energy-dispersive-x-ray measurements revealed particles and surface defects as emitters. Their activation will be discussed with respect to the thickness of the insulating oxide layer.

  20. Superconductivity and vortex dynamics in nanostructures of two-dimensional crystals of niobium diselenide

    NASA Astrophysics Data System (ADS)

    Mills, Shaun

    The confinement offered by superconducting nanostructures enables the study of the motion of individual Abrikosov vortices in reduced dimensions. At the present time, most superconducting nanostructures are fabricated from deposited films of metals, which are often polycrystalline or amorphous. The realization of a single-crystal nanostructure would provide the opportunity to explore the effects of the electronic band structure. Consider crystalline superconducting nanostructures of NbSe2. Questions such as the how the charge density wave order influences vortex pinning and the logarithmic vortex-vortex interaction, as well as how the crystal thickness dependence of the electronic band structure affects intrinsic vortex properties motivated our efforts to develop techniques to fabricate and measure superconducting nanostructures of 2D crystal NbSe2. Additionally, nanoscale transport devices are relevant to potential future superconducting electronics. In this dissertation, we begin by presenting a novel technique for the preparation of single-crystal nanostructures prepared from mechanically exfoliated few-layer crystals of NbSe2 using a process combining electron beam lithography and reactive plasma etching. Our technique allows for the preparation of ultra-thin, single-crystal superconducting nanostructures with a desired geometry for the study of vortex dynamics in extremely confined systems. A primary advantage of transport devices is the ability to directly manipulate individual vortices through the use of an applied current and other parameters. We first present magnetoresistance measurements on NbSe2 nanowires and show features related to vortex crossing, trapping, and pinning. The vortex crossing rate is found to vary non-monotonically with the applied field, which results in nonmonotonic magnetoresistance variations in agreement with theoretical calculations in the London approximation. Above the lower critical field, Hc1, the crossing rate is also

  1. Magneto-Optical Study High-Purity Niobium for Superconducting RF Application

    NASA Astrophysics Data System (ADS)

    Polyanskii, A. A.; Lee, P. J.; Gurevich, A.; Sung, Zu-Hawn; Larbalestier, D. C.

    2011-03-01

    In this review we present a summary of our recent Magneto-Optical (MO) imaging of high-purity Nb for SRF cavity application. Superconducting RF cavities have been chosen as the accelerating technology for the International Linear Collider, and it is of vital importance to understand the limiting factors to the performance of these devices. We have been using a combination of MO, imaging, magnetization measurements and a variety of non-contact surface topology measurement techniques to characterize samples of high purity Nb supplied by Fermi National Accelerator Laboratory (FNAL) and Thomas Jefferson National Accelerator Facility (TJNAF). Localized non-uniformities in the superconducting properties were revealed on samples which were cut from rolled polycrystalline sheets (FNAL) and subjected to buffered chemical polishing (BCP) and heat treatments (HT) steps designed to simulate typical SRF cavity production. MO examination of the polycrystalline Nb sheets in perpendicular and in-plane fields reveals the perturbations in the critical currents caused by topological defects such as the steps between adjacent grains produced by BCP. MO examination of bi-crystals prepared from a disc cut directly from a very large grain size ingot (manufactured for TJNAF by CBMM) showed preferential flux penetration at grain boundaries for bi-crystal samples in which the GB interface was almost parallel to the externally applied field. This result was the first direct evidence of depressed superconductivity at GBs. By developing an understanding of how and why such behavior occurs, we hope to be able to improve the properties of cavity accelerators.

  2. Magnetic and mechanical properties of a finite-thickness superconducting strip with a cavity in oblique magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Liu, Jun

    2017-01-01

    This paper presents an investigation of the mechanical response of a finite-thickness superconducting strip containing an elliptical cavity in oblique magnetic fields. After the Bean critical state model and the minimum magnetic energy variation procedure are employed, the dependency of the magnetic and mechanical properties on the aspect ratio of the strip and the tilt angles of the applied field and elliptical cavity is discussed. The results show that for a strip in an oblique magnetic field, the current front penetrates non-monotonically from the surface inwards in the initial stage. The magnetization of the strip and the applied field are not collinear, and the angle between them becomes smaller with increasing field. Simultaneously, the strip suffers from a torque produced by the electromagnetic force and then has a tendency to rotate. Compared with the defect-free case, the appearance of the elliptical cavity affects the magnetic property of the strip and further causes significant stress concentration. If the tilt angle of the elliptical cavity is small, a position of stable mechanical equilibrium will exist for the strip. It is interesting that due to the elliptical cavity effect, an oblique magnetization and a non-zero torque are generated even if the applied field is perpendicular or parallel to the strip.

  3. Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots

    NASA Astrophysics Data System (ADS)

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Myneni, Ganapati R.

    2015-12-01

    Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ˜1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR˜260 and RRR˜100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material.

  4. Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots

    SciTech Connect

    Ciovati, Gianluigi Dhakal, Pashupati Kneisel, Peter Myneni, Ganapati R.

    2015-12-04

    Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ∼1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR∼260 and RRR∼100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material.

  5. Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Gurevich, Alexander V.

    2014-03-03

    Measurements of the quality factor, Q, of Nb superconducting microwave resonators often show that Q increases by {approx_equal} 10%–30% with increasing radio-frequency (rf) field, H, up to {approx} 15-20 mT. Recent high temperature heat treatments can amplify this rf field-induced increase of Q up to {approx_equal} 50%–100% and extend it to much higher fields, but the mechanisms of the enhancement of Q(H) remain unclear. Here, we suggest a method to reveal these mechanisms by measuring temperature dependencies of Q at different rf field amplitudes. We show that the increase of Q(H) does not come from a field dependent quasi-particles activation energy or residual resistance, but rather results from the smearing of the density of state by the rf field.

  6. Niobium-germanium superconducting tapes for high-field magnet applications

    NASA Technical Reports Server (NTRS)

    Braginski, A. I.; Roland, G. W.; Daniel, M. R.; Woolam, J. A.

    1977-01-01

    A process of fabricating superconducting Nb3Ge tapes by chemical vapor deposition (CVD) has been developed and tapes up to 10 meters long fabricated. The typical properties achieved were: critical temperature T sub c = 20 K, upper critical field H sub c2 = 29 tesla at 4.2 K, and J sub c = 3 to 4 x 10 to the 8th power A m(-2) at 4.2 K, 18 tesla. The relative depression of T sub c and H sub c2 compared with the best thin film samples sputtered on sapphire was due to the presence of Nb5Ge3 second-phase particles used as flux pinning centers and to strains induced by thermal mixmatch with Hastelloy B tape substrates. A peculiar field dependence of flux pinning force that was observed in both CVD and sputtered Nb3Ge indicated a premature pin-breaking mechanism or a phase inhomogeneity. Directions of further optimization work were defined.

  7. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  8. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  9. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  10. Proton in SRF Niobium

    SciTech Connect

    Wallace, John Paul

    2011-03-31

    Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.

  11. Proton in SRF Niobium

    NASA Astrophysics Data System (ADS)

    Wallace, John Paul

    2011-03-01

    Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.

  12. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    SciTech Connect

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe

    2013-12-15

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  13. Probing the low-frequency vortex dynamics in a nanostructured superconducting strip

    NASA Astrophysics Data System (ADS)

    Silva, C. C. de Souza; Raes, B.; Brisbois, J.; Cabral, L. R. E.; Silhanek, A. V.; Van de Vondel, J.; Moshchalkov, V. V.

    2016-07-01

    We investigate by scanning susceptibility microscopy the response of a thin Pb strip, with a square array of submicron antidots, to a low-frequency ac magnetic field applied perpendicularly to the film plane. By mapping the local permeability of the sample within the field range where vortices trapped by the antidots and interstitial vortices coexist, we observed two distinct dynamical regimes occurring at different temperatures. At a temperature just below the superconducting transition, T /Tc=0.96 , the sample response is essentially dominated by the motion of highly mobile interstitial vortices. However, at a slightly lower temperature, T /Tc=0.93 , the interstitial vortices freeze up leading to a strong reduction of the ac screening length. We propose a simple model for the vortex response in this system which fits well to the experimental data. Our analysis suggests that the observed switching to the high mobility regime stems from a resonant effect, where the period of the ac excitation is just large enough to allow interstitial vortices to thermally hop through the weak pinning landscape produced by random material defects. This argument is further supported by the observation of a pronounced enhancement of the out-of-phase response at the crossover between both dynamical regimes.

  14. Detection of the superconducting transition and magnetic flux trapping in a niobium micro-ring by using micro-Hall sensors

    NASA Astrophysics Data System (ADS)

    Kahng, Yung Ho; Kim, Yun Won; Kim, Mun Seog; Song, Woon; Choi, Jae-Hyuk; Joo, Sungjung; Hong, Jinki; Rhie, Kungwon; Lee, Soon-Gul

    2016-11-01

    An InAs heterostructure-based micro-Hall sensor was used to study the magnetic properties of a superconducting Nb micro-ring, enabling observation of magnetic phenomena such as diamagnetism onset and magnetic flux trapping in the 20- μm-diameter sample. The superconducting diamagnetism of the micro-ring was observed to develop slowly from T = 7.5 K down to 5 K and showed a notably sharp and substantial drop at 7.0 K, the zero-resistivity temperature obtained from transport measurements on a strip-patterned sample. The observed superconducting transition is discussed in terms of a percolation scenario. In magnetic-field-cooling measurements, the Hall signal from the magnetic flux trapped in the Nb ring at 4.5 K was detected at a sufficiently high level for quantitative comparison with the estimate.

  15. Wrapping process for fabrication of A-15 superconducting composite wires

    DOEpatents

    Suenaga, M.; Klamut, C.J.; Luhman, T.S.

    1980-08-15

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  16. A-15 Superconducting composite wires and a method for making

    DOEpatents

    Suenaga, Masaki; Klamut, Carl J.; Luhman, Thomas S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  17. Introduction to Ingot Niobium

    SciTech Connect

    Myneni, Ganapati Rao; Hutton, Andrew

    2011-03-31

    Superconducting radiofrequency (SRF) technology using niobium accelerating cavities was first applied at large scale in the recirculating electron linear accelerator CEBAF--the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, USA, at what is now called Thomas Jefferson National Accelerator Facility, or Jefferson Lab. Building on the high quality factors and peak magnetic fields found in low residual resistivity ratio (low-RRR) solid niobium in the 1970s, Jefferson Lab has reintroduced ingot niobium technology. High tantalum content in ingot niobium is not expected to negatively impact cavity performance, but will reduce the cost of accelerator structures considerably. Optimized low-cost CW linear accelerators built with ingot niobium will show the way for future R and D and industrial applications. This paper portrays the Jefferson Lab SRF context, reviews the early history of ingot niobium technology from over a third of a century ago, explains the technical advantages of that technology's recent reintroduction, and presents the outlook for further development.

  18. Introduction to Ingot Niobium

    SciTech Connect

    Ganapati Rao Mynen, Andrew Hutton

    2011-03-01

    Superconducting radiofrequency (SRF) technology using niobium accelerating cavities was first applied at large scale in the recirculating electron linear accelerator CEBAF—the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, USA, at what is now called Thomas Jefferson National Accelerator Facility, or Jefferson Lab. Building on the high quality factors and peak magnetic fields found in low residual resistivity ratio (low-RRR) solid niobium in the 1970s, Jefferson Lab has reintroduced ingot niobium technology. High tantalum content in ingot niobium is not expected to negatively impact cavity performance, but will reduce the cost of accelerator structures considerably. Optimized low-cost CW linear accelerators built with ingot niobium will show the way for future R&D and industrial applications. This paper portrays the Jefferson Lab SRF context, reviews the early history of ingot niobium technology from over a third of a century ago, explains the technical advantages of that technology's recent reintroduction, and presents the outlook for further development.

  19. Single-Photon Detection by a Dirty Current-Carrying Superconducting Strip Based on the Kinetic-Equation Approach

    NASA Astrophysics Data System (ADS)

    Vodolazov, D. Yu.

    2017-03-01

    Using a kinetic-equation approach, we study the dynamics of electrons and phonons in current-carrying superconducting nanostrips after the absorption of a single photon of the near-infrared or optical range. We find that the larger the Ce/Cph|Tc ratio (where Tc is the critical temperature of a superconductor and Ce and Cph are specific heat capacities of electrons and phonons, respectively), the larger the portion of the photon's energy goes to electrons. The electrons become more strongly heated and hence can thermalize faster during the initial stage of hot-spot formation. The thermalization time τth can be less than 1 ps for superconductors with Ce/Cph|Tc≫1 and a small diffusion coefficient of D ≃0.5 cm2/s when thermalization occurs, mainly due to electron-phonon and phonon-electron scattering in a relatively small volume of approximately ξ2d (ξ is a superconducting coherence length, while d <ξ is a thickness of the strip). For longer time spans, due to diffusion of hot electrons' effective temperature inside the hot spot decreases, the size of the hot spot increases, the superconducting state becomes unstable, and the normal domain spreads in the strip at a current larger than the so-called detection current. We find the dependence of the detection current on the photon's energy, the location of its absorption in the strip, the width of the strip, and the magnetic field, and we compare this dependence with existing experiments. Our results demonstrate that materials with Ce/Cph|Tc≪1 are bad candidates for single-photon detectors due to a small transfer of the photon's energy to electronic system and a large τth . We also predict that even a several-micron-wide dirty superconducting bridge is able to detect a single near-infrared or optical photon if its critical current exceeds 70% of the depairing current and Ce/Cph|Tc≳1 .

  20. Superconducting niobium thin-film gradiometer technology program. Final report 4 Jan 82-17 Jan 83

    SciTech Connect

    Buckner, S.A.

    1983-03-14

    Dc SQUIDs with 2.5 micron square niobium-aluminum oxide-niobium tunnel junctions and titanium resistive shunts have been fabricated. The SQUID inductance was 0.9 nH, and the shunt resistors were approximately 10 ohms. With the SQUIDs operated in a small-signal amplifier mode the minimum white noise of the SQUIDs was measured. Low frequency noise was measured form 0.005 to 2 Hz with the SQUIDs operated in a closed-looped negative-feedback mode. A straight line with a slope of -20 db/decade (1/f frequency dependence) fits the data below 0.5 Hz. This line intersects a horizontal line through the white noise at about 1.6 Hz. A design was completed of a thin-film gradiometer with one-inch square pickup loops, a baseline of 1.1 inches, and a 50-turn input coil, which will fit on a 3-inch diameter silicon wafer. The sensitivity of this gradiometer was predicted. Fabrication of this completely integrated thin-film gradiometer made only of refractory metals should provide an excellent means of predicting the achievable sensitivity and balance of an airborne magnetic gradiometer.

  1. Production of High Purity Niobium Ingots at CBMM

    NASA Astrophysics Data System (ADS)

    de Moura, Lourenço; de Faria Sousa, Clovis Antonio; Cruz, Edmundo Burgos

    2011-03-01

    CBMM is a fully integrated company, from the mine to the end line of the production chain, supplying different niobium products to the world market: ferroniobium, nickelniobium, niobium pentoxide and high purity metallic niobium. This high purity metallic niobium has long been known to exhibit superconductivity below 9.25 Kelvin. This characteristic has the potential to bring technological benefits for many different areas such as medicine, computing and environment. This paper presents the raw material requirements as well as CBMM experience on producing high purity niobium ingots. The results prove that CBMM material can be the best solution for special applications such as low cost superconductive radiofrequency cavities.

  2. Production of High Purity Niobium Ingots at CBMM

    SciTech Connect

    Moura, Lourenco de; Faria Sousa, Clovis Antonio de; Burgos Cruz, Edmundo

    2011-03-31

    CBMM is a fully integrated company, from the mine to the end line of the production chain, supplying different niobium products to the world market: ferroniobium, nickelniobium, niobium pentoxide and high purity metallic niobium. This high purity metallic niobium has long been known to exhibit superconductivity below 9.25 Kelvin. This characteristic has the potential to bring technological benefits for many different areas such as medicine, computing and environment. This paper presents the raw material requirements as well as CBMM experience on producing high purity niobium ingots. The results prove that CBMM material can be the best solution for special applications such as low cost superconductive radiofrequency cavities.

  3. Effect of Electropolishing and Low-Temperature Baking on the Superconducting Properties of Large-Grain Niobium

    SciTech Connect

    A. S. Dhavale, G. Ciovati, G. R. Myneni

    2011-03-01

    Measurements of superconducting properties such as bulk and surface critical fields and thermal conductivity have been carried out in the temperature range from 2 K to 8 K on large-grain samples of different purity and on a high-purity fine-grain sample, for comparison. The samples were treated by electropolishing and low temperature baking (120° C, 48 h). While the residual resistivity ratio changed by a factor of ~3 among the samples, no significant variation was found in their superconducting properties. The onset field for flux penetration at 2 K, Hffp, measured within a ~30 µm depth from the surface, was ~160 mT, close to the bulk value. The baking effect was mainly to increase the field range up to which a coherent superconducting phase persists on the surface, above the upper critical field.

  4. Structure and Degeneracy of Vortex Lattice Domains in Pure Superconducting Niobium: A Small-Angle Neutron Scattering Study

    SciTech Connect

    Laver, M.; Bowell, C.; Forgan, E. M.; Abrahamsen, A. B.; Fort, D.; Dewhurst, C. D.; Muhlbauer, S.; Christen, David K; Kohlbrecher, J.; Cubitt, R.; Ramos, S.

    2009-01-01

    High-purity niobium exhibits a surprisingly rich assortment of vortex lattice (VL) structures for fields applied parallel to a fourfold symmetry axis, with all observed VL phases made up of degenerate domains that spontaneously break some crystal symmetry. Yet a single regular hexagonal VL domain is observed at all temperatures and fields parallel to a threefold symmetry axis. We report a detailed investigation of the transition between these lush and barren VL landscapes, discovering new VL structures and phase transitions at high fields. We show that the number and relative population of VL domains is intrinsically tied to the underlying crystal symmetry. We discuss how subtle anisotropies of the crystal may generate the remarkable VLs observed.

  5. Probing the fundamental limit of niobium in high radiofrequency fields by dual mode excitation in superconducting radiofrequency cavities

    SciTech Connect

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari

    2011-07-01

    We have studied thermal breakdown in several multicell superconducting radiofrequency cavity by simultaneous excitation of two TM{sub 010} passband modes. Unlike measurements done in the past, which indicated a clear thermal nature of the breakdown, our measurements present a more complex picture with interplay of both thermal and magnetic effects. JLab LG-1 that we studied was limited at 40.5 MV/m, corresponding to B{sub peak} = 173 mT, in 8{pi}/9 mode. Dual mode measurements on this quench indicate that this quench is not purely magnetic, and so we conclude that this field is not the fundamental limit in SRF cavities.

  6. Effect of impurities or disorder on charge density waves and superconductivity in niobium triselenide, tetrathiotetracene triiodide, and polysulfurnitride

    SciTech Connect

    Fuller, W.W.

    1980-01-01

    In this dissertation I discuss a variety of anisotropic or quasi-one dimensional materials. NbSe/sub 3/, TTT/sub 2/I/sub 3/, and (SN)/sub x/. The possible ground states, superconductivity or charge density waves, of such materials are discussed. In the case of NbSe/sub 3/ and TTT/sub 2/I/sub 3/ the roles of impurities and/or disorder in stabilizing a given ground state has been studied. The ground states were probed via a variety of transport measurements: resistivity and thermopower among others.

  7. Modulation of superconducting critical temperature in niobium film by using all-solid-state electric-double-layer transistor

    SciTech Connect

    Tsuchiya, Takashi E-mail: TERABE.Kazuya@nims.go.jp; Moriyama, Satoshi; Terabe, Kazuya E-mail: TERABE.Kazuya@nims.go.jp; Aono, Masakazu

    2015-07-06

    An all-solid-state electric-double-layer transistor (EDLT) was fabricated for electrical modulation of the superconducting critical temperature (T{sub c}) of Nb film epitaxially grown on α-Al{sub 2}O{sub 3} (0001) single crystal. In an experiment, T{sub c} was modulated from 8.33 to 8.39 K while the gate voltage (V{sub G}) was varied from 2.5 to −2.5 V. The specific difference of T{sub c} for the applied V{sub G} was 12 mK/V, which is larger than that of an EDLT composed of ionic liquid. A T{sub c} enhancement of 300 mK was found at the Li{sub 4}SiO{sub 4}/Nb film interface and is attributed to an increase in density of states near the Fermi level due to lattice constant modulation. This solid electrolyte gating method should enable development of practical superconducting devices highly compatible with other electronic devices.

  8. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. . Inst. for Particle Physics); Ellison, J.A. ); Ferguson, P. ); Giubellino

    1990-01-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  9. The design and evaluation of superconducting connectors

    NASA Astrophysics Data System (ADS)

    Payne, J. E.

    1982-01-01

    The development of a superconducting connector for superconducting circuits on space flights is described. It is proposed that such connectors be used between the superconducting readout loop and the SQUID magnetometer in the Gravity Probe B experiment. Two types of connectors were developed. One type employs gold plated niobium wires making pressure connections to gold plated niobium pads. Lead-plated beryllium-copper spring contacts can replace the niobium wires. The other type is a rigid solder or weld connection between the niobium wires and the niobium pads. A description of the methods used to produce these connectors is given and their performance analyzed.

  10. The guidance of kinematic vortices in a mesoscopic superconducting strip with artificial defects

    NASA Astrophysics Data System (ADS)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe

    2016-06-01

    Within the time-dependent Ginzburg-Landau (TDGL) theory, we theoretically investigated the dynamic properties of vortex-antivortex (V-Av) pairs in a current-carrying superconductor strip with one tilted slit or two transversely/longtitudinally arranged slits in the presence of a weak magnetic field. The effect of the rotation angle on the resistive state in the sample with one tilted slit was considered. The location of phase slippage in the sample can be predetermined by the rotation angle of the tilted slit. We found the coalescence of the phase-slip lines (PSLs) during a periodic multiharmonic voltage oscillation. This leads to two stages of voltage oscillation at zero applied field and three stages at weak magnetic field since the coalescence of left and right PSLs are staggered in the latter case. Moreover, the influence of relative position and size of the two slits on the transport properties of the sample are also studied. The dynamic behavior of V-Av pairs depends on not only the slit length but also their horizontal or vertical interval distance between the two slits. Since the geometry of sample has an important influence on the distribution of supercurrent across the sample, we demonstrate the possibility to efficiently guide the kinematic vortices by adjusting the relevant parameters.

  11. Superconductivity

    DTIC Science & Technology

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  12. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  13. Single Crystal Technology for Making RRR Niobium Sheet

    SciTech Connect

    Graham, Ronald A.

    2007-08-09

    This paper reviews methods used to produce metallic single crystals. Methods are assessed in terms of being able to use the technique to produce RRR niobium single crystals for RF superconducting accelerator cavities.

  14. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  15. Ingot Niobium RF Cavity Design and Development at BARC

    SciTech Connect

    Mittal, K. C.; Mondal, J.; Ghatak, S.; Dhavale, A. S.; Ghodke, S. R.; Vohra, R. S.; Jawale, S. B.; Dutta, D.; Pujari, P. K.; Saha, T. K.; Bapat, A. V.

    2011-03-31

    This article presents the different activity of Ingot niobium in BARC. BARC is developing a technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U{sup 233}. Design and development of superconducting medium velocity cavity has been taken up as a part of the ADSS project. The design and fabrication of f = 1050 MHz, {beta} = 0.49 with Ingot niobium will be presented. Positron annihilation studies are conducted on small samples of ingot niobium to understand the defect depth profile of the niobium surface. The results are presented here.

  16. Nb-Pb Superconducting RF Gun

    SciTech Connect

    Sekutowicz, J.; Iversen, J.; Kreps, G.; Moller, W.D.; Singer, W.; Singer, X.; Ben-Zvi, I.; Burrill, A.; Smedley, J.; Rao, T.; Ferrario, M.; Kneisel, P.; Langner, J.; Strzyzewski, P.; Lefferts, R.; Lipski, A.; Szalowski, K.; Ko, K.; Xiao, L.; /SLAC

    2006-03-29

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  17. Nb-Pb superconducting RF gun

    SciTech Connect

    J. Sekutowicz; J. Iversen; G. Kreps; W.D. Moller; W. Singer; X. Singer; I. Ben-Zvi; A. Burrill; J. Smedley; T. Rao; M. Ferrario; P. Kneisel; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; K. Szalowski; K. Ko; L. Xiao

    2006-04-14

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  18. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  19. Local structure around the flux pinning centers in superconducting niobium silicon oxynitride (Nb{sub 0.87}Si{sub 0.09}□{sub 0.04})(N{sub 0.87}O{sub 0.13})

    SciTech Connect

    Ohashi, Y.; Masubuchi, Y.; Venkateshwarlu, D.; Ganesan, V.; Yakhmi, J.V.; Yoshida, T.; Kikkawa, S.

    2014-02-15

    The superconducting transition temperature of niobium silicon oxynitride (Nb{sub 0.87}Si{sub 0.09}□{sub 0.04})(N{sub 0.87}O{sub 0.13}) exhibits a gradual reduction from 16.8 K to around 11 K under an increasing applied magnetic field of up to 14 T. This relatively small T{sub c} reduction under an applied magnetic field suggests a robustness of its superconducting behavior in comparison to that in the parent niobium oxynitride. It was similar to the flux pinning effect observed in the large magnetic hysteresis of the niobium-silicon oxynitrides in our previous study. Both Si K-edge XANES and {sup 29}Si MAS-NMR indicated that the local structure of pinning centers around the silicon atoms close to cationic vacancies was similar to that of Si in amorphous SiO{sub 2} in the rock-salt structure of niobium oxynitride. - Graphical abstract: Potential energy scan of the Si atom in the most stable Si{sub 3}□O{sub 3}N cube around the vacancy in our preliminary simulation on niobium silicon oxynitride (Nb{sub 0.87}Si{sub 0.09}□{sub 0.04})(N{sub 0.87}O{sub 0.13}). A possible distortion of the Si atom was suggested from its octahedral towards tetrahedral position forming the local structure similar to that in amorphous SiO{sub 2}. Display Omitted - Highlights: • Critical current density was enhanced in superconducting niobium oxynitride. • The robustness was introduced by forming rock-salt type niobium silicon oxynitride. • The silicon atom had a local structure similar to that in amorphous SiO{sub 2} in the rock-salt type lattice. • The local structure was formed together with its neighboring cationic vacancy. • It contributed as the flux pinning center in the NbSiNO.

  20. Study of AC/RF properties of SRF ingot niobium

    SciTech Connect

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  1. Hydrogen Uptake by High Purity Niobium Studied by Nuclear Analytical Methods

    SciTech Connect

    Rick Paul; H. Heather Chen-Mayer; Ganapati Rao Myneni; William Lanford; Richard E. Ricker

    2003-06-01

    Niobium RF superconducting cavities form the basic component of particle accelerators. The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. We have used prompt gamma-ray activation analysis (PGAA) and neutron incoherent scattering to measure bulk hydrogen content in niobium, and the nuclear reaction method to study hydrogen as a function of depth. The methods were used to study native hydrogen concentrations in the niobium, and to study the effects of vacuum heating and acid treatment on the hydrogen concentration.

  2. Novel borothermal process for the synthesis of nanocrystalline oxides and borides of niobium.

    PubMed

    Jha, Menaka; Ramanujachary, Kandalam V; Lofland, Samuel E; Gupta, Govind; Ganguli, Ashok K

    2011-08-21

    A new process has been developed for the synthesis of nanocrystalline niobium oxide and niobium diboride using an amorphous niobium precursor obtained via the solvothermal route. On varying the ratio of niobium precursor to boron and the reaction conditions, pure phases of nanostructured niobium oxides (Nb(2)O(5), NbO(2)), niobium diboride (NbB(2)) and core-shell nanostructures of NbB(2)@Nb(2)O(5) could be obtained at normal pressure and low temperature of 1300 °C compared to a temperature of 1650 °C normally used. The above borothermal process involves the in situ generation of B(2)O(2) to yield either oxide or diboride. The niobium oxides and borides have been characterized in detail by XRD, HRTEM and EDX studies. The core-shell structure has been investigated by XPS depth profiling, EFTEM and EELS (especially to characterize the presence of boron and the shell thickness). The niobium diboride nanorods (with high aspect ratio) show a superconducting transition with the T(c) of 6.4 K. In the core-shell of NbB(2)@Nb(2)O(5), the superconductivity of NbB(2) is masked by the niobium oxide shell and hence no superconductivity was observed. The above methodology has the benefits of realizing both oxides and borides of niobium in nanocrystalline form, in high purity and at much lower temperatures.

  3. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, Steven A.; Creech, Edward T.; Northcutt, Walter G.

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  4. Superconductivity and magnetism in niobium doped YBa{sub 2}Cu{sub 3}O{sub 7} related high-{Tc} ceramics

    SciTech Connect

    Bennahmias, M. |; Radousky, H.B. |; Goodwin, T.J.; Shelton, R.N.

    1993-02-01

    Magnetic characterization has been performed on the members of the cuprate-niobate RBa{sub 2}Cu{sub 2}NbO{sub 8} (R = Pr, Nd, and La) series and R{sub l.5}Ce{sub 0.5}Sr{sub 2}Cu{sub 2}NbO{sub 10} (R = Pr, Eu, Nd, and Sm) series. The PrBCNO samples show a signature in the magnetization of a magnetic ordering at 12 K. The PrCSCNO sample is non-superconducting and shows two distinct orderings at 17 and 53 K. No such magnetic phase transition is observed down to 2 K in the Nd and La based RBCNO materials or the Nd, Sm, and Eu based RCSCNO materials. Measurements of the lower critical field curve, dc irreversibility line, and critical current densities are reported for each of the superconducting NdCSCNO, SmCSCNO, and EuCSCNO compounds.

  5. Precipitation of hydrides in high purity niobium after different treatments

    SciTech Connect

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  6. Variation of Mechanical Properties of High RRR And Reactor Grade Niobium With Heat Treatments

    SciTech Connect

    Ganapati Myneni; H. Umezawa

    2003-06-01

    Superconducting rf cavities used as accelerating structures in particle accelerators are made from high purity niobium with residual resistance ratios greater than 250. Reactor grade niobium is also used to make wave-guide and/or end group components for these accelerating structures. The major impurities in this type of niobium are interstitially dissolved gases such as hydrogen, nitrogen, and oxygen in addition to carbon. After fabricating the niobium accelerating structures, they are subjected to heat treatments for several hours in vacuum at temperatures of up to 900 C for degassing hydrogen or up to 1400 C for improving the thermal conductivity of niobium considerably. These heat treatments are affecting the mechanical properties of niobium drastically. In this paper the variation of the mechanical properties of high purity and reactor grade niobium with heat treatments in a vacuum of {approx} 10{sup -6} Torr and temperatures from 600 C to 1250 C for periods of 10 to 6 hours are presented.

  7. Determination of bulk and surface superconducting properties of N2-doped cold worked, heat treated and electro-polished SRF grade niobium

    DOE PAGES

    Chetri, Santosh; Larbalestier, David C.; Lee, Peter J.; ...

    2015-12-01

    In this study, nitrogen-doped cavities show significant performance improvement in the medium accelerating field regime due to a lowered RF surface resistivity. However, the mechanism of enhancement has not been clearly explained. Our experiments explore how N2-doping influences Nb bulk and surface superconducting properties, and compare the N2-doped properties with those obtained previously with conventionally treated samples. High purity Nb-rod was mechanically deformed and post treated based on a typical SRF cavity treatment recipe. The onset of flux penetration at Hc1, and the upper and the surface critical fields, Hc2 and Hc3, were characterized by magnetic hysteresis and AC susceptibilitymore » techniques. The surface depth profile responsible for superconductivity was examined by changing AC amplitude in AC susceptibility, and the microstructure was directly observed with EBSD-OIM. We are also investigating surface chemistry for detailed composition using XPS. We have found that N2-doping at 800 °C significantly reduces the Hc3/Hc2 ratio towards the ideal value of ~1.7, and conclude that AC susceptibility is capable of following changes to the surface properties induced by N2-doping.« less

  8. Determination of bulk and surface superconducting properties of N2-doped cold worked, heat treated and electro-polished SRF grade niobium

    SciTech Connect

    Chetri, Santosh; Larbalestier, David C.; Lee, Peter J.; Dhakal, Pashupati; Sung, Zu -Hawn

    2015-12-01

    In this study, nitrogen-doped cavities show significant performance improvement in the medium accelerating field regime due to a lowered RF surface resistivity. However, the mechanism of enhancement has not been clearly explained. Our experiments explore how N2-doping influences Nb bulk and surface superconducting properties, and compare the N2-doped properties with those obtained previously with conventionally treated samples. High purity Nb-rod was mechanically deformed and post treated based on a typical SRF cavity treatment recipe. The onset of flux penetration at Hc1, and the upper and the surface critical fields, Hc2 and Hc3, were characterized by magnetic hysteresis and AC susceptibility techniques. The surface depth profile responsible for superconductivity was examined by changing AC amplitude in AC susceptibility, and the microstructure was directly observed with EBSD-OIM. We are also investigating surface chemistry for detailed composition using XPS. We have found that N2-doping at 800 °C significantly reduces the Hc3/Hc2 ratio towards the ideal value of ~1.7, and conclude that AC susceptibility is capable of following changes to the surface properties induced by N2-doping.

  9. Quench-age method for the fabrication of niobium-aluminum superconductors

    DOEpatents

    Pickus, Milton R.; Ciardella, Robert L.

    1978-01-01

    A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.

  10. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  11. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  12. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  13. Buffered Electrochemical Polishing of Niobium

    SciTech Connect

    Gianluigi Ciovati; Tian, Hui; Corcoran, Sean

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  14. Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity

    SciTech Connect

    Dhakal, P.; Ciovati, G.; Myneni, G. R.; Gray, K. E.; Groll, N.; Maheshwari, P.; McRae, D. M.; Pike, R.; Proslier, T.; Stevie, F.; Walsh, R. P.; Yang, Q.; Zasadzinzki, J.

    2013-04-01

    Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of “medium purity” Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800–1400°C was done in a newly designed vacuum induction furnace. Q{sub 0} values of the order of 2×10{sup 10} at 2.0 K and peak surface magnetic field (B{sub p}) of 90 mT were achieved reproducibly. A Q{sub 0} value of (5±1)×10{sup 10} at 2.0 K and B{sub p}=90mT was obtained after heat treatment at 1400°C. This is the highest value ever reported at this temperature, frequency, and field. Samples heat treated with the cavity at 1400°C were analyzed by secondary ion mass spectrometry, x-ray photoelectron spectroscopy, energy dispersive x ray, point-contact tunneling, and x-ray diffraction, and revealed a complex surface composition which includes titanium oxide, increased carbon, and nitrogen content but reduced hydrogen concentration compared to a non-heat-treated sample.

  15. Research of niobium thin films with a predetermined thickness produced by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Polonyankin, D. A.; Blesman, A. I.; Postnikov, D. V.; Logacheva, A. I.; Logachev, I. A.; Teplouhov, A. A.; Fedorov, A. A.

    2017-01-01

    Niobium and niobium thin films are widely used in various fields of modern science and technology: in the electronics industry, in a nuclear medical imaging technique, in the information technology, in superconducting cavities technology etc. The grain size of thin niobium films depends on its thickness and the film’s stoichiometry can be varied as a function of thickness. Thus the problem of thickness control has a great practical importance in all fields of niobium films application. The focus of this study was to perform an experimental calibration of STC–2000A deposition controller for niobium target on ADVAVAC VSM–200 setup and to conduct a grain size, roughness and stoichiometry research by scanning electron microscopy, X–ray diffraction and laser interference microscopy of niobium films produced by RF magnetron sputtering with the thickness range from 200 nm to 400 nm and 50 nm step.

  16. Melting And Purification Of Niobium

    NASA Astrophysics Data System (ADS)

    Moura, Hernane R. Salles; de Moura, Lourenço

    2007-08-01

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  17. Melting And Purification Of Niobium

    SciTech Connect

    Salles Moura, Hernane R.; Moura, Lourenco de

    2007-08-09

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  18. Nitrogen doping study in ingot niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter; Myneni, Ganapati Rao; Makita, Junki

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  19. RRR Niobium Manufacturing Experience

    SciTech Connect

    Graham, Ronald A.

    2007-08-09

    ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

  20. Recent developments in high purity niobium metal production at CBMM

    SciTech Connect

    Abdo, Gustavo Giovanni Ribeiro Sousa, Clovis Antonio de Faria Guimarães, Rogério Contato Ribas, Rogério Marques Vieira, Alaércio Salvador Martins Menezes, Andréia Duarte Fridman, Daniel Pallos Cruz, Edmundo Burgos

    2015-12-04

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  1. Recent developments in high purity niobium metal production at CBMM

    NASA Astrophysics Data System (ADS)

    Abdo, Gustavo Giovanni Ribeiro; Sousa, Clovis Antonio de Faria; Guimarães, Rogério Contato; Ribas, Rogério Marques; Vieira, Alaércio Salvador Martins; Menezes, Andréia Duarte; Fridman, Daniel Pallos; Cruz, Edmundo Burgos

    2015-12-01

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM's position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM's ingots is for the manufacture of particle accelerators (superconducting radio frequency - SRF - cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world's largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  2. Observations of flux motion in niobium films

    SciTech Connect

    Xiao, Y.M.; Keiser, G.M. . W.W. Hansen Labs. of Physics)

    1991-03-01

    In this paper magnetic field trapped in a superconducting sphere is examined at temperatures from 4.6 K to 5.5 K The sphere is the rotor of a precision gyroscope, and is made of fused quartz and coated with a sputtered niobium film. The rotor diameter is 3.8 centimeters. The film thickness is 2.5 micrometers. The tests are carried out at ambient magnetic field of about 1 milligauss. Unexpected instability of the trapped field is observed. The experimental results and possible explanations are presented.

  3. One hundred angstrom niobium wire

    NASA Technical Reports Server (NTRS)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1968-01-01

    Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing.

  4. Ductile superconducting copper-base alloys.

    PubMed

    Tsuei, C C

    1973-04-06

    A new class of ductile superconductors has been prepared by casting and appropriate heat treatments. These alloys superconduct between 4 degrees and 18 degrees K and contain at least 90 atom percent copper and a superconducting phase such as Nb(3)Sn or niobium. They can be processed into wires by conventional metallurgical techniques.

  5. ROUGHNESS ANALYSIS OF VARIOUSLY POLISHED NIOBIUM SURFACES

    SciTech Connect

    Ribeill, G.; Reece, C.

    2008-01-01

    Niobium superconducting radio frequency (SRF) cavities have gained widespread use in accelerator systems. It has been shown that surface roughness is a determining factor in the cavities’ effi ciency and maximum accelerating potential achievable through this technology. Irregularities in the surface can lead to spot heating, undesirable local electrical fi eld enhancement and electron multipacting. Surface quality is typically ensured through the use of acid etching in a Buffered Chemical Polish (BCP) bath and electropolishing (EP). In this study, the effects of these techniques on surface morphology have been investigated in depth. The surface of niobium samples polished using different combinations of these techniques has been characterized through atomic force microscopy (AFM) and stylus profi lometry across a range of length scales. The surface morphology was analyzed using spectral techniques to determine roughness and characteristic dimensions. Experimentation has shown that this method is a valuable tool that provides quantitative information about surface roughness at different length scales. It has demonstrated that light BCP pretreatment and lower electrolyte temperature favors a smoother electropolish. These results will allow for the design of a superior polishing process for niobium SRF cavities and therefore increased accelerator operating effi ciency and power.

  6. SRF niobium characterization using SIMS and FIB-TEM

    SciTech Connect

    Stevie, F. A.

    2015-12-04

    Our understanding of superconducting radio frequency (SRF) accelerator cavities has been improved by elemental analysis at high depth resolution and by high magnification microscopy. This paper summarizes the technique development and the results obtained on poly-crystalline, large grain, and single crystal SRF niobium. Focused ion beam made possible sample preparation using transmission electron microscopy and the images obtained showed a very uniform oxide layer for all samples analyzed. Secondary ion mass spectrometry indicated the presence of a high concentration of hydrogen and the hydrogen content exhibited a relationship with improvement in performance. Depth profiles of carbon, nitrogen, and oxygen did not show major differences with heat treatment. Niobium oxide less than 10 nm thick was shown to be an effective hydrogen barrier. Niobium with titanium contamination showed unexpected performance improvement.

  7. SRF niobium characterization using SIMS and FIB-TEM

    NASA Astrophysics Data System (ADS)

    Stevie, F. A.

    2015-12-01

    Our understanding of superconducting radio frequency (SRF) accelerator cavities has been improved by elemental analysis at high depth resolution and by high magnification microscopy. This paper summarizes the technique development and the results obtained on poly-crystalline, large grain, and single crystal SRF niobium. Focused ion beam made possible sample preparation using transmission electron microscopy and the images obtained showed a very uniform oxide layer for all samples analyzed. Secondary ion mass spectrometry indicated the presence of a high concentration of hydrogen and the hydrogen content exhibited a relationship with improvement in performance. Depth profiles of carbon, nitrogen, and oxygen did not show major differences with heat treatment. Niobium oxide less than 10 nm thick was shown to be an effective hydrogen barrier. Niobium with titanium contamination showed unexpected performance improvement.

  8. METHOD OF PRODUCING NIOBIUM METAL

    DOEpatents

    Wilhelm, H.A.; Stevens, E.R.

    1960-05-24

    A process is given for preparing ductile niobium metal by the reduction of niobium pentoxide with carbon. The invention resides in the addition, to the reaction mass, of from 0.05 to 0.4 atom of titanium (in the form of metallic titanium, titanium carbide, and/or titanium oxide) per one mole of niobium pentoxide. The mixture is heated under subatmospheric pressure to above 1300 deg C but below the melting point of niobium, and the carbon- and oxygen-free niobium sponge obtained is cooled under reduced pressure.

  9. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  10. Temperature dependence of penetration depth in thin film niobium

    NASA Technical Reports Server (NTRS)

    More, N.; Muhlfelder, B.; Lockhart, J.

    1989-01-01

    A novel technique is presented which should allow precise determination of the temperature dependence of the inductance, and hence of the penetration depth, of superconducting niobium thin-film structures. Four niobium thin-film stripline inductors are arranged in a bridge configuration, and inductance differences are measured using a potentiometric technique with a SQUID (superconducting quantum interference device) as the null detector. Numerical simulations of the stripline inductances are presented which allow the performance of the measurement technique to be evaluated. The prediction of the two-fluid model for the penetration-depth temperature dependence is given for reduced temperatures of 0.3 to 0.9. The experimental apparatus and its resolution and accuracy are discussed.

  11. PROGRESS ON LARGE GRAIN AND SINGLE GRAIN NIOBIUM: INGOTS AND SHEET AND REVIEW OF PROGRESS ON LARGE GRAIN AND SINGLE GRAIN NIOBIUM CAVITIES

    SciTech Connect

    Peter Kneisel

    2008-02-12

    Large grain and single crystal niobium has been proposed several years ago as an alternative material to poly-crystalline niobium for superconducting cavities, exhibiting potential advantages such as ¿stream-lined¿ procedures, reduced costs and better reproducibility in performance. Several major laboratories have investigated the use of large grain and single crystal material in the past years and the niobium producing industry has responded in providing ingot material with enlarged grain sizes. Besides a large number of single cell and multi-cell cavities from large grain niobium, several single crystal cavities have been fabricated and tested with good performances. This contribution will review the progress since the SRF workshop in 2005 in material processing and handling and in cavity performances.

  12. Method of surface preparation of niobium

    DOEpatents

    Srinivasan-Rao, Triveni; Schill, John F.

    2003-01-01

    The present invention is for a method of preparing a surface of niobium. The preparation method includes polishing, cleaning, baking and irradiating the niobium surface whereby the resulting niobium surface has a high quantum efficiency.

  13. Low-gravity processing of superconducting compounds

    NASA Technical Reports Server (NTRS)

    Otto, G. H.

    1976-01-01

    Low gravity conditions can be sustained on earth for several seconds in an evacuated drop tube. Because radiation cooling is most effective at high temperatures, the refractive metals and alloys are prime candidates for free fall solidification. The results of initial experiments on droplet formation, droplet release, critical size and evaporation losses are given. The time required for free fall solidification of different size droplets is calculated. The materials studied were copper, niobium and vanadium, and a niobium-tin alloys. Improvements in purity, composition, homogeneity and stoichiometry are expected during free fall solidification of niobium based alloys which should become evident in an increase in the superconducting transition temperature.

  14. Nano-patterned superconducting surface for high quantum efficiency cathode

    DOEpatents

    Hannon, Fay; Musumeci, Pietro

    2017-03-07

    A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.

  15. Vapor deposition of hardened niobium

    DOEpatents

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  16. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  17. Superconducting Radio Frequency Technology: An Overview

    SciTech Connect

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  18. Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Linzen, S.; Ziegler, M.; Astafiev, O. V.; Schmelz, M.; Hübner, U.; Diegel, M.; Il’ichev, E.; Meyer, H.-G.

    2017-03-01

    We studied and optimised the properties of ultrathin superconducting niobium nitride films fabricated with a plasma-enhanced atomic layer deposition (PEALD) process. By adjusting process parameters, the chemical embedding of undesired oxygen into the films was minimised and a film structure consisting of mainly polycrystalline niobium nitride with a small fraction of amorphous niobium oxide and niobium oxo-nitrides were formed. For this composition a critical temperature of 13.8 K and critical current densities of 7 × 106 A cm–2 at 4.2 K were measured on 40 nm thick films. A fundamental correlation between these superconducting properties and the crystal lattice size of the cubic δ-niobium-nitride grains were found. Moreover, the film thickness variation between 40 and 2 nm exhibits a pronounced change of the electrical conductivity at room temperature and reveals a superconductor–insulator-transition in the vicinity of 3 nm film thickness at low temperatures. The thicker films with resistances up to 5 kΩ per square in the normal state turn to the superconducting one at low temperatures. The perfect thickness control and film homogeneity of the PEALD growth make such films extremely promising candidates for developing novel devices on the coherent quantum phase slip effect.

  19. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  20. Large grain cavities from pure niobium ingot

    DOEpatents

    Myneni, Ganapati Rao [Yorktown, VA; Kneisel, Peter [Williamsburg, VA; Cameiro, Tadeu [McMurray, PA

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  1. Nonlinear terahertz superconducting plasmonics

    NASA Astrophysics Data System (ADS)

    Wu, Jingbo; Zhang, Caihong; Liang, Lanju; Jin, Biaobing; Kawayama, Iwao; Murakami, Hironaru; Kang, Lin; Xu, Weiwei; Wang, Huabing; Chen, Jian; Tonouchi, Masayoshi; Wu, Peiheng

    2014-10-01

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  2. NIOBIUM-TANTALUM SEPARATION

    DOEpatents

    Wilhelm, H.A.; Foos, R.A.

    1959-01-27

    The usual method for the separation of tantalum and niobium consists of a selective solvent extraction from an aqueous hydrofluoric acid solution of the metals. A difficulty encountered in this process is the fact that the corrosion problems associated with hydrofluoric acid are serious. It has been found that the corrosion caused by the hydrofluoric acid may be substantially reduced by adding to the acidic solution an amine, such as phenyl diethanolamine or aniline, and adjusting pH value to between 4 and 6.

  3. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    SciTech Connect

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  4. Niobium and tantalum: indispensable twins

    USGS Publications Warehouse

    Schulz, Klaus; Papp, John

    2014-01-01

    Niobium and tantalum are transition metals almost always paired together in nature. These “twins” are difficult to separate because of their shared physical and chemical properties. In 1801, English chemist Charles Hatchett uncovered an unknown element in a mineral sample of columbite; John Winthrop found the sample in a Massachusetts mine and sent it to the British Museum in London in 1734. The name columbium, which Hatchet named the new element, came from the poetic name for North America—Columbia—and was used interchangeably for niobium until 1949, when the name niobium became official. Swedish scientist Anders Ekberg discovered tantalum in 1802, but it was confused with niobium, because of their twinned properties, until 1864, when it was recognized as a separate element. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion. These special properties determine their primary uses and make niobium and tantalum indispensable.

  5. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  6. Theoretical study of the ground-state structures and properties of niobium hydrides under pressure

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Hoffmann, Roald; Ashcroft, N. W.; Liu, Hanyu; Bergara, Aitor; Ma, Yanming

    2013-11-01

    As part of a search for enhanced superconductivity, we explore theoretically the ground-state structures and properties of some hydrides of niobium over a range of pressures and particularly those with significant hydrogen content. A primary motivation originates with the observation that under normal conditions niobium is the element with the highest superconducting transition temperature (Tc), and moreover some of its compounds are metals again with very high Tc's. Accordingly, combinations of niobium with hydrogen, with its high dynamic energy scale, are also of considerable interest. This is reinforced further by the suggestion that close to its insulator-metal transition, hydrogen may be induced to enter the metallic state somewhat prematurely by the addition of a relatively small concentration of a suitable transition metal. Here, the methods used correctly reproduce some ground-state structures of niobium hydrides at even higher concentrations of niobium. Interestingly, the particular stoichiometries represented by NbH4 and NbH6 are stabilized at fairly low pressures when proton zero-point energies are included. While no paired H2 units are found in any of the hydrides we have studied up to 400 GPa, we do find complex and interesting networks of hydrogens around the niobiums in high-pressure NbH6. The Nb-Nb separations in NbHn are consistently larger than those found in Nb metal at the respective pressures. The structures found in the ground states of the high hydrides, many of them metallic, suggest that the coordination number of hydrogens around each niobium atom grows approximately as 4n in NbHn (n = 1-4), and is as high as 20 in NbH6. NbH4 is found to be a plausible candidate to become a superconductor at high pressure, with an estimated Tc ˜ 38 K at 300 GPa.

  7. Modeling and Error Analysis of a Superconducting Gravity Gradiometer.

    DTIC Science & Technology

    1979-08-01

    material forming two diametrically opposite strips down the inside of the cylinder. The sensor body is floated in a fluid which fills the gap between the...coefficient which closely matches that of niobium. McAshan, a research physicist at Stanford, came up with the idea of winding the coil in the narrow gap ...the gap exceeds the critical field strength of niobium which is about 1 KGauss. After flux penetration has occurred, the physics of the device would

  8. Method of making an improved superconducting quantum interference device

    DOEpatents

    Wu, Cheng-Teh; Falco, Charles M.; Kampwirth, Robert T.

    1977-01-01

    An improved superconducting quantum interference device is made by sputtering a thin film of an alloy of three parts niobium to one part tin in a pattern comprising a closed loop with a narrow region, depositing a thin film of a radiation shield such as copper over the niobium-tin, scribing a narrow line in the copper over the narrow region, exposing the structure at the scribed line to radiation and removing the deposited copper.

  9. Modulating sub-THz radiation with current in superconducting metamaterial.

    PubMed

    Savinov, V; Fedotov, V A; Anlage, S M; de Groot, P A J; Zheludev, N I

    2012-12-14

    We show that subterahertz transmission of the superconducting metamaterial, an interlinked two-dimensional network of subwavelength resonators connected by a continuous superconducting wire loop, can be dynamically modulated by passing electrical current through it. We have identified the main mechanisms of modulation that correspond to the suppression of the superconductivity in the network by magnetic field and heat dissipation. Using the metamaterial fabricated from thin niobium film, we were able to demonstrate a transmission modulation depth of up to 45% and a bandwidth of at least 100 kHz. The demonstrated approach may be implemented with other superconducting materials at frequencies below the superconducting gap in the THz and subterahertz bands.

  10. Niobium - Proceedings of the international symposium

    SciTech Connect

    Stuart, H.

    1984-01-01

    This book presents the papers given at a symposium on niobium. Topics considered at the symposium included niobium mining, ore processing, uses, fabrication, microstructure, mechanical properties, physical properties, corrosion, physical radiation effects, and marketing.

  11. Liquid-liquid extraction of niobium(V) in the presence of other metals with high molecular mass amines and ascorbic acid.

    PubMed

    Karve, M A; Khopkar, S M

    1993-06-01

    A novel method is proposed for the solvent extraction of niobium(V). A 0.1M solution of Aliquat 336S in xylene quantitatively extracts microgram quantities of niobium(V) from 0.01M ascorbic acid at pH 3.5-6.5. Niobium from the organic phase is stripped with 0.5M nitric acid and determined spectrophotometrically in the aqueous phase as its complex with TAR. The method permits separation of niobium not only from tantalum(V) but also from vanadium(IV), titanium(IV), zirconium(IV), thorium(IV), chromium(III), molybdenum(VI), uranium(VI), iron(III), etc. Niobium from stainless steel was determined with a precision of 0.42%.

  12. Effect of low temperature baking on niobium cavities

    SciTech Connect

    Peter Kneisel; Ganapati Myneni; William Lanford; Gianluigi Ciovati

    2003-09-01

    A low temperature (100 C-150 C) ''in situ'' baking under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor and a recovery from the so-called ''Q-drop'' without field emission at high field. A series of experiments with a CEBAF single cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37K-280K and resonant frequency shift between 6K-9.3K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity using a modified version of the computer code originally written by J. Halbritter [1] . Small niobium samples inserted in the cavity during its surface preparation were analyzed with respect to their hydrogen content with a Nuclear Reaction Analysis (NRA). The single cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper describes the results from these experiments and comments on the existing models to explain the effect of baking on the performance of niobium RF cavities.

  13. NanoSQUIDs based on niobium nitride films

    NASA Astrophysics Data System (ADS)

    Russo, R.; Esposito, E.; Crescitelli, A.; Di Gennaro, E.; Granata, C.; Vettoliere, A.; Cristiano, R.; Lisitskiy, M.

    2017-02-01

    We present an experimental investigation of nanoSQUIDs based on niobium nitride films. Niobium nitride has a relatively high critical temperature and a large upper critical magnetic field, making it a good material for superconducting electronics working in high magnetic field. We have fabricated nanoSQUIDs using electron beam lithography lift-off technique and deposition of niobium nitride films by magnetron sputtering at room temperature. The characterization of nanoSQUIDs was performed at 4.2 K and it consists mainly of current-voltage (IV) characteristics and critical current as a function of external magnetic field (magnetic pattern). The fabricated nanoSQUIDs show a hysteretic IV characteristic and they present a multi-values magnetic pattern. We show that by reducing the critical current by ion etching it is possible to obtain nanoSQUIDs with a single value magnetic pattern suitable for magnetic particle measurements. Magnetic noise analysis has been performed and a white noise of 0.3 μΦ0 Hz-1/2 has been estimated.

  14. CRADA 2009S001: Investigation of the Supercondcuting RF Properties of Large Grain Ingot Niobium

    SciTech Connect

    Grimm, Terry; Hollister, Jerry L.; Kolka, Ahren; Myneni, Ganapati Rao

    2012-12-18

    This CRADA intended to explore the properties of large grain ingot niobium by fabricating four single cell TESLA shaped accelerating cavities. Once the cavities were fabricated, SRF performance would be measured. Niowave received four discs of large grain ingot niobium from JLAB in February 2009. Niowave cut samples from each disc and tested the RRR. After the RRR was measured with disappointing results, the project lost interest. A no cost extension was signed in July 2009 to allow progress until June 2010, but ultimately no further work was accomplished by either party. No firm conclusions were drawn, as further investigations were not made. Large grain ingot niobium has shown real potential for high accelerating gradient superconducting cavities. However, this particular CRADA did not gather enough data to reach any conclusions in this regard.

  15. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  16. Mechanical Properties of High Purity Niobium - Novel Measurements

    SciTech Connect

    Ganapati Myneni

    2003-09-01

    One of the procedures to improve the performance of superconducting niobium cavities is a heat treatment for several hours in an ultrahigh vacuum at temperatures between 800C and 1400C for hydrogen degassing or post-purification, respectively. However, it was recently observed with Spallation Neutron Source Project (SNS) prototype cavities, that a heat treatment at 800 C for even 1 hour degraded the mechanical properties of RRR niobium, in particular the yield strength. This lower strength resulted in cavity deformations during handling thus affecting both their resonant frequency and field profile. In addition to lowering the yield strength, it was observed in some lots of material that the Young's modulus was also apparently reduced by a factor of 2 as a result of the hydrogen outgassing at 800 C. Surprisingly, material received at other national laboratories exhibited similar anomalous behavior even without any heat treatments in vacuum. Based on these observations a multi-institutional collaborative basic research activity on high RRR niobium (determination of Nb yield strength as a function of grain size, work hardening, chemical composition, and heat treatment temperature) has been initiated by JLAB to gain a better understanding of the material properties affecting the mechanical behavior In this contribution, a brief review of the measurements at JLAB, at the Materials Science and Engineering Department of the University of Virginia, at the Analytical Chemistry and Metallurgy Divisions of the National Institute of Standard and Technology, Gaithersburg and in the Department of Physics, SUNY, Albany are presented. The measurements include yield strength, hardness, ultrasonic velocity, crystallographic structure, microstructure, determination of interstitial contents using internal friction; particular emphasis is placed on determining the hydrogen concentration in the niobium via Cold Neutron Prompt Gamma-Ray Activation Analysis and Neutron Incoherent

  17. Development of a Niobium Bellow for Beamline Connections

    SciTech Connect

    Larry Turlington; John Brawley; Robert Manus; Stephen Manning; Samuel Morgan; Gary Slack; Peter Kneisel

    2003-09-01

    Superconducting cavities in an accelerator assembly are usually connected at the beampipes by stainless steel bellows. They operate at an intermediate temperature, compensating for alignment tolerances on the cavity beamlines and for thermal contraction during cooldown to cryogenic temperatures. This transition from one cavity to the next in a cavity string is typically of the order of 3/2 wavelength along with approximately half a wavelength taken up by the bellows. If one could incorporate a niobium bellows in the beam pipe, this distance could be reduced by half a wave length. In the case of a big accelerator such as TESLA the overall cavity length for the accelerator could be reduced by roughly 10% or 2000 m. In terms of cost savings this would amount to several million dollars. Based on this estimate we have begun to develop a niobium bellows to be used on a 2.75 inch diameter beamline. It is made from 0.3 mm thick niobium sheet, rolled into a tube and secured by a longitudinal full penetration electron beam weld; the weld is made with a high speed a narrow, focused beam reducing the heat affected zone, thus limiting the grain growth, which could affect the formability. Subsequently, two convolutions have been pressed into this tube in a 2-stage process, using an external die and a polyurethane internal expander. Niobium cuffs and flanges were electron beam welded to the formed bellows, which facilitated leak testing and allowed some measurements of compression/expansion and bending. In this contribution the fabrication process and the subsequent mechanical and vacuum tests with the bellows will be described.

  18. Ultrasonic examination of JBK-75 strip material

    SciTech Connect

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material (1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)), feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches (0.28 mm deep (0.011 in., about 17% of the strip thickness)) were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests.

  19. Materials for Accelerator Technologies Beyond the Niobium Family

    SciTech Connect

    Cooley, Lance; Larbalestier, David; Ghosh, Arup; Tollestrup, Alvin; /Fermilab

    2009-01-01

    Three niobium-based materials make up the entire present portfolio of superconducting technology for accelerators: Nb-Ti and Nb{sub 3}Sn magnet wires and pure niobium for RF cavities. Because these materials are at a high level of maturity, limits imposed by the boundaries of their superconductivity constrain the energy reach of accelerators to several TeV. We sketch here a plan for targeted development of emerging higher field and higher temperature superconductors that could enable accelerators at significantly higher energies. Niobium-based superconductors are the crucial enablers of present accelerators. The Nb-Ti LHC dipole and quadrupole wires, with transition temperature T{sub c} of 9 K and upper critical field H{sub c2} of 15 T, represent the highest form of superconductor strand art: massive, quarter-ton conductor billets are drawn from 300 mm diameter to {approx}1 mm as a single, multi-kilometer-long piece, while retaining uniformity of the several thousand Nb-Ti filaments to within 5% at the scale of a few micrometers. Strands are twisted into fully transposed cables with virtually no loss, preserving a carefully tuned nanostructure that generates the high flux-pinning forces and high current densities to enable high magnetic fields. Nb{sub 3}Sn, with twice the T{sub c} and H{sub c2}, is now approaching this level of conductor art, where over the last 5 years the LHC Accelerator Research Program (LARP) and the Next European Dipole (NED) program have demonstrated that Nb{sub 3}Sn can be made into 4 meter long quadrupoles with 12 T fields and 250 T/m gradients. Linear accelerators at TJNAF, ORNL (SNS), and under construction for the European XFEL exploit niobium superconducting radio-frequency (SRF) technology, with gradients at {approx}20 MV/m. Tremendous research and development is underway to realize high-power goals for Project X at FNAL and for a possible ILC at 35 MV/m gradients. Despite these impressive achievements, the very maturity of these

  20. Effect of interstitial impurities on the field dependent microwave surface resistance of niobium

    NASA Astrophysics Data System (ADS)

    Martinello, M.; Grassellino, A.; Checchin, M.; Romanenko, A.; Melnychuk, O.; Sergatskov, D. A.; Posen, S.; Zasadzinski, J. F.

    2016-08-01

    Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. This effect is attributed to the lowering of the Mattis-Bardeen surface resistance with increasing accelerating field; however, the microscopic origin of this phenomenon is poorly understood. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper, we conduct a systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobium resonators. Adding these results together, we are able to show which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. These results also provide insights on the physics behind the change in the field dependence of the Mattis-Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.

  1. Single Crystal and Large Grain Niobium Research at Michigan State University

    SciTech Connect

    Compton, Chris; Aizaz, Ahmad; Baars, Derek; Bieler, Tom; Bierwagen, John; Bricker, Steve; Grimm, Terry; Hartung, Walter; Jiang, Hairong; Johnson, Matt; Popielarski, John; Saxton, Laura; Antoine, Claire; Wagner, Bob; Kneisel, Peter

    2007-09-01

    As Superconducting Radio Frequency (SRF) technology is used in more accelerator designs, research has focused on increasing the efficiency of these accelerators by pushing gradients and investigating cast reduction options. Today, most SRF structures are fabricated from high purity niobium. Over years of research, a material specification has been derived that defines a uniaxial, fine gain structure for SRF cavity fabrication. Most recently a push has been made to investigate the merits of using single or large grain niobium as a possible alternative to fine grain niobium. Michigan State University (MSU), in collaboration with Fermi National Accelerator Laboratory (FNAL) and Thomas Jefferson National Accelerator Facility (JLAB), is researching large grain niobium via cavity fabrication processes end testing, as well as exploring materials science issues associated with recrystallization and heat transfer. Single-cell 1.3 GHz (Beta=0.081) cavities made from both fine end large grain niobium were compared both in terms of fabrication procedures and performance. Two 7-cell cavities are currently being fabricated.

  2. First-Principles Study of Carbon and Vacancy Structures in Niobium

    SciTech Connect

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes with other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.

  3. First-Principles Study of Carbon and Vacancy Structures in Niobium

    DOE PAGES

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes withmore » other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.« less

  4. Recent progress in large grain/single crystal high RRR niobium

    SciTech Connect

    Ganapati Rao Myneni; Peter Kneisel; Tadeu Carneiro; S.R. Agnew; F. Stevie

    2005-11-07

    High RRR bulk niobium Superconducting Radio Frequency (SRF) cavity technology is chosen for the International Linear Collider (ILC). The SRF community was convinced until now that fine grain polycrystalline RRR niobium sheets obtained via forging and cross rolling are essential for forming the SRF Cavities. However, it was recently discovered under a joint Reference Metals Company, Inc., - JLAB CRADA that large grain/single crystal RRR niobium sliced directly from ingots is highly ductile reaching 100 percent elongation. This discovery led to the successful fabrication of several SRF single and/or multi cell structures, formed with sliced RRR discs from the ingots, operating at 2.3, 1.5 and 1.3 GHz. This new exciting development is expected to offer high performance accelerator structures not only at reduced costs but also with simpler fabrication and processing conditions. As a result there is a renewed interest in the evaluation and understanding of the large grain and single crystal niobium with respect to their mechanical & physical properties as well as the oxidation behavior and the influence of impurities such as hydrogen and Ta. In this paper the results of many collaborative studies on large grain and single crystal high RRR niobium between JLAB, Universities and Industry are presented.

  5. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    SciTech Connect

    Ford, Denise Christine

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  6. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Ford, Denise Christine

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities---hydrogen, oxygen, nitrogen, and carbon---in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I present the beginning of a model to describe magnetic

  7. Method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.; Finnemore, Douglas K.; Ostenson, Jerome E.; Schmidt, Frederick A.; Owen, Charles V.

    1985-08-06

    An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  8. Improved method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.

    1979-10-17

    An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  9. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  10. Low loss and magnetic field-tunable superconducting terahertz metamaterial.

    PubMed

    Jin, Biaobing; Zhang, Caihong; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-08-02

    Superconducting terahertz (THz) metamaterial (MM) made from niobium (Nb) film has been investigated using a continuous-wave THz spectroscopy. The quality factors of the resonance modes at 0.132 THz and 0.418 THz can be remarkably increased when the working temperature is below the superconducting transition temperature of Nb, indicating that the use of superconducting Nb is a possible way to achieve low loss performance of a THz MM. In addition, the tuning of superconducting THz MM by a magnetic field is also demonstrated, which offers an alternative tuning method apart from the existing electric, optical and thermal tuning methods.

  11. Propagation characteristics of superconducting microstrip lines

    SciTech Connect

    Mao, S.G.; Ke, J.Y.; Chen, C.H.

    1996-01-01

    The modified spectral-domain approach is applied to study the propagation characteristics of high temperature superconducting microstrip lines whose signal strip and ground plane are of arbitrary thickness. In this study, numerical results for effective dielectric constant, attenuation constant, and strip current distribution are presented to discuss the effects due to frequency, temperature, strip thickness, and substrate loss tangent. In particular, the conductor and dielectric attenuation constants of superconducting microstrip line are depicted separately to discuss the mechanism of the line losses. A comparison with published theoretical and experimental results is also included to check the accuracy of the new approach`s results.

  12. Magnetoquenched superconducting valve

    NASA Astrophysics Data System (ADS)

    Clinton, T. W.; Johnson, Mark

    1998-06-01

    A superconducting switch has been developed in a simple bilayer cross strip geometry using the magnetic fringe field of a ferromagnetic film to control the critical current in an underlying superconducting bridge. The magnetization of the ferromagnet is rotated in the plane of the film to vary the magnitude of the fringe field locally applied to the superconductor from negligible to substantial values. In the latter case, the magnetization is oriented such that the magnetic poles are along the edges of the cross strip directly above the superconductor. The large fringe field near the poles suppresses superconductivity over a length of order microns, giving rise to superconducting weak link behavior. A large modulation of the critical current is observed. The effect is demonstrated in the low Tc superconductors Pb (Tc=7.3 K) and Sn (Tc=3.9 K). Fabrication of the device involves minimal processing. Applications as a high speed switch, amplifier, nonvolatile storage cell, and controllable weak link are possible.

  13. Process for alloying uranium and niobium

    DOEpatents

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  14. Niobium content of soils from West Africa

    USGS Publications Warehouse

    Grimaldi, F.S.; Berger, I.A.

    1961-01-01

    Analysis of twenty lateritic soil samples from West Africa has shown them to contain an average 24 p.p.m. of niobium; four similar samples taken from within a few miles from a niobium deposit contain from 79 to 87 p.p.m. niobium. It has been shown that as the aluminum content of the soils increases, the following depletion sequence is obtained: Si > Nb > Al = Fe The data indicate that, in general, high enrichments of niobium are not to be expected in lateritic soils. ?? 1961.

  15. SRF MATERIALS OTHER THAN NIOBIUM

    SciTech Connect

    Valente, Anne-Marie

    2008-02-12

    For the past three decades, bulk niobium has been the material of choice for SRF cavity applications. Alternative materials, mainly Nb compounds and A15 compounds have been investigated with moderate effort in the past. In the recent years, RF cavity performance has approached the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternative materials to niobium. A few laboratories around the world are now investigating superconductors with higher transition temperature Tc for application to SRF cavities. This paper gives an overview of the results obtained and challenges encountered for Nb compounds and A15 compounds, as well as for MgB2, for SRF cavity applications. An interesting alternative has been recently proposed by Alex Gurevich with the Superconductor-Insulator-Superconductor multilayer approach. This could potentially lead to further improvement in RF cavity performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.

  16. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  17. Tunneling study of SRF cavity-grade niobium.

    SciTech Connect

    Proslier, T.; Zasadzinski, J.; Cooley, L.; Pellin, M.; Norem, J.; Elam, J.; Antonine, C. Z.; Rimmer, R.; Kneisel, P.; Illinois Inst. of Tech.; FNL; Thomas Jefferson Lab.; CEA-Saclay

    2009-06-01

    Niobium, with its very high H{sub C1}, has been used in superconducting radio frequency (SRF) cavities for accelerator systems for 40 years with continual improvement. The quality factor of cavities (Q) is governed by the surface impedance R{sub BCS}, which depends on the quasiparticle gap, delta, and the superfluid density. Both of these parameters are seriously affected by surface imperfections (metallic phases, dissolved oxygen, magnetic impurities). Loss mechanism and surface treatments of Nb cavities found to improve the Q factor are still unsolved mysteries. We present here an overview of the capabilities of the point contact tunneling spectroscopy and Atomic layer deposition methods and how they can help understanding the High field Q-drop and the mild baking effect. Tunneling spectroscopy was performed on Nb pieces from the same processed material used to fabricate SRF cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap Delta = 1.55 meV, characteristic of clean, bulk Nb, however the tunneling density of states (DOS) was broadened significantly. Nb pieces treated with the same mild baking used to improve the Q-slope in SRF cavities revealed a much sharper DOS. Good fits to the DOS are obtained using Shiba theory suggesting that magnetic scattering of quasiparticles is the origin of the degraded surface superconductivity and the Q-slope problem of Nb SRF cavities.

  18. Purification of Niobium by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.

    2016-06-01

    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  19. High-niobium titanium aluminide alloys

    SciTech Connect

    Huang, S.C.

    1992-02-18

    This patent describes an aged niobium modified titanium aluminum alloy, the alloy consisting essentially of titanium, aluminum, and niobium in the following atomic ratio: Ti{sub 48-37}Al{sub 46-49}Nb{sub 6-14}, the alloy having been prepared by ingot metallurgy.

  20. Superconducting Thin Films for SRF Cavity Applications: A Route to Higher Field Gradient Linacs

    NASA Astrophysics Data System (ADS)

    Roach, Wiliam Michael

    Many linear accelerator (linac) applications rely on the use of superconducting radio frequency (SRF) cavities. In order to overcome the current field gradient limits imposed by the use of bulk niobium, a model involving the deposition of alternating superconducting-insulating-superconducting (SIS) thin films onto the interior surface of SRF cavities has been proposed. Since SRF performance is a surface phenomenon, the critical surface of these cavities is less than 1 micron thick, thus enabling the use of thin films. Before such approach can successfully be implemented fundamental studies correlating the microstructure and superconducting properties of thin films are needed. To this end the effect of grain boundary density and interfacial strain in thin films has been explored. Thin films with a smaller grain boundary density were found to have better superconducting properties than films with a larger grain boundary density. Interfacial strain due to a lattice mismatch between the film and substrate lead to two regions in films, one strained region near the interface and one relaxed region away from the interface. The presence of two regions in the film resulted in two types of superconducting behavior. Niobium films were deposited onto copper surfaces to help understand why previous attempts of implementing niobium coated copper cavities in order to exploit the better thermal properties of copper had varying degrees of success. It was found that an increased growth temperature produced niobium films with larger grains and correspondingly better superconducting properties. Proof of principle multilayer samples were prepared to test the SIS model. For the first time, multilayers were produced that were capable of shielding an underlying niobium film from vortex penetration beyond the lower critical field of bulk niobium. This result provides evidence supporting the feasibility of the SIS model.

  1. Recent advances in superconducting-mixer simulations

    NASA Technical Reports Server (NTRS)

    Withington, S.; Kennedy, P. R.

    1992-01-01

    Over the last few years, considerable progress have been made in the development of techniques for fabricating high-quality superconducting circuits, and this success, together with major advances in the theoretical understanding of quantum detection and mixing at millimeter and submillimeter wavelengths, has made the development of CAD techniques for superconducting nonlinear circuits an important new enterprise. For example, arrays of quasioptical mixers are now being manufactured, where the antennas, matching networks, filters and superconducting tunnel junctions are all fabricated by depositing niobium and a variety of oxides on a single quartz substrate. There are no adjustable tuning elements on these integrated circuits, and therefore, one must be able to predict their electrical behavior precisely. This requirement, together with a general interest in the generic behavior of devices such as direct detectors and harmonic mixers, has lead us to develop a range of CAD tools for simulating the large-signal, small-signal, and noise behavior of superconducting tunnel junction circuits.

  2. Springback in Deep Drawn High Purity Niobium for Superconductor Cavities

    SciTech Connect

    Ganapati Rao Myneni; Peter Kneisel

    2005-09-01

    Superconducting radio frequency (SRF) cavities made from deep drawn high-purity niobium have become a popular approach for the design of particle accelerators. A number of current accelerators use this technology and it is a leading candidate for future designs. The development of this technology has required significant advances in many scientific fields including metallurgy, high vacuum physics, surface science, and forming. Recently proposed modifications to the current process for fabrication of these cavities has resulted in increased concern about the distribution of deformation, residual stress patterns, and springback. This presentation will report on the findings of a recently initiated program to study plastic flow and springback in the fabrication of these cavities and the influence of metallurgical variables including grain size and impurity content.

  3. Quantum Phase Slips in 6 mm Long Niobium Nanowire.

    PubMed

    Zhao, Weiwei; Liu, Xin; Chan, M H W

    2016-02-10

    Transport measurements were made to study the superconducting transition of four 6 mm long niobium nanowires with different cross-sectional dimensions. A low-temperature residual resistance tail measured with an excitation current of 5 nA is found in the thinnest wire down to 50 mK or 7.7% of Tc of Nb. The functional form of the residual resistance is consistent with quantum phase slip (QPS) processes. Resistance measured at high bias excitation current switches among many discrete values that are well below the normal state resistance. These discrete resistance values as a function of temperature fall into several parallel curves all showing QPS-like decay in the low temperature limit similar to that found at low current. The coexistence of QPS-like resistance tails and resistance jumps found in the same wire unifies results from previous experiments where these two distinct sets of evidence for QPS are exclusive of each other.

  4. Thermodynamic Evaluation of Hydrogen Absorption by Niobium During SRF Fabrication

    SciTech Connect

    Ricker, R. E.; Myneni, G. R.

    2011-03-31

    The properties and performance of the ultra high purity Nb used to fabricate superconducting radio frequency (SRF) particle accelerator cavities have been found to vary with processing conditions. One hypothesis for these variations is that hydrogen, absorbed during processing, is responsible for this behavior. The key assumption behind this hypothesis is that niobium can absorb hydrogen from one or more of the processing environments. This paper reviews work examining the validity of this assumption. It was determined that Nb will spontaneously react with water producing adsorbed atomic hydrogen that is readily absorbed into the metal. The passivating oxide film normally prevents this reaction, but this film is frequently removed during processing and it is attacked by the fluoride ion used in the polishing solutions for SRF cavities. However, during electropolishing that cathodic reduction of hydrogen is transferred to the auxiliary electrode and this should suppress hydrogen absorption.

  5. Thermodynamic Evaluation of Hydrogen Absorption by Niobium During SRF Fabrication

    SciTech Connect

    R.E. Ricker, G.R. Myneni

    2011-03-01

    The properties and performance of the ultra high purity Nb used to fabricate superconducting radio frequency (SRF) particle accelerator cavities have been found to vary with processing conditions. One hypothesis for these variations is that hydrogen, absorbed during processing, is responsible for this behavior. The key assumption behind this hypothesis is that niobium can absorb hydrogen from one or more of the processing environments. This paper reviews work examining the validity of this assumption. It was determined that Nb will spontaneously react with water producing adsorbed atomic hydrogen that is readily absorbed into the metal. The passivating oxide film normally prevents this reaction, but this film is frequently removed during processing and it is attacked by the fluoride ion used in the polishing solutions for SRF cavities. However, during electropolishing that cathodic reduction of hydrogen is transferred to the auxiliary electrode and this should suppress hydrogen absorption.

  6. SIMS analysis of high-performance accelerator niobium

    SciTech Connect

    Maheshwari, P.; Stevie, F. A.; Myneni, Ganapati Rao; Rigsbee, J, M.; Dhakal, Pashupati; Ciovati, Gianluigi; Griffis, D. P.

    2014-11-01

    Niobium is used to fabricate superconducting radio frequency accelerator modules because of its high critical temperature, high critical magnetic field, and easy formability. Recent experiments have shown a very significant improvement in performance (over 100%) after a high-temperature bake at 1400 degrees C for 3h. SIMS analysis of this material showed the oxygen profile was significantly deeper than the native oxide with a shape that is indicative of diffusion. Positive secondary ion mass spectra showed the presence of Ti with a depth profile similar to that of O. It is suspected that Ti is associated with the performance improvement. The source of Ti contamination in the anneal furnace has been identified, and a new furnace was constructed without Ti. Initial results from the new furnace do not show the yield improvement. Further analyses should determine the relationship of Ti to cavity performance.

  7. Unanticipated results in the uranium niobium alloy system

    SciTech Connect

    Cooley, J. C.; Hults, W. L.; Dauelsberg, L. B.; Thoma, D. J.; Peterson, E. J.; Teter, D. F.; Smith, J. L.; Kelly, A. M.; Lashley, J. C.

    2002-01-01

    The uranium niobium binary alloy system exhibits a rich collection of phenomena for study. The composition range from 0 wt.% Nb to 10 wt.% Nb exhibits multiple crystallographic phases with interesting properties such as superconductivity, charge density waves and shape memory effects. We have measured the resistivity and heat capacity as a function of temperature from 2 to 325K in the above composition range in an effort to map out the phase boundaries of interest. Surprisingly the temperature dependence of the resistivity transitions from metallic (decreasing with decreasing temperature) to nonmetallic (increasing with decreasing temperature). It is not clear if the nonmetallic resistivity is caused by strongly correlated electronic effects or is the result of some other effect such as disorder driven scattering.

  8. Niobium flex cable for low temperature high density interconnects

    NASA Astrophysics Data System (ADS)

    van Weers, H. J.; Kunkel, G.; Lindeman, M. A.; Leeman, M.

    2013-05-01

    This work describes the fabrication and characterization of a Niobium on polyimide flex cable suitable for sub-Kelvin temperatures. The processing used can be extended to high density interconnects and allows for direct integration with printed circuit boards. Several key parameters such as RRR, Tc, current carrying capability at 4 K and thermal conductivity in the range from 0.15 to 10 K have been measured. The average Tc was found to be 8.9 K, with a minimum of 8.3 K. Several samples allowed for more than 50 mA current at 4 K while remaining in the superconducting state. The thermal conductivity for this flex design is dominated by the polyimide, in our case Pyralin PI-2611, and is in good agreement with published thermal conductivity data for a polyimide called Upilex R. Registered trademark of Ube Industries, Japan.

  9. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    SciTech Connect

    Checchin, Mattia; Grassellino, Anna; Martinello, Martina; Posen, Sam; Romanenko, Alexander; Zasadzinski, John

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  10. Reduced T(sub c) Niobium Superconducting HEB Mixers

    NASA Technical Reports Server (NTRS)

    Siddiqi, I.; Prober, D. E.; Bumble, B.; LeDuc, H. G.

    2001-01-01

    A reduction in the mixer noise is expected when using superconductors with a lower transition temperature (T(sub c)) since the thermal noise components of the mixer noise should scale with T(sub c). Also, the local oscillator (LO) power required for a diffusion-cooled device should decrease as T(sub c) when T(sub bath) << T(sub c). We previously studied mixing in aluminum based hot-electron bolometers (HEBs) at microwave frequencies (approximately 30 GHz), and observed a significant improvement in noise performance, and a reduction in LO power as predicted. However, the bias voltage range over which good mixer performance was observed was approximately 5 - 10 microV. These devices are thus susceptible to saturation effects, in particular output saturation. In the present work, we have investigated Nb HEBs whose T(sub c) is lowered by applying a magnetic field. The goal is to study a case intermediate between Nb and Al, and hopefully to find properties that will allow use in practical receivers. A 15 kOe perpendicular magnetic field was applied to a Nb HEB (L = 0.16 micrometers, W = 0.08 micrometers, R(sub N) = 90 ohms) to reduce T(sub c) from 5.2 K to 2.4 K. The mixer noise, as inferred from the output noise and the conversion efficiency, decreased from 390 K, DSB to 171 K, DSB. The LO power required for near optimum mixer conversion efficiency (eta(sub mixer) = -9 dB in this device) was 8 nW in zero field, and approximately 2 nW when T(sub c) was reduced to 2.4 K. T(sub bath) = 0.22 K. The conversion bandwidth was previously measured to be 2.4 GHz and the same bandwidth was observed in the presence of a magnetic field. By lowering T(sub c), the voltage range over which good mixing was observed also decreased. However, even with T(sub c) reduced to 2.4 K, the conversion efficiency dropped by 3 dB from its maximum value only when the bias voltage was changed by approximately 90 microV. Saturation effects should thus be much less of a concern in these devices than in Al HEBS. In situations where the application of a large magnetic field is not feasible, we suggest using Ta based HEBS. Ta HEBs should have T(sub c) = 3 - 3.5 K and material properties very similar to Nb.

  11. Ultrathin niobium nanofilms on fiber optical tapers – a new route towards low-loss hybrid plasmonic modes

    PubMed Central

    Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A.

    2015-01-01

    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3–4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices. PMID:26593209

  12. Fabrication and radio frequency test of large-area MgB2 films on niobium substrates

    NASA Astrophysics Data System (ADS)

    Ni, Zhimao; Guo, Xin; Welander, Paul B.; Yang, Can; Franzi, Matthew; Tantawi, Sami; Feng, Qingrong; Liu, Kexin

    2017-04-01

    Magnesium diboride (MgB2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB2 films on metal substrates is needed. In this work, high quality MgB2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩ at 4 K and 11.4 GHz. The fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB2 films are presented.

  13. The Effects of Using a Commercial Grade Plasma Etching Chamber to Etch Anodized Niobium Surfaces

    NASA Astrophysics Data System (ADS)

    Epperson, Christiana; Drake, Dereth; Winska, Kalina

    2015-11-01

    Anodized niobium surfaces are used in particle accelerators for construction of the superconducting cavities. These surfaces must be cleaned regularly to remove containments and maintain the surface smoothness. The most common method used is that of chemically etching the surface using acid baths; however, this process can affect the smoothness of the layer and is extremely time consuming and hazardous. Plasma etching is one alternative that has shown great promise. We are using a commercial grade plasma etching chamber to clean anodized niobium samples that have varying oxide layer thicknesses. Spectral profiles of the surfaces of the samples are taken before and after etching. All measured results are compared to a simple theoretical model in order to determine the effects of the etching process on each surface.

  14. Observation of Stable Low Surface Resistance in Large-Grain Niobium SRF Cavities

    SciTech Connect

    Geng, Rongli; Huang, Shichun

    2016-05-01

    Low surface resistance, or high unloaded quality factor (Q0), superconducting radio frequency (SRF) cavities are being pursued actively nowadays as their application in large-scale CW SRF accelerators can save capital and operational cost in cryogenics. There are different options in realization of such cavities. One of them is the large-grain (LG) niobium cavity. In this contribution, we present new experimental results in evaluation of LG niobium cavities cooled down in the presence of an external magnetic field. High Q0 values are achieved even with an ambient magnetic field of up to 100 mG. More over, it is observed that these high Q0 values are super-robust against repeated quench, literally not affected at all after the cavity being deliberately quenched for hundreds of times in the presence of an ambient magnetic field of up to 200 mG.

  15. Niobium thin film coating on a 500-MHz copper cavity by plasma deposition

    SciTech Connect

    Haipeng Wang; Genfa Wu; H. Phillips; Robert Rimmer; Anne-Marie Valente; Andy Wu

    2005-05-16

    A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system and this system. Engineering work progress toward the first plasma creation will be reported here.

  16. Structural/magnetic phase transitions and superconductivity in Ba(Fe1-xTMx)2As2 (TM=Co, Ni, Cu, Co/Cu, Rh and Pd) single crystals

    SciTech Connect

    Ni, Ni

    2009-01-01

    Since its discovery in 1911, superconductivity has been one of the most actively studied fields in condensed matter physics and has attracted immense experimental and theoretical effort. At this point in time, with more and more superconductors discovered in elements, alloys, intermetallic compounds and oxides, it is becoming clear that superconductivity is actually not so rare in nature. Almost half of the elements in the periodic table and hundreds of compounds have been found to be superconducting. Fig. 1.1 shows the milestones in discovering higher Tc superconductors. Among the elemental superconductors, Niobium has the highest superconducting transition temperature, Tc, of 9.5 K. This record held for more than ten years, until the discovery of niobium nitride which superconducts below 16 K. It took another thirty years for Tc to increase from 16 K in niobium nitride to 23 K in niobium germanium.

  17. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  18. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  19. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  20. Multifilamentary niobium tin superconductor tape

    NASA Technical Reports Server (NTRS)

    Brisbin, P. H.; Coles, W. D.

    1975-01-01

    In the method proposed for fabricating multifilamentary Nb3Sn tape, filamentary superconducting paths are produced in standard commercial superconductor tape by chemical milling of separator slots through the Nb3Sn layer. The multifilament configuration features a matrix of ten 1.2 mm wide parallel helical superconducting paths along the length of the tape. The paths are spaced 0.4 mm apart. Tapes tested as small pancake coils demonstrated the integrity and continuity of the matrix, and showed that critical current was sustained in direct proportion to retained superconductor.

  1. Performance of Single Crystal Niobium Cavities

    SciTech Connect

    Kneisel, Peter; Ciovati, Gianluigi; Singer, Waldemar; Singer, Xenia; Reschke, Detlef; Brinkmann, A.

    2008-07-01

    We have fabricated and tested a total of six single cell niobium cavities, made from single crystal, high purity niobium. Two of the three cavities of the TESLA shape (1300 MHz) were made from Heraeus niobium by extending a smaller single crystal by rolling and annealing steps; the third cavity was made by spinning from CBMM material. The three other cavities of the scaled "Low Loss" (LL) shape (two) and "High Gradient" (HG) shape (one) resonated at 2.3 GHz and were fabricated from "as received" single crystals, both from Heraeus and CBMM niobium. After appropriate surface treatments by buffered chemical polishing and electropolishing most cavities performed quite nicely and peak surface magnetic fields of ~ 160 mT or above corresponding to accelerating gradients between 38 MV/m and 45 MV/m were reached. This paper reports about the performance of these cavities.

  2. Study of Thermocurrents in ILC cavities via measurements of the Seebeck Effect in niobium, titanium, and stainless steel thermocouples

    SciTech Connect

    Cooley, Victoria

    2014-01-01

    The goals of Fermilab’s Superconductivity and Radio Frequency Development Department are to engineer, fabricate, and improve superconducting radio frequency (SCRF) cavities in the interest of advancing accelerator technology. Improvement includes exploring possible limitations on cavity performance and mitigating such impediments. This report focuses on investigating and measuring the Seebeck Effect observed in cavity constituents titanium, niobium, and stainless steel arranged in thermocouples. These junctions exist between cavities, helium jackets, and bellows, and their connection can produce a loop of electrical current and magnetic flux spontaneously during cooling. The experimental procedure and results are described and analyzed. Implications relating the results to cavity performance are discussed.

  3. A Survey of Pressure Vessel Code Compliance for Superconducting RF Cryomodules

    SciTech Connect

    Peterson, Thomas; Klebaner, Arkadiy; Nicol, Tom; Theilacker, Jay; Hayano, Hitoshi; Kako, Eiji; Nakai, Hirotaka; Yamamoto, Akira; Jensch, Kay; Matheisen, Axel; Mammosser, John; /Jefferson Lab

    2011-06-07

    Superconducting radio frequency (SRF) cavities made from niobium and cooled with liquid helium are becoming key components of many particle accelerators. The helium vessels surrounding the RF cavities, portions of the niobium cavities themselves, and also possibly the vacuum vessels containing these assemblies, generally fall under the scope of local and national pressure vessel codes. In the U.S., Department of Energy rules require national laboratories to follow national consensus pressure vessel standards or to show ''a level of safety greater than or equal to'' that of the applicable standard. Thus, while used for its superconducting properties, niobium ends up being treated as a low-temperature pressure vessel material. Niobium material is not a code listed material and therefore requires the designer to understand the mechanical properties for material used in each pressure vessel fabrication; compliance with pressure vessel codes therefore becomes a problem. This report summarizes the approaches that various institutions have taken in order to bring superconducting RF cryomodules into compliance with pressure vessel codes. In Japan, Germany, and the U.S., institutions building superconducting RF cavities integrated in helium vessels or procuring them from vendors have had to deal with pressure vessel requirements being applied to SRF vessels, including the niobium and niobium-titanium components of the vessels. While niobium is not an approved pressure vessel material, data from tests of material samples provide information to set allowable stresses. By means of procedures which include adherence to code welding procedures, maintaining material and fabrication records, and detailed analyses of peak stresses in the vessels, or treatment of the vacuum vessel as the pressure boundary, research laboratories around the world have found methods to demonstrate and document a level of safety equivalent to the applicable pressure vessel codes.

  4. Mineral resource of the month: niobium (columbium)

    USGS Publications Warehouse

    Papp, John F.

    2007-01-01

    It’s not just diamonds associated with conflict in Africa. Coltan, short for columbite-tantalite (a blend of niobium — also called columbium — and tantalum minerals), is linked with the recent conflicts in the Congo that involved several African countries. The metallic ore, which is processed to separate out niobium and the very valuable tantalum (see Geotimes, August 2004), is believed to be smuggled out and sold to help finance the armed conflicts.

  5. Mineral Resource of the Month: Niobium

    USGS Publications Warehouse

    Papp, John F.

    2014-01-01

    Niobium, also called columbium, is a transition metal with a very high melting point. It is in greatest demand in industrialized countries, like the United States, because of its defense-related uses in the aerospace, energy and transportation industries. Niobium is used mostly to make high-strength, low-alloy (HSLA) steel and stainless steel. HSLA steels are used in large-diameter pipes for oil and natural gas pipelines and automobile wheels.

  6. High upper critical field in disordered niobium nitride superconductor

    SciTech Connect

    Baskaran, R. Thanikai Arasu, A. V.; Amaladass, E. P.; Janawadkar, M. P.

    2014-10-28

    Superconducting Niobium Nitride thin films have been deposited on glass, aluminum nitride buffered glass, and oxidized silicon substrates by reactive DC magnetron sputtering at ambient substrate temperatures. The crystal structure of these thin films has been determined to be cubic fcc B1 structure by Glancing Incidence X-Ray Diffraction analysis. The superconducting transition temperatures of the thin films were measured to be greater than 11.6 K with a maximum of 13.4 K. The negative temperature coefficient of resistance observed in these thin films indicates the presence of disorder. Magneto-resistance measurements have been carried out on these thin films patterned into standard four probe geometry upto a maximum magnetic field of 12 T for two films and upto 15 T for the other two films. The dependence of transition temperature on the applied field is analyzed to estimate the upper critical field. The upper critical field for most of the films was estimated to exceed 35 T, while one of the most disordered films had an estimated upper critical field greater than 70 T.

  7. Superconductive microstrip exhibiting negative differential resistivity

    DOEpatents

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  8. Segmented superconducting tape having reduced AC losses and method of making

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Holesinger, Terry G.; Wang, Haiyan

    2009-09-22

    A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.

  9. Ductile alloy and process for preparing composite superconducting wire

    DOEpatents

    Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  10. Ductile alloy and process for preparing composite superconducting wire

    DOEpatents

    Verhoeven, John D.; Finnemore, Douglas K.; Gibson, Edwin D.; Ostenson, Jerome E.

    1983-03-29

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and orientated dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritric particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  11. Tunneling of H and D trapped by O(N) in niobium by anelastic relaxation measurements

    SciTech Connect

    Cannelli, G.; Cantelli, R.; Cordero, F.

    1986-12-01

    Deuterium trapped by oxygen (nitrogen) in niobium gives rise to two anelastic relaxation processes at 1.5 and 4 K at 20 kHz. The process at higher temperature and the analogous one observed in Nb-O(N)-H have been interpreted in terms of a two-level tunneling system (TLS) interacting with phonons or electrons. Two-phonon and electron interactions in the superconducting state give nearly equivalent fits to the data. In both cases the tunneling matrix element is found to be about 0.9 MeV without appreciable isotope effect; the coupling parameters of the TLS to electrons and phonons have also been estimated.

  12. The effect of vacancies on the microwave surface resistance of niobium revealed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Romanenko, A.; Edwardson, C. J.; Coleman, P. G.; Simpson, P. J.

    2013-06-01

    Using variable-energy positron annihilation spectroscopy, we demonstrate that a different near-surface vacancy concentration accompanies drastic differences in surface resistance of superconducting niobium cavities for particle acceleration. Our data suggest that vacuum baking at 120 °C leads to the doping of a near-surface layer with vacancy-hydrogen complexes, and that higher vacancy-type defect concentration distinguishes electropolished from chemically etched cavities. Our findings may help to explain a strong dependence of cavity performance on heat and chemical treatments, and may be of interest to other physics fields including cavity quantum electrodynamics (QED), microresonators, and single photon detectors.

  13. Electrical and infrared properties of thin niobium microbolometers near T(sub c)

    NASA Technical Reports Server (NTRS)

    Grossman, E. N.; Sauvageau, J. E.; Mcdonald, D. G.

    1992-01-01

    Niobium microbolometers approximately 1 micron wide x 2 micron long x 10 nm thick have been integrated at the feeds of equiangular spiral antennas made of 200 nm thick Nb. The device's current-voltage characteristics and infrared responsivity as a function of DC bias voltage were measured over a range of temperature spanning approximately plus or minus 2 percent around T(sub c). The greatest voltage responsivity occurs well below T(sub c), in a regime where the I-V curve is significantly hysteretic due to self-heating and resembles the I-V curve of a superconducting microbridge.

  14. Improving the work function of the niobium surface of SRF cavities by plasma processing

    NASA Astrophysics Data System (ADS)

    Tyagi, P. V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S.-H.

    2016-04-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5-1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  15. Improving the work function of the niobium surface of SRF cavities by plasma processing

    DOE PAGES

    Tyagi, P. V.; Doleans, M.; Hannah, B.; ...

    2016-01-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature was developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5₋1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  16. Enhancement in Quality Factor of SRF Niobium Cavities by Material Diffusion

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter K.; Myneni, Ganapati Rao

    2015-06-01

    An increase in the quality factor of superconducting radiofrequency cavities is achieved by minimizing the surface resistance during processing steps. The surface resistance is the sum of temperature independent residual resistance and temperature/material dependent Bardeen-Cooper-Schrieffer (BCS) resistance. High temperature heat treatment usually reduces the impurities concentration from the bulk niobium, lowering the residual resistance. The BCS part can be reduced by selectively doping non-magnetic impurities. The increase in quality factor, termed as Q-rise, was observed in cavities when titanium or nitrogen thermally diffused in the inner cavity surface.

  17. Lateral flow strip assay

    SciTech Connect

    Miles, Robin R; Benett, William J; Coleman, Matthew A; Pearson, Francesca S; Nasarabadi, Shanavaz L

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  18. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  19. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  20. Recovery of niobium from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  1. Anatomy comic strips.

    PubMed

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective imagination. The comics were drawn on paper and then recreated with digital graphics software. More than 500 comic strips have been drawn and labeled in Korean language, and some of them have been translated into English. All comic strips can be viewed on the Department of Anatomy homepage at the Ajou University School of Medicine, Suwon, Republic of Korea. The comic strips were written and drawn by experienced anatomists, and responses from viewers have generally been favorable. These anatomy comic strips, designed to help students learn the complexities of anatomy in a straightforward and humorous way, are expected to be improved further by the authors and other interested anatomists.

  2. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    NASA Astrophysics Data System (ADS)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  3. Application of RF Superconductivity to High Current Linac

    SciTech Connect

    Chan K.C.D.

    1998-09-13

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program.

  4. A nanoemitter based on a superconducting material

    NASA Astrophysics Data System (ADS)

    Hou, Jin-Long; Chang, Wei-Tse; Shih, Chih-Chiang; Yu, Yu-Fong; Fu, Tsu-Yi; Hwang, Ing-Shouh

    2016-06-01

    The coherence of an electron beam is crucial for the performance of electron microscopy, coherent diffractive imaging, holography, and many other advanced instrumentation methods that rely on the phase coherence of electron waves. Here we present a reliable method for preparing a niobium nanoemitter, which is thermally and chemically stable. The tip apex is a (100) facet with a lateral dimension of ˜1 nm, surrounded by four (310) facets. Adsorption of one monolayer of noble gas, particularly Xe, onto the nanoemitter greatly enhances the emission current and current stability. This electron source will probably possess both spatial and temporal coherence if the emitter is cooled below the superconducting temperature.

  5. Instrumentation for localized superconducting cavity diagnostics

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Ge, M.; Iwashita, Y.

    2017-03-01

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  6. Superconducting Materials

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After working with Lewis Research Center and Jet Propulsion Laboratory, Superconducting Technologies, Inc. (STI) adapted NASA requirements and refined its own standard production recipe. STI uses high temperature superconducting (HTS) materials in its basic products: high quality thin films, circuits and components. Applications include microwave circuits for radar to reduce interference.

  7. Crystallization of niobium germanosilicate glasses

    SciTech Connect

    Santos, Rodrigo; Wondraczek, Lothar

    2010-01-15

    Niobium germanosilicate glasses are potential candidates for the fabrication of transparent glass ceramics with interesting non-linear optical properties. A series of glasses in the (Ge,Si)O{sub 2}-Nb{sub 2}O{sub 5}-K{sub 2}O system were prepared by melting and casting and their characteristic temperatures were determined by differential thermal analysis. Progressive replacement of GeO{sub 2} by SiO{sub 2} improved the thermal stability of the glasses. Depending on the composition and the crystallization heat-treatment, different nanocrystalline phases-KNbSi{sub 2}O{sub 7}, K{sub 3}Nb{sub 3}Si{sub 2}O{sub 13} and K{sub 3.8}Nb{sub 5}Ge{sub 3}O{sub 20.4} could be obtained. The identification and characterization of these phases were performed by X-ray diffraction and Raman spectroscopy. The 40 GeO{sub 2}-10 SiO{sub 2}-25 Nb{sub 2}O{sub 5}-25 K{sub 2}O (mol%) composition presented the higher ability for volume crystallization and its nucleation temperature was determined by the Marotta's method. An activation energy for crystal growth of {approx}529 kJ/mol and a nucleation rate of 9.7x10{sup 18} m{sup -3} s{sup -1} was obtained, for this composition. Transparent glass ceramics with a crystalline volume fraction of {approx}57% were obtained after a 2 h heat-treatment at the nucleation temperature, with crystallite sizes of {approx}20 nm as determined by transmission electron microscopy. - Abstract: TEM image and XRD pattern of the glass ceramic produced (circles indicate nanocrystals).

  8. Development of Ultrathin Niobium Nitride and Niobium Titanium Nitride Films for THz Hot-Electron Bolometers

    NASA Astrophysics Data System (ADS)

    Bedorf, Sven Holger

    2005-12-01

    The GREAT (German Receiver for Astronomy at Terahertz Frequencies) aboard of SOFIA (Stratospheric Observatory for Infrared Astronomy) requires superconducting hot-electron bolometer (HEB) as heterodyne mixers for 1.9 THz and 2.7 THz. Within this research work, ultrathin (< 5 nm) niobium titanium nitride (NbTiN) and niobium nitride (NbN) films have been developed and successfully implemented in the mixers for GREAT. The main focus of this work is the development of ultrathin NbN and NbTiN films. A reproducible and reliable deposition process for ultrathin NbN and NbTiN films for the use in phonon-cooled HEB devices was established. The ultrathin films were deposited on silicon (Si) substrates and on 2 μm Si3N4 membranes by DC reactive magnetron sputtering. A method for the precise control of the nitrogen partial pressure by monitoring the target voltage has been introduced to deposit high quality, ultrathin NbN (3-4 nm, Tc=8.5 K) and NbTiN (4-5 nm, Tc=8 K) films. Substrate heating of at least 600C during the deposition is essential for the fabrication of ultrathin NbN and NbTiN films on Si substrates and Si3N4 membranes. The fabrication process required for HEB devices to be used in a quasi-optical mixer was developed. The ultrathin film was patterned by electron beam lithography (EBL), resulting in bolometer devices that measure areas of about 0.4 μm × 4 μm. The nature of the contact determines the interface transparency between the bolometer and the contact structure. Different cleaning processes have been performed and the influence on the contact resistance have been instigated. A better interface transparency gives less RF losses and could improve the HEB sensitivity and local oscillator (LO) requirement. A better control of the interface transparency also leads to a better reproducibility in values of the normal state resistance of the HEB devices. Heterodyne measurements were performed at 0.8 THz and 1.6 THz. For the NbTiN HEB devices, the double sideband

  9. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  10. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  11. Heat-resistant coatings for niobium and niobium-base alloys (review)

    SciTech Connect

    Dzyadykevich, Y.V.

    1986-06-01

    The author shows that it is possible to formulate the directions in developments whose purpose is to increase the heat resistance of niobium and niobium-base alloys. These include the creation of a barrier layer for retarding undesirable diffusion processes at the coating-base interface, the formation on niobium alloy parts of alloy silicide layers, the obtaining on parts operating at temperatures above 1300 C of a coating of molybdenum disilicide, the application to previously siliconized niobium alloys of a barrier layer of heterophase coatings, the matrix of which is a low-melting component and the filler refractory compounds, and the addition to the oxidizing gaseous medium of various additions increasing the service life of the protective coating.

  12. Study of the effect of NbN on microwave Niobium cavities for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Liccardo, V.; França, E. K.; Aguiar, O. D.; Oliveira, R. M.; Ribeiro, K. L.; Silva, M. M. N. F.

    2016-07-01

    Superconducting reentrant cavities may be used in parametric transducers for resonant-mass gravitational wave detectors. When coupled to a spherical resonant antenna, transducers will monitor its mechanical quadrupolar modes, working as a mass-spring system. In this paper we will investigate the effect of the Niobium Nitride (NbN), produced through plasma immersion ion implantation (PIII), on the quality factor of reentrant Niobium (Nb) cavities. With the PIII surface treatment unloaded electrical Q-factors (Q0) of the order of 105 were obtained in cryogenic conditions. These results indicated a significant increase in the effect of superconductivity after the cavity surfaces have been heavily attacked by a concentrated acid mixture and after suffering successive PIII processes. Q0's ~ 3.0 × 105 at 4.2 K are expected to be obtained using Nb RRR399 with a suitable surface treatment. These cavities, with high Q0, are already installed and being tested in the Gravitational Wave Detector Mario Schenberg. The experimental tests have been carried out at the laboratories of the National Institute for Space Research (INPE).

  13. Domain-wall superconductivity in superconductor-ferromagnet hybrids.

    PubMed

    Yang, Zhaorong; Lange, Martin; Volodin, Alexander; Szymczak, Ritta; Moshchalkov, Victor V

    2004-11-01

    Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor-ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor-ferromagnet hybrids using a niobium film on a BaFe(12)O(19) single crystal. We found that the critical temperature T(c) of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe(12)O(19). In accordance with the field-shift of the maximum value of T(c), pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor-ferromagnet hybrids.

  14. Quasiparticle Self-Recombination in Double STJs Strip X-ray Detectors

    SciTech Connect

    Andrianov, V. A.; Gorkov, V. P.

    2009-12-16

    The quasiparticle self-recombination was considered in the frame of 2D diffusion model of the strip X-ray detectors. The detector consists of a long superconducting strip, which is ended by the trapping layers and superconducting tunnel junctions at each end. The model takes into account the 2D-diffusion of the excess quasiparticles, quasiparticle trapping at the tunnel junctions and quasiparticle losses in the volume of the strip and at the strip boundaries. Self-recombination was described by a quadratic term. As the analytical solution is absent, the numeric calculations were carried out. It has been shown that the self-recombination as well as quasiparticle losses at the strip boundaries caused the dependence of the signals on the photon absorption site in transverse direction. The latter worsens the energy resolution and transforms the spectral line of the detector to nongaussian shape.

  15. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    by different techniques. Specifically, this work provides the results of SEY from the plasma cleaned cavity grade niobium (Nb) samples. Pure niobium is currently the material of choice for the fabrication of Superconducting Radio Frequency (SRF) cavities. The effect of plasma processing with two different gases will be examined in two groups of samples. The first group of samples is made from cavity grade niobium. The second group of samples is made from the same material, but include a welded joint made by electron beam welding, since in niobium SRF cavities the peak electric and magnetic field are seen in close proximity to the welded joints. Both groups of samples will be exposed to nitrogen (N2) and a mixture of argon with oxygen (Ar/O2) plasma. It is the goal of this research to determine the SEY on these two groups of samples before and after plasma processing as a function of the energy of primary electrons. The SEY as a function of the angle of incidence of the primary electrons is tested on the samples treated with Ar/O2 plasma.

  16. Science Comic Strips

    ERIC Educational Resources Information Center

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  17. Anatomy Comic Strips

    ERIC Educational Resources Information Center

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  18. RF Sputtering of Gold Contacts On Niobium

    NASA Technical Reports Server (NTRS)

    Barr, D. W.

    1983-01-01

    Reliable gold contacts are deposited on niobium by combination of RF sputtering and photolithography. Process results in structures having gold only where desired for electrical contact. Contacts are stable under repeated cycling from room temperature to 4.2 K and show room-temperature contact resistance as much as 40 percent below indium contacts made by thermalcompression bonding.

  19. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  20. Flux trapping in superconducting thin films in weak magnetic fields

    NASA Astrophysics Data System (ADS)

    Geng, Q.; Goto, E.

    1993-11-01

    Magnetic-field distribution measurements over a patterned superconducting strip line sample were conducted using a superconducting quantum interference device pickup coil, showing that, in the range of 500 μG-50 mG of perpendicular magnetic field B⊥,i, the superconducting films record previous magnetic histories precisely. The magnetic-field distribution with a field B⊥,i applied at all times is identical to one with no field applied at any time. A calculation based on the flux trapping model explains these results indicating that all the magnetic fluxes penetrate the superconducting thin films.

  1. Pulsed laser deposition of niobium nitride thin films

    SciTech Connect

    Farha, Ashraf Hassan Elsayed-Ali, Hani E.; Ufuktepe, Yüksel; Myneni, Ganapati

    2015-12-04

    Niobium nitride (NbN{sub x}) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbN{sub x} films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ∼40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbN{sub x} films from mixed β-Nb{sub 2}N and cubic δ-NbN phases to single hexagonal β-Nb{sub 2}N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbN{sub x} deposited on Si(100) were also investigated. The NbN{sub x} films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbN{sub x} film morphology and phase.

  2. Pulsed laser deposition of niobium nitride thin films

    NASA Astrophysics Data System (ADS)

    Farha, Ashraf Hassan; Ufuktepe, Yüksel; Myneni, Ganapati; Elsayed-Ali, Hani E.

    2015-12-01

    Niobium nitride (NbNx) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbNx films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ˜40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbNx films from mixed β-Nb2N and cubic δ-NbN phases to single hexagonal β-Nb2N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbNx deposited on Si(100) were also investigated. The NbNx films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbNx film morphology and phase.

  3. Fastest Electropolishing Technique on Niobium for Particle Accelerators

    SciTech Connect

    A.T. Wu, S. Jin, R.A. Rimmer, X.Y. Lu, K. Zhao

    2011-09-01

    Field emission on the inner surfaces of niobium (Nb) superconducting radio frequency (SRF) cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results [1] seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3nm up to 460nm. A home-made scanning field emission microscope (SFEM) was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The experimental results could be understood by a simple model calculation based on classic electromagnetic theory as shown in Ref.1. Possibly implications for Nb SRF cavity applications from this study will be discussed.

  4. Pulsed rf superconductivity program at SLAC

    SciTech Connect

    Campisi, I.E.; Farkas, Z.D.

    1984-08-01

    Recent tests performed at SLAC on superconducting TM/sub 010/ caavities using short rf pulses (less than or equal to 2.5 ..mu..s) have established that at the cavity surface magnetic fields can be reached in the vicinity of the theoretical critical fields without an appreciable increase in average losses. Tests on niobium and lead cavities are reported. The pulse method seems to be best suited to study peak field properties of superconductors in the microwave band, without the limitations imposed by defects. The short pulses also seem to be more effective in decreasing the causes of field emission by rf processing. Applications of the pulsed rf superconductivity to high-gradient linear accelerators are also possible.

  5. Composite arrays of superconducting microstrip line resonators

    SciTech Connect

    Mohebbi, H. R. Miao, G. X.; Benningshof, O. W. B.; Taminiau, I. A. J.; Cory, D. G.

    2014-03-07

    A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

  6. Physics and material science of ultra-high quality factor superconducting resonator

    NASA Astrophysics Data System (ADS)

    Vostrikov, Alexander

    The nitrogen doping into niobium superconducting radio frequency cavity walls aiming to improve the fundamental mode quality factor is the subject of the research in the given work. Quantitative nitrogen diffusion into niobium model calculating the concentration profile was developed. The model estimations were confirmed with secondary ion mass spectrometry technique measurements. The model made controlled nitrogen doping recipe optimization possible. As a result the robust reproducible recipe for SRF cavity walls treatment with nitrogen doping was developed. The cavities produced with optimized recipe met LCLS--II requirements on quality factor of 2. · 10 10 at acceleration field of 16~MV/m. The microscopic effects of nitrogen doping on superconducting niobium properties were studied with low energy muon spin rotation technique and magnetometer measurements. No significant effect of nitrogen on the following features was found: electron mean free path, magnetic field penetration depth, and upper and surface critical magnetic fields. It was detected that for nitrogen doped niobium samples magnetic flux starts to penetrate inside the superconductor at lower external magnetic field value compared to the low temperature baked niobium ones. This explains lower quench field of SRF cavities treated with nitrogen. Quality factor improvement of fundamental mode forced to analyze the high order mode (HOM) impact on the particle beam dynamics. Both resonant and cumulative effects caused by monopole and dipole HOMs respectively are found to be negligible within the requirements for LCLS--II.

  7. Physics and material science of ultra-high quality factor superconducting resonator

    SciTech Connect

    Vostrikov, Alexander

    2015-08-01

    The nitrogen doping into niobium superconducting radio frequency cavity walls aiming to improve the fundamental mode quality factor is the subject of the research in the given work. Quantitative nitrogen diffusion into niobium model calculating the concentration profile was developed. The model estimations were confirmed with secondary ion mass spectrometry technique measurements. The model made controlled nitrogen doping recipe optimization possible. As a result the robust reproducible recipe for SRF cavity walls treatment with nitrogen doping was developed. The cavities produced with optimized recipe met LCLS–II requirements on quality factor of 2.7 ∙ 1010 at acceleration field of 16 MV/m. The microscopic effects of nitrogen doping on superconducting niobium properties were studied with low energy muon spin rotation technique and magnetometer measurements. No significant effect of nitrogen on the following features was found: electron mean free path, magnetic field penetration depth, and upper and surface critical magnetic fields. It was detected that for nitrogen doped niobium samples magnetic flux starts to penetrate inside the superconductor at lower external magnetic field value compared to the low temperature baked niobium ones. This explains lower quench field of SRF cavities treated with nitrogen. Quality factor improvement of fundamental mode forced to analyze the high order mode (HOM) impact on the particle beam dynamics. Both resonant and cumulative effects caused by monopole and dipole HOMs respectively are found to be negligible within the requirements for LCLS–II.

  8. The superconducting magnet system for the Tokamak Physics Experiment

    SciTech Connect

    Lang, D.D.; Bulmer, R.J.; Chaplin, M.R.

    1994-06-18

    The superconducting magnet system for the Tokamak Physics experiment (TPX) will be the first all superconducting magnet system for a Tokamak, where the poloidal field coils, in addition to the toroidal field coils are superconducting. The magnet system is designed to operate in a steady state mode, and to initiate the plasma discharge ohmically. The toroidal field system provides a peak field of 4.0 Tesla on the plasma axis at a plasma major radius of 2.25 m. The peak field on the niobium 3-tin, cable-in-conduit (CIC) conductor is 8.4 Tesla for the 16 toroidal field coils. The toroidal field coils must absorb approximately 5 kW due to nuclear heating, eddy currents, and other sources. The poloidal field system provides a total of 18 volt seconds to initiate the plasma and drive a plasma current up to 2 MA. The poloidal field system consists of 14 individual coils which are arranged symmetrically above and below the horizontal mid plane. Four pairs of coils make up the central solenoid, and three paris of poloidal ring coils complete the system. The poloidal field coils all use a cable-in-conduit conductor, using either niobium 3-tin (NB{sub 3}Sn) or niobium titanium (NbTi) superconducting strands depending on the operating conditions for that coil. All of the coils are cooled by flowing supercritical helium, with inlet and outlet connections made on each double pancake. The superconducting magnet system has gone through a conceptual design review, and is in preliminary design started by the LLNL/MIT/PPPL collaboration. A number of changes have been made in the design since the conceptual design review, and are described in this paper.

  9. Niobium carbide and tin precipitation in continuously cast microalloyed steels

    NASA Astrophysics Data System (ADS)

    Stock, Julian

    With high yield strength, toughness and good weldability, microalloyed steels are widely used in the automotive, pipeline and transportation industries. Microalloying elements such as niobium (Nb), titanium (Ti) and vanadium (V) in concentrations of less than 0.1 wt. pct. are typical. For optimal benefits in the final product, it is usually desired for Ti to form fine precipitates during and after solidification and for Nb to be in solution prior to hot-rolling. Vanadium precipitates at lower temperatures and is less involved in the solidification/casting process. In one aspect of the investigation, the effects of cooling rate on the titanium nitride (TiN) precipitation size distribution were investigated in a Ti-added low-carbon steel. Prior research reported an inverse relationship between the average TiN precipitation size and the post-solidification cooling rate and the present work was undertaken to examine this behavior over a wider range of cooling rates. Using the GleebleRTM 3500's casting simulation capabilities along with controlled cooling rates, the TiN precipitation behavior in thick-slab, thin-slab and thin-strip material was simulated using a commercially produced 0.04C, 1.23Mn steel with near-stoichiometric Ti and N levels. Transmission electron microscopy (TEM) investigation of carbon extraction replicas was carried out to characterize the influence of cooling rates on precipitate size distributions. Decreasing particle sizes with increasing cooling rates were found. Average particle sizes as low as 6.7 nm were present in thin-strip simulations and might be of interest, as fine particles could contribute to strengthening of rapidly cooled steels. In a second aspect of the investigation, niobium carbide (NbC) precipitation during the compact strip production (CSP) process was investigated in two Nb-added low-carbon steels. Instead of industrial sampling, the GleebleRTM was used for casting simulations using two CMn(Nb) steels with high and low- Nb

  10. Dislocation Substructures on the Functional Properties of Niobium for SRF Cavities, focusing on microstructural,microchemical, and electromagnetic characteristic for Florida State University.

    SciTech Connect

    Dhakal, Pashupati

    2016-04-01

    Funding is being requested pursuant to a proposal that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). PAMS Proposal ID: 222686. Superconducting cavities are the integral part of many energy-efficient particle accelerators around the world. The current material of choice for superconducting cavities is niobium, which is the material with the highest transition temperature among pure metals. The performance of SRF cavities are influenced by the fabrication and processing steps. We plan to study the microstructural, microchemical and electromagnetic properties of Nb that are processed similar to the cavity processing steps to identify and mitigate the limiting factors to improve the performance of SRF cavities.

  11. Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    A method for fabricating an edge geometry superconducting tunnel junction device is discussed. The device is comprised of two niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier sandwiched between the two electrodes. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  12. Treatment of stripping perforations.

    PubMed

    Allam, C R

    1996-12-01

    Strippings are problems that are frequent on thin and concave roots. Treatment and prognosis differ from that of a lateral root perforation because of the size, oval shape, and thin edges of the striping. We propose a two-step technique: an endodontic phase in which the root canal system is sealed with gutta-percha overflowing through the stripping perforation and a surgical second step that will allow elimination of this excess.

  13. Geometrical deuteron stripping revisited

    SciTech Connect

    Neoh, Y. S.; Yap, S. L.

    2014-03-05

    We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.

  14. Position resolution of a double junction superconductive detector based on a single material

    NASA Astrophysics Data System (ADS)

    Samedov, V. V.

    2008-02-01

    The Naples group from Istituto Nazionale di Fisica Nucleare presented the results of theoretical investigations of a new class of superconductive radiation detectors - double junction superconductive detector based on a single material [1]. In such detectors, the absorption of energy occurs in a long superconductive strip while two superconductive tunnel junctions positioned at the ends of the strip provide the readout of the signals. The main peculiarity of this type of detectors is that they are based on a single superconducting material, i.e., without trapping layers at the ends of the strip. In this paper, general approach to the position resolution of this type of detectors has been attempted. The formula for the position resolution is derived. It is shown that the application of the aluminium for the absorber may be the best possible way not only due to the small gap energy, but also mainly for STJ fabrication technology based on the aluminium oxide tunnel barrier.

  15. PROCESS OF COATING GRAPHITE WITH NIOBIUM-TITANIUM CARBIDE

    DOEpatents

    Halden, F.A.; Smiley, W.D.; Hruz, F.M.

    1961-07-01

    A process of coating graphite with niobium - titanium carbide is described. It is found that the addition of more than ten percent by weight of titanium to niobium results in much greater wetting of the graphite by the niobium and a much more adherent coating. The preferred embodiment comprises contacting the graphite with a powdered alloy or mixture, degassing simultaneously the powder and the graphite, and then heating them to a high temperature to cause melting, wetting, spreading, and carburization of the niobium-titanium powder.

  16. Microstructures in rapidly solidified niobium aluminides

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Locci, Ivan E.

    1988-01-01

    The microstructures of niobium aluminides produced by chill block melt spinning were compared to those of niobium aluminides produced by conventional casting. The rapidly solidified alloys were rapidly solidified by melt spinning in an argon atmosphere, and the melt-spun ribbons were examined by optical, X-ray, and TEM techniques. Microstructures were found to range from single-phase for Nb-75 at. pct Al (NbAl3) to two phase for Nb-46 at. pct Al (NbAl3 + Nb2Al). It was found that the melt spinning of Nb-aluminides produced finer grained microstructures than those produced in induction-melted ingots or in powders produced by the rotating electrode process. Ternary additions such as Cr, Ti, and Si tended to form intermetallic phases along the grain boundaries.

  17. Microwave mixing with niobium variable thickness bridges

    NASA Technical Reports Server (NTRS)

    Wang, L.-K.; Callegari, A.; Deaver, B. S., Jr.

    1977-01-01

    Niobium thin-film bridges 300-A thick, 1-micron wide, and 0.5-micron long joining two bulk films 5000-A thick and having normal resistance of the order of 1 ohm have been fabricated and used for microwave mixing at 10 GHz. They exhibit Josephson, bolometric, and multiple-flux-flow mixing and have useful response at 100-200 GHz. The data show in a direct way limitations imposed by flux flow and heating.

  18. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  19. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, Frederick C.; Kingston, John J.; Clarke, John

    1994-01-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T.sub.c superconductor thin film, a second insulating thin film comprising SrTiO.sub.3 ; and a third high T.sub.c superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions.

  20. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1994-03-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

  1. Commensurate states in quasicrystalline superconducting networks

    SciTech Connect

    Jing, X. ); Zhang, Z. , P.O. Box 8730, Beijing, China Institute of Physics, Chinese Academy of Sciences, Beijing, China)

    1989-09-01

    By using the theory of de Gennes and Alexander, the commensurate states of the fluxoid configuration on the phase boundaries of superconducting networks with the Fibonacci pattern are studied explicitly for one- and two-strip geometries. The case in which the network contains three tiles with irrational ratios of areas is also studied. Our numerical results strongly indicate that the amplitude of the wave function of a commensurate state has two-cycle self-similar behavior. The locations of the magnetic field where the commensurate states may occur in an {ital M}-strip network are also predicted.

  2. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  3. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Titran, R. H.

    1988-01-01

    A study was conducted to determine the feasibility of using tungsten fiber reinforced niobium or niobium-1 percent zirconium matrix composites to meet the anticipated increased temperature and creep resistance requirements imposed by advanced space power systems. The results obtained on the short time tensile properties indicated that W/Nb composites showed significant improvements in high temperature strength and offer significant mass reductions for high temperature space power systems. The prime material requirement for space power systems applications is long time creep resistance. A study was conducted to determine the effect of high temperature exposure on the properties of these composites, with emphasis upon their creep behavior at elevated temperatures.

  4. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  5. Method of fabricating composite superconducting wire

    DOEpatents

    Strauss, Bruce P.; Reardon, Paul J.; Remsbottom, Robert H.

    1977-01-01

    An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.

  6. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  7. Method of making direct seal between niobium and ceramics

    SciTech Connect

    Rhodes, W. H.; Gutta, J. J.; Pitt, C. S.

    1985-10-08

    A high pressure arc lamp has a ceramic arc tube envelope. A niobium feedthrough positions electrodes within the tube. A ceramic insert at each end of the tube forms a direct high temperature hermetic seal with the niobium feedthrough and the ceramic tube without the use of frits or brazing.

  8. Extraction spectrophotometric determination of niobium in rocks with sulfochlorophenol S

    USGS Publications Warehouse

    Childress, A.E.; Greenland, L.P.

    1980-01-01

    After acid decomposition and potassium pyrosulfate fusion, niobium (1-26 ppm) is separated from interfering elements by extraction into methyl isobutyl ketone from 6 M H2SO4-2 M HF and back-extracted into water. The niobium-sulfochloro-phenol S complex is extracted into amyl alcohol. ?? 1980.

  9. Liquid-film assisted formation of alumina/niobium interfaces

    SciTech Connect

    Sugar, Joshua D.; McKeown, Joseph T.; Marks, Robert A.; Glaeser, Andreas M.

    2002-06-16

    Alumina has been joined at 1400 degrees C using niobium-based interlayers. Two different joining approaches were compared: solid-state diffusion bonding using a niobium foil as an interlayer, and liquid-film assisted bonding using a multilayer copper/niobium/copper interlayer. In both cases, a 127-(mu)m thick niobium foil was used; =1.4-(mu)m or =3-(mu)m thick copper films flanked the niobium. Room-temperature four-point bend tests showed that the introduction of a copper film had a significant beneficial effect on the average strength and the strength distribution. Experiments using sapphire substrates indicated that during bonding the initially continuous copper film evolved into isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. Film breakup appeared to initiate at either niobium grain boundary ridges, or at asperities or irregularities on the niobium surface that caused localized contact with the sapphire.

  10. Resolving the morphology of niobium carbonitride nano-precipitates in steel using atom probe tomography.

    PubMed

    Breen, Andrew J; Xie, Kelvin Y; Moody, Michael P; Gault, Baptiste; Yen, Hung-Wei; Wong, Christopher C; Cairney, Julie M; Ringer, Simon P

    2014-08-01

    Atom probe is a powerful technique for studying the composition of nano-precipitates, but their morphology within the reconstructed data is distorted due to the so-called local magnification effect. A new technique has been developed to mitigate this limitation by characterizing the distribution of the surrounding matrix atoms, rather than those contained within the nano-precipitates themselves. A comprehensive chemical analysis enables further information on size and chemistry to be obtained. The method enables new insight into the morphology and chemistry of niobium carbonitride nano-precipitates within ferrite for a series of Nb-microalloyed ultra-thin cast strip steels. The results are supported by complementary high-resolution transmission electron microscopy.

  11. RRR characteristics of niobium along the welding directions for SRF cavities

    NASA Astrophysics Data System (ADS)

    Jung, Yoochul; Joung, Mijoung

    2016-09-01

    Prototype cavities for the superconducting LINAC, named RAON, have been made and tested by the rare isotope science project (RISP) in South Korea. The cavities are quarter-wave resonators (QWRs), half-wave resonators (HWRs) and two types of single-spoke resonators (SSR1, SSR2). All cavities have been made of niobium (Nb) of high residual resistance ratio (RRR) grade. The RRR value decreased (degraded) during electron-beam welding due to the incorporation of impurities from the surroundings. Therefore, the RRR value must be maintained to ensure the cavity's performance. Conventional e-beam welding, a process to join two niobium parts thermally, has been performed so that the cavity can be fabricated in a structurally-favorable way without considering a preferential welding direction. Thus, we analyzed the RRR characteristics in terms of the welding direction, if any favorable direction existed, to improve the RRR value. Also, we analyzed the RRR results as a function of the vacuum level, the distance from welding center, and the type of welded side. In this study, the RRR along the welding direction, including as a function of the welded side and the vacuum level, will be discussed.

  12. A path to higher Q0 with large grain niobium cavities

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Ganapati Rao Myneni

    2012-07-01

    The improvement of the quality factor Q{sub 0} of superconducting radio-frequency (SRF) cavities at medium accelerating gradients ({approx} 20 MV/m) is important in order to reduce the cryogenic losses in continuous wave accelerators for a variety of applications. In recent years, SRF cavities fabricated from ingot niobium have become a viable alternative to standard high-purity fine-grain Nb for the fabrication of high-performing SRF cavities with the possibility of significant cost reduction. Initial studies demonstrated the improvement of Q{sub 0} at medium field in cavities heat treated at 800-1000 C without subsequent chemical etching. To further explore this treatment procedure, a new induction furnace with an all-niobium hot-zone was commissioned. A single-cell 1.5 GHz cavity fabricated from ingot material from CBMM, Brazil, with RRR {approx} 200, was heat treated with the new furnace in the temperature range 600-1200 C for several hours. Residual resistance values 1-5 nano-ohm have been consistently achieved on this cavity as well as Q{sub 0} values above {approx} 2 x 10{sup 11} at 2 K and 100 mT peak surface magnetic field. Q{sub 0}-values of the order of 10{sup 11} have been measured at 1.5 K.

  13. MEASUREMENT OF RF LOSSES DUE TO TRAPPED FLUX IN A LARGE-GRAIN NIOBIUM CAVITY

    SciTech Connect

    Gianluigi Ciovati; Alex Gurevich

    2008-01-23

    Trapped magnetic field in superconducting niobium is a well known cause of radio-frequency (RF) residual losses. In this contribution, we present the results of RF tests on a single-cell cavity made of high-purity large grain niobium before and after allowing a fraction of the Earth’s magnetic field to be trapped in the cavity during the cooldown below the critical temperature Tc. This experiment has been done on the cavity before and after a low temperature baking. Temperature mapping allowed us to determine the location of hot-spots with high losses and to measure their field dependence. The results show not only an increase of the low-field residual resistance, but also a larger increase of the surface resistance for intermediate RF field (higher "medium field Qslope"), which depends on the amount of the trapped flux. These additional field-dependent losses can be described as losses of pinned vortices oscillating under the applied RF magnetic field.

  14. MEASUREMENT OF RF LOSSES DUE TO TRAPPED FLUX IN A LARGE-GRAIN NIOBIUM CAVITY

    SciTech Connect

    Gianluigi Ciovati; Alex Gurevich

    2008-01-23

    Trapped magnetic field in superconducting niobium is a well known cause of radio-frequency (RF) residual losses. In this contribution, we present the results of RF tests on a single-cell cavity made of high-purity large grain niobium before and after allowing a fraction of the Earth magnetic field to be trapped in the cavity during the cooldown below the critical temperature Tc. This experiment has been done on the cavity before and after a low temperature baking. Temperature mapping allowed us to determine the location of hot-spots with high losses and to measure their field dependence. The results show not only an increase of the low-field residual resistance, but also a larger increase of the surface resistance for intermediate RF field (higher “medium field Q-slope”), which depends on the amount of the trapped flux. These additional field-dependent losses can be described as losses of pinned vortices oscillating under the applied RF magnetic field.

  15. [Post-stripping telangiectasis].

    PubMed

    Hutinel, B; Maraval, M

    1985-01-01

    These telangiectasia appear between one and six months after the operation, especially in cases of capillary fragility. The most common localizations are the antero-internal and external sides of the thighs and knees. Unnecessary strippings, of continent saphenous veins, are the most frequent cause of these. Their prevention consists of the least possible traumatising stripping, using a fine stripper, a very rigorous post-operative support, and the wearing of light varicose stockings or tights for between one and three months. The treatment using microsclerosis, often delicate, should not be undertaken before six months.

  16. Niobium matrix composites for high temperature turbine blades, phase 2

    NASA Technical Reports Server (NTRS)

    Heng, Sangvavann; Laferla, Raffaele; Tuffias, Robert H.

    1991-01-01

    This program demonstrated the feasibility of fabricating fiber-reinforced MMC (niobium matrix) turbine blades to net shape by chemical vapor infiltration (CVI). A controllable, repeatable niobium infiltration process was developed, and the kinetics of both deposition and infiltration were studied. Several continuous refractory fibers (Nicalon, Nextel 440, FP-Al2O3, HPZ, and tungsten mesh) were investigated as potential reinforcements for strengthening niobium. Thermodynamic and experimental evaluation indicated FP-Al2O3 and tungsten to be the most chemically compatible with niobium, while Nicalon, FP-Al2O3, and tungsten were found to be best with regard to reinforcing capability. Finally, a protective coating for iridium was found to provide substantial oxidation protection to the niobium blade matrix.

  17. Niobium oxide compositions and methods for using same

    DOEpatents

    Goodenough, John B; Han, Jian-Tao

    2014-02-11

    The disclosure relates a niobium oxide useful in anodes of secondary lithium ion batteries. Such niobium oxide has formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7, wherein 0.ltoreq.x.ltoreq.3, 0.ltoreq.y.ltoreq.1, and M represents Ti or Zr. The niobium oxide may be in the form of particles, which may be carbon coated. The disclosure also relates to an electrode composition containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. The disclosure further relates to electrodes, such as anodes, and batteries containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. Furthermore, the disclosure relates to methods of forming the above.

  18. Etching mechanism of niobium in coaxial Ar/Cl{sub 2} radio frequency plasma

    SciTech Connect

    Upadhyay, J.; Im, Do; Popović, S.; Vušković, L.; Valente-Feliciano, A.-M.; Phillips, L.

    2015-03-21

    The understanding of the Ar/Cl{sub 2} plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl{sub 2} concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. To understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  19. Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma

    SciTech Connect

    Upadhyay, Janardan; Im, Do; Popovic, Svetozar; Valente-Feliciano, Anne -Marie; Phillips, H. Larry; Vuskovic, Leposova

    2015-03-18

    The understanding of the Ar/Cl2 plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl2 concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. Furthermore, to understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  20. Germanium-overcoated niobium Dayem bridges

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Peters, P. N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at least 20 steps could be counted at 4.2 K. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature.

  1. Laser polishing of niobium for SRF applications

    SciTech Connect

    Zhao, Liang; Klopf, J. Michael; Reece, Charles E.; Kelley, Michael

    2013-09-01

    Smooth interior surfaces are desired for niobium SRF cavities, now obtained by buffered chemical polish (BCP) and/or electropolish (EP). Laser polishing is a potential alternative, having advantages of speed, freedom from chemistry and in-process inspection. Here we show that laser polishing can produce smooth topography with Power Spectral Density (PSD) measurements similar to that obtained by EP. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damaging it. Computational modeling was used to simulate the surface temperature and explain the mechanism of laser polishing.

  2. Evaluated nuclear-data file for niobium

    SciTech Connect

    Smith, A.B.; Smith, D.L.; Howerton, R.J.

    1985-03-01

    A comprehensive evaluated nuclear-data file for elemental niobium is provided in the ENDF/B format. This file, extending over the energy range 10/sup -11/-20 MeV, is suitable for comprehensive neutronic calculations, particulary those dealing with fusion-energy systems. It also provides dosimetry information. Attention is given to the internal consistancy of the file, energy balance, and the quantitative specification of uncertainties. Comparisons are made with experimental data and previous evaluated files. The results of integral tests are described and remaining outstanding problem areas are cited. 107 refs.

  3. Photoelectronic Properties of Ternary Niobium Oxides.

    DTIC Science & Technology

    1980-09-01

    SrTiO3 are both perovskites and have nearly the same optical band gaps. Yet the flat-band potential of SrTiO3 is 0.6 volts more negative than for the...in the rutile TiO2 is significantly lower than in these perovskite ti- tanates. Thus, the behavior in both the titanium and niobium systems is...section. Band-Gap Analysis Under moderate irradiation, the reaction rate in a photoelec- trolysis cell is limited by the arrival rate of holes at the

  4. Health in strip cartoons.

    PubMed

    Videlier, P; Piras, P

    1990-01-01

    Strip cartoons are among the most vivid means of communication at our disposal, and they are particularly popular with the young. Medical matters have featured in many stories, though usually in a peripheral role. Could more be done to use this powerful medium, or would deliberate exploitation destroy it?

  5. Retractable barrier strip

    DOEpatents

    Marts, D.J.; Barker, S.G.; McQueen, M.A.

    1996-04-16

    A portable barrier strip is described having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use. 13 figs.

  6. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; Wowczuk, Andrew; Vellenoweth, Thomas E.

    2002-01-01

    A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.

  7. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; McQueen, Miles A.

    1996-01-01

    A portable barrier strip having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests stable in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use.

  8. Strip and load data

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1984-01-01

    The method of taking batch data files and loading these files into the ADABAS data base management system (DBMS) is examined. This strip and load process allows the user to quickly become productive. Techniques for data fields and files definition are also included.

  9. Lowest Landau level diamagnetic fluctuations in niobium

    NASA Astrophysics Data System (ADS)

    Salem-Sugui, Said; Friesen, M.; Alvarenga, A. D.; Schilling, Osvaldo F.; Gandra, F. G.; Doria, M. M.

    2004-08-01

    We have performed a magnetic study of a bulk metallic sample of Nb with critical temperature Tc = 8.5 K. Magnetization measurements taken for magnetic fields greater than 1 kOe show a superconducting transition that becomes broader as the field is increased. The data are well described by lowest Landau level (LLL) fluctuation theory. A scaling analysis yields values for the superconducting transition temperature under field Tc( H) which are consistent with Hc2( T).

  10. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  11. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  12. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  13. Strong Meissner screening change in superconducting radio frequency cavities due to mild baking

    SciTech Connect

    Romanenko, A. Grassellino, A.; Barkov, F.; Suter, A.; Salman, Z.; Prokscha, T.

    2014-02-17

    We investigate “hot” regions with anomalous high field dissipation in bulk niobium superconducting radio frequency cavities for particle accelerators by using low energy muon spin rotation (LE-μSR) on corresponding cavity cutouts. We demonstrate that superconducting properties at the hot region are well described by the non-local Pippard/BCS model for niobium in the clean limit with a London penetration depth λ{sub L}=23±2 nm. In contrast, a cutout sample from the 120 ∘C baked cavity shows a much larger λ>100 nm and a depth dependent mean free path, likely due to gradient in vacancy concentration. We suggest that these vacancies can efficiently trap hydrogen and hence prevent the formation of hydrides responsible for rf losses in hot regions.

  14. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around T{sub c}

    SciTech Connect

    Romanenko, A. Grassellino, A. Melnychuk, O.; Sergatskov, D. A.

    2014-05-14

    We report a strong effect of the cooling dynamics through T{sub c} on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120 °C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance, while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.

  15. Grain boundary flux penetration and resistivity in large grain niobium sheet

    NASA Astrophysics Data System (ADS)

    Lee, P. J.; Polyanskii, A. A.; Gurevich, A.; Squitieri, A. A.; Larbalestier, D. C.; Bauer, P. C.; Boffo, C.; Edwards, H. T.

    2006-07-01

    Kneisel, Ciovati, Myneni and co-workers at TJNAF have recently fabricated two superconducting cavities from the center of a large grain Nb billet manufactured by CBMM. Both cavities had excellent properties with one attaining an accelerating gradient of 45 MV/m (2 K) after a 48 h and 120 °C bake [P. Bauer et al., An investigation of the properties of BCP niobium for superconducting RF cavities, in: K.-J. Kim, C., Eyberger (Eds.), Proceedings of the Pushing the Limits of RF Superconductivity workshop, Argonne National Laboratory Report ANL-05/10, March 2005, pp. 84-93]. An investigation is underway to use magneto-optical (MO) imaging to observe the flux penetration behavior of a sheet sliced from this billet. The large grain size (some larger than 50 mm) allowed us to isolate multiple bi-crystals and tri-crystals. In the first stage of the present study we have taken the as-received sheet (RRR ∼280), which has been etched to reveal the grain structure. By magneto-optical examination we observed preferential flux penetration at some grain boundaries of a bi-crystal where the grain boundary was almost perpendicular to the sample surface and there was <1 μm surface step across the boundary. At other grain boundaries, with large steps or where the grain boundaries were not normal to the surface, we observed no preferential flux penetration. Preliminary transport measurements on a bi-crystal showed greater normal state resistance and lower superconducting critical current at the grain boundary.

  16. Superconducting cavity material for the European XFEL

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Brinkmann, A.; Iversen, J.; Matheisen, A.; Navitski, A.; Tamashevich, Y.; Michelato, P.; Monaco, L.

    2015-08-01

    Analysis of the strategy for superconducting cavity material procurement and quality management is done on the basis of the experience with the cavity production for the European x-ray free electron laser (EXFEL) facility. An adjustment of the material specification to EXFEL requirements, procurement of material, quality control (QC), documentation, and shipment to cavity producers have been worked out and carried out by DESY. A multistep process of qualification of the material suppliers included detailed material testing, single- and nine-cell cavity fabrication, and cryogenic radiofrequency tests. Production of about 25 000 semi-finished parts of high purity niobium and niobium-titanium alloy in a period of three years has been divided finally between companies Heraeus, Tokyo Denkai, Ningxia OTIC, and PLANSEE. Consideration of large-grain (LG) material as a possible option for the EXFEL has resulted in the production of one cryogenic module consisting of seven (out of eight) LG cavities. LG materials fulfilled the EXFEL requirements and showed even 25% to 30% higher unloaded quality factor. A possible shortage of the required quantity of LG material on the market led, however, to the choice of conventional fine-grain (FG) material. Eddy-current scanning (ECS) has been applied as an additional QC tool for the niobium sheets and contributed significantly to the material qualification and sorting. Two percent of the sheets have been rejected, which potentially could affect up to one-third of the cavities. The main imperfections and defects in the rejected sheets have been analyzed. Samples containing foreign material inclusions have been extracted from the sheets and electrochemically polished. Some inclusions remained even after 150 μm surface layer removal. Indications of foreign material inclusions have been found in the industrially fabricated and treated cavities and a deeper analysis of the defects has been performed.

  17. Processing of Niobium-Lined M240 Machine Gun Barrels

    DTIC Science & Technology

    2014-11-01

    produce at least a 0.001 inch (0.025 mm) expansion of the steel cylinder to allow the mandrel to fit inside the liner . The other dimensions were...barrel blank and niobium liner is shown in Fig. 2. 4 Fig. 2 Gun tube and niobium- liner hardware 3. Experimental Approach 3.1 Load Cylinder ...The load cylinder outer diameter was taken to be 0.308 inch (7.82 mm), giving enough clearance between it and the niobium liner to ensure easy

  18. Protective Coatings for Niobium Alloys and Their Properties

    DTIC Science & Technology

    1992-02-06

    AD-A254 252 ’AST-IDR)T-o9 -11111111 INl 11111ll) 1111111 FOREIGN TECHNOLOGY DIVISION PROTECTIVE COATINGS IOR NIOBIUM ALLOYS AND THEIR PROPERTIES by...liilii~~l~! FASTC-ID (RS) T-0919-91 HUMAN TRANSLATION FASTC-ID(RS)T-0919-91 6 February 1992 PROTECTIVE COATINGS FOR NIOBIUM ALLOYS AND THEIR PROPERTIES ... PROPERTIES * Ye. L. Geraseva, A. N. Sokolov, A. S Stroyev, N. F. Lashko, M. N. Kozlova, and I. I. Titarenko Niobium alloys cannot be used for operation at high

  19. Niobium alloy heat pipes for use in oxidizing environments

    SciTech Connect

    Craig Wojcik, C. )

    1991-01-01

    Niobium alloys have been used for many years in rocket propulsion systems and afterburner sections of gas turbine engines. In these applications, adequate oxidation resistance is provided by protective silicide coatings. By utilizing these coatings and niobium powder metallurgy to produce porous wicks, it has been demonstrated that niobium alloy heat pipes can comfortably operate in flame temperatures exceeding 3000 K. Results of lithium corrosion tests on C-103 (Nb-10%Hf-1%Ti) up to 1477 K will be presented along with thermal performance data for specific heat pipe designs.

  20. The effect of niobium on the hardenability of microalloyed austenite

    NASA Astrophysics Data System (ADS)

    Fossaert, C.; Rees, G.; Maurickx, T.; Bhadeshia, H. K. D. H.

    1995-01-01

    The powerful effect that varying the extent of niobium-carbide dissolution has on the “hardenability” of microalloyed austenite is demonstrated using dilatometric measurement of the critical cooling rate required to from microstructures containing >95 Pct martensite. The results can be rationalized on the hypothesis that the hardenability of austenite is enhanced by niobium in solid solution, possibly by its segregation to austenite grain boundaries, but is decreased by precipitation of niobium-carbide particles. This effect appears analogous to that of boron in steels and is found to be independent of variations in the austenite grain size.

  1. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  2. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  3. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  4. ATLAS strip tracker stavelets

    NASA Astrophysics Data System (ADS)

    Phillips, P. W.

    2012-02-01

    The engineering challenges related to the supply of electrical power to future large scale detector systems are well documented. Two options remain under active study in our community, namely serial powering and the use of DC-DC converters. Whilst clearly different in detail, both have the potential to increase the efficiency of the powering system. The ATLAS Upgrade Strip Tracker Community has constructed two demonstrator stavelets using the ABCN-25 ASIC, each comprising four silicon strip detector modules. The first stavelet is serially powered, using shunt transistors integrated into the ABCN-25 chip to maintain the required operating voltage given a constant supply current, and the second stavelet uses STV-10 DC-DC converters provided by the CERN group. Although the detailed test programme shall continue at CERN, results from stavelet tests made at RAL are presented here.

  5. Development and tests of extruded ethylenepropylene-rubber-insulated superconducting cable

    NASA Astrophysics Data System (ADS)

    Kosaki, M.; Nagao, M.; Minoda, A.; Mizuno, Y.; Hirata, N.; Nagata, M.; Tanaka, S.

    The simultaneous application of the design voltage (20 kVrms) and current (2 kArms) to ethylenepropylene-rubber (EPR)-insulated superconducting cable, cooled by liquid helium, was successfully carried out. The superconductor was a niobium layer clad on a copper pipe. The EPR insulation was extruded simultaneously with semiconducting electrostatic shielding layers. A specific advantage of this cable design is the complete exclusion of the cryogenic helium from the electrical insulation structure.

  6. First results of testing 3.9 GHz TM(010) superconducting cavity

    SciTech Connect

    Solyak, N.A.; Bellantoni, L.; Berenc, T.G.; Edwards, H.T.; Gonin, I.V.; Khabiboulline, T.N.; /Fermilab

    2004-10-01

    Fermilab is developing third harmonic 3.9 GHz superconducting cavity to improve performances of A0 and TTF photoinjectors. In frame of this project we have built and tested two nine-cell copper models and one 3-cell niobium cavity. Properties of the high order modes were carefully studied in a chain of two copper cavities at room temperature. In paper we discuss results of cold tests of the 3-cell cavity before and after BCP.

  7. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1988-01-01

    The creep behavior and microstructural stability of tungsten fiber reinforced niobium and niobium 1 percent zirconium was determined at 1400 and 1500 K in order to assess the potential of this material for use in advanced space power systems. The creep behavior of the composite materials could be described by a power law creep equation. A linear relationship was found to exist between the minimum creep rate of the composite and the inverse of the composite creep rupture life. The composite materials had an order of magnitude increase in stress to achieve 1 percent creep strain and in rupture strength at test temperatures of 1400 and 1500 K compared to unreinforced material. The composite materials were also stronger than the unreinforced materials by an order of magnitude when density was taken into consideration. Results obtained on the creep behavior and microstructural stability of the composites show significant potential improvement in high temperature properties and mass reduction for space power system components.

  8. Robotic Paint Stripping Cell

    DTIC Science & Technology

    1993-11-01

    based controls are used for all F-1 a substrate materials, Inc, ding graphite-epoxy composhes. The RPSC is a fully automated plastic media blast paint...based controls are used for all F.16 substrate materials, including graphite-epoxy composites. The RPSC is a fully automated plastic media blast...control the paint stripping rate and prevent overblasting of the substrate . Four halogen lamps provide an infrared-rich light source which is reflected

  9. Photon-induced thermal effects in superconducting coplanar waveguide resonators

    NASA Astrophysics Data System (ADS)

    Wang, Yiwen; Zhou, Pinjia; Wei, Lianfu; Li, Haijie; Zhang, Beihong; Zhang, Miao; Wei, Qiang; Fang, Yurong; Cao, Chunhai

    2013-10-01

    We experimentally investigated the optical responses of a superconducting niobium resonator. It was found that, with increasing radiation power, the resonance frequency increases monotonically below around 500 mK, decreases monotonically above around 1 K, and exhibits a nonmonotonic behavior at around 700 mK. These observations show that one can operate the irradiated resonator in three temperature regimes, depending on whether two-level system (TLS) effects or kinetic inductance effects dominate. Furthermore, we found that the optical responses at ultra-low temperatures can be qualitatively regarded as a photon-induced thermalization effect of TLSs, which could be utilized to achieve thermal sensitive photon detections.

  10. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  11. Method of producing high T(subc) superconducting NBN films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Lamb, James L. (Inventor); Thakoor, Anilkumar P. (Inventor); Khanna, Satish K. (Inventor)

    1988-01-01

    Thin films of niobium nitride with high superconducting temperature (T sub c) of 15.7 K are deposited on substrates held at room temperature (approx 90 C) by heat sink throughout the sputtering process. Films deposited at P sub Ar 12.9 + or - 0.2 mTorr exhibit higher T sub c with increasing P sub N2,I with the highest T sub c achieved at P sub n2,I= 3.7 + or - 0.2 mTorr and total sputtering pressure P sub tot = 16.6 + or - 0.4. Further increase of N2 injection starts decreasing T sub c.

  12. Synthesis of piezoelectric and bioactive NaNbO3 from metallic niobium and niobium oxide.

    PubMed

    Prado da Silva, Marcelo Henrique; da Rocha, Daniel Navarro; de Andrade Gobbo, Luciano; Dos Santos Azevedo, Luciana Maria; Louro, Luís Henrique Leme; Machado Costa, Andréa; Brant de Campos, José

    2016-07-01

    NaNbO3 was synthesized by two different routes, one using metallic niobium powder, and another using niobium oxide (Nb2 O5 ) powder. In both routes an aqueous sodium hydroxide solution was used to hydrothermally treating the powders. In the first approach, the solution concentrations were 3M, 1M, and 0.5M. The second route used solution concentrations of 10M and 12.5M. After the hydrothermal treatments, the powders were heat treated in order to synthesize NaNbO3 . The products were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) with Rietveld refinement. The phases were identified by means of X-ray diffraction (XRD) with Rietveld refinement. It was observed that the molar concentrations of the solutions had opposing effects for each route. An antiferroelectric phase was found in both routes. In the niobium metallic route, a ferroelectric phase was also synthesized. This study proves that piezoelectric NaNbO3 can be obtained after alkali treatment of both Nb and Nb2 O5. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 979-985, 2016.

  13. The production of niobium powder and electric properties of niobium capacitors

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Sik; Cho, Sung Wook; Kim, Yang Soo; Kim, Byung Il

    2009-06-01

    In order to evaluate the electrical and frequency properties of niobium powder manufactured by the metallothermic reduction method for use as a capacitor, the present study measured capacitor performance evaluation factors such as leakage current, permittivity loss (tanδ) and capacitance, etc. The niobium powder used in this experiment was processed using the external continuous supply method and had large coarse globular particles of 0.5 μm to 1.0 μm, but the granularity distribution was very irregular. Capacitance decreased significantly from 150 μF in electrolyte (wet cap) to 130 μF after carbon (C)/silver (Ag) solution coating, and to around 115 μF after aging, falling within the capacity tolerance of tantalum capacitors. Converted to CV/g, capacitance was around 81,000 CV/g. Permittivity loss (tanδ) decreased significantly from 13.0 % after C/Ag coating to 7.5 % after aging, satisfying the general standard level of 10 % or less. Leakage current was 2.5 μA after C/Ag coating and 3.0 μA after aging, both less than the standard level of 6.3 μA. On the whole, the niobium capacitor showed somewhat more unstable characteristics than commercial tantalum capacitors but is nonetheless considered applicable as a future substitute for tantalum capacitors.

  14. Superconducting heavy-ion linac at Argonne

    SciTech Connect

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.G.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Pardo, R.C.; Shepard, K.W.

    1981-01-01

    The design, status, and performance of the first operating superconducting heavy-ion accelerator, a linac used to boost the energies of beams from a 9-MV tandem, is summarized. When completed in 1981, the linac will consist of 24 independently-phased split-ring niobium resonators operating at 97 MHz. This linac is designed to provide 29 MV of acceleration. Because of the modular character of the system, the linac has been operable and useful since mid-1978, when a beam was accelerated through 2 units and the first nuclear-physics experiments were preformed. Now, 16 resonators are in use, and a beam has been accelerated for approx. 6000 h. Resonator performance has been remarkably stable, in spite of vacuum accidents, and the linac as a whole operates reliably without operators in attendance during nights and weekends. The ease and speed with which the beam energy can be changed is proving to be unexpectedly valuable to users.

  15. On Superconductive Gravity Gradiometry in Space

    NASA Astrophysics Data System (ADS)

    Zarembiński, Stefan

    2003-07-01

    Superconductive gravity gradiometers for space have been expected in vain for more than fifteen years, since the niobium superconductor technology has maturated and became commonly regarded as adequate to the purpose. Therefore an old design idea may be suspected of inefficiency, and new concepts should be considered. We propose one that abandons an attractive yet restrictive method of spatial differentiation by the principle of the magnetic flux conservation. Instead, it uses the SQUID just as a low noise sensor in the test mass displacement transducers, and differentiates by means of a negative feedback. We argue that the feedback can ease the known obstacles. Especially, it provides convenient practical means for neutralization of the low frequency SQUID noise, and for correction of dimensional inaccuracies of the sensor mechanics. Moreover, the feedback can organize a cluster of twelve elementary accelerometers into a precise tensor gradiometer that can self-correct its inaccuracies by tuning the cross-coupling between its elements.

  16. Automated Hydroforming of Seamless Superconducting RF Cavity

    SciTech Connect

    Nagata, Tomohiko; Shinozawa, Seiichi; Abe, Noriyuki; Nagakubo, Junki; Murakami, Hirohiko; Tajima, Tsuyoshi; Inoue, Hitoshi; Yamanaka, Masashi; Ueno, Kenji

    2012-07-31

    We are studying the possibility of automated hydroforming process for seamless superconducting RF cavities. Preliminary hydroforming tests of three-cell cavities from seamless tubes made of C1020 copper have been performed. The key point of an automated forming is to monitor and strictly control some parameters such as operation time, internal pressure and material displacements. Especially, it is necessary for our studies to be able to control axial and radial deformation independently. We plan to perform the forming in two stages to increase the reliability of successful forming. In the first stage hydroforming by using intermediate constraint dies, three-cell cavities were successfully formed in less than 1 minute. In parallel, we did elongation tests on cavity-quality niobium and confirmed that it is possible to achieve an elongation of >64% in 2 stages that is required for our forming of 1.3 GHz cavities.

  17. Superconductive silicon nanowires using gallium beam lithography.

    SciTech Connect

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  18. Space applications of superconductivity - Resonators for high stability oscillators and other applications

    NASA Technical Reports Server (NTRS)

    Stein, S. R.

    1980-01-01

    The potential applications of superconductivity in space are examined. It is shown that superconducting oscillators have achieved better frequency stability that any other device for averaging times of 10 s to 1000 s. Such a high stability results from the use of solid niobium resonators having Q factors greater that 10 to the 10th. Oscillators of this type have direct applications as clocks and spectrally pure sources. In addition, they may also be used for accurate measurements of many physical quantities and to perform a variety of experiments on fundamental constants, relativity, and gravity waves.

  19. Enhanced magnetic anomaly detection using a nitrogen-cooled superconducting gradiometer

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.; Overway, David J.; Purpura, John W.; Bono, John T.; Carroll, Paul J.; Koch, Roger H.; Rozen, James R.; Keefe, George A.; Willen, Scott; Mohling, Robert A.

    2000-07-01

    During the 1980's the Superconducting Gradiometer/Magnetometer Sensor was demonstrated in the Magnetic and Acoustic Detection of Mines Advanced Technology Demonstration to provide effective mine detection, localization, and classification capabilities, especially against buried mines, and to reduce significantly acoustic false alarms arising from bottom clutter. This sensor utilized Superconducting Quantum Interference Devices manufactured using the low critical temperature (low Tc) superconductor niobium and liquid helium for sensor cooling. This sensor has most recently bee integrated into the Mobile Underwater Debris Survey System and has been demonstrated successfully in a survey to locate unexploded ordnance in coastal waters.

  20. Analysis and characterization of high- Tc superconducting planar transmission lines for microwave circuit components

    SciTech Connect

    Kong Keonshik.

    1991-01-01

    A loss modeling of high {Tc} superconducting planar transmission lines is presented in this dissertation. Transmission structures such as microstrip lines, coplanar waveguides and conductor backed coplanar waveguides are investigated for implementation of a high-{Tc} superconductor. Also, short pulse propagation in the superconducting coplanar stripline is characterized. The motivation for this work is to provide an analytical basis for the effective application of a high {Tc} superconductor to planar transmission lines for microwave components. First, a loss characterization of the various high {Tc} superconducting microstrip line structures is presented in which either the strip or the ground plane is a high {Tc} superconductor. In the analysis, the internal impedances in the strip and the ground plane are separately calculated, and the total internal impedance is obtained by the superposition of the internal impedances. Next, the characteristic of a superconducting coplanar waveguide is investigated and compared with a superconducting microstrip line.

  1. Effects of Impurities on Alumina-Niobium InterfacialMicrostructures

    SciTech Connect

    McKeown, Joseph T.; Sugar, Joshua D.; Gronsky, Ronald; Glaeser,Andreas M.

    2005-06-20

    Optical microscopy, scanning electron microscopy, and transmission electron microscopy were employed to examine the interfacial microstructural effects of impurities in alumina substrates used to fabricate alumina-niobium interfaces via liquid-film-assisted joining. Three types of alumina were used: undoped high-purity single-crystal sapphire; a high-purity, high-strength polycrystalline alumina; and a lower-purity, lower-strength polycrystalline alumina. Interfaces formed between niobium and both the sapphire and high-purity polycrystalline alumina were free of detectable levels of impurities. In the lower-purity alumina, niobium silicides were observed at the alumina-niobium interface and on alumina grain boundaries near the interface. These silicides formed in small-grained regions of the alumina and were found to grow from the interface into the alumina along grain boundaries. Smaller silicide precipitates found on grain boundaries are believed to form upon cooling from the bonding temperature.

  2. High temperature heat treatment of 3GHz niobium cavities

    SciTech Connect

    Diete, W. ); Rusnak, B.; Bennett, B.L.; Clark, W.L.; Maggs, R.G.; Shapiro, A.H.; Wright, P.V. )

    1992-01-01

    We applied high temperature heat treatment to 3GHz cavities to determine the preparation of niobium cavities using the titanium solid-state gettering process. Some preliminary results showed peak surface electric fields of up to 65MV/m at a Q-factor of 2{times}lO{sup 10}. We evaluated improvement in the purity of the niobium by measuring the residual resistance ratio (RRR) at 10K. The purest niobium we prepared reached a RRR of 670. To study the potential application to large-scale accelerator structures at lower frequencies, we are testing the possibility of heat treating the cavity half-cells before welding them. Therefore, we investigated the influence of electron beam welding on the RRR of high-purity niobium.

  3. Studies of Niobium Thin Film Produced by Energetic Vacuum Deposition

    SciTech Connect

    Genfa Wu; Anne-Marie Valente; H. Phillips; Haipeng Wang; Andy Wu; T. J. Renk; P Provencio

    2004-05-01

    An energetic vacuum deposition system has been used to study deposition energy effects on the properties of niobium thin films on copper and sapphire substrates. The absence of working gas avoids the gaseous inclusions commonly seen with sputtering deposition. A biased substrate holder controls the deposition energy. Transition temperature and residual resistivity ratio of the niobium thin films at several deposition energies are obtained together with surface morphology and crystal orientation measurements by AFM inspection, XRD and TEM analysis. The results show that niobium thin films on sapphire substrate exhibit the best cryogenic properties at deposition energy around 123 eV. The TEM analysis revealed that epitaxial growth of film was evident when deposition energy reaches 163 eV for sapphire substrate. Similarly, niobium thin film on copper substrate shows that film grows more oriented with higher deposition energy and grain size reaches the scale of the film thickness at the deposition energy around 153 eV.

  4. In-situ proton irradiation and measurement of superconducting rf cavities under cryogenic conditions

    SciTech Connect

    Rusnak, B.; Haynes, W.B.; Chan, K.C.D.

    1997-08-01

    The Accelerator Production of Tritium (APT) Project is investigating using a superconducting linac for the high-energy portion of the accelerator. As this accelerator would be used to accelerate a high-current (100-mA) CW proton beam up to 1700 MeV, it is important to determine the effects of stray-beam impingement on the superconducting properties of a 700-MHz niobium cavity. To accomplish this, two 3000-MHz elliptical niobium cavities were placed in a cryostat, cooled to nominally 2 K in sub-atmospheric liquid helium, and irradiated with 798-MeV protons at up to 490 {pi}A average current. The elliptically shaped beam passed through the equatorial regions of both cavities in order to maximize sensitivity to any changes in the superconducting-surface resistance. Over the course of the experiment, 6x10{sup 16} protons were passed through the cavities. After irradiation, the cavities were warmed to 250 K, then recooled to investigate the effects of a room-temperature annealing cycle on the superconducting properties of the irradiated cavities. A detailed description of the experiment and the results shall be presented. These results are important to employing superconducting-rf technology to future high-intensity proton accelerators for use in research and transmutation technologies.

  5. Fatigue of niobium at elevated temperatures

    SciTech Connect

    Stoloff, N.S.; Xiao, P.; Choudhury, R.

    1983-06-01

    High cycle and low cycle fatigue behavior of unalloyed niobium has been studied between room temperature and 800/sup 0/C. High cycle lives decrease monotonically in vacuum with temperature to 800/sup 0/C. However, low cycle fatigue lives in argon increase with temperature between 450 and 650/sup 0/C. Frequency effects on LCF are shown to be small in this range. Hold times imposed at peak loads also increases fatigue lives as well as the number of cycles to crack initiation in this temperature range. Fractographic examination revealed a transition from striated to dimpled fracture surfaces with increasing temperature for HCF specimens. LCF specimens, on the other hand, display large striations at 450 and 550 and extensive slip at 650/sup 0/C. Impurities in argon used for LCF tests appear to be responsible for extensive surface cracking. The results are compared to those in the literature for other bcc refractory metals and alloys. 18 figures.

  6. Parameter Optimization for Laser Polishing of Niobium for SRF Applications

    SciTech Connect

    Zhao, Liang; Klopf, John Michael; Reece, Charles E.; Kelley, Michael J.

    2013-06-01

    Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surfaces. Results shows that microsmoothing of the surface without ablation is achievable.

  7. Characterization of electron beam melted uranium - 6% niobium ingots

    SciTech Connect

    McKoon, R.H.

    1997-10-31

    A study was undertaken at Lawrence Livermore National Laboratory to characterize uranium, 6{percent} niobium ingots produced via electron beam melting,hearth refining and continuous casting and to compare this material with conventional VIM/skull melt /VAR material. Samples of both the ingot and feed material were analyzed for niobium, trace metallic elements, carbon, oxygen and nitrogen. Ingot samples were also inspected metallographically and via microprobe analysis.

  8. International strategic minerals inventory summary report; niobium (columbium) and tantalum

    USGS Publications Warehouse

    Crockett, R.N.; Sutphin, D.M.

    1993-01-01

    Major world resources of niobium and tantalum are described in this summary report of information in the International Strategic Minerals Inventory (ISMI). ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States of America. Part I of this report presents an overview of the resources and potential supply of niobium and tantalum based on inventory information; Part II contains tables of both geologic and mineral-resource information and includes production data collected by ISMI participants. Niobium is used principally as an alloying element in special steels and superalloys, and tantalum is used mainly in electronics. Minerals in the columbite-tantalite series are principal ore minerals of niobium and tantalum. Pyrochlore is a principal source of niobium. These minerals are found in carbonatite, certain rocks in alkaline igneous complexes, pegmatite, and placer deposits. ISMI estimates show that there are over 7 million metric tons of niobium and almost 0.5 million metric tons of tantalum in known deposits, outside of China and the former Soviet Union, for which reliable estimates have been made. Brazilian deposits, followed by Canadian deposits, contain by far the largest source of niobium. Tantalum production is spread widely among several countries, and Brazil and Canada are the most significant of these producers. Brazil's position is further strengthened by potential byproduct columbite from tin mining. Present economically exploitable resources of niobium appear to be sufficient for the near future, but Brazil will continue to be the predominant world supplier of ferrocolumbium. Tantalum, a byproduct of tin production, has been captive to the fluctuations of that market, but resources in pegmatite in Canada and Australia make it likely that future increases in the present modest demand will be met.

  9. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    SciTech Connect

    Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, Tsuyoshi; Civale, Leonardo

    2016-10-24

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. In conclusion, this finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  10. The microstructure and electrical transport properties of immiscible copper-niobium alloy thin films

    SciTech Connect

    Banerjee, Rajarshi; Bose, Sangita; Ayyub, Pushan; Genc, Arda

    2008-02-01

    Mutually immiscible in the solid state, copper and niobium exhibit a relatively strong clustering (phase separating) tendency in the liquid state and can therefore only be alloyed in a highly metastable form: for example, by vapor quenching. We have deposited metastable Cu-Nb alloy thin films with nominal compositions ranging from 5 to 90 at. % Nb by magnetron cosputtering. The microstructure of these films depends strongly on the composition and ranges from coarse-grained solid solutions for Cu-rich and Nb-rich compositions to phase-separated amorphous mixtures when the two elements are in comparable amounts. The crystalline Cu- or Nb-rich compositions exhibit positive temperature coefficients of resistivity (TCR) with the Cu-90 at. % Nb film exhibiting a superconducting transition with (T{sub C}){sub onset}{approx}4.5 K. The amorphous films show high room temperature resistivity, a negative TCR, and composition dependent superconducting transitions. We investigate the relation between the microstructure, phase stability, and the electrical transport properties.

  11. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    PubMed Central

    Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.

    2016-01-01

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb. PMID:27775087

  12. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    DOE PAGES

    Tan, Teng; Wolak, M. A.; Xi, X. X.; ...

    2016-10-24

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement ofmore » Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. In conclusion, this finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.« less

  13. Niobium (columbium) and tantalum resources of Brazil

    USGS Publications Warehouse

    White, Max Gregg

    1975-01-01

    Most of the niobium resources of Brazil occur as pyrochlore in carbonatites within syenitic intrusives of Late Cretaceous to early Tertiary age in western Minas Gerais and southeastern Goils. Minor amounts of it are produced together with tantalum from columbite-tantalite concentrates from pegmatites and placers adjacent to them, in the Sao Joao del Rei district in south-central Minas Gerais. All the niobium and tantalum produced in Brazil is exported. The only pyrochlore mined is from the Barreiro carbonatite deposit near Araxa in Minas Gerais where concentrates and ferroniobium are produced. Exploration work for pyrochlore and other mineral resources are being undertaken on other carbonatites, particularly at Catalao I in southeast Goias and at Tapira and Serra Negra in western Minas Gerais. Annual production and export from the Barreiro deposit are about 8,000 metric tons of pyrochlore concentrate containing about 60 percent Nb205 and about 2,700 metric tons of ferroniobium with 63 percent Nb2O5. The annual production capacity of the Barreiro plant is 18,000 tons of concentrate and 4,000 tons of ferroniobium. Ore reserves of the Barreiro deposit in all categories are 380 million tons with percent Nb2O5. Annual production of tantalite-columbite from the Sao Joao del Rei district, most of which is exported to the United States, is about 290 tons, of which about 79 percent is tantalite and about percent is columbite. Reserves of tantalite-columbite in the Sao Joao del Rei district are about 43,000 tons of proved and 73,000 tons of probable ore.

  14. Field determination of microgram quantities of niobium in rocks

    USGS Publications Warehouse

    Ward, F.N.; Marranzino, A.P.

    1955-01-01

    A rapid, simple, and moderately accurate method was needed for the determination of traces of niobium in rocks. The method developed is based on the reaction of niobium(V) with thiocyanate ion in a 4M hydrochloric acid and 0.5M tartaric acid medium, after which the complex is extracted with ethyl ether. The proposed procedure is applicable to rocks containing from 50 to 2000 p.p.m. of niobium, and, with modifications, can be used on rocks containing larger amounts. Five determinations on two rocks containing 100 p.p.m. or less of niobium agree within 5 p.p.m. of the mean, and the confidence limits at the 95% level are, respectively, ??6 and ??4 p.p.m. The addition of acetone to the ether extract of the niobium thiocyanate inhibits the polymerization of the thiocyanate ion and stabilizes the solution for at least 20 hours. The proposed procedure permits the determination of 20 ?? of niobium in the presence of 1000 ?? of iron, titanium, or uranium; 500 ?? of vanadium; or 100 ?? of tungsten or molybdenum or both.

  15. Deoxidation Equilibrium of Niobium in the Iron-Nickel Melts

    NASA Astrophysics Data System (ADS)

    Dashevskii, Viktor; Aleksandrov, Aleksandr; Kanevskii, Akim; Leont'ev, Leopold

    2015-02-01

    The oxygen solubility in iron-nickel alloys with niobium was experimentally studied in Fe-40 pct Ni melt at 1823 K (1550 °C). It was shown that the presence of niobium decreases the oxygen solubility in this melt. The equilibrium constant of interaction of niobium with oxygen dissolved in the Fe-40 pct Ni (), the Gibbs energy of this reaction (), and the interaction coefficients characterizing these solutions (; ; ) were determined. In the wide concentration range, the equilibrium constants and Gibbs energy of interaction of niobium and oxygen dissolved in the Fe-Ni melts and the interaction coefficients for these solutions were calculated for 1823 K (1550 °C). For this temperature, the oxygen solubility in the niobium-containing Fe-Ni melts was also determined. With an increase in the nickel concentration in the alloy the niobium affinity to oxygen rises appreciably. This appears to be associated with a decrease in the bond strength between metal and oxygen in the melt as the nickel concentration increases ().

  16. Determination of niobium in the parts per million range in rocks

    USGS Publications Warehouse

    Grimaldi, F.S.

    1960-01-01

    A modified niobium thiocyanate spectrophotometric procedure relatively insensitive to titanium interference is presented. Elements such as tungsten, molybdenum, vanadium, and rhenium, which seriously interfere in the spectrophotometric determination of niobium, are separated by simple sodium hydroxide fusion and leach; iron and magnesium are used as carriers for the niobium. Tolerance limits are given for 28 elements in the spectrophotometric method. Specific application is made to the determination of niobium in the parts per million range in rocks. The granite G-1 contains 0.0022% niobium and the diabase W-1 0.00096% niobium.

  17. Thermal transport properties of niobium and some niobium base alloys from 80 to 1600/sup 0/K

    SciTech Connect

    Moore, J.P.; Graves, R.S.; Williams, R.K.

    1980-01-01

    The electrical resistivities and absolute Seebeck coefficients of 99.8 at. % niobium with a RRR of 36, Nb-4.8 at. % W, Nb-5 at. % Mo, Nb-10 at. % Mo, and Nb-2.4 at. % Mo-2.4 at. % Zr were measured from 80 to 1600/sup 0/K, and the thermal conductivities of the niobium and Nb-5 at. % W were measured from 80 to 1300/sup 0/K. A technique is described for measuring the electrical resistivity and Seebeck coefficient of a specimen during radial heat flow measurements of the thermal conductivity. The transport property results, which had uncertainties of +-0.4%for electrical resistivity and +-1.4% for thermal conductivity, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures.

  18. Support-electrode torque on a spherical superconducting gyroscope

    SciTech Connect

    Holdeman, L.B.; Holdeman, J.T. Jr.

    1982-01-01

    In 1960, L.I. Schiff observed that precise measurement of the precession of a spherical gyroscope orbiting the earth could provide a test of general relativity. The current effort to implement this experiment was initiated shortly thereafter by W.M. Fairbank. The gyroscope will be a fused-quartz sphere coated with superconductive niobium. The spinning superconducting coating generates a small magnetic field (the London field) which outside the rotor is that of a magnetic dipole and inside is uniform and parallel to the spin axis. The magnetic flux that this field produces in superconducting loops encompassing the rotor will change as the gyroscope precesses; the precession of the gyroscope will be measured by measuring the change in flux. Because the anticipated relativistic precession is extremely small, it is essential that no significant torques be coupled to the gyroscope through its London field. The torque on a superconducting sphere rotating in an arbitrary magnetic field can be expressed in terms of the l = 1 coefficients of the expansion of the field in spherical harmonic functions. In general, a boundary-value problem must be solved in order to obtain these coefficients. The diamagnetic torque produced by superconducting support electrodes is calculated. (WHK)

  19. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  20. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  1. Dynamic Underground Stripping Project

    SciTech Connect

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  2. Paresev on Taxi Strip

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Test pilot Milton Thompson sitting in NASA Flight Research Center-built Paresev 1 (Paraglider Research Vehicle) on the taxi strip in front of the NASA Flight Research Center in 1962. In this photo the control stick can be seen coming from overhead and hanging in front of the pilot. The control system was a direct link with the wing membrane made of doped Irish linen. By maintaining simplicity during construction, it was possible to make control and configuration changes overnight and, in many instances, in minutes.

  3. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  4. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  5. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    SciTech Connect

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J.; Chaudhuri, S.; Bockstiegel, C.

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  6. Design optimization of superconducting magnetic energy storage coil

    NASA Astrophysics Data System (ADS)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-05-01

    An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb-Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  7. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  8. Physical and Mechanical Properties of Niobium for SRF Science and Technology

    SciTech Connect

    Ganapati Rao Myneni

    2006-10-31

    Optimized mechanical and physical properties of high purity niobium are crucial for obtaining high performance SRF particle beam accelerator structures consistently. This paper summarizes these important material properties for both high purity polycrystalline and single crystal niobium.

  9. Effect of Different Cutting Techniques on the Surface Morphology and Composition of Niobium

    SciTech Connect

    Cooper, C.A.; Wu, A.; Bauer, P.; Antoine, C.; /Fermilab

    2009-01-01

    The surface morphology and chemical purity of superconducting radio frequency (SRF) niobium cavities are very important for proper accelerator operation. Typically on the order of 120 micrometers of niobium (Nb) is removed from cavities to remove damage done during the forming of Nb sheets and cavities. A study was done to find the effect of cutting or finishing Nb with a band saw, diamond saw, electrical discharge machining (EDM) wire, garnet water jet, sheer, and mill. Surface contamination of the samples was measured before and after buffered chemical polish (BCP) by secondary ion mass spectroscopy (SIMS), energy dispersive spectroscopy (EDS), and by measuring relative resistivity ratios (RRRs). Surface morphology was examined with a digital microscope, a surface profilometer and scanning electron microscope (SEM). It was found that all techniques altered the top 3-5 micrometers of the Nb. It was also found by SIMS that the water jet technique introduced the most hydrogen and oxygen to the Nb in the first 2.5 micrometers of the sample. The EDM wire cutting technique introduced the least amount of hydrogen to the Nb. After 5 micrometers were etched away by BCP on the various samples, no contaminants were found except on the water jet cut samples. Even after 20 micrometers of Nb removal silica could be seen on the surface with EDS. The water jet produced the roughest surface with 50-100 micrometer deep pits made from embedded garnet particles. It was found that the garnet water jet damages the surface to the point where even the typical 120 micrometers of BCP etching may not remove all the defects created.

  10. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  11. Bismuth-based electrochemical stripping analysis

    DOEpatents

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  12. Irradiation testing of a niobium-molybdenum developmental thermocouple

    SciTech Connect

    Knight, R.C.; Greenslade, D.L.

    1991-10-01

    A need exists for a radiation-resistant thermocouple capable of monitoring temperatures in excess of the limits of the chromel/alumel system. Tungsten/rhenium and platinum/rhodium thermocouples have sufficient temperature capability but have proven to be unstable because of irradiation-induced decalibration. The niobium/molybdenum system is believed to hold great potential for nuclear applications at temperatures up to 2000 K. However, the fragility of pure niobium and fabrication problems with niobium/molybdenum alloys have limited development of this system. Utilizing the Fast Flux Test Facility, a developmental thermocouple with a thermoelement pair consisting of a pure molybdenum and a niobium-1%zirconium alloy wire was irradiated fro 7200 hours at a temperature of 1070 K. The thermocouple performed flawlessly for the duration of the experiment and exhibited stability comparable to a companion chromel/alumel unit. A second thermocouple, operating at 1375 K, is currently being employed to monitor a fusion materials experiment in the Fast Flux Test Facility. This experiment, also scheduled for 7200 hours, will serve to further evaluate the potential of the niobium-1%zirconium/molybdenum thermoelement system. 7 refs., 7 figs.

  13. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  14. Diffusion bonding of copper to niobium

    NASA Astrophysics Data System (ADS)

    Wagner, Adrian R.

    Processes used to join metal to ceramic at low temperatures have proven to be inefficient because multiple brazing cycles with different brazing temperatures and braze filler metals are required. Even though this is reproducible and robust, it is not ideal due to the manufacturing time and cost associated with multiple brazing cycles. A more efficient and cost effective process is to utilize the diffusion bonding technique to join different metallic layers prior to joining the entire ceramic assembly in one brazing cycle. In this study, the diffusion bonding of copper to niobium was examined. To the author's knowledge, the diffusion bonding of Cu to Nb has not been researched, and the diffusion of Cu into Nb or Nb into Cu has not been observed. A series of diffusion bonding experiments were conducted to determine the optimal bonding time, temperature, and pressure for the Cu-Nb system. The diffusion bonded samples were evaluated using mechanical testing and microscopy. Results from characterization indicate that diffusion of Nb into Cu occurs, and a robust bond with no interfacial voids is formed using different combinations of bonding parameters. The diffusion of Nb into Cu and with failure occurring outside the diffusion bonded region during all mechanical testing indicate that Cu can be bonded to Nb via the diffusion bonding technique.

  15. Synthesis and characterization of monometallic niobium carbides and bimetallic niobium carbides using hafnium, titanium, and tantalum

    NASA Astrophysics Data System (ADS)

    Watts, Cassandra Jean

    As fossil fuels are rapidly depleting there is an enormous push for the development of new forms of energy based on renewable resources. Proton Exchange Membrane (PEM) fuel cells are one possible solution, but are constrained by the necessity of the platinum catalyst to initiate the oxygen reduction reaction (ORR). Transition metal carbides, like tungsten and molybdenum carbide, have shown catalytic properties that resemble platinum. This project seeks to synthesize through a low temperature solid state method with a LiCl:KCl:KF salt flux monometallic niobium carbides (NbC, Nb4C3, and Nb2C) and the bimetallic niobium carbides HfNbC, TiNbC, and TaNbC. The synthesized materials are characterized using XRD, SEM, and EDS. The results showed that a pure single phase of NbC and Nb4C 3, and a semi alloyed phase of TiNbC2 are obtainable. The remaining systems yielded phase separated carbide systems and are dominated by irreproducibility or oxidization.

  16. Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; Inoue, Hisashi; Kim, Minu; Merz, Tyler A.; Bell, Christopher; Hikita, Yasuyuki; Xu, Ruqing; Liu, Wenjun; Vailionis, Arturas; Hwang, Harold Y.; Moler, Kathryn A.

    2016-11-01

    Strontium titanate is a low-temperature, non-Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO3 embedded in undoped SrTiO3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconducting transition temperature Tc≳ 10 % higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects Tc. Our results suggest that the anisotropic dielectric properties of SrTiO3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.

  17. Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO3

    DOE PAGES

    Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; ...

    2016-11-28

    Strontium titanate is a low-temperature, non–Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO3 embedded in undoped SrTiO3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconducting transition temperaturemore » Tc ≳ 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects Tc. Finally, our results suggest that the anisotropic dielectric properties of SrTiO3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.« less

  18. Sulfuric acid-methanol electrolytes as an alternative to sulfuric-hydrofluoric acid mixtures for electropolishing of niobium

    SciTech Connect

    Zhao, Xin; Corcoran, Sean G.; Kelley, Michael J.

    2011-06-01

    Attainment of the greatest possible interior surface smoothness is critical to meeting the performance demands placed upon niobium superconducting radiofrequency (SRF) accelerator cavities by next generation projects. Electropolishing with HF-H{sub 2}SO{sub 4} electrolytes yields cavities that meet SRF performance goals, but a less-hazardous, more environmentally-friendly process is desirable. Reported studies of EP on chemically-similar tantalum describe the use of sulfuric acid-methanol electrolytes as an HF-free alternative. Reported here are the results of experiments on niobium samples with this electrolyte. Voltammetry experiments indicate a current plateau whose voltage range expands with increasing acid concentration and decreasing temperature. Impedance spectroscopy indicates that a compact salt film is responsible for the current plateau. Equivalent findings in electropolishing chemically-similar tantalum with this electrolyte were interpreted due to as mass transfer limitation by diffusion of Ta ions away from the anode surface. We infer that a similar mechanism is at work here. Conditions were found that yield leveling and brightening comparable to that obtained with HF-H{sub 2}SO{sub 4} mixtures.

  19. Finite-element simulation of the performance of a superconducting meander structure shielding for a cryogenic current comparator

    NASA Astrophysics Data System (ADS)

    De Gersem, H.; Marsic, N.; Müller, W. F. O.; Kurian, F.; Sieber, T.; Schwickert, M.

    2016-12-01

    The ferrite core and measuring coil of a cryogenic current comparator have to be shielded against external magnetic fields by a compact, efficient meander structure made of superconducting niobium. A design with minimized material and production costs is only feasible when a highly accurate magnetic field simulator is available. 3D field models become prohibitively large. The cylindrical symmetry of the devices motivates to develop a quasi-3D field solver, exploiting the symmetry while still capable of representing 3D field distributions.

  20. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  1. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  2. Oxidation resistance of composite silicide coatings on niobium

    SciTech Connect

    Gloshko, P.I.; Kurtsev, N.F.; Lisichenko, V.I.; Nadtoka, V.N.; Petrenko, M.I.; Zmii, V.I.

    1986-07-01

    This paper reports the oxidation of NbSi/sub 2/-MoSi/sub 2/ composite silicide coatings produced by diffusive siliconizing of molybdenum films on a niobium surface. Molybdenum-coated niobium was siliconized and an x-ray microspectral analysis of the composite silicide coating showed the phase composition to be an ca 80-um-thick outer molybdenum disilicide film with a characteristic coarsely crystalline columnar structure, and inner ca 20-um film of niobium disilicide consisting of the tiny columnar crystals, and a substrate/coating interface comprising a thin, 2-3 um film of lower silicide, i.e., Nb/sub 5/Si/sub 3/. The average grain sizes, unit cell parameters, and x-ray determined densities of the Mo films obtained by various methods are shown.

  3. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  4. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  5. Effect of superconductivity on near-field radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Králík, Tomáš; Musilová, Věra; Fořt, Tomáš; Srnka, Aleš

    2017-02-01

    Near-field (NF) radiative heat transfer (RHT) over vacuum space between bodies can exceed the far-field (FF) heat transfer by orders of magnitude. A large portion of the heat flux transferred between metals in NF is at very low frequencies, much lower than in FF. Thus a strong effect of superconductivity on NF RHT can be expected even at radiation temperatures above the superconducting critical temperature, where nearly no effect in FF is observed. We have examined experimentally the RHT between plane-parallel surfaces of niobium. Up to a fivefold decrease in NF heat flux was observed when the colder sample passed from the normal to the superconducting state. We found that a maximum decrease occurs at sample spacings ten times shorter than the spacing of crossover between the NF and FF heat flux, being ≈1000/T (μm). Applying Polder's and Van Hove's relations for NF RHT and BCS theory of superconductivity, we explain this effect and show the roles of transversal electric and magnetic modes in the steep decrease of heat flux below the critical temperature and the subsequent flux saturation at low temperatures.

  6. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    SciTech Connect

    Nakai, H.; Hara, K.; Honma, T.; Hosoyama, K.; Kojima, Y.; Nakanishi, K.; Kanekiyo, T.; Morita, S.

    2014-01-29

    Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium, which can generate high gradient acceleration field. Since the operation temperature of these cavities is selected to be 2 K, we have developed two 2 K superfluid helium cryogenic systems for stable operation of superconducting RF cavities for each of STF and cERL. These two 2 K superfluid helium cryogenic systems are identical in principle. Since the operation mode of the cavities is different for STF and cERL, i.e. the pulse mode for STF and the continuous wave mode for cERL, the heat loads from the cavities are quite different. The 2 K superfluid helium cryogenic systems mainly consists of ordinary helium liquefiers/refrigerators, 2 K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. The 2 K refrigerators and the high-performance transfer lines are designed by KEK. Some superconducting RF cavity cryomodules have been already connected to the 2 K superfluid helium cryogenic systems for STF and cERL respectively, and cooled down to 2 K successfully.

  7. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  8. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  9. Comparison between hot spot modeling and measurement of a superconducting hot electron bolometer mixer at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Miao, Wei; Delorme, Yan; Feret, Alexandre; Lefevre, Rolland; Lecomte, Benoit; Dauplay, Fred; Krieg, Jean-Michel; Beaudin, Gerard; Zhang, Wen; Ren, Yuan; Shi, Sheng-Cai

    2009-11-01

    This paper presents the modeling and measurement of a quasioptical niobium nitride superconducting hot electron bolometer mixer at submillimeter wavelengths. The modeling is performed with a distributed hot spot model which is based on solving a heat balance equation for electron temperature along the superconducting microbridge. Particular care has been taken during the modeling concerning the temperature-dependent resistance and the bias current dependence of the critical temperature of the device. The dc and mixing characteristics of this mixer have been computed and we have observed a quite good match between the predicted and the measured results for both dc characteristics and mixing performances at submillimeter wavelengths.

  10. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOEpatents

    Ciszek, T.F.

    1994-04-19

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8], is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate. 8 figures.

  11. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOEpatents

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  12. Niobium-Matrix-Composite High-Temperature Turbine Blades

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Heng, Sangvavann; Harding, John T.

    1995-01-01

    High-temperture composite-material turbine blades comprising mainly niobium matrices reinforced with refractory-material fibers being developed. Of refractory fibrous materials investigated, FP-AL(2)0(3), tungsten, and polymer-based SiC fibers most promising. Blade of this type hollow and formed in nearly net shape by wrapping mesh of reinforcing refractory fibers around molybdenum mandrel, then using thermal-gradient chemical-vapor infiltration (CVI) to fill interstices with niobium. CVI process controllable and repeatable, and kinetics of both deposition and infiltration well understood.

  13. PROCESS OF PRODUCING A NIOBIUM-TIN COMPOUND

    DOEpatents

    Zegler, S.T.; Darby, J.B. Jr.

    1963-04-01

    This patent deals with a process of preparing pure Nb/sub 3/Sn. The process comprises heating powders of niobium and excess tin to 900 to 1000 deg C, whereby niobium reacts with the molten tin under the formation of Nb/sub 3/Sn; cooling and powdering the product and immersing the powder in concentrated hydrochloric acid for removal of excessive tin; separating the Nb/sub 3/Sn, rinsing and drying it and sintering it in an inert atmosphere at 900 to 1300 deg C. (AEC)

  14. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGES

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; ...

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.« less

  15. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1991-04-01

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchangers. The team has begun a heat exchanger stress analysis; however, they have been concentrating the bulk of their analytical energies on a computational fluid dynmaics (CFD) model to determine the location and magnitude of shell-side flow maldistribution which decreases heat exchanger effectiveness. DSI received 120 fineblanked tubestrips from Southern Fineblanking (SFB) for manufacturing process development. Both SFB and NIST provided inspection reports of the tubestrips. DSI completed the tooling required to encapsulate a tube array and press tubestrips on the array. Pressing the tubestrips on tube arrays showed design deficiencies both in the tubestrip design and the tooling design. DSI has a number of revisions in process to correct these deficiencies. The research effort has identified a more economical fusible alloy for encapsulating the tube array, and determined the parameters required to successfully encapsulate the tube array with the new alloy. A more compact MTS heat exchanger bank was designed.

  16. Superconductivity in Medicine

    NASA Astrophysics Data System (ADS)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  17. Incommensurate Magnetism in FeAs Strips: Neutron Scattering from CaFe4As3

    DTIC Science & Technology

    2010-12-21

    numbers: 75.30.Fv, 64.70.Rh, 61.05.F-, 71.18.+y The recent discovery of superconductivity (SC) in iron pnictides [1] has opened a new chapter in SC research...2, 3] contains interpenetrating FeAs strips, which –as spin-ladders in copper oxides – may provide unique insight into electronic correlations of the...square lattice plane. Similar to the parent compounds of the 1111- and 122- type superconductors, CaFe4As3 is not superconducting down to 1.8 K [2

  18. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  19. Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium-niobium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Rakhimov, R. R.; Turney, V. J.; Jones, D. E.; Dobryakov, S. N.; Borisov, Yu. A.; Prokof'ev, A. I.; Aleksandrov, A. I.

    2003-04-01

    Electron paramagnetic resonance (EPR) spectra of Nb4+ ions in Li2O-Nb2O5-P2O5 glasses with different composition of oxide components have been investigated. The EPR spectrum shape analysis of Nb4+ (electron configuration 4d1, electron spin S=1/2) reveals the formation of triplet niobium binuclear complex (total electron spin S=1) in glasses. The amount of Nb4+ ions in glasses reversibly changes with temperature and is explained via the mechanism of electron hopping between niobium ions in clusters. The dependence of the amount of Nb4+ ions upon Li2O content has a maximal character, which implies that small amounts of Li+ ions stabilize the Nb4+ pairs, but cause their disproportionation at higher concentrations of Li+ ions in the glass. Quantum mechanical analysis of electronic and spin states of binuclear niobium clusters has been performed on model binuclear complexes, (HO)3Nb-O-Nb(OH)3, [(HO)3Nb-O-Nb(OH)3]Li+, and [(HO)3Nb-O-Nb(OH)3](Li+)2 that exhibit the reversible disproportionation reaction Nb4+-O-Nb4+⇔Nb3+-O-Nb5+. Triplet states of these complexes (total electron spin S=1) have lower energies than singlet states (S=0), and Li+ ions stabilize the binuclear niobium complex. We have found that electron spin densities on niobium ions change depending upon the shift of the bridging oxygen atom. Application of this theoretical modeling to the analysis of the experimental EPR spectrum in Li2O-Nb2O5-P2O5 glass concludes noncentrosymmetric structure of binuclear niobium complex with ˜0.1 Å offset of the bridging oxygen atom towards one Nb atom.

  20. Note: Control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron

    SciTech Connect

    Bhattacharyya, T. K. Pal, G.

    2015-02-15

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  1. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  2. The Dark Side of the Moebius Strip.

    ERIC Educational Resources Information Center

    Schwarz, Gideon E.

    1990-01-01

    Discussed are various models proposed for the Moebius strip. Included are a discussion of a smooth flat model and two smooth flat algebraic models, some results concerning the shortest Moebius strip, the Moebius strip of least elastic energy, and some observations on real-world Moebius strips. (KR)

  3. HIGH RESOLUTION AND FAST SCANNING SQUID BASED NON-DESTRUCTIVE INSPECTION SYSTEM OF NIOBIUM SHEETS FOR SRF CAVITIES

    SciTech Connect

    SHU, QUAN-SHENG

    2008-06-08

    Applications in high energy physics accelerators and other fields require the use of thousands of superconducting RF (SRF) cavities that are made of high purity Nb material and the purity of niobium is critical for these cavities to reach the highest accelerating fields. Tantalum is the most prolific of metal inclusions, which can cause thermal breakdown and prevent the cavities from reaching their theoretical performance limits of 45-50 MV/m, and DOE Labs are searching for a technology that could detect small impurities in superconducting Nb sheets reaching the highest possible accelerating fields. The proposed innovative SQUID-based Nondestructive system can scan Niobium sheets used in the manufacturing of SRF cavities with both high speed and high resolution. A highly sensitive SQUID system with a gradiometer probe, non-magnetic dewar, data acquisition system, and a scanning system will be developed for fast detection of impurities in planar Nb sheets. In phase I, we will modify our existing SQUID-based eddy current system to detect 100 micron size Ta defects and a great effort will focus on achieving fast scanning of a large number of niobium sheets in a shorter time and with reasonable resolution. An older system operated by moving the sample 1 mm, stopping and waiting for 1-2 seconds, then activating a measurement by the SQUID after the short settle time is modified. A preliminary designed and implemented a SQUID scanning system that is fast and is capable of scanning a 30 cm x 30 cm Nb sheet in 15 minutes by continuously moving the table at speeds up to 10 mm/s while activating the SQUID at 1mm interval is modified and reached the Phase I goal of 100mm resolution. We have successfully demonstrated the feasibility that a fast speed SQUID scanner without sacrificing the resolution of detection can be done, and a data acquisition and analysis system is also preliminary developed. The SQUID based scanner will help reach the highest accelerating field in SRF

  4. Thermo-electromagnetic properties of a magnetically shielded superconductor strip: theoretical foundations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Ma, G. T.; Rauh, H.

    2013-10-01

    Numerical simulations of thermo-electromagnetic properties of a thin type-II superconductor strip surrounded by open cavity soft-magnetic shields and exposed to an oscillating transverse magnetic field are performed by resorting to the quasistatic approximation of a vector potential approach in conjunction with the classical description of conduction of heat. The underlying definition of the superconducting constituent makes use of an extended ‘smoothed’ Bean model of the critical state, which includes the field and temperature dependence of the induced supercurrent as well. The delineation of the magnetic shields exploits the reversible-paramagnet approximation in the Langevin form, as appropriate for magnetizations with narrow Z-type loops, and considers induced eddy currents too. The coolant is envisaged as acting like a bath that instantly takes away surplus heat. Based on the Jacobian-free Newton-Krylov approach and the backward Euler scheme, the numerical analysis at hand is tailored to the problem of a high width/thickness aspect ratio of the superconductor strip. Assigning representative materials characteristics and conditions of the applied magnetic field, the main findings for a practically relevant magnet configuration include: (i) an overall rise of the maximum temperature of the superconductor strip tending to saturation in a superconducting thermo-electromagnetic steady state above the operating temperature, magnetic shielding lending increased stability and smoothing the temperature profile along the width of the superconductor strip; (ii) a washing out of the profile of the magnetic induction and a lowering of its strength, a relaxation of the profile of the supercurrent density and an increase of its strength, a tightening of the power loss density and a reduction of its strength, all inside the superconductor strip. The hysteretic ac loss suffered by the superconductor strip is seen to be cut back or, at most, to converge on that of an

  5. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    SciTech Connect

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  6. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    DOE PAGES

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; ...

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  7. Carbon monoxide tolerant platinum electrocatalysts on niobium doped titania and carbon nanotube composite supports

    NASA Astrophysics Data System (ADS)

    Rigdon, William A.; Huang, Xinyu

    2014-12-01

    In the anode of electrochemical cells operating at low temperature, the hydrogen oxidation reaction is susceptible to poisoning from carbon monoxide (CO) which strongly adsorbs on platinum (Pt) catalysts and increases activation overpotential. Adsorbed CO is removed by oxidative processes such as electrochemical stripping, though cleaning can also cause corrosion. One approach to improve the tolerance of Pt is through alloying with less-noble metals, but the durability of alloyed electrocatalysts is a critical concern. Without sacrificing stability, tolerance can be improved by careful design of the support composition using metal oxides. The bifunctional mechanism is promoted at junctions of the catalyst and metal oxides used in the support. Stable metal oxides can also form strong interactions with catalysts, as is the case for platinum on titania (TiOx). In this study, niobium (Nb) serves as an electron donor dopant in titania. The transition metal oxides are joined to functionalized multi-wall carbon nanotube (CNT) supports in order to synthesize composite supports. Pt is then deposited to form electrocatalysts which are characterized before fabrication into anodes for tests as an electrochemical hydrogen pump. Comparisons are made between the control from Pt-CNT to Pt-TiOx-CNT and Pt-Ti0.9Nb0.1Ox-CNT in order to demonstrate advantages.

  8. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  9. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    NASA Astrophysics Data System (ADS)

    Crawford, Anthony C.

    2017-03-01

    A deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  10. Mechanical properties of niobium radio-frequency cavities

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; ...

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysismore » of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.« less

  11. Mechanical properties of niobium radio-frequency cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao; Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W.

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.

  12. Process of forming niobium and boron containing titanium aluminide

    SciTech Connect

    Huang, S.C.

    1992-01-21

    This patent describes a method of forming a composition of titanium, aluminum, niobium, and boron of higher ductility comprising casting the following approximate composition: Ti{sub 34-50.5}Al{sub 43-48}Nb{sub 6-16}B{sub 0.5-2.0} and thermomechanically working the cast composition.

  13. The compression behavior of niobium alloyed {gamma}-titanium aluminides

    SciTech Connect

    Paul, J.D.H.; Appel, F.; Wagner, R.

    1998-02-13

    The underlying mechanisms behind the reported high strength of titanium aluminide alloys containing a large addition of niobium has been investigated by determining the flow stresses and activation parameters of plastic deformation. It has been found that alloys such as Ti-45Al-10Nb (at.%) and Ti-45Al-5Nb have 1.25% flow stress values in compression of > 800 MPa at room temperature and > 500 MPa at 1,173 K. When compared with values from a more conventional alloy, Ti-47Al-2Cr-0.2Si, they represent a considerable increase in strength. However, the activation volumes after 1.25% deformation are very similar to those of conventional alloys, particularly up to 973 K. This suggests that athermal dislocation mechanisms are responsible for the increased flow stress of the niobium containing alloys. By comparing the properties of the niobium containing alloys with different binary alloys it has been shown that the high strength is solely a result of the reduced aluminum content and that niobium plays no role in strengthening or work hardening.

  14. Redox Equilibrium of Niobium in Calcium Silicate Base Melts

    NASA Astrophysics Data System (ADS)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus

    2010-10-01

    The oxidation state of niobium has been determined at 1873 K (1600 °C) in CaO-SiO2-NbO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93 and 1.10, and 5.72 to 11.44 pct Nb2O5 (initial). The slag samples were equilibrated with gas phases of controlled oxygen pressure, then quenched to room temperature and analyzed chemically. The niobium is mainly pentavalent with small amounts in the tetravalent state. It was found that the Nb5+/Nb4+ ratio increases with oxygen pressure at a constant CaO/SiO2 ratio and constant content of total niobium, closely according to the ideal law of mass action, which is proportional to {text{p}}_{{{text{O}}2 }}^{1/4} . The ratio also increases with total niobium content, and it seems to have a maximum at a basicity of about 0.93. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  15. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    DOE PAGES

    Crawford, Anthony C.

    2017-01-04

    In this study, a deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  16. Enhanced Characterization of Niobium Surface Topography

    SciTech Connect

    Chen Xu, Hui Tian, Charles Reece, Michael Kelley

    2011-12-01

    Surface topography characterization is a continuing issue for the Superconducting Radio Frequency (SRF) particle accelerator community. Efforts are underway to both to improve surface topography, and its characterization and analysis using various techniques. In measurement of topography, Power Spectral Density (PSD) is a promising method to quantify typical surface parameters and develop scale-specific interpretations. PSD can also be used to indicate how chemical processes modifiesy the roughnesstopography at different scales. However, generating an accurate and meaningful topographic PSD of an SRF surface requires careful analysis and optimization. In this report, polycrystalline surfaces with different process histories are sampled with AFM and stylus/white light interferometer profilometryers and analyzed to indicate trace topography evolution at different scales. evolving during etching or polishing. Moreover, Aan optimized PSD analysis protocol will be offered to serve the SRF surface characterization needs is presented.

  17. Effects of the Thickness of Niobium Surface Oxide Layers on Field Emission

    SciTech Connect

    A.T. Wu, S. Jin, J.D. Mammosser, R.A. Rimmer, X.Y. Lu, K. Zhao

    2011-09-01

    Field emission on the inner surfaces of niobium superconducting radio frequency cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results* seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3 nm up to 460 nm. A home-made scanning field emission microscope was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The SFEM experimental results were analyzed in terms of surface morphology and oxide thickness of Nb samples and chemical composition and geographic shape of the emitters. A model based on the classic electromagnetic theory was developed trying to understand the experimental results. Possibly implications for Nb SRF cavity applications from this study will be discussed.

  18. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    SciTech Connect

    Thomas Gnäupel-Herold; Ganapati Rao Myneni; Richard E. Ricker

    2007-06-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2..3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (< 100 MPa) and the large thickness (compared to typical thicknesses in sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  19. Etching of Niobium in an Argon-Chlorine Capacitively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Radovanov, Svetlana; Samolov, Ana; Upadhyay, Janardan; Peshl, Jeremy; Popovic, Svetozar; Vuskovic, Leposava; Applied Materials, Varian Semiconductor Team; Old Dominion University Team

    2016-09-01

    Ion assisted etching of the inner surfaces of Nb superconducting radio frequency (SRF) cavities requires control of incident ion energies and fluxes to achieve the desired etch rate and smooth surfaces. In this paper, we combine numerical simulation and experiment to investigate Ar /Cl2 capacitively coupled plasma (CCP) in cylindrical reactor geometry. Plasma simulations were done in the CRTRS 2D/3D code that self-consistently solves for CCP power deposition and electrostatic potential. The experimental results are used in combination with simulation predictions to understand the dependence of plasma parameters on the operating conditions. Using the model we were able to determine the ion current and flux at the Nb substrate. Our simulations indicate the relative importance of the current voltage phase shift and displacement current at different pressures and powers. For simulation and the experiment we have used a test structure with a pillbox cavity filled with niobium ring-type samples. The etch rate of these samples was measured. The probe measurements were combined with optical emission spectroscopy in pure Ar for validation of the model. The authors acknowledge Dr Shahid Rauf for developing the CRTRS code. Support DE-SC0014397.

  20. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    NASA Astrophysics Data System (ADS)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  1. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    SciTech Connect

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I–V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson–Superfish and Solidworks respectively. Finally, with the optimal cathode shape, BEP shows a much faster polishing rate of ~2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  2. Magnetic Nanoparticle Characterization Using Nano-SQUID based on Niobium Dayem Bridges

    NASA Astrophysics Data System (ADS)

    Russo, R.; Esposito, E.; Granata, C.; Vettoliere, A.; Russo, M.; Cannas, C.; Peddis, D.; Fiorani, D.

    Magnetic nano-sensors based on niobium dc SQUID (Superconducting Quantum Interference Device) for nanoparticle characterization are presented. The SQUIDs consists of two Dayem bridges of 90 nm x 250 nm and loop area of 4, 1 and 0.55 μm2. The SQUIDs were designed to have a hysteretic current-voltage characteristic in order to work as a magnetic flux-current transducer. Current-voltage characteristics, critical current as a function of the external magnetic field and switching current distributions were performed at liquid helium temperature. A critical current modulation of about 20% and a current-magnetic flux transfer coefficient (responsivity) of 30 μA/Φ0 have been obtained, resulting in a magnetic flux resolution better than 1 mΦ0. In order to show the effectiveness of sensor for nanomagnetism applications, we performed measurements with and without magnetic nanoparticles on the SQUID loop applying a magnetic field parallel to the SQUID plane. In this configuration the magnetic flux coupled to the SQUID is mainly due to the presence of magnetic nanoparticles. The magnetic nanoparticles can be easily detected and their response to magnetic field studied. Measurements has been performed on Fe3O4 nanoparticles prepared by thermal decomposition method with a nominal particle size of 8 nm. Some examples of magnetization measurements were recorded at low temperature after Zero Field Cooling.

  3. Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers

    DOEpatents

    Jablonski, Paul D.; Larbalestier, David C.

    1993-01-01

    Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire. The resulting superconducting wire has second phase flux pinning centers distributed therein which provide enhanced J.sub.ct due to the flux pinning effects.

  4. TOF-SIMS Analysis of Hydrogen in Niobium, From 160 deg. K to 475 deg. K

    SciTech Connect

    P. Maheshwari, A.D. Batchelor, D.P. Griffis, F.A. Stevie, C. Zhou, G. Ciovati, R. Myneni, M. Rigsbee

    2011-07-25

    Niobium (Nb) is the material of choice for superconducting radio frequency (SRF) cavities due to its high critical temperature and critical magnetic field. Interstitial impurity elements such as H directly influence the efficiency of these cavities. Quantification of H in Nb is difficult since H is extremely mobile in Nb with a very high diffusion coefficient even at room temperature. In the presented work, Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) was used to characterize H in Nb over a wide temperature range (160°K to 475°K) in situ to check for changes in mobility. Multiple experiments showed that as the specimen temperature is decreased below 300 °K, the H/Nb intensity changes by first increasing and then decreasing drastically at temperatures below 200°K. As specimen temperature is increased from 300°K to 450°K, the H/Nb intensity decreases. Remarkably, the H intensity with respect to Nb increases with time at 475°K (approximately 200°C). Correlation between this data and the H-Nb phase diagram appears to account for the H behaviour.

  5. High sensitivity niobium parametric transducer for the Mario Schenberg gravitational wave detector

    NASA Astrophysics Data System (ADS)

    de Paula, L. A. N.; Ferreira, E. C.; Carvalho, N. C.; Aguiar, O. D.

    2015-03-01

    Parametric transducers can work below the quantum limit of sensitivity for resonant mass gravitational wave detectors. This makes them a promising alternative for electromechanical transductance for such detectors. These transducers consist of a reentrant superconducting niobium cavity coupled to a mass-spring system with three mechanical modes. These cavities have a central post responsible for creating a narrow axial gap between its top and the cavity wall, which is a resonant membrane. Their displacement sensitivity (df/dx) increases as the gap spacing decreases. However, this is not a linear relationship and the dimensioning of the cavity becomes critical if the gap is of the order of a few microns. In this paper, we describe how to obtain a gap spacing of ~ 3 μ m and also the development of parametric transducers that will be employed in the coming experimental runs of the Schenberg gravitational wave antenna. Mechanical thinning methods were performed followed by mechanical and electrical frequency measurements to tune the device to operate at the required frequencies. The main results present better frequency stability and an improvement of df/dx by one order of magnitude higher than the preceding models. These results will allow us to reach the quantum limit of detector sensitivity of ~ 10-22 Hz-1/2 in the near future, making it possible to search for gravitational waves around 3.2 kHz.

  6. Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

    PubMed Central

    Ottaviani, Ivano; Cirillo, Matteo; De Matteis, Fabio; Francini, Roberto; Merlo, Vittorio; Davoli, Ivan

    2017-01-01

    We studied the growth and oxidation of niobium nitride (NbN) films that we used to fabricate superconductive tunnel junctions. The thin films were deposited by dc reactive magnetron sputtering using a mixture of argon and nitrogen. The process parameters were optimized by monitoring the plasma with an optical spectroscopy technique. This technique allowed us to obtain NbN as well as good quality AlN films and both were used to obtain NbN/AlN/NbN trilayers. Lift-off lithography and selective anodization of the NbN films were used, respectively, to define the main trilayer geometry and/or to separate electrically, different areas of the trilayers. The anodized films were characterized by using Auger spectroscopy to analyze compounds formed on the surface and by means of a nano-indenter in order to investigate its mechanical and adhesion properties. The transport properties of NbN/AlN/NbN Josephson junctions obtained as a result of the above described fabrication process were measured in liquid helium at 4.2 K. PMID:28382243

  7. Oxidation Behavior of Binary Niobium Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Corey, James L.

    1960-01-01

    This investigation concludes a study to determine the effects of up to 25 atomic percent of 55 alloying additions on the oxidation characteristics of niobium. The alloys were evaluated by oxidizing in an air atmosphere for 4 hours at 1000 C and 2 hours at 1200 C. Titanium and chromium improved oxidation resistance at both evaluation conditions. Vanadium and aluminum improved oxidation resistance at 1000 C, even though the V scale tended to liquefy and the Al specimens became brittle and the scale powdery. Copper, cobalt, iron, and iridium improved oxidation resistance at 1200 C. Other investigations report tungsten and molybdenum are protective up to about 1000 C, and tantalum at 1100 C. The most important factor influencing the rate of oxidation was the ion size of the alloy additions. Ions slightly smaller than the Nb(5+) ion are soluble in the oxide lattice and tend to lower the compressive stresses in the bulk scale that lead to cracking. The solubility of the alloying addition also depends on the valence to some extent. All of the elements mentioned that improve the oxidation resistance of Nb fit this size criterion with the possible exception of Al, whose extremely small size in large concentrations would probably lead to the formation of a powdery scale. Maintenance of a crack-free bulk scale for as long as possible may contribute to the formation of a dark subscale that ultimately is rate- controlling in the oxidation process. The platinum-group metals, especially Ir, appear to protect by entrapment of the finely dispersed alloying element by the incoming Nb2O5 metal-oxide interface. This inert metallic Ir when alloyed in a sufficient amount with Yb appears to give a ductile phase dispersed in the brittle oxide. This scale would then flow more easily to relieve the large compressive stresses to delay cracking. Complex oxide formation (which both Ti and Zr tend to initiate) and valence effects, which probably change the vacancy concentration in the scale

  8. Electromechanical responses of Cu strips

    NASA Astrophysics Data System (ADS)

    Zhao, Guangfeng; Liu, Ming; An, Zhinan; Ren, Yang; Liaw, Peter K.; Yang, Fuqian

    2013-05-01

    Electrical-thermal-mechanical behavior of materials plays an important role in controlling the structural integrity of electromechanical structures of small volumes. The electromechanical response of Cu strips was studied by passing an electric current through the strips with electric current densities in the range of 12.34 to 29.60 kA/cm2. The passage of the electric current of high current densities introduced electrical-thermal-mechanical interactions, which caused grain growth and grain rotation in both the melted region and heat-affected zone. The electrothermal interactions led to the elastoplastic buckling of the Cu strips with the maximum deflection of the Cu strips increasing with the increase of the electric current density. The total strain is a quadratic function of the electric current density. There was a quasi-steady state in which the electric resistance of the Cu strips linearly increased with time before the occurrence of electric fusing. A power-law relation was used to describe the dependence of the time-to-failure (electric fusing) on the electric current density. For the region of relatively low current densities, the current exponent ranged from 17.9 to 44.6, and for the region of high current densities, the current exponent ranged from 2.5 to 5.2. The current exponent for relatively low current densities decreased with increasing the length of Cu strips, showing size-dependence. Finite element analyses were performed to analyze the current-induced deflection of a Cu strip. The simulation results showed that the maximum deflection for the electric current density larger than or equal to 5 kA/cm2 is a linear function of the current density in agreement with the experimental observation.

  9. Highly flexible, mechanically robust superconducting wire consisting of NbN-carbon-nanotube nanofibril composites

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyun; Kang, Haeyong; Kim, Joonggyu; Lee, Young Hee; Suh, Dongseok

    A flexible superconducting fiber is prepared by twisting carbon nanotube (CNT) sheets coated with sputter-deposited niobium nitride (NbN) layer to form the shape of yarn. Twisted CNT yarn, which has been extensively studied due to its high flexibility as well as excellent mechanical properties, and NbN, which is a superconducting material with high transition temperature (Tc) and critical magnetic field (Hc), are combined together by the deposition of NbN layer on free-standing CNT-sheet substrate followed by the biscrolling process. We tried many experimental conditions to investigate the superconducting properties of NbN-CNT yarn as a function of NbN thickness and number of CNT-sheet layers, and found out that the superconducting property of NbN on CNT-sheet can be comparable to that of NbN thin film on the normal solid substrate. In addition, the superconducting property survived even under the condition of severe mechanical deformation such as knotting. These results show the potential application of this technology as a large-scale fabrication method of flexible, mechanically robust, high performance superconducting wire. This work is supported by the Institute for Basic Science (IBS-R011-D1), and by the National Research Foundation (BSR-2013R1A1A1076063) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea.

  10. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  11. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  12. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  13. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  14. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  15. Superconducting optical modulator

    NASA Astrophysics Data System (ADS)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  16. Restitution of enamel after interdental stripping.

    PubMed

    Lundgren, T; Milleding, P; Mohlin, B; Nannmark, U

    1993-01-01

    This paper studies the effect of interdental stripping on the enamel surface and evaluates methods to restitute the treated surface. Extracted teeth mounted in a semielastic material were subjected to stripping by different kinds of steel strips. The treated enamel surfaces were then polished in several different ways. The effects were studied by SEM and profilometry. It was concluded that the coarsest strips produced irregularities of such a magnitude that polishing had very limited effect. Polishing starting with coarse polishing strips followed by gradually finer gave the best result. An increase in number of strokes and use of all grades of polishing strips slightly improved the result.

  17. Precise Frequency Measurements Using a Superconducting Cavity Stabilized Oscillator

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Yeh, N.-C.; Jiang, W.; Anderson, V. L.; Asplund, N.

    1999-01-01

    Many physics experiments call on improved resolution to better define the experimental results, thus improving tests of theories. Modern microwave technology combined with high-Q resonators can achieve frequency readout and control with resolutions up to a part in 10(exp 18). When the physical quantity in question in the experiment can be converted to a frequency or a change in frequency, a high-stability microwave oscillator can be applied to obtain state-of-the-art precision. In this work we describe the overall physical concepts and the required experimental procedures for optimizing a high-resolution frequency measurement system that employs a high-Q superconducting microwave cavity and a low-noise frequency synthesizer. The basic approach is to resolve the resonant frequencies of a high-Q (Q > 10(exp 10)) cavity to extremely high precision (one part in 10(exp 17)- 10(exp 18)). Techniques for locking the synthesizer frequency to a resonant frequency of the superconducting cavity to form an ultra-stable oscillator are described. We have recently set up an ultra-high-vacuum high-temperature annealing system to process superconducting niobium cavities, and have been able to consistently achieve Q > 10(exp 9). We have integrated high-Q superconducting cavities with a low-noise microwave synthesizer in a phase-locked-loop to verify the frequency stability of the system. Effects that disturb the cavity resonant frequency (such as the temperature fluctuations and mechanical vibrations) and methods to mitigate those effects are also considered. Applicability of these techniques to experiments will be discussed, and our latest experimental progress in achieving high-resolution frequency measurements using the superconducting-cavity-stabilized-oscillator will be presented.

  18. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    NASA Astrophysics Data System (ADS)

    Pan, T. J.; Chen, Y.; Zhang, B.; Hu, J.; Li, C.

    2016-04-01

    The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  19. Duality picture of Superconductor-insulator transitions on Superconducting nanowire

    NASA Astrophysics Data System (ADS)

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-06-01

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.

  20. Integrated superconducting detectors on semiconductors for quantum optics applications

    NASA Astrophysics Data System (ADS)

    Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.

    2016-05-01

    Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

  1. Superconducting Mixers for Far-Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Boreiko, R. T.; Grossman, E. R.; Reintsema, C. D.; Ono, R. H.; Gerecht, E.

    2002-01-01

    The goal of this project was to fabricate and test planar arrays of superconducting mixers for the 2-6 THz band. The technology is intended for multi-beam receivers aboard Explorer-class missions and the SOFIA Airborne Observatory. The mixer technology is the superconducting transition-edge microbolometer, which is more commonly known as the Hot-Electron micro-Bolometer (HEB). As originally proposed, two superconducting technologies were to be developed: (1) low-Tc niobium HEBs which could approach quantum-noise-limited sensitivities but require cooling to 2- 4 K, and (2) high-Tc YBCO HEBs with sensitivities 10 times worse but with a relaxed cooling requirement of 30-60 K. The low-Tc devices would be best for astronomy applications on SOFIA, whereas the high-Tc devices would be more suitable for planetary missions using systems without stored cryogens. The work plan called for planar micro-fabrication and initial testing of HEB devices at the NIST Boulder clean-room facility. Subsequent assembly and RF testing of selected devices would be done at the CASA laboratory at U. Colorado. Approximately 1-year after work began on this project, Dr. Eyal Gerecht joined the NIST group, and assumed day-to-day responsibility for Nb-HEB development at NIST outside of micro-fabrication. The YBCO-HEB work was to be guided by Dr. Ron Ono, who was the NIST expert in YBCO technology. Unfortunately, recurrent health problems limited the time Ron could devote to the project in its first year. These problems became aggravated in early 2001, and sadly led to Ron's death in October, 2001. His loss was not only a blow to his friends and associates at NIST, but was mounted by the US superconductivity community at large. With his passing, work on high-Tc HEBs ceased at NIST. There was no one to replace him or his expertise. Our work subsequently shifted solely to Nb-HEB devices. In the sections which follow, our progress in the development of diffusion-cooled Nb-HEB mixers is detailed. To

  2. Superconductivity in aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kubozono, Yoshihiro; Goto, Hidenori; Jabuchi, Taihei; Yokoya, Takayoshi; Kambe, Takashi; Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L. T.; Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya

    2015-07-01

    'Aromatic hydrocarbon' implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc's) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ⩽15% for Kxpicene and Rbxpicene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors, suggesting behavior not explained by the standard BCS picture of superconductivity. In this article, we describe the present status of this research field, and discuss its future prospects.

  3. Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO3

    SciTech Connect

    Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; Inoue, Hisashi; Kim, Minu; Merz, Tyler A.; Bell, Christopher; Hikita, Yasuyuki; Xu, Ruqing; Liu, Wenjun; Vailionis, Arturas; Hwang, Harold Y.; Moler, Kathryn A.

    2016-11-28

    Strontium titanate is a low-temperature, non–Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO3 embedded in undoped SrTiO3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconducting transition temperature Tc ≳ 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects Tc. Finally, our results suggest that the anisotropic dielectric properties of SrTiO3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.

  4. Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO3

    SciTech Connect

    Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; Inoue, Hisashi; Kim, Minu; Merz, Tyler A.; Bell, Christopher; Hikita, Yasuyuki; Xu, Ruqing; Liu, Wenjun; Vailionis, Arturas; Hwang, Harold Y.; Moler, Kathryn A.

    2016-11-28

    Strontium titanate is a low-temperature, non-Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO3 embedded in undoped SrTiO3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconducting transition temperature T-c greater than or similar to 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects T-c. Our results suggest that the anisotropic dielectric properties of SrTiO3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.

  5. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  6. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE PAGES

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; ...

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  7. Cantilever anemometer based on a superconducting micro-resonator: application to superfluid turbulence.

    PubMed

    Salort, J; Monfardini, A; Roche, P-E

    2012-12-01

    We present a new type of cryogenic local velocity probe that operates in liquid helium (1 K < T < 4.2 K) and achieves a spatial resolution of ≈ 0.1 mm. The operating principle is based on the deflection of a micro-machined silicon cantilever which reflects the local fluid velocity. Deflection is probed using a superconducting niobium micro-resonator sputtered on the sensor and used as a strain gauge. We present the working principle and the design of the probe, as well as calibration measurements and velocity spectra obtained in a turbulent helium flow above and below the superfluid transition.

  8. A superconducting reversible rectifier that controls the motion of magnetic flux quanta.

    PubMed

    Villegas, J E; Savel'ev, Sergey; Nori, Franco; Gonzalez, E M; Anguita, J V; García, R; Vicent, J L

    2003-11-14

    We fabricated a device that controls the motion of flux quanta in a niobium superconducting film grown on an array of nanoscale triangular pinning potentials. The controllable rectification of the vortex motion is due to the asymmetry of the fabricated magnetic pinning centers. The reversal in the direction of the vortex flow is explained by the interaction between the vortices trapped on the magnetic nanostructures and the interstitial vortices. The applied magnetic field and input current strength can tune both the polarity and magnitude of the rectified vortex flow. Our ratchet system is explained and modeled theoretically, taking the interactions between particles into consideration.

  9. Superconducting triple-spoke cavity for beta = 0.5 ions.

    SciTech Connect

    Shepard, K. W.; Kelly, M. P.; Fuerst, J. D.; Kedzie, M.; Conway, Z. A.; Physics

    2005-01-01

    This paper reports the development status of a 345 MHz, three-spoke-loaded, TEM-class superconducting cavity with a transit-time factor peaked at = v/c = 0.63. The cavity has a 4 cm diameter beam aperture, a transverse diameter of 45.8 cm, and an interior length of 85 cm. The cavity is the second of two three-spoke loaded cavities being developed for the RIA driver linac and other high-intensity ion linac applications. Construction of a prototype niobium cavity has been completed and the cavity has been chemically processed. Results of initial cold tests are discussed.

  10. Prototype superconducting triple-spoke cavity for beta = 0.63.

    SciTech Connect

    Shepard, K. W.; Kelly, M. P.; Fuerst, J. D.; Kedzie, M.; Conway, Z. A.; Physics

    2005-01-01

    This paper reports the development status of a 345 MHz, three-spoke-loaded, TEM-class superconducting cavity with a transit-time factor peaked at = v/c = 0.63. The cavity has a 4 cm diameter beam aperture, a transverse diameter of 45.8 cm, and an interior length of 85 cm. The cavity is the second of two three-spoke loaded cavities being developed for the RIA driver linac and other high-intensity ion linac applications. Construction of a prototype niobium cavity has been completed and the cavity has been chemically processed. Results of initial cold tests are discussed.

  11. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element.

  12. Superconductivity of magnesium diboride

    DOE PAGES

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  13. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  14. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  15. Cytotoxic, hematologic and histologic effects of niobium pentoxide in Swiss mice.

    PubMed

    Dsouki, Nuha Ahmad; de Lima, Maurício Pereira; Corazzini, Roseli; Gáscon, Thaís Moura; Azzalis, Ligia Ajaime; Junqueira, Virgínia Berlanga Campos; Feder, David; Fonseca, Fernando Luiz Affonso

    2014-05-01

    The use of metal devices in medical application is increasing but it remains incompletely understood the physiological effects of component degradation. Niobium (Nb) alloys have already been investigated in the 1980's and recent studies demonstrated the potential of Nb as an implant material. The purpose of this study was to determine cytotoxic, hematologic and histologic effects of niobium in Swiss mice. Animals were treated with a single dose of 3 % niobium oxide (Nb2O5) diluted in PBS, i.p. Cytotoxic assay, hematologic and histologic evaluation were done 3, 7 and 12 days after niobium treatment. Data have shown increased number of cells after niobium treatment, but there was no difference in cell viability. Furthermore, it was not observed hematological modification 3, 7 or 12 days after niobium treatment. Despite the fact that animals treated with niobium for 3 and 7 days showed mild degeneration in hepatocytes, mice kept alive for 12 days showed liver cells regeneration. Our results suggested that niobium cytotoxicity was not progressive because 12 days after treatment there was an evident liver regeneration. Data obtained indicated that niobium may be promising alternatives to biomedical applications.

  16. Determination of niobium in rocks by an isotope dilution spectrophotometric method

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1970-01-01

    Rocks and minerals are fused with sodium peroxide in the presence of carrierfree 95Nb. The fusion cake is leached with water and the precipitate dissolved in hydrofluoric-sulfuric acid mixture. Niobium is extracted into methyl isobutyl ketone and further purified by ion exchange. The amount of niobium is determined spectrophotometrically with 4-(2-pyridylazo)-resorcinol, and the chemical yield of the separations determined by counting 95Nb. This procedure is faster and less sensitive to interferences than previously proposed methods for determining niobium in rocks.The high purity of the separated niobium makes the method applicable to nearly all matrices. ?? 1970.

  17. Properties of Alloys of Zirconium and Niobium Carbides in Their Homogeneity Domain,

    DTIC Science & Technology

    ZIRCONIUM COMPOUNDS, ELECTRICAL PROPERTIES), (*NIOBIUM COMPOUNDS, ELECTRICAL PROPERTIES), (*REFRACTORY MATERIALS, CARBIDES), ELECTRICAL RESISTANCE, HALL EFFECT, MAGNETIC PROPERTIES, THERMAL PROPERTIES, SEEBECK EFFECT , USSR

  18. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  19. Bimaterial Thermal Strip With Increased Flexing

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1994-01-01

    In proposed bimaterial thermal strip, one layer has negative coefficient of thermal expansion, thereby increasing difference between coefficients of thermal expansion of two outer layers and consequently increasing flexing caused by change in temperature. Proposed bimaterial strips used in thermostats.

  20. Quantitative microscopy characterization of hydrous niobium phosphate into bleached cellulose.

    PubMed

    Cruz, T G; Pereira, P H F; Silva, M L C P; Cioffi, M O H; Voorwald, H J C

    2010-07-01

    In this research the spatial distribution characterization of niobium phosphate into bleached cellulose was carried out combining processing and images analysis obtained by SEM and statistical methodologies. The objective is to investigate the deposit composition and phosphate morphology by using complementary analytical techniques. Based on the proposed methodology, parameters of niobium phosphate agglomerates (size and shape) and fiber morphology were evaluated depending on gray-levels (average luminance and fiber type): fiber characteristics (morphology) were measured. For the test method proposed, a specific region of cellulose/NbOPO(4) x nH(2)O composite was analyzed. This method involves area fraction measuring with a conditional probabilistic analysis. The analyzed fields were divided in different ways, called 'Scanning' and as a result, in quantitative terms, the phosphate deposition was described as spatial distribution homogeneous or inhomogeneous. The quantitative microscopy as a non-destructive testing provides relevant information when it is combined with statistic analysis.