NASA Astrophysics Data System (ADS)
González, Diego; Botella, Guillermo; García, Carlos; Prieto, Manuel; Tirado, Francisco
2013-12-01
This contribution focuses on the optimization of matching-based motion estimation algorithms widely used for video coding standards using an Altera custom instruction-based paradigm and a combination of synchronous dynamic random access memory (SDRAM) with on-chip memory in Nios II processors. A complete profile of the algorithms is achieved before the optimization, which locates code leaks, and afterward, creates a custom instruction set, which is then added to the specific design, enhancing the original system. As well, every possible memory combination between on-chip memory and SDRAM has been tested to achieve the best performance. The final throughput of the complete designs are shown. This manuscript outlines a low-cost system, mapped using very large scale integration technology, which accelerates software algorithms by converting them into custom hardware logic blocks and showing the best combination between on-chip memory and SDRAM for the Nios II processor.
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-01-01
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-12-15
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.
Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture
Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo
2010-01-01
The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283
Embedded System Implementation on FPGA System With μCLinux OS
NASA Astrophysics Data System (ADS)
Fairuz Muhd Amin, Ahmad; Aris, Ishak; Syamsul Azmir Raja Abdullah, Raja; Kalos Zakiah Sahbudin, Ratna
2011-02-01
Embedded systems are taking on more complicated tasks as the processors involved become more powerful. The embedded systems have been widely used in many areas such as in industries, automotives, medical imaging, communications, speech recognition and computer vision. The complexity requirements in hardware and software nowadays need a flexibility system for further enhancement in any design without adding new hardware. Therefore, any changes in the design system will affect the processor that need to be changed. To overcome this problem, a System On Programmable Chip (SOPC) has been designed and developed using Field Programmable Gate Array (FPGA). A softcore processor, NIOS II 32-bit RISC, which is the microprocessor core was utilized in FPGA system together with the embedded operating system(OS), μClinux. In this paper, an example of web server is explained and demonstrated
A SOPC-BASED Evaluation of AES for 2.4 GHz Wireless Network
NASA Astrophysics Data System (ADS)
Ken, Cai; Xiaoying, Liang
In modern systems, data security is needed more than ever before and many cryptographic algorithms are utilized for security services. Wireless Sensor Networks (WSN) is an example of such technologies. In this paper an innovative SOPC-based approach for the security services evaluation in WSN is proposed that addresses the issues of scalability, flexible performance, and silicon efficiency for the hardware acceleration of encryption system. The design includes a Nios II processor together with custom designed modules for the Advanced Encryption Standard (AES) which has become the default choice for various security services in numerous applications. The objective of this mechanism is to present an efficient hardware realization of AES using very high speed integrated circuit hardware description language (Verilog HDL) and expand the usability for various applications. As compared to traditional customize processor design, the mechanism provides a very broad range of cost/performance points.
Research based on the SoPC platform of feature-based image registration
NASA Astrophysics Data System (ADS)
Shi, Yue-dong; Wang, Zhi-hui
2015-12-01
This paper focuses on the study of implementing feature-based image registration by System on a Programmable Chip (SoPC) hardware platform. We solidify the image registration algorithm on the FPGA chip, in which embedded soft core processor Nios II can speed up the image processing system. In this way, we can make image registration technology get rid of the PC. And, consequently, this kind of technology will be got an extensive use. The experiment result indicates that our system shows stable performance, particularly in terms of matching processing which noise immunity is good. And feature points of images show a reasonable distribution.
NASA Astrophysics Data System (ADS)
Badoni, D.; Bizzarri, M.; Bonaiuto, V.; Checcucci, B.; De Simone, N.; Federici, L.; Fucci, A.; Paoluzzi, G.; Papi, A.; Piccini, M.; Salamon, A.; Salina, G.; Santovetti, E.; Sargeni, F.; Venditti, S.
2014-01-01
The goal of the NA62 experiment at the CERN SPS is the measurement of the Branching Ratio of the very rare kaon decay K+→π+ ν bar nu with a 10% accuracy by collecting 100 events in two years of data taking. An efficient photon veto system is needed to reject the K+→π+ π0 background and a liquid krypton electromagnetic calorimeter will be used for this purpose in the 1-10 mrad angular region. The L0 trigger system for the calorimeter consists of a peak reconstruction algorithm implemented on FPGA by using a mixed parallel architecture based on soft core Altera NIOS II embedded processors together with custom VHDL modules. This solution allows an efficient and flexible reconstruction of the energy-deposition peak. The system will be totally composed of 36 TEL62 boards, 108 mezzanine cards and 215 high-performance FPGAs. We describe the design, current status and the results of the first performance tests.
NASA Astrophysics Data System (ADS)
Zou, Liang; Fu, Zhuang; Zhao, YanZheng; Yang, JunYan
2010-07-01
This paper proposes a kind of pipelined electric circuit architecture implemented in FPGA, a very large scale integrated circuit (VLSI), which efficiently deals with the real time non-uniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPA). Dual Nios II soft-core processors and a DSP with a 64+ core together constitute this image system. Each processor undertakes own systematic task, coordinating its work with each other's. The system on programmable chip (SOPC) in FPGA works steadily under the global clock frequency of 96Mhz. Adequate time allowance makes FPGA perform NUC image pre-processing algorithm with ease, which has offered favorable guarantee for the work of post image processing in DSP. And at the meantime, this paper presents a hardware (HW) and software (SW) co-design in FPGA. Thus, this systematic architecture yields an image processing system with multiprocessor, and a smart solution to the satisfaction with the performance of the system.
NASA Astrophysics Data System (ADS)
Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih
2017-05-01
Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.
A FPGA embedded web server for remote monitoring and control of smart sensors networks.
Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique
2013-12-27
This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.
A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks
Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique
2014-01-01
This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology. PMID:24379047
Custom instruction set NIOS-based OFDM processor for FPGAs
NASA Astrophysics Data System (ADS)
Meyer-Bäse, Uwe; Sunkara, Divya; Castillo, Encarnacion; Garcia, Antonio
2006-05-01
Orthogonal Frequency division multiplexing (OFDM) spread spectrum technique, sometimes also called multi-carrier or discrete multi-tone modulation, are used in bandwidth-efficient communication systems in the presence of channel distortion. The benefits of OFDM are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. OFDM is the basis for the European digital audio broadcasting (DAB) standard, the global asymmetric digital subscriber line (ADSL) standard, in the IEEE 802.11 5.8 GHz band standard, and ongoing development in wireless local area networks. The modulator and demodulator in an OFDM system can be implemented by use of a parallel bank of filters based on the discrete Fourier transform (DFT), in case the number of subchannels is large (e.g. K > 25), the OFDM system are efficiently implemented by use of the fast Fourier transform (FFT) to compute the DFT. We have developed a custom FPGA-based Altera NIOS system to increase the performance, programmability, and low power in mobil wireless systems. The overall gain observed for a 1024-point FFT ranges depending on the multiplier used by the NIOS processor between a factor of 3 and 16. A careful optimization described in the appendix yield a performance gain of up to 77% when compared with our preliminary results.
Method to implement the CCD timing generator based on FPGA
NASA Astrophysics Data System (ADS)
Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin
2010-07-01
With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.
NASA Astrophysics Data System (ADS)
Nassar, Mostafa Y.; Aly, Hisham M.; Abdelrahman, Ehab A.; Moustafa, Moustafa E.
2017-09-01
Six novel Co(II) and Ni(II)-triazole Schiff base complexes have been successfully synthesized by refluxing the prepared triazole Schiff bases with CoCl2·6H2O or NiCl2·6H2O. The Schiff base ligands were prepared through condensation of 3-R-4-amino-5-hydrazino-1,2,4-triazole with dibenzoylmethane [Rdbnd H, CH3, and CH2CH3; namely, L1, L2, and L3, respectively]. The prepared Co(II) and Ni(II) complexes have been identified using elemental analysis, FT-IR, UV-Vis, magnetic moment, conductivity, and thermal analysis. On the basis of the conductance results, it was concluded that all the prepared complexes are nonelectrolytes. Interestingly, the prepared Co(II) and Ni(II) complexes were employed as precursors for producing of Co3O4 and NiO nanoparticles, respectively. The produced nanostructures have been identified by XRD, HR-TEM, FT-IR and UV-Vis spectra. The produced nanoparticles revealed good photocatalytic activity for the degradation of methylene blue dye under UV illumination in presence of hydrogen peroxide. The percent of degradation was estimated to be 55.71% in 420.0 min and 90.43% in 360.0 min for Co3O4 and NiO, respectively. Moreover, the synthesized complexes, nano-sized Co3O4, and NiO products have been examined, employing modified Bauer- Kirby method, for antifungal (Candida albicans and Aspergillus flavus) and antibacterial (Staphylococcus aureus and Escherichia coli) activities.
2011-04-01
glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels, interface passivation, p...NiO films grown on glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels...carrier transport characteristics. II. EXPERIMENTAL SECTION Substrate Preparation. ITO-coated glass (11 Ω/0) was pur- chased from Delta Technologies
NASA Astrophysics Data System (ADS)
Shi, Waipeng; Zhang, Yingmeng; Key, Julian; Shen, Pei Kang
2018-03-01
An efficient synthesis method to grow well attached NiO nanobelts from 3D graphene sheets (3DGS) is reported herein. Ni-ion exchanged resin provides the initial Ni reactant portion, which serves both as a catalyst to form 3DGS and then as a seeding agent to grow the NiO nanobelts. The macroporous structure of 3DGS provides NiO containment to achieve a high cycling stability of up to 445 mAh g-1 after 360 cycles (and >112% capacity retention after 515 cycles) at a high current density of 2 A g-1. With a 26.8 wt.% content of NiO on 3DGS, increases in specific and volumetric capacity were 41.6 and 75.7% respectively over that of 3DGS at matching current densities. Therefore, the seeded growth of NiO nanobelts from 3DGS significantly boosts volumetric capacity, while 3DGS enables high rate long term cycling of the NiO. The high rate cycling stability of NiO on 3DGS can be attributed to (i) good attachment and contact to the large surface of 3DGS, (ii) high electron conductivity and rapid Li-ion transfer (via the interconnected, highly conductive graphitized walls of 3DGS) and (iii) buffering void space in 3DGS to contain volume expansion of NiO during charge/discharge.
Zheng, Yingqiu; Zhu, Bicheng; Chen, Hua; You, Wei; Jiang, Chuanjia; Yu, Jiaguo
2017-10-15
Monodispersed hierarchical flower-like nickel(II) oxide (NiO) microspheres were fabricated by a facile solvothermal reaction with the assistance of ethanolamine and a subsequent calcination process. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, zeta potential measurement and Fourier transform infrared spectroscopy. Flower-like nickel(II) hydroxide microspheres with uniform diameters of approximate 6.3μm were obtained after the solvothermal reaction. After heat treatment at 350°C, the crystal phase transformed to NiO, but the hierarchical porous structure was maintained. The as-prepared microspheres exhibited outstanding performance for the adsorption of Congo red (CR), an anionic organic dye, from aqueous solution at circumneutral pH. The pseudo-second-order model can make a good description of the adsorption kinetics, while Langmuir model could well express the adsorption isotherms, with calculated maximum CR adsorption capacity of 534.8 and 384.6mgg -1 , respectively, for NiO and Ni(OH) 2 . The adsorption mechanism of CR onto the as-synthesized samples can be mainly attributed to electrostatic interaction between the positively charged sample surface and the anionic CR molecules. The as-prepared NiO microspheres are a promising adsorbent for CR removal in water treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
ASR-9 processor augmentation card (9-PAC) phase II scan-scan correlator algorithms
DOT National Transportation Integrated Search
2001-04-26
The report documents the scan-scan correlator (tracker) algorithm developed for Phase II of the ASR-9 Processor Augmentation Card (9-PAC) project. The improved correlation and tracking algorithms in 9-PAC Phase II decrease the incidence of false-alar...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, Timothy; Heald, Steve M.; Smith, Mark. D.
In this paper, the crystal chemistry and magnetic properties of two hexagonal nickel(IV)-containing perovskites, Ba 4Ni 1.94Ir 2.06O 12 and BaNiO 3, are reported. The 12R perovskite, Ba 4Ni 1.94Ir 2.06O 12, possesses an unexpected coexistence of nickel(II) and nickel(IV). This quadruple perovskite structure contains Ir 2NiO 12 mixed-metal-cation units in which direct metal–metal bonding between nickel(IV) and iridium(V) is inferred. Finally, X-ray absorption near-edge spectroscopy and X-ray photoelectron spectroscopy measurements were conducted to confirm the simultaneous presence of nickel(II) and nickel(IV).
Ferreira, Timothy; Heald, Steve M.; Smith, Mark. D.; ...
2018-03-02
In this paper, the crystal chemistry and magnetic properties of two hexagonal nickel(IV)-containing perovskites, Ba 4Ni 1.94Ir 2.06O 12 and BaNiO 3, are reported. The 12R perovskite, Ba 4Ni 1.94Ir 2.06O 12, possesses an unexpected coexistence of nickel(II) and nickel(IV). This quadruple perovskite structure contains Ir 2NiO 12 mixed-metal-cation units in which direct metal–metal bonding between nickel(IV) and iridium(V) is inferred. Finally, X-ray absorption near-edge spectroscopy and X-ray photoelectron spectroscopy measurements were conducted to confirm the simultaneous presence of nickel(II) and nickel(IV).
Infrared small target tracking based on SOPC
NASA Astrophysics Data System (ADS)
Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin
2011-01-01
The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.
A Low Cost Matching Motion Estimation Sensor Based on the NIOS II Microprocessor
González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco
2012-01-01
This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system. PMID:23201989
Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1
NASA Astrophysics Data System (ADS)
Banerjee, A.; Chaudhari, S. M.; Phase, D. M.; Dasannacharya, B. A.
2003-01-01
Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li xNi 1- xO with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li xNi 1- xO samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated in terms of earlier findings in pure and low Li doped NiO.
Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4 + δ
NASA Astrophysics Data System (ADS)
Pikalova, E. Yu.; Medvedev, D. A.; Khasanov, A. F.
2017-04-01
Ca-substituted layered nickelates with a general Pr2- x Ca x NiO4 + δ composition ( x = 0-0.7, Δ x = 0.1) were prepared in the present work and their structural and physic-chemical properties were investigated in order to select the most optimal materials, which can be used as cathodes for solid oxide fuel cells. With an increase in Ca content in Pr2- x Ca x NiO4 + δ the following tendencies were observed: (i) a decrease in the concentration of nonstoichiometric oxygen (δ), (ii) a decrease in the unit cell parameters and volume, (iii) stabilization of the tetragonal structure, (iv) a decrease of the thermal expansion coefficients, and (v) enchancement of thermodynamic stability and compatibility with selected oxygen- and proton-conducting electrolytes. The Pr1.9Ca0.1NiO4 + δ material, having highest δ value, departs from the general "properties-composition" dependences ascertained. This indicates that oxygen non-stoichiometry has determining influence on the functional properties of layered nickelates.
Tang, Li Juan; Chen, Xiao; Wen, Tian Yu; Yang, Shuang; Zhao, Jun Jie; Qiao, Hong Wei; Hou, Yu; Yang, Hua Gui
2018-02-26
A highly transparent NiO layer was prepared by a solution processing method with nickel(II) 2-ethylhexanoate in non-polar solvent and utilized as HTM in perovskite solar cells. Excellent optical transmittance and the matched energy level lead to the enhanced power conversion efficiency (PCE, 18.15 %) than that of conventional sol-gel-processed NiO-based device (12.98 %). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
...; catcher/ processor--40 percent; and motherships--10 percent. Under Sec. 679.20(a)(5)(iii)(B)(2)(i) and (ii... sector, 40 percent to the catcher/processor sector, and 10 percent to the mothership sector. In the.../processor sector will be available for harvest by AFA catcher vessels with catcher/ processor sector...
40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., commerce, importer, impurity, Inventory, manufacturer, person, process, processor, and small quantities... control of the processor. (ii) Distribution in commerce is limited to purposes of export. (iii) The processor or distributor may not use the substance except in small quantities solely for research and...
NASA Astrophysics Data System (ADS)
Liu, Tao; Jiang, Chuanjia; Cheng, Bei; You, Wei; Yu, Jiaguo
2017-08-01
Nickel (II) oxide (NiO) nanosheet grown on N-doped carbon hollow spheres (NiO/NCHS) with hierarchical pore structure are obtained via facile chemical bath deposition followed by calcination at 350 °C under nitrogen atmosphere. Phase structure measurements indicate that the material is composed of NiO and N-doped carbon. The NiO/NCHS composite exhibits a unique flower-like morphology, where ultrathin NiO nanosheets are vertically grown on the surface of NCHS. This hierarchical nanostructure is beneficial for facilitating electron and electrolyte ion transport and accelerating the reversible redox reaction. The specific capacitance of the NiO/NCHS composite (585 F g-1 at 1 A g-1) is higher than that of pure NiO particle (453 F g-1 at 1 A g-1). Meanwhile, the NiO/NCHS composite exhibits excellent rate performance and superior cycling stability over 6000 cycles. The enhanced supercapacitive performance of the NiO/NCHS nanocomposite indicates that it can be an appealing candidate electrode material for supercapacitors.
Rapid Damage Assessment. Volume II. Development and Testing of Rapid Damage Assessment System.
1981-02-01
pixels/s Camera Line Rate 732.4 lines/s Pixels per Line 1728 video 314 blank 4 line number (binary) 2 run number (BCD) 2048 total Pixel Resolution 8 bits...sists of an LSI-ll microprocessor, a VDI -200 video display processor, an FD-2 dual floppy diskette subsystem, an FT-I function key-trackball module...COMPONENT LIST FOR IMAGE PROCESSOR SYSTEM IMAGE PROCESSOR SYSTEM VIEWS I VDI -200 Display Processor Racks, Table FD-2 Dual Floppy Diskette Subsystem FT-l
Dogdibegovic, Emir; Guan, Wanbing; Yan, Jingbo; ...
2016-09-21
Single phase (Pr 1-xNd x) 2NiO 4 cathode powders (x = 0, 0.25, 0.50, 0.75, and 1.0) were synthesized via a glycine-nitrate combustion and high temperature calcination. Anode supported cells were used to investigate the cathode property. A reproducible performance, within 9% for each cathode composition, was observed providing a wealth of data for quantitative studies. Area specific resistance analysis and i-V measurements between 650 and 850°C showed a decrease in the cell performance with increasing Nd content. Impedance spectrum analysis suggests that the decline in performance results from an increase in electrode polarization. While Pr 2NiO 4 cells showedmore » significant performance degradation of 6.40%/1,000 hours, the degradation rate for (Pr 0.75Nd 0.25) 2NiO 4 cells was reduced by an order of magnitude (0.56%/1,000 hours) with a 7% lower power output. Furthermore, the cathodes with a higher Nd content showed further improvement in performance stability with a marginal degradation rate of 0.06%/1,000 hours.« less
Picoradio: Communication/Computation Piconodes for Sensor Networks
2003-01-02
diagram of PicoNode III, or Quark node. It is made from two custom chips, Strange RF and Charm digital processor , and is complemented by a set of...the chipset comprising of Strange (analog OOK transceiver) and Charm (digital processor ) chips. 44 Figure 33: System block diagram of the Quark node...19 2.B PICONODE II - TWO-CHIP PICONODE IMPLEMENTATION ......................................... 21 2.B.1 Baseband processor (BBP
Liu, Xinyuan; Smith, Ashley; McNeil, Kevin; Weston, Paula; Zhitkovich, Anatoly; Hurt, Robert; Kane, Agnes B.
2011-01-01
Micron-sized particles of poorly soluble nickel compounds, but not metallic nickel, are established human and rodent carcinogens. In contrast, little is known about the toxic effects of a growing number of Ni-containing materials in the nano-sized range. Here, we performed physicochemical characterization of NiO and metallic Ni nanoparticles and examined their metal ion bioavailability and toxicological properties in human lung epithelial cells. Cellular uptake of metallic Ni and NiO nanoparticles, but not metallic Ni microparticles, was associated with the release of Ni(II) ions after 24–48 h as determined by Newport Green fluorescence. Similar to soluble NiCl2, NiO nanoparticles induced stabilization and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) transcription factor followed by upregulation of its target NRDG1 (Cap43). In contrast to no response to metallic Ni microparticles, nickel nanoparticles caused a rapid and prolonged activation of the HIF-1α pathway that was stronger than that induced by soluble Ni (II). Soluble NiCl2 and NiO nanoparticles were equally toxic to H460 human lung epithelial cells and primary human bronchial epithelial cells; metallic Ni nanoparticles showed lower toxicity and Ni microparticles were nontoxic. Cytotoxicity induced by all forms of Ni occurred concomitant with activation of an apoptotic response, as determined by dose- and time-dependent cleavage of caspases and poly (ADP-ribose) polymerase. Our results show that metallic Ni nanoparticles, in contrast to micron-sized Ni particles, activate a toxicity pathway characteristic of carcinogenic Ni compounds. Moderate cytotoxicity and sustained activation of the HIF-1α pathway by metallic Ni nanoparticles could promote cell transformation and tumor progression. PMID:21828359
Cargo Movement Operations System (CMOS). Requirements Traceability Matrix Increment II
1990-05-17
NO [ ] COMMENT DISPOSITION: ACCEPT [ ] REJECT [ ] COMMENT STATUS: OPEN [ ] CLOSED [ ] Cmnt Page Paragraph No. No. Number Comment 1. C-i SS0-3 Change "workstation" to "processor". 2. C-2 SS0009 Change "workstation" to "processor". SS0016 3. C-6 SS0032 Change "workstation" to "processor". SS0035 4. C-9 SS0063 Add comma after "e.g." 5. C-i SS0082 Change "workstation" to "processor". 6. C-17 SS0131 Change "workstation" to "processor". SS0132 7. C-28 SS0242 Change "workstation"
NASA Astrophysics Data System (ADS)
Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.
2017-05-01
Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.
Fabrication Security and Trust of Domain-Specific ASIC Processors
2016-10-30
embedded in the design. For example , an ASIC processor potentially has a 10-1,000X performance advantage over its FPGA and GPP counterparts, but...paper by summarizing our lessons learned from this project and suggests a few research directions. II. DOMAIN-SPECIFIC ASIC PROCESSORS As Figure 1 has...sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations
Development of a rapid optic bacteria detecting system based on ATP bioluminescence
NASA Astrophysics Data System (ADS)
Liu, Jun Tao; Luo, JinPing; Liu, XiaoHong; Cai, XinXia
2014-12-01
A rapid optic bacteria detecting system based on the principle of Adenosine triphosphate(ATP) bioluminescence was presented in this paper. This system consisted of bioluminescence-based biosensor and the high-sensitivity optic meter. A photon counting photomultiplier tube (PMT) module was used to improve the detection sensitivity, and a NIOS II/f processor based on a Field Programmable Gate Array(FPGA) was used to control the system. In this work, Micrococcus luteus were chosen as the test sample. Several Micrococcus luteus suspension with different concentration was tested by both T2011 and plate counting method. By comparing the two group results, an calibration curve was obtained from the bioluminescence intensity for Micrococcus luteus in the range of 2.3×102 ~ 2.3×106 CFU/mL with a good correlation coefficient of 0.960. An impacting Air microorganism sampler was used to capture Airborne Bacteria, and 8 samples were collected in different place. The TBC results of 8 samples by T2011 were between 10 ~ 2×103 cfu/mL, consistent with that of plate counting method, which indicated that 8 samples were between 10 ~ 3×103 cfu/mL. For total airborne bacteria count was small, correlation coefficient was poor. Also no significant difference was found between T2011 and plate counting method by statistical analyses.
Detection of Instrumental Drifts in the PEP II LER BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittmer, W.; Fisher, A.S.; Martin, D.J.
2007-11-07
During the last PEP-II run a major goal was to bring the Low-Energy Ring optics as close as possible to the design. A large number of BPMs exhibited sudden artificial jumps that interfered with this effort. The source of the majority of these jumps had been traced to the filter-isolator boxes (FIBs) near the BPM buttons. A systematic approach to find and repair the failing units had been developed and implemented. Despite this effort, the instrumental orbit jumps never completely disappeared. To trace the source of this behavior a test setup, using a spare Bergoz MX-BPM processor (kindly provided bymore » SPEAR III at SSRL), was connected in parallel to various PEP-II BPM processors. In the course of these measurements a slow instrumental orbit drift was found which was clearly not induced by a moving positron beam. Based on the size of the system and the limited time before PEP-II closes in Oct.2008, an accelerator improvement project was initiated to install BERGOZ BPM-MX processors close to all sextupoles.« less
Heterogeneous Concurrent Modeling and Design in Java (Volume 2: Ptolemy II Software Architecture)
2008-04-01
file (EPS) suitable for inclusion in word processors. The image in figure 7.3 is such an EPS file imported into FrameMaker . At this time, the EPS...can be imported into word processors. This figure was imported into FrameMaker . 152 Ptolemy II Plot Package 7.2.4 Modifying the format You can control...FixToken class 57 FrameMaker 149 full name 4 function closures 59 function dependency 48 FunctionDependency class 48 FunctionToken 122 FunctionToken
50 CFR 680.44 - Cost recovery.
Code of Federal Regulations, 2014 CFR
2014-10-01
... value determined for at-sea Catcher/Processors (CP), depending on their activity. Ex-vessel value...-vessel value—(i) General. Catcher/processors must use the corresponding CP standard price(s) for the purposes of calculating fee liability. (ii) CP standard prices. As part of the summary described in...
50 CFR 680.44 - Cost recovery.
Code of Federal Regulations, 2010 CFR
2010-10-01
... value determined for at-sea Catcher/Processors (CP), depending on their activity. Ex-vessel value...-vessel value—(i) General. Catcher/processors must use the corresponding CP standard price(s) for the purposes of calculating fee liability. (ii) CP standard prices. As part of the summary described in...
50 CFR 680.44 - Cost recovery.
Code of Federal Regulations, 2012 CFR
2012-10-01
... value determined for at-sea Catcher/Processors (CP), depending on their activity. Ex-vessel value...-vessel value—(i) General. Catcher/processors must use the corresponding CP standard price(s) for the purposes of calculating fee liability. (ii) CP standard prices. As part of the summary described in...
50 CFR 680.44 - Cost recovery.
Code of Federal Regulations, 2011 CFR
2011-10-01
... value determined for at-sea Catcher/Processors (CP), depending on their activity. Ex-vessel value...-vessel value—(i) General. Catcher/processors must use the corresponding CP standard price(s) for the purposes of calculating fee liability. (ii) CP standard prices. As part of the summary described in...
50 CFR 680.44 - Cost recovery.
Code of Federal Regulations, 2013 CFR
2013-10-01
... value determined for at-sea Catcher/Processors (CP), depending on their activity. Ex-vessel value...-vessel value—(i) General. Catcher/processors must use the corresponding CP standard price(s) for the purposes of calculating fee liability. (ii) CP standard prices. As part of the summary described in...
Development of compact fuel processor for 2 kW class residential PEMFCs
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
Korea Institute of Energy Research (KIER) has been developing a novel fuel processing system to provide hydrogen rich gas to residential polymer electrolyte membrane fuel cells (PEMFCs) cogeneration system. For the effective design of a compact hydrogen production system, the unit processes of steam reforming, high and low temperature water gas shift, steam generator and internal heat exchangers are thermally and physically integrated into a packaged hardware system. Several prototypes are under development and the prototype I fuel processor showed thermal efficiency of 73% as a HHV basis with methane conversion of 81%. Recently tested prototype II has been shown the improved performance of thermal efficiency of 76% with methane conversion of 83%. In both prototypes, two-stage PrOx reactors reduce CO concentration less than 10 ppm, which is the prerequisite CO limit condition of product gas for the PEMFCs stack. After confirming the initial performance of prototype I fuel processor, it is coupled with PEMFC single cell to test the durability and demonstrated that the fuel processor is operated for 3 days successfully without any failure of fuel cell voltage. Prototype II fuel processor also showed stable performance during the durability test.
Interface energy band alignment at the all-transparent p-n heterojunction based on NiO and BaSnO3
NASA Astrophysics Data System (ADS)
Zhang, Jiaye; Han, Shaobo; Luo, Weihuang; Xiang, Shuhuai; Zou, Jianli; Oropeza, Freddy E.; Gu, Meng; Zhang, Kelvin H. L.
2018-04-01
Transparent oxide semiconductors hold great promise for many optoelectronic devices such as transparent electronics, UV-emitting devices, and photodetectors. A p-n heterojunction is the most ubiquitous building block to realize these devices. In this work, we report the fabrication and characterization of the interface properties of a transparent heterojunction consisting of p-type NiO and n-type perovskite BaSnO3. We show that high-quality NiO thin films can be epitaxially grown on BaSnO3 with sharp interfaces because of a small lattice mismatch (˜1.3%). The diode fabricated from this heterojunction exhibits rectifying behavior with a ratio of 500. X-ray photoelectron spectroscopy reveals a type II or "staggered" band alignment with valence and conduction band offsets of 1.44 eV and 1.86 eV, respectively. Moreover, a large upward band bending potential of 0.90 eV for BaSnO3 and a downward band bending potential of 0.15 eV for NiO were observed in the interface region. Such electronic properties have important implication for optoelectronic applications as the large built-in potential provides favorable energetics for photo-generated electron-hole separation/migration.
Electronic Structure and Band Alignment at the NiO and SrTiO3 p-n Heterojunctions.
Zhang, Kelvin H L; Wu, Rui; Tang, Fengzai; Li, Weiwei; Oropeza, Freddy E; Qiao, Liang; Lazarov, Vlado K; Du, Yingge; Payne, David J; MacManus-Driscoll, Judith L; Blamire, Mark G
2017-08-09
Understanding the energetics at the interface, including the alignment of valence and conduction bands, built-in potentials, and ionic and electronic reconstructions, is an important challenge in designing oxide interfaces that have controllable multifunctionalities for novel (opto-)electronic devices. In this work, we report detailed investigations on the heterointerface of wide-band-gap p-type NiO and n-type SrTiO 3 (STO). We show that despite a large lattice mismatch (∼7%) and dissimilar crystal structure, high-quality NiO and Li-doped NiO (LNO) thin films can be epitaxially grown on STO(001) substrates through a domain-matching epitaxy mechanism. X-ray photoelectron spectroscopy studies indicate that NiO/STO heterojunctions form a type II "staggered" band alignment. In addition, a large built-in potential of up to 0.97 eV was observed at the interface of LNO and Nb-doped STO (NbSTO). The LNO/NbSTO p-n heterojunctions exhibit not only a large rectification ratio of 2 × 10 3 but also a large ideality factor of 4.3. The NiO/STO p-n heterojunctions have important implications for applications in photocatalysis and photodetectors as the interface provides favorable energetics for facile separation and transport of photogenerated electrons and holes.
Holo-Chidi video concentrator card
NASA Astrophysics Data System (ADS)
Nwodoh, Thomas A.; Prabhakar, Aditya; Benton, Stephen A.
2001-12-01
The Holo-Chidi Video Concentrator Card is a frame buffer for the Holo-Chidi holographic video processing system. Holo- Chidi is designed at the MIT Media Laboratory for real-time computation of computer generated holograms and the subsequent display of the holograms at video frame rates. The Holo-Chidi system is made of two sets of cards - the set of Processor cards and the set of Video Concentrator Cards (VCCs). The Processor cards are used for hologram computation, data archival/retrieval from a host system, and for higher-level control of the VCCs. The VCC formats computed holographic data from multiple hologram computing Processor cards, converting the digital data to analog form to feed the acousto-optic-modulators of the Media lab's Mark-II holographic display system. The Video Concentrator card is made of: a High-Speed I/O (HSIO) interface whence data is transferred from the hologram computing Processor cards, a set of FIFOs and video RAM used as buffer for data for the hololines being displayed, a one-chip integrated microprocessor and peripheral combination that handles communication with other VCCs and furnishes the card with a USB port, a co-processor which controls display data formatting, and D-to-A converters that convert digital fringes to analog form. The co-processor is implemented with an SRAM-based FPGA with over 500,000 gates and controls all the signals needed to format the data from the multiple Processor cards into the format required by Mark-II. A VCC has three HSIO ports through which up to 500 Megabytes of computed holographic data can flow from the Processor Cards to the VCC per second. A Holo-Chidi system with three VCCs has enough frame buffering capacity to hold up to thirty two 36Megabyte hologram frames at a time. Pre-computed holograms may also be loaded into the VCC from a host computer through the low- speed USB port. Both the microprocessor and the co- processor in the VCC can access the main system memory used to store control programs and data for the VCC. The Card also generates the control signals used by the scanning mirrors of Mark-II. In this paper we discuss the design of the VCC and its implementation in the Holo-Chidi system.
40 CFR 747.115 - Mixed mono and diamides of an organic acid.
Code of Federal Regulations, 2010 CFR
2010-07-01
... warning statement shall be no smaller than six point type. All required label text shall be of sufficient..., commerce, importer, impurity, Inventory, manufacturer, person, process, processor, and small quantities... control of the processor. (ii) Distribution in commerce is limited to purposes of export. (iii) The...
50 CFR 679.52 - Observer provider permitting and responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... samples from the observer's deployment by the completion of the electronic vessel and/or processor survey(s); (ii) Complete NMFS electronic vessel and/or processor surveys before performing other jobs or... or experimental fishing as defined in § 600.10 of this chapter. (2) Must not have a direct financial...
50 CFR 679.52 - Observer provider permitting and responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... samples from the observer's deployment by the completion of the electronic vessel and/or processor survey(s); (ii) Complete NMFS electronic vessel and/or processor surveys before performing other jobs or... or experimental fishing as defined in § 600.10 of this chapter. (2) Must not have a direct financial...
50 CFR 679.51 - Observer requirements for vessels and plants.
Code of Federal Regulations, 2014 CFR
2014-10-01
... to complete sampling, data recording, and data communication duties per paragraph (a)(2) of this... paragraph (a)(2)(ii) of this section apply. (4) AI directed pollock fishery catcher/processors and motherships. A catcher/processor participating in the AI directed pollock fishery or a mothership processing...
Image processing for a tactile/vision substitution system using digital CNN.
Lin, Chien-Nan; Yu, Sung-Nien; Hu, Jin-Cheng
2006-01-01
In view of the parallel processing and easy implementation properties of CNN, we propose to use digital CNN as the image processor of a tactile/vision substitution system (TVSS). The digital CNN processor is used to execute the wavelet down-sampling filtering and the half-toning operations, aiming to extract important features from the images. A template combination method is used to embed the two image processing functions into a single CNN processor. The digital CNN processor is implemented on an intellectual property (IP) and is implemented on a XILINX VIRTEX II 2000 FPGA board. Experiments are designated to test the capability of the CNN processor in the recognition of characters and human subjects in different environments. The experiments demonstrates impressive results, which proves the proposed digital CNN processor a powerful component in the design of efficient tactile/vision substitution systems for the visually impaired people.
Multiple Embedded Processors for Fault-Tolerant Computing
NASA Technical Reports Server (NTRS)
Bolotin, Gary; Watson, Robert; Katanyoutanant, Sunant; Burke, Gary; Wang, Mandy
2005-01-01
A fault-tolerant computer architecture has been conceived in an effort to reduce vulnerability to single-event upsets (spurious bit flips caused by impingement of energetic ionizing particles or photons). As in some prior fault-tolerant architectures, the redundancy needed for fault tolerance is obtained by use of multiple processors in one computer. Unlike prior architectures, the multiple processors are embedded in a single field-programmable gate array (FPGA). What makes this new approach practical is the recent commercial availability of FPGAs that are capable of having multiple embedded processors. A working prototype (see figure) consists of two embedded IBM PowerPC 405 processor cores and a comparator built on a Xilinx Virtex-II Pro FPGA. This relatively simple instantiation of the architecture implements an error-detection scheme. A planned future version, incorporating four processors and two comparators, would correct some errors in addition to detecting them.
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Fraenkel, E. D.; Glas, Dariusz; Legumina, Remigiusz
2013-12-01
The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages.
Motion and Emotional Behavior Design for Pet Robot Dog
NASA Astrophysics Data System (ADS)
Cheng, Chi-Tai; Yang, Yu-Ting; Miao, Shih-Heng; Wong, Ching-Chang
A pet robot dog with two ears, one mouth, one facial expression plane, and one vision system is designed and implemented so that it can do some emotional behaviors. Three processors (Inter® Pentium® M 1.0 GHz, an 8-bit processer 8051, and embedded soft-core processer NIOS) are used to control the robot. One camera, one power detector, four touch sensors, and one temperature detector are used to obtain the information of the environment. The designed robot with 20 DOF (degrees of freedom) is able to accomplish the walking motion. A behavior system is built on the implemented pet robot so that it is able to choose a suitable behavior for different environmental situation. From the practical test, we can see that the implemented pet robot dog can do some emotional interaction with the human.
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Fraenkel, E. D.; van den Berg, Ad M.
2013-10-01
We present the FPGA/NIOS implementation of an adaptive finite impulse response (FIR) filter based on linear prediction to suppress radio frequency interference (RFI). This technique will be used for experiments that observe coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays. These experiments are designed to make a detailed study of the development of the electromagnetic part of air showers. Therefore, these radio signals provide information that is complementary to that obtained by water-Cherenkov detectors which are predominantly sensitive to the particle content of an air shower at ground. The radio signals from air showers are caused by the coherent emission due to geomagnetic and charge-excess processes. These emissions can be observed in the frequency band between 10-100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. A FIR filter implemented in the FPGA logic segment of the front-end electronics of a radio sensor significantly improves the signal-to-noise ratio. In this paper we discuss an adaptive filter which is based on linear prediction. The coefficients for the linear predictor (LP) are dynamically refreshed and calculated in the embedded NIOS processor, which is implemented in the same FPGA chip. The Levinson recursion, used to obtain the filter coefficients, is also implemented in the NIOS and is partially supported by direct multiplication in the DSP blocks of the logic FPGA segment. Tests confirm that the LP can be an alternative to other methods involving multiple time-to-frequency domain conversions using an FFT procedure. These multiple conversions draw heavily on the power consumption of the FPGA and are avoided by the linear prediction approach. Minimization of the power consumption is an important issue because the final system will be powered by solar panels. The FIR filter has been successfully tested in the Altera development kits with the EP4CE115F29C7 from the Cyclone IV family and the EP3C120F780C7 from the Cyclone III family at a 170 MHz sampling rate, a 12-bit I/O resolution, and an internal 30-bit dynamic range. Most of the slow floating-point NIOS calculations have been moved to the FPGA logic segments as extended fixed-point operations, which significantly reduced the refreshing time of the coefficients used in the LP. We conclude that the LP is a viable alternative to other methods such as non-adaptive methods involving digital notch filters or multiple time-to-frequency domain conversions using an FFT procedure.
Software design and documentation language, revision 1
NASA Technical Reports Server (NTRS)
Kleine, H.
1979-01-01
The Software Design and Documentation Language (SDDL) developed to provide an effective communications medium to support the design and documentation of complex software applications is described. Features of the system include: (1) a processor which can convert design specifications into an intelligible, informative machine-reproducible document; (2) a design and documentation language with forms and syntax that are simple, unrestrictive, and communicative; and (3) methodology for effective use of the language and processor. The SDDL processor is written in the SIMSCRIPT II programming language and is implemented on the UNIVAC 1108, the IBM 360/370, and Control Data machines.
Instrument front-ends at Fermilab during Run II
NASA Astrophysics Data System (ADS)
Meyer, T.; Slimmer, D.; Voy, D.
2011-11-01
The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kelvin H. L.; Wu, Rui; Tang, Fengzai
Understanding the energetics at the interface including the alignment of valence and conduction bands, built-in potentials, and ionic and electronic reconstructions, is an important challenge in designing oxide interfaces that have controllable multi-functionalities for novel (opto-)electronic devices. In this work, we report detailed investigations on the hetero-interface of wide bandgap p-type NiO and n-type SrTiO3 (STO). We show that despite a large lattice mismatch (~7%) and dissimilar crystal structure, high-quality NiO and Li doped NiO (LNO) thin films can be epitaxially grown on STO(001) substrates through a domain matching epitaxy (DME) mechanism. X-ray photoelectron spectroscopy (XPS) studies indicate that NiO/STOmore » heterojunctions form a type II “staggered” band alignment. In addition, a large built-in potential of up to 0.97 eV was observed at the interface of LNO and Nb doped STO (NbSTO). The LNO/NbSTO p-n heterojunctions exhibit a large rectification ratio of 2×103, but also a large ideality factor of 4.3. The NiO/STO p-n heterojunctions have important implication for applications in photocatalysis and photodetector as the interface provides favourable energetics for facile separation and transport of photogenerated electrons and holes.« less
Amisaki, Takashi; Toyoda, Shinjiro; Miyagawa, Hiroh; Kitamura, Kunihiro
2003-04-15
Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation ("particle processor") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby regions. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 582-592, 2003
Tack, Liew Weng; Azam, Mohd Asyadi; Seman, Raja Noor Amalina Raja
2017-04-06
Single-walled carbon nanotubes (SWCNTs) and metal oxides (MOs), such as manganese(IV) oxide (MnO 2 ), cobalt(II, III) oxide (Co 3 O 4 ), and nickel(II) oxide (NiO) hybrid structures, have received great attention because of their promising application in lithium-ion batteries (LIBs). As electrode materials for LIBs, the structure of SWCNT/MOs provides high power density, good electrical conductivity, and excellent cyclic stability. In this work, first-principles calculations were used to investigate the structural and electronic properties of MOs attached to (5, 5) SWCNT and Li-ion adsorption to SWCNT/metal oxide composites as electrode materials in LIBs. Emphasis was placed on the synergistic effects of the composite on the electrochemical performance of LIBs in terms of adsorption capabilities and charge transfer of Li-ions attached to (5, 5) SWCNT and metal oxides. Also, Li adsorption energy on SWCNTs and three different metal oxides (NiO, MnO 2 , and Co 3 O 4 ) and the accompanying changes in the electronic properties, such as band structure, density of states and charge distribution as a function of Li adsorption were calculated. On the basis of the calculation results, the top C atom was found to be the most stable position for the NiO and MnO 2 attachment to SWCNT, while the Co 3 O 4 molecule, the Co 2+ , was found to be the most stable attachment on SWCNT. The obtained results show that the addition of MOs to the SWCNT electrode enables an increase in specific surface area and improves the electronic conductivity and charge transfer of an LIB.
Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions
NASA Astrophysics Data System (ADS)
Sultan, Muhammad; Mumtaz, Sundas; Ali, Asad; Khan, Muhammad Yaqoob; Iqbal, Tahir
2017-12-01
ZnO nanorods decorated by NiO nanostructures were fabricated using facile chemical route. The nanorods of ZnO were prepared by using chemical bath deposition technique and subsequently decorated by NiO using sol-gel spin coating. The density and orientation of the ZnO nanorods was controlled through the seed layer with preferential growth along c-axis and hexagonal face. X-Ray Photoelectron Spectroscopy (XPS) analysis was used to confirm stoichiometry of the materials and band alignment study of the heterostructures. Type-II band alignment was observed from the experimental results. The IV characteristics of the device depicting rectifying behavior at different temperatures were observed with photocurrent generation in response to light excitation. The electrical properties reported in this study are in line with earlier work where heterojunctions were fabricated by physical deposition techniques.
Hanifehpour, Younes; Morsali, Ali; Mirtamizdoust, Babak; Joo, Sang Woo; Soltani, Behzad
2017-07-01
Nano-structures of a new supramolecular coordination compound of divalent nickel with the pyrazol (pzH) containing the terminal azide anions, [Ni(pzH) 2 (N 3 ) 2 ] (1), with discrete molecular architecture (DMA) in solid state was synthesized via sonochemical method. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction, IR, and elemental analysis. Compound 1 was structurally characterized by single crystal X-ray diffraction and the single-crystal X-ray data shows that the coordination number of Ni (II) ions is six, (NiN 6 ), with four N-donor atoms from neutral "pzH" ligands and two N-donors from two terminal azide anions. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are consistent with the crystal structure. The NiO nanoparticles were obtained by thermolysis of 1 at 180°C with oleic acid as a surfactant. Copyright © 2017 Elsevier B.V. All rights reserved.
Next Generation Security for the 10,240 Processor Columbia System
NASA Technical Reports Server (NTRS)
Hinke, Thomas; Kolano, Paul; Shaw, Derek; Keller, Chris; Tweton, Dave; Welch, Todd; Liu, Wen (Betty)
2005-01-01
This presentation includes a discussion of the Columbia 10,240-processor system located at the NASA Advanced Supercomputing (NAS) division at the NASA Ames Research Center which supports each of NASA's four missions: science, exploration systems, aeronautics, and space operations. It is comprised of 20 Silicon Graphics nodes, each consisting of 512 Itanium II processors. A 64 processor Columbia front-end system supports users as they prepare their jobs and then submits them to the PBS system. Columbia nodes and front-end systems use the Linux OS. Prior to SC04, the Columbia system was used to attain a processing speed of 51.87 TeraFlops, which made it number two on the Top 500 list of the world's supercomputers and the world's fastest "operational" supercomputer since it was fully engaged in supporting NASA users.
Implementation of context independent code on a new array processor: The Super-65
NASA Technical Reports Server (NTRS)
Colbert, R. O.; Bowhill, S. A.
1981-01-01
The feasibility of rewriting standard uniprocessor programs into code which contains no context-dependent branches is explored. Context independent code (CIC) would contain no branches that might require different processing elements to branch different ways. In order to investigate the possibilities and restrictions of CIC, several programs were recoded into CIC and a four-element array processor was built. This processor (the Super-65) consisted of three 6502 microprocessors and the Apple II microcomputer. The results obtained were somewhat dependent upon the specific architecture of the Super-65 but within bounds, the throughput of the array processor was found to increase linearly with the number of processing elements (PEs). The slope of throughput versus PEs is highly dependent on the program and varied from 0.33 to 1.00 for the sample programs.
Electronic and optical properties of antiferromagnetic iron doped NiO - A first principles study
NASA Astrophysics Data System (ADS)
Petersen, John E.; Twagirayezu, Fidele; Scolfaro, Luisa M.; Borges, Pablo D.; Geerts, Wilhelmus J.
2017-05-01
Antiferromagnetic NiO is a candidate for next generation high-speed and scaled RRAM devices. Here, electronic and optical properties of antiferromagnetic NiO: Fe 25% in the rock salt structure are studied and compared to intrinsic NiO. From density of states and complex dielectric function analysis, the first optical transition is found to be at lower frequency than intrinsic NiO due to an Fe impurity level being the valence band maximum. The resulting effects on refractive index, reflectivity, absorption, optical conductivity and loss function for Fe-doped NiO are compared to those of intrinsic NiO, and notable differences are analyzed. The electronic component of the static dielectric constant of NiO: Fe 25% is calculated to be about 2% less than that of intrinsic NiO.
Anil Kumar, P; Aravind, R; Francis, K; Bhumika, V; Ritika, C; Priyashanth, P; Srinivas T, N R
2012-07-01
Novel orange pigmented, Gram-negative-staining, rod-shaped, non-motile, strictly aerobic strains designated NIO-S1(T) and NIO-S2 were isolated from the water sample of a pond adjacent to the coast and an algal mat from a fish pond, respectively, at Kakinada, India. Both strains were positive for oxidase, catalase and β-galactosidase activities. The predominant fatty acids in NIO-S1(T) were iso-C(15:0) (39.6%), anteiso-C(15:0) (9.9%), iso-C(17:0) 3OH (10.9%) and C(16:1)ω7c/C(16:1)ω6c (summed feature 3) (5.7%). The strains contained MK-7 as the major respiratory quinine, and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unidentified lipids as the polar lipids. Phylogenetic analysis indicated that strain NIO-S1(T) was a member of the family "Cyclobacteriaceae" of the class "Sphingobacteriia" and it clustered with the genera Fontibacter, Cecembia and Aquiflexum with phylogenetic distances of 6.8, 9.0 and 12.2% (93.2, 91.0 and 87.8% similarity), respectively. DNA-DNA hybridization between strains NIO-S1(T) and NIO-S2 showed a relatedness of 93% and rep-PCR banding patterns were similar. Based on data from the current polyphasic study, it is proposed that the new isolates be placed in a new genus and species with the name Shivajiella indica gen. nov., sp. nov. The type strain of Shivajiella indica is NIO-S1(T) (= KCTC 19812(T)=MTCC 11065(T)). Copyright © 2012 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Burtsev, V. T.; Anuchkin, S. N.; Sidorov, V. V.; Rigin, V. E.
2013-05-01
The activities of the components of BaO-BaF2-BaCl2-NiO and CaO-CaF2-CaCl2-NiO slags systems, which were considered as a phase having a collective electron system, are calculated, and it is shown that the barium, calcium, and oxygen activities at 1600°C are maximal in the BaO- and CaO-based systems depending on the main oxide content. The dephosphorization of three types of nickel-based melts by slags of 14 compositions in crucibles made of Al2O3, MgO, and MgO-Al2O3 (80-20 wt %) is experimentally studied, and the degree of dephosphorization is shown to depend on the phosphorus content in a metal, the slag composition, and the crucible material (degree of dephosphorization is maximal in Al2O3 crucibles). The forming slag is assimilated by Al2O3 and MgO-Al2O3 ceramics with a porosity of about 30%. If 4-10 wt % NiO are present in a slag, the wettability of the Al2O3 ceramic is significantly higher than that of the MgO-based ceramic.
Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.
Oukarroum, Abdallah; Barhoumi, Lotfi; Samadani, Mahshid
2015-01-01
The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0–1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing. PMID:26075242
Radiation-Hardened Electronics for Advanced Communications Systems
NASA Technical Reports Server (NTRS)
Whitaker, Sterling
2015-01-01
Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.
Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si
NASA Astrophysics Data System (ADS)
Shuihab, Aliyah; Khalf, Surour
2018-05-01
In this study, (NiO) thin film which prepared by chemical method and deposited by drop casting technique on glass. The structural, optical and chemical analyses have been investigated. X-ray diffraction (XRD) measurements relieve that the (NiO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements reveal that the energy gap of (NiO) thin film was found 1.8 eV. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of (NiO) thin film shows NiO nanoparticles had its IR peak of Ni-O stretching vibration and shifted to blue direction. Due to their quantum size effect and spherical nanostructures, the FTIR absorption of NiO nanoparticles is blue-shifted compared to that of the bulk form.
Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Hui; Chen, Xuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang
Graphical abstract: Flower-like porous NiO was obtained via thermal decomposition of the precursor prepared by a hydrothermal process using hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of electrochemical measurements demonstrated that the flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials of electrochemical capacitors (ECs), which may be attributed to the unique microstrcture of NiO. Data analyses indicated that NiO with novel porousmore » structure attractive for practical and large-scale applications in electrochemical capacitors. Display Omitted Highlights: ► Synthesis and characterization of NiO with novel porous structure is presented in this work. ► The electrochemical performance of product was examined. ► NiO with excellent performance as electrode materials may be due to the unique microstrcture. ► NiO with novel porous structure attractive for practical with high capacity (340 F g{sup −1}). -- Abstract: Flower-like porous NiO was obtained by thermal decomposition of the precursor prepared by a hydrothermal process with hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting structures of NiO exhibited porous like petal building blocks. The electrochemical measurements’ results demonstrated that flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials for electrochemical capacitors, which may be attributed to the unique structure of NiO. The results indicated that NiO with novel porous structure has been attractive for practical and large-scale applications in electrochemical capacitors.« less
First principles exploration of NiO and its ions NiO+ and NiO-
NASA Astrophysics Data System (ADS)
Sakellaris, Constantine N.; Mavridis, Aristides
2013-02-01
We present a high level ab initio study of NiO and its ions, NiO+ and NiO-. Employing variational multireference configuration interaction (MRCI) and single reference coupled-cluster methods combined with basis sets of quintuple quality, 54, 20, and 10 bound states of NiO, NiO+, and NiO- have been studied. For all these states, complete potential energy curves have been constructed at the MRCI level of theory; in addition, for the ground states of the three species core subvalence (3s23p6/Ni) and scalar relativistic effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, and spin-orbit coupling constants. The agreement with experiment is in the case of NiO good, but certain discrepancies that need further investigation have arisen in the case of the anion whose ground state remains computationally a tantalizing matter. The cation is experimentally almost entirely unexplored, therefore, the study of many states shall prove valuable to further investigators. The ground state symmetry, bond distances, and binding energies of NiO and NiO+ are (existing experimental values in parenthesis), X3Σ-(X3Σ-), re = 1.606 (1.62712) Å, D0 = 88.5 (89.2 ± 0.7) kcal/mol, and X4Σ-(?), re = 1.60(?) Å, D0 = 55 (62.4 ± 2.4) kcal/mol, respectively. The ground state of NiO- is 4Σ- (but 2Π experimentally) with D0 = 85-87 (89.2 ± 0.7) kcal/mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szadkowski, Zbigniew
We present the new approach to a filtering of radio frequency interferences (RFI) in the Auger Engineering Radio Array (AERA) which study the electromagnetic part of the Extensive Air Showers. The radio stations can observe radio signals caused by coherent emissions due to geomagnetic radiation and charge excess processes. AERA observes frequency band from 30 to 80 MHz. This range is highly contaminated by human-made RFI. In order to improve the signal to noise ratio RFI filters are used in AERA to suppress this contamination. The first kind of filter used by AERA was the Median one, based on themore » Fast Fourier Transform (FFT) technique. The second one, which is currently in use, is the infinite impulse response (IIR) notch filter. The proposed new filter is a finite impulse response (FIR) filter based on a linear prediction (LP). A periodic contamination hidden in a registered signal (digitized in the ADC) can be extracted and next subtracted to make signal cleaner. The FIR filter requires a calculation of n=32, 64 or even 128 coefficients (dependent on a required speed or accuracy) by solving of n linear equations with coefficients built from the covariance Toeplitz matrix. This matrix can be solved by the Levinson recursion, which is much faster than the Gauss procedure. The filter has been already tested in the real AERA radio stations on Argentinean pampas with a very successful results. The linear equations were solved either in the virtual soft-core NIOSR processor (implemented in the FPGA chip as a net of logic elements) or in the external Voipac PXA270M ARM processor. The NIOS processor is relatively slow (50 MHz internal clock), calculations performed in an external processor consume a significant amount of time for data exchange between the FPGA and the processor. Test showed a very good efficiency of the RFI suppression for stationary (long-term) contaminations. However, we observed a short-time contaminations, which could not be suppressed either by the IIR-notch filter or by the FIR filter based on the linear predictions. For the LP FIR filter the refreshment time of the filter coefficients was to long and filter did not keep up with the changes of a contamination structure, mainly due to a long calculation time in a slow processors. We propose to use the Cyclone V SE chip with embedded micro-controller operating with 925 MHz internal clock to significantly reduce a refreshment time of the FIR coefficients. The lab results are promising. (authors)« less
Design of an integrated fuel processor for residential PEMFCs applications
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.
2004-09-25
7 Figure 2-3 Blackhawk/ Applanix GPS/INS System...electro-mechanical system ms millisecond NP navigation processor OE ordnance and explosive POSLV Applanix Positioning and Orientation...demonstration GPS/INS positioning system. In Phase II, a man-portable modified version called the POSLV 310 UXO of the Applanix Positioning and
NASA Technical Reports Server (NTRS)
Swift, Gary M.; Allen, Gregory S.; Farmanesh, Farhad; George, Jeffrey; Petrick, David J.; Chayab, Fayez
2006-01-01
Shown in this presentation are recent results for the upset susceptibility of the various types of memory elements in the embedded PowerPC405 in the Xilinx V2P40 FPGA. For critical flight designs where configuration upsets are mitigated effectively through appropriate design triplication and configuration scrubbing, these upsets of processor elements can dominate the system error rate. Data from irradiations with both protons and heavy ions are given and compared using available models.
2013-05-25
graphics processors by IBM, AMD, and nVIDIA . They are between general-purpose pro- cessors and special-purpose processors. In Phase II. 3.10 Measure of...particular, Dr. Kevin Irick started a company Silicon Scapes and he has been the CEO. 5 Implications for Related/Future Research We speculate that...final project report in Jan. 2011. At the test and validation stage of the project. FANTOM’s partner at Raytheon quit from his company and hence from
NiO Nanofibers as a Candidate for a Nanophotocathode
Macdonald, Thomas J.; Xu, Jie; Elmas, Sait; Mange, Yatin J.; Skinner, William M.; Xu, Haolan; Nann, Thomas
2014-01-01
p-type NiO nanofibers have been synthesized from a simple electrospinning and sintering procedure. For the first time, p-type nanofibers have been electrospun onto a conductive fluorine doped tin oxide (FTO) surface. The properties of the NiO nanofibers have been directly compared to that of bulk NiO nanopowder. We have observed a p-type photocurrent for a NiO photocathode fabricated on an FTO substrate. PMID:28344222
Synthesis and electrochemical properties of NiO nanospindles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn
2014-02-01
Graphical abstract: NiO nanospindles with a different electrochemical activity as compared to those previous reports were synthesized via an agglomeration–dissolution–recrystallization growth process without the addition of any surfactant. - Highlights: • NiO nanospindles were synthesized without the addition of any surfactant. • The agglomeration–dissolution–recrystallization growth process was used to explain the precursors’ formation process of the spindle-like NiO. • As-obtained spindle-like NiO showed a different electrochemical activity as compared to those previous reports. - Abstract: NiO nanospindles were successfully synthesized via a hydrothermal and post-treatment method. The as-synthesized nanospindles were about several hundred nanometers in width and about one micrometermore » in length. X-ray diffraction (XRD) analysis revealed that the spindle-like structure was cubic NiO phase crystalline. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that these NiO nanospindles were of single crystal nature. On the basis of time-dependent experiments, a possible agglomeration–dissolution–recrystallization growth process was proposed to explain the formation process of the spindle-like precursors. The cyclic voltammetry (CV) measurement showed that the as-prepared spindle-like NiO exhibited a pseudo-capacitance behavior.« less
Terasawa, Naohiro; Asaka, Kinji
2014-12-02
The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable not only to EDLC-based actuator systems but also to the fabricated EDLC/FC system.
NASA Astrophysics Data System (ADS)
Panneerselvam, Vengatesh; Chinnakutti, Karthik Kumar; Thankaraj Salammal, Shyju; Soman, Ajith Kumar; Parasuraman, Kuppusami; Vishwakarma, Vinita; Kanagasabai, Viswanathan
2018-04-01
In this study, pristine nickel oxide (NiO), copper-doped NiO (Cu-NiO) and vanadium-doped NiO (V-NiO) thin films were deposited using reactive RF magnetron co-sputtering as a function of dopant sputtering power. Cu (0-8 at%) and V (0-1 at%) were doped into the NiO lattice by varying the sputtering power of Cu and V in the range of 5-15 W. The effect of dopant concentration on optoelectronic behavior is investigated by UV-Vis-NIR spectrophotometer and Hall measurements. XRD analysis showed that the preferred orientation of the cubic phase for undoped NiO changes from (200) to (111) plane when the sputtering parameters are varied. The observed changes in the lattice parameters and bonding states of the doped NiO indicate the substitution of Ni ions by monovalent Cu and trivalent V ions. The optical bandgap of pristine NiO, Cu-NiO, and V-NiO was found to be 3.6, 3.45, and 3.05 eV, respectively, with decreased transmittance and resistivity. Further analysis using SEM and AFM described the morphological behavior of doped NiO thin films and Raman spectroscopy indicated the structural changes on doping. These findings would be helpful in fabricating solid-state solar cells using doped NiO as efficient hole transporting material.
NASA Astrophysics Data System (ADS)
Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham
2004-03-01
Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.
NiO and Fe/Mn in Fo-rich olivines from OIB, MORB, and mantle peridotites
NASA Astrophysics Data System (ADS)
Li, H.; Baker, M.; Hofmann, A. E.; Clague, D.; Stolper, E.
2006-12-01
Olivines from mantle peridotites have a narrow range of NiO (0.36±0.03 [1σ] wt%), but NiO of olivines in basalts suggest NiO in mantle olivines is actually more variable: e.g., Hawaiian phenocrysts (Fo>90) have NiO >0.55%, and olivines from continental flood basalts can have >0.5% NiO. At the other end of the spectrum, some basaltic suites (e.g., Iceland, MORBs) have Fo>90 olivines with NiO >0.2%. Partial melting calculations on peridotites show it is difficult to generate liquids that crystallize Fo>90 olivines with >0.4% NiO without resorting to complex processes. Hypotheses to explain the variability of NiO in mantle-derived olivines include (1) reaction of peridotite with silica-rich melts of eclogite results in decreasing modal abundance of olivine and increasing NiO in olivine [1,2]; (2) magmas with NiO-rich olivines come from sources enriched in NiO due to a core-derived component [3]. [4] proposed that high Fe/Mn of Hawaiian vs. Icelandic and MORB lavas reflect a core-derived component in their sources. Possible core incorporation is poorly constrained but FeO and NiO are expected to increase by such processes, leading to correlations between NiO and Fe/Mn in mantle rocks with significant core-derived components. We present high-precision analyses of Fo-rich olivines from OIBs, MORBs, komatiites, and mantle peridotites, focusing on NiO contents and Fe/Mn ratios. Our goal is to test hypotheses to explain elevated NiO of Fo-rich olivines in basalts. Olivines are Fo85.1-93.4; more were analyzed, but we focused on this range to avoid complications due to decreasing NiO in olivine with crystallization. Errors (1σ) are 0.01 wt% in NiO and 1.5 in Fe/Mn (wt). Our data show several features: (1) NiO contents and Fe/Mn ratios of Fo>88 olivines are positively correlated, with the low end of the trend (NiO ~0.23%, Fe/Mn ~61) defined by MORB and Iceland and the high end of the trend (NiO ~0.55%, Fe/Mn ~80) by Reunion and Hawaii. Between these end points, there is a regular trend from MORB/Iceland, to Baffin Isl, to mantle peridotites/Juan Fernandez, to Reunion/Hawaii. This array can't be explained by simple crystallization (all have similar Fo) or by variable degrees of partial melting of a single source. The NiO-Fe/Mn correlation can be modeled by quantitative addition of 1-2% oxidized core to depleted mantle and thus is consistent with the core-addition hypothesis. However, more complex core-mantle interactions/fractionations would still be required to explain trace siderophile and chalcophile elements and isotopes. Moreover, other hypotheses to explain the observed trend (including addition of silicic melts to peridotite) cannot be ruled out. (2) The Hawaiian data, although clearly defining with Reunion the upper end of the overall NiO-Fe/Mn array, are more complex. For example, a single Mauna Kea sample has ~Fo90 phenocrysts with NiO from 0.30 to 0.54%, all with Fe/Mn=72-80, and North Arch and Loihi olivines have relatively low NiO at Fe/Mn ratios comparable to other Hawaiian olivines. Although Loihi and North Arch lavas are low in SiO2, in detail the NiO of Hawaiian olivines are not well predicted by SiO2 contents of the host lavas. (3) The Gorgona Isl komatiites fall off the overall trend, extending to NiO >0.5 wt% at Fe/Mn ~62, perhaps reflecting different sources, processes, or anomalous degrees of melting. [1] Kelemen et al (1998) EPSL 164, 387-406 [2] Sobolev et al (2005) Nature 434, 590-597 [3] Ryabchikov (2003) Doklady Earth Sci. 389A, 437-439 [4] Humayun et al (2004) Science 306, 91-94
NASA Astrophysics Data System (ADS)
Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong
2014-08-01
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.
Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong
2014-01-01
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g(-1) at current densities of 5, 10, 15, 20, and 25 A g(-1), respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Bing; Sherman, Benjamin D.; Klug, Christina M.
2017-08-31
We report here a new photocathode composed of a bi-layered doped NiO film topped by a macro-mesoporous ITO (ioITO) layer with molecular assemblies attached to the ioITO surface. The NiO film containing a 2% K+ doped NiO inner layer and a 2% Cu2+ doped NiO outer layer provides sufficient driving force for hole transport after injection to NiO by the molecular assembly. The tri-layered oxide, NiK0.02O | NiCu0.02O | ioITO, sensitized by a ruthenium polypyridyl dye and functionalized with a nickel-based hydrogen evolution catalyst, outperforms its counterpart, NiO | NiO | ioITO, in photocatalytic hydrogen evolution from water over amore » period of several hours with a Faradaic yield of ~90%.« less
NASA Astrophysics Data System (ADS)
Parsaee, Zohreh; Mohammadi, Khosro
2017-06-01
Some new macrocyclic bridged dianilines tetradentate with N4coordination sphere Schiff base ligands and their nickel(II)complexes with general formula [{Ni2LCl4} where L = (C20H14N2X)2, X = SO2, O, CH2] have been synthesized. The compounds have been characterized by FT-IR, 1H and 13C NMR, mass spectroscopy, TGA, elemental analysis, molar conductivity and magnetic moment techniques. Scanning electron microscopy (SEM) shows nano-sized structures under 100 nm for nickel (II) complexes. NiO nanoparticle was achieved via the thermal decomposition method and analyzed by FT-IR, SEM and X-ray powder diffraction which indicates closeaccordance to standard pattern of NiO nanoparticle. All the Schiff bases and their complexes have been detected in vitro both for antibacterial activity against two gram-negative and two gram-positive bacteria. The nickel(II) complexes were found to be more active than the free macrocycle Schiff bases. In addition, computational studies of three ligands have been carried out at the DFT-B3LYP/6-31G+(d,p) level of theory on the spectroscopic properties, including IR, 1HNMR and 13CNMR spectroscopy. The correlation between the theoretical and the experimental vibrational frequencies, 1H NMR and 13C NMR of the ligands were 0.999, 0.930-0.973 and 0.917-0.995, respectively. Also, the energy gap was determined and by using HOMO and LUMO energy values, chemical hardness-softness, electronegativity and electrophilic index were calculated.
NASA Astrophysics Data System (ADS)
Wang, Jian; Wei, Xiaowei; Wangyang, Peihua
2015-12-01
Zn-doped NiO two-dimensional grainy films on glass substrates are shown to be an ammonia-sensing material with excellent comprehensive performance, which could real-time detect and monitor ammonia (NH3) in the surrounding environment. The morphology and structure analysis indicated that the as-fabricated semiconductor films were composed of particles with diameters ranging from 80 to 160 nm, and each particle was composed of small crystalline grain with a narrow size about 20 nm, which was the face-centered cubic single crystal structure. X-ray diffraction peaks shifted toward lower angle, and the size of the lattice increased compared with undoped NiO, which demonstrated that zinc ions have been successfully doped into the NiO host structure. Simultaneously, we systematically investigated the gas-sensing properties of the Zn-doped NiO sensors for NH3 detection at room temperature. The sensor based on doped NiO sensing films gave four to nine times faster response and four to six times faster recovery speeds than those of sensor with undoped NiO films, which is important for the NiO sensor practical applications. Moreover, we found that the doped NiO sensors owned outstanding selectivity toward ammonia.
Pseudocapacitance of Co doped NiO nanoparticles and its room temperature ferromagnetic behavior
NASA Astrophysics Data System (ADS)
Bharathy, G.; Raji, P.
2018-02-01
Co doped NiO nanoparticles CoxNi1-xO (x = 0.0, 0.1, 0.2, 0.3, 0.4) were synthesized by the Sol-gel technique. The impact of Co doping concentration on structural, functional and magnetic properties of NiO nanoparticles was analyzed by X-ray diffraction (XRD), FESEM with EDAX, FTIR and VSM. The average crystallite size was measured to be 34 nm and 11 nm for NiO and Co doped NiO nanoparticles respectively. FESEM reveals that particles are spherical in shape with average size around 30 nm. The elemental composition was analyzed by EDAX. FTIR spectra reveal the existence of NiO peaks in the prepared samples, room temperature ferromagnetism was observed for pure and Co doped NiO nanoparticles by VSM. Pure NiO particles shows ferromagnetic behavior with low coercivity and it increases gradually when doping ratio increases. Higher saturation magnetization was obtained for the sample 0.1 M of Co doped NiO nanoparticle as 22.09 emu/gm. An attempt has been made to study the pseudocapacitance behavior of pure and Co doped NiO nano particles in various scan rates. Electrochemical studies show that 0.4 M Co doped sample gives better charge storage capacity with maximum specific capacitance of 379 Fg-1 at a scan rate of 20 mVs-1. It reveals that it is a promising electrode material for super capacitor applications.
NASA Astrophysics Data System (ADS)
Varshney, Bhaskar; Shoeb, Mohd; Siddiqui, M. J.; Azam, Ameer; Mobin, Mohammad
2018-05-01
SnO2/NiO nanocomposite are prepared by using a simple cost effective and ecofriendly green soft template method followed by ultrasonication treatment further by calcination at 300 °C. The resulting nanocatalysts were characterized by X-ray diffraction (XRD), UV-Visible spectroscopy and transmission electron microscopy (TEM). The SnO2-NiO photocatalyst was made of a mesoporous network of aggregated NiO and cassiterite SnO2 nanocrystallites, the size of which was estimated to be 16.68 nm and 13.17 nm, respectively, after calcination. According to UV-visible spectroscopy, the evident energy band gap value of the SnO2-NiO photocatalyst was estimated to be 3.132 eV to be compared with those of pure SnO2, that is, 3.7 eV. Moreover, the heterostructure SnO2-NiO photocatalyst showed much higher photocatalytic activities for the degradation of methylene blue than those of individual SnO2 and NiO nanomaterials. This behaviour was rationalized in terms of better charge separation and the suppression of charge recombination in the SnO2-NiO photocatalyst because of the energy difference between the conduction band edges of SnO2 and NiO as evidenced by the band alignment determination. Finally, this mesoporous SnO2-NiO heterojunction nanocatalyst was stable and could be easily recycled several times opening new avenues for potential industrial applications.
Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red
NASA Astrophysics Data System (ADS)
Lei, Chunsheng; Pi, Meng; Cheng, Bei; Jiang, Chuanjia; Qin, Jiaqian
2018-03-01
Hierarchical porous zinc oxide (ZnO)/nickel(II) oxide (NiO) hollow microspheres were fabricated by a facile hydrothermal approach and subsequent calcination process. The synthesized samples were used as adsorbent for removing Congo red (CR), a commercial azo dye. The synthesized hierarchical porous ZnO/NiO composites exhibit a superior adsorption capacity for CR (518 mg/g), compared with pure NiO (397 mg/g) and ZnO (304 mg/g). The high CR adsorption capacity of ZnO/NiO composites was associated with its hierarchical porous hollow structures and large specific surface area (130 m2/g), which provide a large quantity of active sites for CR molecules. The adsorption kinetics data were perfectly fitted to a pseudo-second-order model. The isotherms were accurately described by the Langmuir model. The results suggest that the as-prepared hierarchical porous ZnO/NiO composites are a highly efficient adsorbent for treating organic dye-impacted wastewater.
The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.
Chen, Jian Lin; Steele, Terry W J; Stuckey, David C
2018-06-11
Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Zijun; Chen, Da; Yang, Pan; Yang, Lijun; Qin, Laishun; Huang, Yuexiang; Zhao, Xiaochong
2018-05-01
In this work, high-performance inverted planar perovskite solar cells (PSCs) using sol-gel processed Y-doped NiO thin films as hole transport layer (HTL) were demonstrated. Y-doped NiO thin films containing different Y doping concentrations were successfully prepared through a simple sol-gel process. The Y doping could significantly improve the electrical conductivity of NiO thin film, and the photovoltaic performance of Y-doped NiO HTL-based PSC devices outperformed that of the pristine NiO HTL-based device. Notably, the PSC using a 5%Y-NiO HTL exhibited the champion performance with an open-circuit voltage (Voc) of 1.00 V, a short circuit current density (Jsc) of 23.82 mA cm-2, a fill factor (FF) of 68% and a power conversion efficiency (PCE) of 16.31%, resulting in a 27.62% enhancement in PCE in comparison with the NiO device. The enhanced performance of the Y-doped NiO device could be attributed to the improved hole mobility, the high quality compact active layer morphology, the more efficient charge extraction from perovskite absorber as well as the lower recombination probability of charge carriers. Thus, this work provides a simple and effective approach to improve the electrical conductivity of p-type NiO thin films for use as a promising HTL in high performance PSCs.
Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films
NASA Astrophysics Data System (ADS)
Cheemadan, Saheer; Santhosh Kumar, M. C.
2018-04-01
Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.
NASA Astrophysics Data System (ADS)
Hou, Xiang-Yang; Yan, Xiao-Li; Wang, Xiao; Zhai, Quan-Guo
2018-07-01
NiO has an unusually high theoretical specific capacitance and possess relatively high electrical conductivity compared to other metal oxides. However, the reported specific capacitance of the NiO-based electrodes is far below the theoretical value up to now. In this paper, three porous NiO materials with different specific surface area were synthesized simply by calcining iso-structural Ni-based MOFs templates. The formation mechanism of NiO was discussed by taking into account the thermal behavior and intrinsic structural features of the Ni-MOFs. Taking advantages of the Ni-MOFs precursors, all prepared NiO compounds are mesoporous and their porosity can be tuned by the structure of MOFs. Specially, due to the high porosity, three NiO exhibited an improved electrochemical performance and the specific discharge capacitances are of 102, 105, and 116 F g-1 at the current density of 1 A g-1, respectively. The specific capacitance of 1-NiO-450 is approximately 93.2% of its maximum value after 3000 cycles, which obviously superior to most of the previously reported NiO electrode materials and suggests their promising applications in supercapacitors.
2014-01-01
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands. PMID:25276099
Microstructure and thermal conductivity of surfactant-free NiO nanostructures
NASA Astrophysics Data System (ADS)
Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P. A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F. P.
2012-06-01
High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of ∼100 m2/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 °C. The thermal conductivity (κ) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased (∼60%) compared to that of NiO single crystal. This strong reduction in κ with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery.
NASA Astrophysics Data System (ADS)
Zunger, Alex; Trimarchi, Giancarlo
The existence of large band gaps both in the antiferromagnetic (AFM) and the paramagnetic (PM) phases of the classic Mott insulators MnO, FeO, CoO, and NiO has traditionally been discussed in terms of theoretical methods requiring both (i) simple (often primitive) unit cells and (ii) correlated-electron methodologies. We show that if condition (i) is avoided (by using supercells, such as PM special quasi-random structures, in which chemically identical atoms can have different local environments), then even without condition (ii) one can describe the gaps and moments within a single-determinant DFT band structure approach. In this approach gapping is caused by basic structure, magnetism, and bonding effects underlying DFT, not via dynamic correlation (absent from DFT). As long as correlation is simplistically considered as ``anything that DFT does not get right'', gap formation in the AFM and PM phases is not due to correlation. This result defines the minimal theoretical methods needed to explain gapping and points to the possibility that some transition-metal oxides generally considered to have localized electrons detrimental to transport, could, in fact, rejoin the family of electronic semiconductors, to the benefit of a carrier transport technologies. A. Z. supported by DOE-OS-BES-MSE, Grant DE-FG02-13ER46959.
Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe
2013-09-15
Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate > sulfate > bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hydraulic Universal Display Processor System (HUDPS).
1981-11-21
emphasis on smart alphanumeric devices in Task II. Volatile and non-volatile memory components were utilized along with the Intel 8748 microprocessor...system. 1.2 TASK 11 Fault display methods for ground support personnel were investigated during Phase II with emphasis on smart alphanumeric devices...CONSIDERATIONS Methods of display fault indication for ground support personnel have been investigated with emphasis on " smart " alphanumeric devices
Growth and Characteristic of Amorphous Nano-Granular TeO2-V2O5-NiO Thin Films
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Sh.; Rahmati, A.; Bidadi, H.
2016-12-01
TeO2-V2O5-NiO thin films were deposited using thermal evaporation from 40TeO2-(60-y)V2O5-yNiO (y=0-30mol%) target. Structural analysis of the films was identified by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The amorphous TeO2-V2O5-NiO films have nanosized clear grain structure and sharp grain boundaries. DC conductivity and current-voltage (I-V) characteristic of TeO2-V2O5-NiO thin films were measured in the temperature range of 300-423K. As nickel oxide (NiO) content increases, the DC conductivity decreases up to two orders in value (10-9-10-11Sṡcm-1). Temperature dependence of conductivity is described using the small polaron hopping (SPH) model as well. Poole-Frenkel effect is observed at high external electric field. The optical absorption spectra of the TeO2-V2O5-NiO thin films were recorded in the wavelength range of 380-1100nm. The absorption coefficient revealed bandgap shrinkage (3.01-2.3eV) and band tail widening, due to an increase in NiO content. Energy dispersive X-ray spectroscopy (EDX) was used to determine elemental composition. In TeO2-V2O5-NiO thin films, the NiO content is around fifth of the initial target.
Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Ma, Bingrui; Gao, Feng; Wang, Xuejiao
2017-02-01
The nitrogen and phosphorus removal, microbial enzymatic activity, and microbial community of a sequencing batch reactor (SBR) were evaluated under long-term exposure to nickel oxide nanoparticles (NiO NPs). High NiO NP concentration (over 5 mg L -1 ) affected the removal of chemical oxygen demand, nitrogen, and phosphorus. The presence of NiO NP inhibited the microbial enzymatic activities and reduced the nitrogen and phosphorus removal rates of activated sludge. The microbial enzymatic activities of the activated sludge showed a similar variation trend to the nitrogen and phosphorus removal rates with the increase in NiO NP concentration from 0 to 60 mg L -1 . The Ni content in the effluent and activated sludge showed an increasing trend with the increase in NiO NP concentration. Some NiO NPs were absorbed on the sludge surface or penetrate the cell membrane into the interior of microbial cells in the activated sludge. NiO NP facilitated the increase in reactive oxygen species by disturbing the balance between the oxidation and anti-oxidation processes, and the variation in lactate dehydrogenase demonstrated that NiO NP could destroy the cytomembrane and cause variations in the microbial morphology and physiological function. High-throughput sequencing demonstrated that the microbial community of SBR had some obvious changes at 0-60 mg L -1 NiO NPs at the phyla, class and genus levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
An FPGA computing demo core for space charge simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jinyuan; Huang, Yifei; /Fermilab
2009-01-01
In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computedmore » using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.« less
Effect of titanium on the structural and optical property of NiO nano powders
NASA Astrophysics Data System (ADS)
Amin, Ruhul; Mishra, Prashant; Khatun, Nasima; Ayaz, Saniya; Srivastava, Tulika; Sen, Somaditya
2018-05-01
Nickel Oxide (NiO) and Ti doped NiO nanoparticles were prepared by sol-gel auto combustion method. Powder x-ray diffraction (PXRD) structural studies revealed face centered cubic (FCC) structure of the NiO nanopowders. The crystallite size decreased with Ti incorporation. UV-Vis spectroscopy carried out in diffused reflectance mode revealed decrease in band gap with increment in Urbach energy with doping.
NASA Astrophysics Data System (ADS)
Yu, Wei; Jiang, Xinbing; Ding, Shujiang; Li, Ben Q.
2014-06-01
Porous hollow nanospheres (or spherical shells) made of NiO nanosheets are synthesized and tested for the electrochemical performance of the electrodes made of these materials for supercapacitors. Preparation of the NiO sheet hollow spheres starts with synthesis of polystyrene nanospheres with carboxyl groups (CPS), followed by a two-step activation procedure and the subsequent nucleation and growth by electroless deposition of Ni on the CPS core to obtain CPS@Ni core-shell nanoparticles. The CPS core is eliminated and metallic Ni nanoshell is converted into NiO by calcinations at high temperatures. The material properties of as-prepared hollow NiO nanospheres are characterized by TEM, XRD and N2-absorption measurements. The electrochemical characteristics of the electrodes made of these nanostructured NiO materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the NiO nanosheet hollow spheres exhibit an improved reversible capacitance of 600 F g-1 after 1000 cycles at a high current density of 10 A g-1. It is believed that the good electrochemical performance of these electrodes is attributed to the improved OH- transport in the porous network structures associated with the hollow spheres of randomly oriented NiO nanosheets.
The Influence of NiO Addition in TiO2 Structure and Its Photoactivity
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Ramelan, A. H.; Purwanti, P. D.; Munawaroh, H.; Ichsan, S.; Kristiawan, Y. R.
2018-03-01
The synthesis of TiO2 together with the TiO2-NiO composite using various annealing temperatures has been studied. The synthesis of TiO2 was performed by sol gel method using Titanium Tetra Isopropoxide (TTIP) precursor, whereas the synthesis of TiO2-NiO composite was done by wet impregnation method using NiNO3.6H2O precursor. This study aims to determine the influence of NiO addition in its structure and photoactivity. The diffraction of synthesized TiO2 at 400 °C temperature shows anatase TiO2 peak at 2θ = 25.35 °. The addition of NiO dopant to the synthesis of TiO2 process is carried out by annealing at 300 °C, 400 °C, 500 °C, 600 °C, and 700 °C, respectively. The TiO2-NiO composite has been prepared and shows the diffraction peak of NiO at 2θ=43° about 33.08 to 36.68%. The optimum result of Rhodamine B photodegradation with TiO2 was 43.15%, while the optimum result of Rhodamine B degradation with TiO2-NiO composite was 92.85%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang
2015-10-15
Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed ofmore » nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.« less
Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P
2014-08-01
In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires
NASA Astrophysics Data System (ADS)
Li, X. Q.; Wei, J. Q.; Xu, J. C.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Hong, B.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, Xinqing
2017-12-01
In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni0.94Fe0.06O1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.
Large Capacity Missile Carrier (CMX)
1993-12-01
FSU) is emerging from a turbulent period that lasted from about 1990-2005. Some of the great hopes for the emergence of democracy and open markets ...34* AN/ UGC -I43A(V) NST "• OK-455(V) LJHF DAMA "* AN/UYQ-62 C2P VER I Link Processor "* ANIWSC-3(V)3 UHF SAT Transmitter/Receiver "* AN/USC-38 EHF...Graphics System Command, Control & NAVMACS II Communications (C’) AN/ UGC -143A(V) NST OKg455(V) UHF DAMA AN/UYQ-62 C2P VER I Link Processor AN/WSC-3(V
Advanced flight computers for planetary exploration
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1988-01-01
Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.
NASA Astrophysics Data System (ADS)
Villanova-de-Benavent, Cristina; Domènech, Cristina; Tauler, Esperança; Galí, Salvador; Tassara, Santiago; Proenza, Joaquín A.
2017-10-01
Fe-Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Fe-oxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10-0.62 wt.% NiO) and lower Fe (mostly 1.37-5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe-Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe-Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly.
Facile synthesis of self-assembled biporous NiO and its electrochemical properties
NASA Astrophysics Data System (ADS)
Muruganandham, M.; Suri, Rominder P. S.; Sillanpää, Mika; Lee, Gang-Juan; Wu, Jerry J.
2016-09-01
In this article, we report the synthesis of self-assembled bi-porous nickel oxide on a large scale without using any templates or matrix. Porous NiO microspheres composed of particles were obtained by thermal decomposition of nickel oxalate, which was prepared using nickel salt and oxalic acid as precursors. The as-obtained nickel oxalate and nickel oxide were characterized using X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), thermogravimetric analysis (TGA), and nitrogen adsorption-desorption analysis. The influence of various experimental conditions on the formation nickel oxalate and NiO were studied. The nitrogen adsorption-desorption analysis showed that the synthesized NiO possesses a biporous (both mesoporous and macroporous) surface structur. The NiO microspheres showed a discharge capacity of 2929 mAh g-1. A plausible mechanism for the NiO self-assembly was proposed.
Defects in codoped NiO with gigantic dielectric response
NASA Astrophysics Data System (ADS)
Wu, Ping; Ligatchev, Valeri; Yu, Zhi Gen; Zheng, Jianwei; Sullivan, Michael B.; Zeng, Yingzhi
2009-06-01
We combine first-principles, statistical, and phenomenological methods to investigate the electronic and dielectric properties of NiO and clarify the nature of the gigantic dielectric response in codoped NiO. Unlike previous models which are dependent on grain-boundary effects, our model based on small polaron hopping in homogeneous material predicts the dielectric permittivity (104-5) for heavily Li- and MD -codoped NiO (MD=Ti,Al,Si) . Furthermore, we reproduce the experimental trends in dielectric properties as a function of the dopants nature and their concentrations, as well as the reported activation energies for the relaxation in Li- and Ti-codoped NiO (0.308 eV or 0.153 eV depending on the Fermi-level position). In this study, we demonstrate that small polaron hopping on dopant levels is the dominant mechanism for the gigantic dielectric response in these codoped NiO.
Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems
NASA Astrophysics Data System (ADS)
Kale, G. M.; Fray, D. J.
1994-06-01
The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = -470,768 + 171.77T (±20) J mol-1 (800 ≤ T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = -523,190 + 191.07T (±100) J mol-1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H{298/o} = -239.8 (±0.05) kJ mol-1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.
Kuru, Cihan; Yavuz, Serdar; Kargar, Alireza; Choi, Duyoung; Choi, Chulmin; Rustomji, Cyrus; Jin, Sungho; Bandaru, Prabhakar R
2016-01-01
We report a doping strategy, where nickel oxide (NiO) nanoparticle film coating is employed for graphene/Si heterojunction solar cells to improve the power conversion efficiency (PCE). NiO doping has been shown to improve the short circuit current (J(SC)) by 12%, open circuit voltage (V(OC)) by 25% and fill factor (FF) by 145% of the cells, in turn increasing the PCE from 1.37% to 4.91%. Furthermore, NiO doped graphene/Si solar cells don't show any significant performance degradation over 10 days revealing that NiO doping can be a promising approach for practical applications of graphene in solar cells.
NASA Astrophysics Data System (ADS)
Coffey, Stephen; Connell, Joseph
2005-06-01
This paper presents a development platform for real-time image processing based on the ADSP-BF533 Blackfin processor and the MicroC/OS-II real-time operating system (RTOS). MicroC/OS-II is a completely portable, ROMable, pre-emptive, real-time kernel. The Blackfin Digital Signal Processors (DSPs), incorporating the Analog Devices/Intel Micro Signal Architecture (MSA), are a broad family of 16-bit fixed-point products with a dual Multiply Accumulate (MAC) core. In addition, they have a rich instruction set with variable instruction length and both DSP and MCU functionality thus making them ideal for media based applications. Using the MicroC/OS-II for task scheduling and management, the proposed system can capture and process raw RGB data from any standard 8-bit greyscale image sensor in soft real-time and then display the processed result using a simple PC graphical user interface (GUI). Additionally, the GUI allows configuration of the image capture rate and the system and core DSP clock rates thereby allowing connectivity to a selection of image sensors and memory devices. The GUI also allows selection from a set of image processing algorithms based in the embedded operating system.
Maritime dynamic traffic generator : Volume II. Electronic data processing program.
DOT National Transportation Integrated Search
1975-06-01
The processor program is designed to move 18,000 merchant vessels along standard routes to their destination and keep statistical records of the ports visited, the five degree squares passed through and the occurrence of casualties. This document pre...
Yuan, Kaidi; Zhong, Jian-Qiang; Zhou, Xiong; ...
2016-06-08
We identify Ni-O phases as important intermediates in a model dry (CO 2) reforming of methane catalyzed by Ni (111), based on results from in operando near ambient X-ray photoelectron spectroscopy (NAP-XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). We find that under a CO 2 or CO 2-CH 4 atmosphere, the Ni-O phases exist as p(2×2) structured chemisorbed oxygen (Chem-O), epitaxial NiO (111), or oxygen-rich Ni xO y (x2O 3), depending on the chemical potential. The growth rates of the Ni-O phases have a negative correlation with temperature from 600 K to 900 K, proving thatmore » their dynamic concentrations in the reaction are not limited by CO 2 activation, but by their thermal stability. Between 300 K and 800 K (1:1 CH 4 and CO 2 mixture), oxidation by CO 2is dominant, resulting in a fully Ni-O covered surface. Between 800 K and 900 K, a partially oxidized Ni (111) exists which could greatly facilitate the effective conversion of CH 4. As CH 4 is activation-limited and dissociates mainly on metallic nickel, the released carbon species can quickly react with the adjacent oxygen (Ni-O phases) to form CO. After combining with carbon and releasing CO molecules, the Ni-O phases can be further regenerated through oxidation by CO 2. In this way, the Ni-O phases participate in the catalytic process, acting as an intermediate in addition to the previously reported Ni-C phases. We also reveal the carbon phobic property of the Ni-O phases, which links to the intrinsic coking resistance of the catalysts. The low dynamic coverage of surface oxygen at higher temperatures (>900 K) is inferred to be an underlying factor causing carbon aggregation. Therefore solutions based on Ni-O stabilization are proposed in developing coking resisting catalysts.« less
Structural properties and optical characterization of flower-like Mg doped NiO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allaedini, Ghazaleh, E-mail: jiny-ghazaleh@yahoo.com; Tasirin, Siti Masrinda; Aminayi, Payam
In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX)more » confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.« less
Reaction of propane with the ordered NiO/Rh(1 1 1) studied by XPS and LEISS
NASA Astrophysics Data System (ADS)
Zhang, Hong; Wang, Wenyi; Chen, Mingshu; Wan, Huilin
2018-05-01
Nickel oxide has been reported to be an efficient catalyst for oxidative dehydrogenation of propane (ODP) to propene at low temperature. In this paper, ultrathin NiO films with various thickness were prepared on a Rh(1 1 1) surface and characterized by X-ray photoemission spectroscopy (XPS) and Low-energy ion scattering spectroscopy (LEISS). Results show that NiO forms a two-dimensional (2D) network with a O-Ni-O structure at submonolayer coverages, and a bulk-like NiO at multilayer coverages. The submonolayer NiO films are less stable than the thick ones when annealed in ultra-high vacuum (UHV) due to the strong interaction with the Rh substrate. Propane was dosed onto the model surfaces at different temperatures to investigate the activation of propane and reactivity of NiO films with propane. The reactions of propane with the thin and thick NiO films are significantly different. Propane activates on the O defect sites for the thick NiO films, whereas activation occurs on the interface of nickel oxide and substrate for the thin films with a higher activity.
Hui, Xu; Qian, Luming; Harris, Gary; Wang, Tongxin; Che, Jianfei
2016-11-05
Graphene-based inorganic composites have been attracting more and more attention since the attachment of inorganic nanoparticles instead of conducting polymeric materials to graphene sheets turns out higher capacitances and good capacity retention. Here we report a fast fabrication method to prepare NiO@graphene composite modified electrodes for supercapacitors. By this method, preparation of electrochemical active materials of NiO/graphene and modification of the electrode can be simultaneously performed, which is achieved separately by traditional method. Moreover, the problem of poor adhesion of active materials on the surface of the electrode can be well solved. The NiO particles introduced to the films exhibit pseudocapacitive behavior arising from the reversible Faradaic transitions of Ni(II)/Ni(III) and greatly improve the capacitance of the electrodes. With the increase in NiO content, highly reduced graphene can be obtained during cyclic voltammetry sweeping, leading to the increase in the electrode capacitance. The highest specific capacitance of the constructed electrodes can reach 1258 F/g at a current density of 5 A/g.
NASA Astrophysics Data System (ADS)
Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.
2018-04-01
Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.
NASA Astrophysics Data System (ADS)
Lv, Jinlong; Wang, Zhuqing; Miura, Hideo
2018-01-01
Many NiO platelets were formed on Ni foam after hydrothermal process, while flower-like NiO with many small mesoporous nanoflakes was obtained on the surface of graphene foam. Electrochemical results showed that the NiO/graphene composites exhibited very high specific capacitance 1062 F g-1 at 1 A g-1 and excellent cycling stability (90.6% capacitance retention after 5000 cycles at 1 A g-1). The promising NiO/graphene composites exhibited higher supercapacitor performance than NiO platelets on Ni foam. The excellent supercapacitor performance of the former should be attributed to the 3D graphene conductive network and the mesoporous NiO nanoflakes which promoted efficient charge transport and electrolyte diffusion.
Synthesis and characterization of NiO nanopowder by sol-gel process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ningsih, Sherly Kasuma Warda
2015-09-30
Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms weremore » produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.« less
NASA Astrophysics Data System (ADS)
Dewan, Sheetal; Tomar, Monika; Tandon, R. P.; Gupta, Vinay
2017-06-01
Mixed transition metal oxide, zinc doped NiO, Z n x N i 1 - x O (x = 0, 0.01, 0.02, 0.05, and 0.10), thin films have been fabricated by the RF magnetron sputtering technique in an oxygen deficit ambience at a growth temperature of 400 °C. The present report highlights the effect of Zn doping in NiO thin films on its structural, optical, and electrical properties. Optical transmission enhancement and band gap engineering in a-axis oriented NiO films have been demonstrated via Zn substitution. Hall effect measurements of the prepared samples revealed a transition from p-type to n-type conductivity in NiO at 2% Zn doping. A NiO based transparent p-n homojunction diode has been fabricated successfully, and the conduction mechanism dominating the diode properties is reported in detail. Current-voltage (I-V) characteristics of the homojunction diode are found to obey the Space Charge Limited Conduction mechanism with non-ideal square law behaviour.
NASA Astrophysics Data System (ADS)
Marselin, M. Abila; Jaya, N. Victor
2016-04-01
In this paper, pure NiO and Cu-doped NiO nanoparticles are prepared by co-precipitation method. The electrical resistivity measurements by applying high pressure on pure NiO and Cu-doped NiO nanoparticles were reported. The Bridgman anvil set up is used to measure high pressures up to 8 GPa. These measurements show that there is no phase transformation in the samples till the high pressure is reached. The samples show a rapid decrease in electrical resistivity up to 5 GPa and it remains constant beyond 5 GPa. The electrical resistivity and the transport activation energy of the samples under high pressure up to 8 GPa have been studied in the temperature range of 273-433 K using diamond anvil cell. The temperature versus electrical resistivity studies reveal that the samples behave like a semiconductor. The activation energies of the charge carriers depend on the size of the samples.
Bottle-brush-shaped heterostructures of NiO-ZnO nanowires: growth study and sensing properties
NASA Astrophysics Data System (ADS)
Baratto, C.; Kumar, R.; Comini, E.; Ferroni, M.; Campanini, M.
2017-11-01
We present here heterostructured ZnO-NiO nanowires (NWs), constituted by a core of single crystalline ZnO NWs, covered by poly-crystalline NiO nanorods (NRs). The bottle-brush shape was investigated by scanning electron microscopy and transmission electron microscope, confirming that a columnar growth of NiO occurred over the ZnO core, with a preferred orientation of NiO over ZnO NWs. The heterostructured devices are proposed for gas sensing application. Bare ZnO NWs and heterostructured sensors with two different thicknesses of NiO poly-crystalline NRs were analysed for acetone, ethanol, NO2 and H2 detection. All sensors maintained n-type sensing mechanism, with improved sensing performance for lower thickness of NiO, due to high catalytic activity of NiO. The sensing dynamic is also strongly modified by the presence of heterojunction of NiO/ZnO, with a reduction of response and recovery times towards ethanol and acetone at 400 °C.
Seo, Seongrok; Park, Ik Jae; Kim, Myungjun; Lee, Seonhee; Bae, Changdeuck; Jung, Hyun Suk; Park, Nam-Gyu; Kim, Jin Young; Shin, Hyunjung
2016-06-02
NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.
NASA Astrophysics Data System (ADS)
Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.
2002-08-01
Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.
Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor
NASA Astrophysics Data System (ADS)
Arif, Mohd.; Sanger, Amit; Singh, Arun
2018-03-01
We have synthesized a chemiresistive sensor for chlorine (Cl2) gas in the range of 2-200 ppm based on nickel oxide (NiO) nanoparticles obtained by wet chemical synthesis. The nanoparticles were characterized by x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. XRD spectra of the sensing layer revealed the cubic phase of NiO nanoparticles. The NiO nanoparticle size was calculated to be ˜ 21 nm using a Williamson-Hall plot. The bandgap of the NiO nanoparticles was found to be 3.13 eV using Tauc plots of the absorbance curve. Fast response time (12 s) and optimum recovery time (˜ 27 s) were observed for 10 ppm Cl2 gas at moderate temperature of 200°C. These results demonstrate the potential application of NiO nanoparticles for fabrication of highly sensitive and selective sensors for Cl2 gas.
NASA Astrophysics Data System (ADS)
Sabri, Nasehah Syamin; Lim, Eng Liang; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat; Jumali, Mohammad Hafizuddin Haji
2017-05-01
In this work, the effect of multiple deposition of nickel oxide (NiO) hole transport layer (HTL) on the performance of inverted type organic solar cell with a configuration of fluorine tin oxide (FTO)/zinc oxide (ZnO) nanorods/ poly(3-hexylthiopene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/NiO/silver (Ag) was investigated. The NiO nanoparticles solution was spin-coated on top of the photoactive layer (P3HT:PCBM) prior to deposition of Ag electrode. Different numbers of NiO layers (1, 2, and 4) were deposited on the photoactive layer to obtain the optimum surface morphology of HTL. The device with 2 layers of NiO exhibited the optimum power conversion efficiency of 1.10%. It is believed that the optimum NiO deposition layer gives the complete coverage at photoactive layer and forms ohmic contact between the photoactive layer and Ag electrode.
NASA Astrophysics Data System (ADS)
Djiokap, S. R. Tankio; Urgessa, Z. N.; Mbulanga, C. M.; Boumenou, C. Kameni; Venter, A.; Botha, J. R.
2018-04-01
In this paper, the growth of ZnO nanorods on bare and NiO-coated p-Si substrates is reported. A two-step chemical bath deposition process has been used to grow the nanorods. X-ray diffraction and scanning probe microscopy confirmed that the NiO films were polycrystalline, and that the average grain size correlated with the NiO layer thickness. The ZnO nanorod morphology, orientation and optical properties seemed to be unaffected by the intermediate NiO layer thickness. Current-voltage measurements confirmed the rectifying behavior of all the ZnO/NiO/Si heterostructures. The inclusion of a NiO layer between the substrate and the ZnO nanorods are shown to cause a reduction in both the forward and reverse bias currents. This is in qualitative agreement with the band diagram of these heterostructures, which suggests that the intermediate NiO layer should act as an electron blocking layer.
Zhu, Yun; Yang, Zezhou; Chi, Maoqiang; Li, Meixuan; Wang, Ce; Lu, Xiaofeng
2018-05-01
Fabrication of core-shell nanostructured catalyst is a promising way for tuning its catalytic performance due to the highly active interface and rich redox properties. In this work, hierarchical Co 3 O 4 @NiO core-shell nanotubes are fabricated by the deposition of NiO shells via a chemical bath treatment using electrospun Co-C composite nanofibers as templates, followed by a calcination process in air. The as-prepared Co 3 O 4 @NiO core-shell nanotubes exhibit a uniform and novel hollow structure with Co 3 O 4 nanoparticles attached to the inner wall of NiO nanotubes and excellent catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H 2 O 2 . Due to the synergistic effect, the peroxidase-like activity of the Co 3 O 4 @NiO core-shell nanotubes is much higher than that of individual Co 3 O 4 and NiO components. Owing to the superior peroxidase-like activity, a simple and rapid colorimetric approach for the detection of dopamine with a detection limit of 1.21µM and excellent selectivity has been developed. It is anticipated that the prepared Co 3 O 4 @NiO core-shell nanotubes are promising materials applied for biomedical analysis and environmental monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.
A novel approach for fabricating NiO hollow spheres for gas sensors
NASA Astrophysics Data System (ADS)
Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong
2018-03-01
Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sheng-Chi, E-mail: chensc@mail.mcut.edu.tw; Wen, Chao-Kuang; Lin, Yu-Chin
2014-03-15
In-doped NiO films with indium concentrations ranging from 0 to 30.3 at. % were deposited on glass substrates to investigate corresponding structural, optical, and electrical property variations. The x-ray diffraction patterns show that all films display only NiO peaks. When In atoms were added to NiO films, the NiO peaks shifted to lower angles, indicating that the lattice parameters of the films increased due to the larger In ions substituting for the smaller Ni ions. An electrical resistivity (ρ) too high to be measured occurred when the indium concentration in the NiO film was less than 15.6 at. %. Themore » ρ value dropped significantly to 0.06 Ω·cm as the indium concentration increased to 26.9 at. %. Upon further raising the In to 30.3 at. %, the ρ value decreased further to 0.01 Ω·cm. All the In-doped NiO films showed n-type conduction. The transmittance of undoped NiO film is as high as 96%. On raising the indium concentration to 15.6, 19.9, 26.9, and 30.3 at. %, the transmittances decreased further to 68%, 62%, 57%, and 47%, respectively. Introducing higher In concentrations improved the films’ thermal stability of electrical resistivity.« less
The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode
Li, Yan; Luo, Zhong-yang; Yu, Chun-jiang; Luo, Dan; Xu, Zhu-an; Cen, Ke-fa
2005-01-01
Ni-Ce0.8Sm0.2O1.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800 °C) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electrode performance was investigated so that the result obtained can be applied to make high-quality anode. Three kinds of NiO powder were synthesized with a fourth kind being available in the market. Four types of anode precursors were fabricated with these NiO powders and Ce0.8Sm0.2O1.9 (SDC), and then were reduced to anode wafers for sequencing measurement. The electrical conductivity of the anodes was measured and the effect of microstructure was investigated. It was found that the anode electrical conductivity depends strongly on the NiO powder morphologies, microstructure of the cermet anode and particle sizes, which are decided by NiO powder preparation technique. The highest electrical conductivity is obtained for anode cermets with NiO powder synthesized by NiCO3·2Ni(OH)2·4H2O or Ni(NO3)2·6H2O decomposition technique. PMID:16252348
New thin films of NiO doped with V2O5 for electrochromic applications
NASA Astrophysics Data System (ADS)
Azevedo, Cristiane F.; Balboni, Raphael D. C.; Cholant, Camila M.; Moura, Elton A.; Lemos, Rafaela M. J.; Pawlicka, Agnieszka; Gündel, Andre; Flores, Wladimir H.; Pereira, Marcelo; Avellaneda, César O.
2017-11-01
This paper reports on synthesis and characterization of new electrochromic thin films of NiO doped with V2O5 that were prepared by the sol-gel method and deposited by the spin coating technique. The confirmation of the presence of the dopant in the structure of the films was given by energy-dispersive X-ray spectroscopy (EDX). The effect of the addition of vanadium to the films of NiO was evaluated by electrochemical techniques such as cyclic voltammetry, chronocoulometry, and chronoamperometry in 0.5 mol/L KOH electrolyte. The morphology and the structure of the films, determined by microscopies (SEM and AFM), reveal smooth and slightly rough surfaces. The addition of vanadium as a dopant does not produce changes in the host NiO matrix as evidenced by X-ray diffractometry (XRD). However, the addition of the dopant causes a significant improvement in a charge density values of the films that increase more than twice from 25.5 mC/cm2 for NiO to 52.8 mC/cm2 for NiO with 10 mol% of V2O5. V2O5 doping of NiO films also improved their optical properties as well as kinetics of insertion and extraction processes.
NASA Astrophysics Data System (ADS)
Lin, Jyung-Dong; Wu, Zhao-Lun
In this study, NiO/YSZ composite powders were synthesized using hydrolysis on two solutions, one contains YSZ particles and Ni 2+ ion, and the other contains NiO particles, Zr 4+, and Y 3+ ions, with the aid of urea. The microstructure of the powders and sintered bulks was further characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicated that various synthesis processes yielded NiO/YSZ powders with different morphologies. The NiO precursors would deposit onto the surface of YSZ particles, and NiO-deposited YSZ composite powders were obtained. Alternatively, it was not observed that YSZ precursors deposited onto the surface of NiO particles, thus, a uniform powder mixture of fine NiO and fine YSZ particles was produced. After sintering and subsequent reduction, these powders would lead to the variations of Ni distribution in the YSZ matrix and conductivity of cermets. Owing to the core-shell structure of the powders and the higher size ratio of YSZ and NiO particles, the conductivity of cermet with NiO-deposited YSZ powders containing 23 wt% NiO is comparable to those with a NiO/YSZ powder mixture containing 50 wt% NiO.
7 CFR 1421.12 - Production evidence.
Code of Federal Regulations, 2010 CFR
2010-01-01
... collateral such as: (i) Evidence of sales, (ii) Delivery evidence, (iii) Load summaries from warehouse, processor, or buyer, (iv) Warehouse receipts (v) Paid measurement service (vi) Spot check measurements with... records and other written data as deemed necessary to verify the eligibility of the producer and commodity...
7 CFR 1421.12 - Production evidence.
Code of Federal Regulations, 2011 CFR
2011-01-01
... collateral such as: (i) Evidence of sales, (ii) Delivery evidence, (iii) Load summaries from warehouse, processor, or buyer, (iv) Warehouse receipts (v) Paid measurement service (vi) Spot check measurements with... records and other written data as deemed necessary to verify the eligibility of the producer and commodity...
Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong
2018-03-28
Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.
Zhou, Zhongnian; Ni, Haifang; Fan, Li-Zhen
2014-07-01
Graphene (GR)-based nanocomposites with different mass ratios of NiO and GR are prepared via hydrothermal method using Ni(NO3)2 as the origin of nickel and urea as the hydrolysis-controlling agent. The morphology and electrochemical performance of the GR/NiO nanocomposites are closely associated with the mass ratios of GR to NiO. The chemical composition and morphology of the composites together with the pure GR and NiO are characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). It is found that the GR sheets and NiO particles form uniform nanocomposites with the NiO particles absorbed on the GR surface. A specific capacitance of 384 F g(-1) at a current density of 0.1 A g(-1) is achieved when the coating amount of NiO is up to 74 wt%. In addition, the attenuation of the specific capacitance is less than 6% after 500 cycles, indicating such nanocomposite has excellent cycling performance.
Preparation of p-type NiO films by reactive sputtering and their application to CdTe solar cells
NASA Astrophysics Data System (ADS)
Ishikawa, Ryousuke; Furuya, Yasuaki; Araki, Ryouichi; Nomoto, Takahiro; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Tsuboi, Nozomu
2016-02-01
Transparent p-type NiO films were prepared by reactive sputtering using the facing-target system under Ar-diluted O2 gas at Tsub of 30 and 200 °C. The increasing intensity of dominant X-ray diffraction (XRD) peaks indicates improvements in the crystallinity of NiO films upon Cu doping. In spite of the crystallographic and optical changes after Cu-doping, the electrical properties of Cu-doped NiO films were slightly improved. Upon Ag-doping at 30 °C under low O2 concentration, on the other hand, the intensity of the dominant (111) XRD peaks was suppressed and p-type conductivity increased from ˜10-3 to ˜10-1 S cm-1. Finally, our Ag-doped NiO films were applied as the back contact of CdTe solar cells. CdTe solar cells with a glass/ITO/CdS/CdTe/NiO structure exhibited an efficiency of 6.4%, suggesting the high potential of using p-type NiO for the back-contact film in thin-film solar cells.
Properties of NiO thin films deposited by intermittent spray pyrolysis process
NASA Astrophysics Data System (ADS)
Reguig, B. A.; Khelil, A.; Cattin, L.; Morsli, M.; Bernède, J. C.
2007-02-01
NiO thin films have been grown on glass substrates by intermittent spray pyrolysis deposition of NiCl 2·6H 2O diluted in distilled water, using a simple "perfume atomizer". The effect of the solution molarity on their properties was studied and compared to those of NiO thin films deposited with a classical spray system. It is shown that NiO thin films crystallized in the NiO structure are achieved after deposition. Whatever the precursor molarity, the grain size is around 25-30 nm. The crystallites are preferentially oriented along the (1 1 1) direction. All the films are p-type. However, the thickness and the conductivity of the NiO films depend on the precursor contraction. By comparison with the properties of films deposited by classical spray technique, it is shown that the critical precursor concentration, which induces strong thin films properties perturbations, is higher when a perfume atomizer is used. This broader stability domain can be attributed to better chlorides decomposition during the rest time used in the perfume atomizer technique.
Effect of defects on reaction of NiO surface with Pb-contained solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jongjin; Hou, Binyang; Park, Changyong
In order to understand the role of defects in chemical reactions, we used two types of samples, which are molecular beam epitaxy (MBE) grown NiO(001) film on Mg(001) substrate as the defect free NiO prototype and NiO grown on Ni(110) single crystal as the one with defects. In-situ observations for oxide-liquid interfacial structure and surface morphology were performed for both samples in water and Pb-contained solution using high-resolution X-ray reflectivity and atomic force microscopy. For the MBE grown NiO, no significant changes were detected in the high-resolution X-ray reflectivity data with monotonic increase in roughness. Meanwhile, in the case ofmore » native grown NiO on Ni(110), significant changes in both the morphology and atomistic structure at the interface were observed when immersed in water and Pb-contained solution. Our results provide simple and direct experimental evidence of the role of the defects in chemical reaction of oxide surfaces with both water and Pb-contained solution.« less
Monitoring of Global Acoustic Transmissions: Signal Processing and Preliminary Data Analysis
1991-09-01
Approved by: A .- • -, Jam t . Miller, Thesis Advisor Ching-San Chiu, Thesis Co-Advisor Curtis A. Collins Chairman, Department of Oceanography ii ABSTRACT A...Island Sonobuoys CSIRO, Australia Mawson Station Sonobuoys CSIRO, Australia Kerguelen Island Sonobuoys INSU-TAAF, France Indian Ocean Sonobuoys NIO, India...three major uncertainties underlying the use of global acoustic transmissions: 5 *0" NN N $ o* w W o W" .a 4W r N 1W o0" M fo4 ° v t &W "w s Figure
NASA Astrophysics Data System (ADS)
Pebley, Andrew Christian
Ni-Fe oxides have received significant interest from the scientific community because they have attractive magnetic and electrochemical properties for use in next generation data storage and energy conversion technologies. For example, the NiFe2O4/NiO nanogranular system exhibits the exchange bias effect, a magnetic phenomenon occurring at the interface of a ferro- or ferrimagnet (FM or FiM) and an antiferromagnet (AFM), where the AFM acts to increase the magnetic hardness of the corresponding FM or FiM. Additionally, doping of NiO with Fe has resulted in remarkably high catalytic activities for water splitting, a potential clean energy alternative to fossil fuels. A key challenge in implementing these Ni-Fe oxides for magnetic and electrocatalytic applications is the ability to control film morphology, crystallinity, composition, chemical phase, and doping during synthesis. Moreover, how these physiochemical properties effect magnetic and electrochemical behavior in the Ni-Fe oxide system is not fully understood. This dissertation focuses on the development and use of a novel synthesis technique, known as microplasma (MP) jet-based deposition, for the fabrication of biphasic NiFe2O4 (FiM)/NiO (AFM) and Fe-doped NiO nanostructured films for fundamental studies of exchange bias and electrocatalysis, respectively. The goal of this work was to understand how MP operation and deposition conditions (e.g., precursor composition, flux, substrate temperature, and post-deposition heat treatment) influence Ni-Fe oxide growth and film microstructure. Specifically, the role of composition, phase fraction, grain size, temperature, and interfacial density on exchange bias phenomena in NiFe 2O4/NiO nanogranular films was investigated. MP jets were also used to realize metastable Fe-doped NiO films with high surface area to assess how doping affects the electrochemical properties of NiO for the oxygen evolution reaction (OER). Biphasic NiFe2O4/NiO films of different composition were synthesized using MP jets and post-deposition annealing. The exchange bias effect (HE) and enhanced coercivity (HC) were seen at 300 K, which was the first time that HE has been reported at room temperature in the NiFe2O4/NiO nanogranular system. These values increased with Ni incorporation, and were rationalized as due to increased NiFe2O4/NiO interfacial density. Moreover, MP jet deposition of NiFe2O4/NiO films on heated substrates was explored to realize higher interfacial densities. HE was observed at low temperatures in these films, but not at room temperature, which was attributed to spin glass coupling arising from structurally disordered interfaces. Through systematic post-deposition heat treatments, it was found that spin glass-like phases disappeared after annealing, and the observed HE was due to direct exchange coupling between the NiO and NiFe2O 4 phases. MP jets were also used to deposit high-surface area, metastable Fe-doped NiO films of different composition (up to 20% Fe on a metals basis) at room temperature on indium tin oxide (ITO) substrates for OER catalysis. It was seen that Fe fully incorporated into the NiO rocksalt lattice, decreasing the overpotential for OER (i.e., 360 to 310 mV at 10 mA/cm2 for NiO and Ni0.95Fe0.05O, respectively). Turnover frequency (TOF) calculations demonstrated an improvement in the catalytic activity of the NiO surface with Fe doping, and chronopotentiometry measurements verified that Fe-doped NiO films were mechanically and chemically robust during extended operation under OER conditions. Overall, this work demonstrates the potential of MP jet deposition as a versatile, one-step approach to realize multi-phase and doped nanostructured oxide films with high interfacial densities and surface areas for a variety of magnetic and energy conversion applications.
Insertion of NiO electron blocking layer in fabrication of GaN-organic heterostructures
NASA Astrophysics Data System (ADS)
Li, Junmei; Guo, Wei; Jiang, Jie'an; Gao, Pingqi; Bo, Baoxue; Ye, Jichun
2018-03-01
We report the fabrication of a NiO thin film on top of an n-type GaN epitaxial layer. The electron-blocking capability of NiO in a hybrid organic/inorganic heterostructure consisting of n-GaN/NiO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is discussed. Surface morphology, crystallography orientation, bandgap, and fermi level information of NiO films were investigated in detail. A rectifying property consistent with the proposed band diagram was observed in the current-voltage measurement. Theoretical analysis also demonstrated the effective electron blocking due to band alignment and a more balanced carrier distribution inside the GaN region with NiO inserted into the n-GaN/PEDOT:PSS heterostructure. This work provides a promising approach to the fabrication of high-efficiency hybrid optoelectronic devices.
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites
2013-01-01
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction. PMID:23601907
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites
NASA Astrophysics Data System (ADS)
Wen, John Z.; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F.; Zhou, Y. Norman
2013-04-01
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites.
Wen, John Z; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F; Zhou, Y Norman
2013-04-20
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.
50 CFR 648.6 - Dealer/processor permits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... herring, Atlantic sea scallop, Atlantic deep-sea red crab, spiny dogfish, summer flounder, Atlantic surf... permitted vessel of the United States. (ii) Atlantic herring at-sea processing permit. A vessel of the... eligible to obtain an Atlantic herring at-sea processing permit to receive and process Atlantic herring...
50 CFR 660.160 - Catcher/processor (C/P) Coop Program.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Coop Program, or the Shorebased IFQ Program. As determined necessary by the Regional Administrator... combination. [Reserved] (4) Appeals. [Reserved] (5) Fees. The Regional Administrator is authorized to charge... entry permit owner in the NMFS permit database. (ii) Qualifying criteria for C/P endorsement. In order...
Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures
Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus
2012-01-01
In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, Jacob; Imam, Neena
2007-01-01
Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimizedmore » for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.« less
Processor and method for developing a set of admissible fixture designs for a workpiece
Brost, Randolph C.; Goldberg, Kenneth Y.; Canny, John; Wallack, Aaron S.
1999-01-01
Methods and apparatus are provided for developing a complete set of all admissible Type I and Type II fixture designs for a workpiece. The fixture processor generates the set of all admissible designs based on geometric access constraints and expected applied forces on the workpiece. For instance, the fixture processor may generate a set of admissible fixture designs for first, second and third locators placed in an array of holes on a fixture plate and a translating clamp attached to the fixture plate for contacting the workpiece. In another instance, a fixture vise is used in which first, second, third and fourth locators are used and first and second fixture jaws are tightened to secure the workpiece. The fixture process also ranks the set of admissible fixture designs according to a predetermined quality metric so that the optimal fixture design for the desired purpose may be identified from the set of all admissible fixture designs.
Reconfigurable Very Long Instruction Word (VLIW) Processor
NASA Technical Reports Server (NTRS)
Velev, Miroslav N.
2015-01-01
Future NASA missions will depend on radiation-hardened, power-efficient processing systems-on-a-chip (SOCs) that consist of a range of processor cores custom tailored for space applications. Aries Design Automation, LLC, has developed a processing SOC that is optimized for software-defined radio (SDR) uses. The innovation implements the Institute of Electrical and Electronics Engineers (IEEE) RazorII voltage management technique, a microarchitectural mechanism that allows processor cores to self-monitor, self-analyze, and selfheal after timing errors, regardless of their cause (e.g., radiation; chip aging; variations in the voltage, frequency, temperature, or manufacturing process). This highly automated SOC can also execute legacy PowerPC 750 binary code instruction set architecture (ISA), which is used in the flight-control computers of many previous NASA space missions. In developing this innovation, Aries Design Automation has made significant contributions to the fields of formal verification of complex pipelined microprocessors and Boolean satisfiability (SAT) and has developed highly efficient electronic design automation tools that hold promise for future developments.
A Study of the Ethernet Troughput Performance of the Embedded System
NASA Astrophysics Data System (ADS)
Duan, Zhi-Yu; Zhao, Zhao-Wang
2007-09-01
An ethernet acceleration solution developed for the NIOS II Embedded System in astronomical applications - Mason Express is introduced in this paper. By manually constructing the proper network protocol headers and directly driving the hardware, Mason Express goes around the performance bottleneck of the Light Weighted IP stack (LWIP), and achieves up to 90Mb/s unidirectional data troughput rate from the embedded system board to the data collecting computer. With the LWIP stack, the maximum data rate is about 10.57Mb/s. Mason Express is a total software solution and no hardware changes required, neither does it affect the uCOS II operating system nor the LWIP stack, and can be implemented with or without any embedded operating system. It maximally protects the intelligence investment of the users.
Lessons from isolable nickel(I) precursor complexes for small molecule activation.
Yao, Shenglai; Driess, Matthias
2012-02-21
Small-molecule activation by transition metals is essential to numerous organic transformations, both biological and industrial. Creating useful metal-mediated activation systems often depends on stabilizing the metal with uncommon low oxidation states and low coordination numbers. This provides a redox-active metal center with vacant coordination sites well suited for interacting with small molecules. Monovalent nickel species, with their d(9) electronic configuration, are moderately strong one-electron reducing agents that are synthetically attractive if they can be isolated. They represent suitable reagents for closing the knowledge gap in nickel-mediated activation of small molecules. Recently, the first strikingly stable dinuclear β-diketiminate nickel(I) precursor complexes were synthesized, proving to be suitable promoters for small-molecule binding and activation. They have led to many unprecedented nickel complexes bearing activated small molecules in different reduction stages. In this Account, we describe selected achievements in the activation of nitrous oxide (N(2)O), O(2), the heavier chalcogens (S, Se, and Te), and white phosphorus (P(4)) through this β-diketiminatonickel(I) precursor species. We emphasize the reductive activation of O(2), owing to its promise in oxidation processes. The one-electron-reduced O(2) activation product, that is, the corresponding β-diketiminato-supported Ni-O(2) complex, is a genuine superoxonickel(II) complex, representing an important intermediate in the early stages of O(2) activation. It selectively acts as an oxygen-atom transfer agent, hydrogen-atom scavenger, or both towards exogenous organic substrates to yield oxidation products. The one-electron reduction of the superoxonickel(II) moiety was examined by using elemental potassium, β-diketiminatozinc(II) chloride, and β-diketiminatoiron(I) complexes, affording the first heterobimetallic complexes featuring a [NiO(2)M] subunit (M is K, Zn, or Fe). Through density functional theory (DFT) calculations, the geometric and electronic structures of these complexes were established and their distinctive reactivity, including the unprecedented monooxygenase-like activity of a bis(μ-oxo)nickel-iron complex, was studied. The studies have further led to other heterobimetallic complexes containing a [NiO(2)M] core, which are useful for understanding the influence of the heterometal on structure-reactivity relationships. The activation of N(2)O led directly to the hydrogen-atom abstraction product bis(μ-hydroxo)nickel(II) species and prevented isolation of any intermediate. In contrast, the activation of elemental S, Se, and Te with the same nickel(I) reagent furnished activation products with superchalcogenido E(2)(-) (E is S, Se, or Te) and dichalcogenido E(2)(2-) ligand in different activation stages. The isolable supersulfidonickel(II) subunit may serve as a versatile building block for the synthesis of heterobimetallic disulfidonickel(II) complexes with a [NiS(2)M] core. In the case of white phosphorus, the P(4) molecule has been coordinated to the nickel(I) center of dinuclear β-diketiminatonickel(I) precursor complexes; however, the whole P(4) subunit is a weaker electron acceptor than the dichalcogen ligands E(2), thus remaining unreduced. This P(4) binding mode is rare and could open new doors for subsequent functionalization of P(4). Our advances in understanding how these small molecules are bound to a nickel(I) center and are activated for further transformation offer promise for designing new catalysts. These nickel-containing complexes offer exceptional potential for nickel-mediated transformations of organic molecules and as model compounds for mimicking active sites of nickel-containing metalloenzymes.
CoNNeCT Baseband Processor Module
NASA Technical Reports Server (NTRS)
Yamamoto, Clifford K; Jedrey, Thomas C.; Gutrich, Daniel G.; Goodpasture, Richard L.
2011-01-01
A document describes the CoNNeCT Baseband Processor Module (BPM) based on an updated processor, memory technology, and field-programmable gate arrays (FPGAs). The BPM was developed from a requirement to provide sufficient computing power and memory storage to conduct experiments for a Software Defined Radio (SDR) to be implemented. The flight SDR uses the AT697 SPARC processor with on-chip data and instruction cache. The non-volatile memory has been increased from a 20-Mbit EEPROM (electrically erasable programmable read only memory) to a 4-Gbit Flash, managed by the RTAX2000 Housekeeper, allowing more programs and FPGA bit-files to be stored. The volatile memory has been increased from a 20-Mbit SRAM (static random access memory) to a 1.25-Gbit SDRAM (synchronous dynamic random access memory), providing additional memory space for more complex operating systems and programs to be executed on the SPARC. All memory is EDAC (error detection and correction) protected, while the SPARC processor implements fault protection via TMR (triple modular redundancy) architecture. Further capability over prior BPM designs includes the addition of a second FPGA to implement features beyond the resources of a single FPGA. Both FPGAs are implemented with Xilinx Virtex-II and are interconnected by a 96-bit bus to facilitate data exchange. Dedicated 1.25- Gbit SDRAMs are wired to each Xilinx FPGA to accommodate high rate data buffering for SDR applications as well as independent SpaceWire interfaces. The RTAX2000 manages scrub and configuration of each Xilinx.
Inkjet Printing NiO-Based p-Type Dye-Sensitized Solar Cells.
Brisse, R; Faddoul, R; Bourgeteau, T; Tondelier, D; Leroy, J; Campidelli, S; Berthelot, T; Geffroy, B; Jousselme, B
2017-01-25
Fabrication at low cost of transparent p-type semiconductors with suitable electronic properties is essential toward the scalability of many electronic devices, especially for photovoltaic and photocatalytic applications. In this context, the synthesis of mesoporous NiO films through inkjet printing of a sol-gel ink was investigated for the first time. Nickel chloride and Pluronic F-127, used as nickel oxide precursor and pore-forming agent, respectively, were formulated in a water/ethanol mixture to prepare a jettable ink for Dimatix printer. Multilayer NiO films were formed, and different morphologies could be obtained by playing on the interlayer thermal treatment. At low temperature (30 °C), a porous nanoparticulate-nanofiber dual-pore structure was observed. On the other hand, with a high temperature treatment (450 °C), nanoparticulate denser films without any dual structure were obtained. The mechanism for NiO formation during the final sintering step, investigated by means of X-ray photolectron spectroscopy, shows that a Ni(OH) 2 species is an intermediate between NiCl 2 and NiO. The different morphologies and thicknesses of the NiO films were correlated to their performance in a p-DSSC configuration, using a new push-pull dye (so-called "RBG-174") and an iodine-based electrolyte. Moreover, the positive impact of a nanometric NiO x layer deposited by spin-coating and introduced between FTO and the NiO mesoporous network is highlighted in the present work. The best results were obtained with NiO x /four layer-NiO mesoporous photocathodes of 860 nm, with a current density at the short circuit of 3.42 mA cm -2 (irradiance of 100 mW cm -2 spectroscopically distributed following AM 1.5).
Wang, Jian; Yang, Pan; Wei, Xiaowei
2015-02-18
NiO nanocones decorated with ZnO nanothorns on NiO foil substrates are shown to be an ammonia sensor with excellent comprehensive performance, which could, in real-time, detect and monitor NH3 in the surrounding environment. Gas-sensing measurements indicate that assembling nanocones decorated with nanothorns on NiO foil substrate is an effective strategy for simultaneously promoting the stability, reproducibility, and sensitivity of the sensor, because the NiO foil substrate as a whole can quickly and stably transfer electrons between the gas molecules and the sensing materials and the large specific surface area of both nanocones and nanothorns provide good accessibility of the gas molecules to the sensing materials. Moreover, p-type NiO, with majority charge carriers of holes, has higher binding affinity for the electron-donating ammonia, resulting in a significant increase in selectivity toward NH3 over other organic gases. Compared with the NiO nanowires and pure NiO nanocones, the heterogeneous NiO nanocones/ZnO nanothorns exhibit less dependence on the temperature and humidity in response/recovery speed and sensitivity of sensing NH3. Our investigation indicates that two factors are responsible for reducing the dependence on the gas sensing characteristics under various environmental conditions. One is that the n-type ZnO nanothorns growing on the surface of nanocones, with majority charge carriers of electrons, speed up adsorption and desorption of gas molecules. The other is that the abundant cone-shaped and thornlike superstructures on the substrate are favorable for constructing a hydrophobic surface, which prevents the gas sensing material from being wetted.
Modification of inertial oscillations by the mesoscale eddy field
NASA Astrophysics Data System (ADS)
Elipot, Shane; Lumpkin, Rick; Prieto, GermáN.
2010-09-01
The modification of near-surface near-inertial oscillations (NIOs) by the geostrophic vorticity is studied globally from an observational standpoint. Surface drifter are used to estimate NIO characteristics. Despite its spatial resolution limits, altimetry is used to estimate the geostrophic vorticity. Three characteristics of NIOs are considered: the relative frequency shift with respect to the local inertial frequency; the near-inertial variance; and the inverse excess bandwidth, which is interpreted as a decay time scale. The geostrophic mesoscale flow shifts the frequency of NIOs by approximately half its vorticity. Equatorward of 30°N and S, this effect is added to a global pattern of blue shift of NIOs. While the global pattern of near-inertial variance is interpretable in terms of wind forcing, it is also observed that the geostrophic vorticity organizes the near-inertial variance; it is maximum for near zero values of the Laplacian of the vorticity and decreases for nonzero values, albeit not as much for positive as for negative values. Because the Laplacian of vorticity and vorticity are anticorrelated in the altimeter data set, overall, more near-inertial variance is found in anticyclonic vorticity regions than in cyclonic regions. While this is compatible with anticyclones trapping NIOs, the organization of near-inertial variance by the Laplacian of vorticity is also in very good agreement with previous theoretical and numerical predictions. The inverse bandwidth is a decreasing function of the gradient of vorticity, which acts like the gradient of planetary vorticity to increase the decay of NIOs from the ocean surface. Because the altimetry data set captures the largest vorticity gradients in energetic mesoscale regions, it is also observed that NIOs decay faster in large geostrophic eddy kinetic energy regions.
Enhanced H2S Sensing Performance of a p-type Semiconducting PdO-NiO Nanoscale Heteromixture
NASA Astrophysics Data System (ADS)
Balamurugan, C.; Jeong, Y. J.; Lee, D. W.
2017-10-01
Semiconducting nanocrystalline nickel oxide (NiO) and PdO-doped NiO heteromixture (2, 5 and 10 wt%) have been synthesized via a metal-citrate complex method. The obtained materials were further characterized using TG/DTA, FT-IR, UV-vis, XRD, XPS, BET/BJH, SEM and TEM analyses to determine their structural and morphological properties. The results indicated that the spherical, uniform PdO nanoparticles were densely deposited on the NiO surface mainly in diameters of 10-15 nm. Moreover, the existence of various defect states was also analyzed with the help of photoluminescence (PL) spectroscopy. The gas response characteristics of synthesized materials were evaluated in the presence and absence of toxic gases such as hydrogen sulfide (H2S), carbon monoxide (CO), liquid petroleum gas (LPG), and ethanol (C2H5OH). The experimental results revealed that the sensitivity and selectivity of the NiO-based sensor material are dependent on the weight% of PdO loading in the NiO nanopowder. Among the investigated compound, the 5 wt% PdO-doped NiO sensor material showed excellent sensitivity and selectivity to 100 ppm H2S with a fast response/recovery characteristics of 6 s and 10 s, respectively. Furthermore, the 5 wt% PdO-doped NiO based sensor showed a linear relationship between the different concentrations of H2S gas and a significantly higher response to H2S even at the low concentration of 20 ppm (43%) at 60 °C. The dominant H2S gas sensing mechanisms in the NiO and 5 wt% PdO-doped NiO nanomaterials are systematically discussed based on the obtained characterization results.
Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio
Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena
2014-01-01
Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems. PMID:26038672
Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio.
Kovrižnych, Jevgenij A; Sotníková, Ružena; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena
2014-03-01
Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems.
Magnetic interactions in NiO at ultrahigh pressure
Potapkin, Vasily; Dubrovinsky, Leonid; Sergueev, I.; ...
2016-05-24
Here, magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV M ssbauer transition of 61Ni. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to ~24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distortedmore » sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.« less
NASA Technical Reports Server (NTRS)
Muller, Dagmar; Krasemann, Hajo; Brewin, Robert J. W.; Brockmann, Carsten; Deschamps, Pierre-Yves; Fomferra, Norman; Franz, Bryan A.; Grant, Mike G.; Groom, Steve B.; Melin, Frederic;
2015-01-01
The established procedure to access the quality of atmospheric correction processors and their underlying algorithms is the comparison of satellite data products with related in-situ measurements. Although this approach addresses the accuracy of derived geophysical properties in a straight forward fashion, it is also limited in its ability to catch systematic sensor and processor dependent behaviour of satellite products along the scan-line, which might impair the usefulness of the data in spatial analyses. The Ocean Colour Climate Change Initiative (OC-CCI) aims to create an ocean colour dataset on a global scale to meet the demands of the ecosystem modelling community. The need for products with increasing spatial and temporal resolution that also show as little systematic and random errors as possible, increases. Due to cloud cover, even temporal means can be influenced by along-scanline artefacts if the observations are not balanced and effects cannot be cancelled out mutually. These effects can arise from a multitude of results which are not easily separated, if at all. Among the sources of artefacts, there are some sensor-specific calibration issues which should lead to similar responses in all processors, as well as processor-specific features which correspond with the individual choices in the algorithms. A set of methods is proposed and applied to MERIS data over two regions of interest in the North Atlantic and the South Pacific Gyre. The normalised water leaving reflectance products of four atmospheric correction processors, which have also been evaluated in match-up analysis, is analysed in order to find and interpret systematic effects across track. These results are summed up with a semi-objective ranking and are used as a complement to the match-up analysis in the decision for the best Atmospheric Correction (AC) processor. Although the need for discussion remains concerning the absolutes by which to judge an AC processor, this example demonstrates clearly, that relying on the match-up analysis alone can lead to misjudgement.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... submitted on or before March 21, 2011. ADDRESSES: Direct all written comments to Diana Hynek, Departmental... fisheries. Program components include quota share allocation, processor quota share allocation, individual... Binding Arbitration process, and fee collection. II. Method of Collection Responses are mailed, except the...
The Chimera II Real-Time Operating System for advanced sensor-based control applications
NASA Technical Reports Server (NTRS)
Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.
1992-01-01
Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.
Solution-processed flexible NiO resistive random access memory device
NASA Astrophysics Data System (ADS)
Kim, Soo-Jung; Lee, Heon; Hong, Sung-Hoon
2018-04-01
Non-volatile memories (NVMs) using nanocrystals (NCs) as active materials can be applied to soft electronic devices requiring a low-temperature process because NCs do not require a heat treatment process for crystallization. In addition, memory devices can be implemented simply by using a patterning technique using a solution process. In this study, a flexible NiO ReRAM device was fabricated using a simple NC patterning method that controls the capillary force and dewetting of a NiO NC solution at low temperature. The switching behavior of a NiO NC based memory was clearly observed by conductive atomic force microscopy (c-AFM).
Magnetocapacitance effect in core/shell NiO nanoparticles
NASA Astrophysics Data System (ADS)
Roy, Subir; Kambhala, Nagaiah; Angappane, S.
2018-04-01
The exchange bias and magnetocapacitance properties of nickel oxide nanoparticles of average particle size 50 nm have been studied. NiO nanoparticles of uniform size distribution were synthesized by a sol-gel method using nickel acetate and polyvinyl acetate. The magnetic measurements show the ferromagnetic like behavior exhibiting exchange bias effect indicative of the formation of core/shell structure of NiO with a antiferromagnetic core and ferromagnetic shell. An electrical double layer capacitance behavior was observed for NiO nanoparticles in the cyclic voltammetry measurement, and it was found that the value of capacitance decreased by about 26 % under the application of magnetic field of 0.1 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Cong; Lin, Xuejun; Wang, Xinqiang, E-mail: xqwang@sdu.edu.cn
Highlights: • NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm were prepared through centrifugal-spinning technique. • The evolution mechanism from precursor to crystalline fibers was explored. • Both NiO and hollow Co{sub 3}O{sub 4} fibers show ferromagnetism. • The NiO fibers exhibit good photocatalytic performance. - Abstract: Both NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm have been successfully prepared through spinning high viscous sols into precursor fibers and followed calcination process. The evolution process from precursor to crystalline fibers and the microstructures of the obtained fibers weremore » characterized by TG-DSC, FT-IR, XRD, HRTEM, SEM and the like. The method is facile and cost-effective for mass production of fibers and the obtained fibers are pure phase with high crystallinity. Their magnetic properties were investigated, showing that both the fibers are ferromagnetic. Meanwhile, the NiO fibers exhibit good photocatalytic performance for the removal of Congo red from water under UV light irradiation.« less
Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions
NASA Astrophysics Data System (ADS)
Sun, Hui; Liao, Ming-Han; Chen, Sheng-Chi; Li, Zhi-Yue; Lin, Po-Chun; Song, Shu-Mei
2018-03-01
n-type NiO:Al thin films were deposited by RF magnetron sputtering. Their optoelectronic properties versus Al target power was investigated. The results show that with increasing Al target power, the conduction type of NiO films changes from p-type to n-type. The variation of the film’s electrical and optical properties depends on Al amount in the film. When Al target power is relatively low, Al3+ cations tend to enter nickel vacancy sites, which makes the lattice structure of NiO more complete. This improves the carrier mobility and film’s transmittance. However, when Al target power exceeds 40 W, Al atoms begin to enter into interstitial sites and form an Al cluster in the NiO film. This behavior is beneficial for improving the film’s n-type conductivity but degrades the film’s transmittance. Finally, Al/(p-type NiO)/(n-type NiO:Al)/ITO homojunctions were fabricated. Their performance was compared with Al/(p-type NiO)/ITO heterojunctions without an n-type NiO layer. Thanks to the better interface quality between the two NiO layers, the homojunctions present better performance.
Xie, Yulin; Lu, Kai; Duan, Jiashun; Jiang, Youyu; Hu, Lin; Liu, Tiefeng; Zhou, Yinhua; Hu, Bin
2018-04-25
Electron and hole transport layers have critical impacts on the overall performance of perovskite solar cells (PSCs). Herein, for the first time, a solution-processed cobalt (Co)-doped NiO X film was fabricated as the hole transport layer in inverted planar PSCs, and the solar cells exhibit 18.6% power conversion efficiency. It has been found that an appropriate Co-doping can significantly adjust the work function and enhance electrical conductivity of the NiO X film. Capacitance-voltage ( C- V) spectra and time-resolved photoluminescence spectra indicate clearly that the charge accumulation becomes more pronounced in the Co-doped NiO X -based photovoltaic devices; it, as a consequence, prevents the nonradiative recombination at the interface between the Co-doped NiO X and the photoactive perovskite layers. Moreover, field-dependent photoluminescence measurements indicate that Co-doped NiO X -based devices can also effectively inhibit the radiative recombination process in the perovskite layer and finally facilitate the generation of photocurrent. Our work indicates that Co-doped NiO X film is an excellent candidate for high-performance inverted planar PSCs.
Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.
Gong, Ning; Shao, Kuishuang; Feng, Wei; Lin, Zhengzhi; Liang, Changhua; Sun, Yeqing
2011-04-01
Adverse effects of manufactured nickel oxide nanoparticles on the microalgae Chlorellavulgaris were determined by algal growth-inhibition test and morphological observation via transmission electron microscopy (TEM). Results showed that the NiO nanoparticles had severe impacts on the algae, with 72 h EC(50) values of 32.28 mg NiOL(-1). Under the stress of NiO nanoparticles, C. vulgaris cells showed plasmolysis, cytomembrane breakage and thylakoids disorder. NiO nanoparticles aggregated and deposited in algal culture media. The presence of algal cells accelerated aggregation of nanoparticles. Moreover, about 0.14% ionic Ni was released when NiO NPs were added into seawater. The attachment of aggregates to algal cell surface and the presence of released ionic Ni were likely responsible for the toxic effects. Interestingly, some NiO nanoparticles were reduced to zero valence nickel as determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The maximum ratios of nickel reduction was achieved at 72 h of exposure, in accordance with the time-course of changes in soluble protein content of treated C. vulgaris, implying that some proteins of algae are involved in the process. Our results indicate that the toxicity and bioavailability of NiO nanoparticles to marine algae are reduced by aggregation and reduction of NiO. Thus, marine algae have the potential for usage in nano-pollution bio-remediation in aquatic system. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Schottky diode behaviour with excellent photoresponse in NiO/FTO heterostructure
NASA Astrophysics Data System (ADS)
Saha, B.; Sarkar, K.; Bera, A.; Deb, K.; Thapa, R.
2017-10-01
Delocalization of charge carriers through formation of native defects in NiO, to achieve a good metal oxide hole transport layer was attemted in this work and thus a heterojunction of p-type NiO and n-type FTO have been prepared through sol-gel process on FTO coated glass substrate. The synthesis process was stimulated by imparting large number of OH- sites during nucleation of Ni(OH)2 on FTO, so that during oxidation through annealing Ni vacancies are introduced. The structural properties as observed from X-ray diffraction measurement indicate formation of well crystalline NiO nanoparticles. Uniform distribution of NiO nanoparticles has been observed in the images obtained from scanning electron microscope. The occurrence of p-type conductivity in the NiO film was stimulated through the formation of delocalized defect carriers originated from crystal defects like vacancies or interstitials in the lattice. Ni vacancy creates shallow levels with respect to the valance band maxima and they readily produce holes. Thus a native p-type conductivity of NiO originates from Ni vacancies. NiO was thus obtained as an auspicious hole transport medium, which creates an expedient heterojunction at the interface with FTO. Excellent rectifying behavior was observed in the electrical J-V plot obtained from the prepared heterojunction. The results are explained from the band energy diagram of the NiO/FTO heterojunction. Remarkable photoresponse has been observed in the reverse characteristics of the heterojunction caused by photon generated electron hole pairs.
Optical absorption and thermal stability study of Cu doped NiO nanoparticles
NASA Astrophysics Data System (ADS)
Varunkumar, K.; Ethiraj, Anita Sagadevan; Kechiantz, Ara
2018-05-01
This work reports variation of Cu doping concentration in NiO nanoparticles (NiO:Cu NPs) synthesized via chemical co-precipitation from solution by using NiCl2.6H2O as precursor, CuSO4.5H2O as dopant and NaOH as surfactant. We studied optical and thermal stability of prepared NiO:Cu NPs by UV-Vis absorbance, Diffuse Reflectance Spectroscopy (DRS), Atomic Absorption Spectroscopy (AAS), and Thermo Gravimetric/Differential Scanning Calorimetry (TGA/DSC) analyses. Optical absorption data of NiO:Cu NPs indicated strong absorption peaks shifted towards blue with respect to the peak of undoped NiO NPs due to quantum confinement effect. The bandgap estimated via Tauc plot first increased from 3.32eV (undoped NiO NPs) to 3.37 eV (8 at % of Cu in NiO NPs) and further increase of Cu doping to 10 at% reduced the bandgap to 3.35 eV. Such behavior of the bandgap clearly indicates that the size of NiO NPs first reduces with Cu doping up to 8 at % and then increases with further Cu doping to 10 at %. This behavior of reduction in particle size with increased doping can be attributed to the dislocation density and microstrain developed in NiO:Cu NPs. Thermal stability analysis demonstrated that in addition undoped NiO NPs, all NiO:Cu nanoparticle samples exhibited good thermal stability.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; El-Sayed, Mohamed Y.; Adam, Abdel Majid A.
2013-04-01
Cu(II), Co(II), and Ni(II) complexes were synthesized from 2-[(5-o-chlorophenylazo-2-hydroxybenzylidin)amino]-phenol Schiff base (H2L). Metal ions coordinate in a tetradentate or hexadentate features with these O2N donor ligand, which are characterized by elemental analyses, magnetic moments, infrared, Raman laser, electronic, and 1H NMR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Reactions with Cu(II), Co(II) and Ni(II), resulted [Cu(H2L)(H2O)2(Cl)]Cl, [Co(H2L)(H2O)3]Cl2ṡ3H2O and [Ni(H2L)(H2O)2]Cl2ṡ6H2O. The thermal decomposition behavior of H2L complexes has been investigated by thermogravimetric analysis (TG/DTG) at a heating rate of 10 °C min-1 under nitrogen atmosphere. The brightness side in this study is to take advantage for the preparation and characterizations of single phases of CuO, CoO and NiO nanoparticles using H2L complexes as precursors via a solid-state decomposition procedure. The crystalline structures of products using X-ray diffractometer (XRD), morphology of particles by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) were investigated.
Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles.
Khashan, Khawlah Salah; Sulaiman, Ghassan Mohammad; Abdul Ameer, Farah Abdul Kareem; Napolitano, Giuliana
2016-03-01
The Colloidal solutions of nickel oxide (NiO) nanoparticles synthesized via Nd-Yag pulse ablation of nickel immersed in H2O were studied. The created nanoparticles were characterized by UV-VIS absorption, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). FTIR characterization confirms the formation of nickel oxide nanoparticles. The optical band gap values, determined by UV-VIS absorption measurements, are found to be (4.5 ev). TEM shows that nanoparticles size ranged from 2-21 nm. The antimicrobial activity was carried out against pseudomonas aurogenisa, Escherichia coli (gram negative bacteria), Staphylococcus aureus and Streptococcus pneumonia (gram positive bacteria). The NiO nanoparticles showed inhibitory activity in both strains of bacteria with best selectivity against gram-positive bacteria. The findings of present study indicate that NiO nanoparticles could potentiate the permeability of bacterial cell wall, and remarkably increase the accumulation of amoxicillin in bacteria, suggesting that NiO nanoparticles together with amoxicillin would facilitate the synergistic impact on growth inhibition of bacterial strains.
Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO
NASA Astrophysics Data System (ADS)
He, Gege; Tian, Liangliang; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Pu, Wanrong; Zhang, Jinkun; Li, Lu
2018-01-01
Transition metal oxides (TMOs) have attracted extensive research attentions as promising electrocatalytic materials. Despite low cost and high stability, the electrocatalytic activity of TMOs still cannot satisfy the requirements of applications. Inspired by kinetics, the design of hollow porous structure is considered as a promising strategy to achieve superior electrocatalytic performance. In this work, cubic NiO hollow porous architecture (NiO HPA) was constructed through coordinating etching and precipitating (CEP) principle followed by post calcination. Being employed to detect glucose, NiO HPA electrode exhibits outstanding electrocatalytic activity in terms of high sensitivity (1323 μA mM-1 cm-2) and low detection limit (0.32 μM). The excellent electrocatalytic activity can be ascribed to large specific surface area (SSA), ordered diffusion channels, and accelerated electron transfer rate derived from the unique hollow porous features. The results demonstrate that the NiO HPA could have practical applications in the design of nonenzymatic glucose sensors. The construction of hollow porous architecture provides an effective nanoengineering strategy for high-performance electrocatalysts.
Kanamori, Tomohiro; Matsuda, Motohide; Miyake, Michihiro
2009-09-30
The recovery of valuable components such as nickel from nickel-metal hydride (Ni-MH) battery waste by chemical processes and their applications to CH(4) dry reforming catalysts were investigated. Three types of compound, identified by XRD analysis as NiO, CeO(2) and LaCoO(3) phases, were successfully separated from the waste by a series of chemical processes at room temperature using aqueous solutions of HCl, NaOH and NH(3), and Ni component of approximately 70% in Ni-MH battery waste was recovered. The separated NiO, CeO(2) and LaCoO(3) showed catalytic activities for CH(4) dry reforming. In particular, the separated NiO easily reduced to Ni(0) at an initial stage, and exhibited excellent catalytic activity in terms of CH(4) conversion and stability. Furthermore, it was found that the resulting Ni from separated NiO exhibited an anomalous catalysis from the comparison with that from regent NiO.
A Full Mesh ATCA-based General Purpose Data Processing Board (Pulsar II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajuha, S.
The Pulsar II is a custom ATCA full mesh enabled FPGA-based processor board which has been designed with the goal of creating a scalable architecture abundant in flexible, non-blocking, high bandwidth interconnections. The design has been motivated by silicon-based tracking trigger needs for LHC experiments. In this technical memo we describe the Pulsar II hardware and its performance, such as the performance test results with full mesh backplanes from different vendors, how the backplane is used for the development of low-latency time-multiplexed data transfer schemes and how the inter-shelf and intra-shelf synchronization works.
Imaging of electrical response of NiO x under controlled environment with sub-25-nm resolution
Jacobs, Christopher B.; Ievlev, Anton V.; Collins, Liam F.; ...
2016-07-19
The spatially resolved electrical response of rf-sputtered polycrystalline NiO x films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy at 0%, 50%, and 80% relative humidity with sub 25nm resolution. The surface potential of NiO x decreased by about 180 mV and resistance decreased in a nonlinear fashion by about 2 G when relative humidity was increased from 0% to 80%. The dimensionality of surface features obtained through autocorrelation analysis of topological, surfacemore » potential and resistance maps increased linearly with increased relative humidity as water was adsorbed onto the film surface. Spatially resolved surface potential and resistance of the NiO x films were found to be heterogeneous, with distinct features that grew in size from about 60 nm to 175 nm between 0% and 80% RH levels, respectively. Here, we find that the changes in the heterogeneous character of the NiO films are consistent through the topological, surface potential, and resistance measurements, suggesting that the nanoscale surface potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO x film.« less
Yu, Lei; Wang, Guilong; Wan, Gengping; Wang, Guizhen; Lin, Shiwei; Li, Xinyue; Wang, Kan; Bai, Zhiming; Xiang, Yang
2016-09-21
In this work, we report an atomic layer deposition (ALD) method for the fabrication of NiO/CNT hybrid structures in order to improve electronic conductivity, enhance cycling stability and increase rate capability of NiO used as supercapacitor electrodes. A uniform NiO coating can be well deposited on carbon nanotubes (CNTs) through simultaneously employing O3 and H2O as oxidizing agents in a single ALD cycle of NiO for the first time, with a high growth rate of nearly 0.3 Å per cycle. The electrochemical properties of the as-prepared NiO/CNT were then investigated. The results show that the electrochemical capacitive properties are strongly associated with the thickness of the NiO coating. The NiO/CNT composite materials with 200 cycles of NiO deposition exhibit the best electrochemical properties, involving high specific capacitance (622 F g(-1) at 2 A g(-1), 2013 F g(-1) for NiO), excellent rate capability (74% retained at 50 A g(-1)) and outstanding cycling stability. The impressive results presented here suggest a great potential for the fabrication of composite electrode materials by atomic layer deposition applied in high energy density storage systems.
Synthesis, structural and paramagnetic properties of SnO{sub 2} doped NiO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, I., E-mail: ishtihadahislam@gmail.com; Dwivedi, Sonam; Dar, Hilal A.
2016-05-06
In this work, Sn doped NiO nanoparticles were synthesized by co-precipitation route to explore the impact of doping on lattice structure, dielectric constant and magnetization. X-ray diffraction analysis confirmed cubic (Fd-3m) structure of Sn doped NiO. Average crystallite size decreases from 78.2 nm (Ni{sub 0.95}Sn{sub 0.05}O) to 64.23 nm (Ni{sub 0.8}Sn{sub 0.2}O). Scanning electron microscopy images confirm that nanocrystals have agglomerated spherical morphology. The Raman spectrum exhibits a strong, broad peak at 410 cm{sup -1} and is attributed to the Ni-O stretching mode and doped samples show a blue shift. The dielectric constants at about 1 Hz are measured to be about 1.795,more » 1.030, 0.442, and 0.302 × 10{sup 3} Ni{sub 1-x}Sn{sub x}O (x = 0.05, 0.1, 0.15, 0.2), respectively. The dielectric constant in nanoparticles of doped Ni{sub 1-x}Sn{sub x}O is three orders of magnitude higher as compared to pure NiO ceramics. The nature of magnetization - applied field (M-H) infers paramagnetic behaviour for Sn doped NiO nanoparticles.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
...) the Consolidated Tape Association (``CTA'') as the exclusive securities information processor (``SIP... CHX Solely Listed Stocks and (b) the NASDAQ Unlisted Trading Privileges Plan as the exclusive SIP for... Property. (ii) Enhancements to Existing Intellectual Property or New Developments. In the event FINRA (a...
7 CFR 457.160 - Processing tomato crop insurance provisions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Basic Provisions, you must provide a copy of all processor contracts to us on or before the acreage... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected... you to repay it to us with interest at any time acreage was bypassed due to the availability of a crop...
7 CFR 457.137 - Green pea crop insurance provisions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... processor contracts to us on or before the acreage reporting date. 7. Insured Crop (a) In accordance with... calendar year in which the insured peas would normally be harvested if you provide notice to us that the... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected...
7 CFR 457.160 - Processing tomato crop insurance provisions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Basic Provisions, you must provide a copy of all processor contracts to us on or before the acreage... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected... you to repay it to us with interest at any time acreage was bypassed due to the availability of a crop...
7 CFR 457.137 - Green pea crop insurance provisions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... processor contracts to us on or before the acreage reporting date. 7. Insured Crop (a) In accordance with... calendar year in which the insured peas would normally be harvested if you provide notice to us that the... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected...
7 CFR 457.160 - Processing tomato crop insurance provisions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Basic Provisions, you must provide a copy of all processor contracts to us on or before the acreage... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected... you to repay it to us with interest at any time acreage was bypassed due to the availability of a crop...
7 CFR 457.160 - Processing tomato crop insurance provisions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Basic Provisions, you must provide a copy of all processor contracts to us on or before the acreage... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected... you to repay it to us with interest at any time acreage was bypassed due to the availability of a crop...
7 CFR 457.137 - Green pea crop insurance provisions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... processor contracts to us on or before the acreage reporting date. 7. Insured Crop (a) In accordance with... calendar year in which the insured peas would normally be harvested if you provide notice to us that the... operation of harvesting equipment; and (ii) Abnormally hot or cold temperatures that cause an unexpected...
50 CFR 679.82 - Rockfish Program use caps and sideboard limits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... not participate in directed fishing for arrowtooth flounder, deep-water flatfish, and rex sole in the GOA (or in waters adjacent to the GOA when arrowtooth flounder, deep-water flatfish, and rex sole... authority of all eligible LLP licenses in the catcher/processor sector. (ii) For the deep-water halibut PSC...
50 CFR 679.82 - Rockfish Program use caps and sideboard limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... not participate in directed fishing for arrowtooth flounder, deep-water flatfish, and rex sole in the GOA (or in waters adjacent to the GOA when arrowtooth flounder, deep-water flatfish, and rex sole... authority of all eligible LLP licenses in the catcher/processor sector. (ii) For the deep-water halibut PSC...
76 FR 31575 - United States Standards for Grades of Frozen Onions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... processors of frozen onions in the United States. The petition provided information on style, sample size... change in the style designations for minced style, and a correction to the text. The members agreed with the proposed section concerning requirements for Styles, Type I, Whole onions and Type II, Pearl...
40 CFR 721.3760 - Fluorene-containing diaromatic amines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... amines (PMN P-88-998 and P-88-999) are subject to reporting under this section for the significant new... water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (where n = 1). (ii) [Reserved...), (c), and (k) are applicable to manufacturers, importers, and processors of this substance. (2...
Secondary Processors and Landfills — Partnerships that Work
NASA Astrophysics Data System (ADS)
Brewer, Ben; Roth, David J.
Using Best Available Technology is a phase that we often hear when there are environmental discussions on aluminum dross and secondary salt slag processing. The reality is best available technology is a mix between efficient removal of the valuable aluminum, oxides, misc metals and flux from dross and salt cake. This combined with conscientious land fill disposal of those items that finally, at this time, have no economic use is the reality of a company's best available actions. Recycling processes must be looked at with both the economic and environmental benefits weighed for their responsible implementation. This paper will discuss how this is done on a practical basis by Recycling Ventures (a secondary processor) and Environmental Waste Solutions (a Title II landfill), for the aluminum industry.
The advanced receiver 2: Telemetry test results in CTA 21
NASA Technical Reports Server (NTRS)
Hinedi, S.; Bevan, R.; Marina, M.
1991-01-01
Telemetry tests with the Advanced Receiver II (ARX II) in Compatibility Test Area 21 are described. The ARX II was operated in parallel with a Block-III Receiver/baseband processor assembly combination (BLK-III/BPA) and a Block III Receiver/subcarrier demodulation assembly/symbol synchronization assembly combination (BLK-III/SDA/SSA). The telemetry simulator assembly provided the test signal for all three configurations, and the symbol signal to noise ratio as well as the symbol error rates were measured and compared. Furthermore, bit error rates were also measured by the system performance test computer for all three systems. Results indicate that the ARX-II telemetry performance is comparable and sometimes superior to the BLK-III/BPA and BLK-III/SDA/SSA combinations.
Growth of oxide exchange bias layers
Chaiken, Alison; Michel, Richard P.
1998-01-01
An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.
Growth of oxide exchange bias layers
Chaiken, A.; Michel, R.P.
1998-07-21
An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.
The development of a general purpose ARM-based processing unit for the ATLAS TileCal sROD
NASA Astrophysics Data System (ADS)
Cox, M. A.; Reed, R.; Mellado, B.
2015-01-01
After Phase-II upgrades in 2022, the data output from the LHC ATLAS Tile Calorimeter will increase significantly. ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface to the ARM processors. An overview of the PU is given and the results for performance and throughput testing of four different ARM Cortex System on Chips are presented.
The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches
Barnard, Patrick L.; Allan, Jonathan; Hansen, Jeff E.; Kaminsky, George M.; Ruggiero, Peter; Doria, André
2011-01-01
High-resolution beach morphology data collected along much of the U.S. West Coast are synthesized to evaluate the coastal impacts of the 2009-10 El Nio. Coastal change observations were collected as part of five beach monitoring programs that span between 5 and 13 years in duration. In California, regional wave and water level data show that the environmental forcing during the 2009-10 winter was similar to the last significant El Nio of 1997-98, producing the largest seasonal shoreline retreat and/or most landward shoreline position since monitoring began. In contrast, the 2009-10 El Nio did not produce anomalously high mean winter-wave energy in the Pacific Northwest (Oregon and Washington), although the highest 5% of the winter wave-energy measurements were comparable to 1997-98 and two significant non-El Nio winters. The increase in extreme waves in the 2009-10 winter was coupled with elevated water levels and a more southerly wave approach than the long-term mean, resulting in greater shoreline retreat than during 1997-98, including anomalously high shoreline retreat immediately north of jetties, tidal inlets, and rocky headlands. The morphodynamic response observed throughout the U.S. West Coast during the 2009-10 El Nio is principally linked to the El Nio Modoki phenomena, where the warm sea surface temperature (SST) anomaly is focused in the central equatorial Pacific (as opposed to the eastern Pacific during a classic El Nio), featuring a more temporally persistent SST anomaly that results in longer periods of elevated wave energy but lower coastal water levels. ?? 2011 by the American Geophysical Union.
Antiparallel pinned NiO spin valve sensor for GMR head application (invited)
NASA Astrophysics Data System (ADS)
Pinarbasi, M.; Metin, S.; Gill, H.; Parker, M.; Gurney, B.; Carey, M.; Tsang, C.
2000-05-01
NiO antiferromagnetic material possesses certain advantages for spin valve applications and has attracted considerable attention. Some of the key advantages are its insulating properties, very high corrosion resistance, less sensitivity to composition, and its low reset temperature. This material, however, has a low blocking temperature which prevents its application to simple spin valve designs. The use of this material in spin valve structures required significant improvements in thermal stability, blocking temperature, and the spin valve design. In the present study, the blocking temperature and the blocking temperature distribution of the NiO films have been improved by depositing the films reactively using ion beam sputtering. A number of improvements in the processing method and deposition system had to be made to allow full NiO spin valve deposition for mass production. Another critical part was the use of antiparallel pinned design in place of the simple design to improve the thermal stability of the NiO spin valves as read elements at disk drive temperatures. The selection of the ferromagnetic pinned layers and the Ru spacer thickness in AP-pinned spin valves has significant impact on the behavior of the devices. These spin valves are all bottom type, NiO/PL1/Ru/PL2/Cu/Co/NiFe/Ta, where the metallic portion of the spin valve is deposited on top of the NiO AF layer. The PL1 and PL2 are ferromagnetic layers comprising NiFe and Co layers. Read elements have been made using these spin valves that delivered areal densities of 12 Gbit/in. These topics and other improvements which resulted in successful use of NiO spin valves as GMR heads in hard disk drives will be discussed.
Electroacoustic dewatering of food and other suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, B.C.; Zelinski, M.S.; Criner, C.L.
1989-05-31
The food processing industry is a large user of energy for evaporative drying due to limited effectiveness of conventional mechanical dewatering machines. Battelle's Electroacoustic Dewatering (EAD) process improves the performance of mechanical dewatering machines by superimposing electric and ultrasonic fields. A two phase development program to demonstrate the benefits of EAD was carried out in cooperation with the food processing industry, the National Food Processors Association (NFPA) and two equipment vendors. In Phase I, laboratory scale studies were carried out on a variety of food suspensions. The process was scaled up to small commercial scale in Phase II. The technicalmore » feasibility of EAD for a variety of food materials, without adversely affecting the food properties, was successfully demonstrated during this phase, which is the subject of this report. Two Process Research Units (PRUs) were designed and built through joint efforts between Battelle and two equipment vendors. A 0.5-meter wide belt press was tested on apple mash, corn fiber, and corn gluten at sites provided by two food processors. A high speed citrus juice finisher (a hybrid form of screw press and centrifuge) was tested on orange pulp. These tests were carried out jointly by Battelle, equipment vendors, NFPA, and food processors. The apple and citrus juice products were analyzed by food processors and NFPA. 26 figs., 30 tabs.« less
Fundamental absorption edge of NiO nanocrystals
NASA Astrophysics Data System (ADS)
Sokolov, V. I.; Druzhinin, A. V.; Kim, G. A.; Gruzdev, N. B.; Yermakov, A. Ye.; Uimin, M. A.; Byzov, I. V.; Shchegoleva, N. N.; Vykhodets, V. B.; Kurennykh, T. E.
2013-12-01
NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5-4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p-d charge transfer transitions form the fundamental absorption edge.
Wei, Junqi; Li, Xiaoqing; Han, Yanbing; Xu, Jingcai; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Jing; Yang, Yanting; Ge, Hongliang; Wang, Xinqing
2018-06-15
Mesoporous nickel oxides (NiO) and stannum(Sn)-doped NiO nanowires (NWs) were synthesized by using SBA-15 templates with the nanocasting method. X-ray diffraction, transmission electron microscope, energy dispersive spectrometry, nitrogen adsorption/desorption isotherm and UV-vis spectrum were used to characterize the phase structure, components and microstructure of the as-prepared samples. The gas-sensing analysis indicated that the Sn-doping could greatly improve the ethanol sensitivity for mesoporous NiO NWs. With the increasing Sn content, the ethanol sensitivity increased from 2.16 for NiO NWs up to the maximum of 15.60 for Ni 0.962 Sn 0.038 O 1.038 , and then decreased to 12.24 for Ni 0.946 Sn 0.054 O 1.054 to 100 ppm ethanol gas at 340 °C. The high surface area from the Sn-doping improved the adsorption of oxygen on the surface of NiO NWs, resulting in the smaller surface resistance in air. Furthermore, owing to the recombination of the holes in hole-accumulation lay with the electrons from the donor impurity level and the increasing the body defects for Sn-doping, the total resistance in ethanol gas enhanced greatly. It was concluded that the sensitivity of Sn-doped NiO NWs based sensor could be greatly improved by the higher surface area and high-valence donor substitution from Sn-doping.
NASA Astrophysics Data System (ADS)
Wei, Junqi; Li, Xiaoqing; Han, Yanbing; Xu, Jingcai; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Jing; Yang, Yanting; Ge, Hongliang; Wang, Xinqing
2018-06-01
Mesoporous nickel oxides (NiO) and stannum(Sn)-doped NiO nanowires (NWs) were synthesized by using SBA-15 templates with the nanocasting method. X-ray diffraction, transmission electron microscope, energy dispersive spectrometry, nitrogen adsorption/desorption isotherm and UV–vis spectrum were used to characterize the phase structure, components and microstructure of the as-prepared samples. The gas-sensing analysis indicated that the Sn-doping could greatly improve the ethanol sensitivity for mesoporous NiO NWs. With the increasing Sn content, the ethanol sensitivity increased from 2.16 for NiO NWs up to the maximum of 15.60 for Ni0.962Sn0.038O1.038, and then decreased to 12.24 for Ni0.946Sn0.054O1.054 to 100 ppm ethanol gas at 340 °C. The high surface area from the Sn-doping improved the adsorption of oxygen on the surface of NiO NWs, resulting in the smaller surface resistance in air. Furthermore, owing to the recombination of the holes in hole-accumulation lay with the electrons from the donor impurity level and the increasing the body defects for Sn-doping, the total resistance in ethanol gas enhanced greatly. It was concluded that the sensitivity of Sn-doped NiO NWs based sensor could be greatly improved by the higher surface area and high-valence donor substitution from Sn-doping.
Toxicity of Engineered Nickel Oxide and Cobalt Oxide Nanoparticles to Artemia salina in seawater
Ates, Mehmet; Demir, Veysel; Arslan, Zikri; Camas, Mustafa; Celik, Fatih
2016-01-01
In this study, the effects of exposure to engineered nickel oxide (NiO 40–60 nm) and cobalt oxide (CoO <100 nm) nanoparticles (NP) were investigated on Artemia salina. Aggregation and stability of the aqueous NP suspensions were characterized by DLS and TEM. Acute exposure was conducted on nauplii (larvae) in seawater in a concentration range from 0.2 to 50 mg/L NPs for 24 h (short term) and 96 h (long term). The hydrodynamic diameters of NiO and CoO NPs in exposure medium were larger than those estimated by TEM. Accumulation rate of NiO NPs were found to be four times higher than that of CoO NPs under the same experimental conditions. Examinations under phase contrast microscope showed that the nanoparticles accumulated in the intestine of artemia, which increased with increasing exposure concentration. Differences were observed in the extent of dissolution of the NPs in the seawater. The CoO NPs dissolved significantly while NiO NPs were relatively more stable. Oxidative stress induced by the NP suspensions was measured by malondialdehyde assay. Suspensions of NiO NPs caused higher oxidative stress on nauplii than those of CoO NPs. The results imply that CoO and NiO NPs exhibit toxicity on artemia (e.g., zooplankton) that are an important source of food in aquatic food chain. PMID:27152058
Implementing real-time robotic systems using CHIMERA II
NASA Technical Reports Server (NTRS)
Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.
1990-01-01
A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.
NASA Astrophysics Data System (ADS)
Li, Zijiong; Zhang, Weiyang; Liu, Yanyue; Guo, Jinjin; Yang, Baocheng
2018-01-01
Developing advanced electrochemical electrode materials with excellent performance is critical to their future energy storage devices. Herein, we design and synthesize two-dimensional (2D) porous structure nickel oxide (NiO) nanosheets via a facile and scalable hydrothermal approach, and further heating. The effects of heating time on the electrochemical performances are investigated. The results indicate that the maximum specific capacitance is achieved for NiO nanosheets when heating temperature and time are 300 °C and 3 h, respectively (namely NiO-3). The as-prepared NiO-3 nanosheet are grown uniform on the skeleton of reduced graphene oxide (rGO). The optimum NiO/rGO displays a reversible discharge capacity of 781.7 F g-1 at 1 A g-1, and shows an ultra-long life-span with over 94% capacitance retention after 4000 cycles. The enhanced electrochemical properties for NiO/rGO can be ascribed to a collaborative effect between NiO and rGO, which possess high capacitance storage ability and excellent conductivity, respectively.
NASA Astrophysics Data System (ADS)
Wu, J. B.; Guo, R. Q.; Huang, X. H.; Lin, Y.
2013-12-01
High-quality metal oxides hetero-structured nanoarrays have been receiving great attention in electrochemical energy storage application. Self-supported TiO2/NiO core/shell nanorod arrays are prepared on carbon cloth via the combination of hydrothermal synthesis and electro-deposition methods. The obtained core/shell nanorods consist of nanorod core and interconnected nanoflake shell, as well as hierarchical porosity. As cathode materials for pseudo-capacitors, the TiO2/NiO core/shell nanorod arrays display impressive electrochemical performances with both high capacitance of 611 F g-1 at 2 A g-1, and pretty good cycling stability with a retention of 89% after 5000 cycles. Besides, as compared to the single NiO nanoflake arrays on carbon cloth, the TiO2/NiO core/shell nanorod arrays exhibit much better electrochemical properties with higher capacitance, better electrochemical activity and cycling life. This enhanced performance is mainly due to the core/shell nanorods architecture offering fast ion/electron transfer and sufficient contact between active materials and electrolyte.
NASA Astrophysics Data System (ADS)
Biglari, Z.; Masoudpanah, S. M.; Alamolhoda, S.
2018-02-01
In this work, Ni/NiO/ZnO nanocomposites were synthesized by the one-pot solution combustion synthesis method. Phase evolution investigated by the x-ray diffraction method showed that the ZnO and NiO contents can be tuned by addition of a zinc precursor. The microstructure characterized by electron microscopy exhibited granular morphology with a particle size of 1.1 μm decreasing to 90 nm as a function of the amounts of ZnO and NiO phases. Specific surface area determined by N2 adsorption-desorption isotherms increased from 1.4 m2/g to 25.6 m2/g with the increase of oxide phases. However, the saturation magnetization decreased from 51.3 emu/g to 25.9 emu/g in the presence of antiferromagnetic NiO and nonmagnetic ZnO phases. Photodegradation of methylene blue under ultraviolet light exhibited the maximum efficiency in the sample containing 16.25 wt.% of ZnO and 21.25 wt.% of NiO, and may be due to the synergic effect between ZnO and NiO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, J. A., E-mail: jad95@cam.ac.uk; Guo, Y.; Robertson, J.
2015-09-21
Energetics for a variety of intrinsic defects in NiO are calculated using state-of-the-art ab initio hybrid density functional theory calculations. At the O-rich limit, Ni vacancies are the lowest cost defect for all Fermi energies within the gap, in agreement with the well-known p-type behaviour of NiO. However, the ability of the metal electrode in a resistive random access memory metal-oxide-metal setup to shift the oxygen chemical potential towards the O-poor limit results in unusual NiO behaviour and O vacancies dominating at lower Fermi energy levels. Calculated band diagrams show that O vacancies in NiO are positively charged at themore » operating Fermi energy giving it the advantage of not requiring a scavenger metal layer to maximise drift. Ni and O interstitials are generally found to be higher in energy than the respective vacancies suggesting that significant recombination of O vacancies and interstitials does not take place as proposed in some models of switching behaviour.« less
A Designed Room Temperature Multilayered Magnetic Semiconductor
NASA Astrophysics Data System (ADS)
Bouma, Dinah Simone; Charilaou, Michalis; Bordel, Catherine; Duchin, Ryan; Barriga, Alexander; Farmer, Adam; Hellman, Frances; Materials Science Division, Lawrence Berkeley National Lab Team
2015-03-01
A room temperature magnetic semiconductor has been designed and fabricated by using an epitaxial antiferromagnet (NiO) grown in the (111) orientation, which gives surface uncompensated magnetism for an odd number of planes, layered with the lightly doped semiconductor Al-doped ZnO (AZO). Magnetization and Hall effect measurements of multilayers of NiO and AZO are presented for varying thickness of each. The magnetic properties vary as a function of the number of Ni planes in each NiO layer; an odd number of Ni planes yields on each NiO layer an uncompensated moment which is RKKY-coupled to the moments on adjacent NiO layers via the carriers in the AZO. This RKKY coupling oscillates with the AZO layer thickness, and it disappears entirely in samples where the AZO is replaced with undoped ZnO. The anomalous Hall effect data indicate that the carriers in the AZO are spin-polarized according to the direction of the applied field at both low temperature and room temperature. NiO/AZO multilayers are therefore a promising candidate for spintronic applications demanding a room-temperature semiconductor.
Magnetic anomalies in Fe-doped NiO nanoparticle
NASA Astrophysics Data System (ADS)
Pradeep, R.; Gandhi, A. C.; Tejabhiram, Y.; Mathar Sahib, I. K. Md; Shimura, Y.; Karmakar, L.; Das, D.; Wu, Sheng Yun; Hayakawa, Y.
2017-09-01
Undoped and iron-doped NiO nanoparticle were synthesized by standard hydrothermal method. A detailed study is carried out on the effect of dopant concentration on morphology, structural, resonance and magnetic properties of NiO nanoparticle by varying the Fe concentration from 0.01 to 0.10 M. The synchrotron-x-ray diffraction confirmed that no secondary phase was observed other than NiO. The x-ray photoelectron spectroscopy studies revealed that, Fe was primarily in the trivalent state, replacing the Ni2+ ion inside the octahedral crystal site of NiO. The Electron paramagnetic studies revealed the ferromagnetic cluster formation at high doping concentration (5 and 10%). The ZFC-FC curves displayed an average blocking temperature around 180 K due to particle size distribution. The anomalous behaviour of spontaneous exchange bias (H SEB) and magnetic remanence (M r) for all Fe-doped samples observed at 5 K showed an increase (0.1316-0.1384 emu g-1) in the moment of frozen spin (M p) as the dopant concentration increased. The role of frozen spin moment in spontaneous exchange bias behaviour was discussed.
Using R in Taverna: RShell v1.2
Wassink, Ingo; Rauwerda, Han; Neerincx, Pieter BT; Vet, Paul E van der; Breit, Timo M; Leunissen, Jack AM; Nijholt, Anton
2009-01-01
Background R is the statistical language commonly used by many life scientists in (omics) data analysis. At the same time, these complex analyses benefit from a workflow approach, such as used by the open source workflow management system Taverna. However, Taverna had limited support for R, because it supported just a few data types and only a single output. Also, there was no support for graphical output and persistent sessions. Altogether this made using R in Taverna impractical. Findings We have developed an R plugin for Taverna: RShell, which provides R functionality within workflows designed in Taverna. In order to fully support the R language, our RShell plugin directly uses the R interpreter. The RShell plugin consists of a Taverna processor for R scripts and an RShell Session Manager that communicates with the R server. We made the RShell processor highly configurable allowing the user to define multiple inputs and outputs. Also, various data types are supported, such as strings, numeric data and images. To limit data transport between multiple RShell processors, the RShell plugin also supports persistent sessions. Here, we will describe the architecture of RShell and the new features that are introduced in version 1.2, i.e.: i) Support for R up to and including R version 2.9; ii) Support for persistent sessions to limit data transfer; iii) Support for vector graphics output through PDF; iv)Syntax highlighting of the R code; v) Improved usability through fewer port types. Our new RShell processor is backwards compatible with workflows that use older versions of the RShell processor. We demonstrate the value of the RShell processor by a use-case workflow that maps oligonucleotide probes designed with DNA sequence information from Vega onto the Ensembl genome assembly. Conclusion Our RShell plugin enables Taverna users to employ R scripts within their workflows in a highly configurable way. PMID:19607662
USDA-ARS?s Scientific Manuscript database
Pork scrapple was formulated, with or without citrate-diacetate (0.64%), by a commercial processor to contain various solutions/blends of the following antimicrobials to control L. monocytogenes on pork scrapple during refrigerated storage: i) lactate-diacetate (3.0 or 4.0%), ii) lactate-diacetate-p...
27 CFR 19.245 - Bonds and penal sums of bonds.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Distiller The amount of tax on spirits produced during a period of 15 days $5,000 $100,000 (ii) Warehouseman... gallons ......do 5,000 50,000 (iii) Distiller and warehouseman The amount of tax on spirits produced... transit to bonded premises 10,000 200,000 (iv) Distiller and processor The amount of tax on spirits...
NASA Astrophysics Data System (ADS)
Parveen, Azra; Agrawal, Shraddha; Azam, Ameer
2018-05-01
The nanoparticles of 5% Co doped NiO were synthesized by auto-combustion method in aqueous medium using NaOH as a fuel. The obtained particles were characterized using X-ray diffraction studies XRD. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. The optical absorption spectra of Co doped NiO sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The variation of dielectric constant and dielectric loss has been studied as function of frequency. Co doping affects the optical properties and band gap. NiO can potentially be used in optical, electronic, catalytic materials, antimicrobial agent and super-paramagnetic devices.
On the similarity of the bonding in NiS and NiO
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.
1985-01-01
The bonding in NiS is found to be quite similar to that in NiO, having an ionic contribution arising from the donation of the Ni 4s electron to the S atom and a covalent component arising from bonds between the Ni 3d and the S 3p. The one-electron d bonds are found to be of equal strength for NiO and NiS, but the two-electron d bonds are weaker for NiS.
Oxide reduction during triggered-lightning fulgurite formation
NASA Astrophysics Data System (ADS)
Jones, B. E.; Jones, K. S.; Rambo, K. J.; Rakov, V. A.; Jerald, J.; Uman, M. A.
2005-03-01
In this study triggered-lightning induced fulgurites were formed in 99.9% pure binary oxides of manganese (MnO) and nickel (NiO) in order to study oxide reduction mechanisms. The fulgurite formation process involved packing the oxide in PVC holders and using the standard rocket-and-wire technique to trigger a lightning strike through the oxide at the International Center for Lightning Research and Testing in Camp Blanding, Florida. These two oxides were chosen from the thermodynamic extrapolation of the oxide stability using the Ellingham Diagram. This diagram indicates that NiO is significantly less stable than MnO. Fulgurites from the pure oxides were analyzed in a scanning electron microscope (SEM); secondary electron images, backscattered images and energy dispersive spectroscopy (EDS) were used to determine the microstructure and composition of the fulgurites. SEM/EDS analysis of the NiO and MnO prior to fulgurite formation confirmed they were pure binary oxides with no metallic contamination. After fulgurite formation, it was found that the nickel oxide fulgurite contained metallic nickel particles; the manganese oxide fulgurite showed no metallic phase formation. Transmission electron microscopy (TEM) examination confirmed that the MnO was a pure oxide with no sign of metallic phase formation. However, TEM results of the NiO showed that approximately 50% of the NiO was reduced to metallic face-centered cubic Ni. The Ni and NiO were observed to be coherent with the [1 0 0]Ni//[1 0 0]NiO and [1 1 0]Ni//[1 1 0]NiO. These results are consistent with the aforementioned thermodynamic stability calculations and show that the presence of carbonaceous material or mixtures of oxides is not necessary for oxide reduction during fulgurite formation. These studies do not rule out the possibility that electrolysis plays a role in oxide reduction. However, these fulgurites were made simultaneously during the same lightning strike and therefore were subjected to the same electrical current, and thus it is proposed the thermodynamic stability of the oxide must play a role in oxide reduction.
Tran, Bach Xuan; DO, Hoa Thi; Nguyen, Luong Thanh; Boggiano, Victoria; LE, Huong Thi; LE, Xuan Thanh Thi; Trinh, Ngoc Bao; DO, Khanh Nam; Nguyen, Cuong Tat; Nguyen, Thanh Trung; Dang, Anh Kim; Mai, Hue Thi; Nguyen, Long Hoang; Than, Selena; Latkin, Carl A
2018-04-01
Consumption of fast food and street food is increasingly common among Vietnamese, particularly in large cities. The high daily demand for these convenient food services, together with a poor management system, has raised concerns about food hygiene and safety (FHS). This study aimed to examine the FHS knowledge and practices of food processors and sellers in food facilities in Hanoi, Vietnam, and to identify their associated factors. A cross-sectional study was conducted with 1,760 food processors and sellers in restaurants, fast food stores, food stalls, and street vendors in Hanoi in 2015. We assessed each participant's FHS knowledge using a self-report questionnaire and their FHS practices using a checklist. Tobit regression was used to determine potential factors associated with FHS knowledge and practices, including demographics, training experience, and frequency of health examination. Overall, we observed a lack of FHS knowledge among respondents across three domains, including standard requirements for food facilities (18%), food processing procedures (29%), and food poisoning prevention (11%). Only 25.9 and 38.1% of participants used caps and masks, respectively, and 12.8% of food processors reported direct hand contact with food. After adjusting for socioeconomic characteristics, these factors significantly predicted increased FHS knowledge and practice scores: (i) working at restaurants and food stalls, (ii) having FHS training, (iii) having had a physical examination, and (iv) having taken a stool test within the last year. These findings highlight the need of continuous training to improve FHS knowledge and practices among food processors and food sellers. Moreover, regular monitoring of food facilities, combined with medical examination of their staff, should be performed to ensure food safety.
NASA Astrophysics Data System (ADS)
Smolinsky, Tim; Homann, Mathias; von Boehn, Bernhard; Gregoratti, Luca; Amati, Matteo; Al-Hada, Mohamed; Sezen, Hikmet; Imbihl, Ronald
2018-04-01
Chemical waves in the H2 + O2 reaction on a Rh(111) surface alloyed with Ni [ΘNi < 1.5 monolayers (ML)] have been investigated in the 10-7 and 10-6 mbar range at T = 773 K using scanning photoelectron microscopy and x-ray photoelectron spectroscopy as in situ methods. The local intensity variations of the O 1s and the Ni 2p signal display an anticorrelated behavior. The coincidence of a high oxygen signal with a low Ni 2p intensity, which seemingly contradicts the chemical attraction between O and Ni, has been explained with a phase separation of the oxygen covered Rh(111)/Ni surface into a 3D-Ni oxide and into a Ni poor metallic phase. Macroscopic NiO islands (≈1 μm size) formed under reaction conditions have been identified as 2D-Ni oxide. Titration experiments of the oxygen covered Rh(111)/Ni surface with H2 demonstrated that the reactivity of oxygen is decreased by an order of magnitude through the addition of 0.6 ML Ni. An excitation mechanism is proposed in which the periodic formation and reduction of NiO modulate the catalytic activity.
Piezo-phototronic effect enhanced photo-detector based on ZnO nano-arrays/NiO structure
NASA Astrophysics Data System (ADS)
Sun, Jingchang; Li, Peida; Gao, Ruixue; Lu, Xue; Li, Chengren; Lang, Yueyi; Zhang, Xiwen; Bian, Jiming
2018-01-01
A photo-detector with n-ZnO nano-arrays/p-NiO film structure was synthesized on flexible Ni foil substrate. In contrast to conventional detectors that detect only the photon energies greater than the band gap of working materials, the visible light with smaller photon energies (3.0 eV) than the band gap of both ZnO (3.3 eV) and NiO (3.7 eV) can be sensitively detected by this detector due to the spatially indirect type-II transition between ZnO nano-arrays and NiO film. The increase in output currents of the photo-detector with illumination density was observed at both forward and reverse bias, and it can be further enhanced by exerting external compressive strain along the c axis of ZnO nano-arrays by piezo-phototronic effect. A maximum enhancement of 1020% of the responsivity (R) was achieved under external compressive strain. The similar behaviors were demonstrated at four different excitation wavelengths (325, 365, 388 and 405 nm), providing compelling evidence that the responses performance of the photo-detector can be effectively enhanced using piezo-phototronic effect. Moreover, the piezo-phototronic effect enhanced performance can be well elucidated by the corresponding energy band diagram.
Background gas density and beam losses in NIO1 beam source
NASA Astrophysics Data System (ADS)
Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.
2016-02-01
NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.
Nanosheet-assembled NiO microstructures for high-performance supercapacitors.
Purushothaman, Kamatchi Kamaraj; Babu, Inbamani Manohara; Sethuraman, Balasubramanian; Muralidharan, Gopalan
2013-11-13
Nanosheet-assembled NiO microstructures have been synthesized via a hydrothermal method. The presence of anionic surfactant in the fabrication process initiates the formation of lamellar micelles and a self-assembling process. This leads to the formation of NiO nanosheets and organizes it into microstructures. The effect of preparation temperature on the morphological, structural, and electrochemical properties and stability upon continuous charge/discharge cycles has been examined for supercapacitor applications. Electrochemical analysis demonstrated that NiO nanosheets prepared at 160 °C are capable of delivering a specific capacitance of 989 F g(-1) at a scan rate of 3 mV s(-1) for the potential window of 0-0.6 V. The nanosheets exhibit excellent capacity retention, 97% retention after 1000 continuous charge/discharge cycles, and an energy density of 49.45 W h kg(-1).
NASA Astrophysics Data System (ADS)
Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Huang; Ho, Ting-Hsiu
2018-07-01
The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface.
Ezhilarasi, A Angel; Vijaya, J Judith; Kaviyarasu, K; Maaza, M; Ayeshamariam, A; Kennedy, L John
2016-11-01
Green protocols for the synthesis of nickel oxide nanoparticles using Moringa oleifera plant extract has been reported in the present study as they are cost effective and ecofriendly, moreover this paper records that the nickel oxide (NiO) nanoparticles prepared from green method shows better cytotoxicity and antibacterial activity. The NiO nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Energy dispersive X-ray analysis (EDX), and Photoluminescence spectroscopy (PL). The formation of a pure nickel oxide phase was confirmed by XRD and FTIR. The synthesized NiO nanoparticles was single crystalline having face centered cubic phase and has two intense photoluminescence emissions at 305.46nm and 410nm. The formation of nano- and micro-structures was confirmed by HRTEM. The in-vitro cytotoxicity and cell viability of human cancer cell HT-29 (Colon Carcinoma cell lines) and antibacterial studies against various bacterial strains were studied with various concentrations of nickel oxide nanoparticles prepared from Moringa oleifera plant extract. MTT assay measurements on cell viability and morphological studies proved that the synthesized NiO nanoparticles posses cytotoxic activity against human cancer cells and the various zones of inhibition (mm), obtained revealed the effective antibacterial activity of NiO nanoparticles against various Gram positive and Gram negative bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.
Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.
2015-10-28
We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To studymore » defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, W.; Jin, E.; Wu, J.
Single crystalline Fe/NiO bilayers were epitaxially grown on Ag(001) and on MgO(001), and investigated by Low Energy Electron Diffraction (LEED), Magneto-Optic Kerr Effect (MOKE), and X-ray Magnetic Linear Dichroism (XMLD). We find that while the Fe film has an in-plane magnetization in both Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems, the NiO spin orientation changes from in-plane direction in Fe/NiO/Ag(001) to out-of-plane direction in Fe/NiO/MgO(001). These two different NiO spin orientations generate remarkable different effects that the NiO induced magnetic anisotropy in the Fe film is much greater in Fe/NiO/Ag(001) than in Fe/NiO/MgO(001). XMLD measurement shows that the much greater magnetic anisotropy inmore » Fe/NiO/Ag(001) is due to a 90{sup o}-coupling between the in-plane NiO spins and the in-plane Fe spins.« less
NASA Astrophysics Data System (ADS)
Abu-Zied, Bahaa M.; Bawaked, Salem M.; Kosa, Samia A.; Ali, Tarek T.; Schwieger, Wilhelm; Aqlan, Faisal M.
2017-10-01
Recently, nickel oxide, NiO, promoted with various dopants showed an interesting activity behavior in N2O direct decomposition. In this paper, the activity of a series of rare earth (Nd, Pr, Tb and Y) doped NiO catalysts was investigated for this reaction. These catalysts have been prepared by the calcination of their corresponding oxalate mixtures, which have been synthesized via the microwave-assisted precipitation route using oxalic acid as precipitant. Characterization of the obtained catalysts was carried out by using various physico-chemical techniques including TGA, FT-IR, XRD, FE-SEM, TEM, TPR, XPS and electrical conductivity. The results obtained revealed the nanocrystalline nature of the prepared catalysts. Moreover, the presence of the various dopants has led to a noticeable decrease of the NiO crystallites size, mesoporosity development and an increase of its surface area and pore volume. There is a substantial activity increase upon doping NiO with the various rare earth oxides. Such activity increase is associated with the structural modifications as well as the electrical conductivity increase of these catalysts.
Room temperature ferromagnetism in Mn-doped NiO nanoparticles
NASA Astrophysics Data System (ADS)
Layek, Samar; Verma, H. C.
2016-01-01
Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.
NASA Astrophysics Data System (ADS)
Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin
2015-02-01
Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.
Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun
2017-09-20
NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., a vessel operator. Catcher/processor (CP) means a vessel that is used for catching crab and... § 680.40(c)(5)(ii), (c)(5)(iii), or (c)(5)(iv) based on the procedures established in § 680.40(c)(5). CP standard price means price, expressed in U.S. dollars per raw crab pound, for all CR crab landed by a CP as...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., a vessel operator. Catcher/processor (CP) means a vessel that is used for catching crab and... § 680.40(c)(5)(ii), (c)(5)(iii), or (c)(5)(iv) based on the procedures established in § 680.40(c)(5). CP standard price means price, expressed in U.S. dollars per raw crab pound, for all CR crab landed by a CP as...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., a vessel operator. Catcher/processor (CP) means a vessel that is used for catching crab and... § 680.40(c)(5)(ii), (c)(5)(iii), or (c)(5)(iv) based on the procedures established in § 680.40(c)(5). CP standard price means price, expressed in U.S. dollars per raw crab pound, for all CR crab landed by a CP as...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., a vessel operator. Catcher/processor (CP) means a vessel that is used for catching crab and... § 680.40(c)(5)(ii), (c)(5)(iii), or (c)(5)(iv) based on the procedures established in § 680.40(c)(5). CP standard price means price, expressed in U.S. dollars per raw crab pound, for all CR crab landed by a CP as...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., a vessel operator. Catcher/processor (CP) means a vessel that is used for catching crab and... § 680.40(c)(5)(ii), (c)(5)(iii), or (c)(5)(iv) based on the procedures established in § 680.40(c)(5). CP standard price means price, expressed in U.S. dollars per raw crab pound, for all CR crab landed by a CP as...
NASA Astrophysics Data System (ADS)
Iyyappa Rajan, P.; Vijaya, J. Judith; Jesudoss, S. K.; Kaviyarasu, K.; Kennedy, L. John; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Vaali-Mohammed, Mansoor-Ali
2017-08-01
With aim of promoting the employability of green fuels in the synthesis of nano-scaled materials with new kinds of morphologies for multiple applications, successful synthesis of self-assembled NiO nano-sticks was achieved through a 100% green-fuel-mediated hot-plate combustion reaction. The synthesized NiO nano-sticks show excellent photocatalytic activity on Rose Bengal dye and superior antibacterial potential towards both Gram-positive and Gram-negative bacteria.
Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries
NASA Astrophysics Data System (ADS)
Needham, S. A.; Wang, G. X.; Liu, H. K.
Nickel oxide (NiO) nanotubes have been produced for the first time via a template processing method. The synthesis involved a two step chemical reaction in which nickel hydroxide (Ni(OH) 2) nanotubes were firstly formed within the walls of an anodic aluminium oxide (AAO) template. The template was then dissolved away using concentrated NaOH, and the freed nanotubes were converted to NiO by heat treatment in air at 350 °C. Individual nanotubes measured 60 μm in length with a 200 nm outer diameter and a wall thickness of 20-30 nm. The NiO nanotube powder was used in Li-ion cells for assessment of the lithium storage ability. Preliminary testing indicates that the cells demonstrate controlled and sustainable lithium diffusion after the formation of an SEI. Reversible capacities in the 300 mAh g -1 range were typical.
Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications
Massin, Julien; Bräutigam, Maximilian; Kaeffer, Nicolas; Queyriaux, Nicolas; Field, Martin J.; Schacher, Felix H.; Popp, Jürgen; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin; Artero, Vincent
2015-01-01
Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push–pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices. PMID:26052420
Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications.
Massin, Julien; Bräutigam, Maximilian; Kaeffer, Nicolas; Queyriaux, Nicolas; Field, Martin J; Schacher, Felix H; Popp, Jürgen; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin; Artero, Vincent
2015-06-06
Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push-pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices.
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian
2017-01-01
Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.
NASA Astrophysics Data System (ADS)
Saikia, Dhrubajyoti; Sarma, Ranjit
2018-03-01
The influence of thin layer of nickel oxide (NiO) over the fluorine-doped tin oxide (FTO) surface on the performance of Organic light-emitting diode (OLED) is reported. With an optimal thickness of NiO (10 nm), the luminance efficiency is found to be increased as compared to the single FTO OLED. The performance of OLED is studied by depositing NiO films at different thicknesses on the FTO surface and analyzed their J-V and L-V characteristics. Further analysis is carried out by measuring sheet resistance and optical transmittance. The surface morphology is studied with the help of FE-SEM images. Our results indicate that NiO (10 nm) buffer layer is an excellent choice to increase the efficiency of FTO based OLED devices within the charge tunneling region. The maximum value of current efficiency is found to be 7.32 Cd/A.
Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X
2010-12-01
Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.
Lin, Jinghuang; Jia, Henan; Liang, Haoyan; Chen, Shulin; Cai, Yifei; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Fei, Weidong; Feng, Jicai
2018-03-01
NiO is a promising electrode material for supercapacitors. Herein, the novel vertically standing nanosized NiO encapsulated in graphene layers (G@NiO) are rationally designed and synthesized as nanosheet arrays. This unique vertical standing structure of G@NiO nanosheet arrays can enlarge the accessible surface area with electrolytes, and has the benefits of short ion diffusion path and good charge transport. Further, an interconnected graphene conductive network acts as binder to encapsulate the nanosized NiO particles as core-shell structure, which can promote the charge transport and maintain the structural stability. Consequently, the optimized G@NiO hybrid electrodes exhibit a remarkably enhanced specific capacity up to 1073 C g -1 and excellent cycling stability. This study provides a facial strategy to design and construct high-performance metal oxides for energy storage.
Anisotropic growth of NiO nanorods from Ni nanoparticles by rapid thermal oxidation.
Koga, Kenji; Hirasawa, Makoto
2013-09-20
NiO nanorods with extremely high crystallinity were grown by rapid thermal oxidation through exposure of Ni nanoparticles (NPs) heated above 400° C to oxygen. Oxidation proceeds by nucleation of a NiO island on a Ni NP that grows anisotropically to produce a NiO nanorod. This process differs completely from that under mild oxidation conditions, where the surface of the NPs is completely covered with an oxide film during the early stage of oxidation. The observed novel behaviour strongly suggests an interfacial oxidation mechanism driven by the dissolution of adsorbed oxygen into the Ni NP sub-surface region, subsequent diffusion and reaction at the NiO/Ni interface. The early oxidation conditions of metal NPs impose a significant influence on the entire oxidation process at the nanoscale and are therefore inherently important for the precise morphological control of oxidized NPs to design functional nanomaterials.
NASA Astrophysics Data System (ADS)
Gillmeister, K.; Kiel, M.; Widdra, W.
2018-02-01
For well-ordered ultrathin films of NiO(001) on Ag(001), a series of unoccupied states below the vacuum level has been found. The states show a nearly free electron dispersion and binding energies which are typical for image potential states. By time-resolved two-photon photoemission (2PPE), the lifetimes of the first three states and their dependence on oxide film thickness are determined. For NiO film thicknesses between 2 and 4 monolayers (ML), the lifetime of the first state is in the range of 28-42 fs and shows an oscillatory behavior with increasing thickness. The values for the second state decrease monotonically from 88 fs for 2 ML to 33 fs for 4 ML. These differences are discussed in terms of coupling of the unoccupied states to the layer-dependent electronic structure of the growing NiO film.
NASA Astrophysics Data System (ADS)
Raja, Vahini; Puvaneswaran, Senthil Kumar; Swaminathan, Karuthapandian
2017-12-01
In the present study, novel Co3O4/NiO nanosponges designed for the photocatalytic degradation of organic contaminants were synthesized by a simple precipitation technique. The formation of sponge-like nanostructures was clearly evident through the TEM analysis. The photocatalytic efficiency was tested against rhodamine B (RhB) and congo red (CR) dye solutions. Co3O4/NiO nanosponges showed excellent and enhanced photocatalytic efficacy compared to those of Co3O4, NiO nanoparticles, and standards like TiO2 and ZnO. The influence of paramount important operational parameters was explored and the conditions for the best photocatalytic efficiency were optimized. The trapping experiment revealed that the reactive oxygen species (ROS) identified was OH radical. These findings certainly open up a new way for synthesizing a morphology dependent photocatalyst.
Field dependence of TB in NiO and (Ni, Zn)O Nanoclusters
NASA Astrophysics Data System (ADS)
Huh, Yung; Peck, M.; Skomski, R.; Zhang, R.; Kharel, P.; Allison, M.; Sellmyer, D.; Langell, M.
2011-03-01
Size dependence of magnetic properties of rocksalt NiO and Zn substituted NiO nanoparticles are investigated. Nanoparticle diameters are determined from 8 to 30 nm by XRD and AFM. Uncompensated spins at the nanoparticle surface contribute to superparametism at low temperatures and their blocking temperatures increase with stronger applied field. The field induced spin canting of the antiferromagnetic sublattices is a bulk effect and studied by the substitution of Zn with transition metal. Nanoparticles start exhibiting bulk magnetic behavior with size greater than 18 nm. Magnetization rotation of uncompensated spins under the magnetic field is mainly due to nanoscale size effect. The anisotropy of the nanoparticle is about four times larger than that of the bulk NiO. This research is supported by the NSF (CHE-1012366 and Nebraska MRSEC Grant DMR-0820521), the DOE Grant DE-FG02-04ER46152 (P. K. and D. J. S.) and NCMN.
The CMS Level-1 Calorimeter Trigger for LHC Run II
NASA Astrophysics Data System (ADS)
Sinthuprasith, Tutanon
2017-01-01
The phase-1 upgrades of the CMS Level-1 calorimeter trigger have been completed. The Level-1 trigger has been fully commissioned and it will be used by CMS to collect data starting from the 2016 data run. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Design, which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The architecture is flexible and the number of trigger processors can be expanded according to the physics needs of CMS. Intelligent, more complex, and innovative algorithms are now the core of the first decision layer of CMS: the upgraded trigger system implements pattern recognition and MVA (Boosted Decision Tree) regression techniques in the trigger processors for pT assignment, pile up subtraction, and isolation requirements for electrons, and taus. The performance of the TMT design and the latency measurements and the algorithm performance which has been measured using data is also presented here.
Structural characterization of nickel oxide/hydroxide nanosheets produced by CBD technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taşköprü, T., E-mail: ttaskopru@anadolu.edu.tr; Department of Physics, Çankırı Karatekin University, Çankırı 18100; Zor, M.
2015-10-15
Graphical abstract: SEM images of (a) as deposited β-Ni(OH)2 and (b) NiO samples deposited with pH 10 solution. The inset figures shows the absorbance spectra of (a) β-Ni(OH)2 and (b) NiO samples. - Highlights: • The formation of β-Ni(OH){sub 2} and NiO were confirmed with XRD, SEM, FT-IR and Raman. • Porous nickel oxide was synthesized after heat treatment of nickel hydroxide. • The increase in pH value changes the nanoflake structure to hexagonal nanosheet. • On increasing the pH from 8 to 11, the band gap decreases from 3.52 to 3.37 eV. - Abstract: Nickel hydroxide samples were depositedmore » onto glass substrates using Ni(NO{sub 3}){sub 2}·6H{sub 2}O and aqueous ammonia by chemical bath deposition technique. The influence of pH of solution was investigated by means of X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, optical absorption and BET analysis. The as-deposited samples were identified as β-Ni(OH){sub 2}, were transformed into NiO after heat treatment in air at 500 °C for 2 h. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets. The optical transitions observed in the absorbance spectra below optical band gap is due to defects or Ni{sup 2+} vacancies in NiO samples. The band gap energy of NiO samples changes between 3.37 and 3.52 eV depending on the pH values.« less
Characterization of PrNiO3-δ as oxygen electrode for SOFCs
NASA Astrophysics Data System (ADS)
Vibhu, Vaibhav; Flura, Aurélien; Nicollet, Clément; Fourcade, Sébastien; Penin, Nicolas; Bassat, Jean-Marc; Grenier, Jean-Claude; Rougier, Aline; Pouchard, Michel
2018-07-01
The praseodymium nickelate PrNiO3-δ was recently identified as one of the decomposition products of Pr2NiO4+δ oxygen electrode, raising the question of the role of this perovskite compound on the Pr2NiO4+δ performance and ageing behaviour. Herein, the electrochemical properties of PrNiO3-δ as cathode for Solid Oxide Fuel Cells (SOFCs) is reported. PrNiO3-δ, synthesized from the citrate-nitrate route, cristallizes in an orthorhombic structure (S.G.: Pnma). Under air, a transition to high temperature rhombohedral structure (S.G.: R-3c) occurs at around 600 °C, while its oxygen vacancy amount increases from δ ≈ 0.05 at room temperature up to 0.10 at high temperature. Thermal gravimetry analysis (TGA) measurements coupled with X-ray diffraction (XRD) characterizations show that above 1000 °C, in air, PrNiO3-δ starts to decompose into Pr2NiO4+δ and NiO through an intermediate transformation into Pr4Ni3O10+δ. The value of the polarization resistance (Rp) of co-sintered GDC-PrNiO3-δ electrode, at 950 °C in air for 2 h, is 0.91 Ω cm2 at 600 °C under air. It remains much higher than that of co-sintered GDC-Pr2NiO4+δ electrode (Rp = 0.15 Ω cm2), which means that the perovskite does not play any significant role in the electrochemical performance during long term operation of the Pr2NiO4+δ electrode.
NASA Astrophysics Data System (ADS)
Khalaf, Mohammed K.; Mutlak, Rajaa H.; Khudiar, Ausama I.; Hial, Qahtan G.
2017-06-01
Nickel oxide thin films were deposited on glass substrates as the main gas sensor for H2 by the DC sputtering technique at various discharge voltages within the range of 1.8-2.5 kV. Their structural, optical and gas sensing properties were investigated by XRD, AFM, SEM, ultraviolet visible spectroscopy and home-made gas sensing measurement units. A diffraction peak in the direction of NiO (200) was observed for the sputtered films, thereby indicating that these films were polycrystalline in nature. The optical band gap of the films decreased from 3.8 to 3.5 eV when the thickness of the films was increased from 83.5 to 164.4 nm in relation to an increase in the sputtering discharge voltage from 1.8 to 2.5 kV, respectively. The gas sensitivity performance of the NiO films that were formed was studied and the electrical responses of the NiO-based sensors toward different H2 concentrations were also considered. The sensitivity of the gas sensor increased with the working temperature and H2 gas concentration. The thickness of the NiO thin films was also an important parameter in determining the properties of the NiO films as H2 sensors. It was shown in this study that NiO films have the capability to detect H2 concentrations below 3% in wet air, a feature that allows this material to be used directly for the monitoring of the environment.
NASA Astrophysics Data System (ADS)
Cattin, L.; Reguig, B. A.; Khelil, A.; Morsli, M.; Benchouk, K.; Bernède, J. C.
2008-07-01
NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl 2·6H 2O), nickel nitrate hexahydrate (Ni(NO 3) 2·6H 2O), nickel hydroxide hexahydrate (Ni(OH) 2·6H 2O), nickel sulfate tetrahydrate (NiSO 4·4H 2O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 °C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl 2 and Ni(NO 3) 2 precursors. These films have been post-annealed at 425 °C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10 -2 Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.
Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Hung; Ho, Ting-Hsiu
2018-05-03
The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1,300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface. © 2018 IOP Publishing Ltd.
Cost/Performance Ratio Achieved by Using a Commodity-Based Cluster
NASA Technical Reports Server (NTRS)
Lopez, Isaac
2001-01-01
Researchers at the NASA Glenn Research Center acquired a commodity cluster based on Intel Corporation processors to compare its performance with a traditional UNIX cluster in the execution of aeropropulsion applications. Since the cost differential of the clusters was significant, a cost/performance ratio was calculated. After executing a propulsion application on both clusters, the researchers demonstrated a 9.4 cost/performance ratio in favor of the Intel-based cluster. These researchers utilize the Aeroshark cluster as one of the primary testbeds for developing NPSS parallel application codes and system software. The Aero-shark cluster provides 64 Intel Pentium II 400-MHz processors, housed in 32 nodes. Recently, APNASA - a code developed by a Government/industry team for the design and analysis of turbomachinery systems was used for a simulation on Glenn's Aeroshark cluster.
Virtex-II Pro PowerPC SEE Characterization Test Methods and Results
NASA Technical Reports Server (NTRS)
Petrick, David; Powell, Wesley; LaBel, Ken; Howard, James
2005-01-01
The Xilinx Vix-11 Pro is a platform FPGA that embeds multiple microprocessors within the fabric of an SRAM-based reprogrammable FPGA. The variety and quantity of resources provided by this family of devices make them very attractive for spaceflight applications. However,these devices will be susceptible to single event effects (SEE), which must be mitigated. Observations from prior testing of the Xilinx Virtex-II Pro suggest that the PowerPC core has significant vulnerability to SEES. However, these initial tests were not designed to exclusively target the functionality of the PowerPC, therefore making it difficult to distinguish processor upsets from fabric upsets. The main focus of this paper involves detailed SEE testing of the embedded PowerPC core. Due to the complexity of the PowerPC, various custom test applications, both static and dynamic, will be designed to isolate each Unit of the processor. Collective analysis of the test results will provide insight into the exact upset mechanism of the PowerPC. With this information, mitigations schemes can be developed and tested that address the specific susceptibilities of these devices. The test bed will be the Xilinx SEE Consortium Virtex-II Pro test board, which allows for configuration scrubbing, design triplication, and ease of data collection. Testing will be performed at the Indiana University Cyclotron Facility using protons of varying energy levels and fluencies. This paper will present the detailed test approach along with the results.
1981 Image II Conference Proceedings.
1981-11-01
rapid motion of terrain detail across the display requires fast display processors. Other difficulties are perceptual: the visual displays must convey...has been a continuing effort by Vought in the last decade. Early systems were restricted by the unavailability of video bulk storage with fast random...each photograph. The calculations aided in the proper sequencing of the scanned scenes on the tape recorder and eventually facilitated fast random
Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit
2012-11-01
few sensors/complex computations, and many sensors/simple computation. II. CHALLENGES WITH NANO-ENABLED NEUROMORPHIC CHIPS A wide variety of...scenarios. Neuromorphic processors, which are based on the highly parallelized computing architecture of the mammalian brain, show great promise in...in the brain. This fundamentally different approach, frequently referred to as neuromorphic computing, is thought to be better able to solve fuzzy
Air-stable, solution-processed oxide p-n heterojunction ultraviolet photodetector.
Kim, Do Young; Ryu, Jiho; Manders, Jesse; Lee, Jaewoong; So, Franky
2014-02-12
Air-stable solution processed all-inorganic p-n heterojunction ultraviolet photodetector is fabricated with a high gain (EQE, 25 300%). Solution-processed NiO and ZnO films are used as p-type and n-type ultraviolet sensitizing materials, respectively. The high gain in the detector is due to the interfacial trap-induced charge injection that occurs at the ITO/NiO interface by photogenerated holes trapped in the NiO film. The gain of the detector is controlled by the post-annealing temperature of the solution-processed NiO films, which are studied by X-ray photoelectron spectroscopy (XPS).
Electronic properties of doped and defective NiO: A quantum Monte Carlo study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan
NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less
Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Nur, Omer; Willander, Magnus
2013-07-13
Cheap and efficient white light-emitting diodes (LEDs) are of great interest due to the energy crisis all over the world. Herein, we have developed heterojunction LEDs based on the well-aligned ZnO nanorods and nanotubes on the p-type GaN with the insertion of the NiO buffer layer that showed enhancement in the light emission. Scanning electron microscopy have well demonstrated the arrays of the ZnO nanorods and the proper etching into the nanotubes. X-ray diffraction study describes the wurtzite crystal structure array of ZnO nanorods with the involvement of GaN at the (002) peak. The cathodoluminescence spectra represent strong and broad visible emission peaks compared to the UV emission and a weak peak at 425 nm which is originated from GaN. Electroluminescence study has shown highly improved luminescence response for the LEDs fabricated with NiO buffer layer compared to that without NiO layer. Introducing a sandwich-thin layer of NiO between the n-type ZnO and the p-type GaN will possibly block the injection of electrons from the ZnO to the GaN. Moreover, the presence of NiO buffer layer might create the confinement effect.
Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058
Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.
Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO
Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; ...
2015-10-28
We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To studymore » defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. Lastly, these results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy. (C) 2015 AIP Publishing LLC.« less
Dynamic oxidation behavior of TD-NiCr alloy with different surface pretreatments
NASA Technical Reports Server (NTRS)
Young, C. T.; Tenney, D. R.; Herring, H. W.
1975-01-01
Oxidation tests of TD-NiCr alloy with different surface pretreatments were conducted in a Mach-5 arc-jet at 1200 C and 0.002 lb/sec flowing air environment. The mechanisms responsible for the observed oxidation behavior are examined. The presence of atomic oxygen in the air stream plays a significant role in determining the oxidation characteristic of the alloy. The rate of Cr2O3 vaporization by formation of volatile CrO3 is greatly enhanced by the flowing conditions. The typical microstructure of oxides formed in the dynamic tests consists of an external layer of NiO with a porous mushroom-type morphology, an intermediate layer of NiO and Cr2O3 oxide mixture, and a continuous inner layer of Cr2O3 in contact with the Cr-depleted alloy substrate. Three basic processes underlying the formation of mushroom-type NiO are identified and discussed. The oxidation rate is determined by the rate of vaporization of NiO. Surface pretreatment has a significant effect on the oxidation behavior of the alloy in the early stage of oxidation, but becomes less important as exposure time increases. Mechanical polishing induces surface recrystallization, but promotes the concurrence of external growth of NiO and internal oxidation of the alloy in the dynamic atmosphere.
NASA Astrophysics Data System (ADS)
Zhang, H. J.; Chen, Z. Q.; Wang, S. J.; Kawasuso, A.; Morishita, N.
2010-07-01
High-purity NiO/Al2O3 catalysts were prepared by mixing NiO and γ-Al2O3 nanopowders. X-ray diffraction patterns were measured to characterize the grain size and crystalline phase of the nanopowders. Positron-annihilation spectroscopy was used to study the microstructure and surface properties of the pores inside the NiO/Al2O3 catalysts. The positron lifetime spectrum comprises two short and two long lifetime components. The two long lifetimes τ3 and τ4 correspond to ortho-positronium (o-Ps) annihilated in microvoids and large pores, respectively. With increasing NiO content in the NiO/Al2O3 catalysts, both τ4 and its intensity I4 show continuous decrease. Meanwhile, the para-positronium (p-Ps) intensity, obtained from coincidence Doppler broadening spectra, increases gradually with NiO content. The different variation in o-Ps and p-Ps intensity suggests the ortho-para conversion of positronium in NiO/Al2O3 catalysts. X-ray photoelectron spectroscopy shows that Ni mainly exists in the form of NiO. The electron-spin-resonance measurements reveal that the ortho-para conversion of Ps is induced by the unpaired electrons of the paramagnetic centers of NiO.
Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A
2014-01-01
Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, M. Narsimha, E-mail: mnreddy57@gmail.com; Rao, P. Vijaya Bhaskar; Sharma, R. K.
2016-05-06
In the present research work, X (NiO) +1-X(Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9}) where X = 30,40 and 45 wt% Nano Composite Anodes are synthesized for low temperature operating solid oxide fuel cells (SOFC). NiO and Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} (GDC20) are synthesized by sol-gel citrate method and the nanopowders of NiO, GDC20 were calcined from 650 °c to 750 °c. For anode materials, pelletized the nanocomposites of X(NiO)+ (1-X) GDC20 (X = 30,40,45 wt.%) and sintered at 1200 °c. systematic study of atomic structure, purity, phase and structural parameters such as Lattice parameters, crystallite size of as-synthesized nanopowders and anode materialsmore » were carried out by XRD and SEM. For mechanical strength, Vickers micro-hardness of anode composites were estimated and observed that micro-hardness of composites were increasing with NiO wt.% and the density of sintered samples, which is varying from 4.35 to 5.54 Gpa at 500g load.« less
Electronic properties of doped and defective NiO: A quantum Monte Carlo study
Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan; ...
2017-12-28
NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less
The effect of an atomically deposited layer of alumina on NiO in P-type dye-sensitized solar cells.
Natu, Gayatri; Huang, Zhongjie; Ji, Zhiqiang; Wu, Yiying
2012-01-10
We present a systematic investigation of the fundamental effects of an atomically deposited alumina (AlO(x)H(y)) onto the NiO films in p-type dye-sensitized solar cells (p-DSCs). With P1 as the sensitizing dye and 0.1 M I(2) and 1.0 M LiI in 3-methoxypropionitrile as the electrolyte, one atomic layer deposition (ALD) cycle of alumina was used to achieve a 74% increase in the overall conversion efficiency of a NiO-based DSC. The open circuit voltage of the cells increased from 0.11 to 0.15 V, and the short circuit current density increased from 0.83 to 0.95 mA/cm(2). Adsorption isotherm studies were performed to show that the amount of dye adsorbed on the NiO-alumina film is slightly lower than the amount adsorbed on the nontreated NiO film. The increased J(sc) was therefore assigned to the increased efficiency of carrier collection at the semiconductor-FTO interface. Our study of the photocurrent onset potentials of NiO and NiO-alumina films with the chopped light measurement technique showed no definitive difference in the onset potential values. However, the DSCs based on NiO-alumina showed a higher recombination resistance value from the electrochemical impedance studies and a higher diode ideality factor from the V(oc) versus ln(light intensity) plots as compared to the DSCs based on untreated NiO. It has thus been established that the increase in V(oc) upon alumina treatment arises due to a higher resistance for electron-hole recombination across NiO surface locally.
Preliminary studies for a beam-generated plasma neutralizer test in NIO1
NASA Astrophysics Data System (ADS)
Sartori, E.; Veltri, P.; Balbinot, L.; Cavenago, M.; Veranda, M.; Antoni, V.; Serianni, G.
2017-08-01
The deployment of neutral beam injectors in future fusion plants is beset by the particularly poor efficiency of the neutralization process. Beam-generated plasma neutralizers were proposed as a passive and intrinsically safe scheme of efficient plasma neutralizers. The concept is based on the natural ionization of the gas target by the beam, and on a suitable confinement of the secondary plasma. The technological challenge of such a concept is the magnetic confinement of the secondary plasma: a proof-of-principle for the concept is needed. The possibility to test of such a system in the small negative ion beam system NIO1 is discussed in this paper. The constraints given by the facility are first discussed. A model of beam-gas interaction is developed to provide the charge-state of beam particles along the neutralizer, and to provide the source terms of plasma generation. By using a cylindrical model of plasma diffusion in magnetic fields, the ionization degree of the target is estimated. In the absence of magnetic fields the diffusion model is validated against experimental measurements of the space-charge compensation plasma in the drift region of NIO1. Finally, the feasibility study for a beam-generated plasma neutralizer in NIO is presented. The neutralizer length, required gas target thickness, and a very simple magnetic setup were considered, taking into account the integration in NIO1. For the basic design a low ionization degree (1%) is obtained, however a promising plasma density up to hundred times the beam density was calculated. The proposed test in NIO1 can be the starting point for studying advanced schemes of magnetic confinement aiming at ionization degrees in the order of 10%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in
We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinementmore » effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.« less
Cheng, Bei; Le, Yao; Cai, Weiquan; Yu, Jiaguo
2011-01-30
Ni(OH)(2) and NiO nanosheets with hierarchical porous structures were synthesized by a simple chemical precipitation method using nickel chloride as precursors and urea as precipitating agent. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption isotherms. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The pore structure analyses indicate that Ni(OH)(2) and NiO nanosheets are composed of at least three levels of hierarchical porous organization: small mesopores (ca. 3-5 nm), large mesopores (ca. 10-50 nm) and macropores (100-500 nm). The equilibrium adsorption data of CR on the as-prepared samples were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of CR was determined using the Langmuir equation and found to be 82.9, 151.7 and 39.7 mg/g for Ni(OH)(2) nanosheets, NiO nanosheets and NiO nanoparticles, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The as-prepared Ni(OH)(2) and NiO nanosheets are found to be effective adsorbents for the removal of Congo red pollutant from wastewater as a result of their unique hierarchical porous structures and high specific surface areas. Copyright © 2010 Elsevier B.V. All rights reserved.
Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method
NASA Astrophysics Data System (ADS)
Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.
Ultrathin NiO nanoflakes electrode materials for supercapacitors
NASA Astrophysics Data System (ADS)
Xiao, Huanhao; Qu, Fengyu; Wu, Xiang
2016-01-01
In this work, large scale ultrathin NiO nanoflakes grown on nickel foam have been successfully obtained by a facile, low cost and eco-friendly route under mild temperature. The average thickness of the as-obtained NiO nanoflakes is about 10 nm. And they possess large surface area of 89.56 m2 g-1 and the dominant pore size of 2.313 nm. The electrochemical properties of the obtained product were evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge measurement and electrochemical impedance spectroscopy (EIS). The electrochemical tests demonstrate the highest discharge areal capacitance of 870 mF cm-2 at 1 mA cm-2 and excellent long cycle-life stability with 84.2% of its discharge areal capacitance retention after 6000 cycles at the current density of 10 mA cm-2. The remarkable electrochemical capacitive performance revealed NiO nanoflakes grown on nickel foam might be promising supercapacitor electrode materials for future energy storage applications.
In situ oxidation studies on /001/ copper-nickel alloy thin films
NASA Technical Reports Server (NTRS)
Heinemann, K.; Rao, D. B.; Douglass, D. L.
1977-01-01
High-resolution transmission electron microscopy studies are reported of (001)-oriented single crystalline thin films of Cu-3%Ni, Cu-4.6%Ni, and Cu-50%Ni alloy which were prepared by vapor deposition onto (001) NaCl substrates and subsequently annealed at around 1100 K and oxidized at 725 K at low oxygen partial pressure. At all alloy concentrations, Cu2O and NiO nucleated and grew independently without the formation of mixed oxides. The shape and growth rates of Cu2O nuclei were similar to rates found earlier. For low-nickel alloy concentrations, the NiO nuclei were larger and the number density of NiO was less than that of Cu-50%Ni films for which the shape and growth rates of NiO were identical to those for pure nickel films. Phenomena involving a reduced induction period, surface precipitation, and through-thickness growth are also described. The results are consistent with previously established oxidation mechanisms for pure copper and pure nickel films.
Compatibility evaluation between La 2Mo 2O 9 fast oxide-ion conductor and Ni-based materials
NASA Astrophysics Data System (ADS)
Corbel, Gwenaël; Lacorre, Philippe
2006-05-01
The chemical reactivity of La 2NiO 4+δ and nickel metal or nickel oxide with fast oxide-ion conductor La 2Mo 2O 9 is investigated in the annealing temperature range between 600 and 1000 °C, using room temperature X-ray powder diffraction. Within the La 2NiO 4+δ/La 2Mo 2O 9 system, subsequent reaction is evidenced at relatively low annealing temperature (600 °C), with formation of La 2MoO 6 and NiO. The reaction is complete at 1000 °C. At reverse, no reaction occurs between Ni or NiO and La 2Mo 2O 9 up to 1000 °C. Together with a previous work [G. Corbel, S. Mestiri, P. Lacorre, Solid State Sci. 7 (2005) 1216], the current study shows that Ni-CGO cermets might be chemically and mechanically compatible anode materials to work with LAMOX electrolytes in solid oxide fuel cells.
NASA Astrophysics Data System (ADS)
Sharma, Rakesh K.; Burriel, Mónica; Dessemond, Laurent; Martin, Vincent; Bassat, Jean-Marc; Djurado, Elisabeth
2016-06-01
An architectural design of the cathode microstructure based on combining electrostatic spray deposition (ESD) and screen-printing (SP) techniques has demonstrated to be an innovative strategy to enhance the electrochemical properties of La2NiO4+δ (LNO) as oxygen electrode on Ce0.9Gd0.1O2-δ (CGO) electrolyte for solid oxide fuel cells. For this purpose, the influence of the ESD process parameters on the microstructure has been systematically investigated. Electrochemical performances of four selected cathode microstructures are investigated: (i) 3-D coral nanocrystalline (average particle size ∼ 100 nm) LNO film grown by ESD; (ii) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) grown by ESD with a continuous nanometric dense interface; (iii) porous screen-printed LNO film (average particle size ∼ 400 nm); and (iv) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) with a continuous nanometric dense interface prepared by ESD topped by a LNO current collector prepared by SP. A significant reduction in the polarization resistance (Rpol) is obtained (0.08 Ω cm2 at 700 °C) for 3-D coral topped by the SP layer. Moreover LNO is found to be stable and compatible with CGO up to 800 °C for only 10 days duration in air, making it potentially suitable for SOFCs cathode application.
NASA Astrophysics Data System (ADS)
Koyama, Miki; Ichimura, Masaya
2018-05-01
Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.
Pedretti, Kevin
2008-11-18
A compute processor allocator architecture for allocating compute processors to run applications in a multiple processor computing apparatus is distributed among a subset of processors within the computing apparatus. Each processor of the subset includes a compute processor allocator. The compute processor allocators can share a common database of information pertinent to compute processor allocation. A communication path permits retrieval of information from the database independently of the compute processor allocators.
Measuring relative performance of an EDS detector using a NiO standard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugar, Joshua Daniel; Kotula, Paul Gabriel
2013-09-01
A method for measuring the relative performance of energy dispersive spectrometers (EDS) on a TEM is discussed. A NiO thin-film standard fabricated at Sandia CA is used. A performance parameter,, is measured and compared to values on several TEM systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrisochoides, N.; Sukup, F.
In this paper we present a parallel implementation of the Bowyer-Watson (BW) algorithm using the task-parallel programming model. The BW algorithm constitutes an ideal mesh refinement strategy for implementing a large class of unstructured mesh generation techniques on both sequential and parallel computers, by preventing the need for global mesh refinement. Its implementation on distributed memory multicomputes using the traditional data-parallel model has been proven very inefficient due to excessive synchronization needed among processors. In this paper we demonstrate that with the task-parallel model we can tolerate synchronization costs inherent to data-parallel methods by exploring concurrency in the processor level.more » Our preliminary performance data indicate that the task- parallel approach: (i) is almost four times faster than the existing data-parallel methods, (ii) scales linearly, and (iii) introduces minimum overheads compared to the {open_quotes}best{close_quotes} sequential implementation of the BW algorithm.« less
Parallel Programming Paradigms
1987-07-01
Unclassified IS.. DECLASSIFICATIONIOOWNGRADIN G 16. DISTRIBUTION STATEMENT (of this Report) Distribution of this report is unlimited. 17...8416878 and by the Office of Naval Research Contracts No. N00014-86-K-0264 and No. N00014-85- K-0328. 8 ?~~ O . G 1 49 II Parallel Programming Paradigms...processors -. "to fetch from the same memory cell (list head) and thus seems to favor a shared memory - g implementation [37). In this dissertation, we
Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas
2017-06-01
Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.
Nanocrystalline LaOx/NiO composite as high performance electrodes for supercapacitors.
Du, Guo; Zeng, Zifan; Xiao, Bangqing; Wang, Dengzhi; Yuan, Yuan; Zhu, Xiaohong; Zhu, Jiliang
2017-12-21
Nanocrystalline LaO x /NiO composite electrodes were synthesized via two types of facile cathodic electrodeposition methods onto nickel foam followed by thermal annealing without any binders. Scanning electron microscopy and transmission electron microscopy investigation revealed that LaO x nanocrystalline particles with an average diameter of 50 nm are uniformly distributed in the NiO layer or alternately deposited with the NiO layer onto the substrate. It is speculated that LaO x particles can participate in the faradaic reaction directly and offer more redox sites. Besides this, the unique Ni/La layered structure facilitates the diffusion of ions and retards the electrode polarization, thus leading to a better rate capability and cycling stability of NiO. As a result, the obtained electrodes display very competitive electrochemical performance (a specific capacitance of 1238 F g -1 at a current density of 0.5 A g -1 , excellent rate capability of 86% of the original capacitance at 10 A g -1 and excellent cycling stability of 93% capacitance after 10 000 cycles). In addition, asymmetric coin devices were assembled using LaO x /NiO as the positive electrode and active carbon as the negative electrode. The assembled asymmetric devices demonstrate a high energy density of 13.12 W h kg -1 at a power density of 90.72 W kg -1 .
Ce doped NiO nanoparticles as selective NO2 gas sensor
NASA Astrophysics Data System (ADS)
Gawali, Swati R.; Patil, Vithoba L.; Deonikar, Virendrakumar G.; Patil, Santosh S.; Patil, Deepak R.; Patil, Pramod S.; Pant, Jayashree
2018-03-01
Metal oxide gas sensors are promising portable gas detection devices because of their advantages such as low cost, easy production and compact size. The performance of such sensors is strongly dependent on material properties such as morphology, structure and doping. In the present study, we report the effect of cerium (Ce) doping on nickel oxide (NiO) nano-structured thin film sensors towards various gases. Bare NiO and Ce doped NiO nanoparticles (Ce:NiO) were synthesized by sol-gel method. To understand the effect of Ce doping in nickel oxide, various molar percentages of Ce with respect to nickel were incorporated. The structure, phase, morphology and band-gap energy of as-synthesized nanoparticles were studied by XRD, SEM, EDAX and UV-vis spectroscopy. Thin film gas sensors of all the samples were prepared and subjected to various gases such as LPG, NH3, CH3COCH3 and NO2. A systematic and comparative study reveals an enhanced gas sensing performance of Ce:NiO sensors towards NO2 gas. The maximum sensitivity for NO2 gas is around 0.719% per ppm at moderate operating temperature of 150 °C for 0.5% Ce:NiO thin film gas sensor. The enhanced gas sensing performance for Ce:NiO is attributed to the distortion of crystal lattice caused by doping of Ce into NiO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ashutosh K., E-mail: ashuvishen@gmail.com, E-mail: aksingh@bose.res.in; Mandal, Kalyan
The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector,more » which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g{sup −1} at a current density of 2.5 A g{sup −1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.« less
Reaction between NiO and Al2O3 in NiO/γ-Al2O3 catalysts probed by positronium atom
NASA Astrophysics Data System (ADS)
Li, C. Y.; Zhang, H. J.; Chen, Z. Q.
2013-02-01
NiO/γ-Al2O3 catalysts with NiO content of 9 wt% and 24 wt% were prepared by solid state reaction method. They are annealed in air at temperatures from 100 °C to 1000 °C. Positron lifetime spectra were measured to study the microstructure variation during annealing process. Four positron lifetime components were resolved with two long lifetime τ3 and τ4, which can be attributed to the ortho-positronium lifetime in microvoids and large pores, respectively. It was found that the longest lifetime τ4 is rather sensitive to the chemical environment of the large pores. The NiO active centers in the catalysts cause decrease of both τ4 and its intensity I4, which is due to the spin-conversion of positronium induced by NiO. However, after heating the catalysts above 600 °C, abnormal increase of the lifetime τ4 is observed. This is due to the formation of NiAl2O4 spinel from the reaction of NiO and γ-Al2O3. The generated NiAl2O4 weakens the spin-conversion effect of positronium, thus leads to the increase of o-Ps lifetime τ4. Formation of NiAl2O4 is further confirmed by both X-ray diffraction and X-ray photoelectron spectroscopy measurements.
Spatially resolved resistance of NiO nanostructures under humid environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Christopher B; Ievlev, Anton; Collins, Liam F
2016-01-01
The spatially resolved electrical response of polycrystalline NiO films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized with sub 25nm resolution using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy under argon atmosphere at 0%, 50%, and 80% relative humidity. The dimensionality of surface features obtained through autocorrelation analysis of topological maps increased linearly with increased relative humidity, as water was adsorbed onto the film surface. Surface potential decreased from about 280mV to about 100 mV and resistance decreased from about 5more » G to about 3 G , in a nonlinear fashion when relative humidity was increased from 0% to 80%. Spatially resolved surface potential and resistance of the NiO films was found to be heterogeneous throughout the film, with distinct domains that grew in size from about 60 nm to 175 nm at 0% and 80% RH levels, respectively. The heterogeneous character of the topological, surface potential, and resistance properties of the polycrystalline NiO film observed under dry conditions decreased with increased relative humidity, yielding nearly homogeneous surface properties at 80% RH, suggesting that the nanoscale potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO film.« less
NASA Astrophysics Data System (ADS)
Mavrokefalos, Christos K.; Hasan, Maksudul; Rohan, James F.; Compton, Richard G.; Foord, John S.
2017-06-01
Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu2O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu2O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu2O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu2O/BDD showed a much higher current density (-0.33 mA/cm2) and photoconversion efficiency (0.28%) compared to the unmodified Cu2O/BDD electrode, which are only -0.12 mA/cm2 and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu2O surface is a crucial parameter in this regard.
NASA Astrophysics Data System (ADS)
Magrasó, Anna; Fontaine, Marie-Laure
In the current manufacturing process of novel LaNbO 4-based proton conducting fuel cells a thin layer of the electrolyte is deposited by wet ceramic coating on NiO-LaNbO 4 based anode and co-sintered at 1200-1300 °C. The chemical compatibility of NiO with acceptor doped LaNbO 4 material is crucial to ensure viability of the cell, so potential effects of other phases resulting from off-stoichiometry in acceptor doped LaNbO 4 should also be explored. Compatibility of NiO with Ca-doped LaNbO 4 and its typical off-set compositions (La 3NbO 7 and LaNb 3O 9) are investigated in this work. It is shown that while NiO does not react with Ca-doped LaNbO 4, fast reaction occurs with La 3NbO 7 or LaNb 3O 9. La 3NbO 7 and NiO form a mixed conducting perovskite phase LaNi 2/3Nb 1/3O 3, while LaNb 3O 9 and NiO form either NiNb 2O 6 or Ni 4Nb 2O 9 depending on the annealing temperature. This implies that manufacturing LaNbO 4-based proton conducting fuel cells requires a strict control of the stoichiometry of the electrolyte.
Virtex-II Pro SEE Test Methods and Results
NASA Technical Reports Server (NTRS)
Petrick, David; Powell, Wesley; Howard, James W., Jr.; LaBel, Kenneth A.
2004-01-01
The objective of this coarse Single Event Effect (SEE) test is to determine the suitability of the commercial Virtex-II Pro family for use in spaceflight applications. To this end, this test is primarily intended to determine any Singe Event Latchup (SEL) susceptibilities for these devices. Secondly, this test is intended to measure the level of Single Event Upset (SEU) susceptibilities and in a general sense where they occur. The coarse SEE test was performed on a commercial XC2VP7 device, a relatively small single processor version of the Virtex-II Pro. As the XC2VP7 shares the same functional block design and fabrication process with the larger Virtex-II Pro devices, the results of this test should also be applicable to the larger devices. The XC2VP7 device was tested on a commercial Virtex-II Pro development board. The testing was performed at the Cyclotron laboratories at Texas A&M and Michigan State Universities using ions of varying energy levels and fluences.
NASA Technical Reports Server (NTRS)
Werthimer, D.; Tarter, J.; Bowyer, S.
1985-01-01
Serendip II is an automated system designed to perform a real time search for narrow band radio signals in the spectra of sources in a regularly scheduled, non-Seti, astronomical observing program. Because Serendip II is expected to run continuously without requiring dedicated observing time, it is hoped that a large portion of the sky will be surveyed at high sensitivity and low cost. Serendip II will compute the power spectrum using a 65,536 channel fast Fourier transform processor with a real time bandwidth of 128 KHz and 2 Hz per channel resolution. After searching for peaks in a 100 KHz portion of the radio telescope's IF band, Serendip II will move to the next 100 KHz portion using a programmable frequency synthesizer; when the whole IF band has been scanned, the process will start again. Unidentified peaks in the power spectra are candidates for further study and their celestial coordinates will be recorded along with the time and power, IF and RF frequency, and bandwidth of the peak.
NASA Astrophysics Data System (ADS)
Wojtulek, Piotr; Puziewicz, Jacek; Ntaflos, Theodoros
2016-04-01
The Braszowice-Brzeźnica Massif - BBM (SW Poland) is a part of the Variscan Central-Sudetic Ophiolite. It is located at the southern termination of the Niemcza Shear Zone and consists of gabbros and serpentinites. The ultramafic rocks occurring in the BBM are (from E to W) serpentinites with abundant relics of olivine and tremolite, lizardite-chrysotile serpentinites and antigorite serpentinites. Clinopyroxene, olivine and zoned chromite grains were found in the central part of the BBM (Mnich Hill) within antigoritic serpentinites. The non-serpentine phases occur in the following microstructures: (1) olivine-chromite aggregates: olivine (Fo = 90.0-91.0) contains 0.35-0.44 wt.% NiO, elongated or amaeboidal chromite I (Cr# = 0.49-0.50, TiO2 = 0.14-0.15 wt.%) is rimmed by chromite II (Cr# = 0.98, TiO2 = 0.01 wt.%); (2) coarse and dismembered diopside grains (Cpx I, Mg# = 0.91-0.92) containing 0.70-0.80 wt.% TiO2, 3.0-4.0 wt.% Al2O3, 1.0-1.4 Cr2O3 and 0.3-0.5 wt.% Na2O; Cpx I is enriched in REE relative to primitive mantle, the REE pattern reveals HREE enrichment relative to LREE and negative Eu anomaly; (3) olivine-clinopyroxene aggregates: olivine (Fo = 90.4-91.3) contains 0.27-0.35 wt.% NiO, anhedral, often elongated clinopyroxene (Cpx II, Mg# = 0.91-0.92) has <0.1 wt.% TiO2, 3.00-4.00 wt.% Al2O3, 1.00-1.40 Cr2O3 and <0.20 wt.% Na2O, (4) magnetite-bearing olivine grains, locally in aggregates with minute clinopyroxene ones; olivine has variable Fo (86.0-96.0) and NiO concentration (0.02-0.55 wt.%), clinopyroxene (Cpx III, Mg# = 0.93-0.97) contains <0.40 wt.% Al2O3 and <0.20 Cr2O3. Cpx III rims also locally Cpx II. The non-serpentine phases from the BBM massif have various compositions and mode of occurrence, thus they record various crystallization events. Composition of chromite I is similar to primary chromite grains occurring in oceanic peridotites of the Romanche and Kurchatov F.Z. (Dick and Bullen, 1984), thus the olivine-chromite aggregates represent probably primary mantle phases. Cpx I contains similar amount of the Al2O3, Cr2O3 and Na2O to primary diopsides described from the Marie Celeste FZ and Indomed FZ (Johnson et al., 1990). REE pattern of the Cpx I suggests depletion in mobile trace elements due to melt extraction. Cpx II has Al2O3, Cr2O3 and TiO2 contents similar to those of diopside originated from the melt-percolation reactions, olivine coexisting with Cpx II crystallized probably in the same event. The Cpx III has Al, Cr and Na contents typical for secondary, metamorphic clinopyroxene. Magnetite-bearing olivine is similar to olivine crystallized at expense of serpentine+magnetite precursors, thus is has secondary, metamorphic origin. This abstract was prepared as a part of the project of the National Science Centre of Poland ("Evolution of serpentinic members of the Lower Silesia ophiolites", DEC-2012/07/N/ST10/03934). References Dick, H.J.B., Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54-76. Johnson K.T.M., Dick H.J.B., Shimizu N., 1990. Melting in the Oceanic Upper Mantle - an ion microprobe study of Diopsides in Abyssal Peridotites. Journal of Geophysical Research 95, 2661-2678.
Spatial nonuniformity in resistive-switching memory effects of NiO.
Oka, Keisuke; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Kawai, Tomoji; Kim, Jin-Soo; Park, Bae Ho
2011-08-17
Electrically driven resistance change phenomenon in metal/NiO/metal junctions, so-called resistive switching (RS), is a candidate for next-generation universal nonvolatile memories. However, the knowledge as to RS mechanisms is unfortunately far from comprehensive, especially the spatial switching location, which is crucial information to design reliable devices. In this communication, we demonstrate the identification of the spatial switching location of bipolar RS by introducing asymmetrically passivated planar NiO nanowire junctions. We have successfully identified that the bipolar RS in NiO occurs near the cathode rather than the anode. This trend can be interpreted in terms of an electrochemical redox model based on ion migration and p-type conduction.
Connected Au network in annealed Ni/Au thin films on p-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. P.; Jang, H. W.; Noh, D. Y.
2007-11-12
We report the formation of a connected Au network in annealed Ni/Au thin films on p-GaN, which was studied by scanning electron microscopy, transmission electron microscopy, and synchrotron x-ray diffraction. As the Ni was oxidized into NiO upon annealing at 530 deg. C in air, the Au layer was transformed to an interconnected network with an increased thickness. During annealing, Ni atoms diffuse out onto the Au through defects to form NiO, while Au atoms replace the Ni positions. The Au network grows downward until it reaches the p-GaN substrate, and NiO columns fill the space between the Au network.
From Yoknapatawpha to Piratininga and Beyond: Antônio Dutra's "Dias De Faulkner"
ERIC Educational Resources Information Center
Valente, Luiz Fernando
2015-01-01
By reimagining William Faulkner's 1954 visit to Brazil, Antônio Dutra's "Dias de Faulkner" (2008) establishes a creative dialogue with Faulkner's "oeuvre" while also inquiring into the author's enigmatic personality. In the process Dutra's narrative invites us to reflect on the complex and contradictory relationship between the…
Yang, Guangming; Zhou, Wei; Liu, Meilin; Shao, Zongping
2016-12-28
The successful development of low-cost, durable electrocatalysts for oxygen reduction reaction (ORR) at intermediate temperatures is critical for broad commercialization of solid oxide fuel cells. Here, we report our findings in design, fabrication, and characterization of a cobalt-free SrFe 0.85 Ti 0.1 Ni 0.05 O 3-δ cathode decorated with NiO nanoparticles. Exsolved from and well bonded to the parent electrode under well-controlled conditions, the NiO nanoparticles uniformly distributed on the surface of the parent electrode greatly enhance cathode performance, demonstrating ORR activity better than that of the benchmark cobalt-based Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ . Further, a process for regeneration of the NiO nanoparticles was also developed to mitigate potential performance degradation due to coarsening of NiO particles under practical operating conditions. As a general approach, this exsolution-dissolution of electrocatalytically active nanoparticles on an electrode surface may be applicable to the development of other high-performance cobalt-free cathodes for fuel cells and other electrochemical systems.
Jung, Jin-Young; Yu, Jin-Young; Lee, Jung-Ho
2018-03-07
As a thermodynamic driving force obtained from sunlight, the open-circuit potential (OCP) in photoelectrochemical cells is typically limited by the photovoltage ( V ph ). In this work, we establish that the OCP can exceed the value of V ph when an electrolyte-permeable NiO x thin film is employed as an electrocatalyst in a Si photocathode. The built-in potential developed at the NiO x /Si junction is adjusted in situ according to the progress of the NiO x hydration for the hydrogen evolution reaction (HER). As a result of decoupling of the OCP from V ph , a high OCP value of 0.75 V (vs reversible hydrogen electrode) is obtained after 1 h operation of HER in an alkaline electrolyte (pH = 14), thus outperforming the highest value (0.64 V) reported to date with conventional Si photoelectrodes. This finding might offer insight into novel photocathode designs such as those based on tandem water-splitting systems.
Grain size effect on the permittivity of La1.5Sr0.5NiO4 nanoparticles
NASA Astrophysics Data System (ADS)
Dang Thanh, Tran; Van Hong, Le
2009-09-01
Using the annealing at different temperatures the La1.5Sr0.5NiO4 ceramic samples with different mean grain size were manufactured. Mean grain size (
Simulated Impacts of El Nino/Southern Oscillation on United States Water Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Allison M.; Brown, Robert A.; Rosenberg, Norman J.
The El Nino/Southern Oscillation alters global weather patterns with consequences for fresh water quality and supply. ENSO events impact regions and natural resource sectors around the globe. For example, in 1997-98, a strong El Ni?o brought warm ocean temperatures, flooding and record snowfall to the west coast of the US. Research on ENSO events and their impacts has improved long range weather predictions, potentially reducing the damage and economic cost of these anomalous weather patterns. Here, we simulate the impacts of four types of ENSO states on water resources in the conterminous United States. We distinguish between Neutral, El Ni?o,more » La Ni?a and strong El Ni?o years over the period of 1960-1989. Using climate statistics that characterize these ENSO states to drive the HUMUS water resources model, we examine the effects of 'pure' ENSO events, without complications from transition periods. Strong El Ni?o is not simply an amplification of El Ni?o; it leads to strikingly different consequences for climate and water resources.« less
Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation
NASA Astrophysics Data System (ADS)
Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou
2017-07-01
A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.
Fluorine-doped NiO nanostructures: Structural, morphological and spectroscopic studies
NASA Astrophysics Data System (ADS)
Singh, Kulwinder; Kumar, Manjeet; Singh, Dilpreet; Singh, Manjinder; Singh, Paviter; Singh, Bikramjeet; Kaur, Gurpreet; Bala, Rajni; Thakur, Anup; Kumar, Akshay
2018-05-01
Nanostructured NiO has been prepared by co-precipitation method. In this study, the effect of fluorine doping (1, 3 and 5 wt. %) on the structural, morphological as well as optical properties of NiO nanostructures has been studied. X-ray diffraction (XRD) has employed for studying the structural properties. Cubic crystal structure of NiO was confirmed by the XRD analysis. Crystallite size increased with increase in doping concentration. Nelson-Riley factor (NRF) analysis indicated the presence of defect states in the synthesized samples. Field emission scanning electron microscopy showed the spherical morphology of the synthesized samples and also revealed that the particle size varied with dopant content. The optical properties were studied using UV-Visible Spectroscopy. The results indicated that the band gap energy of the synthesized nanostructures decreased with increase in doping concentration upto 3% but increased as the doping concentration was further raised to 5%. This can be ascribed to the defect states variations in the synthesized samples. The results suggested that the synthesized nanostructures are promising candidate for optoelectronic as well as gas sensing applications.
NASA Astrophysics Data System (ADS)
Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan
2018-04-01
The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.
Influence of Yttrium Ion-Implantation on the Growth Kinetics and Micro-Structure of NiO Oxide Film
NASA Astrophysics Data System (ADS)
Jin, Huiming; Adriana, Felix; Majorri, Aroyave
2008-02-01
Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000°C in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine the micro-morphology and structure of oxide scales formed on the nickel substrate. It was found that Y-implantation significantly improved the anti-oxidation ability of nickel in both isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in anti-oxidation of nickel was that Y-implantation greatly reduced the growing speed and grain size of NiO. This fine-grained NiO oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained a ridge character and a relatively low internal stress level. Hence yttrium ion-implantation remarkably enhanced the adhesion of protective NiO oxide scale formed on the nickel substrate.
Three-dimensional hole transport in nickel oxide by alloying with MgO or ZnO
NASA Astrophysics Data System (ADS)
Alidoust, Nima; Carter, Emily A.
2015-11-01
It has been shown previously that the movement of a hole in nickel oxide is confined to two dimensions, along a single ferromagnetic plane. Such confinement may hamper hole transport when NiO is used as a p-type transparent conductor in various solar energy conversion technologies. Here, we use the small polaron model, along with unrestricted Hartree-Fock and complete active space self-consistent field calculations to show that forming substitutional MxNi1-xO alloys with M = Mg or Zn reduces the barrier for movement of a hole away from the ferromagnetic plane to which it is confined. Such reduction occurs for hole transfer alongside one or two M ions that have been substituted for Ni ions. Furthermore, the Mg and Zn ions do not trap holes on O sites in their vicinity, and NiO's transparency is preserved upon forming the alloys. Thus, forming MxNi1-xO alloys with M = Mg or Zn may enhance NiO's potential as a p-type transparent conducting oxide, by disrupting the two-dimensional confinement of holes in pure NiO.
NASA Astrophysics Data System (ADS)
Goel, Ashutosh; Shaaban, Essam R.; Ribeiro, Manuel J.; Melo, Francisco C. L.; Ferreira, José M. F.
2007-09-01
This work presents the effect of NiO on the thermal behavior and the crystallization kinetics of glasses lying near the stoichiometric cordierite composition nucleated with TiO2. Three glasses with NiO content varying between 1 and 5 mol% have been synthesized in Pt crucibles. Activation energies for structural relaxation and viscous flow have been calculated using the data obtained from differential thermal analysis (DTA). Kinetic fragility of the glasses along with other thermal parameters has been calculated. Non-isothermal crystallization kinetic studies have been employed to study the mechanism of crystallization in all three glasses. The crystallization sequence in the glasses has been followed by x-ray diffraction analysis of the heat treated glass samples in the temperature range of 800-1200 °C. μ-cordierite has been observed to be the first crystalline phase in all the glass samples after heat treatment at 850 °C, while NiO plays an important role in determining the crystallization sequence at higher temperatures, leading to the formation of α-cordierite.
2013-01-01
In this study, the influence of the morphology on the electrocatalytic activity of nickel oxide nanostructures toward methanol oxidation is investigated. Two nanostructures were utilized: nanoparticles and nanofibers. NiO nanofibers have been synthesized by using the electrospinning technique. Briefly, electrospun nanofiber mats composed of polyvinylpyrolidine and nickel acetate were calcined at 700°C for 1 h. Interestingly, compared to nanoparticles, the nanofibrous morphology strongly enhanced the electrocatalytic performance. The corresponding current densities for the NiO nanofibers and nanoparticles were 25 and 6 mA/cm2, respectively. Moreover, the optimum methanol concentration increased to 1 M in case of the nanofibrous morphology while it was 0.1 M for the NiO nanoparticles. Actually, the one-dimensional feature of the nanofibrous morphology facilitates electrons' motion which enhances the electrocatalytic activity. Overall, this study emphasizes the distinct positive impact of the nanofibrous morphology on the electrocatalytic activity which will open a new avenue for modification of the electrocatalysts. PMID:24074313
NASA Astrophysics Data System (ADS)
Kore, R. M.; Thakur, A. V.; Fugare, B. Y.; Lokhande, B. J.
2018-04-01
In the present study, we report synthesis of NiO nanoparticles by varying the reagent ratio of nickel nitrate and ammonium bicarbonate using solvent deficient approach. The synthesis process involves the solid state grinding reaction of nickel nitrate and different mole ratio of ammonium bicarbonate varying from 0.5 to 4, to obtain the precursor followed by rinsing and annealing at 300°C for 2 h. The XRD and FTIR analysis is carried to confirm the formation of NiO nanoparticles. The XRD analysis confirms the cubic structure of NiO. The peaks observed in FTIR confirms the presence of Ni - O vibration mode. The FESEM images shows the particle size is larger for lower content of ammonium bicarbonate and decreases with increase in amount of bicarbonate added. Electrochemical performance clearly indicates the specific capacitance increases from 0.5 to 2 and further decreases with increase in the ammonium bicarbonate. The maximum achieved specific capacitance is 1218 Fg-1 for the reagent ratio 2 of ammonium bicarbonate.
Translations on Telecommunications Policy, Research and Development, Number 13
1977-09-14
9 Aug 77) 4 ATDA Says Research, Development Funds Being Wasted (THE AUSTRALIAN, 15 Aug 77) 5 Digital Unveils New Printer (THE AUSTRALIAN, 22...Argentina Accord 28 BOLIVIA Briefs Bolivian Television Reorganized 29 CUBA New Radio Station for Santa Cruz del Sur ( JUVENTUD REBELDE, 29 Jun 77...II micro- processor. The PM-DS/11 car- tridge disc memory sys- tem provides a double capacity plug-in alter- native to the Digital Equipment
Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; ...
2017-05-10
Here, given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22%, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-typemore » planar PSC with a large active area of >1 cm 2. It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x, and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0% (19.2% for 0.1 cm 2) without showing hysteresis effects.« less
Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate-derived Streptomyces sp.
Naik, D N; Wahidullah, S; Meena, R M
2013-03-01
The study aimed to discover quorum sensing (QS) inhibitors from marine sponge-derived actinomycetes and analyse its inhibitory activities against QS-mediated virulence factors in Pseudomonas aeruginosa. Seventy-two actinomycetes isolated from marine invertebrates collected from the western coast of India were screened against the QS indicator strain Chromobacterium violaceum CV12472. Methanol extracts of 12 actinomycetes showing inhibition of violacein production were accessed for downregulation of QS-mediated virulence factors like swarming, biofilm formation, pyocyanin, rhamnolipid and LasA production in Ps. aeruginosa ATCC 27853. The isolates NIO 10068, NIO 10058 and NIO 10090 exhibited very good anti-QS activity, with NIO 10068 being the most promising one. Mass spectrometric analysis of NIO 10068 methanol extract revealed the presence of cinnamic acid and linear dipeptides proline-glycine and N-amido-α-proline in the active extract. Detailed investigation suggested that although linear dipeptide Pro-Gly is to some extent responsible for the observed biological activity, cinnamic acid seems to be the main compound responsible for it. Marine-derived actinomycetes are a potential storehouse for QS inhibitors. This is the first report not only on marine sponge-associated Streptomyces for anti-QS in Ps. aeruginosa but also on cinnamic acid and proline-derived linear dipeptides proline-glycine as QS inhibitors. The results reveal that marine-derived actinomycetes may not only play a role in the defensive mechanism of their host but also lead to new molecules useful in the development of novel antivirulence drugs. © 2012 The Society for Applied Microbiology.
Singh, Archana; Fekete, Monika; Gengenbach, Thomas; Simonov, Alexandr N; Hocking, Rosalie K; Chang, Shery L Y; Rothmann, Mathias; Powar, Satvasheel; Fu, Dongchuan; Hu, Zheng; Wu, Qiang; Cheng, Yi-Bing; Bach, Udo; Spiccia, Leone
2015-12-21
We report that films screen printed from nickel oxide (NiO) nanoparticles and microballs are efficient electrocatalysts for water oxidation under near-neutral and alkaline conditions. Investigations of the composition and structure of the screen-printed films by X-ray diffraction, X-ray absorption spectroscopy, and scanning electron microscopy confirmed that the material was present as the cubic NiO phase. Comparison of the catalytic activity of the microball films to that of films fabricated by using NiO nanoparticles, under similar experimental conditions, revealed that the microball films outperform nanoparticle films of similar thickness owing to a more porous structure and higher surface area. A thinner, less-resistive NiO nanoparticle film, however, was found to have higher activity per Ni atom. Anodization in borate buffer significantly improved the activity of all three films. X-ray photoelectron spectroscopy showed that during anodization, a mixed nickel oxyhydroxide phase formed on the surface of all films, which could account for the improved activity. Impedance spectroscopy revealed that surface traps contribute significantly to the resistance of the NiO films. On anodization, the trap state resistance of all films was reduced, which led to significant improvements in activity. In 1.00 m NaOH, both the microball and nanoparticle films exhibit high long-term stability and produce a stable current density of approximately 30 mA cm(-2) at 600 mV overpotential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong
2016-09-01
Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g-1 at 1 A g-1, and still keep a high value of 704 F g-1 even at 20 A g-1. The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg-1 at a power density of 800 W kg-1, and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min-1 g-1Ni for catalytic hydrolysis of NH3BH3 (AB).
NASA Astrophysics Data System (ADS)
Basri, N. H.; Deraman, M.; Suleman, Md.; Khiew, P. S.; Yatim, B.; Nor, N. S. M.; Sazali, N. E. S.; Hamdan, E.; Hanappi, M. F. Y. M.; Bakri, W. F. W.; Tajuddin, N. S. M.
2016-11-01
Hybrid supercapacitor or asymmetric cell made of composite electrode consists of nanoparticles NiO (75, 80, 85 wt.%), activated carbon powder (ACP) and PTFE binder (5 wt.%) as cathode paired with porous KOH treated activated carbon monolith (ACM) electrode from oil palm empty fruit bunches as anode have been fabricated. The physical characteristics of composite electrodes have been investigated by field emission scanning electron microscopy (FE-SEM). The density and resistivity of the composite electrodes have been measured and found to be increased with percentage of NiO composition. The supercapacitor performance of both symmetric and asymmetric configuration have been investigated in 6 M KOH electrolyte medium using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques. The CV results at 1 mV s-1 for the asymmetric cell demonstrate that the presence of ACM as an anode can improve the supercapacitor cell performance, as shown by the cell composed of composite electrode that consist 75 wt.% of NiO, which optimally exhibits 164 % increase in the value of Csp. The same trend is observed by the GCD results. The GCD results show that the presence of porous ACM electrodes has increase the specific energy value from 0.14 Wh kg-1 (without ACM) to 0.24, 0.51 and 0.66 W h kg-1, and the specific power from 94.9 to 122.0 W kg-1 corresponding to asymmetric cell consist of 75, 80, 85 wt.% of NiO, respectively.
NASA Astrophysics Data System (ADS)
Wang, Xiaoqin; Li, Qiaoqin; Zhang, Yong; Yang, Yufei; Cao, Zhi; Xiong, Shanxin
2018-06-01
A novel synthesis approach of N-doped porous carbon (NPC)/NiO composites possessing some honeycomb-shaped nanoporous carbon and plentiful NiO nanosheets is exploited. First NPC/Ni composites are achieved with NPC yield of 52.9% through a catalytic pyrolysis method, using coal-based polyaniline particles prepared by an in-situ polymerization method as a carbon and nitrogen source, and nickel particles as a catalyst, respectively. Next NPC/NiO composites are achieved unexpectedly with plentiful NiO nanosheets and N content of 1.00 wt% after a liquid oxidation process. In NPC/NiO composites, porous carbon mainly presents in the amorphous state, while the incorporated nitrogen mainly presents in the form of pyrrolic N (92.9 at.%) and oxidized N (7.1 at.%). Plentiful NiO nanosheets are embedded in the pores or on the NPC surface. 33.3 at.% Ni2O3 components exist in the surface of NiO nanosheets. NPC/NiO composites possess not only rich micropores, but also significant mesopores and nanoscale macropores. The BET specific surface area, BET average pore width and BJH adsorption average pore diameter are 627.5 m2/g, 2.0 nm and 5.1 nm, respectively. NPC/NiO composites demonstrate a high specific capacitance of 404.1 F/g at 1 A/g, and a good cycling stability maintaining high specific capacitance of 212.4 F/g (84.3% of the initial capacitance) at 5 A/g after 5000 cycles of charge and discharge, attributed to some honeycomb-shaped nanopores of carbon and large specific surface area of NiO nanosheets, and the synergistic effects between electric double-layer capacitance of NPC and pseudocapacitance of NiO. This study may provide a novel approach for the value-added applications of low-rank coal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongjing, E-mail: wuhongjing@mail.nwpu.edu.cn; Wu, Guanglei, E-mail: wuguanglei@mail.xjtu.edu.cn; Wu, Qiaofeng
2014-11-15
We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H{sub 2} or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that themore » defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H{sub 2} and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H{sub 2}, an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H{sub 2} and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated.« less
Learning the Art of Electronics
NASA Astrophysics Data System (ADS)
Hayes, Thomas C.; Horowitz, Paul
2016-03-01
1. DC circuits; 2. RC circuits; 3. Diode circuits; 4. Transistors I; 5. Transistors II; 6. Operational amplifiers I; 7. Operational amplifiers II: nice positive feedback; 8. Operational amplifiers III; 9. Operational amplifiers IV: nasty positive feedback; 10. Operational amplifiers V: PID motor control loop; 11. Voltage regulators; 12. MOSFET switches; 13. Group audio project; 14. Logic gates; 15. Logic compilers, sequential circuits, flip-flops; 16. Counters; 17. Memory: state machines; 18. Analog to digital: phase-locked loop; 19. Microcontrollers and microprocessors I: processor/controller; 20. I/O, first assembly language; 21. Bit operations; 22. Interrupt: ADC and DAC; 23. Moving pointers, serial buses; 24. Dallas Standalone Micro, SiLabs SPI RAM; 25. Toys in the attic; Appendices; Index.
Role of Microstructure in High Temperature Oxidation.
1980-05-01
Surface Prepartion Upon Oxidation ......... .................. 20 EXPERIMENTAL METHODS 21 Speciemen Preparation...angle sectioning method 26 Figure 3. Application of the test line upon the image of NiO scale to determine the number of the NiO grain boundary...of knowledge in this field was readily accounted for by extreme experimental difficulty in applying standard methods of microscopy to the thin
NASA Astrophysics Data System (ADS)
Siddique, M. Naseem; Ahmed, Ateeq; Ali, T.; Tripathi, P.
2018-05-01
Nickel oxide (NiO) nanoparticles with a crystal size of around 16.26 nm have been synthesized via sol-gel method. The synthesized precursor was calcined at 600 °C for 4 hours to obtain the nickel oxide nanoparticles. The XRD analysis result indicated that the calcined sample has a cubic structure without any impurity phases. The FTIR analysis result confirmed the formation of NiO. The NiO nanoparticle exhibited absorption band edge at 277.27 nm and the optical band gap have been estimated approximately 4.47 eV using diffuse reflectance spectroscopy and photoluminescence emission spectrum of our as-synthesized sample showed strong peak at 3.65 eV attributed to the band edge transition.
Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method
NASA Astrophysics Data System (ADS)
Sathisha, D.; Naik, K. Gopalakrishna
2018-05-01
Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.
First-principles investigation on transport properties of NiO monowire-based molecular device
NASA Astrophysics Data System (ADS)
Chandiramouli, R.; Sriram, S.
2014-08-01
The electronic transport properties of novel NiO monowire connected to the gold electrodes are investigated using density functional theory combined with nonequilibrium Green's functions formalism. The densities of states of the monowire under various bias conditions are discussed. The transport properties are discussed in terms of the transmission spectrum and current-voltage characteristics of NiO monowire. The transmission pathways provide the insight to the transmission of electrons along the monowire. With different bias voltages, current in the order of few microampere flows across the monowire. The applied voltage controls the flow of current through the monowire, which can be used to control the current efficiently in the low order of magnitude in the molecular device.
Electrochromic NiO thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Özütok, F.; Demiri, S.; Özbek, E.
2017-02-01
Recently, smart windows are very important because they are often being used in smart buildings and car glasses (windows). At this point, producing effective electrochromic materials is so necessary. In this study, we produced NiO thin films by using spin coating technique on In-doped SnO2 (ITO) substrate. Nickel proportions of these nickel oxide (NiO) films are 3, 5 and 7 %. Nickel acetate tetrahydrate is the initial solution and solvents are ethylene gl ycol and n-hexzane. Structural properties and surface images are investigated by using x-ray diffactometer (XRD) and scanning electron microscope (SEM) device, respectively. In addition, electrochemical behavior is investigated by cyclic voltammetry. A correlation between surface morphology and electrochromic performance was observed as well.
Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; ...
2015-03-11
Reactively sputtered nickel oxide (NiO x) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O 2(g). These NiO x coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Finally, under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiO x films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of watermore » to O 2(g).« less
Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot
Raissi, Mahfoudh; Pellegrin, Yann; Jobic, Stéphane; Boujtita, Mohammed; Odobel, Fabrice
2016-01-01
Sensitized NiO based photocathode is a new field of investigation with increasing scientific interest in relation with the development of tandem dye-sensitized solar cells (photovoltaic) and dye-sensitized photoelectrosynthetic cells (solar fuel). We demonstrate herein that PbS quantum dots (QDs) represent promising inorganic sensitizers for NiO-based quantum dot-sensitized solar cells (QDSSCs). The solar cell sensitized with PbS quantum dot exhibits significantly higher photoconversion efficiency than solar cells sensitized with a classical and efficient molecular sensitizer (P1 dye = 4-(Bis-{4-[5-(2,2-dicyano-vinyl)-thiophene-2-yl]-phenyl}-amino)-benzoic acid). Furthermore, the system features an IPCE (Incident Photon-to-Current Efficiency) spectrum that spreads into the infra-red region, reaching operating wavelengths of 950 nm. The QDSSC photoelectrochemical device works with the complexes tris(4,4′-ditert-butyl-2,2′-bipyridine)cobalt(III/II) redox mediators, underscoring the formation of a long-lived charge-separated state. The electrochemical impedance spectrocopy measurements are consistent with a high packing of the QDs upon the NiO surface, the high density of which limits the access of the electrolyte and results in favorable light absorption cross-sections and a significant hole lifetime. These notable results highlight the potential of NiO-based photocathodes sensitized with quantum dots for accessing and exploiting the low-energy part of the solar spectrum in photovoltaic and photocatalysis applications. PMID:27125454
The Bulletin of Military Operations Research, PHALANX, Vol. 31, No. 2.
1998-06-01
introduction of the Pentium II processor, the writeable CD, and the Digital Video Disc (DVD). Just around the corner, around the turn of the century...broader audi- ence. Presentations that use special visual aids ( videos , computers, etc.), short presen- tations best depicted with color charts...Throughout the treatment of data, anoth- er weapon we should take is Tukey’s Tor- pedo (John W. Tukey, "Sunset Salvo," The American Statistician, vol
Resonant power processors. II - Methods of control
NASA Technical Reports Server (NTRS)
Oruganti, R.; Lee, F. C.
1984-01-01
The nature of resonant converter control is discussed. Employing the state-portrait, different control methods for series resonant converter are identified and their performance evaluated based on their stability, response to control and load changes and range of operation. A new control method, optimal-trajectory control, is proposed which, by utilizing the state trajectories as control laws, continuously monitors the energy level of the resonant tank. The method is shown to have superior control properties especially under transient operation.
NASA Technical Reports Server (NTRS)
Wingard, Doug
2010-01-01
Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.
Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong
2016-01-01
Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g−1 at 1 A g−1, and still keep a high value of 704 F g−1 even at 20 A g−1. The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg−1 at a power density of 800 W kg−1, and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min−1 g−1Ni for catalytic hydrolysis of NH3BH3 (AB). PMID:27616420
Relationship between fabrication method and chemical stability of Ni-BaZr0.8Y0.2O3-δ membrane
NASA Astrophysics Data System (ADS)
Fang, Shumin; Wang, Siwei; Brinkman, Kyle S.; Su, Qing; Wang, Haiyan; Chen, Fanglin
2015-03-01
NiO effectively promotes the sintering of highly refractory Y-doped BaZrO3 (BZY) through the formation of BaY2NiO5, providing a simple and cost-effective method for the fabrication of dense BZY electrolyte and Ni-BZY hydrogen separation membrane at ∼1400 °C. Unfortunately, insulating BaCO3 and Y2O3 phases formed on the surface of BZY and Ni-BZY prepared by solid state reaction method with NiO after annealing in wet CO2. Ni-BZY membranes prepared from different methods suffered different degree of performance loss in wet H2 at 900 °C. The chemical instability of Ni-BZY is attributed to the formation of a secondary phase (BaY2O4) generated from the reduction of BaY2NiO5 in H2 during the sintering process. Both BaY2O4 and BaY2NiO5 react with H2O, and CO2 at elevated temperatures, generating insulating Ba(OH)2 and BaCO3 phases, respectively. The less BaY2O4 is formed in the fabrication process, the better chemical stability the Ni-BZY membranes possess. Therefore, a new Ni-BZY membrane is prepared through a judicial combination of BZY powders prepared from combined EDTA-citric and solid state reaction methods, and demonstrates exceptional chemical stability in H2O and CO2, enabling stable and even improved hydrogen flux in wet 50% CO2 at 900 °C.
Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong
2016-12-07
As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo 2 S 4 @NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm -2 at the current density of 1 mA cm -2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo 2 S 4 @NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg -1 at 0.288 KW kg -1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo 2 S 4 @NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.
NASA Astrophysics Data System (ADS)
Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong
2016-12-01
As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.
Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong
2016-01-01
As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm−2 at the current density of 1 mA cm−2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg−1 at 0.288 KW kg−1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations. PMID:27924927
Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon
2016-07-28
In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm(-2)), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.
Nanostructured CdO-NiO composite for multifunctional applications
NASA Astrophysics Data System (ADS)
Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S.
2018-01-01
In this study, CdO, NiO, and CdO-NiO nanocomposites (NCs) were synthesized and investigated by X-ray diffraction (XRD), scanning electron microscopy, and Fourier transform-infrared spectroscopy. XRD detected cubic structures with average crystallite sizes of 45 nm for CdO, 25 nm for NiO, and 30 nm for CdO-NiO. The band gap was estimated based on the ultraviolet-visible spectra. The near band edge emission was determined according to the luminescence spectrum. The antibacterial activities were tested against seven foodborne pathogens and the zones of inhibition with the Gram-negative bacterium Bacillus subtilis measured as 30 mm with CdO, 20 mm NiO, and 27 mm with CdO-NiO. The death of the bacterial cells was confirmed by confocal laser scanning microscope analysis. Cytotoxicity assays indicated the non-toxic effects of the NCs on normal healthy red blood cells. Furthermore, the in vitro cytotoxic effects of the CdO, NiO, and CdO-NiO NCs were examined using the human MCF-7 breast cancer cell line based on 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide assays with normal mouse embryonic fibroblasts (NH3T3) under identical conditions.
NASA Astrophysics Data System (ADS)
Chen, Jiayuan; Wu, Xiaofeng; Liu, Ya; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Tan, Qiangqiang; Chen, Yunfa
2017-12-01
A facile template-free synthesis strategy is demonstrated to fabricate nanostructured NiO/N-doped graphene hybrid, in which NiO hollow nanospheres with hierarchically mesoporous structure are tightly anchored on N-doped graphene matrix. The mesoporous shell of NiO can not only provide sufficient electrode/electrolyte contact areas to accelerate ion diffusion and electron exchange, but also efficiently mitigate the volume change that occurs during long-time reactions. Simultaneously, the reduced graphene oxide with doping nitrogen atoms are employed as effectively conductive backbone, further enhancing the electrochemical performances. When used as anodic material for lithium ion batteries, the synergistic system delivers a reversible capacity up to 1104.6 mAh g-1 after 150 cycles at a current density of 0.08 A g-1 and 422.3 mAh g-1 at a high charging rate of 4 A g-1, which is better than those of the bare counterparts and most other NiO-based materials reported in the previous literatures. The hierarchically hollow NiO nanostructure combined with N-doped graphene matrix provides a promising candidate applied in advanced anode materials for lithium ion batteries.
Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon
2016-01-01
In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm−2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved. PMID:27465263
NASA Astrophysics Data System (ADS)
Wang, Xiao Lin; Liu, Zhen; Wen, Chao; Liu, Yang; Wang, Hong Zhe; Chen, T. P.; Zhang, Hai Yan
2018-06-01
With self-prepared nickel acetate based solution, NiO thin films with different thicknesses have been fabricated by spin coating followed by thermal annealing. By forming a two-terminal Ag/NiO/ITO structure on glass, write-once-read-many-times (WORM) memory devices are realized. The WORM memory behavior is based on a permanent switching from an initial high-resistance state (HRS) to an irreversible low-resistance state (LRS) under the application of a writing voltage, due to the formation of a solid bridge across Ag and ITO electrodes by conductive filaments (CFs). The memory performance is investigated as a function of the NiO film thickness, which is determined by the number of spin-coated NiO layers. For devices with 4 and 6 NiO layers, data retention up to 104 s and endurance of 103 reading operations in the measurement range have been obtained with memory window maintained above four orders for both HRS and LRS. Before and after writing, the devices show the hopping and ohmic conduction behaviors, respectively, confirming that the CF formation could be the mechanism responsible for writing in the WORM memory devices.
3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity
NASA Astrophysics Data System (ADS)
Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou
2015-12-01
3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.
Efficiency of static core turn-off in a system-on-a-chip with variation
Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong
2013-10-29
A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.
System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Ferrall, Tim Rehg, Vesna Stanic
2000-09-30
The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requiresmore » that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.« less
Calibrating thermal behavior of electronics
Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.
2017-07-11
A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.
Calibrating thermal behavior of electronics
Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.
2016-05-31
A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.
Calibrating thermal behavior of electronics
Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.
2017-01-03
A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.
Tunable photoelectric response in NiO-based heterostructures by various orientations
NASA Astrophysics Data System (ADS)
Luo, Yidong; Qiao, Lina; Zhang, Qinghua; Xu, Haomin; Shen, Yang; Lin, Yuanhua; Nan, Cewen
2018-02-01
We engineered various orientations of NiO layers for NiO-based heterostructures (NiO/Au/STO) to investigate their effects on the generation of hot electrons and holes. Our calculation and experimental results suggested that bandgap engineering and the orientation of the hole transport layer (NiO) were crucial elements for the optimization of photoelectric responses. The (100)-orientated NiO/Au/STO achieved the highest photo-current density (˜30 μA/cm2) compared with (111) and (110)-orientated NiO films, which was attributed to the (100) films's lowest effective mass of photogenerated holes (˜1.82 m0) and the highest efficiency of separating and transferring electron-holes of the (100)-orientated sample. Our results opened a direction to design a high efficiency photoelectric solar cell.
NASA Astrophysics Data System (ADS)
Jeong, Dae Kyung; Kang, Jin-Ho; Ha, Jun-Seok; Ryu, Sang-Wan
2017-10-01
A NiO/GaN heterojunction piezoelectric generator was fabricated, and the improvement in device performance was analyzed. The electrical properties of NiO were varied by regulating the gas environment during sputtering. An optimized NiO layer was adopted for high piezoelectric voltage generation. Internal carrier screening was revealed to be the dominant mechanism degrading the piezoelectric performance, necessitating the suppression of carrier screening. The highly resistive NiO layer was advantageous in the suppression of carrier transport across the junction that screened the piezoelectric field. The maximum piezoelectric voltage and current density values obtained were 7.55 V and 1.14 µA cm-2, respectively. The power obtained was sufficient to operate a light-emitting diode combined with a charging circuit.
NASA Astrophysics Data System (ADS)
Allagui, Anis; Alami, Abdul Hai; Baranova, Elena A.; Wüthrich, Rolf
2014-09-01
NiO nanoparticles of 70, 91 and 107 nm average diameter are synthesized by cathodic contact glow discharge electrolysis at 30, 36 and 42 VDC respectively, in 2 M H2SO4 + 0.5 M ethanol + 2.5 mg ml-1 of PVP, and are investigated for electrochemical energy storage. From the cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M KOH, it was found that a maximum specific capacitance of 218 F g-1 is achieved with the 70 nm NiO nanoparticles at 2.7 A g-1. Larger nanoparticles of 91 and 107 nm diameter exhibit specific capacitances of 106 and 63 F g-1, respectively, suggesting a size-dependent capacitive performance enhanced with decreasing particles size.
Enhanced Activity of Au/NiO Nanohybrids for the Reductive Amination of Benzyl Alcohol
Chinchilla, Lidia E.; Sanchez Trujillo, Felipe Juan; Dimitratos, Nikolaos; Botton, Gianluigi A.
2017-01-01
Gold nanoparticles were prepared by sol immobilization (AuSI) or deposition precipitation (AuDP), then deposited on NiO and commercial TiO2 (P25). The Au/NiO catalysts showed higher activity and yield to the secondary amine, compared to Au/TiO2 catalysts, when tested for the reductive amination of benzyl alcohol with isopropylamine. We attribute this result to a synergistic effect between Au and NiO. Moreover, as a result of the protective effect of the polyvinyl alcohol used in the sol immobilization synthesis, the gold nanoparticles on NiO demonstrate an increased resistance to structural changes during the reaction. This effect results in enhanced catalytic efficiency in terms of activity, and better stability against deactivation. PMID:29258170
NASA Astrophysics Data System (ADS)
Kutt, P. H.; Balamuth, D. P.
1989-10-01
Summary form only given, as follows. A multiprocessor system based on commercially available VMEbus components has been developed for the acquisition and reduction of event-mode data in nuclear physics experiments. The system contains seven 68000 CPUs and 14 Mbyte of memory. A minimal operating system handles data transfer and task allocation, and a compiler for a specially designed event analysis language produces code for the processors. The system has been in operation for four years at the University of Pennsylvania Tandem Accelerator Laboratory. Computation rates over three times that of a MicroVAX II have been achieved at a fraction of the cost. The use of WORM optical disks for event recording allows the processing of gigabyte data sets without operator intervention. A more powerful system is being planned which will make use of recently developed RISC (reduced instruction set computer) processors to obtain an order of magnitude increase in computing power per node.
NASA Astrophysics Data System (ADS)
Arakawa, H.; Shiraishi, C.; Tatemoto, M.; Kishida, H.; Usui, D.; Suma, A.; Takamisawa, A.; Yamaguchi, T.
2007-09-01
Photocatalytic and photoelectrochemical approaches to solar hydrogen production in our group were introduced. In photocatalytic water splitting system using NiO x/ TiO II powder photocatalyst with concentrated Na IICO 3 aqueous solution, solar energy conversion efficiency to H II and O II production (STH efficiency) was 0.016%. In addition, STH efficiency of visible light responding photocatalyst, NiOx/ promoted In 0.9Ni 0.1TaO 4, was estimated at 0.03%. In photoelectrochemical system using an oxide semiconductor film phptoelectrode, STH efficiencies of meosporous TiO II (Anatase) , mesoporous visible light responding S-doped TiO II (Anatase) and WO 3 film were 0.32-0.44% at applied potential of 0.35 V vs NHE, 0.14% at 0.55 V and 0.44% at 0.9 V, respectively. Finally, solar hydrogen production by tandem cell system composed of an oxide semiconductor photoelectrode, a Pt wire counter electrode and a dye-sensitized solar cell (DSC) was investigated. As photoelectrodes, meosporous TiO II (Anatase), mesoporous S-doped TiO II (Anatase), WO 3, BiVO 4 and Fe IIO 3 film were tested. STH efficiency of tandem cell system composed of a WO 3 film photoelectrode, and a two-series-connected DSC (Voc = 1.4 V) was 2.5-2.8%. In conclusion, it is speculated that more than 5% STH efficiency will be obtained by tandem cell system composed of an oxide semiconductor photoelectrode and a two-series-connected DSC in near future. This suggests a cost-effective and practical application of this system for solar hydrogen production.
Monitoring complex detectors: the uSOP approach in the Belle II experiment
NASA Astrophysics Data System (ADS)
Di Capua, F.; Aloisio, A.; Ameli, F.; Anastasio, A.; Branchini, P.; Giordano, R.; Izzo, V.; Tortone, G.
2017-08-01
uSOP is a general purpose single board computer designed for deep embedded applications in control and monitoring of detectors, sensors and complex laboratory equipments. It is based on the AM3358 (1 GHz ARM Cortex A8 processor), equipped with USB and Ethernet interfaces. On-board RAM and solid state storage allows hosting a full LINUX distribution. In this paper we discuss the main aspects of the hardware and software design and the expandable peripheral architecture built around field busses. We report on several applications of uSOP system in the Belle II experiment, presently under construction at KEK (Tsukuba, Japan). In particular we will report the deployment of uSOP in the monitoring system framework of the endcap electromagnetic calorimeter.
Analysis of Interactive Graphics Display Equipment for an Automated Photo Interpretation System.
1982-06-01
System provides the hardware and software for a range of graphics processor tasks. The IMAGE System employs the RSX- II M real - time operating . system in...One hard copy unit serves up to four work stations. The executive program of the IMAGE system is the DEC RSX- 11 M real - time operating system . In...picture controller. The PDP 11/34 executes programs concurrently under the RSX- I IM real - time operating system . Each graphics program consists of a
The Acceleration of Structural Microarchitectural Simulation via Scheduling
2006-11-01
193 viii List of Tables 1.1 Size of Intel R ©Processors...Table 1.1 shows the total and estimated non-cache transistor counts in succeeding generations of Intel R ©microprocessors. (Cache array transistors are...Intel486TM 1989 1,200,000 800,000 Intel R ©Pentium R © 1993 3,100,000 2,300,000 Intel R ©Pentium R ©II 1997 7,500,000 5,500,000 Intel R ©Pentium R ©III 1999
A 32-bit NMOS microprocessor with a large register file
NASA Astrophysics Data System (ADS)
Sherburne, R. W., Jr.; Katevenis, M. G. H.; Patterson, D. A.; Sequin, C. H.
1984-10-01
Two scaled versions of a 32-bit NMOS reduced instruction set computer CPU, called RISC II, have been implemented on two different processing lines using the simple Mead and Conway layout rules with lambda values of 2 and 1.5 microns (corresponding to drawn gate lengths of 4 and 3 microns), respectively. The design utilizes a small set of simple instructions in conjunction with a large register file in order to provide high performance. This approach has resulted in two surprisingly powerful single-chip processors.
Bibliography of Technical Publications, Papers, and List of Patents, October 1985-September 1986
1986-11-01
NOTICE For classified documents, follow the procedures in DoD 5200.1-R, Chapter IX or DoD 5220.22-M, " Industrial Security Manual," paragraph 19. For... Industries , Inc. Contract No. DAAK60-83-C-0040. NATICK/TR-85/064L, September 1985 (AD B107 724L). •_ CHEMCAS Volume II: User’s Manual. AMAF Industries ...the food industry . National Food Processors Association Meeting, Washington, DC, May 14, 1986. ... rib FOOD ENGINEERING DIRECTORATE Technical Papers
NASA Technical Reports Server (NTRS)
Barrett, Eamon B. (Editor); Pearson, James J. (Editor)
1989-01-01
Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.
Calculation of transonic aileron buzz
NASA Technical Reports Server (NTRS)
Steger, J. L.; Bailey, H. E.
1979-01-01
An implicit finite-difference computer code that uses a two-layer algebraic eddy viscosity model and exact geometric specification of the airfoil has been used to simulate transonic aileron buzz. The calculated results, which were performed on both the Illiac IV parallel computer processor and the Control Data 7600 computer, are in essential agreement with the original expository wind-tunnel data taken in the Ames 16-Foot Wind Tunnel just after World War II. These results and a description of the pertinent numerical techniques are included.
Rietveld refinement of the crystal structures of Rb2 XSi5O12 (X = Ni, Mn).
Bell, Anthony M T; Henderson, C Michael B
2016-02-01
The synthetic leucite silicate framework mineral analogues Rb2 XSi5O12 {X = Ni [dirubidium nickel(II) penta-silicate] and Mn [dirubidium manganese(II) penta-silicate]} have been prepared by high-temperature solid-state synthesis. The results of Rietveld refinements, using X-ray powder diffraction data collected using Cu Kα X-rays, show that the title compounds crystallize in the space group Pbca and adopt the cation-ordered structure of Cs2CdSi5O12 and other leucites. The structures consist of tetra-hedral SiO4 and XO4 units sharing corners to form a partially substituted silicate framework. Extraframework Rb(+) cations sit in channels in the framework. All atoms occupy the 8c general position for this space group. In these refined structures, silicon and X atoms are ordered onto separate tetra-hedrally coordinated sites (T-sites). However, the Ni displacement parameter and the Ni-O bond lengths suggest that for the X = Ni sample, there may actually be some T-site cation disorder.
Improvements of the versatile multiaperture negative ion source NIO1
NASA Astrophysics Data System (ADS)
Cavenago, M.; Serianni, G.; De Muri, M.; Veltri, P.; Antoni, V.; Baltador, C.; Barbisan, M.; Brombin, M.; Galatá, A.; Ippolito, N.; Kulevoy, T.; Pasqualotto, R.; Petrenko, S.; Pimazzoni, A.; Recchia, M.; Sartori, E.; Taccogna, F.; Variale, V.; Zaniol, B.; Barbato, P.; Baseggio, L.; Cervaro, V.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Laterza, B.; Maniero, M.; Martini, D.; Migliorato, L.; Minarello, A.; Molon, F.; Moro, G.; Patton, T.; Ravarotto, D.; Rizzieri, R.; Rizzolo, A.; Sattin, M.; Stivanello, F.; Zucchetti, S.
2017-08-01
The ion source NIO1 (Negative Ion Optimization 1) was developed and installed as a reduced-size model of multi-aperture sources used in neutral beam injectors. NIO1 beam optics is optimized for a 135 mA H- current (subdivided in 9 beamlets) at a Vs = 60 kV extraction voltage, with an electron-to-ion current ratio Rj up to 2. Depending on gas pressure used, NIO1 was up to now operated with Vs < 25 kV for beam extraction and Vs = 60 kV for insulation tests. The distinction between capacitively coupled plasma (E-mode, consistent with a low electron density plasma ne) and inductively coupled plasma (H-mode, requiring larger ne) was clearly related to several experimental signatures, and was confirmed for several gases, when applied radiofrequency power exceeds a given threshold Pt (with hysteresis). For hydrogen Pt was reduced below 1 kW, with a clean rf window and molybdenum liners on other walls; for oxygen Pt ≤ 400 W. Beams of H- and O- were separately extracted; since no caesium is yet introduced into the source, the expected ion currents are lower than 5 mA; this requires a lower acceleration voltage Vs (to keep the same perveance). NIO1 caesium oven was separately tested and Cs dispensers are in development. Increasing the current in the magnetic filter circuit, modifying its shape, and increasing the bias voltage were helpful to reduce Rj (still very large up to now, about 150 for oxygen, and 40 for hydrogen), in qualitative agreement with theoretical and numerical models. A second bias voltage was tested for hydrogen. Beam footprints and a spectral emission sample are shown.
Matsuda, Junko; Kawasaki, Tatsuya; Futamura, Shotaro; Kawabata, Tsutomu; Taniguchi, Shunsuke; Sasaki, Kazunari
2018-05-19
In situ transmission electron microscopy (TEM) observations of a Ni(O)-Sc2O3-stabilized ZrO2 (ScSZ; 10 mol% Sc2O3, 1 mol% CeO2, 89 mol% ZrO2) anode in a solid oxide fuel cell (SOFC) have been performed at high temperatures under a hydrogen/oxygen gas atmosphere using an environmental transmission electron microscope (ETEM); the specimens were removed from cross-sections of the real SOFC by focused ion beam milling and lifting. When heating the NiO-ScSZ anode under a hydrogen atmosphere of 3 mbar in ETEM, nano-pores were formed at the grain boundaries and on the surface of NiO particles at around 400°C due to the volume shrinkage accompanying the reduction of NiO to Ni. Moreover, densification of Ni occurred when increasing the temperature from 600 to 700°C. High-magnification TEM images obtained in the early stages of NiO reduction revealed that the (111) planes of Ni grew almost parallel to the (111) planes of NiO. In the case of heating Ni-ScSZ under an oxygen atmosphere of 3 mbar in ETEM, oxidation of Ni starting from the surface of the particles occurred above 300°C. All Ni particles became polycrystalline NiO after the temperature was increased to 800°C. Volume expansion/contraction by mass transfer to the outside/inside of the Ni particles in the anode during repeated oxidation/reduction seems to result in the agglomeration of Ni catalysts during long-term SOFC operation. We emphasize that our in situ TEM observations will be applied to observe electrochemical reactions in SOFCs under applied electric fields.
Investigation of novel inverted NiO@NixCo1-xO core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Hasan, Samiul; Mayanovic, R. A.; Benamara, Mourad
2018-05-01
Inverse core-shell nanoparticles, comprised of an antiferromagnetic (AFM) core covered by a ferromagnetic (FM) or ferrimagnetic (FiM) shell, are of current interest due to their different potential application and due to the tunability of their magnetic properties. The antiferromagnetic nature of NiO and high Néel temperature (523 K) makes this material well suited for inverse core-shell nanoparticle applications. Our primary objective in this project has been to synthesize and characterize inverted core-shell nanoparticles (CSNs) comprised of a NiO (AFM) core and a shell consisting of a NixCo1-xO (FiM) compound. The synthesis of the CSNs was made using a two-step process. The NiO nanoparticles were synthesized using a chemical reaction method. Subsequently, the NiO nanoparticles were used to grow the NiO@NixCo1-xO CSNs using our hydrothermal nano-phase epitaxy method. XRD structural characterization shows that the NiO@NixCo1-xO CSNs have the rock salt cubic crystal structure. SEM-EDS data indicates the presence of Co in the CSNs. Magnetic measurements show that the CSNs exhibit AFM/FiM characteristics with a small coercivity field of 30 Oe at 5 K. The field cooled vs zero field cooled hysteresis loop measurements show a magnetization axis shift which is attributed to the exchange bias effect between the AFM NiO core and an FiM NixCo1-xO shell of the CSNs. Our ab initio based calculations of the NixCo1-xO rock salt structure confirm a weak FiM character and a charge transfer insulator property of the compound.
Methods and systems for providing reconfigurable and recoverable computing resources
NASA Technical Reports Server (NTRS)
Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)
2010-01-01
A method for optimizing the use of digital computing resources to achieve reliability and availability of the computing resources is disclosed. The method comprises providing one or more processors with a recovery mechanism, the one or more processors executing one or more applications. A determination is made whether the one or more processors needs to be reconfigured. A rapid recovery is employed to reconfigure the one or more processors when needed. A computing system that provides reconfigurable and recoverable computing resources is also disclosed. The system comprises one or more processors with a recovery mechanism, with the one or more processors configured to execute a first application, and an additional processor configured to execute a second application different than the first application. The additional processor is reconfigurable with rapid recovery such that the additional processor can execute the first application when one of the one more processors fails.
Lee, Ching-Ting; Chen, Chia-Chi; Lee, Hsin-Ying
2018-03-05
The three dimensional inverters were fabricated using novel complementary structure of stacked bottom n-type aluminum-doped zinc oxide (Al:ZnO) thin-film transistor and top p-type nickel oxide (NiO) thin-film transistor. When the inverter operated at the direct voltage (V DD ) of 10 V and the input voltage from 0 V to 10 V, the obtained high performances included the output swing of 9.9 V, the high noise margin of 2.7 V, and the low noise margin of 2.2 V. Furthermore, the high performances of unskenwed inverter were demonstrated by using the novel complementary structure of the stacked n-type Al:ZnO thin-film transistor and p-type nickel oxide (NiO) thin-film transistor.
Microstructural and optical properties of Mn doped NiO nanostructures synthesized via sol-gel method
NASA Astrophysics Data System (ADS)
Shah, Shamim H.; Khan, Wasi; Naseem, Swaleha; Husain, Shahid; Nadeem, M.
2018-04-01
Undoped and Mn(0, 5%, 10% and 15%) doped NiO nanostructures were synthesized by sol-gel method. Structure, morphology and optical properties were investigated through XRD, FTIR, SEM/EDS and UV-visible absorption spectroscopy techniques. XRD data analysis reveals the single phase nature with cubic crystal symmetry of the samples and the average crystallite size decreases with the doping of Mn ions upto 10%. FTIR spectra further confirmed the purity and composition of the synthesized samples. The non-spherical shape of the nanostructures was observed from SEM micrographs and gain size of the nanostructures reduces with Mn doping in NiO, whereas agglomeration increases in doped sample. Optical band gap was estimated using Tauc'srelation and found to increase on incorporation of Mn upto 10% in host lattice and then decreases for further doping.
Chen, Jian-Zhi; Chen, Tai-Hong; Lai, Li-Wen; Li, Pei-Yu; Liu, Hua-Wen; Hong, Yi-You; Liu, Day-Shan
2015-07-13
This study achieved a nanocomposite structure of nickel oxide (NiO)/titanium dioxide (TiO₂) heterojunction on a TiO₂ film surface. The photocatalytic activity of this structure evaluated by decomposing methylene blue (MB) solution was strongly correlated to the conductive behavior of the NiO film. A p -type NiO film of high concentration in contact with the native n -type TiO₂ film, which resulted in a strong inner electrical field to effectively separate the photogenerated electron-hole pairs, exhibited a much better photocatalytic activity than the controlled TiO₂ film. In addition, the photocatalytic activity of the NiO/TiO₂ nanocomposite structure was enhanced as the thickness of the p -NiO film decreased, which was beneficial for the migration of the photogenerated carriers to the structural surface.
Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.
2002-01-01
An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.
Growth mechanism and magnon excitation in NiO nanowalls
2011-01-01
The nanosized effects of short-range multimagnon excitation behavior and short-circuit diffusion in NiO nanowalls synthesized using the Ni grid thermal treatment method were observed. The energy dispersive spectroscopy mapping technique was used to characterize the growth mechanism, and confocal Raman scattering was used to probe the antiferromagnetic exchange energy J2 between next-nearest-neighboring Ni ions in NiO nanowalls at various growth temperatures below the Neel temperature. This study shows that short spin correlation leads to an exponential dependence of the growth temperatures and the existence of nickel vacancies during the magnon excitation. Four-magnon configurations were determined from the scattering factor, revealing a lowest state and monotonic change with the growth temperature. PACS: 75.47.Lx; 61.82.Rx; 75.50.Tt; 74.25.nd; 72.10.Di PMID:21824408
NASA Astrophysics Data System (ADS)
Sharma, Ravi Kant; Ghose, Ranjana
2015-04-01
Porous nanocrystalline NiO has been synthesized by a simple homogeneous precipitation method in short time at low calcination temperature without using any surfactant, chelating or gelating agents. The porous nanocrystalline NiO with a hexagonal sheet-like morphology were obtained by calcination of Ni(OH)2 nanoflakes at 500 °C. The calcination temperature strongly influences the morphology, crystallite size, specific surface area, pore volume and optical band gap of the samples. The samples were characterized using powder X-ray diffraction, thermal gravimetric analysis, FT-IR spectroscopy, UV-Visible diffuse reflectance spectroscopy, surface area measurements, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis and transmission electron microscopy. The chemical activity of the samples was tested by catalytic reduction of 4-nitrophenol with NaBH4.
Structural, electrical, optical and magnetic properties of NiO/ZnO thin films
NASA Astrophysics Data System (ADS)
Sushmitha, V.; Maragatham, V.; Raj, P. Deepak; Sridharan, M.
2018-02-01
Nickel oxide/Zinc oxide (NiO/ZnO) thin films have been deposited onto thoroughly cleaned glass substrates by reactive direct current (DC) magnetron sputtering technique and subsequently annealed at 300 °C for 3 h in vacuum. The NiO/ZnO thin films were then studied for their structural, optical and electrical properties. X-ray diffraction (XRD) pattern of ZnO and NiO showed the diffraction planes corresponding to hexagonal and cubic phase respectively. The optical properties showed that with the increase in the deposition time of NiO the energy band gap varied between 3.1 to 3.24 eV. Hence, by changing the deposition time of NiO the tuning of band gap and conductivity were achieved. The magnetic studies revealed the diamagnetic nature of the NiO/ZnO thin films.
Inductive crystal field control in layered metal oxides with correlated electrons
Balachandran, P. V.; Cammarata, A.; Nelson-Cheeseman, B. B.; ...
2014-07-25
Here, we show that the NiO 6 crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A) NiO 4 Ruddlesden-Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO] 1+ and neutral [AO] 0 planes to inductively tune the Ni-O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO 4 and LaBaNiO 4 with distortions favoring enhanced Ni e g orbital polarization, and find local electronicmore » structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides.« less
Ray, Siba P.; Weirauch, Jr., Douglas A.; Liu, Xinghua
2002-01-01
An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.
Rectangular Array Of Digital Processors For Planning Paths
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.; Fossum, Eric R.; Nixon, Robert H.
1993-01-01
Prototype 24 x 25 rectangular array of asynchronous parallel digital processors rapidly finds best path across two-dimensional field, which could be patch of terrain traversed by robotic or military vehicle. Implemented as single-chip very-large-scale integrated circuit. Excepting processors on edges, each processor communicates with four nearest neighbors along paths representing travel to north, south, east, and west. Each processor contains delay generator in form of 8-bit ripple counter, preset to 1 of 256 possible values. Operation begins with choice of processor representing starting point. Transmits signals to nearest neighbor processors, which retransmits to other neighboring processors, and process repeats until signals propagated across entire field.
Buffered coscheduling for parallel programming and enhanced fault tolerance
Petrini, Fabrizio [Los Alamos, NM; Feng, Wu-chun [Los Alamos, NM
2006-01-31
A computer implemented method schedules processor jobs on a network of parallel machine processors or distributed system processors. Control information communications generated by each process performed by each processor during a defined time interval is accumulated in buffers, where adjacent time intervals are separated by strobe intervals for a global exchange of control information. A global exchange of the control information communications at the end of each defined time interval is performed during an intervening strobe interval so that each processor is informed by all of the other processors of the number of incoming jobs to be received by each processor in a subsequent time interval. The buffered coscheduling method of this invention also enhances the fault tolerance of a network of parallel machine processors or distributed system processors
Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors.
Park, Hae Woong; Na, Byung-Ki; Cho, Byung Won; Park, Sun-Min; Roh, Kwang Chul
2013-10-28
In this study, V-doped NiO materials were prepared by simple coprecipitation and thermal decomposition, and the effect of the vanadium content on the morphology, structural properties, electrochemical behavior, and cycling stability of NiO upon oxidation and reduction was analyzed for supercapacitor applications. The results show an improvement in the capacitive characteristics of the V-doped NiO, including increases in the specific capacitance after the addition of just 1.0, 2.0, and 4.0 at% V. All VxNi1-xO electrodes (x = 0.01, 0.02, 0.04) exhibited higher specific capacitances of 371.2, 365.7, and 386.2 F g(-1) than that of pure NiO (303.2 F g(-1)) at a current density of 2 A g(-1) after 500 cycles, respectively. The V0.01Ni0.99O electrode showed good capacitance retention of 73.5% at a current density of 2 A g(-1) for more than 500 cycles in a cycling test. Importantly, the rate capability of the V0.01Ni0.99O electrode was maintained at about 84.7% as discharge current density was increased from 0.5 A g(-1) to 4 A g(-1).
Xue, Muyu; Islam, Raisul; Meng, Andrew C; Lyu, Zheng; Lu, Ching-Ying; Tae, Christian; Braun, Michael R; Zang, Kai; McIntyre, Paul C; Kamins, Theodore I; Saraswat, Krishna C; Harris, James S
2017-12-06
In this paper, the integration of metal oxides as carrier-selective contacts for ultrathin crystalline silicon (c-Si) solar cells is demonstrated which results in an ∼13% relative improvement in efficiency. The improvement in efficiency originates from the suppression of the contact recombination current due to the band offset asymmetry of these oxides with Si. First, an ultrathin c-Si solar cell having a total thickness of 2 μm is shown to have >10% efficiency without any light-trapping scheme. This is achieved by the integration of nickel oxide (NiO x ) as a hole-selective contact interlayer material, which has a low valence band offset and high conduction band offset with Si. Second, we show a champion cell efficiency of 10.8% with the additional integration of titanium oxide (TiO x ), a well-known material for an electron-selective contact interlayer. Key parameters including V oc and J sc also show different degrees of enhancement if single (NiO x only) or double (both NiO x and TiO x ) carrier-selective contacts are integrated. The fabrication process for TiO x and NiO x layer integration is scalable and shows good compatibility with the device.
Modeling and design of a beam emission spectroscopy diagnostic for the negative ion source NIO1
NASA Astrophysics Data System (ADS)
Barbisan, M.; Zaniol, B.; Cavenago, M.; Pasqualotto, R.
2014-02-01
Consorzio RFX and INFN-LNL are building a flexible small ion source (Negative Ion Optimization 1, NIO1) capable of producing about 130 mA of H- ions accelerated at 60 KeV. Aim of the experiment is to test and develop the instrumentation for SPIDER and MITICA, the prototypes, respectively, of the negative ion sources and of the whole neutral beam injectors which will operate in the ITER experiment. As SPIDER and MITICA, NIO1 will be monitored with beam emission spectroscopy (BES), a non-invasive diagnostic based on the analysis of the spectrum of the Hα emission produced by the interaction of the energetic ions with the background gas. Aim of BES is to monitor direction, divergence, and uniformity of the ion beam. The precision of these measurements depends on a number of factors related to the physics of production and acceleration of the negative ions, to the geometry of the beam, and to the collection optics. These elements were considered in a set of codes developed to identify the configuration of the diagnostic which minimizes the measurement errors. The model was already used to design the BES diagnostic for SPIDER and MITICA. The paper presents the model and describes its application to design the BES diagnostic in NIO1.
Finite elements numerical codes as primary tool to improve beam optics in NIO1
NASA Astrophysics Data System (ADS)
Baltador, C.; Cavenago, M.; Veltri, P.; Serianni, G.
2017-08-01
The RF negative ion source NIO1, built at Consorzio RFX in Padua (Italy), is aimed to investigate general issues on ion source physics in view of the full-size ITER injector MITICA as well as DEMO relevant solutions, like energy recovery and alternative neutralization systems, crucial for neutral beam injectors in future fusion experiments. NIO1 has been designed to produce 9 H-beamlets (in a 3x3 pattern) of 15mA each and 60keV, using a three electrodes system downstream the plasma source. At the moment the source is at its early operational stage and only operation at low power and low beam energy is possible. In particular, NIO1 presents a too strong set of SmCo co-extraction electron suppression magnets (CESM) in the extraction grid (EG) that will be replaced by a weaker set of Ferrite magnets. A completely new set of magnets will be also designed and mounted on the new EG that will be installed next year, replacing the present one. In this paper, the finite element code OPERA 3D is used to investigate the effects of the three sets of magnets on beamlet optics. A comparison of numerical results with measurements will be provided where possible.
Development of a pH sensor using nanoporous nanostructures of NiO.
Ibupoto, Z H; Khun, K; Willander, M
2014-09-01
Glass is the conventional material used in pH electrodes to monitor pH in various applications. However, the glass-based pH electrode has some limitations for particular applications. The glass sensor is limited in the use of in vivo biomedical, clinical or food applications because of the brittleness of glass, its large size, the difficulty in measuring small volumes and the absence of deformation (inflexibility). Nanostructure-based pH sensors are very sensitive, reliable, fast and applicable towards in vivo measurements. In this study, nanoporous NiO nanostructures are synthesized on a gold-coated glass substrate by a hydrothermal route using poly(vinyl alcohol) (PVA) as a stabilizer. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used for the morphological and crystalline studies. The grown NiO nanostructures are uniform and dense, and they possess good crystallinity. A pH sensor based on these NiO nanostructures was developed by testing the different pH values from 2-12 of phosphate buffered saline solution. The proposed pH sensor showed robust sensitivity of -43.74 ± 0.80 mV/pH and a quick response time of less than 10 s. Moreover, the repeatability, reproducibility and stability of the presented pH sensor were also studied.
NASA Technical Reports Server (NTRS)
Seale, R. H.
1979-01-01
The prediction of the SRB and ET impact areas requires six separate processors. The SRB impact prediction processor computes the impact areas and related trajectory data for each SRB element. Output from this processor is stored on a secure file accessible by the SRB impact plot processor which generates the required plots. Similarly the ET RTLS impact prediction processor and the ET RTLS impact plot processor generates the ET impact footprints for return-to-launch-site (RTLS) profiles. The ET nominal/AOA/ATO impact prediction processor and the ET nominal/AOA/ATO impact plot processor generate the ET impact footprints for non-RTLS profiles. The SRB and ET impact processors compute the size and shape of the impact footprints by tabular lookup in a stored footprint dispersion data base. The location of each footprint is determined by simulating a reference trajectory and computing the reference impact point location. To insure consistency among all flight design system (FDS) users, much input required by these processors will be obtained from the FDS master data base.
NASA Astrophysics Data System (ADS)
Karbasian, Golnaz
The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam lithography and lift-off, while atomic layer deposition provides precise control over the thickness of the tunnel barrier and significantly increases the choices for barrier materials. As described below in detail, the fabrication of ultra-thin (~1nm) tunnel transparent barriers with PEALD is in fact challenging; we demonstrate that in fabrication of SETs with PEALD to form the barrier in the Ni-insulator-Ni tunnel junctions, additional NiO layers are parasitically formed in the Ni layers that form the top and bottom electrodes of the tunnel junctions. The NiO on the bottom electrode is formed due to oxidizing effect of the O 2 plasma used in the PEALD process, while the NiO on the bottom of the top electrode is believed to form during the metal deposition due to oxygen-containing contaminants on the surface of the deposited tunnel barrier. We also show that due to the presence of these surface parasitic layers of NiO, the resistance of Ni-insulator-Ni tunnel junctions is drastically increased. Moreover, the transport mechanism is changed from quantum tunneling through the dielectric barrier to one consistent with the tunnel barrier in series with compound layers of NiO and possibly, NiSixOy. The parasitic component in the tunnel junctions results in conduction freeze-out at low temperatures, deviation of junction parameters from ideal model, and excessive noise in the device. The reduction of NiO to Ni is therefore necessary to restore the metal-insulator-metal structure of the junctions. We have studied forming gas anneal as well as H2 plasma treatment as techniques to reduce the NiO layers that are parasitically formed in the junctions. Using either of these two techniques, we reduced the NiO formed on the island after being covered with the PEALD dielectric and before defining the top source and drain. Later, the NiO formed on the bottom of the source/drain is reduced during a second reducing step after the source/drain are formed on the tunnel barrier. Electrical characterization of SETs that are made with the proposed reducing treatments enable us to study the effect of each reducing process on the properties of the constituent tunnel junctions. In comparison to the junctions annealed twice in forming gas at 400°C, we consistently observed a ~10x higher conductance in devices treated twice with H2 plasma at 300°C. The possible damage to the barrier during the plasma treatment and thermally induced film deformation during the anneal which respectively, is believed to increase and lower the conductance are among the possible cause of this difference. Although both types of treatments were effective in alleviating the effect of the activated components in the junctions, all the devices that were treated by two anneal steps or by two H2 plasma steps (for reducing the top and bottom NiO) show deviations from ideal simulated MIM SET model and suffer from significant random telegraph signal (RTS) noise. However, our results show that by using forming gas anneal for bottom NiO reduction and H2 plasma for the top NiO reduction, one can achieve devices close to ideal MIM SETs with significantly less noise.
NASA Astrophysics Data System (ADS)
Bharty, M. K.; Paswan, S.; Dani, R. K.; Singh, N. K.; Sharma, V. K.; Kharwar, R. N.; Butcher, R. J.
2017-02-01
Syntheses of a polymeric Cd(II) complex, [Cd(mptt)2]n (1), a trinuclear Ni(II) complex, [Ni3(μ-mptt)4(μ-H2O)2(H2O)2(ttfa)2]·3H2O (2) and a mononuclear Ni(II) complex [Ni(mptt)2(en)2] (3) have been performed using the ligand 5-methyl-4-phenyl-1,2,4-triazole-3-thione (Hmptt) and nickel(II)/cadmium(II) salts {ttfa = thenoyltrifluroacetonate). The ligand and the complexes have been characterized by various physicochemical methods in addition to their single crystal X-ray structure. The Cd centre in complex 1 adopts a distorted tetrahedral geometry with one sulfur atom and two mptt ligands provide three nitrogen atoms from three triazole units. The sulfur atom of the ligand binds covalently and overall the ligand acts as uninigative N,S/N,N bidentate moiety. The polymeric structure of complex 1 results from the N atoms of the neighboring triazole units coordinating with the Cd(II) centre. The three Ni(II) centres in the trinuclear Ni(II) complex 2 form a linear arrangement and all have six coordinated arrangements. The middle Ni(II) binds with four deprotonated triazole ring nitrogens and two water molecules form two bridges. The terminal Ni(II) centres bind through two thenoyl oxygens, two triazole nitrogens and water molecules that formed bridges with the middle Ni centre. In complex 3, the nickel(II) centre is covalently bonded through two deprotonated triazole ring nitrogens from two ligand moieties and other four sites are occupied by four nitrogens from two bidentate en ligands. Thermogravimetric analyses (TGA) of the complexes indicated for NiO as the final residue. The bioefficacy of the ligand and complexes 2 and 3 have been examined against the growth of bacteria to evaluate their anti-microbial potential. Complex 2 showed high antibacterial activity as compared to the ligand and complex 3. Complexes 1, 2 and 3 are fluorescent materials with maximum emissions at 425, 421 and 396 nm at an excitation wavelength of 323, 348 and 322 nm, respectively.
Tests with beam setup of the TileCal phase-II upgrade electronics
NASA Astrophysics Data System (ADS)
Reward Hlaluku, Dingane
2017-09-01
The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile calorimeter plans to introduce a new readout architecture by completely replacing the back-end and front-end electronics for the High Luminosity LHC. The photomultiplier signals will be fully digitized and transferred for every bunch crossing to the off-detector Tile PreProcessor. The Tile PreProcessor will further provide preprocessed digital data to the first level of trigger with improved spatial granularity and energy resolution in contrast to the current analog trigger signals. A single super-drawer module commissioned with the phase-II upgrade electronics is to be inserted into the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new super-drawer, so-called hybrid Demonstrator, must provide analog trigger signals for backward compatibility with the current system. This Demonstrator drawer has been inserted into a Tile calorimeter module prototype to evaluate the performance in the lab. In parallel, one more module has been instrumented with two other front-end electronics options based on custom ASICs (QIE and FATALIC) which are under evaluation. These two modules together with three other modules composed of the current system electronics were exposed to different particles and energies in three test-beam campaigns during 2015 and 2016.
Coding, testing and documentation of processors for the flight design system
NASA Technical Reports Server (NTRS)
1980-01-01
The general functional design and implementation of processors for a space flight design system are briefly described. Discussions of a basetime initialization processor; conic, analytical, and precision coasting flight processors; and an orbit lifetime processor are included. The functions of several utility routines are also discussed.
The computational structural mechanics testbed generic structural-element processor manual
NASA Technical Reports Server (NTRS)
Stanley, Gary M.; Nour-Omid, Shahram
1990-01-01
The usage and development of structural finite element processors based on the CSM Testbed's Generic Element Processor (GEP) template is documented. By convention, such processors have names of the form ESi, where i is an integer. This manual is therefore intended for both Testbed users who wish to invoke ES processors during the course of a structural analysis, and Testbed developers who wish to construct new element processors (or modify existing ones).
NASA Technical Reports Server (NTRS)
Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)
1994-01-01
In a computer having a large number of single-instruction multiple data (SIMD) processors, each of the SIMD processors has two sets of three individual processor elements controlled by a master control unit and interconnected among a plurality of register file units where data is stored. The register files input and output data in synchronism with a minor cycle clock under control of two slave control units controlling the register file units connected to respective ones of the two sets of processor elements. Depending upon which ones of the register file units are enabled to store or transmit data during a particular minor clock cycle, the processor elements within an SIMD processor are connected in rings or in pipeline arrays, and may exchange data with the internal bus or with neighboring SIMD processors through interface units controlled by respective ones of the two slave control units.
Karasick, Michael S.; Strip, David R.
1996-01-01
A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modelling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modelling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modelling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication.
Mach 1 oxidation of thoriated nickel chromium at 1204 C /2200 F/.
NASA Technical Reports Server (NTRS)
Lowell, C. E.; Sanders, W. A.
1972-01-01
Electropolished and ground samples of TD-NiCr were exposed to a 1-atm, Mach 1 gas stream at 1204 C for times up to 50 hr. The samples were subjected to both cyclic and isothermal exposure. Weight change, metal loss, X-ray diffraction, metallographic, and electron microprobe analyses were performed. Neither surface preparation nor cyclic-against-isothermal-exposure conditions had a strong effect on the oxidation behavior of the alloy. Initially, a Cr2O3 layer was formed whose volatilization resulted in a very rapid loss of metal - more than 40 microns in the first hour. At about 1 hr, the Cr2O3 layer broke down and NiO began to cover the surface. By 5 hr, the NiO had covered the surface and the rate of loss slowed. The rate-controlling step was diffusion of Cr through NiO.
Improved Electrochromic Characteristics of a Honeycomb-Structured Film Composed of NiO.
Yang, Hyeeun; Lee, Yulhee; Kim, Dong In; Seo, Hyeon Jin; Yu, Jung-Hoon; Nam, Sang-Hun; Boo, Jin-Hyo
2018-09-01
Color changes controlled by electronic energies have been studied for many years in order to fabricate energy-efficient smart windows. Reduction and oxidization of nickel oxide under the appropriate voltage can change the color of a window. For a superior nickel oxide (NiO) electrochromic device (ECD), it is important to control the chemical and physical characteristics of the surface. In this study, we applied polystyrene bead templates to nickel oxide films to fabricate a honeycomb-structured electrochromic (EC) layer. We synthesized uniform polystyrene beads using the chemical wet method and placed them on substrates to create honeycomb-structured NiO films. Then, the EC characteristics of the nickel oxide films with a honeycomb structure were evaluated with UV-Visible and cyclic voltammetry. FE-SEM and AFM were used to measure the morphologies of the nanostructures and the efficiencies of the redox reactions related to the specific surface area.
Oxidation behavior of TD-NiCr in a dynamic high temperature environment
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Young, C. T.; Herring, H. W.
1974-01-01
The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.
Generation of coherent magnons in NiO stimulated by EUV pulses from a seeded free-electron laser
NASA Astrophysics Data System (ADS)
Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Lazzarino, M.; Masciovecchio, C.
2017-12-01
The full comprehension of magnetic phenomena at the femtosecond (fs) time scale is of high demand for current material science and technology. Here we report the observation of coherent collective modes in the antiferromagnetic insulator nickel oxide (NiO) identified by a frequency of 0.86 THz, which matches the expected out-of-plane single-mode magnon resonance. Such collective excitations are inelastically stimulated by extreme ultraviolet (EUV) pulses delivered by a seeded free-electron laser (FEL) and subsequently revealed probing the transient optical activity of NiO looking at the Faraday effect. Moreover, the unique capability of the employed FEL source to deliver circularly polarized pulses allows us to demonstrate optomagnetic control of such collective modes at EUV photon energies. These results may set a starting point for future investigations of magnetic materials at time scales comparable or faster than those typical of exchange interactions.
Low-energy charge transfer excitations in NiO
NASA Astrophysics Data System (ADS)
Sokolov, V. I.; Pustovarov, V. A.; Churmanov, V. N.; Ivanov, V. Yu; Yermakov, A. Ye; Uimin, M. A.; Gruzdev, N. B.; Sokolov, P. S.; Baranov, A. N.; Moskvin, A. S.
2012-08-01
Comparative analysis of photoluminescence (PL) and photoluminescence excitation (PLE) spectra of NiO poly- and nanocrystals in the spectral range 2-5.5 eV reveals two PLE bands peaked near 3.7 and 4.6 eV with a dramatic rise in the low-temperature PLE spectral weight of the 3.7 eV PLE band in the nanocrystalline NiO as compared with its polycrystalline counterpart. In frames of a cluster model approach we assign the 3.7 eV PLE band to the low-energy bulk-forbidden p-d (t1g(π)-eg) charge transfer (CT) transition which becomes the allowed one in the nanocrystalline state while the 4.6 eV PLE band is related to a bulk allowed d-d (eg-eg) CT transition scarcely susceptible to the nanocrystallization. The PLE spectroscopy of the nanocrystalline materials appears to be a novel informative technique for inspection of different CT transitions.
NASA Astrophysics Data System (ADS)
Sokolov, V. I.; Pustovarov, V. A.; Churmanov, V. N.; Ivanov, V. Yu.; Gruzdev, N. B.; Sokolov, P. S.; Baranov, A. N.; Moskvin, A. S.
2012-07-01
Soft X-ray (XUV) excitation did make it possible to avoid the predominant role of the surface effects in luminescence of NiO and revealed a bulk luminescence with a puzzling well isolated doublet of very narrow lines with close energies near 3.3 eV which is assigned to recombination transitions in self-trapped d- d charge transfer (CT) excitons formed by coupled Jahn-Teller Ni+ and Ni3+ centers. The conclusion is supported both by a comparative analysis of the CT luminescence spectra for NiO and solid solutions Ni x Zn1 - x O, and by a comprehensive cluster model assignment of different p- d and d- d CT transitions, their relaxation channels. To the best of our knowledge, it is the first observation of the luminescence due to self-trapped d- d CT excitons.
NASA Astrophysics Data System (ADS)
Skoropata, E.; Su, T. T.; Ouyang, H.; Freeland, J. W.; van Lierop, J.
2017-07-01
γ -Fe2O3 particles, surface modified with NiO crystallites, form a unique nanocomposite that points to how to tune strong interfacial exchange coupling. We find that Ni2 + migrates into the octahedral sites of the γ -Fe2O3 nanoparticle surface, and this NiFe2O4 -like layer permits effective magnetic coupling of Ni and Fe sites that strengthens the interface exchange. A large increase in coercivity coinciding with a loss of exchange bias is achieved by this strong interfacial coupling that results in a Ni2 + moment reversal in the NiO with the γ -Fe2O3 . This work reveals the importance of intermixing in, and possibility to use, such an exchange coupling regime to alter substantially the coercivity and hence control an important property of exchange-coupled nanocomposite magnets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Langli; Zou, Lianfeng; Schreiber, Daniel K.
2016-01-20
We report in situ atomic-scale visualization of the dynamical three-dimensional (3D) growth of NiO during initial oxidation of Ni-10at%Cr using environmental transmission electron microscopy (ETEM). Despite the thermodynamic preference for Cr2O3 formation, cubic NiO oxides nucleated and grew epitaxially as the dominating oxide phase on the Ni-Cr (100) surface during initial oxidation. The growth of NiO islands proceeds through step-by-step adatom mechanism in 3D, which is sustained by surface diffusion of Ni and O atoms. Although the shapes of oxide islands are controlled by strain energy between oxide and alloy substrate, local surface kinetic variations can lead to the changemore » of surface planes of oxide islands. These results demonstrate that surface diffusion dominates initial oxidation of Ni-Cr in these test conditions.« less
Switch for serial or parallel communication networks
Crosette, D.B.
1994-07-19
A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination. 9 figs.
Switch for serial or parallel communication networks
Crosette, Dario B.
1994-01-01
A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination.
Conditions for space invariance in optical data processors used with coherent or noncoherent light.
Arsenault, H R
1972-10-01
The conditions for space invariance in coherent and noncoherent optical processors are considered. All linear optical processors are shown to belong to one of two types. The conditions for space invariance are more stringent for noncoherent processors than for coherent processors, so that a system that is linear in coherent light may be nonlinear in noncoherent light. However, any processor that is linear in noncoherent light is also linear in the coherent limit.
Broadcasting collective operation contributions throughout a parallel computer
Faraj, Ahmad [Rochester, MN
2012-02-21
Methods, systems, and products are disclosed for broadcasting collective operation contributions throughout a parallel computer. The parallel computer includes a plurality of compute nodes connected together through a data communications network. Each compute node has a plurality of processors for use in collective parallel operations on the parallel computer. Broadcasting collective operation contributions throughout a parallel computer according to embodiments of the present invention includes: transmitting, by each processor on each compute node, that processor's collective operation contribution to the other processors on that compute node using intra-node communications; and transmitting on a designated network link, by each processor on each compute node according to a serial processor transmission sequence, that processor's collective operation contribution to the other processors on the other compute nodes using inter-node communications.
NASA Astrophysics Data System (ADS)
Dejan, Prelevic; Dieter, Mertz; Regina, Mertz-Kraus; Stephan, Buhre
2014-05-01
The Eifel volcanic field is part of the Central European Cenozoic Magmatic Province and was periodically active from the mid-Cretaceous until the latest Pleistocene. Two contrasting models are used to explain sources and magma generation mechanisms of the Pleistocene Eifel volcanism: i) decompressional partial melting at the base of the subcontinental lithosphere as a consequence of extension caused by lithospheric flexuring from emplacement of Alpine nappes (Wilson & Downes, 1991); ii) plume-type thermal upwelling in the asthenosphere on the basis of seismic tomography indicating a low-velocity anomaly beneath the Eifel probably caused by temperatures higher than the normal asthenosphere adiabat (e.g., Ritter et al. 2001). We present high-precision electron microprobe data for major and minor elements as well as laser ablation ICP-MS data for trace elements of olivine from the Eifel in order to put new constraints on the origin of Pleistocene Eifel volcanism. Being an early liquidus phase in the crystallization of basaltic melts, olivine composition may be used to characterize the composition of primary mantle melts and their source region in terms of major and trace elements. Moreover, it is useful for T estimation providing a snapshot of the liquid equilibria at early magmatic stage. In addition, important petrological parameters can be constrained, like the extent of prior melt extraction of their mantle source, the presence of different geochemical components in the source, olivine residence times etc. Olivine macrocrysts occur in most of the Eifel Mg-rich lavas, forming up to 10 vol% of the rocks. We studied olivines from 10 representative lava flows of basanitic composition. Based on compositional and textural differences, three genetic groups are recognized: i) volumetrically dominant igneous olivines or phenocrysts (melt related); they are equilibrated with their host melt showing normal zonation (core-rim Fo89-80) and NiO contents up to 0.3 wt%, whereas Cr2O3 and CaO are around 0.18 wt% and 0.20 wt%, respectively; ii) mantle xenocrysts are typically mantled by olivine of phenocrystal composition, with the plateau-like core compositions typically with Fo91.5 and NiO contents around 0.4 wt%; a number of features supports their mantle origin, namely CaO contents lower than 0.1 wt%, homogeneous compositions within the grain (typical for mantle olivine, resulting from long equilibration times), anhedral shapes showing deformation features such as kink bands etc; iii) a genetic group also demonstrating xenocrystic features (e.g., compositional disequilibration with the host melt, the mantling by olivine of phenocrystal composition); however, it differs from the mantle olivine by having higher CaO (> 0.3 wt%), slightly lower Mg# (up to 90), and considerably lower NiO contents (< 0.1 wt%); we interpret these grains to originate from wherlitic assemblages within the lithospheric mantle. Our preliminary estimation of the olivine-liquid equilibria using compositions of the phenocrysts indicates temperatures not considerably higher than 1300 oC. The trace element composition of olivine phenocrysts and two types of xenocrysts show several important characteristics. Relative to mantle xenocrystal olivine that is depleted in the most trace elements, phenocrysts are considerably enriched in Li and Zn, and depleted in Ti. Low NiO xenocrysts have high Ti with slightly elevated Li concentration. There is a certain overlap between the phenocrysts from Eifel lavas and those from orogenic Mediterranean volcanics, indicating compositional similarities in their mantle sources that may imply the presence of common metasomatizing agent(s). Wilson, M. & Downes, H. (1991). Journal of Petrology 32, 811-849. Ritter, J. R. R., Jordan, M., Christensen, U. R. & Achauer, U. (2001). Earth and Planetary Science Letters 186, 7-14.
LANDSAT-D flight segment operations manual. Appendix B: OBC software operations
NASA Technical Reports Server (NTRS)
Talipsky, R.
1981-01-01
The LANDSAT 4 satellite contains two NASA standard spacecraft computers and 65,536 words of memory. Onboard computer software is divided into flight executive and applications processors. Both applications processors and the flight executive use one or more of 67 system tables to obtain variables, constants, and software flags. Output from the software for monitoring operation is via 49 OBC telemetry reports subcommutated in the spacecraft telemetry. Information is provided about the flight software as it is used to control the various spacecraft operations and interpret operational OBC telemetry. Processor function descriptions, processor operation, software constraints, processor system tables, processor telemetry, and processor flow charts are presented.
NASA Astrophysics Data System (ADS)
Pruhs, Kirk
A particularly important emergent technology is heterogeneous processors (or cores), which many computer architects believe will be the dominant architectural design in the future. The main advantage of a heterogeneous architecture, relative to an architecture of identical processors, is that it allows for the inclusion of processors whose design is specialized for particular types of jobs, and for jobs to be assigned to a processor best suited for that job. Most notably, it is envisioned that these heterogeneous architectures will consist of a small number of high-power high-performance processors for critical jobs, and a larger number of lower-power lower-performance processors for less critical jobs. Naturally, the lower-power processors would be more energy efficient in terms of the computation performed per unit of energy expended, and would generate less heat per unit of computation. For a given area and power budget, heterogeneous designs can give significantly better performance for standard workloads. Moreover, even processors that were designed to be homogeneous, are increasingly likely to be heterogeneous at run time: the dominant underlying cause is the increasing variability in the fabrication process as the feature size is scaled down (although run time faults will also play a role). Since manufacturing yields would be unacceptably low if every processor/core was required to be perfect, and since there would be significant performance loss from derating the entire chip to the functioning of the least functional processor (which is what would be required in order to attain processor homogeneity), some processor heterogeneity seems inevitable in chips with many processors/cores.
Multi-Core Processor Memory Contention Benchmark Analysis Case Study
NASA Technical Reports Server (NTRS)
Simon, Tyler; McGalliard, James
2009-01-01
Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.
Simulink/PARS Integration Support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vacaliuc, B.; Nakhaee, N.
2013-12-18
The state of the art for signal processor hardware has far out-paced the development tools for placing applications on that hardware. In addition, signal processors are available in a variety of architectures, each uniquely capable of handling specific types of signal processing efficiently. With these processors becoming smaller and demanding less power, it has become possible to group multiple processors, a heterogeneous set of processors, into single systems. Different portions of the desired problem set can be assigned to different processor types as appropriate. As software development tools do not keep pace with these processors, especially when multiple processors ofmore » different types are used, a method is needed to enable software code portability among multiple processors and multiple types of processors along with their respective software environments. Sundance DSP, Inc. has developed a software toolkit called “PARS”, whose objective is to provide a framework that uses suites of tools provided by different vendors, along with modeling tools and a real time operating system, to build an application that spans different processor types. The software language used to express the behavior of the system is a very high level modeling language, “Simulink”, a MathWorks product. ORNL has used this toolkit to effectively implement several deliverables. This CRADA describes this collaboration between ORNL and Sundance DSP, Inc.« less
NASA Astrophysics Data System (ADS)
Koussi-Daoud, S.; Pellegrin, Y.; Odobel, F.; Viana, B.; Pauporté, T.
2017-02-01
We have investigated the preparation of NiO layers by cathodic electrodeposition in various organic-based solvents, namely ethanol, dimethyl sulfoxide (DMSO), DMSO/2 vol.% H2O and DMSO/25 vol.% H2O mixtures. The layers were formed from the electrochemical reduction of nickel nitrate precursor. We show that, depending on the solvent used, various nickel compounds were deposited. In the case of ethanol, a transparent precursor layer was obtained that was transformed into NiO after an annealing treatment at 300°C. For DMSO and DMSO with 2 volume % of H2O, adherent, well-covering, mesoporous and rather thick NiO layers were obtained after an annealing treatment at 450°C. These layers, after growth, contained nickel oxide or hydroxide, metallic nickel and DMSO. The solvent acted as a blowing agent, being included in the deposit and giving rise to a mesoporous film after its elimination by thermal annealing. These porous layers of p-type oxide have been successfully sensitized by a push-pull dye (P1 dye) and showed photocurrent generation and an open circuit voltage (Voc) up to 167 mV in p-type dye-sensitized solar cells (p-DSSCs). For DMSO with 25 volume % of H2O, the deposited layers contained more metallic nickel and were dense even after annealing. They were unsuitable in p-DSSCs.
Study of magnetic and electrical properties of nanocrystalline Mn doped NiO.
Raja, S Philip; Venkateswaran, C
2011-03-01
Diluted Magnetic Semiconductors (DMS) are intensively explored in recent years for its applications in spintronics, which is expected to revolutionize the present day information technology. Nanocrystalline Mn doped NiO samples were prepared using chemical co-precipitation method with an aim to realize room temperature ferromagnetism. Phase formation of the samples was studied using X-ray diffraction-Rietveld analysis. Scanning electron microscopy and Energy dispersive X-ray analysis results reveal the nanocrystalline nature of the samples, agglomeration of the particles, considerable particle size distribution and the near stoichiometry. Thermomagnetic curves confirm the single-phase formation of the samples up to 1% doping of Mn. Vibrating Sample Magnetometer measurements indicate the absence of ferromagnetism at room temperature. This may be due to the low concentration of Mn2+ ions having weak indirect coupling with Ni2+ ions. The lack of free carriers is also expected to be the reason for the absence of ferromagnetism, which is in agreement with the results of resistivity measurements using impedance spectroscopy. Arrhenius plot shows the presence of two thermally activated regions and the activation energy for the nanocrystalline Mn doped sample was found to be greater than that of undoped NiO. This is attributed to the doping effect of Mn. However, the dielectric constant of the samples was found to be of the same order of magnitude very much comparable with that of undoped NiO.
Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ghamdi, Attieh A.; Abdel-wahab, M. Sh., E-mail: mshabaan90@yahoo.com; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef
2016-03-15
Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and opticalmore » characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.« less
Li, Qi; Guo, Jiangna; Xu, Dan; Guo, Jianqiang; Ou, Xu; Hu, Yin; Qi, Haojun; Yan, Feng
2018-04-01
Carbon nanofibers (CNF) with a 1D porous structure offer promising support to encapsulate transition-metal oxides in energy storage/conversion relying on their high specific surface area and pore volume. Here, the preparation of NiO nanoparticle-dispersed electrospun N-doped porous CNF (NiO/PCNF) and as free-standing film electrode for high-performance electrochemical supercapacitors is reported. Polyacrylonitrile and nickel acetylacetone are selected as precursors of CNF and Ni sources, respectively. Dicyandiamide not only improves the specific surface area and pore volume, but also increases the N-doping level of PCNF. Benefiting from the synergistic effect between NiO nanoparticles (NPs) and PCNF, the prepared free-standing NiO/PCNF electrodes show a high specific capacitance of 850 F g -1 at a current density of 1 A g -1 in 6 m KOH aqueous solution, good rate capability, as well as excellent long-term cycling stability. Moreover, NiO NPs dispersed in PCNF and large specific surface area provide many electroactive sites, leading to high CO 2 uptake, and high-efficiency CO 2 electroreduction. The synthesis strategy in this study provides a new insight into the design and fabrication of promising multifunctional materials for high-performance supercapacitors and CO 2 electroreduction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Feng; Li, Jing; Zhang, Jie; Gao, Lili; Long, Xuefeng; Hu, Yiping; Li, Shuwen; Jin, Jun; Ma, Jiantai
2018-05-16
The photoelectrochemical (PEC) water splitting efficiency of hematite-based photoanode is still far from the theoretical value due to its poor surface reaction kinetics and high density of surface trapping states. To solve these drawbacks, a photoanode consisting of NiO nanoparticles anchored on a gradient P-doped α-Fe2O3 nanorod (NR) array (NiO/P-α-Fe2O3) was fabricated to achieve optimal light absorption and charge separation, and rapid surface reaction kinetic. Specifically, the photoanode with the NR arrays structure allowed high mass transport rate to be achieved while the P-doping effectively decreased surface trapping sites and improved the electrical conductivity of α-Fe2O3. Furthermore, the p-n junction formed between the NiO and P-α-Fe2O3 can further improve the PEC performance due to the efficient hole extraction property and water oxidization catalytic activity of NiO. Consequently, the NiO/P-α-Fe2O3 NR photoanode produced a high photocurrent density of 2.08 mA cm-2 at 1.23V vs. RHE and a 110 mV cathodic shift of the onset potential. This rational design of structure offers a new perspective in exploring high performance PEC photoanodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ahmad, Abdullah S.; Satriotomo, Irawan; Fazal, Jawad A.; Nadeau, Stephen E.; Doré, Sylvain
2015-01-01
Background and Purpose White matter (WM) injury during stroke increases the risk of disability and gloomy prognosis of post-stroke rehabilitation. However, modeling of WM loss in rodents has proven to be challenging. Methods We report improved WM injury models in male C57BL/6 mice. Mice were given either endothelin-1 (ET-1) or L-N5-(1-iminoethyl)ornitine (L-NIO) into the periventricular white matter (PVWM), in the corpus callosum (CC), or in the posterior limb of internal capsule (PLIC). Anatomical and functional outcomes were quantified on day 7 post injection. Results Injection of ET-1 or L-NIO caused a small focal lesion in the injection site in the PVWM. No significant motor function deficits were observed in the PVWM lesion model. We next targeted the PLIC by using single or double injections of L-NIO and found that this strategy induced small focal infarction. Interestingly, injection of L-NIO in the PLIC also resulted in gliosis, and significant motor function deficits. Conclusions By employing different agents, doses, and locations, this study shows the feasibility of inducing brain WM injury accompanied with functional deficits in mice. Selective targeting of the injury location, behavioral testing, and the agents chosen to induce WM injury are all keys to successfully develop a mouse model and subsequent testing of therapeutic interventions against WM injury. PMID:27512724
NASA Astrophysics Data System (ADS)
Esepkina, N. A.; Lavrov, A. P.; Anan'ev, M. N.; Blagodarnyi, V. S.; Ivanov, S. I.; Mansyrev, M. I.; Molodyakov, S. A.
1995-10-01
Two new types of optoelectronic radio-signal processors were investigated. Charge-coupled device (CCD) photodetectors are used in these processors under continuous scanning conditions, i.e. in a time delay and storage mode. One of these processors is based on a CCD photodetector array with a reference-signal amplitude transparency and the other is an adaptive acousto-optical signal processor with linear frequency modulation. The processor with the transparency performs multichannel discrete—analogue convolution of an input signal with a corresponding kernel of the transformation determined by the transparency. If a light source is an array of light-emitting diodes of special (stripe) geometry, the optical stages of the processor can be made from optical fibre components and the whole processor then becomes a rigid 'sandwich' (a compact hybrid optoelectronic microcircuit). A report is given also of a study of a prototype processor with optical fibre components for the reception of signals from a system with antenna aperture synthesis, which forms a radio image of the Earth.
Karasick, M.S.; Strip, D.R.
1996-01-30
A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modeling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modeling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modeling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication. 8 figs.
Shared performance monitor in a multiprocessor system
Chiu, George; Gara, Alan G.; Salapura, Valentina
2012-07-24
A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.
Implementation of kernels on the Maestro processor
NASA Astrophysics Data System (ADS)
Suh, Jinwoo; Kang, D. I. D.; Crago, S. P.
Currently, most microprocessors use multiple cores to increase performance while limiting power usage. Some processors use not just a few cores, but tens of cores or even 100 cores. One such many-core microprocessor is the Maestro processor, which is based on Tilera's TILE64 processor. The Maestro chip is a 49-core, general-purpose, radiation-hardened processor designed for space applications. The Maestro processor, unlike the TILE64, has a floating point unit (FPU) in each core for improved floating point performance. The Maestro processor runs at 342 MHz clock frequency. On the Maestro processor, we implemented several widely used kernels: matrix multiplication, vector add, FIR filter, and FFT. We measured and analyzed the performance of these kernels. The achieved performance was up to 5.7 GFLOPS, and the speedup compared to single tile was up to 49 using 49 tiles.
Ordering of guarded and unguarded stores for no-sync I/O
Gara, Alan; Ohmacht, Martin
2013-06-25
A parallel computing system processes at least one store instruction. A first processor core issues a store instruction. A first queue, associated with the first processor core, stores the store instruction. A second queue, associated with a first local cache memory device of the first processor core, stores the store instruction. The first processor core updates first data in the first local cache memory device according to the store instruction. The third queue, associated with at least one shared cache memory device, stores the store instruction. The first processor core invalidates second data, associated with the store instruction, in the at least one shared cache memory. The first processor core invalidates third data, associated with the store instruction, in other local cache memory devices of other processor cores. The first processor core flushing only the first queue.
Testing Methods for Integrated Circuit Chips.
1986-03-27
DWf <I IAV ~IMi MORY OUT LOGIC~~ IPOGRAM ASYC S’E4i E...* 16o, CO% T ROL CO%TROL 32 Figure 2 . 14 VLSI Tester Block Diagram. registers, memory and test...neral-pIurpos’ processor wi th standard bus- inte-rfaco se-rves as,- th- test control Ii’r and ( 2 ) a c-ustom VLSI test Controller inti-rfacing direc(_t1...Engineering 2 WTWTY ABSTRACT Provision for the functional testing of fabricated VLSI chips frequently involves as much design effort as the orig- _ inal
1979-01-01
specifications have been prepared for a DoD communications processor on an IBM minicomputer, a minicomputer time sharing system for the DEC PDP-11 and...the Honeywell Level 6. a virtual machine monitor for the IBM 370, and Multics [10] for the Honeywell Level 68. MECHANISMS FOR KERNEL IMPLEMENTATION...HOL INA ZJO : ANERIONS g PROCESSORn , c ...THEOREMS 1 ITP I-THEOREMS PROOF EVIDENCE - p II KV./370 FORMAL DESIGN PROCESS M4ODULAR DECOMPOSITION * NON
Onboard spectral imager data processor
NASA Astrophysics Data System (ADS)
Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.
1999-10-01
Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.
Kumar, Sameer; Heidelberger, Philip; Chen, Dong; Hines, Michael
2010-04-19
We explore the multisend interface as a data mover interface to optimize applications with neighborhood collective communication operations. One of the limitations of the current MPI 2.1 standard is that the vector collective calls require counts and displacements (zero and nonzero bytes) to be specified for all the processors in the communicator. Further, all the collective calls in MPI 2.1 are blocking and do not permit overlap of communication with computation. We present the record replay persistent optimization to the multisend interface that minimizes the processor overhead of initiating the collective. We present four different case studies with the multisend API on Blue Gene/P (i) 3D-FFT, (ii) 4D nearest neighbor exchange as used in Quantum Chromodynamics, (iii) NAMD and (iv) neural network simulator NEURON. Performance results show 1.9× speedup with 32(3) 3D-FFTs, 1.9× speedup for 4D nearest neighbor exchange with the 2(4) problem, 1.6× speedup in NAMD and almost 3× speedup in NEURON with 256K cells and 1k connections/cell.
Electrochemical sensing using voltage-current time differential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay
2017-02-28
A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms.more » The processor also outputs the determined value.« less
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Modeling heterogeneous processor scheduling for real time systems
NASA Technical Reports Server (NTRS)
Leathrum, J. F.; Mielke, R. R.; Stoughton, J. W.
1994-01-01
A new model is presented to describe dataflow algorithms implemented in a multiprocessing system. Called the resource/data flow graph (RDFG), the model explicitly represents cyclo-static processor schedules as circuits of processor arcs which reflect the order that processors execute graph nodes. The model also allows the guarantee of meeting hard real-time deadlines. When unfolded, the model identifies statically the processor schedule. The model therefore is useful for determining the throughput and latency of systems with heterogeneous processors. The applicability of the model is demonstrated using a space surveillance algorithm.
Effect of different nickel precursors on capacitive behavior of electrodeposited NiO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kore, R. M.; Ghadge, T. S.; Ambare, R. C.
2016-04-13
In the present study, the effect of nickel precursors containing different anions like nitrate, chloride and sulphate on the morphology and pseudocapacitance behavior of NiO is investigated. The NiO samples were prepared by using a potentiondynamic electrodeposition technique in the three electrode cell. Cyclic voltammetry technique was exploited for potentiodynamic deposition of the films. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The XRD reveals the cubic crystal structure for all samples. The SEM micrograph shows nanoflakelike, up grown nanoflakes and honeycomb like nanostructured morphologies for nitrate, chloride and sulphate precursors respectively. The capacitivemore » behavior of these samples was recorded using cyclic voltammetry (CV), charge-discharge and electrochemical impedance spectroscopy (EIS) in 1 M KOH electrolyte. The specific capacitance values of NiO samples obtained using CV for nitrate, chloride and sulphate precursors were 136, 214 and 893 Fg{sup −1} respectively, at the scan rate of 5 mVs{sup −1}. The charge discharge study shows high specific energy for the sample obtained from sulphate (23.98 Whkg{sup −1}) as compared to chloride (9.67 Whkg{sup −1}) and nitrate (4.9 Whkg{sup −1}), whereas samples of cholride (13.9 kWkg{sup −1} and nitrate (10.5 kWkg{sup −1}) shows comparatively more specific power than samples obtained from sulphate (7.6 kWkg{sup −1}). The equivalent series resistance of NiO samples observed from EIS study are 1.34, 1.29 and 1.27 Ω respectively for nitrate, chloride and sulphate precursors. These results emphasizes that the samples obtained from sulphate precursors provides very low impedance through honeycomb like nanostructured morphology which supports good capacitive behavior of NiO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jingjing; Lai, Lincong; Zhang, Ping
Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al{sup 3+} ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al{sup 3+} films. The electrochromic performance of the films were evaluated by means of UV–vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, themore » ratio of Ni{sup 3+}/Ni{sup 2+} also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni{sup 3+} making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film. - Graphical abstract: The ratio of Ni{sup 3+}/Ni{sup 2+} varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range, fast switching speed and excellent durability. Display Omitted.« less
Understanding the synthesis, performance, and passivation of metal oxide photocathodes
NASA Astrophysics Data System (ADS)
Flynn, Cory James
Metal oxides are ubiquitous in semiconductor technologies for their ease of synthesis, chemical stability, and tunable optical/electronic properties. These properties are especially important to fabricating efficient photoelectrodes for solar-energy applications. To counter inherent problems in these materials, new strategies were developed and successfully implemented on the widely-utilized p-type semiconductor, NiO. As the size of semiconductor materials shrink, the surface-to-volume ratio increases and surface defects dominate the performance of the materials. Surface defects can alter the optical and electronic characteristics of materials by changing the Fermi level, charge-carrier mobility, and surface reactivity. We first present a strategy to increase the electrical mobility of mesoporous metal oxide electrode materials by optimizing shape morphology. Transitioning from nanospheres to hexagonal nanoplatelets increased the charge-carrier mobility by one order of magnitude. We then employed this improved material with a new vapor-phase deposition method termed targeted atomic deposition (TAD) to selectively passivate defect sites in semiconductor nanomaterials. We demonstrated the capabilities of this passivation method by applying a TAD of aluminum onto NiO. By exploiting a temperature-dependent deposition process, we selectively passivated the highly reactive sites in NiO: oxygen dangling bonds associated with Ni vacancies. The TAD treatment completely passivated all measurable surface defects, optically bleached the material, and significantly improved all photovoltaic performance metrics in dye-sensitized solar cells. The technique was proven to be generic to numerous forms of NiO. While the implementation of TAD of Al was successful, the process involved pulsing two precursors to passivate the material. Ideally, the TAD process should require only a single precursor and continuous exposure. We utilized a continuous flow of diborane to perform a TAD of B onto NiO. The TAD process was successfully implemented in a simplified manner. The treatment moderately increased DSSC performance and proved viability with a different vapor-phase precursor.
Parallel processor for real-time structural control
NASA Astrophysics Data System (ADS)
Tise, Bert L.
1993-07-01
A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-to-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection to host computer, parallelizing code generator, and look- up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating- point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An OpenWindows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.
Testing and operating a multiprocessor chip with processor redundancy
Bellofatto, Ralph E; Douskey, Steven M; Haring, Rudolf A; McManus, Moyra K; Ohmacht, Martin; Schmunkamp, Dietmar; Sugavanam, Krishnan; Weatherford, Bryan J
2014-10-21
A system and method for improving the yield rate of a multiprocessor semiconductor chip that includes primary processor cores and one or more redundant processor cores. A first tester conducts a first test on one or more processor cores, and encodes results of the first test in an on-chip non-volatile memory. A second tester conducts a second test on the processor cores, and encodes results of the second test in an external non-volatile storage device. An override bit of a multiplexer is set if a processor core fails the second test. In response to the override bit, the multiplexer selects a physical-to-logical mapping of processor IDs according to one of: the encoded results in the memory device or the encoded results in the external storage device. On-chip logic configures the processor cores according to the selected physical-to-logical mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, D.A.; Grunwald, D.C.
The spectrum of parallel processor designs can be divided into three sections according to the number and complexity of the processors. At one end there are simple, bit-serial processors. Any one of thee processors is of little value, but when it is coupled with many others, the aggregate computing power can be large. This approach to parallel processing can be likened to a colony of termites devouring a log. The most notable examples of this approach are the NASA/Goodyear Massively Parallel Processor, which has 16K one-bit processors, and the Thinking Machines Connection Machine, which has 64K one-bit processors. At themore » other end of the spectrum, a small number of processors, each built using the fastest available technology and the most sophisticated architecture, are combined. An example of this approach is the Cray X-MP. This type of parallel processing is akin to four woodmen attacking the log with chainsaws.« less
Synthesis of ultrafine powders by microwave heating
Meek, T.T.; Sheinberg, H.; Blake, R.D.
1987-04-24
A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.
Low-temperature photoluminescence of CoO excited by synchrotron radiation
NASA Astrophysics Data System (ADS)
Sokolov, V. I.; Pustovarov, V. A.; Gruzdev, N. B.; Sokolov, P. S.; Baranov, A. N.
2014-05-01
We report the first observation of low-temperature luminescence of CoO crystals under synchrotron irradiation. At 8 K, the photoluminescence of CoO is characterized by smaller bandwidth and higher intensity relative to the corresponding photoluminescence band of NiO. The photoluminescence excitation spectra of CoO and NiO are similar. Position of the band related to charge transfer from oxygen ions to 3 d-shell of cobalt ions is determined. The excitation energy is found to be 3.5 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay
2018-01-02
A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms.more » The processor also outputs the determined value.« less
Hybrid Electro-Optic Processor
1991-07-01
This report describes the design of a hybrid electro - optic processor to perform adaptive interference cancellation in radar systems. The processor is...modulator is reported. Included is this report is a discussion of the design, partial fabrication in the laboratory, and partial testing of the hybrid electro ... optic processor. A follow on effort is planned to complete the construction and testing of the processor. The work described in this report is the
JPRS Report, Science & Technology, Europe.
1991-04-30
processor in collaboration with Intel . The processor , christened Touchstone, will be used as the core of a parallel computer with 2,000 processors . One of...ELECTRONIQUE HEBDO in French 24 Jan 91 pp 14-15 [Article by Claire Remy: "Everything Set for Neural Signal Processors " first paragraph is ELECTRONIQUE...paving the way for neural signal processors in so doing. The principal advantage of this specific circuit over a neuromimetic software program is
Processor register error correction management
Bose, Pradip; Cher, Chen-Yong; Gupta, Meeta S.
2016-12-27
Processor register protection management is disclosed. In embodiments, a method of processor register protection management can include determining a sensitive logical register for executable code generated by a compiler, generating an error-correction table identifying the sensitive logical register, and storing the error-correction table in a memory accessible by a processor. The processor can be configured to generate a duplicate register of the sensitive logical register identified by the error-correction table.
The CSM testbed matrix processors internal logic and dataflow descriptions
NASA Technical Reports Server (NTRS)
Regelbrugge, Marc E.; Wright, Mary A.
1988-01-01
This report constitutes the final report for subtask 1 of Task 5 of NASA Contract NAS1-18444, Computational Structural Mechanics (CSM) Research. This report contains a detailed description of the coded workings of selected CSM Testbed matrix processors (i.e., TOPO, K, INV, SSOL) and of the arithmetic utility processor AUS. These processors and the current sparse matrix data structures are studied and documented. Items examined include: details of the data structures, interdependence of data structures, data-blocking logic in the data structures, processor data flow and architecture, and processor algorithmic logic flow.
Simulation of water solutions of Ni 2+ at infinite dilution
NASA Astrophysics Data System (ADS)
Natália, M.; Cordeiro, D. S.; Ignaczak, Anna; Gomes, José A. N. F.
1993-10-01
A new ab initio pair potential is developed to describe the nickel—water interactions in Ni(II) aqueous solutions. Results of Monte Carlo simulations for the Ni(II)(H 2O) 200 system are presented for this pair potential with and without three-body classical polarization terms (the water—water interaction is described by the ab initio MCY potential). The structure of the solution around Ni(II) is discussed in terms of radial distribution functions, coordination numbers and thermal ellipsoids. The results show that the three-body terms have a non-negligible effect on the simulated solution. In fact, the experimental coordination number of six is reproduced with the full potential while a higher value is predicted when the simple pairwise-additive potential is used. The equilibrium NiO distance for the first hydration shell is also dependent on the use of the three-body terms. Comparison of our distribution functions with those obtained by neutron-diffraction experiments shows a reasonable quantitative agreement. Statistical pattern recognition analysis has also been applied to our simulations in order to better understand the local thermal motion of the water molecules around the metal ion. In this way, thermal ellipsoids have been computed (and graphically displayed) for each atom of the water molecules belonging to the Ni(II) first hydration shell. This analysis revealed that the twisting and bending motions are greater than the radial motion, and that the hydrogens have a higher mobility than the oxygens. In addition, a thermodynamic perturbation method has been incorporated in our Monte Carlo procedure in order to compute the free energy of hydration for the Ni(II) ion. Agreement between these results and the experimental ones is also sufficiently reasonable to demonstrate the feasibility of this new potential for the nickel—water interactions.
Parallel processor for real-time structural control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tise, B.L.
1992-01-01
A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection tomore » host computer, parallelizing code generator, and look-up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating-point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An Open Windows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.« less
NASA Technical Reports Server (NTRS)
Kelly, G. L.; Berthold, G.; Abbott, L.
1982-01-01
A 5 MHZ single-board microprocessor system which incorporates an 8086 CPU and an 8087 Numeric Data Processor is used to implement the control laws for the NASA Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing II. The control laws program was executed in 7.02 msec, with initialization consuming 2.65 msec and the control law loop 4.38 msec. The software emulator execution times for these two tasks were 36.67 and 61.18, respectively, for a total of 97.68 msec. The space, weight and cost reductions achieved in the present, aircraft control application of this combination of a 16-bit microprocessor with an 80-bit floating point coprocessor may be obtainable in other real time control applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X. J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.
2014-10-28
The significant effect of the thickness of Ni film on the performance of the Ohmic contact of Ni/Au to p-GaN is studied. The Ni/Au metal films with thickness of 15/50 nm on p-GaN led to better electrical characteristics, showing a lower specific contact resistivity after annealing in the presence of oxygen. Both the formation of a NiO layer and the evolution of metal structure on the sample surface and at the interface with p-GaN were checked by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The experimental results indicate that a too thin Ni film cannot form enough NiO to decrease themore » barrier height and get Ohmic contact to p-GaN, while a too thick Ni film will transform into too thick NiO cover on the sample surface and thus will also deteriorate the electrical conductivity of sample.« less
Irwin, Michael D.; Buchholz, D. Bruce; Hains, Alexander W.; Chang, Robert P. H.; Marks, Tobin J.
2008-01-01
To minimize interfacial power losses, thin (5–80 nm) layers of NiO, a p-type oxide semiconductor, are inserted between the active organic layer, poly(3-hexylthiophene) (P3HT) + [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), and the ITO (tin-doped indium oxide) anode of bulk-heterojunction ITO/P3HT:PCBM/LiF/Al solar cells. The interfacial NiO layer is deposited by pulsed laser deposition directly onto cleaned ITO, and the active layer is subsequently deposited by spin-coating. Insertion of the NiO layer affords cell power conversion efficiencies as high as 5.2% and enhances the fill factor to 69% and the open-circuit voltage (Voc) to 638 mV versus an ITO/P3HT:PCBM/LiF/Al control device. The value of such hole-transporting/electron-blocking interfacial layers is clearly demonstrated and should be applicable to other organic photovoltaics.
Visualization of energy: light dose indicator based on electrochromic gyroid nano-materials
NASA Astrophysics Data System (ADS)
Wei, Di; Scherer, Maik R. J.; Astley, Michael; Steiner, Ullrich
2015-06-01
The typical applications of electrochromic devices do not make use of the charge-dependent, gradual optical response due to their slow voltage-sensitive coloration. However, in this paper we present a design for a reusable, self-powered light dose indicator consisting of a solar cell and a gyroid-structured nickel oxide (NiO) electrochromic display that measures the cumulative charge per se, making use of the efficient voltage-sensitive coloration of gyroid materials. To circumvent the stability issues associated with the standard aqueous electrolyte that is typically accompanied by water splitting and gas evolution, we investigate a novel nano-gyroid NiO electrochromic device based on organic solvents of 1,1,1,3,3,3-hexafluoropropan-2-ol, and room temperature ionic liquid (RTIL) triethylsulfonium bis(trifluoromethylsulfonyl) imide ([SET3][TFSI]) containing lithium bis(trifluoromethylsulfonyl) imide. We show that an effective light dose indicator can be enabled by nano-gyroid NiO with RTIL; this proves to be a reliable device since it does not involve solvent degradation or gas generation.
Lee, Daeho; Paeng, Dongwoo; Park, Hee K; Grigoropoulos, Costas P
2014-10-28
We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼ 40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.
Pati, Palas Baran; Zhang, Lei; Philippe, Bertrand; Fernández‐Terán, Ricardo; Ahmadi, Sareh; Tian, Lei; Rensmo, Håkan; Hammarström, Leif
2017-01-01
Abstract A covalently linked organic dye–cobaloxime catalyst system based on mesoporous NiO is synthesized by a facile click reaction for mechanistic studies and application in a dye‐sensitized solar fuel device. The system is systematically investigated by photoelectrochemical measurements, density functional theory, time‐resolved fluorescence, transient absorption spectroscopy, and photoelectron spectroscopy. The results show that irradiation of the dye–catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer process to reduce the catalyst. Moreover, the dye adopts different structures with different excited state energies, and excitation energy transfer occurs between neighboring molecules on the semiconductor surface. The photoelectrochemical experiments also show hydrogen production by this system. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye–catalyst system on the photocathode is proposed on the basis of this study. PMID:28338295
CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide.
Cui, Jin; Meng, Fanping; Zhang, Hua; Cao, Kun; Yuan, Huailiang; Cheng, Yibing; Huang, Feng; Wang, Mingkui
2014-12-24
Herein we report an investigation of a CH3NH3PbI3 planar solar cell, showing significant power conversion efficiency (PCE) improvement from 4.88% to 6.13% by introducing a homogeneous and uniform NiO blocking interlayer fabricated with the reactive magnetron sputtering method. The sputtered NiO layer exhibits enhanced crystallization, high transmittance, and uniform surface morphology as well as a preferred in-plane orientation of the (200) plane. The PCE of the sputtered-NiO-based perovskite p-i-n planar solar cell can be further promoted to 9.83% when a homogeneous and dense perovskite layer is formed with solvent-engineering technology, showing an impressive open circuit voltage of 1.10 V. This is about 33% higher than that of devices using the conventional spray pyrolysis of NiO onto a transparent conducting glass. These results highlight the importance of a morphology- and crystallization-compatible interlayer toward a high-performance inverted perovskite planar solar cell.
NASA Astrophysics Data System (ADS)
Mechehoud, F.; Benaioun, N. E.; Hakiki, N. E.; Khelil, A.; Simon, L.; Bubendorff, J. L.
2018-03-01
Thermally oxidized nickel-based alloys are studied by scanning tunnelling microscopy (STM), scanning tunnelling spectroscopy (STS), atomic force microscopy (AFM), scanning kelvin probe force microscopy (SKPFM) and photoelectro-chemical techniques as a function of oxidation time at a fixed temperature of 623 K. By photoelectrochemistry measurements we identify the formation of three oxides NiO, Fe2O3, Cr2O3 and determine the corresponding gap values. We use these values as parameter for imaging the surface at high bias voltage by STM allowing the spatial localization and identification of both NiO, Fe2O3 oxide phases using STS measurements. Associated to Kelvin probe measurements we show also that STS allow to distinguished NiO from Cr2O3 and confirm that the Cr2O3 is not visible at the surface and localized at the oxide/steel interface.
First experiments with the negative ion source NIO1.
Cavenago, M; Serianni, G; De Muri, M; Agostinetti, P; Antoni, V; Baltador, C; Barbisan, M; Baseggio, L; Bigi, M; Cervaro, V; Degli Agostini, F; Fagotti, E; Kulevoy, T; Ippolito, N; Laterza, B; Minarello, A; Maniero, M; Pasqualotto, R; Petrenko, S; Poggi, M; Ravarotto, D; Recchia, M; Sartori, E; Sattin, M; Sonato, P; Taccogna, F; Variale, V; Veltri, P; Zaniol, B; Zanotto, L; Zucchetti, S
2016-02-01
Neutral Beam Injectors (NBIs), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact radio frequency (rf) ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H(-) current of 130 mA, 60 kV acceleration voltage, was installed at Consorzio RFX, including a high voltage deck and an X-ray shield, to provide a test bench for source optimizations for activities in support to the ITER NBI test facility. NIO1 status and plasma experiments both with air and with hydrogen as filling gas are described. Transition from a weak plasma to an inductively coupled plasma is clearly evident for the former gas and may be triggered by rising the rf power (over 0.5 kW) at low pressure (equal or below 2 Pa). Transition in hydrogen plasma requires more rf power (over 1.5 kW).
7 CFR 1435.310 - Sharing processors' allocations with producers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.310 Sharing processors' allocations with producers. (a) Every sugar beet and sugarcane processor must provide CCC a certification that: (1) The processor...
7 CFR 1435.310 - Sharing processors' allocations with producers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.310 Sharing processors' allocations with producers. (a) Every sugar beet and sugarcane processor must provide CCC a certification that: (1) The processor...
7 CFR 1435.310 - Sharing processors' allocations with producers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.310 Sharing processors' allocations with producers. (a) Every sugar beet and sugarcane processor must provide CCC a certification that: (1) The processor...
7 CFR 1435.310 - Sharing processors' allocations with producers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.310 Sharing processors' allocations with producers. (a) Every sugar beet and sugarcane processor must provide CCC a certification that: (1) The processor...
7 CFR 1435.310 - Sharing processors' allocations with producers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.310 Sharing processors' allocations with producers. (a) Every sugar beet and sugarcane processor must provide CCC a certification that: (1) The processor...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) When a test rule or subsequent Federal Register notice pertaining to a test rule expressly obligates processors as well as manufacturers to assume direct testing and data reimbursement responsibilities. (2... processors voluntarily agree to reimburse manufacturers for a portion of test costs. Only those processors...
Atac, R.; Fischler, M.S.; Husby, D.E.
1991-01-15
A bus switching apparatus and method for multiple processor computer systems comprises a plurality of bus switches interconnected by branch buses. Each processor or other module of the system is connected to a spigot of a bus switch. Each bus switch also serves as part of a backplane of a modular crate hardware package. A processor initiates communication with another processor by identifying that other processor. The bus switch to which the initiating processor is connected identifies and secures, if possible, a path to that other processor, either directly or via one or more other bus switches which operate similarly. If a particular desired path through a given bus switch is not available to be used, an alternate path is considered, identified and secured. 11 figures.
Chatterjee, Siddhartha [Yorktown Heights, NY; Gunnels, John A [Brewster, NY
2011-11-08
A method and structure of distributing elements of an array of data in a computer memory to a specific processor of a multi-dimensional mesh of parallel processors includes designating a distribution of elements of at least a portion of the array to be executed by specific processors in the multi-dimensional mesh of parallel processors. The pattern of the designating includes a cyclical repetitive pattern of the parallel processor mesh, as modified to have a skew in at least one dimension so that both a row of data in the array and a column of data in the array map to respective contiguous groupings of the processors such that a dimension of the contiguous groupings is greater than one.
Atac, Robert; Fischler, Mark S.; Husby, Donald E.
1991-01-01
A bus switching apparatus and method for multiple processor computer systems comprises a plurality of bus switches interconnected by branch buses. Each processor or other module of the system is connected to a spigot of a bus switch. Each bus switch also serves as part of a backplane of a modular crate hardware package. A processor initiates communication with another processor by identifying that other processor. The bus switch to which the initiating processor is connected identifies and secures, if possible, a path to that other processor, either directly or via one or more other bus switches which operate similarly. If a particular desired path through a given bus switch is not available to be used, an alternate path is considered, identified and secured.
Software Defined GPS Receiver for International Space Station
NASA Technical Reports Server (NTRS)
Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee
2011-01-01
JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.
Variable word length encoder reduces TV bandwith requirements
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.
1965-01-01
Adaptive variable resolution encoding technique provides an adaptive compression pseudo-random noise signal processor for reducing television bandwidth requirements. Complementary processors are required in both the transmitting and receiving systems. The pretransmission processor is analog-to-digital, while the postreception processor is digital-to-analog.
Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; Kim, Ju Seong; Seo, Se Won; Kim, Dong Hoe; Zhu, Kai; Park, Taiho; Kim, Jin Young
2017-06-22
Given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22 %, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-type planar PSC with a large active area of >1 cm 2 . It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x , and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0 % (19.2 % for 0.1 cm 2 ) without showing hysteresis effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact.
Yin, Xuewen; Yao, Zhibo; Luo, Qiang; Dai, Xuezeng; Zhou, Yu; Zhang, Ye; Zhou, Yangying; Luo, Songping; Li, Jianbao; Wang, Ning; Lin, Hong
2017-01-25
NiO x is a promising hole-transporting material for perovskite solar cells due to its high hole mobility, good stability, and easy processability. In this work, we employed a simple solution-processed NiO x film as the hole-transporting layer in perovskite solar cells. When the thickness of the perovskite layer increased from 270 to 380 nm, the light absorption and photogenerated carrier density were enhanced and the transporting distance of electron and hole would also increase at the same time, resulting in a large charge transfer resistance and a long hole-extracted process in the device, characterized by the UV-vis, photoluminescence, and electrochemical impedance spectroscopy spectra. Combining both of these factors, an optimal thickness of 334.2 nm was prepared with the perovskite precursor concentration of 1.35 M. Moreover, the optimal device fabrication conditions were further achieved by optimizing the thickness of NiO x hole-transporting layer and PCBM electron selective layer. As a result, the best power conversion efficiency of 15.71% was obtained with a J sc of 20.51 mA·cm -2 , a V oc of 988 mV, and a FF of 77.51% with almost no hysteresis. A stable efficiency of 15.10% was caught at the maximum power point. This work provides a promising route to achieve higher efficiency perovskite solar cells based on NiO or other inorganic hole-transporting materials.
Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors
NASA Astrophysics Data System (ADS)
Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre
2018-03-01
NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.
Versatile plasmonic-effects at the interface of inverted perovskite solar cells.
Shalan, Ahmed Esmail; Oshikiri, Tomoya; Sawayanagi, Hiroki; Nakamura, Keisuke; Ueno, Kosei; Sun, Quan; Wu, Hui-Ping; Diau, Eric Wei-Guang; Misawa, Hiroaki
2017-01-19
Plasmonics is a highly promising approach to enhancing the light-harvesting properties of hybrid organic/inorganic perovskite solar cells. In the present work, our cells have a p-i-n inverted planar structure. An ultrathin NiO film with two different thicknesses of 5 and 10 nm prepared by a pulsed laser deposition process on an ITO substrate with a faceted and furrowed surface enabled the formation of a continuous and compact layer of well-crystallized CH 3 NH 3 PbI 3 via an anti-solvent chlorobenzene process. The coverage mechanism of the NiO film on the ITO was clearly demonstrated through the J-V and external quantum efficiency (EQE) curves. Moreover, the results demonstrated that the gold nanoislands (Au NIs) increased the power conversion efficiency to 5.1%, almost double that of the samples without Au NIs. This result is due to the excitation of surface plasmons, which is characterized by strong scattering and enhancement of the electric field in the vicinity of the Au NIs loaded at the interface between the NiO and perovskite films. Additionally, we observed an enhancement of the EQE at wavelengths shorter than the plasmon resonance peak. In the current state, we speculate that the plasmoelectric potential effect is considered to be a good explanation of the photocurrent enhancement at the off-resonance region. Our work provides good guidance for the design and fabrication of solar-energy-related devices employing NiO electrodes and plasmonic Au NIs.
Electronic and transport properties of Li-doped NiO epitaxial thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. Y.; Li, W. W.; Hoye, R. L. Z.
NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the electronic, optical and transport properties of NiO epitaxial thin films grown by pulsed laser deposition. We show that Li doping significantly increases the p-type conductivity of NiO, but all the films have relatively low room-temperature mobilities (<0.05 cm2 V -1s -1). The conduction mechanism is better described by small-polaron hoping model in the temperaturemore » range of 200 K < T <330 K, and variable range hopping at T <200 K. A combination of x-ray photoemission and O K-edge x-ray absorption spectroscopic investigations reveal that the Fermi level gradually shifts toward the valence band maximum (VBM) and a new hole state develops with Li doping. Both the VBM and hole states are composed of primarily Zhang-Rice bound states, which accounts for the small polaron character (low mobility) of hole conduction. Our work provides guidelines for the search for p-type oxide materials and device optimization.NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. This work reports the controlling of conductivity and increase of work functions by Li doping.« less
NASA Astrophysics Data System (ADS)
Lu, Xin; Miki, Takahiro; Nagasaka, Tetsuya
2017-01-01
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B = (%CaO)/(%SiO2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.
The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Peng, E-mail: huangp07@lzu.edu.cn; Department of Physics, Lanzhou University, Lanzhou 730000; Zhang, Xin
2015-03-15
Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: • We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. • The NiO exhibits novel foam-like 3D mesoporous architecture. • The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 μm distribute. Themore » electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g{sup −1} at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g{sup −1} after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g{sup −1} when lowering the charge/discharge rate to 0.06 C.« less
Sokić, Miroslav; Kamberović, Željko; Nikolić, Vesna; Marković, Branislav; Korać, Marija; Anđić, Zoran; Gavrilovski, Milorad
2015-01-01
The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K. PMID:25789335
Accelerating molecular dynamic simulation on the cell processor and Playstation 3.
Luttmann, Edgar; Ensign, Daniel L; Vaidyanathan, Vishal; Houston, Mike; Rimon, Noam; Øland, Jeppe; Jayachandran, Guha; Friedrichs, Mark; Pande, Vijay S
2009-01-30
Implementation of molecular dynamics (MD) calculations on novel architectures will vastly increase its power to calculate the physical properties of complex systems. Herein, we detail algorithmic advances developed to accelerate MD simulations on the Cell processor, a commodity processor found in PlayStation 3 (PS3). In particular, we discuss issues regarding memory access versus computation and the types of calculations which are best suited for streaming processors such as the Cell, focusing on implicit solvation models. We conclude with a comparison of improved performance on the PS3's Cell processor over more traditional processors. (c) 2008 Wiley Periodicals, Inc.
Leung, Vitus J [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM; Bender, Michael A [East Northport, NY; Bunde, David P [Urbana, IL
2009-07-21
In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.
Communications systems and methods for subsea processors
Gutierrez, Jose; Pereira, Luis
2016-04-26
A subsea processor may be located near the seabed of a drilling site and used to coordinate operations of underwater drilling components. The subsea processor may be enclosed in a single interchangeable unit that fits a receptor on an underwater drilling component, such as a blow-out preventer (BOP). The subsea processor may issue commands to control the BOP and receive measurements from sensors located throughout the BOP. A shared communications bus may interconnect the subsea processor and underwater components and the subsea processor and a surface or onshore network. The shared communications bus may be operated according to a time division multiple access (TDMA) scheme.
An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Hudec, Ján; Gramatová, Elena
2015-07-01
The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.
Experimental testing of the noise-canceling processor.
Collins, Michael D; Baer, Ralph N; Simpson, Harry J
2011-09-01
Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. © 2011 Acoustical Society of America
A High Performance VLSI Computer Architecture For Computer Graphics
NASA Astrophysics Data System (ADS)
Chin, Chi-Yuan; Lin, Wen-Tai
1988-10-01
A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.
Rapid prototyping and evaluation of programmable SIMD SDR processors in LISA
NASA Astrophysics Data System (ADS)
Chen, Ting; Liu, Hengzhu; Zhang, Botao; Liu, Dongpei
2013-03-01
With the development of international wireless communication standards, there is an increase in computational requirement for baseband signal processors. Time-to-market pressure makes it impossible to completely redesign new processors for the evolving standards. Due to its high flexibility and low power, software defined radio (SDR) digital signal processors have been proposed as promising technology to replace traditional ASIC and FPGA fashions. In addition, there are large numbers of parallel data processed in computation-intensive functions, which fosters the development of single instruction multiple data (SIMD) architecture in SDR platform. So a new way must be found to prototype the SDR processors efficiently. In this paper we present a bit-and-cycle accurate model of programmable SIMD SDR processors in a machine description language LISA. LISA is a language for instruction set architecture which can gain rapid model at architectural level. In order to evaluate the availability of our proposed processor, three common baseband functions, FFT, FIR digital filter and matrix multiplication have been mapped on the SDR platform. Analytical results showed that the SDR processor achieved the maximum of 47.1% performance boost relative to the opponent processor.
NASA Astrophysics Data System (ADS)
Weber, Walter H.; Mair, H. Douglas; Jansen, Dion
2003-03-01
A suite of basic signal processors has been developed. These basic building blocks can be cascaded together to form more complex processors without the need for programming. The data structures between each of the processors are handled automatically. This allows a processor built for one purpose to be applied to any type of data such as images, waveform arrays and single values. The processors are part of Winspect Data Acquisition software. The new processors are fast enough to work on A-scan signals live while scanning. Their primary use is to extract features, reduce noise or to calculate material properties. The cascaded processors work equally well on live A-scan displays, live gated data or as a post-processing engine on saved data. Researchers are able to call their own MATLAB or C-code from anywhere within the processor structure. A built-in formula node processor that uses a simple algebraic editor may make external user programs unnecessary. This paper also discusses the problems associated with ad hoc software development and how graphical programming languages can tie up researchers writing software rather than designing experiments.
Array processor architecture connection network
NASA Technical Reports Server (NTRS)
Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)
1982-01-01
A connection network is disclosed for use between a parallel array of processors and a parallel array of memory modules for establishing non-conflicting data communications paths between requested memory modules and requesting processors. The connection network includes a plurality of switching elements interposed between the processor array and the memory modules array in an Omega networking architecture. Each switching element includes a first and a second processor side port, a first and a second memory module side port, and control logic circuitry for providing data connections between the first and second processor ports and the first and second memory module ports. The control logic circuitry includes strobe logic for examining data arriving at the first and the second processor ports to indicate when the data arriving is requesting data from a requesting processor to a requested memory module. Further, connection circuitry is associated with the strobe logic for examining requesting data arriving at the first and the second processor ports for providing a data connection therefrom to the first and the second memory module ports in response thereto when the data connection so provided does not conflict with a pre-established data connection currently in use.
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
7 CFR 1160.108 - Fluid milk processor.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Fluid milk processor. 1160.108 Section 1160.108... AGREEMENTS AND ORDERS; MILK), DEPARTMENT OF AGRICULTURE FLUID MILK PROMOTION PROGRAM Fluid Milk Promotion Order Definitions § 1160.108 Fluid milk processor. (a) Fluid milk processor means any person who...
7 CFR 1160.108 - Fluid milk processor.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Fluid milk processor. 1160.108 Section 1160.108... Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE FLUID MILK PROMOTION PROGRAM Fluid Milk Promotion Order Definitions § 1160.108 Fluid milk processor. (a) Fluid milk processor means any person who...
7 CFR 1160.108 - Fluid milk processor.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Fluid milk processor. 1160.108 Section 1160.108... AGREEMENTS AND ORDERS; MILK), DEPARTMENT OF AGRICULTURE FLUID MILK PROMOTION PROGRAM Fluid Milk Promotion Order Definitions § 1160.108 Fluid milk processor. (a) Fluid milk processor means any person who...
21 CFR 892.1900 - Automatic radiographic film processor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automatic radiographic film processor. 892.1900... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1900 Automatic radiographic film processor. (a) Identification. An automatic radiographic film processor is a device intended to be used to...
7 CFR 1160.108 - Fluid milk processor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Fluid milk processor. 1160.108 Section 1160.108... Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE FLUID MILK PROMOTION PROGRAM Fluid Milk Promotion Order Definitions § 1160.108 Fluid milk processor. (a) Fluid milk processor means any person who...
7 CFR 1160.108 - Fluid milk processor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Fluid milk processor. 1160.108 Section 1160.108... Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE FLUID MILK PROMOTION PROGRAM Fluid Milk Promotion Order Definitions § 1160.108 Fluid milk processor. (a) Fluid milk processor means any person who...
Shared performance monitor in a multiprocessor system
Chiu, George; Gara, Alan G; Salapura, Valentina
2014-12-02
A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU is further programmed to monitor event signals issued from non-processor devices.
Noncoherent parallel optical processor for discrete two-dimensional linear transformations.
Glaser, I
1980-10-01
We describe a parallel optical processor, based on a lenslet array, that provides general linear two-dimensional transformations using noncoherent light. Such a processor could become useful in image- and signal-processing applications in which the throughput requirements cannot be adequately satisfied by state-of-the-art digital processors. Experimental results that illustrate the feasibility of the processor by demonstrating its use in parallel optical computation of the two-dimensional Walsh-Hadamard transformation are presented.
Processors for wavelet analysis and synthesis: NIFS and TI-C80 MVP
NASA Astrophysics Data System (ADS)
Brooks, Geoffrey W.
1996-03-01
Two processors are considered for image quadrature mirror filtering (QMF). The neuromorphic infrared focal-plane sensor (NIFS) is an existing prototype analog processor offering high speed spatio-temporal Gaussian filtering, which could be used for the QMF low- pass function, and difference of Gaussian filtering, which could be used for the QMF high- pass function. Although not designed specifically for wavelet analysis, the biologically- inspired system accomplishes the most computationally intensive part of QMF processing. The Texas Instruments (TI) TMS320C80 Multimedia Video Processor (MVP) is a 32-bit RISC master processor with four advanced digital signal processors (DSPs) on a single chip. Algorithm partitioning, memory management and other issues are considered for optimal performance. This paper presents these considerations with simulated results leading to processor implementation of high-speed QMF analysis and synthesis.
77 FR 124 - Biological Processors of Alabama; Decatur, Morgan County, AL; Notice of Settlement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-03
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9612-9] Biological Processors of Alabama; Decatur, Morgan... reimbursement of past response costs concerning the Biological Processors of Alabama Superfund Site located in... Ms. Paula V. Painter. Submit your comments by Site name Biological Processors of Alabama Superfund...
160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA)
Li, Isaac TS; Shum, Warren; Truong, Kevin
2007-01-01
Background To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. Results In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. Conclusion This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching. PMID:17555593
160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).
Li, Isaac T S; Shum, Warren; Truong, Kevin
2007-06-07
To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching.
NASA Astrophysics Data System (ADS)
Soliman, Ahmed A.
2006-12-01
The ternary complexes of Ni(II) with sulfasalazine (H 3SS) as a primary ligand and alanine (ala), aspartic acid (asp), histidene (hist), methionine (meth) and serine (ser) amino acids as secondary ligands have been synthesized. Characterization of the complexes was based on elemental analyses, IR, UV-vis, mass spectra, magnetic moment and thermal analysis (TG). The isolated complexes were found to have the general formula [M(HSS)(AA)]4H 2O (AA = ala, asp, hist, meth, or ser amino acid) where nickel is tetra-coordinated. The thermal stability of the complexes was studied and the weight losses for the decomposition of the complexes were calculated and correlated with the mass fragmentation pattern. In most cases, the amino acid moiety is removed along with the Schiff base moiety leaving NiO as a metallic residue. The metallic residue was confirmed by powder XRD measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve Xunhu
2015-09-01
Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr 2O 3 at the interface in low partial oxygen (PO 2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility ofmore » Co ++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.« less