Sample records for niper

  1. Tiger Team Assessment of the National Institute for Petroleum and Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    This report documents the Tiger Team Assessment of the National Institute for Petroleum and Energy Research (NIPER) and the Bartlesville Project Office (BPO) of the Department of Energy (DOE), co-located in Bartlesville, Oklahoma. The assessment investigated the status of the environmental, safety, and health (ES H) programs of the two organizations. The Tiger Team Assessment was conducted from April 6 to May 1, 1992, under the auspices of DOE's Office of Special Projects (OSP) in the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health issues; management practices; qualitymore » assurance; and NIPER and BPO self-assessments. Compliance with Federal, state, and local regulations; DOE Orders; best management practices; and internal IITRI requirements was assessed. In addition, an evaluation was conducted of the adequacy and effectiveness of BPO and IITRI management of the ES H and self-assessment processes. The NIPER/BPO Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.« less

  2. Tiger Team Assessment of the National Institute for Petroleum and Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    This report documents the Tiger Team Assessment of the National Institute for Petroleum and Energy Research (NIPER) and the Bartlesville Project Office (BPO) of the Department of Energy (DOE), co-located in Bartlesville, Oklahoma. The assessment investigated the status of the environmental, safety, and health (ES&H) programs of the two organizations. The Tiger Team Assessment was conducted from April 6 to May 1, 1992, under the auspices of DOE`s Office of Special Projects (OSP) in the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health issues; management practices; quality assurance;more » and NIPER and BPO self-assessments. Compliance with Federal, state, and local regulations; DOE Orders; best management practices; and internal IITRI requirements was assessed. In addition, an evaluation was conducted of the adequacy and effectiveness of BPO and IITRI management of the ES&H and self-assessment processes. The NIPER/BPO Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES&H requirements, root causes for noncompliance, adequacy of DOE and contractor ES&H management programs, response actions to address the identified problem areas, and DOE-wide ES&H compliance trends and root causes.« less

  3. Environmental management assessment of the National Institute for Petroleum and Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-08-01

    This report documents the results of the environmental management assessment of the National Institute for Petroleum and Energy Research (NIPER), located in Bartlesville, Oklahoma. The assessment was conducted August 15-26, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health. The assessment included reviews of documents and reports, as well as inspections and observations of selected facilities and operations. Further, the team conducted interviews with management and staff from the Bartlesville Project Office (BPO), the Office of Fossil Energy (FE), the Pittsburgh Energy Technology Center (PETC), state and local regulatory agencies, andmore » BDM Oklahoma (BDM-OK), which is the management and operating (M&O) contractor for NIPER. Because of the transition from a cooperative agreement to an M&O contract in January 1994, the scope of the assessment was to evaluate (1) the effectiveness of BDM-OK management systems being developed and BPO systems in place and under development to address environmental requirements; (2) the status of compliance with DOE Orders, guidance, and directives; and (3) conformance with accepted industry management practices. An environmental management assessment was deemed appropriate at this time in order to identify any systems modifications that would provide enhanced effectiveness of the management systems currently under development.« less

  4. AVGAS/AUTOGAS (Aviation Gasoline/Automobile Gasoline) Comparison. Winter Grade Fuels.

    DTIC Science & Technology

    1986-07-01

    mass MAP Manifold pressure - inHg MON Motor Octane Number NIPER National Institute of Petroleum and Energy Resources Pamb Ambient pressure - inHg...pressure - psig si Sea level (used as a subscript) STC Supplemental Type Certificate Tamb Ambient temperature - degC or degF Tdew Dew point - degC or degF...temperature deg C #2 exhaust gas temperature deg C #3 exhaust gas temperature deg C #4 exhaust gas temperature deg C Ambient air temperature deg C 6

  5. Conference Scene: nanomedicine kindles the development of the 'elixir of life'.

    PubMed

    Jain, Sanyog; Das, Manasmita

    2011-06-01

    For the seventh time, nanomedicine experts from around the globe congregated in SAS Nagar, Punjab, for the Fourth Winter School on Nanotechnology in Advanced Drug Delivery, organized by the National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India. The program covered almost all the scintillating areas of nanomedicine, including novel nanosystems for oral, ocular and transdermal drug delivery, nanostructured surfaces for medical applications, 'smart' nanobullets for site-specific drug and gene delivery, designer nanoparticles for therapeutic delivery, tissue engineering and nanobiocomposites, cancer nanotherapy, and novel analytical and diagnostic tools. Special emphasis was given to the commercialization of nanomedical products, including issues related to intellectual property and risk management.

  6. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, D.W.; Whisman, M.L.

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in whichmore » experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.« less

  7. SubCellProt: predicting protein subcellular localization using machine learning approaches.

    PubMed

    Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan

    2009-01-01

    High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybicki, E.F.; Luiskutty, C.T.; Sutrick, J.S.

    This research is part of a larger program sponsored by the United States Department of Energy with the objective of developing better methods to produce gas from low permeability formations in western gas sands. This large research program involves several universities and research centers. Each group is involved in a different area of study to answer specific questions. The hydraulic fracturing computer model has three components---a model for fracture geometry, a model for proppant transport, and a computer program that couples the two models. The fracture geometry model was developed at Oral Roberts University and the proppant transport model wasmore » developed at The University of Tulsa prior to the start of the present work. The present work is directed at enhancing the capabilities of these two models and coupling them to obtain a single model for evaluating the final fracture geometry and proppant distribution within the fracture. The report is organized into four parts. Part 1 describes the fracture geometry modeling effort accomplished at Oral Roberts University, NIPER and recently at The University of Tulsa. The proppant transport model, developed for constant height fractures at the University of Tulsa, is contained in Part 2. The coupling of the Proppant Transport Model and the model for the variable height fracture geometry constitutes Part 3 of this report. Part 4 presents a summary of accomplishments and recommendations of this study. 112 refs., 147 figs., 70 tabs.« less

  9. Recovery of Navy distillate fuel from reclaimed product. Volume I. Technical discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). The first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in whichmore » experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 referenvces and abstracts. This appendix, because of its volume, has been published separately as Volume 2. 18 figures, 4 tables.« less

  10. Technique development for characterization of metalloorganics in acid-base-neutral fractions of heavy petroleum residues: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, C.D.; Green, J.B.

    1988-01-01

    A novel approach for the characterization of metallorganic compounds in heavy petroleum residues has been developed. Wilmington 1000/sup 0/ F+ and Mayan 925/sup 0/ F+ residues and hydrotreated products were separated into acid-base-neutral (ABN) fractions by a unique nonaqueous ion-exchange technique developed at NIPER. The metal complexes in the feeds, hydrotreated products and ABN fractions were then characterized by determining the total vanadium and nickel and by measuring the vanadium and nickel porphyrin content of each fraction. Molecular weight distribution profiles of the vanadium and nickel compounds in the feed, 400/sup 0/C hydrotreated product and corresponding ABN fractions were obtainedmore » by size exclusion chromatography/inductively coupled plasma. The majority of the metal appeared to be in non-porphyrinic form. The vanadium and nickel complexes were distributed into all of the ABN fractions. In the feed and the whole hydrotreated products the porphyrin levels decreased as hydrotreating temperatures increased. In contrast to previously reported work, porphyrins do not always decrease when hydrotreated. The amount of porphyrins in certain ABN fractions increased after hydrotreating at moderate temperatures. The Mayan V and Ni complexes were more resistant to hydrotreating than the Wilmington metal complexes; in particular, the high molecular weight Mayan metal complexes were more resistant to hydrotreating than the high molecular weight Wilmington metal complexes. 15 refs., 11 figs., 10 tabs.« less

  11. A new statistical dispersion model for tracer tests and contaminant spread in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ates, H.; Kasap, E.

    Dispersion of solutes moving in permeable media is an essential control to describe fluid flow in permeable media. Dispersion can be thought of as a spreading of a solute caused by the presence of microscopic inhomogeneities. An accurate model for dispersion is needed for accurate estimation of oil recovery efficiencies and clean up costs of subsurface contaminants. Current approaches utilizing the fickian assumption fall short in describing the real physics of spreading during a solute transport process. Numerous field investigations have shown that dispersivities measured in the field are much larger than those measured in the lab for the samemore » type of porous material. Moreover, field measured dispersivities have been shown to be scale dependent, that is, a tracer test conducted over a longer travel path will yield a larger dispersivity value than a tracer test conducted in the same geologic formation over a shorter travel path. Numerous approaches to address this problem have been developed yet none attempted to go beyond the Fickian dispersion assumption. In this study, a convective dispersivity is introduced. New model assumes that dispersion is dimensionless and mainly determined by pore size distribution. The new model results in a spread that increases linearly with time contrary to conventional model, which predicts a mixing zone length that increases with square root of time. Therefore, new model explains the field test results that indicate increasing dispersivity with distance. The model validations are in perfect agreement with experimental results, which include; Ganapathy et al.`s slug experiment on Antolini sandstone, Handy`s radioactive tracer experiment on Alhambra sandstone, and CT experiment conducted at BDM-OK/NIPER facilities on Tallant sandstone.« less

Top