Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka
2016-01-01
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688
Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka
2016-03-22
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT.
Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Iwano, Takayuki; Umeyama, Shinji
2015-12-01
fNIRS (functional near-Infrared spectroscopy) can measure brain activity non-invasively and has advantages such as low cost and portability. While the conventional fNIRS has used laser light, LED light fNIRS is recently becoming common in use. Using LED for fNIRS, equipment can be more inexpensive and more portable. LED light, however, has a wider illumination spectrum than laser light, which may change crosstalk between the calculated concentration change of oxygenated and deoxygenated hemoglobins. The crosstalk is caused by difference in light path length in the head tissues depending on wavelengths used. We conducted Monte Carlo simulations of photon propagation in the tissue layers of head (scalp, skull, CSF, gray matter, and white matter) to estimate the light path length in each layers. Based on the estimated path lengths, the crosstalk in fNIRS using LED light was calculated. Our results showed that LED light more increases the crosstalk than laser light does when certain combinations of wavelengths were adopted. Even in such cases, the crosstalk increased by using LED light can be effectively suppressed by replacing the value of extinction coefficients used in the hemoglobin calculation to their weighted average over illumination spectrum.
Wang, Ling; Dong, Hao; Li, Yannian; Xue, Chenming; Sun, Ling-Dong; Yan, Chun-Hua; Li, Quan
2014-03-26
Adding external, dynamic control to self-organized superstructures with desired functionalities is an important leap necessary in leveraging the fascinating molecular systems for applications. Here, the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were able to self-organize into an optically tunable helical superstructure. The resulting nanoparticle impregnated helical superstructure was found to exhibit unprecedented reversible near-infrared (NIR) light-guided tunable behavior only by modulating the excitation power density of a continuous-wave NIR laser (980 nm). Upon irradiation by the NIR laser at the high power density, the reflection wavelength of the photonic superstructure red-shifted, whereas its reverse process occurred upon irradiation by the same laser but with the lower power density. Furthermore, reversible dynamic NIR-light-driven red, green, and blue reflections in a single thin film, achieved only by varying the power density of the NIR light, were for the first time demonstrated.
Indocyanine green-laser thermolysis of acne vulgaris
NASA Astrophysics Data System (ADS)
Genina, Elina A.; Bashkatov, Alexey N.; Simonenko, Georgy V.; Tuchin, Valery V.; Yaroslavsky, Ilya V.; Altshuler, Gregory B.
2005-08-01
The near-infrared (NIR) laser radiation due to its high penetration depth is widely used in phototherapy and photothermolysis. In application to skin appendages a high selectivity of laser treatment is needed to prevent light action on surrounding tissues. Indocyanine Green (ICG) dye may provide a high selectivity of treatment due to effective ICG uploading by a target and its narrow band of considerable absorption just at the wavelength of the NIR diode laser. The goal of this study is to demonstrate the efficacy of the NIR diode laser photothermolysis in combination with topical application of ICG suggested for treatment of acne vulgaris. Two volunteers with back-located acne were enrolled. Skin sites of subjects were stained by ICG and irradiated by NIR laser-diode light (803 or 809 nm). The individual acne lesions were photothermally treated at 18 W/cm2 (803 nm, 0.5 sec) without skin surface cooling or at 200 W/cm2 (809 nm, 0.5 sec) with cooling. The results of the observations during a month after the treatment have shown that ICG stained acne inflammatory elements were destructed for light exposures of 0.5 sec.
Sundaramoorthy, Sriramkumar; Badaracco, Adrian Garcia; Hirsch, Sophia M.; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C.; Canman, Julie C.
2017-01-01
The combination of near infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25,000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically-encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (~2 µm versus ~8 µm beam broadening respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast S. cerevisiae. In summary, nano-UCPs are powerful new tools for coaligning NIR and visible light paths on a light microscope. PMID:28221018
Yang, Xiaoping; Su, Lih-Jen; La Rosa, Francisco G; Smith, Elizabeth Erin; Schlaepfer, Isabel R; Cho, Suehyun K; Kavanagh, Brian; Park, Wounjhang; Flaig, Thomas W
2017-07-27
Gold nanoparticles treated with near infrared (NIR) light can be heated preferentially, allowing for thermal ablation of targeted cells. The use of novel intravesical nanoparticle-directed therapy in conjunction with laser irradiation via a fiber optic cystoscope, represents a potential ablative treatment approach in patients with superficial bladder cancer. To examine the thermal ablative effect of epidermal growth factor receptor (EGFR)-directed gold nanorods irradiated with NIR light in an orthotopic urinary bladder cancer model. Gold nanorods linked to an anti-EGFR antibody (Conjugated gold NanoRods - CNR) were instilled into the bladder cavity of an orthotopic murine xenograft model with T24 bladder cancer cells expressing luciferase. NIR light was externally administered via an 808 nm diode laser. This treatment was repeated weekly for 4 weeks. The anti-cancer effect was monitored by an in vivo imaging system in a non-invasive manner, which was the primary outcome of our study. The optimal approach for an individual treatment was 2.1 W/cm 2 laser power for 30 seconds. Using this in vivo model, NIR light combined with CNR demonstrated a statistically significant reduction in tumor-associated bioluminescent activity ( n = 16) compared to mice treated with laser alone ( n = 14) at the end of the study ( p = 0.035). Furthermore, the CNR+NIR light treatment significantly abrogated bioluminescence signals over a 6-week observation period, compared to pre-treatment levels ( p = 0.045). Photothermal tumor ablation with EGFR-directed gold nanorods and NIR light proved effective and well tolerated in a murine in vivo model of urinary bladder cancer.
Salehpour, Farzad; Rasta, Seyed Hossein; Mohaddes, Gisou; Sadigh-Eteghad, Saeed; Salarirad, Sima
2016-09-01
The application of transcranial low-level light/laser therapy (tLLLT) in the range of red to near-infrared (NIR) spectrum for psychological disorders is a new area that is attracting growing interest in recent years. The photomodulation effects of NIR and red coherent lights on the activity of cytochrome c oxidase in neuronal cells of brain have been recently introduced. This study, therefore, sought to compare the therapeutic effects of 10-Hz pulsed wave NIR (810 nm) laser with red (630 nm) laser using the same delivered energy density and Citalopram in rat chronic mild stress (CMS) model of depression and anxiety. CMS procedures (for 4 weeks) were used to induce stress. GaAlAs diode laser with red and NIR wavelengths on 10-Hz pulsed wave (50% duty cycle) were used to perform tLLLT treatment for three weeks. An energy density of about 1.2 J/cm-(2) per each session was delivered through a light spot with a diameter of 3-mm to the prefrontal cortex for both wavelengths. Citalopram (10 mg/kg, Intraperitoneal) was administered for twenty-one consecutive days to the drug group. The findings of the present study showed an increase in swimming and decrease in immobility time, for both NIR laser and Citalopram groups compared to the stress group in forced swimming test. Anxiety-like behaviors showed insignificant decrease in all treatment groups in elevated plus maze test. The induction of stress significantly increased serum cortisol levels and treatments with both red laser and Citalopram decreased it. Hyperglycemia induced by CMS returned to normal levels in all treatment groups. The assessment of body weight also showed a significant increase in NIR laser group compared to the stress group by the end of the experiment. This study showed that non-invasive tLLLT using 10-Hz pulsed NIR laser light was as effective as Citalopram and more effective than red laser in the treatment of depressive-like behaviors and may help improve tLLLT as an alternative non-pharmacological treatments of psychological disorders such as depression. Lasers Surg. Med. 48:695-705, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Morse, Kaitlyn; Kimizuka, Yoshifumi; Chan, Megan P K; Shibata, Mai; Shimaoka, Yusuke; Takeuchi, Shu; Forbes, Benjamin; Nirschl, Christopher; Li, Binghao; Zeng, Yang; Bronson, Roderick T; Katagiri, Wataru; Shigeta, Ayako; Sîrbulescu, Ruxandra F; Chen, Huabiao; Tan, Rhea Y Y; Tsukada, Kosuke; Brauns, Timothy; Gelfand, Jeffrey; Sluder, Ann; Locascio, Joseph J; Poznansky, Mark C; Anandasabapathy, Niroshana; Kashiwagi, Satoshi
2017-08-15
Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has the capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. In this study we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations. We found that a continuous wave (CW) NIR laser adjuvant broadly modulates migratory DC (migDC) populations, specifically increasing and activating the Lang + and CD11b - Lang - subsets in skin, and that the Ab responses augmented by the CW NIR laser are dependent on DC subsets expressing CCR2 and Langerin. In comparison, a pulsed wave NIR laser adjuvant showed limited effects on the migDC subsets. Our vaccination study demonstrated that the efficacy of the CW NIR laser is significantly better than that of the pulsed wave laser, indicating that the CW NIR laser offers a desirable immunostimulatory microenvironment for migDCs. These results demonstrate the unique ability of the NIR laser adjuvant to selectively target specific migDC populations in skin depending on its parameters, and highlight the importance of optimization of laser parameters for desirable immune protection induced by an NIR laser-adjuvanted vaccine. Copyright © 2017 by The American Association of Immunologists, Inc.
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Lindwasser, Lukas; Budansky, Yury; Leproux, Philippe; Alfano, R. R.
2015-03-01
Supercontinuum light (SC) at wavelengths in the second (1,100 nm to 1,350 nm) and third (1,600 nm to 1,870 nm) NIR optical windows can be used to improve penetration depths of light through tissue and produce clearer images. Image quality is increased due to a reduction in scattering (inverse wavelength power dependence 1/λn, n≥1). We report on the use of a compact Leukos supercontinuum laser (model STM-2000-IR), which utilizes the spectral range from 700 nm to 2,400 nm and offers between 200 - 500 microwatt/nm power in the second and third NIR windows, with an InGaAs detector to image abnormalities hidden beneath thick tissue.
Imaging using a supercontinuum laser to assess tumors in patients with breast carcinoma
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.
2016-03-01
The supercontinuum laser light source has many advantages over other light sources, including broad spectral range. Transmission images of paired normal and malignant breast tissue samples from two patients were obtained using a Leukos supercontinuum (SC) laser light source with wavelengths in the second and third NIR optical windows and an IR- CCD InGaAs camera detector (Goodrich Sensors Inc. high response camera SU320KTSW-1.7RT with spectral response between 900 nm and 1,700 nm). Optical attenuation measurements at the four NIR optical windows were obtained from the samples.
Near-Infrared Laser Adjuvant for Influenza Vaccine
Kashiwagi, Satoshi; Yuan, Jianping; Forbes, Benjamin; Hibert, Mathew L.; Lee, Eugene L. Q.; Whicher, Laura; Goudie, Calum; Yang, Yuan; Chen, Tao; Edelblute, Beth; Collette, Brian; Edington, Laurel; Trussler, James; Nezivar, Jean; Leblanc, Pierre; Bronson, Roderick; Tsukada, Kosuke; Suematsu, Makoto; Dover, Jeffrey; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C.
2013-01-01
Safe and effective immunologic adjuvants are often essential for vaccines. However, the choice of adjuvant for licensed vaccines is limited, especially for those that are administered intradermally. We show that non-tissue damaging, near-infrared (NIR) laser light given in short exposures to small areas of skin, without the use of additional chemical or biological agents, significantly increases immune responses to intradermal influenza vaccination without augmenting IgE. The NIR laser-adjuvanted vaccine confers increased protection in a murine influenza lethal challenge model as compared to unadjuvanted vaccine. We show that NIR laser treatment induces the expression of specific chemokines in the skin resulting in recruitment and activation of dendritic cells and is safe to use in both mice and humans. The NIR laser adjuvant technology provides a novel, safe, low-cost, simple-to-use, potentially broadly applicable and clinically feasible approach to enhancing vaccine efficacy as an alternative to chemical and biological adjuvants. PMID:24349390
ICG laser therapy of acne vulgaris
NASA Astrophysics Data System (ADS)
Tuchin, Valery V.; Altshuler, Gregory B.; Genina, Elina A.; Bashkatov, Alexey N.; Simonenko, Georgy V.; Odoevskaya, Olga D.; Yaroslavsky, Ilya V.
2004-07-01
The near-infrared (NIR) laser radiation due to its high penetration depth is widely used in phototherapy. In application to skin appendages a high selectivity of laser treatment is needed to prevent light action on surrounding tissues. Indocyanine Green (ICG) dye may provide a high selectivity of treatment due to effective ICG uploading by a target and its narrow band of considerable absorption just at the wavelength of the NIR diode laser. The goal of this study is to demonstrate the efficacy of the NIR diode laser phototherapy in combination with topical application of ICG suggested for soft and thermal treatment of acne vulgaris. 28 volunteers with facile or back-located acne were enrolled. Skin sites of subjects were stained by ICG and irradiated by NIR laser-diode light (803 or 809 nm). Untreated, only stained and only light irradiated skin areas served as controls. For soft acne treatment, the low-intensity (803 nm, 10 - 50 mW/cm2, 5-10 min) or the medium-intensity (809 nm, 150 - 190 mW/cm2, 15 min) protocols were used. The single and multiple (up to 8-9) treatments were provided. The individual acne lesions were photothermally treated at 18 W/cm2 (803 nm, 0.5 sec) without skin surface cooling or at 200 W/cm2 (809 nm, 0.5 sec) with cooling. The results of the observations during 1-2 months after the completion of the treatment have shown that only in the case of the multiple-wise treatment a combined action of ICG and NIR irradiation reduces inflammation and improves skin state during a month without any side effects. At high power densities (up to 200 W/cm2) ICG stained acne inflammatory elements were destructed for light exposures of 0.5 sec. Based on the concept that hair follicle, especially sebaceous gland, can be intensively and selectively stained by ICG due to dye diffusion through pilosebaceous canal and its fast uptake by living microorganisms, by vital keratinocytes of epithelium of the canal and sebaceous duct, and by rapidly proliferating sebocytes, new technologies of soft and thermal acne lesions treatment that could be used in clinical treatment of acne were proposed.
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Lindwasser, Lukas; Budansky, Yury; Leproux, Philippe; Alfano, Robert R.
2015-03-01
With the use of longer near-infrared (NIR) wavelengths, image quality can be increased due to less scattering (described by the inverse wavelength power dependence 1/λn where n≥1) and minimal absorption from water molecules. Longer NIR windows, known as the second (1100 nm to 1350 nm) and third (1600 to 1870 nm) NIR windows are utilized to penetrate more deeply into tissue media and produce high-quality images. An NIR supercontinuum (SC) laser light source, with wavelengths in the second and third NIR optical windows to image tissue provides ballistic imaging of tissue. The SC ballistic beam can penetrate depths of up to 10 mm through tissue.
Selective removal of demineralized enamel using a CO2 laser coupled with near-IR reflectance imaging
NASA Astrophysics Data System (ADS)
Tom, Henry; Chan, Kenneth H.; Saltiel, Daniel; Fried, Daniel
2015-02-01
Detection and diagnosis of early dental caries lesions can be difficult due to variable tooth coloration, staining of the teeth and poor contrast between sound and demineralized enamel. These problems can be overcome by using near-infrared (NIR) imaging. Previous studies have demonstrated that lasers can be integrated with NIR imaging devices, allowing image-guided ablation. The aim of this study was to demonstrate that NIR light at 1500 - 1700 nm can be used to guide a 9.3-μm CO2 laser for the selective ablation of early demineralization on tooth occlusal surfaces. The occlusal surfaces of ten sound human molars were used in this in-vitro study. Shallow simulated caries lesions of varying depth and position were produced on tooth occlusal surfaces using a demineralization solution. Sequential NIR reflectance images at 1500 - 1700 nm were used to guide the laser for selective ablation of the lesion areas. Digital microscopy and polarization sensitive optical coherence tomography (PS-OCT) were used to assess the selectivity of removal. This study demonstrates that high contrast NIR reflectance images can be used for the image-guided laser ablation of early demineralization from tooth occlusal surfaces.
NASA Astrophysics Data System (ADS)
Giacometti, Paolo; Diamond, Solomon G.
Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.
Sahu, Abhishek; Lee, Jong Hyun; Lee, Hye Gyeong; Jeong, Yong Yeon; Tae, Giyoong
2016-08-28
Developing novel nanotheranostic agent using only clinically approved materials is highly desirable and challenging. In this study, we combined three clinically approved materials, Prussian blue (PB), serum albumin (BSA), and indocyanine green (ICG), by a simple and biocompatible method to prepare a multifunctional theranostic PB-BSA-ICG nanoparticle. The multifunctional nanoparticle system could provide dual mode magnetic resonance (MR) and near infrared (NIR) fluorescence imaging as well as combined photothermal and photodynamic (PTT-PDT) therapy in response to a single NIR laser. This nanoparticle showed an excellent stability in physiological solutions and could suppress the photo-instability of ICG. In the absence of light, the nanoparticles showed no cytotoxicity, but significant cell death was induced through combined PTT-PDT effect after irradiation with NIR laser light. A high tumor accumulation and minimal nonspecific uptake by other major organs of PB-BSA-ICG nanoparticle were observed in vivo, analyzed by T1-weighted MR and NIR fluorescence bimodal imaging in tumor xenograft mice after intravenous injection. The nanoparticles efficiently suppressed the tumor growth through combinatorial phototherapy with no tumor recurrence upon a single NIR laser irradiation. These results demonstrated that PB-BSA-ICG is potentially an interesting nanotheranostic agent for imaging guided cancer therapy by overcoming the limitations of each technology and enhancing the therapeutic efficiency as well as reducing side effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Safety assessment of near infrared light emitting diodes for diffuse optical measurements
Bozkurt, Alper; Onaral, Banu
2004-01-01
Background Near infrared (NIR) light has been used widely to monitor important hemodynamic parameters in tissue non-invasively. Pulse oximetry, near infrared spectroscopy, and diffuse optical tomography are examples of such NIR light-based applications. These and other similar applications employ either lasers or light emitting diodes (LED) as the source of the NIR light. Although the hazards of laser sources have been addressed in regulations, the risk of LED sources in such applications is still unknown. Methods Temperature increase of the human skin caused by near infrared LED has been measured by means of in-vivo and in-vitro experiments. Effects of the conducted and radiated heat in the temperature increase have been analyzed separately. Results Elevations in skin temperature up to 10°C have been observed. The effect of radiated heat due to NIR absorption is low – less than 0.5°C – since emitted light power is comparable to the NIR part of sunlight. The conducted heat due to semiconductor junction of the LED can cause temperature increases up to 9°C. It has been shown that adjusting operational parameters by amplitude modulating or time multiplexing the LED decreases the temperature increase of the skin significantly. Conclusion In this study, we demonstrate that the major risk source of the LED in direct contact with skin is the conducted heat of the LED semiconductor junction, which may cause serious skin burns. Adjusting operational parameters by amplitude modulating or time multiplexing the LED can keep the LED within safe temperature ranges. PMID:15035670
Ringsted, Tine; Dupont, Sune; Ramsay, Jacob; Jespersen, Birthe Møller; Sørensen, Klavs Martin; Keiding, Søren Rud; Engelsen, Søren Balling
2016-07-01
The supercontinuum laser is a new type of light source, which combines the collimation and intensity of a laser with the broad spectral region of a lamp. Using such a source therefore makes it possible to focus the light onto small sample areas without losing intensity and thus facilitate either rapid or high-intensity measurements. Single seed transmission analysis in the long wavelength (LW) near-infrared (NIR) region is one area that might benefit from a brighter light source such as the supercontinuum laser. This study is aimed at building an experimental spectrometer consisting of a supercontinuum laser source and a dispersive monochromator in order to investigate its capability to measure the barley endosperm using transmission experiments in the LW NIR region. So far, barley and wheat seeds have only been studied using NIR transmission in the short wavelength region up to 1100 nm. However, the region in the range of 2260-2380 nm has previously shown to be particularly useful in differentiating barley phenotypes using NIR spectroscopy in reflectance mode. In the present study, 350 seeds (consisting of 70 seeds from each of five barley genotypes) in 1 mm slices were measured by NIR transmission in the range of 2235-2381 nm and oils from the same five barley genotypes were measured in a cuvette with a 1 mm path length in the range of 2003-2497 nm. The spectra of the barley seeds could be classified according to genotypes by principal component analysis; and spectral covariances with reference analysis of moisture, β-glucan, starch, protein and lipid were established. The spectral variations of the barley oils were compared to the fatty acid compositions as measured using gas chromotography-mass spectrometry (GC-MS). © The Author(s) 2016.
Non-contact finger vein acquisition system using NIR laser
NASA Astrophysics Data System (ADS)
Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan
2009-02-01
Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.
Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light
NASA Astrophysics Data System (ADS)
Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young
2016-07-01
Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications. Electronic supplementary information (ESI) available: FE-SEM image of thiol-acrylate hydrogels; UV/Vis spectra of Ellman's assay; the temperature increase during transdermal photothermal hydrogelation. See DOI: 10.1039/c6nr01956k
NASA Astrophysics Data System (ADS)
Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.
2016-02-01
Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.
Tsuboi, Yasuyuki; Shimizu, Ryosuke; Shoji, Tatsuya; Kitamura, Noboru
2009-09-09
We demonstrate that a photochromic reaction can be driven by irradiation from a weak, near-infrared continuous-wave (NIR-CW) laser light. A two-photon ring-opening photochromic reaction of a diarylethene (DE) derivative can be induced by irradiation with a NIR-CW laser light (lambda = 808 nm). An ultrathin polymer film doped with DE in its closed form was coated onto a gold-nanoparticle-integrated glass substrate. Upon irradiation of the sample with a CW laser at low fluence (0.1-4.0 W/cm(2)), we could clearly observe bleaching of the DE (ring-opening reaction). Following the IR irradiation, the bleached absorption could be reversibly recovered by applying UV irradiation (ring-closing reaction). We verified that the yield of the photochromic ring-opening reaction of the DE was proportional to the square of the irradiation fluence. The origin of this NIR-CW-induced two-photon photochromic reaction is an "enhancing effect" that acts on the electromagnetic field (localized surface plasmon) of the gold nanoparticles. The DE interacts with the surface plasmon and receives energy from two photons, which excites it to a state from which the ring-opening reaction can be initiated.
Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities
USDA-ARS?s Scientific Manuscript database
A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...
Near-Infrared-Induced Heating of Confined Water in Polymeric Particles for Efficient Payload Release
2015-01-01
Near-infrared (NIR) light-triggered release from polymeric capsules could make a major impact on biological research by enabling remote and spatiotemporal control over the release of encapsulated cargo. The few existing mechanisms for NIR-triggered release have not been widely applied because they require custom synthesis of designer polymers, high-powered lasers to drive inefficient two-photon processes, and/or coencapsulation of bulky inorganic particles. In search of a simpler mechanism, we found that exposure to laser light resonant with the vibrational absorption of water (980 nm) in the NIR region can induce release of payloads encapsulated in particles made from inherently non-photo-responsive polymers. We hypothesize that confined water pockets present in hydrated polymer particles absorb electromagnetic energy and transfer it to the polymer matrix, inducing a thermal phase change. In this study, we show that this simple and highly universal strategy enables instantaneous and controlled release of payloads in aqueous environments as well as in living cells using both pulsed and continuous wavelength lasers without significant heating of the surrounding aqueous solution. PMID:24717072
Viger, Mathieu L; Sheng, Wangzhong; Doré, Kim; Alhasan, Ali H; Carling, Carl-Johan; Lux, Jacques; de Gracia Lux, Caroline; Grossman, Madeleine; Malinow, Roberto; Almutairi, Adah
2014-05-27
Near-infrared (NIR) light-triggered release from polymeric capsules could make a major impact on biological research by enabling remote and spatiotemporal control over the release of encapsulated cargo. The few existing mechanisms for NIR-triggered release have not been widely applied because they require custom synthesis of designer polymers, high-powered lasers to drive inefficient two-photon processes, and/or coencapsulation of bulky inorganic particles. In search of a simpler mechanism, we found that exposure to laser light resonant with the vibrational absorption of water (980 nm) in the NIR region can induce release of payloads encapsulated in particles made from inherently non-photo-responsive polymers. We hypothesize that confined water pockets present in hydrated polymer particles absorb electromagnetic energy and transfer it to the polymer matrix, inducing a thermal phase change. In this study, we show that this simple and highly universal strategy enables instantaneous and controlled release of payloads in aqueous environments as well as in living cells using both pulsed and continuous wavelength lasers without significant heating of the surrounding aqueous solution.
NASA Astrophysics Data System (ADS)
Matteini, Paolo; Banchelli, Martina; Cottat, Maximilien; Osticioli, Iacopo; de Angelis, Marella; Rossi, Francesca; Pini, Roberto
2016-03-01
In previous works a minimally invasive laser-assisted technique for vascular repair was presented. The technique rests on the photothermal adhesion of a biocompatible and bioresorbable patch containing Indocyanine Green that is brought into contact with the site to be repaired. Afterward the use of NIR millisecond-long light pulses generates a strong welding effect between the patch and the underlying tissue and in turn the repair of the wound. This technique was shown to be effective in animal model and provides several advantages over conventional suturing methods. Here we investigate and discuss the optical stability of the ICG-biopolymeric patches and the photothermal effects induced to the irradiated tissue.
Wu, Bo; Wan, Bing; Lu, Shu-Ting; Deng, Kai; Li, Xiao-Qi; Wu, Bao-Lin; Li, Yu-Shuang; Liao, Ru-Fang; Huang, Shi-Wen; Xu, Hai-Bo
2017-01-01
The major challenge in current clinic contrast agents (CAs) and chemotherapy is the poor tumor selectivity and response. Based on the self-quench property of IR820 at high concentrations, and different contrast effect ability of Gd-DOTA between inner and outer of liposome, we developed “bomb-like” light-triggered CAs (LTCAs) for enhanced CT/MRI/FI multimodal imaging, which can improve the signal-to-noise ratio of tumor tissue specifically. IR820, Iohexol and Gd-chelates were firstly encapsulated into the thermal-sensitive nanocarrier with a high concentration. This will result in protection and fluorescence quenching. Then, the release of CAs was triggered by near-infrared (NIR) light laser irradiation, which will lead to fluorescence and MRI activation and enable imaging of inflammation. In vitro and in vivo experiments demonstrated that LTCAs with 808 nm laser irradiation have shorter T1 relaxation time in MRI and stronger intensity in FI compared to those without irradiation. Additionally, due to the high photothermal conversion efficiency of IR820, the injection of LTCAs was demonstrated to completely inhibit C6 tumor growth in nude mice up to 17 days after NIR laser irradiation. The results indicate that the LTCAs can serve as a promising platform for NIR-activated multimodal imaging and photothermal therapy. PMID:28670120
NASA Astrophysics Data System (ADS)
Shinoj, V. K.; Murukeshan, V. M.; Hong, Jesmond; Baskaran, M.; Aung, Tin
2015-07-01
Noninvasive medical imaging techniques have generated great interest and high potential in the research and development of ocular imaging and follow up procedures. It is well known that angle closure glaucoma is one of the major ocular diseases/ conditions that causes blindness. The identification and treatment of this disease are related primarily to angle assessment techniques. In this paper, we illustrate a probe-based imaging approach to obtain the images of the angle region in eye. The proposed probe consists of a micro CCD camera and LED/NIR laser light sources and they are configured at the distal end to enable imaging of iridocorneal region inside eye. With this proposed dualmodal probe, imaging is performed in light (white visible LED ON) and dark (NIR laser light source alone) conditions and the angle region is noticeable in both cases. The imaging using NIR sources have major significance in anterior chamber imaging since it evades pupil constriction due to the bright light and thereby the artificial altering of anterior chamber angle. The proposed methodology and developed scheme are expected to find potential application in glaucoma disease detection and diagnosis.
Polarimetric imaging of retinal disease by polarization sensitive SLO
NASA Astrophysics Data System (ADS)
Miura, Masahiro; Elsner, Ann E.; Iwasaki, Takuya; Goto, Hiroshi
2015-03-01
Polarimetry imaging is used to evaluate different features of the macular disease. Polarimetry images were recorded using a commercially- available polarization-sensitive scanning laser opthalmoscope at 780 nm (PS-SLO, GDx-N). From data sets of PS-SLO, we computed average reflectance image, depolarized light images, and ratio-depolarized light images. The average reflectance image is the grand mean of all input polarization states. The depolarized light image is the minimum of crossed channel. The ratio-depolarized light image is a ratio between the average reflectance image and depolarized light image, and was used to compensate for variation of brightness. Each polarimetry image is compared with the autofluorescence image at 800 nm (NIR-AF) and autofluorescence image at 500 nm (SW-AF). We evaluated four eyes with geographic atrophy in age related macular degeneration, one eye with retinal pigment epithelium hyperplasia, and two eyes with chronic central serous chorioretinopathy. Polarization analysis could selectively emphasize different features of the retina. Findings in ratio depolarized light image had similarities and differences with NIR-AF images. Area of hyper-AF in NIR-AF images showed high intensity areas in the ratio depolarized light image, representing melanin accumulation. Areas of hypo-AF in NIR-AF images showed low intensity areas in the ratio depolarized light images, representing melanin loss. Drusen were high-intensity areas in the ratio depolarized light image, but NIR-AF images was insensitive to the presence of drusen. Unlike NIR-AF images, SW-AF images showed completely different features from the ratio depolarized images. Polarization sensitive imaging is an effective tool as a non-invasive assessment of macular disease.
Monich, Victor A; Bavrina, Anna P; Malinovskaya, Svetlana L
2018-01-01
Exposure of living tissues to high-intensity red or near-infrared light can produce the oxidative stress effects both in the target zone and adjacent ones. The protein oxidative modification (POM) products can be used as reliable and early markers of oxidative stress. The contents of modified proteins in the investigated specimens can be evaluated by the 2,4-dinitrophenylhydrazine assay (the DNPH assay). Low-intensity red light is able to decrease the activity of oxidative processes and the DNPH assay data about the POM products in the biological tissues could show both an oxidative stress level and an efficiency of physical agent protection against the oxidative processes. Two control groups of white rats were irradiated by laser light, the first control group by red light and the second one by near-infrared radiation (NIR).Two experimental groups were consequently treated with laser and red low-level light-emitting diode radiation (LED). One of them was exposed to red laser light + LED and the other to NIR + LED. The fifth group was intact. Each group included ten animals. The effect of laser light was studied by methods of protein oxidative modifications. We measured levels of both induced and spontaneous POM products by the DNPH assay. The dramatic increase in levels of POM products in the control group samples when compared with the intact group data as well as the sharp decrease in the POM products in the experimental groups treated with LED low-level light were statistically significant (p ≤ 0.05). Exposure of skeletal muscles to high-intensity red and near-infrared laser light causes oxidative stress that continues not less than 3 days. The method of measurement of POM product contents by the DNPH assay is a reliable test of an oxidative process rate. Red low-intensity LED radiation can provide rehabilitation of skeletal muscle tissues treated with high-intensity laser light.
Near infrared laser-tissue welding using nanoshells as an exogenous absorber.
Gobin, Andre M; O'Neal, D Patrick; Watkins, Daniel M; Halas, Naomi J; Drezek, Rebekah A; West, Jennifer L
2005-08-01
Gold nanoshells are a new class of nanoparticles that can be designed to strongly absorb light in the near infrared (NIR). These particles provide much larger absorption cross-sections and efficiency than can be achieved with currently used chemical chromophores without photobleaching. In these studies, we have investigated the use of gold nanoshells as exogenous NIR absorbers to facilitate NIR laser-tissue welding. Gold nanoshells with peak extinction matching the NIR wavelength of the laser being used were manufactured and suspended in an albumin solder. Optimization work was performed on ex vivo muscle samples and then translated into testing in an in vivo rat skin wound-healing model. Mechanical testing of the muscle samples was immediately performed and compared to intact tissue mechanical properties. In the in vivo study, full thickness incisions in the dorsal skin of rats were welded, and samples of skin were excised at 0, 5, 10, 21, and 32 days for analysis of strength and wound healing response. Mechanical testing of nanoshell-solder welds in muscle revealed successful fusion of tissues with tensile strengths of the weld site equal to the uncut tissue. No welding was accomplished with this light source when using solder formulations without nanoshells. Mechanical testing of the skin wounds showed sufficient strength for closure and strength increased over time. Histological examination showed good wound-healing response in the soldered skin. The use of nanoshells as an exogenous absorber allows the usage of light sources that are minimally absorbed by tissue components, thereby, minimizing damage to surrounding tissue and allowing welding of thicker tissues. (c) 2005 Wiley-Liss, Inc.
Light-driven liquid metal nanotransformers for biomedical theranostics
NASA Astrophysics Data System (ADS)
Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro
2017-05-01
Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging.
Light-driven liquid metal nanotransformers for biomedical theranostics
Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro
2017-01-01
Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging. PMID:28561016
Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods
NASA Astrophysics Data System (ADS)
Gramlich, William M.; Holloway, Julianne L.; Rai, Reena; Burdick, Jason A.
2014-01-01
Injectable hydrogels provide locally controlled tissue bulking and a means to deliver drugs and cells to the body. The formation of hydrogels in vivo may involve the delivery of two solutions that spontaneously crosslink when mixed, with pH or temperature changes, or with light (e.g., visible or ultraviolet). With these approaches, control over the kinetics of gelation, introduction of the initiation trigger (e.g., limited penetration of ultraviolet light through tissues), or alteration of the material physical properties (e.g., mechanics) may be difficult to achieve. To overcome these limitations, we used the interaction of near-infrared (NIR) light with gold nanorods (AuNRs) to generate heat through the photothermal effect. NIR light penetrates tissues to a greater extent than other wavelengths and provides a means to indirectly initiate radical polymerization. Specifically, this heating coupled with a thermal initiator (VA-044) produced radicals that polymerized methacrylated hyaluronic acid (MeHA) and generated hydrogels. A range of VA-044 concentrations changed the gelation time, yielding a system stable at 37 ° C for 22 min that gels quickly (˜3 min) when heated to 55 ° C. With a constant irradiation time (10 min) and laser power (0.3 W), different VA-044 and AuNR concentrations tuned the compressive modulus of the hydrogel. By changing the NIR irradiation time we attained a wide range of moduli at a set solution composition. In vivo mouse studies confirmed that NIR laser irradiation through tissue could gel an injected precursor solution transdermally.
Single bead near-infrared random laser based on silica-gel infiltrated with Rhodamine 640
NASA Astrophysics Data System (ADS)
Moura, André L.; Barbosa-Silva, Renato; Dominguez, Christian T.; Pecoraro, Édison; Gomes, Anderson S. L.; de Araújo, Cid B.
2018-04-01
Photoluminescence properties of single bead silica-gel (SG) embedded with a laser-dye were studied aiming at the operation of near-infrared (NIR) Random Lasers (RLs). The operation of RLs in the NIR spectral region is especially important for biological applications since the optical radiation has deep tissue penetration with negligible damage. Since laser-dyes operating in the NIR have poor stability and are poor emitters, ethanol solutions of Rhodamine 640 (Rh640) infiltrated in SG beads were used. The Rh640 concentrations in ethanol varied from 10-5 to 10-2 M and the excitation at 532 nm was made by using a 7 ns pulsed laser. The proof-of-principle RL scheme herein presented was adopted in order to protect the dye-molecules from the environment and to favor formation of aggregates. The RL emission from ≈650 nm to 720 nm, beyond the typical Rh640 monomer and dimer wavelengths emissions range, was attributed to the trade-off between reabsorption and reemission processes along the light pathways inside the SG bead and the contribution of Rh640 aggregates.
Novel self-assembled sandwich nanomedicine for NIR-responsive release of NO
Fan, Jing; He, Qianjun; Liu, Yi; Ma, Ying; Fu, Xiao; Liu, Yijing; Huang, Peng; He, Nongyue; Chen, Xiaoyuan
2015-01-01
A novel sandwich nanomedicine (GO-BNN6) for near-infrared (NIR) light responsive release of nitric oxide (NO) has been constructed by self-assembling of graphene oxide (GO) nanosheets and a NO donor BNN6 through the π-π stacking interaction. GO-BNN6 nanomedicine has an extraordinarily high drug loading capacity (1.2 mg BNN6 per mg GO), good thermal stability, and high NIR responsiveness. The NO release from GO-BNN6 can be easily triggered and effectively controlled by adjusting the switching, irradiation time and power density of NIR laser. The intracellular NIR-responsive release of NO from GO-BNN6 nanomedicine causes a remarkable anti-cancer effect. PMID:26568270
Development of a near-infrared spectroscopy instrument for applications in urology.
Macnab, Andrew J; Stothers, Lynn
2008-10-01
Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.
NASA Astrophysics Data System (ADS)
Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.
2011-07-01
Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.
Xiang, Jun; Ge, Feijie; Yu, Bing; Yan, Qiang; Shi, Feng; Zhao, Yue
2018-06-07
A new approach to encapsulating charged cargo molecules into a nanovector and subsequently using near-infrared (NIR) light to trigger the release is demonstrated. NIR light-responsive nanovector was prepared through electrostatic interaction-driven complexation between negatively charged silica-coated upconversion nanoparticles (UCNP@silica, 87 nm hydrodynamic diameter, polydispersity index ∼0.05) and a positively charged UV-labile polyelectrolyte bearing pendants of poly(ethylene glycol) and o-nitrobenzyl side groups; whereas charged fluorescein (FLU) was loaded through a co-complexation process. By controlling the amount of polyelectrolyte, UCNP@silica can be covered by the polymer, whereas remaining dispersed in aqueous solution. Under 980 nm laser excitation, UV light emitted by UCNP is absorbed by photolytic side groups within polyelectrolyte, which results in cleavage of o-nitrobenzyl groups and formation of carboxylic acid groups. Such NIR light-induced partial reversal of positive charge to negative charge on the polyelectrolyte layer disrupts the equilibrium among UCNP@silica, polyelectrolyte, and FLU and, consequently, leads to release of FLU molecules.
Image-guided removal of interproximal lesions with a CO2 laser
NASA Astrophysics Data System (ADS)
Ngo, Albert; Chan, Kenneth H.; Le, Oanh; Simon, Jacob C.; Fried, Daniel
2018-02-01
Recent studies have shown that near-IR (NIR) imaging methods such as NIR reflectance can be used to image lesions on proximal surfaces, and optical coherence tomography (OCT) can be used to measure the depth of those lesions below the tooth surface. These imaging modalities can be used to acquire high contrast images of demineralized tooth surfaces, and 2-D and 3-D images can be extracted from this data. At NIR wavelengths longer than 1200-nm, there is no interference from stains and the contrast is only due to the increased light scattering of the demineralization. Previous studies have shown that image-guided laser ablation can be used to remove occlusal lesions, but its use for the removal of subsurface lesions on proximal surfaces has not been investigated. The objective of this study is to demonstrate that simultaneously scanned NIR and CO2 lasers can be used to selectively remove natural and artificial interproximal caries lesions with minimal damage to sound tooth structure. In this study, images of simulated and natural interproximal lesions on extracted teeth were imaged using a digital microscope, a scanned 1460-nm superluminescent laser diode with an InGaAs detector and a cross polarization OCT system operating at 1300-nm. The lesions were subsequently removed with a CO2 laser operating at 9.3-μm and the dental handpiece and the volume of sound tissue removed was compared.
Laser welding of chitosan-GNRs films for the closure of a capsulorhexis
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Pini, Roberto
2011-03-01
In this work we present the first attempt to close the anterior lens capsule bag by the use of chitosan patches, where Gold Nanorods (GNRs) are embedded. GNRs exhibit intense localized plasmon resonances at optical frequencies in the near infrared (NIR): upon excitation with a NIR laser, a strong photothermal effect is produced, which can be exploited to develop minimally invasive therapies. Here we use the chitosan-GNRs films as a novel NIR sensitive nanocomposite for the photothermal conversion of NIR laser light during surgical interventions of tissue welding. Chitosan is an attractive biomaterial due to its biodegradability, biocompatibility, antimicrobial and wound healing-promoting activity. Colloidal GNRs were embedded in chitosan based, highly stabilized, flexible and easy-to-handle films, which were stored in water until the time of surgery. In these preliminary tests, a capsulorhexis was performed in freshly enucleated porcine eyes. The lens was aspired, then the patch was put onto the capsule bag and welded: a diode laser (810 nm) was used to deliver single spots (200 μm core diameter optical fiber) of local capsule/patch adhesion. Then the bag was refilled with silicon oil. The result is an immediate closure of the capsular tissue, with high mechanical strength. The laser welded chitosan- GNRs films are an innovative and highly stable solution to be exploited for the treatment of capsular breaks and for the implementation of a lens refilling procedure.
Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy
Morries, Larry D; Cassano, Paolo; Henderson, Theodore A
2015-01-01
Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. In this review, treatments for the chronic TBI patient are discussed, including pharmaceuticals, nutraceuticals, cognitive therapy, and hyperbaric oxygen therapy. All available literature suggests a marginal benefit with prolonged treatment courses. An emerging modality of treatment is near-infrared (NIR) light, which has benefit in animal models of stroke, spinal cord injury, optic nerve injury, and TBI, and in human trials for stroke and TBI. The extant literature is confounded by variable degrees of efficacy and a bewildering array of treatment parameters. Some data indicate that diodes emitting low-level NIR energy often have failed to demonstrate therapeutic efficacy, perhaps due to failing to deliver sufficient radiant energy to the necessary depth. As part of this review, we present a retrospective case series using high-power NIR laser phototherapy with a Class IV laser to treat TBI. We demonstrate greater clinical efficacy with higher fluence, in contrast to the bimodal model of efficacy previously proposed. In ten patients with chronic TBI (average time since injury 9.3 years) given ten treatments over the course of 2 months using a high-power NIR laser (13.2 W/0.89 cm2 at 810 nm or 9 W/0.89 cm2 at 810 nm and 980 nm), symptoms of headache, sleep disturbance, cognition, mood dysregulation, anxiety, and irritability improved. Symptoms were monitored by depression scales and a novel patient diary system specifically designed for this study. NIR light in the power range of 10–15 W at 810 nm and 980 nm can safely and effectively treat chronic symptoms of TBI. The clinical benefit and effects of infrared phototherapy on mitochondrial function and secondary molecular events are discussed in the context of adequate radiant energy penetration. PMID:26347062
Beam uniformity analysis of infrared laser illuminators
NASA Astrophysics Data System (ADS)
Allik, Toomas H.; Dixon, Roberta E.; Proffitt, R. Patrick; Fung, Susan; Ramboyong, Len; Soyka, Thomas J.
2015-02-01
Uniform near-infrared (NIR) and short-wave infrared (SWIR) illuminators are desired in low ambient light detection, recognition, and identification of military applications. Factors that contribute to laser illumination image degradation are high frequency, coherent laser speckle and low frequency nonuniformities created by the laser or external laser cavity optics. Laser speckle analysis and beam uniformity improvements have been independently studied by numerous authors, but analysis to separate these two effects from a single measurement technique has not been published. In this study, profiles of compact, diode laser NIR and SWIR illuminators were measured and evaluated. Digital 12-bit images were recorded with a flat-field calibrated InGaAs camera with measurements at F/1.4 and F/16. Separating beam uniformity components from laser speckle was approximated by filtering the original image. The goal of this paper is to identify and quantify the beam quality variation of illumination prototypes, draw awareness to its impact on range performance modeling, and develop measurement techniques and methodologies for military, industry, and vendors of active sources.
Henderson, Theodore A; Morries, Larry D
2015-01-01
Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI.
NASA Astrophysics Data System (ADS)
Stock, Karl; Graser, Rainer; Udart, Martin; Kienle, Alwin; Hibst, Raimund
2011-03-01
Diode lasers are used in dentistry mainly for oral surgery and disinfection of root canals in endodontic treatment. The purpose of this study was to investigate and to improve the laser induced bacteria inactivation in endodontic treatment. An essential prerequisite of the optimization of the irradiation process and device is the knowledge about the determinative factors of bacteria killing: light intensity? light dosis? temperature? In order to find out whether high power NIR laser bacterial killing is caused by a photochemical or a photothermal process we heated bacteria suspensions of E. coli K12 by a water bath and by a diode laser (940 nm) with the same temporal temperature course. Furthermore, bacteria suspensions were irradiated while the temperature was fixed by ice water. Killing of bacteria was measured via fluorescence labeling. In order to optimize the irradiation of the root canal, we designed special fiber tips with radial light emission characteristic by optical ray tracing simulations. Also, we calculated the resulting light distribution in dentin by voxelbased Monte Carlo simulations. Furthermore, we irradiated root canals of extracted human teeth using different fiber tip geometries and measured the resulting light and heat distribution by CCD-camera and thermography. Comparison of killing rates between laser and water based heating shows no significant differences, and irradiation of ice cooled suspensions has no substantial killing effect. Thus, the most important parameter for bacterial killing is the maximum temperature. Irradiation of root canals using fiber tips with radial light emission results in a more defined irradiated area with minor irradiation of the apex and higher intensity and therefore higher temperature increase on root canal surface. In conclusion, our experiments show that at least for E. coli bacteria inactivation by NIR laser irradiation is solely based on a thermal process and that heat distribution in root canal can be significantly improved by specially designed fiber tips.
Davidson, Sean R H; Vitkin, I Alex; Sherar, Michael D; Whelan, William M
2005-04-01
Fluoroptic sensors are used to measure interstitial temperatures but their utility for monitoring laser interstitial thermal therapy (LITT) is unclear because these sensors exhibit a measurement artefact when exposed to the near-infrared (NIR) treatment light. This study investigates the cause of the artefact to determine whether fluoroptic sensors can provide reliable temperature measurements during LITT. The temperature rise measured by a fluoroptic sensor irradiated in non-absorbing media (air and water) was considered an artefact. Temperature rise was measured as a function of distance from a laser source. Two different sensor designs and several laser powers were investigated. A relationship between fluence rate and measurement artefact in water was determined and coupled with a numerical simulation of LITT in liver to estimate the error in temperature measurements made by fluoroptic sensors in tissue in proximity to the laser source. The effect of ambient light on the performance of sensors capped with a transparent material ("clear-capped sensors") was also investigated. The temperature rise recorded in air by both clear- and black-capped fluoroptic sensors decreased with distance from a laser source in a manner similar to fluence rate. Sensor cap material, laser power, and the thermal properties of the surrounding medium affected the magnitude of the artefact. Numerical simulations indicated that the accuracy of a clear-capped fluoroptic sensor used to monitor a typical LITT treatment in liver is > 1 degrees C provided the sensor is further than approximately 3 mm from the source. It was also shown that clear-capped fluoroptic sensors are affected by ambient light. The measurement artefact experienced by both black-capped and clear-capped fluoroptic sensors irradiated by NIR light scales with fluence rate and is due to direct absorption of the laser light, which results in sensor self-heating. Clear-capped fluoroptic sensors can be used to accurately monitor LITT in tissue but should be shielded from ambient light. Copyright 2005 Wiley-Liss, Inc.
Photobiomodulation in human muscle tissue: an advantage in sports performance?
Ferraresi, Cleber; Huang, Ying-Ying; Hamblin, Michael R.
2016-01-01
Photobiomodulation (PBM) describes the use of red or near-infrared (NIR) light to vstimulate, heal, and regenerate damaged tissue. Both pre-conditioning (light delivered to muscles before exercise) and PBM applied after exercise can increase sports performance in athletes. This review covers the effects of PBM on human muscle tissue in clinical trials in volunteers related to sports performance and in athletes. The parameters used were categorized into those with positive effects or no effects on muscle performance and recovery. Randomized controlled trials and case-control studies in both healthy trained and untrained participants, and elite athletes were retrieved from MEDLINE up to 2016. Performance metrics included fatigue, number of repetitions, torque, hypertrophy; measures of muscle damage and recovery such as creatine kinase and delayed onset muscle soreness. Searches retrieved 533 studies, of which 46 were included in the review (n=1045 participants). Studies used single laser probes, cluster of laser-diodes, LED-clusters, mixed clusters (lasers and LEDs), and flexible LED arrays. Both red, NIR, and red/NIR mixtures were used. PBM can increase muscle mass gained after training, and decrease inflammation and oxidative stress in muscle biopsies. We raise the question of whether PBM should be permitted in athletic competition by international regulatory authorities. PMID:27874264
Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy.
Huang, Ling; Li, Zhanjun; Zhao, Yang; Zhang, Yuanwei; Wu, Shuang; Zhao, Jianzhang; Han, Gang
2016-11-09
Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NIR absorption band (600-800 nm) with a remarkably high singlet oxygen quantum yield (Φ Δ = 67%). After being encapsulated with biodegradable PLA-PEG-FA polymers, Car-BDP can form uniform and small organic nanoparticles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm -2 ). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.
Seo, Sun-Hwa; Kim, Bo-Mi; Joe, Ara; Han, Hyo-Won; Chen, Xiaoyuan; Cheng, Zhen; Jang, Eue-Soon
2015-01-01
Methylene blue-loaded gold nanorod@SiO2 (MB-GNR@SiO2) core@shell nanoparticles are synthesized for use in cancer imaging and photothermal/photodynamic dual therapy. For the preparation of GNR@SiO2 nanoparticles, we found that the silica coating rate of hexadecylcetyltrimethylammonium bromide (CTAB)-capped GNRs is much slower than that of PEGylated GNRs due to the densely coated CTAB bilayer. Encapsulated MB molecules have both monomer and dimer forms that result in an increase in the photosensitizing effect through different photochemical pathways. As a consequence of the excellent plasmonic properties of GNRs at near-infrared (NIR) light, the embedded MB molecules showed NIR light-induced SERS performance with a Raman enhancement factor of 3.0 × 1010, which is enough for the detection of a single cancer cell. Moreover, the MB-GNR@SiO2 nanoparticles exhibit a synergistic effect of photodynamic and photothermal therapies of cancer under single-wavelength NIR laser irradiation. PMID:24424205
Seo, Sun-Hwa; Kim, Bo-Mi; Joe, Ara; Han, Hyo-Won; Chen, Xiaoyuan; Cheng, Zhen; Jang, Eue-Soon
2014-03-01
Methylene blue-loaded gold nanorod@SiO2 (MB-GNR@SiO2) core@shell nanoparticles are synthesized for use in cancer imaging and photothermal/photodynamic dual therapy. For the preparation of GNR@SiO2 nanoparticles, we found that the silica coating rate of hexadecylcetyltrimethylammonium bromide (CTAB)-capped GNRs is much slower than that of PEGylated GNRs due to the densely coated CTAB bilayer. Encapsulated MB molecules have both monomer and dimer forms that result in an increase in the photosensitizing effect through different photochemical pathways. As a consequence of the excellent plasmonic properties of GNRs at near-infrared (NIR) light, the embedded MB molecules showed NIR light-induced SERS performance with a Raman enhancement factor of 3.0 × 10(10), which is enough for the detection of a single cancer cell. Moreover, the MB-GNR@SiO2 nanoparticles exhibit a synergistic effect of photodynamic and photothermal therapies of cancer under single-wavelength NIR laser irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.
2010-01-01
Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging. PMID:20459250
NASA Astrophysics Data System (ADS)
Yuwen, Lihui; Zhou, Jiajia; Zhang, Yuqian; Zhang, Qi; Shan, Jingyang; Luo, Zhimin; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui
2016-01-01
Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation.Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation. Electronic supplementary information (ESI) available: Characterization, size distribution and EDS spectrum of MoSe2 NDs, calculation of the extinction coefficient and photothermal conversion efficiency of MoSe2 NDs. See DOI: 10.1039/c5nr08166a
NASA Astrophysics Data System (ADS)
Venugopal, Vivek; Park, Minho; Ashitate, Yoshitomo; Neacsu, Florin; Kettenring, Frank; Frangioni, John V.; Gangadharan, Sidhu P.; Gioux, Sylvain
2013-12-01
We report the design, characterization, and validation of an optimized simultaneous color and near-infrared (NIR) fluorescence rigid endoscopic imaging system for minimally invasive surgery. This system is optimized for illumination and collection of NIR wavelengths allowing the simultaneous acquisition of both color and NIR fluorescence at frame rates higher than 6.8 fps with high sensitivity. The system employs a custom 10-mm diameter rigid endoscope optimized for NIR transmission. A dual-channel light source compatible with the constraints of an endoscope was built and includes a plasma source for white light illumination and NIR laser diodes for fluorescence excitation. A prism-based 2-CCD camera was customized for simultaneous color and NIR detection with a highly efficient filtration scheme for fluorescence imaging of both 700- and 800-nm emission dyes. The performance characterization studies indicate that the endoscope can efficiently detect fluorescence signal from both indocyanine green and methylene blue in dimethyl sulfoxide at the concentrations of 100 to 185 nM depending on the background optical properties. Finally, we performed the validation of this imaging system in vivo during a minimally invasive procedure for thoracic sentinel lymph node mapping in a porcine model.
Near-infrared (NIR) optogenetics using up-conversion system
NASA Astrophysics Data System (ADS)
Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu
2015-03-01
Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.
Giacci, Marcus K.; Wheeler, Lachlan; Lovett, Sarah; Dishington, Emma; Majda, Bernadette; Bartlett, Carole A.; Thornton, Emma; Harford-Wright, Elizabeth; Leonard, Anna; Vink, Robert; Harvey, Alan R.; Provis, Jan; Dunlop, Sarah A.; Fitzgerald, Melinda
2014-01-01
Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P≤0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P≤0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P≤0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types. PMID:25105800
Salehpour, Farzad; Farajdokht, Fereshteh; Erfani, Marjan; Sadigh-Eteghad, Saeed; Shotorbani, Siamak Sandoghchian; Hamblin, Michael R; Karimi, Pouran; Rasta, Seyed Hossein; Mahmoudi, Javad
2018-03-01
Sleep deprivation (SD) causes oxidative stress in the hippocampus and subsequent memory impairment. In this study, the effect of near-infrared (NIR) photobiomodulation (PBM) on learning and memory impairment induced by acute SD was investigated. The mice were subjected to an acute SD protocol for 72 h. Simultaneously, NIR PBM using a laser at 810 nm was delivered (once a day for 3 days) transcranially to the head to affect the entire brain of mice. The Barnes maze and the What-Where-Which task were used to assess spatial and episodic-like memories. The hippocampal levels of antioxidant enzymes and oxidative stress biomarkers were evaluated. The results showed that NIR PBM prevented cognitive impairment induced by SD. Moreover, NIR PBM therapy enhanced the antioxidant status and increased mitochondrial activity in the hippocampus of SD mice. Our findings revealed that hippocampus-related mitochondrial damage and extensive oxidative stress contribute to the occurrence of memory impairment. In contrast, NIR PBM reduced hippocampal oxidative damage, supporting the ability of 810 nm laser light to improve the antioxidant defense system and maintain mitochondrial survival. This confirms that non-invasive transcranial NIR PBM therapy ameliorates hippocampal dysfunction, which is reflected in enhanced memory function. Copyright © 2018 Elsevier B.V. All rights reserved.
Histological study of subcutaneous fat at NIR laser treatment of the rat skin in vivo
NASA Astrophysics Data System (ADS)
Yanina, I. Y.; Svenskaya, Yu. I.; Navolokin, N. A.; Matveeva, O. V.; Bucharskaya, A. B.; Maslyakova, G. N.; Gorin, D. A.; Sukhorukov, G. B.; Tuchin, V. V.
2015-07-01
The goal of this work is to quantify impact of in vivo photochemical treatment using indocyanine green (ICG) or encapsulated ICG and NIR laser irradiation through skin of rat with obesity by the follow up tissue sampling and histochemistry. After 1 hour elapsed since 1-min light exposure samples of rat skin with subcutaneous tissue of thickness of 1.5-2.5 mm were taken by surgery from rats within marked 4-zones of the skin site. For hematoxylin-eosin histological examination of excised tissue samples, fixation was carried out by 10%-formaldehyde solution. For ICG and encapsulated ICG subcutaneous injection and subsequent 1-min diode laser irradiation with power density of 8 W/cm2, different necrotic regions with lipolysis of subcutaneous fat were observed. The obtained data can be used for safe layer-by-layer laser treatment of obesity and cellulite.
Semiconductor diode laser device adjuvanting intradermal vaccine
Kimizuka, Yoshifumi; Callahan, John J.; Huang, Zilong; Morse, Kaitlyn; Katagiri, Wataru; Shigeta, Ayako; Bronson, Roderick; Takeuchi, Shu; Shimaoka, Yusuke; Chan, Megan P. K.; Zeng, Yang; Li, Binghao; Chen, Huabiao; Tan, Rhea Y. Y.; Dwyer, Conor; Mulley, Tyler; Leblanc, Pierre; Goudie, Calum; Gelfand, Jeffrey; Tsukada, Kosuke; Brauns, Timothy; Poznansky, Mark C.; Bean, David; Kashiwagi, Satoshi
2017-01-01
A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301 nm light that costs less than $4,000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic. PMID:28365253
Semiconductor diode laser device adjuvanting intradermal vaccine.
Kimizuka, Yoshifumi; Callahan, John J; Huang, Zilong; Morse, Kaitlyn; Katagiri, Wataru; Shigeta, Ayako; Bronson, Roderick; Takeuchi, Shu; Shimaoka, Yusuke; Chan, Megan P K; Zeng, Yang; Li, Binghao; Chen, Huabiao; Tan, Rhea Y Y; Dwyer, Conor; Mulley, Tyler; Leblanc, Pierre; Goudie, Calum; Gelfand, Jeffrey; Tsukada, Kosuke; Brauns, Timothy; Poznansky, Mark C; Bean, David; Kashiwagi, Satoshi
2017-04-25
A brief exposure of skin to a low-power, non-tissue damaging laser light has been demonstrated to augment immune responses to intradermal vaccination. Both preclinical and clinical studies show that this approach is simple, effective, safe and well tolerated compared to standard chemical or biological adjuvants. Until now, these laser exposures have been performed using a diode-pumped solid-state laser (DPSSL) devices, which are expensive and require labor-intensive maintenance and special training. Development of an inexpensive, easy-to-use and small device would form an important step in translating this technology toward clinical application. Here we report that we have established a handheld, near-infrared (NIR) laser device using semiconductor diodes emitting either 1061, 1258, or 1301nm light that costs less than $4000, and that this device replicates the adjuvant effect of a DPSSL system in a mouse model of influenza vaccination. Our results also indicate that a broader range of NIR laser wavelengths possess the ability to enhance vaccine immune responses, allowing engineering options for the device design. This small, low-cost device establishes the feasibility of using a laser adjuvant approach for mass-vaccination programs in a clinical setting, opens the door for broader testing of this technology with a variety of vaccines and forms the foundation for development of devices ready for use in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feng, Liangzhu; Tao, Danlei; Dong, Ziliang; Chen, Qian; Chao, Yu; Liu, Zhuang; Chen, Meiwan
2017-05-01
Current photodynamic therapy (PDT) is suffering from limited efficacy towards hypoxia tumors and severe post-treatment photo-toxicity such as light-induced skin damages. To make PDT more effective in cancer treatment while being patient-comfortable, herein, a hexylamine conjugated chlorin e6 (hCe6) as the photosensitizer together with a lipophilic near-infrared (NIR) dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) are co-encapsulated into polyethylene glycol (PEG) shelled liposomes. In the obtained DiR-hCe6-liposome, the photosensitizing effect of hCe6 is quenched by DiR via fluorescence resonance energy transfer (FRET). Interestingly, upon irradiation with a 785-nm NIR laser to photobleach DiR, both fluorescence and photodynamic effect of hCe6 in DiR-hCe6-liposome would be activated. Meanwhile, such NIR irradiation applied on tumors of mice with intravenous injection of DiR-hCe6-liposome could result in mild photothermal heating, which in turn would promote intra-tumor blood flow and relieve tumor hypoxia, contributing to the enhanced photodynamic tumor treatment. Importantly, compared to hCe6-loaded liposomes, DiR-hCe6-liposome without being activated by the 785-nm laser shows much lower skin photo-toxicity, demonstrating its great skin protection effect. This work demonstrates a promising yet simple strategy to prepare NIR-light-activatable photodynamic theranostics for synergistic cancer phototherapy, which is featured high specificity/efficacy in tumor treatment with minimal photo-toxicity towards the skin. Copyright © 2016. Published by Elsevier Ltd.
Non-mammalian Hosts and Photobiomodulation: Do All Life-forms Respond to Light?
Hamblin, Michael R; Huang, Ying-Ying; Heiskanen, Vladimir
2018-06-08
Photobiomodulation (PBM), also known as low-level laser (light) therapy, was discovered over 50 years ago, but only recently has it been making progress towards wide acceptance. PBM originally used red and near-infrared (NIR) lasers, but now other wavelengths and non-coherent light emitting diodes (LEDs) are being explored. The almost complete lack of side-effects makes the conduction of controlled clinical trials relatively easy. Laboratory research has mainly concentrated on mammalian cells (normal or cancer) in culture, and small rodents (mice and rats) as models of different diseases. A sizeable body of work was carried out in the 1970s and 1980s in Russia looking at various bacterial and fungal cells. The present review will cover some of these studies and a recent number of papers that have applied PBM to so-called "model organisms". These models include flies (Drosophila), worms (C. elegans), fish (zebrafish), and caterpillars (Galleria). Much knowledge about the genomics and proteomics, and many reagents for these organisms already exist. They are inexpensive to work with and have lower regulatory barriers compared to vertebrate animals. Other researchers have studied different models (snails, sea urchins, Paramecium, toads, frogs and chickens). Plants may respond to NIR light differently from visible light (photosynthesis and photomorphogenesis) but PBM in plants has not been much studied. Veterinarians routinely use PBM to treat non-mammalian patients. The conclusion is that red or NIR light does indeed have significant biological effects conserved over many different kingdoms, and perhaps it is true that "all life-forms respond to light". This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Botchway, S W; Reynolds, P; Parker, A W; O'Neill, P
2010-01-01
Laser induced radiation microbeam technology for radiobiology research is undergoing rapid growth because of the increased availability and ease of use of femtosecond laser sources. The main processes involved are multiphoton absorption and/or plasma formation. The high peak powers these lasers generate make them ideal tools for depositing sub-micrometer size radiant energy within a region of a living cell nucleus to activate ionising and/or photochemically driven processes. The technique allows questions relating to the effects of low doses of radiation, the propagation and treatment of deoxyribonucleic acid (DNA) damage and repair in individual live cells as well as non-targeted cell to cell effects to be addressed. This mini-review focuses on the use of near infrared (NIR) ca. 800nm radiation to induce damage that is radically different from the early and subsequent ultraviolet microbeam techniques. Ultrafast pulsed NIR instrumentation has many benefits including the ability to eliminate issues of unspecific UV absorption by the many materials prevalent within cells. The multiphoton interaction volume also permits energy deposition beyond the diffraction limit. Work has established that the fundamental process of the damage induced by the ultrashort laser pulses is different to those induced from continuous wave light sources. Pioneering work has demonstrated that NIR laser microbeam radiation can mimic ionising radiation via multiphoton absorption within the 3D femtolitre volume of the highly focused Gaussian beam. This light-matter interaction phenomenon provides a novel optical microbeam probe for mimicking both complex ionising and UV radiation-type cell damage including double strand breaks (DSBs) and base damage. A further advantage of the pulsed laser technique is that it provides further scope for time-resolved experiments. Recently the NIR laser microbeam technique has been used to investigate the recruitment of repair proteins to the sub-micrometre size area of damage in viable cells using both immuno-fluorescent staining of gamma-H2AX (a marker for DSBs) and real-time imaging of GFP-labelled repair proteins including ATM, p53 binding protein 1 (53BP1), RAD51 and Ku 70/80 to elucidate the interaction of the two DNA DSB repair pathways, homologous recombination and the non-homologous end joining pathway. 2010 Elsevier B.V. All rights reserved.
Performance of PHOTONIS' low light level CMOS imaging sensor for long range observation
NASA Astrophysics Data System (ADS)
Bourree, Loig E.
2014-05-01
Identification of potential threats in low-light conditions through imaging is commonly achieved through closed-circuit television (CCTV) and surveillance cameras by combining the extended near infrared (NIR) response (800-10000nm wavelengths) of the imaging sensor with NIR LED or laser illuminators. Consequently, camera systems typically used for purposes of long-range observation often require high-power lasers in order to generate sufficient photons on targets to acquire detailed images at night. While these systems may adequately identify targets at long-range, the NIR illumination needed to achieve such functionality can easily be detected and therefore may not be suitable for covert applications. In order to reduce dependency on supplemental illumination in low-light conditions, the frame rate of the imaging sensors may be reduced to increase the photon integration time and thus improve the signal to noise ratio of the image. However, this may hinder the camera's ability to image moving objects with high fidelity. In order to address these particular drawbacks, PHOTONIS has developed a CMOS imaging sensor (CIS) with a pixel architecture and geometry designed specifically to overcome these issues in low-light level imaging. By combining this CIS with field programmable gate array (FPGA)-based image processing electronics, PHOTONIS has achieved low-read noise imaging with enhanced signal-to-noise ratio at quarter moon illumination, all at standard video frame rates. The performance of this CIS is discussed herein and compared to other commercially available CMOS and CCD for long-range observation applications.
Yi, Ji; Chen, Siyu; Shu, Xiao; Fawzi, Amani A.; Zhang, Hao F.
2015-01-01
We achieved human retinal imaging using visible-light optical coherence tomography (vis-OCT) guided by an integrated scanning laser ophthalmoscopy (SLO). We adapted a spectral domain OCT configuration and used a supercontinuum laser as the illumating source. The center wavelength was 564 nm and the bandwidth was 115 nm, which provided a 0.97 µm axial resolution measured in air. We characterized the sensitivity to be 86 dB with 226 µW incidence power on the pupil. We also integrated an SLO that shared the same optical path of the vis-OCT sample arm for alignment purposes. We demonstrated the retinal imaging from both systems centered at the fovea and optic nerve head with 20° × 20° and 10° × 10° field of view. We observed similar anatomical structures in vis-OCT and NIR-OCT. The contrast appeared different from vis-OCT to NIR-OCT, including slightly weaker signal from intra-retinal layers, and increased visibility and contrast of anatomical layers in the outer retina. PMID:26504622
Laser scattering by transcranial rat brain illumination
NASA Astrophysics Data System (ADS)
Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Suzuki, Luis C.; Ribeiro, Martha S.; Yoshimura, Elisabeth M.
2012-06-01
Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System (CNS), the study of light penetration through skull and distribution in the brain becomes extremely important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain, measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm) diode laser light and compare optical properties of brain structures. The head of the animal (Rattus Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus, cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue. This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a large number of diseases.
NASA Technical Reports Server (NTRS)
Varaljay-Spence, Vanessa A.; Scardelletti, Maximilian C.
2007-01-01
This article discusses the development of a bench-top technique to detect antigens in fluids. The technique involves the use of near infrared NIR fluorescent dyes conjugated to antibodies, centrifugation, nanofilters, and spectrometry. The system used to detect the antigens utilizes a spectrometer, fiber optic cables, NIR laser, and laptop computer thus making it portable and ideally suited for desk top analysis. Using IgM as an antigen and the secondary antibody, anti-IgM conjugated to the near infrared dye, IRDye (trademark) 800, for detection, we show that nanofiltration can efficiently and specifically separate antibody-antigen complexes in solution and that the complexes can be detected by a spectrometer and software using NIR laser excitation at 778 nm and NIR dye offset emission at 804 nm. The peak power detected at 778 nm for the excitation emission and at 804 nm for the offset emission is 879 pW (-60.06 dBm) and 35.7 pW (-74.5 dBm), respectively.
NASA Astrophysics Data System (ADS)
Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng
2016-04-01
In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO2@mSiO2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150-200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO2 and AuNFs@SiO2@mSiO2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.
Jalani, Ghulam; Naccache, Rafik; Rosenzweig, Derek H; Haglund, Lisbet; Vetrone, Fiorenzo; Cerruti, Marta
2016-01-27
Lanthanide-doped upconverting nanoparticles (UCNPs) have emerged as excellent nanotransducers for converting longer wavelength near-infrared (NIR) light to shorter wavelengths spanning the ultraviolet (UV) to the visible (Vis) regions of the spectrum via a multiphoton absorption process, known as upconversion. Here, we report the development of NIR to UV-Vis-NIR UCNPs consisting of LiYF4:Yb(3+)/Tm(3+)@SiO2 individually coated with a 10 ± 2 nm layer of chitosan (CH) hydrogel cross-linked with a photocleavable cross-linker (PhL). We encapsulated fluorescent-bovine serum albumin (FITC-BSA) inside the gel. Under 980 nm excitation, the upconverted UV emission cleaves the PhL cross-links and instantaneously liberates the FITC-BSA under 2 cm thick tissue. The release is immediately arrested if the excitation source is switched off. The upconverted NIR light allows for the tracking of particles under the tissue. Nucleus pulposus (NP) cells cultured with UCNPs are viable both in the presence and in the absence of laser irradiation. Controlled drug delivery of large biomolecules and deep tissue imaging make this system an excellent theranostic platform for tissue engineering, biomapping, and cellular imaging applications.
Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows.
Cortelletti, P; Skripka, A; Facciotti, C; Pedroni, M; Caputo, G; Pinna, N; Quintanilla, M; Benayas, A; Vetrone, F; Speghini, A
2018-02-01
Lanthanide-activated SrF 2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd 3+ and Yb 3+ ) NIR emissions was applied to investigate the thermometric properties of the nanoparticles. It was found that an appropriate doping with Er 3+ ions can increase the thermometric properties of the Nd 3+ -Yb 3+ coupled systems. In addition, a core containing Yb 3+ and Tm 3+ can generate light in the visible and UV regions upon near-infrared (NIR) laser excitation at 980 nm. The multishell structure combined with the rational choice of dopants proves to be particularly important to control and enhance the performance of nanoparticles as NIR nanothermometers.
Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound
Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing
2014-01-01
Abstract. Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884
Lipogels responsive to near-infrared light for the triggered release of therapeutic agents.
Martín-Saavedra, Francisco; Ruiz-Hernández, Eduardo; Escudero-Duch, Clara; Prieto, Martín; Arruebo, Manuel; Sadeghi, Negar; Deckers, Roel; Storm, Gert; Hennink, Wim E; Santamaría, Jesús; Vilaboa, Nuria
2017-10-01
Here we report a composite system based on fibrin hydrogels that incorporate in their structure near-infrared (NIR) responsive nanomaterials and thermosensitive liposomes (TSL). Polymerized fibrin networks entrap simultaneously gold-based nanoparticles (NPs) capable of transducing NIR photon energy into heat, and lysolipid-incorporated TSL (LTSL) loaded with doxorubicin hydrochloride (DOX). NIR irradiation of the resulting hydrogels (referred to as "lipogels") with 808nm laser light increased the temperature of the illuminated areas, leading to the release of the liposomal cargo. Levels of DOX that release from the "smart" composites were dependent on the concentration of NIR nanotransducers loaded in the lipogel, the intensity of the electromagnetic energy deposited and the irradiation regime. Released DOX retained its bioactivity, as shown in cultures of epithelial carcinoma cells. Finally, the developed drug delivery platform was refined by using NIR-photoabsorbers based on copper sulfide NPs to generate completely biodegradable composites as well as through the incorporation of cholesterol (Ch) in LTSL formulation, which lessens leakiness of the liposomal cargo at physiological temperature. This remotely controlled system may suit well for those therapies that require precise control over the dose of delivered drug in a defined spatiotemporal framework. Hydrogels composed of fibrin embedding nanoparticles responsive to near infrared (NIR) energy and thermosensitive liposomes loaded with doxorubicin hydrochloride (DOX), were prepared by in situ polymerization. NIR-light irradiation of these constructs, referred to as "NIR responsive lipogels", results in the controlled release of DOX to the surrounding medium. This technology may use fully degradable components and can preserve the bioactivity of liposomal cargo after remote triggering to finely regulate the dose and bioavailability of delivered payloads. NIR responsive lipogels technology overcomes the limitations of drug release systems based on the combination of liposomes and degradable polymeric materials, which in many cases lead to insufficient release at therapy onset or to overdose during high degradation period. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Damestani, Yasaman; De Howitt, Natalie; Halaney, David L; Garay, Javier E; Aguilar, Guillermo
2016-10-01
The development and feasibility of a novel nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant has been recently established. The purpose of what we now call "window to the brain (WttB)" implant (or platform), is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically recurring basis without the need for repeated craniotomies. WttB holds the transformative potential for enhancing light-based diagnosis and treatment of a wide variety of brain pathologies including cerebral edema, traumatic brain injury, stroke, glioma, and neurodegenerative diseases. However, bacterial adhesion to the cranial implant is the leading factor for biofilm formation (fouling), infection, and treatment failure. Escherichia coli (E. coli), in particular, is the most common isolate in gram-negative bacillary meningitis after cranial surgery or trauma. The transparency of our WttB implant may provide a unique opportunity for non-invasive treatment of bacterial infection under the implant using medical lasers. A drop of a diluted overnight culture of BL21-293 E. coli expressing luciferase was seeded between the nc-YSZ implant and the agar plate. This was followed by immediate irradiation with selected laser. After each laser treatment the nc-YSZ was removed, and cultures were incubated for 24 hours at 37 °C. The study examined continuous wave (CW) and pulsed wave (PW) modes of near-infrared (NIR) 810 nm laser wavelength with a power output ranging from 1 to 3 W. During irradiation, the temperature distribution of nc-YSZ surface was monitored using an infrared thermal camera. Relative luminescence unit (RLU) was used to evaluate the viability of bacteria after the NIR laser treatment. Analysis of RLU suggests that the viability of E. coli biofilm formation was reduced with NIR laser treatment when compared to the control group (P < 0.01) and loss of viability depends on both laser fluence and operation mode (CW or PW). The results demonstrate that while CW laser reduces the biofilm formation more than PW laser with the same power, the higher surface temperature of the implant generated by CW laser limits its medical efficacy. In contrast, with the right parameters, PW laser produces a more moderate photothermal effect which can be equally effective at controlling bacterial growth. Our results show that E. coli biofilm formation across the thickness of the nc-YSZ implant can be disrupted using NIR laser treatment. The results of this in vitro study suggest that using nc-YSZ as a cranial implant in vivo may also allow for locally selective, non-invasive, chronic treatment of bacterial layers (fouling) that might form under cranial implants, without causing adverse thermal damage to the underlying host tissue when appropriate laser parameters are used. Lasers Surg. Med. 48:782-789, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Potential Benefits of Manmade Opals Demonstrated for First Time (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
NREL experiments show that disordered inverse opals significantly scatter and trap near-infrared light, with possible impact on optoelectronic materials. Inverse opals, familiar in the form of brilliantly colored opal gemstones, are a class of materials that has astounding optical properties. Scientists have been exploring the ability of inverse opals to manipulate light in the hopes of harnessing this capacity for advanced technologies such as displays, detectors, lasers, and photovoltaics. A research group at the National Renewable Energy Laboratory (NREL) discovered that man-made inverse opal films containing significant morphological disorder exhibit substantial light scattering, consequently trapping wavelengths in the near-infrared (NIR),more » which is important to a number of technologies. This discovery is the first experimental evidence to validate a 2005 theoretical model predicting the confinement of light in such structures, and it holds great promise for improving the performance of technologies that rely on careful light control. This breakthrough also makes possible optoelectronic technologies that use a range of low-cost molecular and semiconductor species that otherwise absorb light too weakly to be useful. The disordered inverse opal architecture validates the theoretical model that predicts the diffusion and confinement of light in such structures. Electrochemically deposited CdSe inverse opal films containing significant morphological disorder exhibit substantial light scattering and consequent NIR light trapping. This discovery holds promise for NIR light management in optoelectronic technologies, particularly those involving weakly absorbing molecular and semiconductor photomaterials.« less
Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress
Khan, Imran; Tang, Elieza; Arany, Praveen
2015-01-01
High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications. PMID:26030745
Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress.
Khan, Imran; Tang, Elieza; Arany, Praveen
2015-06-01
High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications.
Using Plasmonic Copper Sulfide Nanocrystals as Smart Light-Driven Sterilants.
Liu, Zhen; Liu, Xianjun; Du, Yingda; Ren, Jinsong; Qu, Xiaogang
2015-10-27
As an efficient route to control pet overpopulation and develop neutered experimental animals, male sterilization via surgical techniques, chemical injections, and antifertility vaccines has brought particular attention recently. However, these traditional ways usually induce long-term adverse reactions, immune suppression, and serious infection and pain. To overcome the above limitations, we developed a platform in the present study by using plasmonic copper sulfide nanocrystals (Cu2-xS NCs) as intelligent light-driven sterilants with ideal outcomes. Upon NIR laser irradiation, these well-prepared Cu2-xS NCs can possess NIR-induced hyperthermia and generate high levels of reactive oxygen species (ROS). Due to the cooperation of photothermal and photodynamic effects, these nanocrystals exhibited NIR-mediated toxicity toward Sertoli cells both in vitro and in vivo in a mild manner. We attribute the potential mechanism of cellular injury to the apoptosis-related death and denaturation of protein in the testicles. Furthermore, the possible metabolism route and long-term toxicity of these nanocrystals after testicular injection indicate their high biocompatibility. Taking together, our study on the NIR-induced toxicity of Cu2-xS NCs provides keen insights for the usage of plasmonic nanomaterials in biomedicine.
NASA Astrophysics Data System (ADS)
Hulvershorn, Justin; Bloy, Luke; Leigh, John S.; Elliott, Mark A.
2003-09-01
A continuous wave near infrared three-wavelength laser diode spectroscopic (NIRS) system designed for use in magnetic resonance imaging (MRI) scanners is described. This system measures in vivo changes in the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) in humans. An algorithm is implemented to map changes in light intensity to changes in the concentrations of Hb and HbO. The system's signal to noise ratio is 3.4×103 per wavelength on an intralipid phantom with 10 Hz resolution. To demonstrate the system's performance in vivo, data taken on the human forearm during arterial occlusion, as well as data taken on the forehead during extended breath holds, are presented. The results show that the instrument is an extremely sensitive detector of hemodynamic changes in human tissue at high temporal resolution. NIRS directly measures changes in the concentrations of hemoglobin species. For this reason, NIRS will be useful in determining the sources of MRI signal changes in the body due to hemodynamic causes, while the precise anatomic information provided by MRI will aid in localizing NIRS contrast and improving the accuracy of models of light transport through tissue.
NASA Astrophysics Data System (ADS)
Wang, Hui; Ke, Fuyou; Mararenko, Anton; Wei, Zengyan; Banerjee, Probal; Zhou, Shuiqin
2014-06-01
Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications.Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c4nr01030b
Extra-luminal detection of assumed colonic tumor site by near-infrared laparoscopy.
Zako, Tamotsu; Ito, Masaaki; Hyodo, Hiroshi; Yoshimoto, Miya; Watanabe, Masayuki; Takemura, Hiroshi; Kishimoto, Hidehiro; Kaneko, Kazuhiro; Soga, Kohei; Maeda, Mizuo
2016-09-01
Localization of colorectal tumors during laparoscopic surgery is generally performed by tattooing into the submucosal layer of the colon. However, faint and diffuse tattoos may lead to difficulties in recognizing cancer sites, resulting in inappropriate resection of the colon. We previously demonstrated that yttrium oxide nanoparticles doped with the rare earth ions (ytterbium and erbium) (YNP) showed strong near-infrared (NIR) emission under NIR excitation (1550 nm emission with 980 nm excitation). NIR light can penetrate deep tissues. In this study, we developed an NIR laparoscopy imaging system and demonstrated its use for accurate resection of the colon in swine. The NIR laparoscopy system consisted of an NIR laparoscope, NIR excitation laser diode, and an NIR camera. Endo-clips coated with YNP (NIR clip), silicon rubber including YNP (NIR silicon mass), and YNP solution (NIR ink) were prepared as test NIR markers. We used a swine model to detect an assumed colon cancer site using NIR laparoscopy, followed by laparoscopic resection. The NIR markers were fixed at an assumed cancer site within the colon by endoscopy. An NIR laparoscope was then introduced into the abdominal cavity through a laparoscopy port. NIR emission from the markers in the swine colon was successfully recognized using the NIR laparoscopy imaging system. The position of the markers in the colon could be identified. Accurate resection of the colon was performed successfully by laparoscopic surgery under NIR fluorescence guidance. The presence of the NIR markers within the extirpated colon was confirmed, indicating resection of the appropriate site. NIR laparoscopic surgery is useful for colorectal cancer site recognition and accurate resection using laparoscopic surgery.
Wang, Xinlong; Tian, Fenghua; Soni, Sagar S.; Gonzalez-Lima, F.; Liu, Hanli
2016-01-01
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT. PMID:27484673
NASA Astrophysics Data System (ADS)
Wang, Xinlong; Tian, Fenghua; Soni, Sagar S.; Gonzalez-Lima, F.; Liu, Hanli
2016-08-01
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.
Wang, Xinlong; Tian, Fenghua; Soni, Sagar S; Gonzalez-Lima, F; Liu, Hanli
2016-08-03
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.
Near-infrared laser-induced fluorescence detection in capillary electrophoresis.
McWhorter, S; Soper, S A
2000-04-01
As capillary electrophoresis continues to focus on miniaturization, either through reducing column dimensions or situating entire electrophoresis systems on planar chips, advances in detection become necessary to meet the challenges posed by these electrophoresis platforms. The challenges result from the fact that miniaturization requires smaller load volumes, demanding highly sensitive detection. In addition, many times multiple targets must be analyzed simultaneously (multiplexed applications), further complicating detection. Near-infrared (NIR) fluorescence offers an attractive alternative to visible fluorescence for critical applications in capillary electrophoresis due to the impressive limits of detection that can be generated, in part resulting from the low background levels that are observed in the NIR. Advances in instrumentation and fluorogenic labels appropriate for NIR monitoring have led to a growing number of examples of the use of NIR fluorescence in capillary electrophoresis. In this review, we will cover instrumental components used to construct ultrasensitive NIR fluorescence detectors, including light sources and photon transducers. In addition, we will discuss various types of labeling dyes appropriate for NIR fluorescence and finally, we will present several applications that have used NIR fluorescence in capillary electrophoresis, especially for DNA sequencing and fragment analysis.
Fluorescence lifetime imaging with near-infrared dyes
NASA Astrophysics Data System (ADS)
Becker, Wolfgang; Shcheslavskiy, Vladislav
2013-02-01
Near-infrared (NIR) dyes are used as fluorescence markers in small-animal imaging and in diffuse optical tomography of the human brain. In these applications it is important to know whether the dyes bind to proteins or other tissue constituents, and whether their fluorescence lifetimes depend on the targets they are bound to. Unfortunately, neither the lasers nor the detectors of commonly used confocal and multiphoton laser scanning microscopes allow for excitation and detection of NIR fluorescence. We therefore upgraded existing confocal TCSPC FLIM systems with NIR lasers and NIR sensitive detectors. In multiphoton systems we used the Ti:Sa laser as a one-photon excitation source in combination with an NIR-sensitive detector in the confocal beam path. We tested a number of NIR dyes in biological tissue. Some of them showed clear lifetime changes depending on the tissue structures they are bound to. We therefore believe that NIR FLIM can deliver supplementary information on the tissue constitution and on local biochemical parameters.
Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle.
Tian, Hongmiao; Wang, Zhijian; Chen, Yilong; Shao, Jinyou; Gao, Tong; Cai, Shengqiang
2018-03-07
Optically driven active materials have received much attention because their deformation and motion can be controlled remotely, instantly, and precisely in a contactless way. In this study, we investigated an optically actuated elastomer with rapid response: polydopamine (PDA)-coated liquid crystal elastomer (LCE). Because of the photothermal effect of PDA coating and thermal responsiveness of LCE, the elastomer film contracted significantly with near-infrared (NIR) irradiation. With a fixed strain, light-induced actuating stress in the film could be as large as 1.5 MPa, significantly higher than the maximum stress generated by most mammalian skeletal muscle (0.35 MPa). The PDA-coated LCE films could also bend or roll up by surface scanning of an NIR laser. The response time of the film to light exposure could be as short as 1/10 of a second, comparable to or even faster than that of mammalian skeletal muscle. Using the PDA-coated LCE film, we designed and fabricated a prototype of robotic swimmer that was able to swim near the water-air interface by performing "swimming strokes" through reversible bending and unbending motions induced and controlled by an NIR laser. The results presented in this study clearly demonstrated that PDA-coated LCE is a promising optically driven artificial muscle, which may have great potential for applications of soft robotics and optomechanical coupling devices.
Sarder, Pinaki; Yazdanfar, Siavash; Akers, Walter J.; Tang, Rui; Sudlow, Gail P.; Egbulefu, Christopher
2013-01-01
Abstract. The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100 μm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500 μm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms. PMID:24150231
Near-infrared light-triggered "on/off" motion of polymer multilayer rockets.
Wu, Zhiguang; Lin, Xiankun; Wu, Yingjie; Si, Tieyan; Sun, Jianmin; He, Qiang
2014-06-24
We describe an approach to modulating the on-demand motion of catalytic polymer-based microengines via near-infrared (NIR) laser irradiation. The polymer multilayer motor was fabricated by the template-assisted layer-by-layer assembly and subsequently deposition of platinum nanoparticles inside and a thin gold shell outside. Then a mixed monolayer of a tumor-targeted peptide and an antifouling poly(ethylene glycol) was functionalized on the gold shell. The microengines remain motionless at the critical peroxide concentration (0.1%, v/v); however, NIR illumination on the engines leads to a photothermal effect and thus rapidly triggers the motion of the catalytic engines. Computational modeling explains the photothermal effect and gives the temperature profile accordingly. Also, the photothermal effect can alone activate the motion of the engines in the absence of the peroxide fuel, implying that it may eliminate the use of toxic fuel in the future. The targeted recognition ability and subsequently killing of cancer cells by the photothermal effect under the higher power of a NIR laser were illustrated. Our results pave the way to apply self-propelled synthetic engines in biomedical fields.
Li, Juan; Jiang, Fei; Yang, Bo; Song, Xiao-Rong; Liu, Yan; Yang, Huang-Hao; Cao, Dai-Rong; Shi, Wen-Rong; Chen, Guo-Nan
2013-01-01
Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. Here we investigate the theranostic properties of topological insulator bismuth selenide (Bi2Se3) in in vivo and in vitro system for the first time. We show that Bi2Se3 nanoplates can absorb near-infrared (NIR) laser light and effectively convert laser energy into heat. Such photothermal conversion property may be due to the unique physical properties of topological insulators. Furthermore, localized and irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using Bi2Se3 nanoplates and NIR laser irradiation. In addition, we also demonstrate that Bi2Se3 nanoplates exhibit strong X-ray attenuation and can be utilized for enhanced X-ray computed tomography imaging of tumor tissue in vivo. This study highlights Bi2Se3 nanoplates could serve as a promising platform for cancer diagnosis and therapy.
UV Raman detection of 2,4-DNT in contact with sand particles
NASA Astrophysics Data System (ADS)
Blanco, Alejandro; Pacheco-Londoño, Leonardo C.; Peña-Quevedo, Alvaro J.; Hernández-Rivera, Samuel P.
2006-05-01
Deep Ultra Violet Raman Spectroscopy (DUV-RS) is an emerging tool for vibrational spectroscopy analysis and can be used in Point Detection mode to detect explosive components of landmines and Improvised Explosive Devices (IED). Interactions of explosives with different substrates can be measured by using quantitative vibrational signal shift information of scattered Raman light associated with these interactions. In this research, grounds were laid for detection of explosives using UV-Raman Spectroscopy equipped with 244 nm laser excitation line from a 488 nm frequency doubled Coherent FreD laser. In other experiments, samples of 2,4-DNT were allowed to interact with Ottawa Sand and were studied using DUV-RS. Characteristic vibrational signals of energetic compounds were analyzed in the ranges: 400-1200 cm -1, 1200-1800 cm -1, and 2800-3500 cm -1. In addition these Raman spectra were compared with dispersive spectra that were acquired using Raman Microscopy equipped with 514.5 nm (VIS) 785 nm (NIR) and 1064 nm (NIR) excitation lasers.
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Neumark, Daniel M.; Leone, Stephen R.
2016-11-01
Ultrafast nonlinear spectroscopy, which records transient wave-mixing signals in a medium, is a powerful tool to access microscopic information using light sources in the radio-frequency and optical regimes. The extension of this technique towards the extreme ultraviolet (XUV) or even x-ray regimes holds the promise to uncover rich structural or dynamical information with even higher spatial or temporal resolution. Here, we demonstrate noncollinear wave mixing between weak XUV attosecond pulses and a strong near-infrared (NIR) few-cycle laser pulse in gas phase atoms (one photon of XUV and two photons of NIR). In the noncollinear geometry the attosecond and either one or two NIR pulses interact with argon atoms. Nonlinear XUV signals are generated in a spatially resolved fashion as required by phase matching. Different transition pathways can be identified from these background-free nonlinear signals according to the specific phase-matching conditions. Time-resolved measurements of the spatially gated XUV signals reveal electronic coherences of Rydberg wave packets prepared by a single XUV photon or XUV-NIR two-photon excitation, depending on the applied pulse sequences. These measurements open possible applications of tabletop multidimensional spectroscopy to the study of dynamics associated with valence or core excitation with XUV photons.
Strong-Field Driven Dynamics of Metal and Dielectric Nanoparticles
NASA Astrophysics Data System (ADS)
Powell, Jeffrey
The motion of electrons in atoms, molecules, and solids in the presence of intense electromagnetic radiation is an important research topic in physics and physical chemistry because of its fundamental nature and numerous practical applications, ranging from precise machining of materials to optical control of chemical reactions and light-driven electronic devices. Mechanisms of light-matter interactions critically depend on the dimensions of the irradiated system and evolve significantly from single atoms or molecules to the macroscopic bulk. Nanoparticles provide the link between these two extremes. In this thesis, I take advantage of this bridge to study light-matter interactions as a function of nanoparticle size, shape, and composition. I present here three discrete, but interconnected, experiments contributing to our knowledge of nanoparticle properties and their response to intense, short-pulsed light fields. First, I investigate how individual nanoparticles interact with each other in solution, studying their temperature-dependent solubility. The interaction potential between 5.5nm gold nanoparticles, ligated by an alkanethiol was found to be -0.165eV, in reasonable agreement with a phenomenological model. The other two experiments explore ultrafast dynamics driven by intense femtosecond lasers in isolated, gas-phase metallic and dielectric nanoparticles. Photoelectron momentum imaging is applied to study the response of gold, silica, and gold-shell/silica-core nanoparticles (ranging from single to several hundred nanometers in size) with near-infrared (NIR), 25 fs laser pulses in the intensity range of 1011 - 1014 W/cm2. These measurements, which constitute the bulk of my graduate work, reveal the complex interplay between the external optical field and the induced near-field of the nanoparticle, resulting in the emission of very energetic electrons that are much faster than those emitted from isolated atoms or molecules exposed to the same light pulses. The highest photoelectron energies ("cutoffs") were measured as a function of laser intensity, nanoparticle material and size. We found that the energy cutoffs increase monotonically with laser intensity and nanoparticle size, except for the gold/silica hybrid where the plasmon resonance response modifies this behavior at low intensities. The measured photoelectron spectra for metallic nanoparticles display a large energy enhancement over silica. Finally, the last part of this thesis explores the possibility to apply time-resolved x-ray scattering as a probe of the ultrafast dynamics in isolated nanoparticles driven by very intense ( 1015 W/cm2) NIR laser radiation. To do this, I developed and built a nanoparticle source capable of injecting single, gas-phase nanoparticles with a narrow size distribution into the laser focus. We used femtosecond x-ray pulses from an x-ray free electron laser (XFEL) to map the evolution of the laser-irradiated nanoparticle. The ultrafast dynamics were observed in the single-shot x-ray diffraction patterns measured as a function of delay between the NIR and x-ray pulses, which allows for femtosecond temporal and nanometer spatial resolution. We found that the intense IR laser pulse rapidly ionizes the nanoparticle, effectively turning it into a nanoplasma within less than a picosecond, and observed signatures of the nanoparticle surface softening on a few hundred-femtosecond time scale.
In vivo studies of low level laser (light) therapy for traumatic brain injury
NASA Astrophysics Data System (ADS)
Xuan, Weijun; Wu, Qiuhe; Huang, Ying-Ying; Ando, Takahiro; Huang, Liyi; Hamblin, Michael R.
2012-03-01
Low-level laser (or light) therapy (LLLT) is attracting growing interest to treat both stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain allows non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. It is proposed that red and NIR light is absorbed by chromophores in the mitochondria of cells leading to changes in gene transcription and upregulation of proteins involved in cell survival, antioxidant production, collagen synthesis, reduction of chronic inflammation and cell migration and proliferation. We developed a mouse model of controlled cortical impact (CCI) TBI and examined the effect of 0, 1, 3, and 14 daily 810-nm CW laser treatments in the CCI model as measured by neurological severity score and wire grip and motion test. 1 laser Tx gave a significant improvement while 3 laser Tx was even better. Surprisingly 14 laser Tx was no better than no treatment. Histological studies at necropsy suggested that the neurodegeneration was reduced at 14 days and that the cortical lesion was repaired by BrdU+ve neural progenitor (stem) cells at 28 days. Transcranial laser therapy is a promising treatment for acute (and chronic TBI) and the lack of side-effects and paucity of alternative treatments encourages early clinical trials.
Optical and laser spectroscopic diagnostics for energy applications
NASA Astrophysics Data System (ADS)
Tripathi, Markandey Mani
The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the experimentally measured equivalence ratios within 7 %. A comparative study was performed for equivalence ratios measurement in atmospheric premixed methane-air flames with ungated LIBS and chemiluminescence spectroscopy. It was reported that LIBS-based calibration, which carries spectroscopic information from a "point-like-volume," provides better predictions of equivalence ratios compared to chemiluminescence-based calibration, which is essentially a "line-of-sight" measurement.
Omar, Ghada S; Wilson, Michael; Nair, Sean P
2008-07-01
The increase in resistance to antibiotics among disease-causing bacteria necessitates the development of alternative antimicrobial approaches such as the use of light-activated antimicrobial agents (LAAAs). Light of an appropriate wavelength activates the LAAA to produce cytotoxic species which can then cause bacterial cell death via loss of membrane integrity, lipid peroxidation, the inactivation of essential enzymes, and/or exertion of mutagenic effects due to DNA modification. In this study, the effect of the LAAA indocyanine green excited with high or low intensity light (808 nm) from a near-infrared laser (NIR) on the viability of Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa was investigated. All species were susceptible to killing by the LAAA, the bactericidal effect being dependent on both the concentration of indocyanine green and the light dose. Indocyanine green photosensitization using both high (1.37 W cm(-2)) and low (0.048 W cm(-2)) intensity NIR laser light was able to achieve reductions of 5.6 log10 (>99.99%) and 6.8 log10 (>99.99%) in the viable counts of Staph. aureus and Strep. pyogenes (using starting concentrations of 106-107 CFU ml(-1)). Kills of 99.99% were obtained for P. aeruginosa (initial concentration 108-109 CFU ml(-1)) photosensitized by the high intensity light (1.37 W cm(-2)); while a kill of 80% was achieved using low intensity irradiation (0.07 W cm(-2)). The effects of L-tryptophan (a singlet oxygen scavenger) and deuterium oxide (as an enhancer of the life span of singlet oxygen) on the survival of Staph. aureus was also studied. L-tryptophan reduced the proportion of Staph. aureus killed; whereas deuterium oxide increased the proportion killed suggesting that singlet oxygen was involved in the killing of the bacteria. These findings imply that indocyanine green in combination with light from a near-infrared laser may be an effective means of eradicating bacteria from wounds and burns.
Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.
Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J
2016-07-05
The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a substantial increase in cytotoxicity when modified UCNPs were combined with five rounds of 30 min irradiation with NIR compared to dark controls, but NIR alone also had a significant cytotoxic effect at this duration.
NASA Astrophysics Data System (ADS)
McCoy, K.; Ramsey, L.
2011-09-01
The Penn State Astronomy and Astrophysics Department’s Pathfinder instrument is a fiber-fed, warm-bench echelle spectrograph designed to explore technical issues that must be resolved in order to measure precise radial velocities that will allow the detection of exoplanets in the near-infrared (NIR). In May 2010, Pathfinder demonstrated 10-20 m/s radial-velocity precision in the NIR at the 9 meter Hobby-Eberly Telescope. To attain even higher precision, we are investigating the NIR properties of the optical fibers that transmit light from the telescope to Pathfinder. We conducted a series of modal noise tests with visible and NIR laser diodes on a 200 micron diameter, fused-silica, multimode optical fiber as the preliminary step in analyzing the degrading effects of modal noise on radial-velocity precision. We report these test results and comment on our future tests to reduce the negative effects of modal noise and focal ratio degradation (FRD). The lessons learned from this research and the Pathfinder prototype will be used in Pathfinder II, which will aim to achieve better than 5 m/s in the NIR.
NASA Astrophysics Data System (ADS)
Balkan, N.; Chung, S. H.
2008-04-01
The principle of the operation of a Gunn laser is based on the band to band recombination of impact ionized non-equilibrium electron-hole pairs in propagating high field space-charge domains in a Gunn diode, which is biased above the negative differential resistance threshold and placed in a Fabry-Perot or a vertical micro cavity (VCSEL). In conventional VCSEL structures, unless specific measures such as the addition of oxide apertures and use of small windows are employed, the lack of uniformity in the density of current injected into the active region can reduce the efficiency and delay the lasing threshold. In a vertical-cavity structured Gunn device, however, the current is uniformly injected into the active region independently of the distributed Bragg reflector (DBR) layers. Therefore, lasing occurs from the entire surface of the device. The light emission from Gunn domains is an electric field induced effect. Therefore, the operation of Gunn-VCSEL or F-P laser is independent of the polarity of the applied voltage. Red-NIR VCSELs emitting in the range of 630-850 nm are also possible when Ga 1-xAl xAs (x < 0.45) is used the active layer, making them candidates for light sources in plastic optical fibre (POF) based short-distance data communications. Furthermore the device may find applications as an optical clock and cross link between microwave and NIR communications. The operation of a both Gunn-Fabry-Perot laser and Gunn-VCSEL has been demonstrated by us recently. In the current work we present the potential results of experimental and theoretical studies concerning the applications together with the gain and emission characteristics of Gunn-Lasers.
Photobiomodulation and the brain: a new paradigm
NASA Astrophysics Data System (ADS)
Hennessy, Madison; Hamblin, Michael R.
2017-01-01
Transcranial photobiomodulation (PBM), also known as low level laser therapy (LLLT), relies on the use of red/NIR light to stimulate, preserve and regenerate cells and tissues. The mechanism of action involves photon absorption in the mitochondria (cytochrome c oxidase), and ion channels in cells leading to activation of signaling pathways, up-regulation of transcription factors and increased expression of protective genes. We have studied PBM for treating traumatic brain injury in mice using a NIR laser spot delivered to the head. Mice had improved memory and learning, increased neuroprogenitor cells in the dentate gyrus and subventricular zone, increased BDNF and more synaptogenesis in the cortex. These highly beneficial effects on the brain suggest that the applications of LLLT are much broader than first conceived. Other groups have studied stroke (animal models and clinical trials), Alzheimer’s disease, Parkinson’s disease, depression and cognitive enhancement in healthy subjects.
Thermohydrogel Containing Melanin for Photothermal Cancer Therapy.
Kim, Miri; Kim, Hyun Soo; Kim, Min Ah; Ryu, Hyanghwa; Jeong, Hwan-Jeong; Lee, Chang-Moon
2017-05-01
Melanin is an effective absorber of light and can extend to near infrared (NIR) regions. In this study, a natural melanin is presented as a photothermal therapeutic agent (PTA) because it provides a good photothermal conversion efficiency, shows biodegradability, and does not induce long-term toxicity during retention in vivo. Poloxamer solution containing melanin (Pol-Mel) does not show any precipitation and shows sol-gel transition at body temperature. After irradiation from 808 nm NIR laser at 1.5 W cm -2 for 3 min, the photothermal conversion efficiency of Pol-Mel is enough to kill cancer cells in vitro and in vivo. The tumor growth of mice bearing CT26 tumors treated with Pol-Mel injection and laser irradiation is suppressed completely without recurrence postirradiation. All these results indicate that Pol-Mel can become an attractive PTA for photothermal cancer therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.
2016-01-01
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264
Watching the Real-time Evolution of a Laser Modified Atom Using Attosecond Pulses
NASA Astrophysics Data System (ADS)
Shivaram, Niranjan; Timmers, Henry; Tong, Xiao-Min; Sandhu, Arvinder
2011-10-01
In the presence of even moderately strong laser fields, atomic states are heavily modified and develop rich structure. Such a laser dressed atom can be described using the Floquet theory in which the laser dressed states called Floquet states are composed of different Fourier components. In this work we use XUV attosecond pulses to excite a He atom from its ground state to near-infrared (NIR) laser dressed Floquet states, which are ionized by the dressing laser field. Quantum interferences between Fourier components of these Floquet states lead to oscillations in He ion yield as a function of time-delay between the XUV and NIR pulses. From the ion yield signal we measure the quantum phase difference between transition matrix elements to two different Fourier components as a function of both time-delay (instantaneous NIR intensity) and NIR pulse peak intensity. These measurements along with information from time-dependent Schrodinger equation simulations enable us to observe the real-time evolution of the laser modified atom as the dominant Floquet state mediating the ionization changes from the 5p Floquet state to the 2p Floquet state with increasing NIR intensity.
Fast gas spectroscopy using pulsed quantum cascade lasers
NASA Astrophysics Data System (ADS)
Beyer, T.; Braun, M.; Lambrecht, A.
2003-03-01
Laser spectroscopy has found many industrial applications, e.g., control of automotive exhaust and process monitoring. The midinfrared region is of special interest because it has stronger absorption lines compared to the near infrared (NIR). However, in the NIR high quality reliable laser sources, detectors, and passive optical components are available. A quantum cascade laser could change this situation if fundamental advantages can be exploited with compact and reliable systems. It will be shown that, using pulsed lasers and available fast detectors, lower residual sensitivity levels than in corresponding NIR systems can be achieved. The stability is sufficient for industrial applications.
Flexible approach to vibrational sum-frequency generation using shaped near-infrared light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Azhad U.; Liu, Fangjie; Watson, Brianna R.
We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. Here, we demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm -1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression frommore » a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.« less
Flexible approach to vibrational sum-frequency generation using shaped near-infrared light
Chowdhury, Azhad U.; Liu, Fangjie; Watson, Brianna R.; ...
2018-04-23
We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. Here, we demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm -1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression frommore » a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.« less
Ba, Zhaojing; Hu, Min; Zhao, Yiming; Wang, Yiqing; Wang, Jing; Zhang, Zhenxi
2018-08-31
Non-contact thermal sensors are important devices to study cellular processes and monitor temperature in vivo. Herein, a novel highly sensitive nanothermometer based on NaYF 4 :Yb,Er@ NaYF 4 @NaYF 4 :Yb,Tm@ NaYF 4 :Nd (denoted as Er@Y@Tm@Nd) was prepared by a facile solvothermal method. When excited by the near-infrared (NIR) light of 808 and 980 nm, the as-prepared Er@Y@Tm@Nd nanoparticles could emit both blue and green light, respectively, since the lanthanide cations responsible for these emissions are gathered inside this nanostructure. The green and blue light intensity ratio exhibits obvious temperature dependence in the range of the physiological temperature. Additionally, the fluorescence intensity of Er 3+ and Tm 3+ are also greatly enhanced due to the multilayer structure that implies avoiding the Er 3+ and Tm 3+ energy cross-relaxation by introduction of a NaYF 4 wall between them. The as-prepared core-shell-shell-shell structure with Er 3+ and Tm 3+ in different layers improves dozens of times of the thermal sensitivity based on the non-thermal coupling levels of the probe: the maximum values for the sensitivity are 2.95% K -1 (I Er-521 /I Tm-450 ) and 6.30% K -1 (I Tm-474 /I Er-541 ) when excited by 980 and 808 nm laser sources, respectively. These values are well above those previously reported (<0.7% K -1 ), indicating that the prepared nanostructures are temperature sensors with excellent thermal sensitivity and sensitive to NIR wavelength excitation that makes them highly preferred for thermal detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuchina, E S; Petrov, P O; Kozina, K V
The effect of NIR laser radiation (808 nm) and gold nanorods on the cells of two strains of Staphylococcus aureus, one of them being methicillin-sensitive and the other being methicillinresistant, is studied. Nanorods having the dimensions 10 × 44 nm with the absorption maximum in the NIR spectral region, functionalised with human immunoglobulins IgA and IgG, are synthesised. It is shown that the use of nanoparticles in combination with NIR irradiation leads to killing up to 97% of the population of microorganisms. (laser biophotonics)
In vivo studies of ultrafast near-infrared laser tissue bonding and wound healing
Sriramoju, Vidyasagar; Alfano, Robert R.
2015-01-01
Abstract. Femtosecond (fs) pulse lasers in the near-infrared (NIR) range exhibit very distinct properties upon their interaction with biomolecules compared to the corresponding continuous wave (CW) lasers. Ultrafast NIR laser tissue bonding (LTB) was used to fuse edges of two opposing animal tissue segments in vivo using fs laser photoexcitation of the native vibrations of chomophores. The fusion of the incised tissues was achieved in vivo at the molecular level as the result of the energy–matter interactions of NIR laser radiation with water and the structural proteins like collagen in the target tissues. Nonthermal vibrational excitation from the fs laser absorption by water and collagen induced the formation of cross-links between tissue proteins on either sides of the weld line resulting in tissue bonding. No extrinsic agents were used to facilitate tissue bonding in the fs LTB. These studies were pursued for the understanding and evaluation of the role of ultrafast NIR fs laser radiation in the LTB and consequent wound healing. The fs LTB can be used for difficult to suture structures such as blood vessels, nerves, gallbladder, liver, intestines, and other viscera. Ultrafast NIR LTB yields promising outcomes and benefits in terms of wound closure and wound healing under optimal conditions. PMID:26465615
In vivo studies of ultrafast near-infrared laser tissue bonding and wound healing
NASA Astrophysics Data System (ADS)
Sriramoju, Vidyasagar; Alfano, Robert R.
2015-10-01
Femtosecond (fs) pulse lasers in the near-infrared (NIR) range exhibit very distinct properties upon their interaction with biomolecules compared to the corresponding continuous wave (CW) lasers. Ultrafast NIR laser tissue bonding (LTB) was used to fuse edges of two opposing animal tissue segments in vivo using fs laser photoexcitation of the native vibrations of chomophores. The fusion of the incised tissues was achieved in vivo at the molecular level as the result of the energy-matter interactions of NIR laser radiation with water and the structural proteins like collagen in the target tissues. Nonthermal vibrational excitation from the fs laser absorption by water and collagen induced the formation of cross-links between tissue proteins on either sides of the weld line resulting in tissue bonding. No extrinsic agents were used to facilitate tissue bonding in the fs LTB. These studies were pursued for the understanding and evaluation of the role of ultrafast NIR fs laser radiation in the LTB and consequent wound healing. The fs LTB can be used for difficult to suture structures such as blood vessels, nerves, gallbladder, liver, intestines, and other viscera. Ultrafast NIR LTB yields promising outcomes and benefits in terms of wound closure and wound healing under optimal conditions.
NASA Astrophysics Data System (ADS)
Khalifa, Aly A.; Aly, Hussein A.; El-Sherif, Ashraf F.
2016-02-01
Near infrared (NIR) dynamic scene projection systems are used to perform hardware in-the-loop (HWIL) testing of a unit under test operating in the NIR band. The common and complex requirement of a class of these units is a dynamic scene that is spatio-temporal variant. In this paper we apply and investigate active external modulation of NIR laser in different ranges of temporal frequencies. We use digital micromirror devices (DMDs) integrated as the core of a NIR projection system to generate these dynamic scenes. We deploy the spatial pattern to the DMD controller to simultaneously yield the required amplitude by pulse width modulation (PWM) of the mirror elements as well as the spatio-temporal pattern. Desired modulation and coding of high stable, high power visible (Red laser at 640 nm) and NIR (Diode laser at 976 nm) using the combination of different optical masks based on DMD were achieved. These spatial versatile active coding strategies for both low and high frequencies in the range of kHz for irradiance of different targets were generated by our system and recorded using VIS-NIR fast cameras. The temporally-modulated laser pulse traces were measured using array of fast response photodetectors. Finally using a high resolution spectrometer, we evaluated the NIR dynamic scene projection system response in terms of preserving the wavelength and band spread of the NIR source after projection.
Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.
Darling, Cynthia L; Fried, Daniel
2008-02-18
The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.
Gold nanocages covered by smart polymers for controlled release with near-infrared light
Yavuz, Mustafa S.; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M.; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Schwartz, Andrea G.; Wang, Lihong V.; Xia, Younan
2009-01-01
Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions1-3. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound to the effector. The ultraviolet light may cause damage to biological samples and is only suitable for in vitro studies because of its quick attenuation in tissue4. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls5. They can have strong absorption (for the photothermal effect) in the near-infrared (NIR) while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a NIR laser. This system works well with various effectors without involving sophiscated syntheses, and is well-suited for in vivo studies due to the high transparency of soft tissue in NIR6. PMID:19881498
Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications
NASA Astrophysics Data System (ADS)
Poletti, Annamaria; Fracasso, Giulio; Conti, Giamaica; Pilot, Roberto; Amendola, Vincenzo
2015-08-01
Gold nanoparticles with efficient plasmon absorption in the visible and near infrared (NIR) regions, biocompatibility and easy surface functionalization are of interest for photothermal applications. Herein we describe the synthesis and photothermal properties of gold ``nanocorals'' (AuNC) obtained by laser irradiation of Au nanospheres (AuNS) dispersed in liquid solution. AuNC are formed in two stages: by photofragmentation of AuNS, followed by spontaneous unidirectional assembly of gold nanocrystals. The whole procedure is performed without chemicals or templating compounds, hence the AuNC can be coated with thiolated molecules in one step. We show that AuNC coated with thiolated polymers are easily dispersed in an aqueous environment or in organic solvents and can be included in polymeric matrixes to yield a plasmonic nanocomposite. AuNC dispersions exhibit flat broadband plasmon absorption ranging from the visible to the NIR and unitary light-to-heat conversion. Besides, in vitro biocompatibility experiments assessed the absence of cytotoxic effects even at a dose as high as 100 μg mL-1. These safe-by-designed AuNC are promising for use in various applications such as photothermal cancer therapy, light-triggered drug release, antimicrobial substrates, optical tomography, obscurant materials and optical coatings.
Evans, Michael A.; Huang, Po-Ju; Iwamoto, Yuji; Ibsen, Kelly N.; Chan, Emory M.; Hitomi, Yutaka
2018-01-01
Nitric oxide (NO) holds great promise as a treatment for cancer hypoxia, if its concentration and localization can be precisely controlled. Here, we report a “Trojan Horse” strategy to provide the necessary spatial, temporal, and dosage control of such drug-delivery therapies at targeted tissues. Described is a unique package consisting of (1) a manganese–nitrosyl complex, which is a photoactivated NO-releasing moiety (photoNORM), plus Nd3+-doped upconverting nanoparticles (Nd-UCNPs) incorporated into (2) biodegradable polymer microparticles that are taken up by (3) bone-marrow derived murine macrophages. Both the photoNORM [Mn(NO)dpaqNO2]BPh4(dpaqNO2 = 2-[N,N-bis(pyridin-2-yl-methyl)]-amino-N′-5-nitro-quinolin-8-yl-acetamido) and the Nd-UCNPs are activated by tissue-penetrating near-infrared (NIR) light at ∼800 nm. Thus, simultaneous therapeutic NO delivery and photoluminescence (PL) imaging can be achieved with a NIR diode laser source. The loaded microparticles are non-toxic to their macrophage hosts in the absence of light. The microparticle-carrying macrophages deeply penetrate into NIH-3T3/4T1 tumor spheroid models, and when the infiltrated spheroids are irradiated with NIR light, NO is released in quantifiable amounts while emission from the Nd-UCNPs provides images of microparticle location. Furthermore, varying the intensity of the NIR excitation allows photochemical control over NO release. Low doses reduce levels of hypoxia inducible factor 1 alpha (HIF-1α) in the tumor cells, while high doses are cytotoxic. The use of macrophages to carry microparticles with a NIR photo-activated theranostic payload into a tumor overcomes challenges often faced with therapeutic administration of NO and offers the potential of multiple treatment strategies with a single system. PMID:29780505
NASA Astrophysics Data System (ADS)
Wang, Xinlong; Nalawade, Sahil Sunil; Reddy, Divya Dhandapani; Tian, Fenghua; Gonzalez-Lima, F.; Liu, Hanli
2017-02-01
Transcranial infrared laser stimulation (TILS) uses infrared light (lasers or LEDs) for nondestructive and non-thermal photobiomodulation on the human brain. Although TILS has shown its beneficial effects to a variety of neurological and psychological conditions, its physiological mechanism remains unknown. Cytochrome-c-oxidase (CCO), the last enzyme in the electron transportation chain, is proposed to be the primary photoacceptor of this infrared laser. In this study, we wish to validate this proposed mechanism. We applied 8 minutes in vivo TILS on the right forehead of 11 human participants with a 1064-nm laser. Broad-band near infrared spectroscopy (bb-NIRS) from 740-900nm was also employed near the TILS site to monitor hemodynamic and metabolic responses during the stimulation and 5-minute recovery period. For rigorous comparison, we also performed similar 8-min bb-NIR measurements under placebo conditions. A multi-linear regression analysis based on the modified Beer-Lambert law was performed to estimate concentration changes of oxy-hemoglobin (Δ[HbO]), deoxy-hemoglobin (Δ[Hb]), and cytochrome-c-oxidase (Δ[CCO]). We found that TILS induced significant increases of [CCO], [HbO] and a decrease of [Hb] with dose-dependent manner as compared with placebo treatments. Furthermore, strong linear relationships or interplays between [CCO] versus [HbO] and [CCO] versus [Hb] induced by TILS were observed in vivo for the first time. These relationships have clearly revealed close coupling/relationship between the hemodynamic oxygen supply and blood volume versus up-regulation of CCO induced by photobiomodulation. Our results demonstrate the tremendous potential of bb-NIRS as a non-invasive in vivo means to study photobiomodulation mechanisms and perform treatment evaluations of TILS.
Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Nakamura, Yuko; Choyke, Peter L.; Kobayashi, Hisataka
2015-01-01
Aim Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light. Method After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week (“two split” NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week (“three split” NIR-PIT). Result Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro. Tumor accumulation of cet-IR700 in MDAMB468 tumors was significantly higher (p < 0.05) than in MDAMB231 tumors in vivo. Tumor growth and survival of MDAMB231 tumor bearing mice was significantly lower in the NIR-PIT treatment group (p < 0.05). In MDAMB468 bearing mice, tumor growth and survival was significantly improved in the NIR-PIT treatment groups in all treatment regimens (one shot NIR-PIT; p < 0.05, “two split” NIR-PIT; p < 0.01, “three split” NIR-PIT; p < 0.001) compared with control groups. Conclusion NIR-PIT for TNBC was effective regardless of expression of EGFR, however, greater cell killing was shown with higher EGFR expression tumor in vitro. In all treatment regimens, NIR-PIT suppressed tumor growth, resulting in significantly prolonged survival that further improved by splitting the APC dose and using repeated light exposures. PMID:26313651
Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Nakamura, Yuko; Choyke, Peter L; Kobayashi, Hisataka
2015-01-01
Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light. After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week ("two split" NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week ("three split" NIR-PIT). Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro. Tumor accumulation of cet-IR700 in MDAMB468 tumors was significantly higher (p < 0.05) than in MDAMB231 tumors in vivo. Tumor growth and survival of MDAMB231 tumor bearing mice was significantly lower in the NIR-PIT treatment group (p < 0.05). In MDAMB468 bearing mice, tumor growth and survival was significantly improved in the NIR-PIT treatment groups in all treatment regimens (one shot NIR-PIT; p < 0.05, "two split" NIR-PIT; p < 0.01, "three split" NIR-PIT; p < 0.001) compared with control groups. NIR-PIT for TNBC was effective regardless of expression of EGFR, however, greater cell killing was shown with higher EGFR expression tumor in vitro. In all treatment regimens, NIR-PIT suppressed tumor growth, resulting in significantly prolonged survival that further improved by splitting the APC dose and using repeated light exposures.
Depth discrimination in acousto-optic cerebral blood flow measurement simulation
NASA Astrophysics Data System (ADS)
Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.
2016-03-01
Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.
NASA Astrophysics Data System (ADS)
Yoo, Su Woong; Mun, Hyoyoung; Oh, Gyungseok; Ryu, Youngjae; Kim, Min-Gon; Chung, Euiheon
2015-03-01
Cerenkov luminescence (CL) is generated when a charged particle moves faster than the speed of light in dielectric media. Recently CL imaging becomes an emerging technique with the use of radioisotopes. However, due to relatively weak blue light production and massive tissue attenuation, CL has not been applied widely. Therefore, we attempted to shift the CL emission to more near infrared (NIR) spectrum for better tissue penetration by using Cerenkov Radiation Energy Transfer (CRET). Gold nanoclusters were conjugated with NIR dye molecules (AuNc-IR820 and AuNc-ICG) to be activated with ultraviolet light. We found optimal conjugate concentrations of AuNc-NIR conjugates by spectroscopy system to generate maximal photon emission. When exposed by ultraviolet light, the emission of NIR light from the conjugates were verified. In quantitative analysis, AuNc-NIR conjugates emit brighter light signal than pure AuNc. This result implies that NIR fluorescent dyes (both IR820 and ICG) can be excited by the emission from AuNc. Following the above baseline experiment, we mixed F-18 fluorodeoxyglucose (F-18 FDG) radioisotope to the AuNc- NIR conjugates, to confirm NIR emission induced from Cerenkov radiation. Long pass filter was used to block Cerenkov luminescence and to collect the emission from AuNc-NIR conjugates. Instead of one long exposure imaging with CCD, we used multiple frame scheme to eliminate gamma radiation strike in each frame prior to combination. In summary, we obtained NIR emission light from AuNc-NIR conjugated dyes that is induced from CL. We plan to perform in vivo small animal imaging with these conjugates to assess better tissue penetration.
Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source
NASA Astrophysics Data System (ADS)
Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.
2013-12-01
Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.
In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel
NASA Astrophysics Data System (ADS)
Chen, Haiyan; Zhang, Jian; Qian, Zhiyu; Liu, Fei; Chen, Xinyang; Hu, Yuzhu; Gu, Yueqing
2008-05-01
Assessment of hyperthermia in pathological tissue is a promising strategy for earlier diagnosis of malignant tumors. In this study, temperature-sensitive co-polymeric nanohydrogel poly(N-isopropylacrylamide-co-acrylic acid) (PNIPA-co-AA) was successfully synthesized by the precipitation polymerization method. The diameters of nanohydrogels were controlled to be less than 100 nm. Also the lower critical solution temperature (LCST, 40 °C) was manipulated above physiological temperature after integration of near-infrared (NIR) organic dye (heptamethine cyanine dye, HMCD) within its interior cores. NIR laser light (765 nm), together with sensitive charge coupled device (CCD) cameras, were designed to construct an NIR imaging system. The dynamic behaviors of PNIPA-co-AA-HMCD composites in denuded mice with or without local hyperthermia treatment were real-time monitored by an NIR imager. The results showed that the PNIPA-co-AA-HMCD composites accumulated in the leg treated with local heating and diffused much slower than that in the other leg without heating. The results demonstrated that the temperature-responsive PNIPA-co-AA-HMCD composites combining with an NIR imaging system could be an effective temperature mapping technique, which provides a promising prospect for earlier tumor diagnosis and thermally related therapeutic assessment.
Near-infrared imaging of developmental defects in dental enamel.
Hirasuna, Krista; Fried, Daniel; Darling, Cynthia L
2008-01-01
Polarization-sensitive optical coherence tomography (PS-OCT) and near-infrared (NIR) imaging are promising new technologies under development for monitoring early carious lesions. Fluorosis is a growing problem in the United States, and the more prevalent mild fluorosis can be visually mistaken for early enamel demineralization. Unfortunately, there is little quantitative information available regarding the differences in optical properties of sound enamel, enamel developmental defects, and caries. Thirty extracted human teeth with various degrees of suspected fluorosis were imaged using PS-OCT and NIR. An InGaAs camera and a NIR diode laser were used to measure the optical attenuation through transverse tooth sections (approximately 200 microm). A digital microradiography system was used to quantify the enamel defect severity by measurement of the relative mineral loss for comparison with optical scattering measurements. Developmental defects were clearly visible in the polarization-resolved OCT images, demonstrating that PS-OCT can be used to nondestructively measure the depth and possible severity of the defects. Enamel defects on whole teeth that could be imaged with high contrast with visible light were transparent in the NIR. This study suggests that PS-OCT and NIR methods may potentially be used as tools to assess the severity and extent of enamel defects.
Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten
2011-03-01
Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.
Zhang, Ling'e; Zeng, Leyong; Pan, Yuanwei; Luo, Song; Ren, Wenzhi; Gong, An; Ma, Xuehua; Liang, Hongze; Lu, Guangming; Wu, Aiguo
2015-03-01
Inorganic photosensitizer coupled Gd-based upconversion luminescent (UCL) nanocomposites have potential application for both magnetic resonance imaging (MRI) and photodynamic therapy (PDT) of cancers using the light stability and biocompatibility of TiO2 inorganic photosensitizer. However, TiO2 inorganic photosensitizer could only be excited by ultraviolet (UV) light, which was harmful and weakly penetrable in tissues. In this work, folic acid (FA)-targeted NaGdF4:Yb/Tm@SiO2@TiO2 nanocomposites (FA-Gd-Si-Ti NPs) were constructed and synthesized for both in vivo MRI and near infrared (NIR)-responsive inorganic PDT, in which TiO2 component could be excited by NIR light due to the UCL performance of NaGdF4:Yb/Tm component converting NIR to UV light. The results showed the as-prepared FA-Gd-Si-Ti NPs had good biocompatibility in vitro and in vivo. Moreover, MR study indicated that FA-Gd-Si-Ti NPs were good T1-weighted MRI contrast agents with high longitudinal relaxivity (r1) of 4.53 mm(-1) s(-1), also in vivo MRI of nude mice showed "bright" signal in MCF-7 tumor. Under the irradiation of 980 nm laser at the power density of 0.6 W/cm(2) for 20 min, the viability of HeLa and MCF-7 cells incubated with FA-Gd-Si-Ti NPs could decrease from about 90 % to 35 % and 31%, respectively. Furthermore, in vivo PDT of MCF-7 tumor-bearing nude mice model showed that the inhibition ratio of tumors injected with FA-Gd-Si-Ti NPs reached up to 88.6% after 2-week treatment, compared with that of nude mice in control group. Based on the deep penetration of NIR light and the good biocompatibility of TiO2 inorganic photosensitizer, the as-prepared FA-Gd-Si-Ti NPs could have potential applications in both MRI and NIR-responsive PDT of cancers in deep tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
A clinical review of phototherapy for psoriasis.
Zhang, Ping; Wu, Mei X
2018-01-01
Psoriasis is an autoimmune inflammatory skin disease. In the past several decades, phototherapy has been widely used to treat stable psoriatic lesions, including trunk, scalp, arms and legs, and partial nail psoriasis. A variety of light/lasers with different mechanisms of action have been developed for psoriasis including ultraviolet B (UVB), psoralen ultraviolet A (PUVA), pulsed dye laser (PDL), photodynamic therapy (PDT), intense pulsed light (IPL), light-emitting diodes (LED), and so on. Because light/laser each has specific therapeutic and adverse effects, it is important to adequately choose the sources and parameters in management of psoriasis with different pathogenic sites, severities, and duration of the disorder. This review aims at providing most updated clinic information to physicians about how to select light/laser sources and individual therapeutic regimens. To date, UV light is primarily for stable plaque psoriasis and PDL for topical psoriatic lesions with small area, both of which are safe and effective. On the other hand, PUVA has better curative effects than UVB for managing refractory psoriasis plaques, if its side effects can be better controlled. PDL provides optimal outcomes on nail psoriasis compared with other lasers. Although the trails of low-level light/laser therapy (LLLT) are still small, the near infrared (NIR) and visible red light with low energy show promise for treating psoriasis due to its strong penetration and encouraging photobiomodulation. IPL is rarely reported for psoriasis treatment, but PDT-IPL has been found to offer a moderate effect on nail psoriasis. In brief, various phototherapies have been used either in different combinations or as monotherapy. The modality has become a mainstay in the treatment of mild-to-moderate psoriasis without systemic adverse events in today's clinical practice.
NASA Astrophysics Data System (ADS)
Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.
2017-03-01
Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.
NASA Astrophysics Data System (ADS)
Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian
2015-12-01
A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06734k
A Multi-Wavelength IR Laser for Space Applications
NASA Technical Reports Server (NTRS)
Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.
2017-01-01
We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.
A multi-wavelength IR laser for space applications
NASA Astrophysics Data System (ADS)
Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.
2017-05-01
We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to midinfrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 µm, 2.7 μm and 3.4 μm. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated
Near-infrared image-guided laser ablation of dental decay
NASA Astrophysics Data System (ADS)
Tao, You-Chen; Fried, Daniel
2009-09-01
Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries.
Near-infrared image-guided laser ablation of dental decay
Tao, You-Chen; Fried, Daniel
2009-01-01
Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:19895146
Near-infrared image-guided laser ablation of dental decay.
Tao, You-Chen; Fried, Daniel
2009-01-01
Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO(2) laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO(2) laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.
Contrast-enhanced photoacoustic imaging with an optical wavelength of 1064 nm
NASA Astrophysics Data System (ADS)
Kim, Jeesu; Park, Sara; Park, Gyeong Bae; Choi, Wonseok; Jeong, Unyong; Kim, Chulhong
2018-02-01
Photoacoustic (PA) imaging is a biomedical imaging method that can provide both structural and functional information of living tissues beyond the optical diffusion limit by combining the concepts of conventional optical and ultrasound imaging methods. Although endogenous chromophores can be utilized to acquire PA images of biological tissues, exogenous contrast agents that absorb near-infrared (NIR) lights have been extensively explored to improve the contrast and penetration depth of PA images. Here, we demonstrate Bi2Se3 nanoplates, that strongly absorbs NIR lights, as a contrast agent for PA imaging. In particularly, the Bi2Se3 nanoplates produce relatively strong PA signals with an optical wavelength of 1064 nm, which has several advantages for deep tissue imaging including: (1) relatively low absorption by other intrinsic chromophores, (2) cost-effective light source using Nd:YAG laser, and (3) higher available energy than other NIR lights according to American National Standards Institute (ANSI) safety limit. We have investigated deep tissue imaging capability of the Bi2Se3 nanoplates by acquiring in vitro PA images of microtubes under chicken breast tissues. We have also acquired in vivo PA images of bladders, gastrointestinal tracts, and sentinel lymph nodes in mice after injection of the Bi2Se3 nanoplates to verify their applicability to a variety of biomedical research. The results show the promising potential of the Bi2Se3 nanoplates as a PA contrast agent for deep tissue imaging with an optical wavelength of 1064 nm.
Zhang, Zhiyu; Suo, Hao; Zhao, Xiaoqi; Sun, Dan; Fan, Li; Guo, Chongfeng
2018-05-02
A difunctional nano-photothermal therapy (PTT) platform with near-infrared excitation to near-infrared emission (NIR-to-NIR) was constructed through core-shell structures Y 2 O 3 :Nd 3+ /Yb 3+ @SiO 2 @Cu 2 S (YRSC), in which the core Y 2 O 3 :Nd 3+ /Yb 3+ and shell Cu 2 S play the role of bioimaging and photothermal conversion function, respectively. The structure and composition of the present PTT agents (PTAs) were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. The NIR emissions of samples in the biological window area were measured by photoluminescence spectra under the excitation of 808 nm laser; further, the penetration depth of NIR emission at different wavelengths in biological tissue was also demonstrated by comparing with visible (vis) emission from Y 2 O 3 :Yb 3+ /Er 3+ @SiO 2 @Cu 2 S and NIR emission from YRSC through different injection depths in pork muscle tissues. The photo-thermal conversion effects were achieved through the outer ultrasmall Cu 2 S nanoparticles simultaneously absorb NIR light emission from the core Y 2 O 3 :Nd 3+/ Yb 3+ and the 808 nm excitation source to generate heat. Further, the heating effect of YRSC nanoparticles was confirmed by thermal imaging and ablation of YRSC to Escherichia coli and human hepatoma (HepG-2) cells. Results indicate that the YRSC has potential applications in PTT and NIR imaging in biological tissue.
A "win-win" nanoplatform: TiO2:Yb,Ho,F for NIR light-induced synergistic therapy and imaging.
Zhou, Jie; Luo, Pei; Sun, Chong; Meng, Lingchang; Ye, Weiran; Chen, Shanshan; Du, Bin
2017-03-23
To avoid the defect of low energy transfer efficiency in core-shell UCNP-TiO 2 NPs, doping rare earth into TiO 2 and improving the photocatalytic activity of TiO 2 itself under Vis-NIR light might be a more direct and efficient strategy for high 1 O 2 production. Here, we designed a TiO 2 :Yb,Ho,F-β-CD@DTX/HA nanoplatform using TiO 2 :Yb,Ho,F as the core, β-CD as the drug carrier, hyaluronic acid (HA) as the capping agent and target, and then applied it for 808 nm induced photodynamic-chemotherapy and 980 nm upconversion fluorescence/MR imaging. The results were as follows: (i) for TiO 2 as a photosensitizer, after doping Yb, Ho, F into TiO 2 , it could directly generate reactive oxygen species under an 808 nm laser; the dopants enhanced the absorption under the UV-Vis-NIR region and increased the electron-hole pair separation. (ii) For TiO 2 as the upconversion host, F and Ho also endowed TiO 2 :Yb,Ho,F with enhanced upconversion fluorescence under a 980 nm laser and T 2 -MRI contrast performance (r 2 = 30.71 mM -1 s -1 ), respectively, thus, facilitating imaging for deep tissues. (iii) The HA shell outside of β-CD prevented the unexpected leaking of DTX, which improved the target abilities and achieved the enzyme-responsive drug release. The in vitro and in vivo studies also demonstrated the nanosystem could efficiently suppress tumor growth by combination therapy and had excellent imaging (UCL/MR) ability. Particularly, our work was the first example that utilized TiO 2 simultaneously as a photosensitizer and upconversion host, which simplified the core-shell UCNP-TiO 2 nanocomposites and reached a "win-win" cooperation in NIR-induced photodynamic therapy and UCL imaging.
Heslar, John; Chu, Shih-I.
2016-11-24
Recently, the study of near- and below- threshold regime harmonics as a potential source of intense coherent vacuum-ultraviolet radiation has received considerable attention. However, the dynamical origin of these lower harmonics, particularly for the molecular systems, is less understood and largely unexplored. Here we perform the first fully ab initio and high precision 3D quantum study of the below- and near-threshold harmonic generation of H 2 + molecules in an intense 800-nm near-infrared (NIR) laser field. Furthermore, combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, we explore in-depth the roles of various quantummore » trajectories, including short- and long trajectories, multiphoton trajectories, resonance-enhanced trajectories, and multiple rescattering trajectories of the below- and near- threshold harmonic generation processes. Our results shed new light on the dynamical origin of the below- and near-threshold harmonic generation and various quantum trajectories for diatomic molecules for the first time.« less
Zeng, Leyong; Pan, Yuanwei; Tian, Ying; Wang, Xin; Ren, Wenzhi; Wang, Shouju; Lu, Guangming; Wu, Aiguo
2015-07-01
The combination therapy has exhibited important potential for the treatment of cancers, especially for drug-resistant cancers. In this report, bi-functional nanoprobes based on doxorubicin (DOX)-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers (FA-NPs-DOX) were synthesized for in vivo near infrared (NIR)-triggered inorganic photodynamic therapy (PDT) and enhanced chemotherapy to overcome the multidrug resistance (MDR) in breast cancers. Using the up-conversion luminescence (UCL) performance of NaYF4:Yb/Tm converting near-infrared (NIR) into ultraviolent (UV) lights, reactive oxygen species (ROS) were triggered from TiO2 inorganic photosensitizers for PDT under the irradiation of a 980 nm laser, by which the deep-penetration and low photo-damage could be reached. Moreover, nanocarrier delivery and folic acid (FA) targeting promoted the cellular uptake, and accelerated the release of DOX in drug-sensitive MCF-7 and resistant MCF-7/ADR cells. The toxicity assessment in vitro and in vivo revealed the good biocompatibility of the as-prepared FA-NPs-DOX nanocomposites. By the combination of enhanced chemotherapy and NIR-triggered inorganic PDT, the viability of MCF-7/ADR cells could decrease by 53.5%, and the inhibition rate of MCF-7/ADR tumors could increase up to 90.33%, compared with free DOX. Therefore, the MDR of breast cancers could be obviously overcome by enhanced chemotherapy and NIR-triggered inorganic PDT of FA-NPs-DOX nanocomposites under the excitation of a 980 nm laser. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Qinfu; Wang, Xiudan; Yan, Yue; Wang, Da; Zhang, Ying; Jiang, Tongying; Wang, Siling
2017-03-01
In this study, we synthesized a kind of hollow mesoporous carbon (HMC) as near-infrared (NIR) nanomaterial and made a comparison between HMC and IR-820 commercially available in terms of heat generation properties and thermal stability exposed under NIR laser irradiation. The NIR-induced photothermal tests indicated that HMC had excellent heat generating capacity and remained stable after exposed to NIR laser irradiation for several times. On the contrary, the IR-820 was thermal unstable and degraded completely after exposed to NIR laser irradiation for only one time. The anticancer drug DOX was chosen as a model drug to evaluate the loading capacity and release properties of carboxylated HMC (HMC-COOH). The drug loading efficiency of HMC-COOH could reach to 39.7%. In vitro release results indicated that the release rate of DOX was markedly increased under NIR laser irradiation both in pH5.0 and pH7.4 PBS. Cell viability experiments indicated that HMC-COOH/DOX has a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This present research demonstrated that HMC could be employed as NIR-adsorbing agents as well as drug carriers to load lots of drug, realizing the synergistic treatment of chemotherapy and photothermal therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Chiarelli, Antonio M; Libertino, Sebania; Zappasodi, Filippo; Mazzillo, Massimo; Pompeo, Francesco Di; Merla, Arcangelo; Lombardo, Salvatore; Fallica, Giorgio
2017-07-01
We report development, testing, and in vivo characterization of a multichannel optical probe for continuous wave (CW) functional near-infrared spectroscopy (fNIRS) that relies on silicon photomultipliers (SiPMs) detectors. SiPMs are cheap, low voltage, and robust semiconductor light detectors with performances analogous to photomultiplier tubes (PMTs). In contrast with PMTs, SiPMs allow direct contact with the head and transfer of the analog signals through thin cables greatly increasing the system flexibility avoiding optical fibers. The coupling of SiPMs and light-emitting diodes (LEDs) made the optical probe lightweight and robust against motion artifacts. After characterization of SiPM performances, which was proven to provide a noise equivalent power below 3 fW, the apparatus was compared through an in vivo experiment to a commercial system relying on laser diodes, PMTs, and optical fibers for light probing and detection. The optical probes were located over the primary sensorimotor cortex and the similarities between the hemodynamic responses to the contralateral motor task were assessed. When compared to other state-of-the-art wearable fNIRS systems, where photodiode detectors are employed, the single photon sensitivity and dynamic range of SiPMs can fully exploit the long and variable interoptode distances needed for correct estimation of brain hemodynamics using CW-fNIRS.
Frequency Up-Conversion Photon-Type Terahertz Imager.
Fu, Z L; Gu, L L; Guo, X G; Tan, Z Y; Wan, W J; Zhou, T; Shao, D X; Zhang, R; Cao, J C
2016-05-05
Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.
Frequency Up-Conversion Photon-Type Terahertz Imager
Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.
2016-01-01
Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281
Acoustic Events and “Optophonic” Cochlear Responses Induced by Pulsed Near-Infrared LASER
Maier, Hannes; Richter, Claus-Peter; Kral, Andrej
2012-01-01
Optical stimulation of neural tissue within the cochlea was described as a possible alternative to electrical stimulation. Most optical stimulation was performed with pulsed lasers operating with near-infrared (NIR) light and in thermal confinement. Under these conditions, the coexistence of laser-induced optoacoustic stimulation of the cochlea (“optophony”) has not been analyzed yet. This study demonstrates that pulsed 1850-nm laser light used for neural stimulation also results in sound pressure levels up to 62 dB peak-to-peak equivalent sound pressure level (SPL) in air. The sound field was confined to a small volume along the laser beam. In dry nitrogen, laser-induced acoustic events disappeared. Hydrophone measurements demonstrated pressure waves for laser fibers immersed in water. In hearing rats, laser-evoked signals were recorded from the cochlea without targeting neural tissue. The signals showed a two-domain response differing in amplitude and latency functions, as well as sensitivity to white-noise masking. The first component had characteristics of a cochlear microphonic potential, and the second component was characteristic for a compound action potential. The present data demonstrate that laser-evoked acoustic events can stimulate a hearing cochlea. Whenever optical stimulation is used, care must be taken to distinguish between such “optophony” and the true optoneural response. PMID:21278011
Blázquez-Castro, Alfonso; Colombo, Lucas L; Vanzulli, Silvia I; Stockert, Juan C
2018-03-16
The photothermal effect is one of the most promising photonic procedures currently under development to successfully treat several clinical disorders, none the least some kinds of cancer. At present, this field is undergoing a renewed interest due to advances in both photothermal materials and better-suited light sources. However, scientific studies in this area are sometimes hampered by the relative unavailability of state-of-art materials or the complexity of setting up a dedicated optical facility. Here, we present a simple and affordable approach to do research in the photothermal field that relies on a commercial NIR laser pointer and a readily available everyday pigment: China ink. A proof-of-concept study is presented in which mice bearing intradermal LM3 mammary adenocarcinoma tumors were successfully treated in vivo employing China ink and the laser pointer. TUNEL and Ki-67 post-treatment tissue assessment clearly indicates the deleterious action of the photothermal treatment on the tumor. Therefore, the feasibility of this simple approach has been demonstrated, which may inspire other groups to implement simple procedures to further explore the photothermal effect.
NASA Astrophysics Data System (ADS)
Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki
2007-02-01
We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.
Telford, William G.; Shcherbakova, Daria M.; Buschke, David; Hawley, Teresa S.; Verkhusha, Vladislav V.
2015-01-01
Engineering of fluorescent proteins (FPs) has followed a trend of achieving longer fluorescence wavelengths, with the ultimate goal of producing proteins with both excitation and emission in the near-infrared (NIR) region of the spectrum. Flow cytometers are now almost universally equipped with red lasers, and can now be equipped with NIR lasers as well. Most red-shifted FPs of the GFP-like family are maximally excited by orange lasers (590 to 610 nm) not commonly found on cytometers. This has changed with the development of the iRFP series of NIR FPs from the protein family of bacterial phytochromes. The shortest wavelength variants of this series, iRFP670 and iRFP682 showed maximal excitation with visible red lasers. The longer wavelength variants iRFP702, iRFP713 and iRFP720 could be optimally excited by NIR lasers ranging from 685 to 730 nm. Pairs of iRFPs could be detected simultaneously by using red and NIR lasers. Moreover, a novel spectral cytometry technique, which relies on spectral deconvolution rather than optical filters, allowed spectra of all five iRFPs to be analyzed simultaneously with no spectral overlap. Together, the combination of iRFPs with the advanced flow cytometry will allow to first image tissues expressing iRFPs deep in live animals and then quantify individual cell intensities and sort out the distinct primary cell subpopulations ex vivo. PMID:25811854
Telford, William G; Shcherbakova, Daria M; Buschke, David; Hawley, Teresa S; Verkhusha, Vladislav V
2015-01-01
Engineering of fluorescent proteins (FPs) has followed a trend of achieving longer fluorescence wavelengths, with the ultimate goal of producing proteins with both excitation and emission in the near-infrared (NIR) region of the spectrum. Flow cytometers are now almost universally equipped with red lasers, and can now be equipped with NIR lasers as well. Most red-shifted FPs of the GFP-like family are maximally excited by orange lasers (590 to 610 nm) not commonly found on cytometers. This has changed with the development of the iRFP series of NIR FPs from the protein family of bacterial phytochromes. The shortest wavelength variants of this series, iRFP670 and iRFP682 showed maximal excitation with visible red lasers. The longer wavelength variants iRFP702, iRFP713 and iRFP720 could be optimally excited by NIR lasers ranging from 685 to 730 nm. Pairs of iRFPs could be detected simultaneously by using red and NIR lasers. Moreover, a novel spectral cytometry technique, which relies on spectral deconvolution rather than optical filters, allowed spectra of all five iRFPs to be analyzed simultaneously with no spectral overlap. Together, the combination of iRFPs with the advanced flow cytometry will allow to first image tissues expressing iRFPs deep in live animals and then quantify individual cell intensities and sort out the distinct primary cell subpopulations ex vivo.
NASA Astrophysics Data System (ADS)
Wang, Shaowei; Zhao, Xinyuan; Zhang, Hequn; Cai, Fuhong; Qian, Jun
2016-01-01
Gold Nanorods (GNRs) with tunable aspect ratios can strongly absorb and scatter light in the NIR region due to their localized surface plasmon resonance (LSPR) property, and have been demonstrated to exhibit strong plasmon enhanced multiphoton luminescence (MPL) with brightness many times stronger than the conventional organic chromophores. In this study, we synthesized GNRs with longitudinal LSPR peak at 1036 nm to match our home-built light source 1040 nm femtosecond laser, which locates in the “optical window” where the tissue absorbs relatively little light. PEGylated GNRs with great biocompatibility were intravenously injected through the tail vein into mice. Excited by 1040 nm laser, the GNRs exhibit bright three-photon luminescence (3PL) signals while circulating in the blood vessels. The use of GNRs as bright contrast agents for 3PL imaging of mouse ear blood vessels in vivo was demonstrated. And GNRs targeted in tissues can be excited by 1040 nm laser and could be clearly visualized with no autofluorescence background. These results indicated that 3PL of GNRs is very promising for deep in vivo bioimaging and assessing the distribution of GNRs in tissues with high contrast.
Near-IR Imaging of Thermal Changes in Enamel during Laser Ablation.
Maung, Linn H; Lee, Chulsung; Fried, Daniel
2010-03-05
The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO(2) laser operating at a wavelength of 9.3-µm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 µs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO(2) laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO(2) laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase light-scattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 ± 0.82 to 5.08 ± 0.98 with loss of mobile water due to heating.
Near-IR Imaging of Thermal Changes in Enamel during Laser Ablation
Maung, Linn H.; Lee, Chulsung; Fried, Daniel
2011-01-01
The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-µm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10–20 µs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase light-scattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 ± 0.82 to 5.08 ± 0.98 with loss of mobile water due to heating. PMID:21935291
NASA Astrophysics Data System (ADS)
Leggio, Luca; de Varona, Omar; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio
2015-06-01
During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75-1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode-based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.
Huschka, Ryan; Barhoumi, Aoune; Liu, Qing; Roth, Jack A.; Ji, Lin; Halas, Naomi J.
2013-01-01
The approach of RNA interference (RNAi)- using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein- is very useful in dissecting genetic function and holds significant promise as a molecular therapeutic. A major obstacle in achieving gene silencing with RNAi technology is the systemic delivery of therapeutic oligonucleotides. Here we demonstrate an engineered gold nanoshell (NS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly(L)lysine peptide (PLL) epilayer covalently attached to the NS surface (NS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotides, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. Controlled release of the captured therapeutic oligonucleotides in each case is accomplished by continuous wave NIR laser irradiation at 800 nm, near the resonance wavelength of the nanoshell. Fluorescently tagged oligonucleotides were used to monitor the time-dependent release process and light-triggered endosomal release. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and gene silencing mediated by the NS-PLL carrying GFP gene-specific single-stranded DNA antisense oligonucleotide (AON-GFP), or a double-stranded siRNA (siRNA-GFP), in vitro. Light-triggered delivery resulted in ∼ 47% and ∼49% downregulation of the targeted GFP expression by AON-GFP and siRNA-GFP, respectively. Cytotoxicity induced by both the NS-PLL delivery vector and by laser irradiation is minimal, as demonstrated by a XTT cell proliferation assay. PMID:22862291
NASA Astrophysics Data System (ADS)
Ko, Woo Seok; Darwish, Naser; Gratton, Enrico; Kim, Soo Hyun
2005-04-01
We measure the concentration of oxy-, deoxy- and total hemoglobin by using the frequency-domain, near-infrared spectroscopy(NIRS) scanner. It is a non-invasive instrument that can provide real-time measurements of the changes in concentration. It can provide a diagnostic tool for the study of the brain in infants and children. However, it is difficult to apply it to the baby's head because of the contact of the probe on the soft baby's head. Therefore, we suggest the NIRS scanning system that can track the baby' head movement and detect NIRS parameters on the same position of the head. This system has three key components. The vision system performs the pattern matching for tracking the head by using the normalized cross correlation method with the target as a cross-line on the head during the diagnostic experiment. We can use the change of the position of the baby's head to re-target the light by the scanning system that uses four laser sources, a wavelength selector, and an x-y scanner. The detector system analyzes the resulting signal from the head using the diffusion model. Therefore, NIRS scanning system can provide a diagnostic tool to measure the changes of the NIRS parameters for the study of the baby's brain.
NASA Astrophysics Data System (ADS)
Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S.
2016-03-01
Two-photon imaging combined with targeted fluorescent indicators is extensively used for visualizing critical features of brain functionality and structural plasticity. Back-scattered photons from the NIR laser provide complimentary information without introducing any exogenous labelling. Here, we describe a versatile approach that, by collecting the reflected NIR light, provides structural details on the myelinated axons and blood vessels in the brain, both in fixed samples and in live animals. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from Thy1-GFPm mice, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Label-free detection of axonal elongations over the layer 2/3 of mouse cortex under a cranial window was also possible in live brain. Finally, blood flow could be measured in vivo, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated simultaneously.
Hua, Shih-Hao; Chen, Chao-Pin; Han, Pin
2017-08-01
The simple and nondestructive detection system studied in this work uses a near-infrared (NIR) detector and parallel-polarized (P-wave) NIR lasers to determine the soluble solids content (SSC) of apples. The P-wave NIR laser in this system is incident into the apple's pulp at the Brewster angle to minimize the interference caused by interfacial reflections. After the apple has been illuminated by four P-wave NIR lasers that correspond to the specified wavelengths of the SSC chemical bonds (880, 940, 980, and 1064 nm), the prediction of correlation (rp2) and the root-mean-square error for prediction (RMSEP) of the SSC are determined via partial least square regression analysis of the reflectance. Our results indicate that the use of P-wave lasers at the Brewster angle (as the angle of incidence) and the above specified wavelengths for the prediction set measurement of the SSC of apples obtained an rp2 of 0.88 and an RMSEP of 0.47°Brix. These rp2 are 6% higher, and the RMSEPs are 9% lower, than those obtained using non-polarized lasers.
NASA Astrophysics Data System (ADS)
Aparanji, Santosh; Balaswamy, V.; Arun, S.; Supradeepa, V. R.
2018-02-01
In this work, we report and analyse the surprising observation of a rainbow of visible colors, spanning 390nm to 620nm, in silica-based, Near Infrared, continuous-wave, cascaded Raman fiber lasers. The cascaded Raman laser is pumped at 1117nm at around 200W and at full power we obtain 100 W at 1480nm. With increasing pump power at 1117nm, the fiber constituting the Raman laser glows in various hues along its length. From spectroscopic analysis of the emitted visible light, it was identified to be harmonic and sum-frequency components of various locally propagating wavelength components. In addition to third harmonic components, surprisingly, even 2nd harmonic components were observed. Despite being a continuous-wave laser, we expect the phase-matching occurring between the core-propagating NIR light with the cladding-propagating visible wavelengths and the intensity fluctuations characteristic of Raman lasers to have played a major role in generation of visible light. In addition, this surprising generation of visible light provides us a powerful non-contact method to deduce the spectrum of light propagating in the fiber. Using static images of the fiber captured by a standard visible camera such as a DSLR, we demonstrate novel, image-processing based techniques to deduce the wavelength component propagating in the fiber at any given spatial location. This provides a powerful diagnostic tool for both length and power resolved spectral analysis in Raman fiber lasers. This helps accurate prediction of the optimal length of fiber required for complete and efficient conversion to a given Stokes wavelength.
NASA Astrophysics Data System (ADS)
Zheng, Shaohui; Du Nguyen, Van; Song, Seung Yoon; Han, Jiwon; Park, Jong-Oh
2017-10-01
In this study, a novel type of hyaluronic acid (HA)-decorated nanostructured lipid carrier (NLC) was prepared and investigated as a light-triggered drug release and combined photothermal-chemotherapy for cancer treatment. Polyhedral gold nanoparticles (Au NPs) with an average size of 10 nm were synthesized and co-encapsulated with doxorubicin (DOX) in the matrix of NLCs with a high drug loading efficiency (above 80%). HA decoration was achieved by the electrostatic interaction between HA and CTAB on the NLC surface. A remarkable temperature increase was observed by exposing the Au NP-loaded NLCs to an NIR laser, which heated the samples sufficiently (above 40 °C) to kill tumor cells. The entrapped DOX exhibited a sustained, stepwise NIR laser-triggered drug release pattern. The biocompatibility of the NLCs was investigated by MTT assay and the cell viability was maintained above 85%, even at high concentrations. The intracellular uptake of free DOX and entrapped DOX, observed by confocal microscopy, revealed two distinct uptake mechanisms, i.e. passive diffusion and endocytosis, respectively. In particular, internalization of the HA-Au-DOX-NLCs was more extensively enhanced than the Au-DOX-NLCs, which was attributed to HA-CD44 receptor-mediated endocytosis. Meanwhile, the internalized NLCs successfully escaped from the lysosomes, increasing the intracellular DOX. The HA-Au-DOX-NLCs IC50 value decreased from 2.3 to 0.6 μg ml-1 with NIR irradiation at 72 h, indicating the excellent synergistic antitumor effect of photothermal-chemotherapy. The photothermal ablation was further confirmed by a live/dead cell staining assay. Thus, a combined photothermal-chemotherapy approach has been proposed as a promising strategy for cancer treatment.
CNT Nanobombs for Specific Eradication of Cancer Cells: A New Concept in Cancer Theranostics.
Omidi, Yadollah
2011-01-01
Whole extermination of cancerous cells/tissue seems no longer to be a dream. Exploiting advanced photoactive nanomaterials such as functionalized fullerenes and carbon nano-tubes (CNTs) can act as CNT nanobombs (CNT-NBs) when exposed to the near infrared (NIR) radiation. PEGylated CNTs tagged with an antibody/aptamer can target cancer cells. Once attached to cancer cells, the NIR emission (700-1100 nm), in which body tissues are mostly transparent, can be applied to CNT-NBs which can absorb the light and get heated up. The resultant enhanced temperature can abolish the cancer. Once stealth CNT-NBs are tagged with imaging moieties, it would be a matter of computer gaming for physician who can inject it for real time visualization and destruction of cancer by activation of the NIR laser. While, many nanosystems (NSs) are still in waiting list for clinical translation, our dreams may come true by applying stealth CNT-NBs against cancer.
Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties
Cantu, Travis; Rodier, Bradley; Iszard, Zachary; Kilian, Alissa; Pattani, Varun; Walsh, Kyle; Weber, Katharina; Tunnell, James; Betancourt, Tania; Irvin, Jennifer
2016-01-01
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT). PMID:26780244
Meertens, Robert; Casanova, Francesco; Knapp, Karen M; Thorn, Clare; Strain, William David
2018-05-04
A range of technologies using near infrared (NIR) light have shown promise at providing real time measurements of hemodynamic markers in bone tissue in vivo, an exciting prospect given existing difficulties in measuring hemodynamics in bone tissue. This systematic review aimed to evaluate the evidence for this potential use of NIR systems, establishing their potential as a research tool in this field. Major electronic databases including MEDLINE and EMBASE were searched using pre-planned search strategies with broad scope for any in vivo use of NIR technologies in human bone tissue. Following identification of studies by title and abstract screening, full text inclusion was determined by double blind assessment using predefined criteria. Full text studies for inclusion were data extracted using a predesigned proforma and quality assessed. Narrative synthesis was appropriate given the wide heterogeneity of included studies. Eighty-eight full text studies fulfilled the inclusion criteria, 57 addressing laser Doppler flowmetry (56 intra-operatively), 21 near infrared spectroscopy, and 10 photoplethysmography. The heterogeneity of the methodologies included differing hemodynamic markers, measurement protocols, anatomical locations, and research applications, making meaningful direct comparisons impossible. Further, studies were often limited by small sample sizes with potential selection biases, detection biases, and wide variability in results between participants. Despite promising potential in the use of NIR light to interrogate bone circulation, the application of NIR systems in bone requires rigorous assessment of the reproducibility of potential hemodynamic markers and further validation of these markers against alternative physiologically relevant reference standards. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-9, 2018. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Near-infrared image-guided laser ablation of artificial caries lesions.
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2007-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO(2) laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm(2) bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO(2) laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.
Near-infrared image-guided laser ablation of artificial caries lesions
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2012-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two–dimensional NIR images of demineralized tooth surfaces can be used to guide CO2 laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO2 laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:22866210
Near-infrared image-guided laser ablation of artificial caries lesions
NASA Astrophysics Data System (ADS)
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2007-02-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO II laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 x 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO II laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO II laser ablation system for the selective removal of dental caries.
PRM/NIR sensor for brain hematoma detection and oxygenation monitoring
NASA Astrophysics Data System (ADS)
Zheng, Liu; Lee, Hyo Sang; Lokos, Sandor; Kim, Jin; Hanley, Daniel F.; Wilson, David A.
1997-06-01
The pseudo-random modulation/near IR sensor (PRM/NIR Sensor) is a low cost portable system designed for time-resolved tissue diagnosis, especially hematoma detection in the emergency care facility. The sensor consists of a personal computer and a hardware unit enclosed in a box of size 37 X 37 X 31 cm3 and of weight less than 10 kg. Two pseudo-random modulated diode lasers emitting at 670 nm and 810 nm are used in the sensor as light sources. The sensor can be operated either in a single wavelength mode or a true differential mode. Optical fiber bundles are used for convenient light delivery and color filters are used to reject room light. Based on a proprietary resolution- enhancement correlation technique, the system achieves a time resolution better than 40 ps with a PRM modulation speed of 200 MHz and a sampling rate of 1-10 Gs/s. Using the prototype sensor, phantom experiments have been conducted to study the feasibility of the sensor. Brain's optical properties are simulated with solutions of intralipid and ink. Hematomas are simulated with bags of paint and hemoglobin immersed in the solution of varies sizes, depths, and orientations. Effects of human skull and hair are studied experimentally. In animal experiment, the sensor was used to monitor the cerebral oxygenation change due to hypercapnia, hypoxia, and hyperventilation. Good correlations were found between NIR measurement parameters and physiological changes induced to the animals.
MEMS scanner mirror based system for retina scanning and in eye projection
NASA Astrophysics Data System (ADS)
Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Dallmann, Hans-Georg; Schelinski, Uwe; Grüger, Heinrich
2015-02-01
Many applications could benefit from miniaturized systems to scan blood vessels behind the retina in the human eye, so called "retina scanning". This reaches from access control to sophisticated security applications and medical devices. High volume systems for consumer applications require low cost and a user friendly operation. For example this includes no need for removal of glasses and self-adjustment, in turn guidance of focus and point of attraction by simultaneous projection for the user. A new system has been designed based on the well-known resonantly driven 2-d scanner mirror of Fraunhofer IPMS. A combined NIR and VIS laser system illuminates the eye through an eye piece designed for an operating distance allowing the use of glasses and granting sufficient field of view. This usability feature was considered to be more important than highest miniaturization. The modulated VIS laser facilitates the projection of an image directly onto the retina. The backscattered light from the continuous NIR laser contains the information of the blood vessels and is detected by a highly sensitive photo diode. A demonstrational setup has been realized including readout and driving electronics. The laser power was adjusted to an eye-secure level. Additional security features were integrated. Test measurements revealed promising results. In a first demonstration application the detection of biometric pattern of the blood vessels was evaluated for issues authentication in.
Opto-injection into single living cells by femtosecond near-infrared laser
NASA Astrophysics Data System (ADS)
Peng, Cheng
This dissertation presents a novel technique to deliver membrane impermeable molecules into single living cells with the assistance of femtosecond (fs) near-infrared (NIR) laser pulses. This approach merges ultrafast laser technology with key biological, biomedical, and medical applications, such as gene transfection, gene therapy and drug delivery. This technique promises several major advantages, namely, very high transfection efficiency, high cell survival rate (≈100%) and fully preserved cell viabilities. It is also a promising method to deliver molecules into cells that are difficult or even completely resistant to established physical methods, such as microinjection by glass pipettes, electroporation, and biolistics. In this work, the system for fs NIR opto-injection was designed and built. Successful fs NIR opto-injection has been performed on several cell systems including single mammalian cells (bovine aortic endothelial cells), marine animal eggs (Spisula solidissima oocytes), and human cancer cells (fibrosarcoma HT1080) cultured in a tissue-like environment. The connections between laser parameters and cell responses were explored through further experiments and in-depth analyses, especially the relationship between dye uptake rate and incident laser intensity, and the relationship between pore size created on cell membranes and incident laser intensity. Dye uptake rate of the target cells was observed to depend on incident laser intensity. Pore size was found dependent on incident laser intensity. The conclusion was made that laser-induced breakdown and plasma-induced ablation in cell membrane are the physical principles that govern the process of fs NIR opto-injection.
Optical sideband generation up to room temperature with mid-infrared quantum cascade lasers.
Houver, S; Cavalié, P; St-Jean, M Renaudat; Amanti, M I; Sirtori, C; Li, L H; Davies, A G; Linfield, E H; Pereira, T A S; Lebreton, A; Tignon, J; Dhillon, S S
2015-02-23
Mid-infrared (MIR) sideband generation on a near infrared (NIR) optical carrier is demonstrated within a quantum cascade laser (QCL). By employing an externally injected NIR beam, E(NIR), that is resonant with the interband transitions of the quantum wells in the QCL, the nonlinear susceptibility is enhanced, leading to both frequency mixing and sideband generation. A GaAs-based MIR QCL (E(QCL) = 135 meV) with an aluminum-reinforced waveguide was utilized to overlap the NIR and MIR modes with the optical nonlinearity of the active region. The resulting difference sideband (E(NIR) - E(QCL)) shows a resonant behavior as a function of NIR pump wavelength and a maximum second order nonlinear susceptibility, χ((2)), of ~1 nm/V was obtained. Further, the sideband intensity showed little dependence with the operating temperature of the QCL, allowing sideband generation to be realized at room temperature.
Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit
2018-02-01
Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.
Light assisted drying (LAD) for protein stabilization: optimization of laser processing parameters
NASA Astrophysics Data System (ADS)
Young, Madison A.; Antczak, Andrew T.; Elliott, Gloria D.; Trammell, Susan R.
2017-02-01
In this study, a novel light-based processing method to create an amorphous trehalose matrix for the stabilization of proteins is discussed. Near-IR radiation is used to remove water from samples, leaving behind an amorphous solid with embedded protein. This method has potential applications in the stabilization of protein-based therapeutics and diagnostics that are becoming widely used in the treatment and diagnosis of a variety of diseases. Freeze-drying or freezing are currently the standard for the preservation of proteins, but these methods are expensive and can be challenging in some environments due to a lack of available infrastructure. Light-assisted drying offers a relatively inexpensive method for drying samples. Proteins suspended in a trehalose solution are dehydrated using near-infrared laser light. The laser radiation speeds drying and as water is removed the sugar forms a protective matrix. The goal of this study is to determine processing parameters that result in fast processing times and low end moisture contents (EMC), while maintaining the functionality of embedded proteins. We compare the effect of changing processing wavelength, power and resulting sample temperature, and substrate material on the EMC for two NIR laser sources (1064 nm and 1850 nm). The 1850 nm laser resulted in the lowest EMC (0.1836+/-0.09 gH2O/gDryWeight) after 10 minutes of processing on borosilicate glass microfiber paper. This suggests a storage temperature of 3°C.
NASA Astrophysics Data System (ADS)
Mahmood, Usama; Dehdari, Reza; Cerussi, Albert; Nguyen, Quoc; Kelley, Timothy; Tromberg, Bruce J.; Wong, Brian J.
2005-04-01
Though sinusitis is a significant health problem, it remains a challenging diagnosis for many physicians mainly because of its vague, non-specific symptomology. As such, physicians must often rely on x-rays and CT, which are not only costly but also expose the patient to ionizing radiation. As an alternative to these methods of diagnosis, our laboratory constructed a near infrared (NIR) transillumination system to image the paranasal maxillary sinuses. In contrast to the more conventional form of transillumination, which uses visible light, NIR transillumination uses light with a longer wavelength which is less attenuated by soft tissues, allowing increased signal intensity and tissue penetration. Our NIR transillumination system is low-cost, consisting of a light source containing two series of light emitting diodes, which give off light at wavelengths of 810 nm and 850 nm, and a charge coupled device (CCD) camera sensitive to NIR light. The light source is simply placed in the patient"s mouth and the resultant image created by the transmittance of NIR light is captured with the CCD camera via notebook PC. Using this NIR transillumination system, we imaged the paranasal maxillary sinuses of both healthy patients (n=5) and patients with sinus disease (n=12) and compared the resultant findings with conventional CT scans. We found that air and fluid/tissue-filled spaces can be reasonably distinguished by their differing NIR opacities. Based on these findings, we believe NIR transillumination of the paranasal sinuses may provide a simple, safe, and cost effective modality in the diagnosis and management of sinus disease.
Vankayala, Raviraj; Huang, Yu-Kuan; Kalluru, Poliraju; Chiang, Chi-Shiun; Hwang, Kuo Chu
2014-04-24
Previously, a large volume of papers reports that gold nanorods (Au NRs) are able to effectively kill cancer cells upon high laser doses (usually 808 nm, 1-48 W/cm²) irradiation, leading to hyperthermia-induced destruction of cancer cells, i.e, photothermal therapy (PTT) effects. Combination of Au NRs-mediated PTT and organic photosensitizers-mediated photodynamic therapy (PDT) were also reported to achieve synergistic PTT and PDT effects on killing cancer cells. Herein, we demonstrate for the first time that Au NRs alone can sensitize formation of singlet oxygen (¹O₂) and exert dramatic PDT effects on complete destrcution of tumors in mice under very low LED/laser doses of single photon NIR (915 nm, <130 mW/cm²) light excitation. By changing the NIR light excitation wavelengths, Au NRs-mediated phototherapeutic effects can be switched from PDT to PTT or combination of both. Both PDT and PTT effects were confirmed by measurements of reactive oxygen species (ROS) and heat shock protein (HSP 70), singlet oxygen sensor green (SOSG) sensing, and sodium azide quenching in cellular experiments. In vivo mice experiments further show that the PDT effect via irradiation of Au NRs by 915 nm can destruct the B16F0 melanoma tumor in mice far more effectively than doxorubicin (a clinically used anti-cancer drug) as well as the PTT effect (via irradiation of Au NRs by 780 nm light). In addition, we show that Au NRs can emit single photon-induced fluorescence to illustrate their in vivo locations/distribution. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor.
Xuan, Mingjun; Mestre, Rafael; Gao, Changyong; Zhou, Chang; He, Qiang; Sánchez, Samuel
2018-06-04
We report a carbonaceous nanobottle (CNB) motor for near infrared (NIR) light-driven jet propulsion. The bottle structure of the CNB motor is fabricated by soft-template-based polymerization. Upon illumination with NIR light, the photothermal effect of the CNB motor carbon shell causes a rapid increase in the temperature of the water inside the nanobottle and thus the ejection of the heated fluid from the open neck, which propels the CNB motor. The occurrence of an explosion, the on/off motion, and the swing behavior of the CNB motor can be modulated by adjusting the NIR light source. Moreover, we simulated the physical field distribution (temperature, fluid velocity, and pressure) of the CNB motor to demonstrate the mechanism of NIR light-driven jet propulsion. This NIR light-powered CNB motor exhibits fuel-free propulsion and control of the swimming velocity by external light and has great potential for future biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Secret, Emilie; Maynadier, Marie; Gallud, Audrey; Chaix, Arnaud; Bouffard, Elise; Gary-Bobo, Magali; Marcotte, Nathalie; Mongin, Olivier; El Cheikh, Khaled; Hugues, Vincent; Auffan, Mélanie; Frochot, Céline; Morère, Alain; Maillard, Philippe; Blanchard-Desce, Mireille; Sailor, Michael J; Garcia, Marcel; Durand, Jean-Olivier; Cunin, Frédérique
2014-12-03
Porous silicon nanoparticles (pSiNPs) act as a sensitizer for the 2-photon excitation of a pendant porphyrin using NIR laser light, for imaging and photodynamic therapy. Mannose-functionalized pSiNPs can be vectorized to MCF-7 human breast cancer cells through a mannose receptor-mediated endocytosis mechanism to provide a 3-fold enhancement of the 2-photon PDT effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luo, Dandan; Li, Nasi; Carter, Kevin A; Lin, Cuiyan; Geng, Jumin; Shao, Shuai; Huang, Wei-Chiao; Qin, Yueling; Atilla-Gokcumen, G Ekin; Lovell, Jonathan F
2016-06-01
Prompt membrane permeabilization is a requisite for liposomes designed for local stimuli-induced intravascular release of therapeutic payloads. Incorporation of a small amount (i.e., 5 molar percent) of an unsaturated phospholipid, such as dioleoylphosphatidylcholine (DOPC), accelerates near infrared (NIR) light-triggered doxorubicin release in porphyrin-phospholipid (PoP) liposomes by an order of magnitude. In physiological conditions in vitro, the loaded drug can be released in a minute under NIR irradiation, while liposomes maintain serum stability otherwise. This enables rapid laser-induced drug release using remarkably low amounts of PoP (i.e., 0.3 molar percent). Light-triggered drug release occurs concomitantly with DOPC and cholesterol oxidation, as detected by mass spectrometry. In the presence of an oxygen scavenger or an antioxidant, light-triggered drug release is inhibited, suggesting that the mechanism is related to singlet oxygen mediated oxidization of unsaturated lipids. Despite the irreversible modification of lipid composition, DOPC-containing PoP liposome permeabilization is transient. Human pancreatic xenograft growth in mice is significantly delayed with a single chemophototherapy treatment following intravenous administration of 6 mg kg(-1) doxorubicin, loaded in liposomes containing small amounts of DOPC and PoP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets.
Wu, Zhiguang; Si, Tieyan; Gao, Wei; Lin, Xiankun; Wang, Joseph; He, Qiang
2016-02-03
A gold nanoshell-functionalized polymer multilayer nanorocket performs self-propulsion upon the irradiation with NIR light in the absence of chemical fuel. Theoretical simulations reveal that the NIR light-triggered self-thermophoresis drives the propulsion of the nanorocket. The nanorocket also displays -efficient NIR light-triggered propulsion in -biofluids and thus holds considerable promise for various potential biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Peng, Zhiyou; Qin, Jinbao; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yang, Xinrui; Yuan, Fukang; Huang, Lijia; Hu, Junqing; Lu, Xinwu
2015-04-01
Photothermal therapy (PTT), as a promising treatment for tumours, has rarely been reported for application in artery restenosis, which is a common complication of endovascular management due to enduring chronic inflammation and abnormal cell proliferation. In our study, biodegradable polypyrrole nanoparticles (PPy-NPs) were synthesized and characterized, including their size distribution, UV-vis-NIR absorbance, molar extinction coefficients, and photothermal properties. We then verified that PPy-NP incubation followed by 915 nm near-infrared (NIR) laser irradiation could effectively ablate inflammatory macrophages in vitro, leading to significant cell apoptosis and cell death. Further, it was found that a combination of local PPy-NP injection with 915 nm NIR laser irradiation could significantly alleviate arterial inflammation by eliminating infiltrating macrophages and further ameliorating artery stenosis in an ApoE-/- mouse model, without showing any obvious toxic side effects. Thus, we propose that PTT based on PPy-NPs as photothermal agents and a 915 nm NIR laser as a power source can serve as a new effective treatment for reducing inflammation and stenosis formation in inflamed arteries after endovascular management.Photothermal therapy (PTT), as a promising treatment for tumours, has rarely been reported for application in artery restenosis, which is a common complication of endovascular management due to enduring chronic inflammation and abnormal cell proliferation. In our study, biodegradable polypyrrole nanoparticles (PPy-NPs) were synthesized and characterized, including their size distribution, UV-vis-NIR absorbance, molar extinction coefficients, and photothermal properties. We then verified that PPy-NP incubation followed by 915 nm near-infrared (NIR) laser irradiation could effectively ablate inflammatory macrophages in vitro, leading to significant cell apoptosis and cell death. Further, it was found that a combination of local PPy-NP injection with 915 nm NIR laser irradiation could significantly alleviate arterial inflammation by eliminating infiltrating macrophages and further ameliorating artery stenosis in an ApoE-/- mouse model, without showing any obvious toxic side effects. Thus, we propose that PTT based on PPy-NPs as photothermal agents and a 915 nm NIR laser as a power source can serve as a new effective treatment for reducing inflammation and stenosis formation in inflamed arteries after endovascular management. Electronic supplementary information (ESI) available: Figures. See DOI: 10.1039/c5nr00542f
Plasmonic nanostructure assisted HHG in NIR spectrum and thermal analysis
NASA Astrophysics Data System (ADS)
Ebadian, H.; Mohebbi, M.
2018-02-01
We study plasmonic nanoparticle assisted high-order harmonic generation (HHG), illuminated by near infrared (NIR) laser sources, and the effect of the geometry of some different dimers on HHG cutoff frequency is evaluated. Dimers are installed on different dielectric substrates and the electric field enhancement factors are simulated. We demonstrate that NIR femto-fiber sources are good options for the HHG process. Such sources can induce significant inhomogeneous electric fields in the nanogaps; and consequently, high harmonic cutoff orders more than 250 will be obtained. Moreover, by time dependent thermal analysis of Au nanoparticles exposed to NIR ultrafast high power lasers, we could determine the temperature distribution in the nanoparticle and substrate.
Redchuk, Taras A; Kaberniuk, Andrii A; Verkhusha, Vladislav V
2018-05-01
Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.
Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection.
Ozkan, Gokhan; Guzel, Kadriye Gorkem Ulu
2017-08-01
The objective of this clinical study was to compare conventional caries detection techniques, pen-type laser fluorescence device, and near-infrared light transillumination method in approximal dentin caries lesions. The study included 157 patients, aged 12-18, without any cavity in the posterior teeth. Two calibrated examiners carried out the assessments of selected approximal caries sites independently. After the assessments, the unopened sites were excluded and a total of 161 approximal sites were included in the study. When both the examiners arrived at a consensus regarding the presence of dentin caries, the detected lesions were opened with a conical diamond burr, the cavity extent was examined and validated (gold standard). Sensitivity, specificity, negative predictive value, positive predictive value, accuracy, and area under the ROC curve (Az) values among the caries detection methods were calculated. Bitewing radiography and near-infrared (NIR) light transillumination methods showed the highest sensitivity (0.83-0.82) and accuracy (0.82-0.80) among the methods. Visual inspection showed the lowest sensitivity (0.54). Laser fluorescence device and visual inspection showed nearly equal performance. Near-infrared light transillumination can be used as an alternative method to approximal dentin caries detection. Visual inspection and laser fluorescence device alone should not be used for approximal dentin caries.
Differences between wavefront and subjective refraction for infrared light.
Teel, Danielle F W; Jacobs, Robert J; Copland, James; Neal, Daniel R; Thibos, Larry N
2014-10-01
To determine the accuracy of objective wavefront refractions for predicting subjective refractions for monochromatic infrared light. Objective refractions were obtained with a commercial wavefront aberrometer (COAS, Wavefront Sciences). Subjective refractions were obtained for 30 subjects with a speckle optometer validated against objective Zernike wavefront refractions on a physical model eye (Teel et al., Design and validation of an infrared Badal optometer for laser speckle, Optom Vis Sci 2008;85:834-42). Both instruments used near-infrared (NIR) radiation (835 nm for COAS, 820 nm for the speckle optometer) to avoid correction for ocular chromatic aberration. A 3-mm artificial pupil was used to reduce complications attributed to higher-order ocular aberrations. For comparison with paraxial (Seidel) and minimum root-mean-square (Zernike) wavefront refractions, objective refractions were also determined for a battery of 29 image quality metrics by computing the correcting lens that optimizes retinal image quality. Objective Zernike refractions were more myopic than subjective refractions for 29 of 30 subjects. The population mean discrepancy was -0.26 diopters (D) (SEM = 0.03 D). Paraxial (Seidel) objective refractions tended to be hyperopically biased (mean discrepancy = +0.20 D, SEM = 0.06 D). Refractions based on retinal image quality were myopically biased for 28 of 29 metrics. The mean bias across all 31 measures was -0.24 D (SEM = 0.03). Myopic bias of objective refractions was greater for eyes with brown irises compared with eyes with blue irises. Our experimental results are consistent with the hypothesis that reflected NIR light captured by the aberrometer originates from scattering sources located posterior to the entrance apertures of cone photoreceptors, near the retinal pigment epithelium. The larger myopic bias for brown eyes suggests that a greater fraction of NIR light is reflected from choroidal melanin in brown eyes compared with blue eyes.
Near-infrared dyes and upconverting phosphors as biomolecule labels and probes
NASA Astrophysics Data System (ADS)
Patonay, Gabor; Strekowski, Lucjan; Nguyen, Diem-Ngoc; Seok, Kim Jun
2007-02-01
Near-Infrared (NIR) absorbing chromophores have been used in analytical and bioanalytical chemistry extensively, including for determination of properties of biomolecules, DNA sequencing, immunoassays, capillary electrophoresis (CE) separations, etc. The major analytical advantages of these dyes are low background interference and high molar absorptivities. NIR dyes have additional advantages due to their sensitivity to microenvironmental changes. Spectral changes induced by the microenvironment are not desirable if the labels are used as a simple reporting group, e.g., during a biorecognition reaction. For these applications upconverting phosphors seem to be a better choice. There are several difficulties in utilizing upconverting phosphors as reporting labels. These are: large physical size, no reactive groups and insolubility in aqueous systems. This presentation will discuss how these difficulties can be overcome for bioanalytical and forensic applications. During these studies we also have investigated how to reduce physical size of the phosphor by simple grinding without losing activity and how to attach reactive moiety to the phosphor to covalently bind to the biomolecule of interest. It has to be emphasized that the described approach is not suitable for medical applications and the results of this research are not applicable in medical applications. For bioanalytical and forensic applications upconverting phosphors used as reporting labels have several advantages. They are excited with lasers that are red shifted respective to phosphorescence, resulting in no light scatter issues during detection. Also some phosphors are excited using eye safe lasers. In addition energy transfer to NIR dyes is possible, allowing detection schemes using donor-acceptor pairs. Data is presented to illustrate the feasibility of this phenomenon. If microenvironmental sensitivity is required, then specially designed NIR dyes can be used as acceptor labels. Several novel dyes have been synthesized in our laboratories for that purpose.
NASA Astrophysics Data System (ADS)
Wang, Chung-Hao; Huang, Yao-Jhang; Chang, Chia-Wei; Hsu, Wen-Ming; Peng, Ching-An
2009-08-01
Despite aggressive multimodality therapy, most neuroblastoma-bearing patients relapse and survival rate remains poor. Exploration of alternative therapeutic modalities is needed. Carbon nanotubes (CNTs), revealing optical absorbance in the near-infrared region, warrant their merits in photothermal therapy. In order to specifically target disialoganglioside (GD2) overexpressed on the surface of neuroblastoma stNB-V1 cells, GD2 monoclonal antibody (anti-GD2) was conjugated to acidified CNTs. To examine the fate of anti-GD2 bound CNTs after incubation with stNB-V1 cells, rhodamine B was labeled on carboxylated CNTs functionalized with and without anti-GD2. Our results illustrated that anti-GD2-linked CNTs were extensively internalized by neuroblastoma cells via GD2-mediated endocytosis. In addition, we showed that anti-GD2 bound CNTs were not ingested by PC12 cells without GD2 expression. After anti-GD2 conjugated CNTs were incubated with neuroblastoma cells for 6 h and endocytosed by the cells, CNT-laden neuroblastoma cells were further irradiated with an 808 nm near-infrared (NIR) laser with intensity ramping from 0.6 to 6 W cm-2 for 10 min which was then maintained at 6 W cm-2 for an additional 5 min. Post-NIR laser exposure, and after being examined by calcein-AM dye, stNB-V1 cells were all found to undergo necrosis, while non-GD2 expressing PC12 cells all remained viable. Based on the in vitro study, CNTs bound with anti-GD2 have the potential to be utilized as a therapeutic thermal coupling agent that generates heat sufficient to selectively kill neuroblastoma cells under NIR laser light exposure.
2018-01-01
Herein, we report a straightforward method for the scalable preparation of Pd nanoparticles (Pd-NPs) with reduced inherent cytotoxicity and high photothermal conversion capacity. These Pd-NPs are rapidly taken up by cells and able to kill labeled cancer cells upon short exposure to near-infrared (NIR) light. Following cell treatment with Pd-NPs, ablated areas were patterned with high precision by laser scanning microscopy, allowing one to perform cell migration assays with unprecedented accuracy. Using coherent Raman microscopy, cells containing Pd-NPs were simultaneously ablated and imaged. This novel methodology was combined with intravital imaging to mediate microablation of cancerous tissue in tumor xenografts in mice. PMID:29320154
Ai, Xiangzhao; Hu, Ming; Wang, Zhimin; Lyu, Linna; Zhang, Wenmin; Li, Juan; Yang, Huanghao; Lin, Jun; Xing, Bengang
2018-04-18
Near-infrared (NIR) light-mediated photodynamic therapy (PDT), especially based on lanthanide-doped upconversion nanocrystals (UCNs), have been extensively investigated as a promising strategy for effective cellular ablation owing to their unique optical properties to convert NIR light excitation into multiple short-wavelength emissions. Despite the deep tissue penetration of NIR light in living systems, the therapeutic efficiency is greatly restricted by insufficient oxygen supply in hypoxic tumor microenvironment. Moreover, the coexistent tumor-associated macrophages (TAMs) play critical roles in tumor recurrence during the post-PDT period. Herein, we developed a unique photosensitizer-loaded UCNs nanoconjugate (PUN) by integrating manganese dioxide (MnO 2 ) nanosheets and hyaluronic acid (HA) biopolymer to improve NIR light-mediated PDT efficacy through attenuating hypoxia status and synergistically reprogramming TAMs populations. After the reaction with overproduced H 2 O 2 in acidic tumor microenvironment, the MnO 2 nanosheets were degraded for the production of massive oxygen to greatly enhance the oxygen-dependent PDT efficiency upon 808 nm NIR light irradiation. More importantly, the bioinspired polymer HA could effectively reprogram the polarization of pro-tumor M2-type TAMs to anti-tumor M1-type macrophages to prevent tumor relapse after PDT treatment. Such promising results provided the great opportunities to achieve enhanced cellular ablation upon NIR light-mediated PDT treatment by attenuating hypoxic tumor microenvironment, and thus facilitated the rational design of new generations of nanoplatforms toward immunotherapy to inhibit tumor recurrence during post-PDT period.
Theranostic Gold Nanoshells And Nanomatryoshkas for Cancer Therapy
NASA Astrophysics Data System (ADS)
Ayala-Orozco, Ciceron
This dissertation describes the synthesis of multifunctional gold nanoparticles designed for therapy and diagnosis of cancer (theranostics), and the evaluation of their therapeutic efficacy and bioimaging of tumors in mice. The design of these metallic nanoparticles is aimed to incorporate imaging agents (MRI contrasts and fluorophores) in compact structures with dimensions below 100 nm while keeping their NIR-light-absorbing properties and optimum surface chemistry to enhance accumulation in tumor. The therapeutic response of these metallic nanoparticles is derived from the photoexcitation of their plasmon resonance, the collective oscillation of the conduction band electrons, which was advantageously utilized to enhance the quantum yield of fluorophores resonant in the NIR where the penetration of light is maximal in biological tissue and minimally destructive. Gold nanoshells as absorbers of NIR light can convert the absorbed light into heat consequently causing hyperthermia in the surrounding medium which leads to tumor cell death. To extent the application of previously developed theranostic nanoshells to the highly lethal pancreatic cancer, chapter 2 describes a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) receptor in pancreatic cancer. Gold nanoshells (SiO2-Au core-shell nanoshell) resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in a theranostic gold nanoshells, which provided contrast for both T2 weighted MRI and NIR fluorescence optical imaging. The large size of this complex (200 nm) potentially can hinder the accumulation in tumor. Seeking to reduce the size of the theranostic nanoparticles, chapter 3 presents the sub-100 nm Au nanomatryoshkas (Au/SiO2/Au). Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous injection of Au nanomatryoshkas followed by a single NIR laser dose of 2 W/cm2 for 5 min, 83% of the tumor-bearing mice appeared healthy and tumor free >60 days later, while only 40% of mice treated with nanoshells survived the same period. The smaller size and larger absorption cross section of Au nanomatryoshkas combine to make this nanoparticle more effective than Au nanoshells for photothermal cancer therapy. Chapter 4 presents the therapeutic efficacy in mice bearing large (>1000 mm3) and highly aggressive triple negative breast tumors. To equip the Au nanomatryoshkas with imaging contrast agents, fluorophores were encapsulated in the internal SiO2 layer of the Au/SiO 2/Au matryoshkas as described in chapter 5. We observed strong fluorescence enhancements of the NIR dyes Cy7 and IR800. This behavior can be understood by taking into account the near field enhancement induced by the Fano resonance of the nanomatryoshka, which is responsible for enhanced absorption of the fluorophores incorporated into the nanocomplex. The combination of compact size and enhanced light emission with internal encapsulation of the fluorophores for increased biocompatibility suggests outstanding potential for this type of nanoparticle complex in biomedical applications as it is investigated and presented in chapter 6.
2006-07-01
of water, gelatin (G2625, Sigma Inc.), India ink (for absorption), and titanium dioxide powder (for scatter) (TiO2, Sigma Inc.) is poured into a mold...R. C., Ference, R. J, Refractive index of some mammalian tissue using a fiber optic cladding method. Applied Optics, 1989. 28(12): p. 2297-2303. 3...scans. The NIR system utilizes six optical wavelengths from 660 to 850 nm using intensity modulated diode lasers nominally working at 100 MHz
Selective Removal of Natural Occlusal Caries by Coupling Near-infrared Imaging with a CO2 Laser
Tao, You-Chen; Fried, Daniel
2011-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO2 laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO2 laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO2 laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO2 laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure. PMID:21909225
Selective removal of natural occlusal caries by coupling near-infrared imaging with a CO II laser
NASA Astrophysics Data System (ADS)
Tao, You-Chen; Fried, Daniel
2008-02-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO2 laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO2 laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO2 laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO2 laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure.
Selective Removal of Natural Occlusal Caries by Coupling Near-infrared Imaging with a CO(2) Laser.
Tao, You-Chen; Fried, Daniel
2008-03-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO(2) laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO(2) laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO(2) laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO(2) laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure.
New laser design for NIR lidar applications
NASA Astrophysics Data System (ADS)
Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.
2018-04-01
Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.
[NIR-SERS Spectra Detection of Cytidine on Nano-Silver Films].
Zhang, De-qing; Liu, Ren-ming; Zhang, Guo-qiang; Zhang, Yan; Xiong, Yang; Zhang, Chuan-yun; Li, Lun; Si, Min-zhen
2016-03-01
The polyvinyl alcohol (PVA) protected silver glass-like nanostructure (PVA-Ag-GNS) with high surface-enhanced Raman scattering (SERS) activity was prepared and employed to detect the near-infrared surface enhanced Raman scattering (NIR-SERS) spectra of cytidine aqueous solution (10(-2)-10(-8) mol x L(-1)). In the work, the near-infrared laser beam (785 nm) was used as the excitation light source. The experiment results show that high-quality NIR-SERS spectra were obtained in the ranges of 300 to 2 000 cm(-1) and the detection limit of cytidine aqueous solution was down to 10(-7) mol x L(-1). Meanwhile, the PVA-Ag-GNS shows a high enhancement factor (EF) of -10(8). In order to test the optical reproducibility of PVA-Ag-GNS, ten samples of cytidine aqueous solution (10(-2)-10(-5) mol x L(-1)) had been dropped onto the surface of PVA-Ag-GNS respectively. Meanwhile, these samples were measured by the portable Raman spectrometer. As a result, the PVA-Ag-GNS demonstrated good optical reproducibility in the detection of cytidine aqueous solution. In addition, to explain the reason of enhancement effect, the ultraviolet-visible (UV-Vis) extinction spectrum and scanning electron microscope (SEM) of cytidine molecules adsorbed on the surface of PVA-Ag-GNS were measured. There is plasmon resonance band at 800 nm in the UV-Vis extinction Spectrum of the compound system. Therefore, when the near-infrared laser beam (785 nm) was used as excitation light source, the compound system may produce strongly surface plasmon resonance (SPR). According to the SEM of PVA-Ag-GNS, there are much interstitial between the silver nanoparticles. So NIR-SERS is mainly attributed to electromagnetic (EM) fields associated with strong surface plasmon resonance. At last, the geometry optimization and pre-Raman spectrum of cytidine for the ground states were performed with DFT, B3LYP functional and the 6-311G basis set, and the near-infrared laser with wavelength of 785 nm was employed in the pre-Raman spectrum calculation process. The calculation results without imaginary frequency and the results match pretty well with the experimental Raman spectrum. At the same time, the assignations of Raman bands and adsorption behaviors of cytidine molecules on the surface of PVA-Ag-GNS are also discussed. According to our experiment and calculations, cytidine molecules mainly adsorbed on silver nanoparticles via the ribose moiety and amino group may get close to the local electromagnetic field.
[Rapid identification of potato cultivars using NIR-excited fluorescence and Raman spectroscopy].
Dai, Fen; Bergholt, Mads Sylvest; Benjamin, Arnold Julian Vinoj; Hong, Tian-Sheng; Zhiwei, Huang
2014-03-01
Potato is one of the most important food in the world. Rapid and noninvasive identification of potato cultivars plays a important role in the better use of varieties. In this study, The identification ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy and NIR fluorescence spectroscopy, for invasive detection of potato cultivars was evaluated. A rapid NIR Raman spectroscopy system was applied to measure the composite Raman and NIR fluorescence spectroscopy of 3 different species of potatoes (98 samples in total) under 785 nm laser light excitation. Then pure Raman and NIR fluorescence spectroscopy were abstracted from the composite spectroscopy, respectively. At last, the partial least squares-discriminant analysis (PLS-DA) was utilized to analyze and classify Raman spectra of 3 different types of potatoes. All the samples were divided into two sets at random: the calibration set (74samples) and prediction set (24 samples), the model was validated using a leave-one-out, cross-validation method. The results showed that both the NIR-excited fluorescence spectra and pure Raman spectra could be used to identify three cultivars of potatoes. The fluorescence spectrum could distinguish the Favorita variety well (sensitivity: 1, specificity: 0.86 and accuracy: 0.92), but the result for Diamant (sensitivity: 0.75, specificity: 0.75 and accuracy: 0. 75) and Granola (sensitivity: 0.16, specificity: 0.89 and accuracy: 0.71) cultivars identification were a bit poorer. We demonstrated that Raman spectroscopy uncovered the main biochemical compositions contained in potato species, and provided a better classification sensitivity, specificity and accuracy (sensitivity: 1, specificity: 1 and accuracy: 1 for all 3 potato cultivars identification) among the three types of potatoes as compared to fluorescence spectroscopy.
Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer
Sato, Kazuhide; Hanaoka, Hirofumi; Watanabe, Rira; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka
2014-01-01
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of disseminated peritoneal ovarian cancer. In vitro and in vivo experiments were conducted with a HER2-expressing, luciferase expressing, ovarian cancer cell line (SKOV-luc). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized (tra-IR700) and cells or tumors were exposed to near infrared (NIR) light. In vitro PIT cytotoxicity was assessed with dead staining and luciferase activity in freely growing cells and in a 3D spheroid model. In vivo NIR-PIT was performed in mice with tumors implanted in the peritoneum and in the flank and these assessed by tumor volume and/or bioluminescence. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. Repeated light exposures induced complete tumor cell killing in the 3D spheroid model. In vivo the anti-tumor effects of NIR-PIT were confirmed by significant reductions in both tumor volume and luciferase activity in the flank model (NIR-PIT vs control in tumor volume changes at day 10; p=0.0001, NIR-PIT vs control in luciferase activity at day 4; p=0.0237), and the peritoneal model (NIR-PIT vs control in luciferase activity at day 7; p=0.0037). NIR-PIT provided effective cell killing in this HER2 positive model of disseminated peritoneal ovarian cancer. Thus, NIR-PIT is a promising new therapy for the treatment of disseminated peritoneal tumors. PMID:25416790
Wang, Yazhe; Wang, Cheng; Ding, Yang; Li, Jing; Li, Min; Liang, Xiao; Zhou, Jianping; Wang, Wei
2016-12-01
Photodynamic therapy has emerged as a promising strategy for cancer treatment. To ensure the efficient delivery of a photosensitizer to tumor for anticancer effect, a safe and tumor-specific delivery system is highly desirable. Herein, we introduce a novel biomimetic nanoparticle named rHDL/ICG (rHDL/I), by loading amphiphilic near-infrared (NIR) fluorescent dye indocyanine green (ICG) into reconstituted high density lipoproteins (rHDL). In this system, rHDL can mediate photoprotection effect and receptor-guided tumor-targeting transportation of cargos into cells. Upon NIR irradiation, ICG can generate fluorescent imaging signals for diagnosis and monitoring therapeutic activity, and produce singlet oxygen to trigger photodynamic therapy (PDT). Our studies demonstrated that rHDL/I exhibited excellent size and fluorescence stability, light-triggered controlled release feature, and neglectable hemolytic activity. It also showed equivalent NIR response compared to free ICG under laser irradiation. Importantly, the fluorescent signal of ICG loaded in rHDL/I could be visualized subcellularly in vitro and exhibited metabolic distribution in vivo, presenting superior tumor targeting and internalization. This NIR-triggered image-guided nanoparticle produced outstanding therapeutic outcomes against cancer cells, demonstrating great potential of biomimetic delivery vehicles in future clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pu, Yang; Alfano, Robert R.
2015-03-01
Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.
Sun, Hui-Ping; Su, Jing-Han; Meng, Qing-Shuo; Yin, Qi; Zhang, Zhi-Wen; Yu, Hai-Jun; Zhang, Peng-Cheng; Wang, Si-Ling; Li, Ya-Ping
2016-07-01
To improve the therapeutic efficacy of cancer treatments, combinational therapies based on nanosized drug delivery system (NDDS) has been developed recently. In this study we designed a new NDDS loaded with an anti-metastatic drug silibinin and a photothermal agent indocyanine green (ICG), and investigated its effects on the growth and metastasis of breast cancer cells in vitro. Silibinin and ICG were self-assembled into PCL lipid nanoparticles (SIPNs). Their physical characteristics including the particle size, zeta potential, morphology and in vitro drug release were examined. 4T1 mammalian breast cancer cells were used to evaluate their cellular internalization, cytotoxicity, and their influences on wound healing, in vitro cell migration and invasion. SIPNs showed a well-defined spherical shape with averaged size of 126.3±0.4 nm and zeta potential of -10.3±0.2 mV. NIR laser irradiation substantially increased the in vitro release of silibinin from the SIPNs (58.3% at the first 8 h, and 97.8% for the total release). Furthermore, NIR laser irradiation markedly increased the uptake of SIPNs into 4T1 cells. Under the NIR laser irradiation, both SIPNs and IPNs (PCL lipid nanoparticles loaded with ICG alone) caused dose-dependent ablation of 4T1 cells. The wound healing, migration and invasion experiments showed that SIPNs exposed to NIR laser irradiation exhibited dramatic in vitro anti-metastasis effects. SIPNs show temperature-sensitive drug release following NIR laser irradiation, which can inhibit the growth and metastasis of breast cancer cells in vitro.
Yuan, Chunze; Chen, Guanying; Li, Lin; Damasco, Jossana A; Ning, Zhijun; Xing, Hui; Zhang, Tianmu; Sun, Licheng; Zeng, Hao; Cartwright, Alexander N; Prasad, Paras N; Ågren, Hans
2014-10-22
The efficiency of most photovoltaic devices is severely limited by near-infrared (NIR) transmission losses. To alleviate this limitation, a new type of colloidal upconversion nanoparticles (UCNPs), hexagonal core-shell-structured β-NaYbF4:Er(3+)(2%)/NaYF4:Nd(3+)(30%), is developed and explored in this work as an NIR energy relay material for dye-sensitized solar cells (DSSCs). These UCNPs are able to harvest light energy in multiple NIR regions, and subsequently convert the absorbed energy into visible light where the DSSCs strongly absorb. The NIR-insensitive DSSCs show compelling photocurrent increases through binary upconversion under NIR light illumination either at 785 or 980 nm, substantiating efficient energy relay by these UCNPs. The overall conversion efficiency of the DSSCs was improved with the introduction of UCNPs under simulated AM 1.5 solar irradiation.
Near infrared light induces post-translational modifications of human red blood cell proteins.
Walski, Tomasz; Dyrda, Agnieszka; Dzik, Małgorzata; Chludzińska, Ludmiła; Tomków, Tomasz; Mehl, Joanna; Detyna, Jerzy; Gałecka, Katarzyna; Witkiewicz, Wojciech; Komorowska, Małgorzata
2015-11-01
There is a growing body of evidence that near infrared (NIR) light exerts beneficial effects on cells. Its usefulness in the treatment of cancer, acute brain injuries, strokes and neurodegenerative disorders has been proposed. The mechanism of the NIR action is probably of photochemical nature, however it is not fully understood. Here, using a relatively simple biological model, human red blood cells (RBCs), and a polychromatic non-polarized light source, we investigate the impact of NIR radiation on the oxygen carrier, hemoglobin (Hb), and anion exchanger (AE1, Band 3). The exposure of intact RBCs to NIR light causes quaternary transitions in Hb, dehydration of proteins and decreases the amount of physiologically inactive methemoglobin, as detected by Raman spectroscopy. These effects are accompanied by a lowering of the intracellular pH (pHi) and changes in the cell membrane topography, as documented by atomic force microscopy (AFM). All those changes are in line with our previous studies where alterations of the membrane fluidity and membrane potential were attributed to NIR action on RBCs. The rate of the above listed changes depends strictly on the dose of NIR light that the cells receive, nonetheless it should not be considered as a thermal effect.
NASA Astrophysics Data System (ADS)
Ito, Yoshitaka; Mizoshiri, Mizue; Mikami, Masashi; Kondo, Tasuku; Sakurai, Junpei; Hata, Seiichi
2017-06-01
We designed and fabricated thin-film thermoelectric generators (TEGs) with ball lenses, which separated visible light and near-infrared (NIR) solar light using a chromatic aberration. The transmitted visible light was used as daylight and the NIR light was used for thermoelectric generation. Solar light was estimated to be separated into the visible light and NIR light by a ray tracing method. 92.7% of the visible light was used as daylight and 9.9% of the NIR light was used for thermoelectric generation. Then, the temperature difference of the pn junctions of the TEG surface was 0.71 K, determined by heat conduction analysis using a finite element method. The thin-film TEGs were fabricated using lithography and deposition processes. When the solar light (A.M. 1.5) was irradiated to the TEGs, the open-circuit voltage and maximum power were 4.5 V/m2 and 51 µW/m2, respectively. These TEGs are expected to be used as an energy supply for Internet of Things sensors.
Airborne laser systems for atmospheric sounding in the near infrared
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David
2012-06-01
This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.
Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.
Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying
2017-02-01
Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.
NASA Astrophysics Data System (ADS)
Ghavaminejad, Amin; Samarikhalaj, Melisa; Aguilar, Ludwig Erik; Park, Chan Hee; Kim, Cheol Sang
2016-09-01
This study reports on an intelligent composite hydrogel with both pH-dependent drug release in a cancer environment and heat generation based on NIR laser exposure, for the combined application of photothermal therapy (PTT) and multidrug chemotherapy. For the first time in the literature, Dopamine nanoparticle (DP) was incorporated as a highly effective photothermal agent as well as anticancer drug, bortezomib (BTZ) carrier inside a stimuli responsive pNIPAAm-co-pAAm hydrogel. When light is applied to the composite hydrogel, DP nanoparticle absorbs the light, which is dissipated locally as heat to impact cancer cells via hyperthermia. On the other hand, facile release of the anticancer drug BTZ from the surface of DP encapsulated hydrogel could be achieved due to the dissociation between catechol groups of DP and the boronic acid functionality of BTZ in typical acidic cancer environment. In order to increase the synergistic effect by dual drug delivery, Doxorubicin (DOXO) were also loaded to pNIPAAm-co-pAAm/DP-BTZ hydrogel and the effect of monotherapy as well as combined therapy were detailed by a complete characterization. Our results suggest that these mussel inspired nanocomposite with excellent heating property and controllable multidrug release can be considered as a potential material for cancer therapy.
NIR light propagation in a digital head model for traumatic brain injury (TBI)
Francis, Robert; Khan, Bilal; Alexandrakis, George; Florence, James; MacFarlane, Duncan
2015-01-01
Near infrared spectroscopy (NIRS) is capable of detecting and monitoring acute changes in cerebral blood volume and oxygenation associated with traumatic brain injury (TBI). Wavelength selection, source-detector separation, optode density, and detector sensitivity are key design parameters that determine the imaging depth, chromophore separability, and, ultimately, clinical usefulness of a NIRS instrument. We present simulation results of NIR light propagation in a digital head model as it relates to the ability to detect intracranial hematomas and monitor the peri-hematomal tissue viability. These results inform NIRS instrument design specific to TBI diagnosis and monitoring. PMID:26417498
Designing and testing a wearable, wireless fNIRS patch.
Abtahi, Mohammadreza; Cay, Gozde; Saikia, Manob Jyoti; Mankodiya, Kunal
2016-08-01
Optical brain monitoring using near infrared (NIR) light has got a lot of attention in order to study the complexity of the brain due to several advantages as oppose to other methods such as EEG, fMRI and PET. There are a few commercially available functional NIR spectroscopy (fNIRS) brain monitoring systems, but they are still non-wearable and pose difficulties in scanning the brain while the participants are in motion. In this work, we present our endeavors to design and test a low-cost, wireless fNIRS patch using NIR light sources at wavelengths of 770 and 830nm, photodetectors and a microcontroller to trigger the light sources, read photodetector's output and transfer data wirelessly (via Bluetooth) to a smart-phone. The patch is essentially a 3-D printed wearable system, recording and displaying the brain hemodynamic responses on smartphone, also eliminates the need for complicated wiring of the electrodes. We have performed rigorous lab experiments on the presented system for its functionality. In a proof of concept experiment, the patch detected the NIR absorption on the arm. Another experiment revealed that the patch's battery could last up to several hours with continuous fNIRS recording with and without wireless data transfer.
Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics
Wang, Chao; Cheng, Liang; Liu, Zhuang
2013-01-01
Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed. PMID:23650479
NASA Astrophysics Data System (ADS)
Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui
2013-03-01
Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00092c
Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.
Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro
2015-12-01
Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.
Light trapping and surface plasmon enhanced high-performance NIR photodetector
Luo, Lin-Bao; Zeng, Long-Hui; Xie, Chao; Yu, Yong-Qiang; Liang, Feng-Xia; Wu, Chun-Yan; Wang, Li; Hu, Ji-Gang
2014-01-01
Heterojunctions near infrared (NIR) photodetectors have attracted increasing research interests for their wide-ranging applications in many areas such as military surveillance, target detection, and light vision. A high-performance NIR light photodetector was fabricated by coating the methyl-group terminated Si nanowire array with plasmonic gold nanoparticles (AuNPs) decorated graphene film. Theoretical simulation based on finite element method (FEM) reveals that the AuNPs@graphene/CH3-SiNWs array device is capable of trapping the incident NIR light into the SiNWs array through SPP excitation and coupling in the AuNPs decorated graphene layer. What is more, the coupling and trapping of freely propagating plane waves from free space into the nanostructures, and surface passivation contribute to the high on-off ratio as well. PMID:24468857
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demos, S G; Gandour-Edwards, R; Ramsamooj, R
The feasibility of developing bladder cancer detection methods using intrinsic tissue optical properties is the focus of this investigation. In vitro experiments have been performed using polarized elastic light scattering in combination with tissue autofluorescence in the NIR spectral region under laser excitation in the green and red spectral regions. The experimental results obtained from a set of tissue specimens from 25 patients reveal the presence of optical fingerprint characteristics suitable for cancer detection with high contrast and accuracy. These photonic methods are compatible with existing endoscopic imaging modalities which make them suitable for in-vivo application.
Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng
2015-12-16
To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.
Tian, Chun; Niu, Jinyun; Wei, Xuerui; Xu, Yujie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2018-05-31
The performance of functional polymer nanomaterials is a vigorously discussed topic in polymer science. We devoted ourselves to investigating polymer nanomaterials based on near-infrared (NIR) fluorescence imaging and polymer prodrug in this study. Aza-boron dipyrromethene (BODIPY) is an important organic dye, having characteristics such as environmental resistance, light resistance, high molar extinction coefficient, and fluorescence quantum yield. We incorporated it into our target monomer, which can be polymerized without changing its parent structure in a polar solvent and copolymerized with water-soluble monomer to improve the solubility of the dye in an aqueous solution. At the same time, the hydrophobic drug camptothecin (CPT) was designed as a prodrug monomer, and the polymeric nanoparticles (NPs) with NIR fluorescence imaging and prodrug were synthesized in situ in reversible addition-fragmentation chain transfer (RAFT)-mediated aqueous dispersion polymerization. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed the final uniform size of the dual-functional polymeric NPs morphology. The dual-functional polymeric NPs had a strong absorption and emission signal in the NIR region (>650 nm) based on the fluorescence tests. In consideration of the long-term biological toxicity, confocal laser scanning microscopy (CLSM) results indicated that the dual-functional NPs with controlled drug content exhibited effective capability of killing HeLa cells. In addition, in vivo imaging of the dual-functional NPs was observed in real time, and the fluorescent signals clearly demonstrated the dynamic process of prodrug transfer.
Purified frequency modulation of a quantum cascade laser with an all-optical approach.
Peng, Chen; Zhou, Haijun; Zhu, Liguo; Chen, Tao; Liu, Qiao; Wang, Detian; Li, Jiang; Peng, Qixian; Chen, Gang; Li, Zeren
2017-11-01
Purified frequency modulation (FM) is demonstrated in a standard middle-infrared quantum cascade laser by illuminating its front facet with two near-infrared (NIR) lasers. A 2 mW laser at 1550 nm is utilized to modulate the amplitude and frequency of a quantum cascade laser, and the associated amplitude modulation (AM) is suppressed by a 1.85 mW laser at 850 nm. Due to the hot carrier effect and the increment of electron temperature, the AM has been decreased. In addition, the free carrier concentration increases in the active region due to the two NIR illuminations, which enhance the FM. Purified FM is beneficial in improving the signal fidelity for free-space optical communication and high-speed FM spectroscopy.
Quantum cascade lasers, systems, and applications in Europe
NASA Astrophysics Data System (ADS)
Lambrecht, Armin
2005-03-01
Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.
Semiconductor lasers vs LEDs in diagnostic and therapeutic medicine
NASA Astrophysics Data System (ADS)
Gryko, Lukasz; Zajac, Andrzej; Szymanska, Justyna; Blaszczak, Urszula; Palkowska, Anna; Kulesza, Ewa
2016-12-01
Semiconductor emitters are used in many areas of medicine, allowing for new methods of diagnosis, treatment and effective prevention of many diseases. The article presents selected areas of application of semiconductor sources in UVVIS- NIR range, where in recent years competition in semiconductor lasers and LEDs applications has been observed. Examples of applications of analyzed sources are indicated for LLLT, PDT and optical diagnostics using the procedure of color contrast. Selected results of LLLT research of the authors are presented that were obtained by means of the developed optoelectronic system for objectified irradiation and studies on the impact of low-energy laser and LED on lines of endothelial cells of umbilical vein. Usefulness of the spectrally tunable LED lighting system for diagnostic purposes is also demonstrated, also as an illuminator for surface applications - in procedure of variable color contrast of the illuminated object.
Real-time near-IR imaging of laser-ablation crater evolution in dental enamel
NASA Astrophysics Data System (ADS)
Darling, Cynthia L.; Fried, Daniel
2007-02-01
We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.
New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications
NASA Astrophysics Data System (ADS)
Milde, Tobias; Hoppe, Morten; Tatenguem, Herve; Honsberg, Martin; Mordmüller, Mario; O'Gorman, James; Schade, Wolfgang; Sacher, Joachim
2018-02-01
The NIR/MIR region between 1.8μm and 3.5μm contains important absorption lines for gas detection. State of the art are InP laser based setups, which show poor gain above 1.8μm and cannot be applied beyond 2.1μm. GaSb laser show a significantly higher output power (100mW for Fabry-Perot, 30mW for DFB). The laser design is presented with simulation and actual performance data. The superior performance of the GaSb lasers is verified in gas sensing applications. TDLAS and QEPAS measurements at trace gases like CH4, CO2 and N2O are shown to prove the spectroscopy performance.
Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan
2018-05-01
To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.
Zhou, Shu-Mei; Ma, De-Kun; Zhang, Sheng-Hui; Wang, Wei; Chen, Wei; Huang, Shao-Ming; Yu, Kang
2016-01-21
Developing multifunctional near-infrared (NIR) light-driven photothermal agents is in high demand for efficient cancer therapy. Herein, PEGylated Cu3BiS3 hollow nanospheres (HNSs) with an average diameter of 80 nm were synthesized through a facile ethylene glycol-mediated solvothermal route. The obtained PEGylated Cu3BiS3 HNSs exhibited strong NIR optical absorption with a large molar extinction coefficient of 4.1 × 10(9) cm(-1) M(-1) at 980 nm. Under the irradiation of a 980 nm laser with a safe power density of 0.72 W cm(-2), Cu3BiS3 HNSs produced significant photothermal heating with a photothermal transduction efficiency of 27.5%. The Cu3BiS3 HNSs also showed a good antitumoral drug doxorubicin (DOX) loading capacity and pH- and NIR-responsive DOX release behaviors. At a low dosage of 10 μg mL(-1), HeLa cells could be efficiently killed through a synergistic effect of chemo- and photothermo-therapy respectively based on the DOX release and the photothermal effect of Cu3BiS3 HNSs. In addition, Cu3BiS3 HNSs displayed a good X-ray computed tomography (CT) imaging capability. Furthermore, Cu3BiS3 HNSs could be used for efficient in vivo photothermochemotherapy and X-ray CT imaging of mice bearing melanoma skin cancer. This multifunctional theranostic nanomaterial shows potential promise for cancer therapy.
A Novel Biomedical Device Utilizing Light Emitting Nano-Structures
NASA Technical Reports Server (NTRS)
Varaljay, Vanessa A.
2004-01-01
This paper will discuss the development of a novel biomedical detection device that will be used to detect microorganisms with the use of infrared fluorochrome polymers attached to antibodies in fluids such as water. The fluorochrome polymers emit light in the near inferred region (NIR), approximately 805 nm, when excited by an NIR laser at 778 nm. The device could remarkably change the way laboratory testing is done today. The testing process is usually performed on a time scale of days while our device will be able to detect microorganisms in minutes. This type of time efficient analysis is ideal for use aboard the International Space Station and the Space Shuttle (ISS/SS) and has many useful commercial applications, for instance at a water treatment plant and food processing plants. With more research and experimentation the testing might also one day be used to detect bacteria and viruses in complex fluids such as blood, which would revolutionize blood analysis as it is performed today. My contribution to the project has been to develop a process which will allow an antibody/fluorescent dye pair to be conjugated to a specific bacteria or virus and than to to be separated from a sample body of water for detection. The antibody being used in this experiment is anti beta galactosidase and its complement enzyme is beta galactosidase, a non harmful derivative of E. Coli. The anti beta galactosidase has been conjugated to the fluorochrome polymer, IRDye800, which emits at approximately 806 nm. The dye when excited by the NIR laser emits a signal which is detected by a spectrometer and then is read by state of the art computer software. The state-of-the-art process includes incubating the anti beta galactosidase and beta galactosidase in a phosphate buffer solution in a test tube, allowing the antibody to bind to specific sites on the enzyme. After the antibody is bound to the enzyme, it is centrifuged in specific filters that will allow free antibody to wash away and leave the antibody-enzyme complexes on top in solution for testing and analysis. This solution is pipetted into a cuvette, a special plastic test tube, which will then be excited by the laser. The signal read will tell US that an antibody is present and since it is bound to the enzyme, that the bacteria is also present.
UV- Vis- NIR and luminescent characterization of PZCdO:Tm laser oxide glasses
NASA Astrophysics Data System (ADS)
Al-Assiri, M. S.; Algarni, H.; Reben, M.; Yousef, E.; Hegazy, H. H.; AbouDeif, Y. M.; Umar, Ahmad
2017-11-01
The luminescent oxide glasses with composition 50P2O5- 30ZnO- 20CdO (PZCdO pure) and 50P2O5- 30ZnO- 20CdO- 30000 ppm Tm2O3 (PZCdO:Tm) were synthesized by using melt- quenching technique. The optical energy gap and Urbach energy of these glasses were calculated by using UV-Vis-NIR spectroscopy. Judd- Ofelt parameters Ω2, Ω4 and Ω6, branching ratio, βR, and radiative lifetimes, τR, of Tm3+ ions doped PZCdO glasses were estimated. The spectroscopic results showed that the present glasses has the effective emission cross section bandwidth (Δλeff = 90 nm) and high stimulated emission cross-section (σem = 1.5 × 10-21 cm2). The blue up conversion emissions sharp band at 458 nm corresponding to transition 1D2 → 3F6 and weak emission band in NIR region assigned to 1G4→3H4 for the glasses PZCdO:Tm with UV- excited at 354 nm region were obtained. From result we can suggest that the present glasses can be used for blue light emitting diodes BLED chip.
NASA Astrophysics Data System (ADS)
Cosci, Alessandro; Cicchi, Riccardo; Rossari, Susanna; De Giorgi, Vincenzo; Massi, Daniela; Pavone, Francesco S.
2012-02-01
We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.
Double optical fibre-probe device for the diagnosis of melanocytic lesions
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Cosci, Alessandro; Rossari, Susanna; De Giorgi, Vincenzo; Kapsokalyvas, Dimitrios; Massi, Daniela; Pavone, Francesco S.
2012-06-01
We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.
2015-01-01
Au nanoparticles with plasmon resonances in the near-infrared (NIR) region of the spectrum efficiently convert light into heat, a property useful for the photothermal ablation of cancerous tumors subsequent to nanoparticle uptake at the tumor site. A critical aspect of this process is nanoparticle size, which influences both tumor uptake and photothermal efficiency. Here, we report a direct comparative study of ∼90 nm diameter Au nanomatryoshkas (Au/SiO2/Au) and ∼150 nm diameter Au nanoshells for photothermal therapeutic efficacy in highly aggressive triple negative breast cancer (TNBC) tumors in mice. Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency, while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous injection of Au nanomatryoshkas followed by a single NIR laser dose of 2 W/cm2 for 5 min, 83% of the TNBC tumor-bearing mice appeared healthy and tumor free >60 days later, while only 33% of mice treated with nanoshells survived the same period. The smaller size and larger absorption cross section of Au nanomatryoshkas combine to make this nanoparticle more effective than Au nanoshells for photothermal cancer therapy. PMID:24889266
NASA Astrophysics Data System (ADS)
Fard, Ali M.; Gardecki, Joseph A.; Ughi, Giovanni J.; Hyun, Chulho; Tearney, Guillermo J.
2016-02-01
Intravascular optical coherence tomography (OCT) is a high-resolution catheter-based imaging method that provides three-dimensional microscopic images of coronary artery in vivo, facilitating coronary artery disease treatment decisions based on detailed morphology. Near-infrared spectroscopy (NIRS) has proven to be a powerful tool for identification of lipid-rich plaques inside the coronary walls. We have recently demonstrated a dual-modality intravascular imaging technology that integrates OCT and NIRS into one imaging catheter using a two-fiber arrangement and a custom-made dual-channel fiber rotary junction. It therefore enables simultaneous acquisition of microstructural and composition information at 100 frames/second for improved diagnosis of coronary lesions. The dual-modality OCT-NIRS system employs a single wavelength-swept light source for both OCT and NIRS modalities. It subsequently uses a high-speed photoreceiver to detect the NIRS spectrum in the time domain. Although use of one light source greatly simplifies the system configuration, such light source exhibits pulse-to-pulse wavelength and intensity variation due to mechanical scanning of the wavelength. This can be in particular problematic for NIRS modality and sacrifices the reliability of the acquired spectra. In order to address this challenge, here we developed a robust data acquisition and processing method that compensates for the spectral variations of the wavelength-swept light source. The proposed method extracts the properties of the light source, i.e., variation period and amplitude from a reference spectrum and subsequently calibrates the NIRS datasets. We have applied this method on datasets obtained from cadaver human coronary arteries using a polygon-scanning (1230-1350nm) OCT system, operating at 100,000 sweeps per second. The results suggest that our algorithm accurately and robustly compensates the spectral variations and visualizes the dual-modality OCT-NIRS images. These findings are therefore crucial for the practical application and clinical translation of dual-modality intravascular OCT-NIRS imaging when the same swept sources are used for both OCT and spectroscopy.
Near-infrared light-responsive dynamic wrinkle patterns.
Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong
2018-04-01
Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.
Boutopoulos, Christos; Bergeron, Eric; Meunier, Michel
2016-01-01
We report on transient membrane perforation of living cancer cells using plasmonic gold nanoparticles (AuNPs) enhanced single near infrared (NIR) femtosecond (fs) laser pulse. Under optimized laser energy fluence, single pulse treatment (τ = 45 fs, λ = 800 nm) resulted in 77% cell perforation efficiency and 90% cell viability. Using dark field and ultrafast imaging, we demonstrated that the generation of submicron bubbles around the AuNPs is the necessary condition for the cell membrane perforation. AuNP clustering increased drastically the bubble generation efficiency, thus enabling an effective laser treatment using low energy dose in the NIR optical therapeutical window. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manipulation of cell membrane using carbon nanotube scaffold as a photoresponsive stimuli generator.
Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi
2014-08-01
We describe, for the first time, the perforation of the cell membrane in the targeted single cell based on the nanosecond pulsed near-infrared (NIR) laser irradiation of a thin film of carbon nanotubes that act as an effective photon absorber as well as stimuli generator. When the power of NIR laser is over 17.5 μ J/pulse, the cell membrane after irradiation is irreversibly disrupted and results in cell death. In sharp contrast, the perforation of the cell membrane occurs at suitable laser power (∼15 μ J/pulse) without involving cell termination.
Manipulation of cell membrane using carbon nanotube scaffold as a photoresponsive stimuli generator
Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi
2014-01-01
We describe, for the first time, the perforation of the cell membrane in the targeted single cell based on the nanosecond pulsed near-infrared (NIR) laser irradiation of a thin film of carbon nanotubes that act as an effective photon absorber as well as stimuli generator. When the power of NIR laser is over 17.5 μJ/pulse, the cell membrane after irradiation is irreversibly disrupted and results in cell death. In sharp contrast, the perforation of the cell membrane occurs at suitable laser power (∼15 μJ/pulse) without involving cell termination. PMID:27877703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissel, Tobias, E-mail: wissel@rob.uni-luebeck.de; Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck; Stüber, Patrick
2016-06-01
Purpose: To support surface registration in cranial radiation therapy by structural information. The risk for spatial ambiguities is minimized by using tissue thickness variations predicted from backscattered near-infrared (NIR) light from the forehead. Methods and Materials: In a pilot study we recorded NIR surface scans by laser triangulation from 30 volunteers of different skin type. A ground truth for the soft-tissue thickness was segmented from MR scans. After initially matching the NIR scans to the MR reference, Gaussian processes were trained to predict tissue thicknesses from NIR backscatter. Moreover, motion starting from this initial registration was simulated by 5000 randommore » transformations of the NIR scan away from the MR reference. Re-registration to the MR scan was compared with and without tissue thickness support. Results: By adding prior knowledge to the backscatter features, such as incident angle and neighborhood information in the scanning grid, we showed that tissue thickness can be predicted with mean errors of <0.2 mm, irrespective of the skin type. With this additional information, the average registration error improved from 3.4 mm to 0.48 mm by a factor of 7. Misalignments of more than 1 mm were almost thoroughly (98.9%) pushed below 1 mm. Conclusions: For almost all cases tissue-enhanced matching achieved better results than purely spatial registration. Ambiguities can be minimized if the cutaneous structures do not agree. This valuable support for surface registration increases tracking robustness and avoids misalignment of tumor targets far from the registration site.« less
NASA Astrophysics Data System (ADS)
Nadine Wong Shi Kam,; O'Connell, Michael; Wisdom, Jeffrey A.; Dai, Hongjie
2005-08-01
Biological systems are known to be highly transparent to 700- to 1,100-nm near-infrared (NIR) light. It is shown here that the strong optical absorbance of single-walled carbon nanotubes (SWNTs) in this special spectral window, an intrinsic property of SWNTs, can be used for optical stimulation of nanotubes inside living cells to afford multifunctional nanotube biological transporters. For oligonucleotides transported inside living cells by nanotubes, the oligos can translocate into cell nucleus upon endosomal rupture triggered by NIR laser pulses. Continuous NIR radiation can cause cell death because of excessive local heating of SWNT in vitro. Selective cancer cell destruction can be achieved by functionalization of SWNT with a folate moiety, selective internalization of SWNTs inside cells labeled with folate receptor tumor markers, and NIR-triggered cell death, without harming receptor-free normal cells. Thus, the transporting capabilities of carbon nanotubes combined with suitable functionalization chemistry and their intrinsic optical properties can lead to new classes of novel nanomaterials for drug delivery and cancer therapy. Author contributions: N.W.S.K., M.O., and H.D. designed research; N.W.S.K., M.O., and J.A.W. performed research; N.W.S.K., M.O., and H.D. analyzed data; and N.W.S.K. and H.D. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: NIR, near-infrared; SWNT, single-walled carbon nanotube; AFM, atomic force microscopy; PL, phospholipid; PEG, polyethylene glycol; FA, folic acid; FR, folate receptor.
Han, Hyemi; Nam, Sungho; Seo, Jooyeok; Lee, Chulyeon; Kim, Hwajeong; Bradley, Donal D. C.; Ha, Chang-Sik; Kim, Youngkyoo
2015-01-01
We report ‘broadband light-sensing’ all-polymer phototransistors with the nanostructured bulk heterojunction (BHJ) layers of visible (VIS) light-sensing electron-donating (p-type) polymer and near infrared (NIR) light-sensing electron-accepting (n-type) polymer. Poly[{2,5-bis-(2-ethylhexyl)-3,6-bis-(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2′-(2,1,3-benzothiadiazole)]-5,5′-diyl}] (PEHTPPD-BT), which is synthesized via Suzuki coupling and employed as the n-type polymer, shows strong optical absorption in the NIR region (up to 1100 nm) in the presence of weak absorption in the VIS range (400 ~ 600 nm). To strengthen the VIS absorption, poly(3-hexylthiophene) (P3HT) is introduced as the p-type polymer. All-polymer phototransistors with the BHJ (P3HT:PEHTPPD-BT) layers, featuring a peculiar nano-domain morphology, exhibit typical p-type transistor characteristics and efficiently detect broadband (VIS ~ NIR) lights. The maximum corrected responsivity (without contribution of dark current) reaches up to 85 ~ 88% (VIS) and 26 ~ 40% (NIR) of theoretical responsivity. The charge separation process between P3HT and PEHTPPD-BT components in the highest occupied molecular orbital is proposed as a major working mechanism for the effective NIR sensing. PMID:26563576
Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C
2017-10-30
This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.
Self-assembled KCu7S4 nanowire monolayers for self-powered near-infrared photodetectors.
Wang, You-Yi; Wu, Ya-Dong; Peng, Wei; Song, Yong-Hong; Wang, Bao; Wu, Chun-Yan; Lu, Yang
2018-06-13
Near infrared light (NIR) photodetectors based on one-dimensional semiconductor nanowires have generated considerable interest due to their practical application in versatile fields. We present a facile yet efficient approach to rationally integrating KCu7S4 semiconductor nanowires by the Langmuir-Blodgett (LB) technique. A self-powered near infrared (NIR) light photodetector is fabricated by transferring a close-packed KCu7S4 nanowire monolayer to the surface of a silicon wafer. The as-fabricated Si/KCu7S4 heterojunction with a close-packed and well-aligned nanowire array exhibits splendid photovoltaic performance when illuminated by NIR light, allowing the detection of NIR light without an exterior power supply. The photodetector exhibits a high sensitivity to NIR light (980 nm, 295.3 μW cm-2) with responsivity (R) 15 mA W-1 and detectivity (D*) 2.15 × 1012 cm Hz1/2 W-1. Significantly, the device shows the capability to work under high pulsed light irradiation up to 50 kHz with a high-speed response (response time τr 7.4 μs and recovery time τf 8.6 μs). This facilitates the fabrication of low-cost and high-speed photodetectors and integrated optoelectronic sensor circuitry.
In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive
NASA Astrophysics Data System (ADS)
Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak
2018-02-01
Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.
NASA Astrophysics Data System (ADS)
Fenske, Roger; Näther, Dirk U.; Dennis, Richard B.; Smith, S. Desmond
2010-02-01
Commercial Fluorescence Lifetime Spectrometers have long suffered from the lack of a simple, compact and relatively inexpensive broad spectral band light source that can be flexibly employed for both quasi-steady state and time resolved measurements (using Time Correlated Single Photon Counting [TCSPC]). This paper reports the integration of an optically pumped photonic crystal fibre, supercontinuum source1 (Fianium model SC400PP) as a light source in Fluorescence Lifetime Spectrometers (Edinburgh Instruments FLS920 and Lifespec II), with single photon counting detectors (micro-channel plate photomultiplier and a near-infrared photomultiplier) covering the UV to NIR range. An innovative method of spectral selection of the supercontinuum source involving wedge interference filters is also discussed.
Green, Hadiyah N; Crockett, Stephanie D; Martyshkin, Dmitry V; Singh, Karan P; Grizzle, William E; Rosenthal, Eben L; Mirov, Sergey B
2014-01-01
Nanoparticle (NP)-enabled near infrared (NIR) photothermal therapy has realized limited success in in vivo studies as a potential localized cancer therapy. This is primarily due to a lack of successful methods that can prevent NP uptake by the reticuloendothelial system, especially the liver and kidney, and deliver sufficient quantities of intravenously injected NPs to the tumor site. Histological evaluation of photothermal therapy-induced tumor regression is also neglected in the current literature. This report demonstrates and histologically evaluates the in vivo potential of NIR photothermal therapy by circumventing the challenges of intravenous NP delivery and tumor targeting found in other photothermal therapy studies. Subcutaneous Cal 27 squamous cell carcinoma xenografts received photothermal nanotherapy treatments, radial injections of polyethylene glycol (PEG)-ylated gold nanorods and one NIR 785 nm laser irradiation for 10 minutes at 9.5 W/cm(2). Tumor response was measured for 10-15 days, gross changes in tumor size were evaluated, and the remaining tumors or scar tissues were excised and histologically analyzed. The single treatment of intratumoral nanorod injections followed by a 10 minute NIR laser treatment also known as photothermal nanotherapy, resulted in ~100% tumor regression in ~90% of treated tumors, which was statistically significant in a comparison to the average of all three control groups over time (P<0.01). Photothermal nanotherapy, or intratumoral nanorod injections followed by NIR laser irradiation of tumors and tumor margins, demonstrate the potential of NIR photothermal therapy as a viable localized treatment approach for primary and early stage tumors, and prevents NP uptake by the reticuloendothelial system.
Multi-phase functionalization of titanium for enhanced photon absorption in the vis-NIR region.
Thakur, Pooja; Tan, Bo; Venkatakrishnan, Krishnan
2015-10-19
Inadequate absorption of Near Infrared (NIR) photons by conventional silicon solar cells has been a major stumbling block towards the attainment of a high efficiency "full spectrum" solar cell. An effective enhancement in the absorption of such photons is desired as they account for a considerable portion of the tappable solar energy. In this work, we report a remarkable gain observed in the absorption of photons in the near infrared and visible region (400 nm-1000 nm) by a novel multi-phased oxide of titanium. Synthesised via a single step ultra-fast laser pulse interaction with pure titanium, characterisation studies have identified this oxide of titanium to be multi-phased and composed of Ti3O, (TiO.716)3.76 and TiO2 (rutile). Computed to have an average band gap value of 2.39 eV, this ultrafast laser induced multi-phased titanium oxide has especially exhibited steady absorption capability in the NIR range of 750-1000 nm, which to the best of our knowledge, was never reported before. The unique NIR absorption properties of the laser functionalised titanium coupled with the simplicity and versatility of the ultrafast laser interaction process involved thereby provides tremendous potential towards the photon sensitization of titanium and thereafter for the inception of a "full spectrum" solar device.
Development of a new diffuse near-infrared food measuring
NASA Astrophysics Data System (ADS)
Zhang, Jun; Piao, Renguan
2006-11-01
Industries from agriculture to petrochemistry have found near infrared (NIR) spectroscopic analysis useful for quality control and quantitative analysis of materials and products. The general chemical, polymer chemistry, petrochemistry, agriculture, food and textile industries are currently using NIR spectroscopic methods for analysis. In this study, we developed a new sort NIR instrument for food measuring. The instrument consists of a light source, 12 filters to the prismatic part. The special part is that we use a mirror to get two beams of light. And two PbS detectors were used. One detector collected the radiation of one light beam directly and the value was set as the standard instead the standard white surface. Another light beam irradiate the sample surface, and the diffuse light was collected by another detector. The value of the two detectors was compared and the absorbency was computed. We tested the performance of the NIR instrument in determining the protein and fat content of milk powder. The calibration showed the accuracy of the instrument in practice.
Pre-Ionization Controlled Laser Plasma Formation for Ignition Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, Mikhail
The presented research explored new physics and ignition schemes based on laser induced plasmas that are fundamentally distinct from past laser ignition research focused on single laser pulses. Specifically, we consider the use of multiple laser pulses where the first pulse provides pre-ionization allowing controlled absorption of the second pulse. In this way, we can form tailored laser plasmas in terms of their ionization fraction, gas temperature (e.g. to achieve elevated temperature of ~2000 K ideally suited for an ignition source), reduced energy loss to shock waves and radiation, and large kernel size (e.g. length ~1-10 cm). The proposed researchmore » included both experimental and modeling efforts, at Colorado State University, Princeton University and University of Tennessee, towards the basic science of the new laser plasma approach with emphasis on tailoring the plasmas to practical propulsion systems. Experimental results (CSU) show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The main theoretical and computational parts of the work were done at Princeton University. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.« less
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2013-05-01
We study transient absorption of extreme ultraviolet (XUV) attosecond pulses in presence of near-infrared (NIR) laser fields by analyzing the population and photon emission of excited atomic energy levels. We consider He atoms and apply a self-interaction-free fully ab initio time-dependent density functional theory (TDDFT). Our method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential and incorporates explicitly the self-interaction correction. We focus on the sub-cycle (with respect to NIR field) temporal behavior of the population of the excited energy levels and related dynamics of photon emission. We observe and identify sub-cycle shifts in the photon emission spectrum as a function of the time delay between the XUV and NIR pulses. In the region where the two pulses overlap, the photon emission peaks have an oscillatory structure with a period of 1.3 fs, which is half of the NIR laser optical cycle. Such a structure was also observed in recent experiments on transient absorption. This work was partially supported by DOE and by MOE-NSC-NTU-Taiwan.
Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Dingkai, E-mail: dingk1@umbc.edu; Talukder, Muhammad Anisuzzaman; Chen, Xing
In space communications, atmospheric absorption and Rayleigh scattering are the dominant channel impairments. Transmission using mid-infrared (MIR) wavelengths offers the benefits of lower loss and less scintillation effects. In this work, we report the telecom wavelengths (1.55 μm and 1.3 μm) induced optical quenching effects on MIR quantum cascade lasers (QCLs), when QCLs are operated well above their thresholds. The QCL output power can be near 100% quenched using 20 mW of near-infrared (NIR) power, and the quenching effect depends on the input NIR intensity as well as wavelength. Time resolved measurement was conducted to explore the quenching mechanism. The measured recovery timemore » is around 14 ns, which indicates that NIR generated electron-hole pairs may play a key role in the quenching process. The photocarrier created local field and band bending can effectively deteriorate the dipole transition matrix element and quench the QCL. As a result, MIR QCLs can be used as an optical modulator and switch controlled by NIR lasers. They can also be used as “converters” to convert telecom optical signals into MIR optical signals.« less
Sagar, Vidya; Atluri, V. S. R.; Tomitaka, A.; Shah, P.; Nagasetti, A.; Pilakka-Kanthikeel, S.; El-Hage, N.; McGoron, A.; Takemura, Y.; Nair, M.
2016-01-01
Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension. PMID:27465276
Sagar, Vidya; Atluri, V S R; Tomitaka, A; Shah, P; Nagasetti, A; Pilakka-Kanthikeel, S; El-Hage, N; McGoron, A; Takemura, Y; Nair, M
2016-07-28
Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension.
NASA Astrophysics Data System (ADS)
Sagar, Vidya; Atluri, V. S. R.; Tomitaka, A.; Shah, P.; Nagasetti, A.; Pilakka-Kanthikeel, S.; El-Hage, N.; McGoron, A.; Takemura, Y.; Nair, M.
2016-07-01
Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension.
Li, He; Fan, Xinqi; Chen, Xing
2016-02-01
Light-responsive proteins have been delivered into the cells for controlling intracellular events with high spatial and temporal resolution. However, the choice of wavelength is limited to the UV and visible range; activation of proteins inside the cells using near-infrared (NIR) light, which has better tissue penetration and biocompatibility, remains elusive. Here, we report the development of a single-walled carbon nanotube (SWCNT)-based bifunctional system that enables protein intracellular delivery, followed by NIR activation of the delivered proteins inside the cells. Proteins of interest are conjugated onto SWCNTs via a streptavidin-desthiobiotin (SA-DTB) linkage, where the protein activity is blocked. SWCNTs serve as both a nanocarrier for carrying proteins into the cells and subsequently a NIR sensitizer to photothermally cleave the linkage and release the proteins. The released proteins become active and exert their functions inside the cells. We demonstrated this strategy by intracellular delivery and NIR-triggered nuclear translocation of enhanced green fluorescent protein, and by intracellular delivery and NIR-activation of a therapeutic protein, saporin, in living cells. Furthermore, we showed that proteins conjugated onto SWCNTs via the SA-DTB linkage could be delivered to the tumors, and optically released and activated by using NIR light in living mice.
Shao, Xiaozhuo; Zheng, Wei; Huang, Zhiwei
2010-11-08
We evaluate the diagnostic feasibility of the integrated polarized near-infrared (NIR) autofluorescence (AF) and NIR diffuse reflectance (DR) imaging technique developed for colonic cancer detection. A total of 48 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated NIR DR (850-1100 nm) and NIR AF imaging at the 785 nm laser excitation. The results showed that NIR AF intensities of cancer tissues are significantly lower than those of normal tissues (p<0.001, paired 2-sided Student's t-test, n=48). NIR AF imaging under polarization conditions gives a higher diagnostic accuracy (of ~92-94%) compared to non-polarized NIR AF imaging or NIR DR imaging. Further, the ratio imaging of NIR DR to NIR AF with polarization provides the best diagnostic accuracy (of ~96%) among the NIR AF and NIR DR imaging techniques. This work suggests that the integrated NIR AF/DR imaging under polarization condition has the potential to improve the early diagnosis and detection of malignant lesions in the colon.
Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A
2001-10-01
Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations <40 nmol/L, no differentiation from the background was possible. The transitional area between the contrast-free edge of the phantom and the central contrast-containing part appeared in the profiles as a steep increase with a width of 4.2 +/- 1.8 mm. The experimental tumors were detectable in nonenhanced images as well as contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption profiles, a 44.1% +/- 11.3% greater absorption increase was seen in tumor tissue compared with normal tissue. The laser wavelength lambda1 of the prototype laser mammography device was not situated at maximum absorption of the contrast agent NIR96010 but on the descending shoulder of the absorption spectrum. This implies a 20% signal loss for contrast detection. Despite the nonideal measurement conditions, concentrations as low as 40 nmol/L were detectable in vitro. In vivo, all tumors were detectable in color-coded nonenhanced scans as well as in contrast-enhanced scans, with better delineation after contrast administration.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2016-03-01
Near infrared (NIR) photoimmunotherapy (PIT) is a new type of molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting cancer-specific cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/ immunogenic cell death (ICD) only in receptor-positive, MAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent receptor-negative cells including immune cells are unharmed. Therefore, we hypothesized that NIR-PIT could efficiently elicit host immunity against treated cancer cells. Three-dimensional dynamic quantitative phase contrast microscopy and selective plane illumination microscopy of tumor cells undergoing PIT showed rapid swelling in treated cells immediately after light exposure suggesting rapid water influx into cells, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. In summary, NIR-PIT can induce necrotic/ immunogenic cell death that promotes rapid maturation of immature dendritic cells adjacent to dying cancer cells. Therefore, NIR-PIT could efficiently initiate host immune response against NIR-PIT treated cancer cells growing in patients.
System-level analysis and design for RGB-NIR CMOS camera
NASA Astrophysics Data System (ADS)
Geelen, Bert; Spooren, Nick; Tack, Klaas; Lambrechts, Andy; Jayapala, Murali
2017-02-01
This paper presents system-level analysis of a sensor capable of simultaneously acquiring both standard absorption based RGB color channels (400-700nm, 75nm FWHM), as well as an additional NIR channel (central wavelength: 808 nm, FWHM: 30nm collimated light). Parallel acquisition of RGB and NIR info on the same CMOS image sensor is enabled by monolithic pixel-level integration of both a NIR pass thin film filter and NIR blocking filters for the RGB channels. This overcomes the need for a standard camera-level NIR blocking filter to remove the NIR leakage present in standard RGB absorption filters from 700-1000nm. Such a camera-level NIR blocking filter would inhibit the acquisition of the NIR channel on the same sensor. Thin film filters do not operate in isolation. Rather, their performance is influenced by the system context in which they operate. The spectral distribution of light arriving at the photo diode is shaped a.o. by the illumination spectral profile, optical component transmission characteristics and sensor quantum efficiency. For example, knowledge of a low quantum efficiency (QE) of the CMOS image sensor above 800nm may reduce the filter's blocking requirements and simplify the filter structure. Similarly, knowledge of the incoming light angularity as set by the objective lens' F/# and exit pupil location may be taken into account during the thin film's optimization. This paper demonstrates how knowledge of the application context can facilitate filter design and relax design trade-offs and presents experimental results.
Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody.
Nagaya, Tadanobu; Nakamura, Yuko; Sato, Kazuhide; Harada, Toshiko; Choyke, Peter L; Hodge, James W; Schlom, Jeffrey; Kobayashi, Hisataka
2017-01-31
Near Infrared-Photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate (APC). Programmed cell death protein-1 ligand (PD-L1) is emerging as a molecular target. Here, we describe the efficacy of NIR-PIT, using fully human IgG1 anti-PD-L1 monoclonal antibody (mAb), avelumab, conjugated to the photo-absorber, IR700DX, in a PD-L1 expressing H441 cell line, papillary adenocarcinoma of lung. Avelumab-IR700 showed specific binding and cell-specific killing was observed after exposure of the cells to NIR in vitro. In the in vivo study, avelumab-IR700 showed high tumor accumulation and high tumor-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 μg of avelumab-IR700 i.v.; (3) NIR light exposure only, NIR light was administered; (4) 100 μg of avelumab-IR700 i.v., NIR light was administered. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.01 vs other groups). In conclusion, the anti-PD-L1 antibody, avelumab, is suitable as an APC for NIR-PIT. Furthermore, NIR-PIT with avelumab-IR700 is a promising candidate of the treatment of PD-L1-expressing tumors that could be readily translated to humans.
Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody
Nagaya, Tadanobu; Nakamura, Yuko; Sato, Kazuhide; Harada, Toshiko; Choyke, Peter L.; Hodge, James W.; Schlom, Jeffrey; Kobayashi, Hisataka
2017-01-01
Near Infrared-Photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate (APC). Programmed cell death protein-1 ligand (PD-L1) is emerging as a molecular target. Here, we describe the efficacy of NIR-PIT, using fully human IgG1 anti-PD-L1 monoclonal antibody (mAb), avelumab, conjugated to the photo-absorber, IR700DX, in a PD-L1 expressing H441 cell line, papillary adenocarcinoma of lung. Avelumab-IR700 showed specific binding and cell-specific killing was observed after exposure of the cells to NIR in vitro. In the in vivo study, avelumab-IR700 showed high tumor accumulation and high tumor-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 μg of avelumab-IR700 i.v.; (3) NIR light exposure only, NIR light was administered; (4) 100 μg of avelumab-IR700 i.v., NIR light was administered. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.01 vs other groups). In conclusion, the anti-PD-L1 antibody, avelumab, is suitable as an APC for NIR-PIT. Furthermore, NIR-PIT with avelumab-IR700 is a promising candidate of the treatment of PD-L1-expressing tumors that could be readily translated to humans. PMID:27716622
Xie, Zhongxi; Deng, Xiaoran; Liu, Bei; Huang, Shanshan; Ma, Pingan; Hou, Zhiyao; Cheng, Ziyong; Lin, Jun; Luan, Shifang
2017-09-13
Photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core-shell UCNPs (NaYF 4 :Yb/Tm@NaYbF 4 :Gd@NaNdF 4 :Yb@NaYF 4 ), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine-glycine-aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.
Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model
Sato, Kazuhide; Nagaya, Tadanobu; Nakamura, Yuko; Harada, Toshiko; Choyke, Peter L.; Kobayashi, Hisataka
2015-01-01
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies with the acute toxicity induced by photosensitizers after exposure to NIR-light. Herein, we evaluate the efficacy of NIR-PIT in preventing lung metastases in a mouse model. Lung is one of the most common sites for developing metastases, but it also has the deepest tissue light penetration. Thus, lung is the ideal site for treating early metastases by using a light-based strategy. In vitro NIR-PIT cytotoxicity was assessed with dead cell staining, luciferase activity, and a decrease in cytoplasmic GFP fluorescence in 3T3/HER2-luc-GFP cells incubated with an anti-HER2 antibody photosensitizer conjugate. Cell-specific killing was demonstrated in mixed 2D/3D cell cultures of 3T3/HER2-luc-GFP (target) and 3T3-RFP (non-target) cells. In vivo NIR-PIT was performed in the left lung in a mouse model of lung metastases, and the number of metastasis nodules, tumor fluorescence, and luciferase activity were all evaluated. All three evaluations demonstrated that the NIR-PIT-treated lung had significant reductions in metastatic disease (*p < 0.0001, Mann-Whitney U-test) and that NIR-PIT did not damage non-target tumors or normal lung tissue. Thus, NIR-PIT can specifically prevent early metastases and is a promising anti-metastatic therapy. PMID:25992770
NASA Astrophysics Data System (ADS)
Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang
2016-01-01
Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature’s far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings’ 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.
Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang
2016-01-28
Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature's far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings' 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.
Rabi oscillations in extreme ultraviolet ionization of atomic argon
NASA Astrophysics Data System (ADS)
Flögel, Martin; Durá, Judith; Schütte, Bernd; Ivanov, Misha; Rouzée, Arnaud; Vrakking, Marc J. J.
2017-02-01
We demonstrate Rabi oscillations in nonlinear ionization of argon by an intense femtosecond extreme ultraviolet (XUV) laser field produced by high-harmonic generation. We monitor the formation of A r2 + as a function of the time delay between the XUV pulse and an additional near-infrared (NIR) femtosecond laser pulse, and show that the population of an A r+* intermediate resonance exhibits strong modulations both due to an NIR laser-induced Stark shift and XUV-induced Rabi cycling between the ground state of A r+ and the A r+* excited state. Our experiment represents a direct experimental observation of a Rabi-cycling process in the XUV regime.
Light-based theranostics using hybrid structures derived from biological and organic materials
NASA Astrophysics Data System (ADS)
Vankayala, Raviraj; Burns, Joshua M.; Mac, Jenny T.; Anvari, Bahman
2016-09-01
We have engineered hybrid nanostructures derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETs), as they are capable of generating heat, reactive oxygen species (ROS) or emit fluorescence light. We present preliminary results that demonstrate the effectiveness of NETs for fluorescence imaging and photodynamic therapeutic destruction of breast cancer cells, upon photo-excitation using NIR light. These hybrid nanostructures present a promising platform with theranostic capability for future biomedical clinical applications.
Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology
NASA Astrophysics Data System (ADS)
Semyachkina-Glushkovskaya, O. V.; Sokolovski, S. G.; Goltsov, A.; Gekaluyk, A. S.; Saranceva, E. I.; Bragina, O. A.; Tuchin, V. V.; Rafailov, E. U.
2017-09-01
For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a ;gold key; has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research.
NASA Astrophysics Data System (ADS)
Skenes, Kevin; Kumar, Arkadeep; Prasath, R. G. R.; Danyluk, Steven
2018-02-01
Near-infrared (NIR) polariscopy is a technique used for the non-destructive evaluation of the in-plane stresses in photovoltaic silicon wafers. Accurate evaluation of these stresses requires correct identification of the stress-optic coefficient, a material property which relates photoelastic parameters to physical stresses. The material stress-optic coefficient of silicon varies with crystallographic orientation. This variation poses a unique problem when measuring stresses in multicrystalline silicon (mc-Si) wafers. This paper concludes that the crystallographic orientation of silicon can be estimated by measuring the transmission of NIR light through the material. The transmission of NIR light through monocrystalline wafers of known orientation were compared with the transmission of NIR light through various grains in mc-Si wafers. X-ray diffraction was then used to verify the relationship by obtaining the crystallographic orientations of these assorted mc-Si grains. Variation of transmission intensity for different crystallographic orientations is further explained by using planar atomic density. The relationship between transmission intensity and planar atomic density appears to be linear.
Caries detection and diagnostics with near-infrared light transillumination: clinical experiences.
Söchtig, Friederike; Hickel, Reinhard; Kühnisch, Jan
2014-06-01
The aim of this paper was to present the function and potential of diagnosing caries lesions using a recently introduced near-infrared (NIR) transillumination technique (DIAGNOcam, KaVo). The study included 130 adolescents and adults with complete permanent dentition (age > 12). All patients underwent visual examination and, if necessary, bitewing radiographs. Proximal and occlusal surfaces, which had not yet been restored, were photographed by a NIR transillumination camera system using light with a wavelength of 780 nm rather than ionizing radiation. Of the study patients, 85 showed 127 proximal dentin caries lesions that were treated operatively. A cross table shows the correlation of radiography and NIR transillumination. Based on our practical clinical experiences to date, a possible classifi cation of diagnosis is introduced. The main result of our study was that NIR light was able to visualize caries lesions on proximal and occlusal surfaces. The study suggests that NIR transillumination is a method that may help to avoid bitewing radiographs for diagnosis of caries in everyday clinical practice.
A near-infrared light responsive c-di-GMP module-based AND logic gate in Shewanella oneidensis.
Hu, Yidan; Wu, Yichao; Mukherjee, Manisha; Cao, Bin
2017-01-31
A novel, biofilm-based AND logic gate was constructed in Shewanella oneidensis through a near-infrared (NIR) light responsive c-di-GMP module. The logic gate was demonstrated in microbial fuel cells with isopropyl β-d-thiogalactoside (IPTG) and NIR light as the inputs and electrical signals as the output.
Xia, Bing; Wang, Bin; Shi, Jisen; Zhang, Yu; Zhang, Qi; Chen, Zhenyu; Li, Jiachen
2017-03-15
To develop photothermal and biodegradable nanocarriers for combined chemo-photothermal therapy of cancer, polyaniline/porous silicon hybrid nanocomposites had been successfully fabricated via surface initiated polymerization of aniline onto porous silicon nanoparticles in our experiments. As-prepared polyaniline/porous silicon nanocomposites could be well dispersed in aqueous solution without any extra hydrophilic surface coatings, and showed a robust photothermal effect under near-infrared (NIR) laser irradiation. Especially, after an intravenous injection into mice, these biodegradable porous silicon-based nanocomposites as non-toxic agents could be completely cleared in body. Moreover, these polyaniline/porous silicon nanocomposites as drug carriers also exhibited an efficient loading and dual pH/NIR light-triggered release of doxorubicin hydrochloride (DOX, a model anticancer drug). Most importantly, assisted with NIR laser irradiation, polyaniline/PSiNPs nanocomposites with loading DOX showed a remarkable synergistic anticancer effect combining chemotherapy with photothermal therapy, whether in vitro or in vivo. Therefore, based on biodegradable PSiNPs-based nanocomposites, this combination approach of chemo-photothermal therapy would have enormous potential on clinical cancer treatments in the future. Considering the non-biodegradable nature and potential long-term toxicity concerns of photothermal nanoagents, it is of great interest and importance to develop biodegradable and photothermal nanoparticles with an excellent biocompatibility for their future clinical applications. In our experiments, we fabricated porous silicon-based hybrid nanocomposites via surface initiated polymerization of aniline, which showed an excellent photothermal effect, aqueous dispersibility, biodegradability and biocompatibility. Furthermore, after an efficient loading of DOX molecules, polyaniline/porous silicon nanocomposites exhibited the remarkable synergistic anticancer effect, whether in vitro and in vivo. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Parida, Sheetal; Maiti, Chiranjit; Rajesh, Y; Dey, Kaushik K; Pal, Ipsita; Parekh, Aditya; Patra, Rusha; Dhara, Dibakar; Dutta, Pranab Kumar; Mandal, Mahitosh
2017-01-01
Gold nanorods, by virtue of surface plasmon resonance, convert incident light energy (NIR) into heat energy which induces hyperthermia. We designed unique, multifunctional, gold nanorod embedded block copolymer micelle loaded with GW627368X for targeted drug delivery and photothermal therapy. Glutathione responsive diblock co-polymer was synthesized by RAFT process forming self-assembled micelle on gold nanorods prepared by seed mediated method and GW627368X was loaded on to the reduction responsive gold nanorod embedded micelle. Photothermal therapy was administered using cwNIR laser (808nm; 4W/cm 2 ). Efficacy of nanoformulated GW627368X, photothermal therapy and combination of both were evaluated in vitro and in vivo. In response to photothermal treatment, cells undergo regulated, patterned cell death by necroptosis. Combining GW627368X with photothermal treatment using single nanoparticle enhanced therapeutic outcome. In addition, these nanoparticles are effective X-ray CT contrast agents, thus, can help in monitoring treatment. Reduction responsive nanorod embedded micelle containing folic acid and lipoic acid when treated on cervical cancer cells or tumour bearing mice, aggregate in and around cancer cells. Due to high glutathione concentration, micelles degrade releasing drug which binds surface receptors inducing apoptosis. When incident with 808nm cwNIR lasers, gold nanorods bring about photothermal effect leading to hyperthermic cell death by necroptosis. Combination of the two modalities enhances therapeutic efficacy by inducing both forms of cell death. Our proposed treatment strategy achieves photothermal therapy and targeted drug delivery simultaneously. It can prove useful in overcoming general toxicities associated with chemotherapeutics and intrinsic/acquired resistance to chemo and radiotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Near infrared photoimmunotherapy (NIR-PIT) is a new molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (mAb) targeting cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/immunogenic cell death (ICD) only in target-positive, mAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent target-negative cells are unharmed. Dynamic 3D-microscopy of live tumor cells undergoing NIR-PIT showed rapid swelling in treated cells immediately after light exposure, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles within several minutes. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. Alternatively, NIR-PIT can also target negative regulatory immune cells such as Treg only in the tumor bed. Treg targeting NIR-PIT against CD25 can deplete >80% of Treg in tumor bed within 20 min that induces activation of tumor cell-specific CD8+-T and NK cells within 1.5 hour, and then these activated cells killed cancer cells in local tumor within 1 day and also in distant tumors of the same cell origin within 2 days. In summary, cancer cell-targeting and immuno-suppressor cell-targeting NIR-PITs effectively induce innate and acquired immunity specifically against cancer cells growing in patients, respectively.
Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György
2018-01-01
The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050
Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf
2017-11-13
A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dai, Yunlu; Xiao, Haihua; Liu, Jianhua; Yuan, Qinghai; Ma, Ping'an; Yang, Dongmei; Li, Chunxia; Cheng, Ziyong; Hou, Zhiyao; Yang, Piaoping; Lin, Jun
2013-12-18
Controlling anticancer drug activity and release on demand is very significant in cancer therapy. The photoactivated platinum(IV) pro-drug is stable in the dark and can be activated by UV light. In this study, we develop a multifunctional drug delivery system combining upconversion luminescence/magnetic resonance/computer tomography trimodality imaging and NIR-activated platinum pro-drug delivery. We use the core-shell structured upconversion nanoparticles to convert the absorbed NIR light into UV to activate the trans-platinum(IV) pro-drug, trans,trans,trans-[Pt(N3)2(NH3)(py)(O2CCH2CH2COOH)2]. Compared with using the UV directly, the NIR has a higher tissue penetration depth and is less harmful to health. Meanwhile, the upconversion nanoparticles can effectively deliver the platinum(IV) pro-drugs into the cells by endocytosis. The mice treated with pro-drug-conjugated nanoparticles under near-infrared (NIR) irradiation demonstrated better inhibition of tumor growth than that under direct UV irradiation. This multifunctional nanocomposite could be used as multimodality bioimaging contrast agents and transducers by converting NIR light into UV for control of drug activity in practical cancer therapy.
NASA Astrophysics Data System (ADS)
Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.
2017-02-01
In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.
Hu, Chuan; Cun, Xingli; Ruan, Shaobo; Liu, Rui; Xiao, Wei; Yang, Xiaotong; Yang, Yuanyuan; Yang, Chuanyao; Gao, Huile
2018-06-01
Chemotherapy remains restricted by poor drug delivery efficacy due to the heterogenous nature of tumor. Herein, we presented a novel nanoparticle that could not only response to the tumor microenvironment but also modulate it for deep tumor penetration and combination therapy. The intelligent nanoparticle (IDDHN) was engineered by hyaluronidase (HAase)-triggered size shrinkable hyaluronic acid shells, which were modified with NIR laser sensitive nitric oxide donor (HN), small-sized dendrimeric prodrug (IDD) of doxorubicin (DOX) as chemotherapy agent and indocyanine green (ICG) as photothermal agent into a single nanoparticle. IDDHN displayed synergistic deep penetration both in vitro and in vivo, owing to the enzymatically degradable HN shell mediated by HAase and laser-enhanced NO release triggered deep penetration upon strong hyperthermia effect of ICG under the NIR laser irradiation. The therapeutic effect of IDDHN was verified in 4T1 xenograft tumor model, and IDDHN showed a much better antitumor efficiency with few side effects upon NIR laser irradiation. Therefore, the valid of this study might provide a novel tactic for engineering nanoparticles both response to and modulate the tumor microenvironment for improving penetration and heterogeneity distribution of therapeutic agents in tumor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Wei-Peng; Liao, Pei-Yi; Su, Chia-Hao; Yeh, Chen-Sheng
2014-07-16
A new multifunctional nanoparticle to perform a near-infrared (NIR)-responsive remote control drug release behavior was designed for applications in the biomedical field. Different from the previous studies in formation of Fe3O4-Au core-shell nanoparticles resulting in a spherical morphology, the heterostructure with polyhedral core and shell was presented with the truncated octahedral Fe3O4 nanoparticle as the core over a layer of trisoctahedral Au shell. The strategy of Fe3O4@polymer@Au was adopted using poly-l-lysine as the mediate layer, followed by the subsequent seeded growth of Au nanoparticles to form a Au trisoctahedral shell. Fe3O4@Au trisoctahedra possess high-index facets of {441}. To combine photothermal and chemotherapy in a remote-control manner, the trisoctahedral core-shell Fe3O4@Au nanoparticles were further covered with a mesoporous silica shell, yielding Fe3O4@Au@mSiO2. The bondable oligonucleotides (referred as dsDNA) were used as pore blockers of the mesoporous silica shell that allowed the controlled release, resulting in a NIR-responsive DNA-gated Fe3O4@Au@mSiO2 nanocarrier. Taking advantage of the magnetism, remotely triggered drug release was facilitated by magnetic attraction accompanied by the introduction of NIR radiation. DNA-gated Fe3O4@Au@mSiO2 serves as a drug control and release carrier that features functions of magnetic target, MRI diagnosis, and combination therapy through the manipulation of a magnet and a NIR laser. The results verified the significant therapeutic effects on tumors with the assistance of combination therapy consisting of magnetic guidance and remote NIR control.
Favril, Sophie; Abma, Eline; Blasi, Francesco; Stock, Emmelie; Devriendt, Nausikaa; Vanderperren, Katrien; de Rooster, Hilde
2018-04-28
One of the major challenges in surgical oncology is the intraoperative discrimination of tumoural versus healthy tissue. Until today, surgeons rely on visual inspection and palpation to define the tumoural margins during surgery and, unfortunately, for various cancer types, the local recurrence rate thus remains unacceptably high. Near-infrared (NIR) fluorescence imaging is an optical imaging technique that can provide real-time preoperative and intraoperative information after administration of a fluorescent probe that emits NIR light once exposed to a NIR light source. This technique is safe, cost-effective and technically easy. Several NIR fluorescent probes are currently studied for their ability to highlight neoplastic cells. In addition, NIR fluorescence imaging holds great promise for sentinel lymph node mapping. The aim of this manuscript is to provide a literature review of the current organic NIR fluorescent probes tested in the light of human oncology and to introduce fluorescence imaging as a valuable asset in veterinary oncology. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues
NASA Astrophysics Data System (ADS)
Bhatt, Manish; Ayyalasomayajula, Kalyan R.; Yalavarthy, Phaneendra K.
2016-07-01
The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer-Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.
Cui, Cao; Tou, Meijie; Li, Mohua; Luo, Zhenguo; Xiao, Lingbo; Bai, Song; Li, Zhengquan
2017-02-20
Combination of upconversion nanocrystals (UCNs) with CeO 2 is a decent choice to construct NIR-activated photocatalysts for utilizing the NIR light in the solar spectrum. Herein we present a facile approach to deposit a CeO 2 layer with controllable thickness on the plate-shaped NaYF 4 :Yb,Tm UCNs. The developed core-shell nanocomposites display obvious photocatalytic activity under the NIR light and exhibit enhanced activity under the full solar spectrum. For enhancing the separation of photogenerated electrons and holes on the CeO 2 surface, we sequentially coat a ZnO shell on the nanocomposites so as to form a heterojunction structure for achieving a better activity. The developed hybrid photocatalysts have been characterized with TEM, SEM, PL, etc., and the working mechanism of such UCN-semiconductor heterojunction photocatalysts has been proposed.
In vitro near-infrared imaging of natural secondary caries.
Simon, Jacob C; Lucas, Seth; Lee, Robert; Darling, Cynthia L; Staninec, Michal; Vanderhobli, Ram; Pelzner, Roger; Fried, Daniel
2015-02-24
Secondary caries stands as the leading reason for the failure of composite restorations and dentists spend more time replacing existing restorations than placing new ones. Current clinical strategies, and even modern visible light methods designed to detect decay, lack the sensitivity to distinguish incipient lesions, are confounded by staining on the surface and within the tooth, or are limited to detecting decay on the tooth surface. Near-IR (NIR) imaging methods, such as NIR reflectance and transillumination imaging, and optical coherence tomography are promising strategies for imaging secondary caries. Wavelengths longer than 1300-nm avoid interference from stain and exploit the greater transparency of sound enamel and dental composites, to provide increased contrast with demineralized tissues and improved imaging depth. The purpose of this study was to determine whether NIR transillumination (λ=1300-nm) and NIR cross-polarized reflectance (λ=1500-1700-nm) images can serve as reliable indicators of demineralization surrounding composite restorations. Twelve composite margins (n=12) consisting of class I, II & V restorations were chosen from ten extracted teeth. The samples were imaged in vitro using NIR transillumination and reflectance, polarization sensitive optical coherence tomography (PS-OCT) and a high-magnification digital visible light microscope. Samples were serially sectioned into 200- μ m slices for histological analysis using polarized light microscopy (PLM) and transverse microradiography (TMR). The results presented demonstrate the utility of NIR light for detecting recurrent decay and suggest that NIR images could be a reliable screening tool used in conjunction with PS-OCT for the detection and diagnosis of secondary caries.
In-vitro near-infrared imaging of natural secondary caries
NASA Astrophysics Data System (ADS)
Simon, Jacob C.; Lucas, Seth; Lee, Robert; Darling, Cynthia L.; Staninec, Michal; Vanderhobli, Ram; Pelzner, Roger; Fried, Daniel
2015-02-01
Secondary caries stands as the leading reason for the failure of composite restorations and dentists spend more time replacing existing restorations than placing new ones. Current clinical strategies, and even modern visible light methods designed to detect decay, lack the sensitivity to distinguish incipient lesions, are confounded by staining on the surface and within the tooth, or are limited to detecting decay on the tooth surface. Near-IR (NIR) imaging methods, such as NIR reflectance and transillumination imaging, and optical coherence tomography are promising strategies for imaging secondary caries. Wavelengths longer than 1300-nm avoid interference from stain and exploit the greater transparency of sound enamel and dental composites, to provide increased contrast with demineralized tissues and improved imaging depth. The purpose of this study was to determine whether NIR transillumination (λ=1300-nm) and NIR crosspolarized reflectance (λ=1500-1700-nm) images can serve as reliable indicators of demineralization surrounding composite restorations. Twelve composite margins (n=12) consisting of class I, II and V restorations were chosen from ten extracted teeth. The samples were imaged in vitro using NIR transillumination and reflectance, polarization sensitive optical coherence tomography (PS-OCT) and a high-magnification digital visible light microscope. Samples were serially sectioned into 200-μm slices for histological analysis using polarized light microscopy (PLM) and transverse microradiography (TMR). The results presented demonstrate the utility of NIR light for detecting recurrent decay and suggest that NIR images could be a reliable screening tool used in conjunction with PS-OCT for the detection and diagnosis of secondary caries.
NASA Astrophysics Data System (ADS)
McWade, Melanie A.
2016-03-01
A rise in the use of near-infrared (NIR) fluorescent dyes or intrinsic fluorescent markers for surgical guidance and tissue diagnosis has triggered the development of NIR fluorescence imaging systems. Because NIR wavelengths are invisible to the naked eye, instrumentation must allow surgeons to visualize areas of high fluorescence. Current NIR fluorescence imaging systems have limited ease-of-use because they display fluorescent information on remote display monitors that require surgeons to divert attention away from the patient to identify the location of tissue fluorescence. Furthermore, some systems lack simultaneous visible light imaging which provides valuable spatial context to fluorescence images. We have developed a novel, portable NIR fluorescence imaging approach for intraoperative surgical guidance that provides information for surgical navigation within the clinician's line of sight. The system utilizes a NIR CMOS detector to collect excited NIR fluorescence from the surgical field. Tissues with NIR fluorescence are overlaid with visible light to provide information on tissue margins directly on the surgical field. In vitro studies have shown this versatile imaging system can be applied to applications with both extrinsic NIR contrast agents such as indocyanine green and weaker sources of biological fluorescence such as parathyroid gland tissue. This non-invasive, portable NIR fluorescence imaging system overlays an image directly on tissue, potentially allowing surgical decisions to be made quicker and with greater ease-of-use than current NIR fluorescence imaging systems.
The influence of femtosecond laser pulse wavelength on embryonic stem cell differentiation
NASA Astrophysics Data System (ADS)
Mthunzi, Patience
2012-10-01
Stem cells are rich in proteins, carbohydrates, deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and various other cellular components which are responsible for a diversity of functions. Mostly the building blocks of these intracellular entities play an active role in absorbing ultra-violet (UV) and visible light sources. Light-matter interactions in biomaterials are a complex situation and subsequent damage may not always amount only from wavelength dependent effects but may also be driven by a wealth of other optical parameters which may lead to a variety photochemical reactions. Previously, literature has reported efficient photo-transfection and differentiation of pluripotent stem cells via near infrared (NIR) femtosecond (fs) laser pulses with minimum compromise to their viability. Therefore, in this study the influence of using different fs laser wavelengths on optical stem cell transfection and differentiation is investigated. A potassium titanyl phosphate (KTP) crystal was employed in frequency doubling a 1064 nm fs laser beam. The newly generated 532 nm fs pulsed beam was then utilized for the first time in transient photo-transfection of ES-E14TG2a mouse embryonic stem (mES) cells. Compared to using 1064 nm fs pulses which non-invasively introduce plasmid DNA and other macromolecules into mES cells, our results showed a significant decline in the photo-transfection efficiency following transfecting with a pulsed fs visible green beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumari, Astha, E-mail: asthaguru90@gmail.com; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in
Upconversion is an interesting optical property, generally shown by rare-earth doped materials. This unusual optical behavior shown by these rare-earths doped materials are due to their peculiar atomic configuration and electronic transitions. Here, the Tm{sup 3+}-Yb{sup 3+} codoped BaTiO{sub 3} glass with TeO{sub 2} as former has been prepared by conventional melt and quench technique and the upconversion property has been investigated with the help of near infrared (NIR) to Visible UC study. The generation of the visible UC bands around ∼ 476 nm, ∼ 653 nm, ∼ 702 nm and one NIR UC band at ∼795 nm are assignedmore » due to the {sup 1}G{sub 4}→ {sup 3}H{sub 6}, {sup 1}G{sub 4}→ {sup 3}F{sub 4}, {sup 3}F{sub 2}→ {sup 3}H{sub 6} and {sup 3}H{sub 4}→ {sup 3}H{sub 6} transitions respectively. The generations of these upconversion bands have been discussed in detail with the help of energy level diagram. The colour coordinates corresponding to the prepared material have been shown with the help of CIE chromaticity diagram. These glasses can be very appropriately used in the fabrication of solid state laser and as NIR to blue light upconverter.« less
NASA Astrophysics Data System (ADS)
Liu, Hui; Li, Wenchao; Cao, Yang; Guo, Yuan; Kang, Yuejun
2018-03-01
Development of effective theranostic nanoplatforms against malignant tumor is still a challenge. With desirable near-infrared (NIR) light-responsive properties, polypyrrole nanoparticles (PPy NPs) are one of the promising theranostic candidates for cancer photoacoustic imaging and photothermal therapy. Here, PPy NPs with distinct sizes were prepared using a facile aqueous dispersion polymerization method. The formed PPy NPs are uniform in size with narrow size distribution. Characterization data show that PPy NPs with a diameter around 50 nm (P50) display stronger absorption in the NIR range compared to 40 and 60 nm PPy NPs, which further influences their photo-responsive properties. Due to their higher NIR absorption, P50 NPs have better photoacoustic imaging property and photothermal conversion ability than the other two kinds of PPy NPs. The photothermal stability of P50 NPs was proved to be excellent. The CCK-8 assays show that PPy NPs have obvious acute cytotoxicity within 6 h and desirable cytocompatibility for longer incubation time (12 and 24 h). After 6-h incubation, P50 NPs could be internalized by HeLa cells. Their photothermal tumor ablation effect was demonstrated under 808-nm laser irradiation. These findings may provide in-depth understanding of the PPy-based multifunctional nanomaterials for the development of theranostic systems against cancer.
Short wavelength infrared optical windows for evaluation of benign and malignant tissues
NASA Astrophysics Data System (ADS)
Sordillo, Diana C.; Sordillo, Laura A.; Sordillo, Peter P.; Shi, Lingyan; Alfano, Robert R.
2017-04-01
There are three short wavelength infrared (SWIR) optical windows outside the conventionally used first near-infrared (NIR) window (650 to 950 nm). They occur in the 1000- to 2500-nm range and may be considered second, third, and fourth NIR windows. The second (1100 to 1350 nm) and third windows (1600 to 1870 nm) are now being explored through label-free linear and multiphoton imaging. The fourth window (2100 to 2350 nm) has been mostly ignored because of water absorption and the absence of sensitive detectors and ultrafast lasers. With the advent of new technology, use of window IV is now possible. Absorption and scattering properties of light through breast and prostate cancer, bone, lipids, and intralipid solutions at these windows were investigated. We found that breast and prostate cancer and bone have longer total attenuation lengths at NIR windows III and IV, whereas fatty tissues and intralipid have longest lengths at windows II and III. Since collagen is the major chromophore at 2100 and 2350 nm, window IV could be especially valuable in evaluating cancers and boney tissues, whereas windows II and III may be more useful for tissues with high lipid content. SWIR windows may be utilized as additional optical tools for the evaluation of collagen in tissues.
Short wavelength infrared optical windows for evaluation of benign and malignant tissues.
Sordillo, Diana C; Sordillo, Laura A; Sordillo, Peter P; Shi, Lingyan; Alfano, Robert R
2017-04-01
There are three short wavelength infrared (SWIR) optical windows outside the conventionally used first near-infrared (NIR) window (650 to 950 nm). They occur in the 1000- to 2500-nm range and may be considered second, third, and fourth NIR windows. The second (1100 to 1350 nm) and third windows (1600 to 1870 nm) are now being explored through label-free linear and multiphoton imaging. The fourth window (2100 to 2350 nm) has been mostly ignored because of water absorption and the absence of sensitive detectors and ultrafast lasers. With the advent of new technology, use of window IV is now possible. Absorption and scattering properties of light through breast and prostate cancer, bone, lipids, and intralipid solutions at these windows were investigated. We found that breast and prostate cancer and bone have longer total attenuation lengths at NIR windows III and IV, whereas fatty tissues and intralipid have longest lengths at windows II and III. Since collagen is the major chromophore at 2100 and 2350 nm, window IV could be especially valuable in evaluating cancers and boney tissues, whereas windows II and III may be more useful for tissues with high lipid content. SWIR windows may be utilized as additional optical tools for the evaluation of collagen in tissues.
Han, Seungmin; Kwon, Taeyun; Um, Jo-Eun; Haam, Seungjoo; Kim, Woo-Jae
2016-05-01
Near-infrared (NIR) photothermal therapy using biocompatible single-walled carbon nanotubes (SWNTs) is advantageous because as-produced SWNTs, without additional size control, both efficiently absorb NIR light and demonstrate high photothermal conversion efficiency. In addition, covalent attachment of receptor molecules to SWNTs can be used to specifically target infected cells. However, this technique interrupts SWNT optical properties and inevitably lowers photothermal conversion efficiency and thus remains major hurdle for SWNT applications. This paper presents a smart-targeting photothermal therapy platform for inflammatory disease using newly developed phenoxylated-dextran-functionalized SWNTs. Phenoxylated dextran is biocompatible and efficiently suspends SWNTs by noncovalent π-π stacking, thereby minimizing SWNT bundle formations and maintaining original SWNT optical properties. Furthermore, it selectively targets inflammatory macrophages by scavenger-receptor binding without any additional receptor molecules; therefore, its preparation is a simple one-step process. Herein, it is experimentally demonstrated that phenoxylated dextran-SWNTs (pD-SWNTs) are also biocompatible, selectively penetrate inflammatory macrophages over normal cells, and exhibit high photothermal conversion efficiency. Consequently, NIR laser-triggered macrophage treatment can be achieved with high accuracy by pD-SWNT without damaging receptor-free cells. These smart targeting materials can be a novel photothermal agent candidate for inflammatory disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Sordillo, Peter P.; Budansky, Yury; Leproux, Philippe; Alfano, R. R.
2015-02-01
Many areas of the body such as the tibia have minimal tissue thickness overlying bone. Near-infrared (NIR) optical windows may be used to image more deeply to reveal abnormalities hidden beneath tissue. We report on the potential application of a compact Leukos supercontinuum laser source (model STM-2000-IR) with wavelengths in the four NIR optical windows (from 650 nm to 950 nm, 1,100 nm to 1,350 nm, 1,600 to 1,870, and 2,100 nm to 2,300 nm, respectively) and between 200 - 500 microwatt/nm power, with InGaAs (Goodrich Sensors Inc. SU320- 1.7RT) and InSb detectors (Teledyne Technologies) to image microfractures and abnormalities of bone hidden beneath tissue.
Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics
NASA Astrophysics Data System (ADS)
Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.
2018-02-01
Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.
NASA Astrophysics Data System (ADS)
Nilsson, A. M. K.; Heinrich, D.; Olajos, J.; Andersson-Engels, S.
1997-10-01
In order to evaluate the potential of cardiovascular tissue characterisation using near-infrared (NIR) spectroscopy, spectra in a previously unexplored wavelength region 0.8-2.3 μm were recorded from various pig heart tissue samples in vitro: normal myocardium (with and without endo/epicardium), aorta, fatty and fibrous heart tissue. The spectra were analysed with principal component analysis (PCA), revealing several spectroscopically characteristic features enabling tissue classification. Several of the identified spectral features could be attributed to specific tissue constituents by comparing the tissue signals with spectra obtained from water, elastin, collagen and cholesterol as well as with published data. The results obtained with the NIR spectroscopy technique in terms of its potential to classify different tissue types were compared with those from laser-induced fluorescence (LIF) using 337 nm excitation. LIF and NIR spectroscopy can in combination with PCA be used to discriminate between all previously mentioned tissue groups, apart from fatty versus fibrous tissue (LIF) and aorta versus fibrous tissue (NIR), respectively. The NIR analysis was improved by focusing the PCA to the wavelength segment 2.0-2.3 μm, resulting in successful spectral characterisation of all cardiovascular tissue groups.
NASA Astrophysics Data System (ADS)
Taratula, Olena; Schumann, Canan; Duong, Tony; Taylor, Karmin L.; Taratula, Oleh
2015-02-01
Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm-2), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm-2 to 1.3 W cm-2 the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure.Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm-2), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm-2 to 1.3 W cm-2 the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure. Electronic supplementary information (ESI) available: Fig. S1-S5: Size distribution of SiNc-NP measured by dynamic light scattering (Fig. S1); absorption spectra of free SiNc 2 in THF before and after irradiation with the 785 nm laser diode for 30 min (Fig. S2); in vitro cytotoxicity of free DOX against A2780/AD human ovarian cancer cells (Fig. S3); the release profiles of SiNc from SiNc-NP under various conditions (Fig. S4); body weight curves of the mice with or without treatment (Fig. S5). See DOI: 10.1039/c4nr06050d
Magnetic Carbon nanoparticles enabled efficient photothermal alteration of mammalian cells
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Thomas, Patrick; Yu, Lingfeng; Mohanty, Samarendra
2011-03-01
While cw near-infrared (NIR) laser beams have been finding widespread application in photothermal therapy of cancer and pulsed NIR laser microbeams are recently being used for optoporation of exogeneous impermeable materials into cells. Since, carbon nanomaterials are very good in photothermal conversion, we utilized carbon nanoparticles (CNP) doped with Fe, so that they can be localized in a defined area by two fold selectivity, (i) external magnetic field for retention of the CNP in targeted area and (ii) surface functionalization for binding the targeted cells. Here, we report efficient photothermal therapy as well as poration of cells using magnetic CNPs with very low power continuous wave laser beam. Localization of CNPs on cell membrane under application of magnetic field was confirmed by scanning electron microscopy. At different power levels, cells could be damaged or microinjected with fluorescence protein-encoding plasmids or impermeable dyes. Monte Carlo simulation showed that the dose of NIR laser beam is sufficient to elicit response for magnetic CNP based photothermal treatment at significant depth. The results of our study suggest that magnetic CNP based photothermal alteration is a viable approach to remotely guide treatments offering high efficiency with significantly reduced cytotoxicity.
Schmidt, J; Winnerl, S; Seidel, W; Bauer, C; Gensch, M; Schneider, H; Helm, M
2015-06-01
We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.
NASA Astrophysics Data System (ADS)
Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.
2016-01-01
A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, J., E-mail: j.schmidt@hzdr.de; Helm, M.; Technische Universität Dresden, 01062 Dresden
2015-06-15
We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. Inmore » addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.« less
Kong, Fenfen; Liu, Fei; Li, Wei; Guo, Xiaomeng; Wang, Zuhua; Zhang, Hanbo; Li, Qingpo; Luo, Lihua; Du, Yongzhong; Jin, Yi; You, Jian
2016-12-01
Near-infrared (NIR) laser-controlled gene delivery presents some benefits in gene therapy, inducing enhanced gene transfection efficiency. In this study, a "photothermal transfection" agent is obtained by wrapping poly(ethylenimine)-cholesterol derivatives (PEI-Chol) around single-walled carbon nanotubes (SWNTs). The PEI-Chol modified SWNTs (PCS) are effective in compressing DNA molecules and protecting them from DNaseI degradation. Compared to the complexes formed by PEI with DNA (PEI/DNA), complexes of PCS and DNA that are formed (PCS/DNA) exhibit a little lower toxicity to HEK293 and HeLa cells under the same PEI molecule weight and weight ratios. Notably, caveolae-mediated cellular uptake of PCS/DNA occurs, which results in a safer intracellular transport of the gene due to the decreased lysosomal degradation in comparison with that of PEI/DNA whose internalization mainly depends on clathrin rather than caveolae. Furthermore, unlike PEI/DNA, PCS/DNA exhibits a photothermal conversion ability, which promotes DNA release from PCS under NIR laser irradiation. The NIR laser-mediated photothermal transfection of PCS 10K /plasmid TP53 (pTP53) results in more apoptosis and necrosis of HeLa cells in vitro than other groups, and achieves a higher tumor-growth inhibition in vivo than naked pTP53, PEI 25K /pTP53, and PCS 10K /pTP53 alone. The enhanced transfection efficiency of PCS/DNA can be attributed to more efficient DNA internalization into the tumor cells, promotes detachment of DNA from PCS under the mediation of NIR laser and higher DNA stability in the cells due to caveolae-mediated cellular uptake of the complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K
2010-07-01
To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.
Evaluation of light detector surface area for functional Near Infrared Spectroscopy.
Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu
2017-10-01
Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy.
Hashemi, Mohadeseh; Omidi, Meisam; Muralidharan, Bharadwaj; Tayebi, Lobat; Herpin, Matthew J; Mohagheghi, Mohammad Ali; Mohammadi, Javad; Smyth, Hugh D C; Milner, Thomas E
2018-01-01
Stimuli responsive polyelectrolyte nanoparticles have been developed for chemo-photothermal destruction of breast cancer cells. This novel system, called layer by layer Lipo-graph (LBL Lipo-graph), is composed of alternate layers of graphene oxide (GO) and graphene oxide conjugated poly (l-lysine) (GO-PLL) deposited on cationic liposomes encapsulating doxorubicin. Various concentrations of GO and GO-PLL were examined and the optimal LBL Lipo-graph was found to have a particle size of 267.9 ± 13 nm, zeta potential of +43.9 ± 6.9 mV and encapsulation efficiency of 86.4 ± 4.7%. The morphology of LBL Lipo-graph was examined by cryogenic-transmission electron microscopy (Cryo-TEM), atomic force microcopy (AFM) and scanning electron microscopy (SEM). The buildup of LBL Lipo-graph was confirmed via ultraviolet-visible (UV-Vis) spectrophotometry, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis. Infra-red (IR) response suggests that four layers are sufficient to induce a gel-to-liquid phase transition in response to near infra-red (NIR) laser irradiation. Light-matter interaction of LBL Lipo-graph was studied by calculating the absorption cross section in the frequency domain by utilizing Fourier analysis. Drug release assay indicates that the LBL Lipo-graph releases much faster in an acidic environment than a liposome control. A cytotoxicity assay was conducted to prove the efficacy of LBL Lipo-graph to destroy MD-MB-231 cells in response to NIR laser emission. Also, image stream flow cytometry and two photon microcopy provide supportive data for the potential application of LBL Lipo-graph for photothermal therapy. Study results suggest the novel dual-sensitive nanoparticles allow intracellular doxorubin delivery and respond to either acidic environments or NIR excitation. Stimuli sensitive hybrid nanoparticles have been synthesized using a layer-by-layer technique and demonstrated for dual chemo-photothermal destruction of breast cancer cells. The hybrid nanoparticles are composed of alternating layers of graphene oxide and graphene oxide conjugated poly-l-lysine coating the surface of a thermosensitive cationic liposome containing doxorubicin as a core. Data suggests that the hybrid nanoparticles may offer many advantages for chemo-photothermal therapy. Advantages include a decrease of the initial burst release which may result in the reduction in systemic toxicity, increase in pH responsivity around the tumor environment and improved NIR light absorption. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Dandan; Yu, Shu-Hong; Jiang, Hai-Long
2018-05-15
The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high-priority target yet grand challenge. In this work, for the first time, metal-organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near-infrared (NIR) region. In the core-shell structured upconversion nanoparticles (UCNPs)-Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of "bare and clean" Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g -1 h -1 ) under simulated solar light, and the involved mechanism of photocatalytic H 2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H 2 production by light harvesting in all UV, visible, and NIR regions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of targeted two-photon PDT triads for the treatment of head and neck cancers
NASA Astrophysics Data System (ADS)
Spangler, Charles W.; Starkey, Jean R.; Dubinina, Galyna; Fahlstrom, Carl; Shepard, Joyce
2012-02-01
Synthesis of new PDT triads that incorporate a tumor-killing porphyrin with large two-photon cross-section for 150 fs laser pulses (2000 GM) in the Near-infrared (NIR) at 840 nm, a NIR imaging agent, and a small peptide that targets over-expressed EGF receptors on the tumor surface. This triad formulation has been optimized over the past year to treat FADU Head and Neck SCC xenograft tumors in SCID mice. Effective PDT triad dose (1-10 mg/Kg) and laser operating parameters (840 nm, 15-45 min, 900 mW) have been established. Light, dark and PDT treatment toxicities were determined, showing no adverse effects. Previous experiments in phantom and mouse models indicate that tumors can be treated directly through the skin to effective depths between 2 and 5 cm. Treated mice demonstrated rapid tumor regression with some complete cures in as little as 15-20 days. No adverse effects were observed in any healthy tissue through which the focused laser beam passed before reaching the tumor site, and excellent healing occurred post treatment including rapid hair re-growth. Not all irradiation protocols lead to complete cures. Since two-photon PDT is carried out by rastering focused irradiation throughout the tumor, there is the possibility that as the treatment depth increases, some parts of the tumor may escape irradiation due to increased scattering, thus raising the possibility that tumor re-growth could be triggered by small islands of untreated cells, especially at the rapidly growing tumor margins, a problem we hope to alleviate by using image-guided two-photon PDT.
Development of integrated semiconductor optical sensors for functional brain imaging
NASA Astrophysics Data System (ADS)
Lee, Thomas T.
Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.
Near infrared photoimmunotherapy for lung metastases
Sato, Kazuhide; Nagaya, Tadanobu; Mitsunaga, Makoto; Choyke, Peter L.; Kobayashi, Hisataka
2015-01-01
Lung metastases are a leading cause of cancer related deaths; nonetheless current treatments are limited. Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies that target tumors with the toxicity induced by photosensitizers activated by NIR-light. Herein, we demonstrate the efficacy of NIR-PIT in a mouse model of lung metastases. Experiments were conducted with a HER2, luciferase and GFP expressing cell line (3T3/HER2-luc-GFP). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. With 3D culture, repeated NIR-PIT could eradicate entire spheroids. In vivo anti-tumor effects of NIR-PIT included significant reductions in both tumor volume (p = 0.0141 vs. APC) and bioluminescence image (BLI) (p = 0.0086 vs. APC) in the flank model, and prolonged survival (p < 0.0001). BLI demonstrated a significant reduction in lung metastases volume (p = 0.0117 vs. APC). Multiple NIR-PIT doses significantly prolonged survival in the lung metastases model (p < 0.0001). These results suggested that NIR-PIT is a potential new therapy for the local control of lung metastases. PMID:26021765
Portable wide-field hand-held NIR scanner
NASA Astrophysics Data System (ADS)
Jung, Young-Jin; Roman, Manuela; Carrasquilla, Jennifer; Erickson, Sarah J.; Godavarty, Anuradha
2013-03-01
Near-infrared (NIR) optical imaging modality is one of the widely used medical imaging techniques for breast cancer imaging, functional brain mapping, and many other applications. However, conventional NIR imaging systems are bulky and expensive, thereby limiting their accelerated clinical translation. Herein a new compact (6 × 7 × 12 cm3), cost-effective, and wide-field NIR scanner has been developed towards contact as well as no-contact based real-time imaging in both reflectance and transmission mode. The scanner mainly consists of an NIR source light (between 700- 900 nm), an NIR sensitive CCD camera, and a custom-developed image acquisition and processing software to image an area of 12 cm2. Phantom experiments have been conducted to estimate the feasibility of diffuse optical imaging by using Indian-Ink as absorption-based contrast agents. As a result, the developed NIR system measured the light intensity change in absorption-contrasted target up to 4 cm depth under transillumination mode. Preliminary in-vivo studies demonstrated the feasibility of real-time monitoring of blood flow changes. Currently, extensive in-vivo studies are carried out using the ultra-portable NIR scanner in order to assess the potential of the imager towards breast imaging..
A Demo opto-electronic power source based on single-walled carbon nanotube sheets.
Hu, Chunhua; Liu, Changhong; Chen, Luzhuo; Meng, Chuizhou; Fan, Shoushan
2010-08-24
It is known that single-walled carbon nanotubes (SWNTs) strongly absorb light, especially in the near-infrared (NIR) region, and convert it into heat. In fact, SWNTs also have considerable ability to convert heat into electricity. In this work, we show that SWNT sheets made from as-grown SWNT arrays display a large positive thermoelectric coefficient (p-type). We designed a simple SWNT device to convert illuminating NIR light directly into a notable voltage output, which was verified by experimental tests. Furthermore, by a simple functionalization step, the p- to n-type transition was conveniently achieved for the SWNT sheets. By integrating p- and n-type elements in series, we constructed a novel NIR opto-electronic power source, which outputs a large voltage that sums over the output of every single element. Additionally, the output of the demo device has shown a good linear relationship with NIR light power density, favorable for IR sensors.
Bagley, Alexander F; Hill, Samuel; Rogers, Gary S; Bhatia, Sangeeta N
2013-09-24
Plasmonic nanomaterials including gold nanorods are effective agents for inducing heating in tumors. Because near-infrared (NIR) light has traditionally been delivered using extracorporeal sources, most applications of plasmonic photothermal therapy have focused on isolated subcutaneous tumors. For more complex models of disease such as advanced ovarian cancer, one of the primary barriers to gold nanorod-based strategies is the adequate delivery of NIR light to tumors located at varying depths within the body. To address this limitation, a series of implanted NIR illumination sources are described for the specific heating of gold nanorod-containing tissues. Through computational modeling and ex vivo studies, a candidate device is identified and validated in a model of orthotopic ovarian cancer. As the therapeutic, imaging, and diagnostic applications of plasmonic nanomaterials progress, effective methods for NIR light delivery to challenging anatomical regions will complement ongoing efforts to advance plasmonic photothermal therapy toward clinical use.
Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W; Karagiannis, Sophia N; Fazekas-Singer, Judit; Choyke, Peter L; LeBlanc, Amy K; Jensen-Jarolim, Erika; Kobayashi, Hisataka
2018-04-10
Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro . In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups ( p < 0.001), and significantly prolonged survival was achieved ( p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans.
Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W.; Karagiannis, Sophia N.; Fazekas-Singer, Judit; Choyke, Peter L.; LeBlanc, Amy K.; Jensen-Jarolim, Erika; Kobayashi, Hisataka
2018-01-01
Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro. In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans. PMID:29721181
NASA Astrophysics Data System (ADS)
Chan, Kenneth H.; Fried, Nathaniel M.; Fried, Daniel
2018-02-01
Previous studies have shown that reflectance imaging at wavelengths greater than 1200-nm can be used to image demineralization on tooth occlusal surfaces with high contrast and without the interference of stains. In addition, these near-IR imaging systems can be integrated with laser ablation systems for the selective removal of carious lesions. Higher wavelengths, such as 1950-nm, yield higher lesion contrast due to higher water absorption and lower scattering. In this study, a point-to-point scanning system employing diode and fiber lasers operating at 1450, 1860, 1880, and 1950-nm was used to acquire reflected light images of the tooth surface. Artificial lesions were imaged at these wavelengths to determine the highest lesion contrast. Near-IR images at 1880-nm were used to demarcate lesion areas for subsequent selective carious lesion removal using a new compact air-cooled CO2 laser prototype operating at 9.3-μm. The highest lesion contrast was at 1950-nm and the dual NIR/CO2 laser system selectively removed the simulated lesions with a mean loss of only 12-μm of sound enamel.
Design and reliability analysis of a novel laser acupuncture device
NASA Astrophysics Data System (ADS)
Pan, Boan; Zhong, Fulin; Zhao, Ke; Li, Ting
2018-02-01
Acupuncture has a long history of more than 2000 years in China. However, traditional acupuncture adopts metallic needles which may bring discomfort and pricking to patients. Laser acupuncture (LA) is a non-invasive and painless way to achieve some therapeutic effects. And compared to traditional acupuncture, LA is free from infection. Taking these advantages of LA into consideration, we innovatively developed a portable laser acupuncture device with therapy part and detection part together. Therapy part sends out laser at the wavelength of 650 nm onto special acupoints of patients. And detection part includes integrated light-emitting diode (LED, 735/805/850 nm) and photodiode (OPT101). The detection part is used for the data collection for calculation of hemodynamic parameters based on near-infrared spectroscopy (NIRS). In this work, we carried out current-power test for sensitivity of therapy part. And we also conducted liquid-model optical experiment and arm blocking test for the sensitivity and effectiveness of detection part. The final results demonstrated great potential and reliability of the novel laser acupuncture device. In the future, we will apply this device in clinical applications to verify the effectiveness of the device and improve the reliability for more treatment of diseases.
Zhou, Haiying; Gunsten, Sean P.; Zhegalova, Natalia G.; Bloch, Sharon; Achilefu, Samuel; Holley, J. Christopher; Schweppe, Daniel; Akers, Walter; Brody, Steven L.; Eades, William; Berezin, Mikhail Y.
2016-01-01
In vivo optical imaging with near-infrared (NIR) probes is an established method of diagnostics in preclinical and clinical studies. However, the specificities of these probes are difficult to validate ex vivo due to the lack of NIR flow cytometry. To address this limitation, we modified a flow cytometer to include an additional NIR channel using a 752 nm laser line. The flow cytometry system was tested using NIR microspheres and cell lines labeled with a combination of visible range and NIR fluorescent dyes. The approach was verified in vivo in mice evaluated for immune response in lungs after intratracheal delivery of the NIR contrast agent. Flow cytometry of cells obtained from the lung bronchoalveolar lavage demonstrated that the NIR dye was taken up by pulmonary macrophages as early as four-hours post-injection. This combination of optical imaging with NIR flow cytometry extends the capability of imaging and enables complementation of in vivo imaging with cell-specific studies. PMID:25808737
Tetravalent chromium doped laser materials and NIR tunable lasers
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)
2008-01-01
A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0
Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging
NASA Astrophysics Data System (ADS)
Hemmer, Eva; Venkatachalam, Nallusamy; Hyodo, Hiroshi; Hattori, Akito; Ebina, Yoshie; Kishimoto, Hidehiro; Soga, Kohei
2013-11-01
In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln3+), nanoscopic host materials doped with Ln3+, e.g. Y2O3:Er3+,Yb3+, are promising candidates for NIR-NIR bioimaging. Ln3+-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er3+,Yb3+, have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln3+), nanoscopic host materials doped with Ln3+, e.g. Y2O3:Er3+,Yb3+, are promising candidates for NIR-NIR bioimaging. Ln3+-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er3+,Yb3+, have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review. Electronic supplementary information (ESI) available: Table 1: sample overview. Movie 1: time-resolved in vivo biodistribution of Gd2O3:Er3+,Yb3+ nanorods in a mouse 5 min post-injection. Fig. 1: preliminary long-term cytotoxicity study of Y2O3:Er3+ injected into mice. See DOI: 10.1039/c3nr02286b
Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-01-01
Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026
Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-04-01
Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.
Lanthanum fluoride upconverting nanoparticles for photo-biomodulation of cell function
NASA Astrophysics Data System (ADS)
Tek, Sumeyra; Vincent, Brandy K.; Mimun, L. Christopher; Tran, Ashley N.; Shrestha, Binita; Tang, Liang; Nash, Kelly L.
2017-02-01
Inorganic fluorescent nanoprobes have been widely used as passive agents for intracellular imaging for decades. An emerging field of research is the development of these contrast agents and using them actively in a way that they respond to external stimulation by inducing photo-chemical, thermal or mechanical actions that enable control and modulation over cell function. To achieve such control, methods which are remote, non-invasive and with low-thermal means of stimulation is preferable. Among a large variety of candidates, lanthanide doped upconverting nanoparticles (UCNPs) are one of the most interesting class of fluorescent materials. Non-scattering, low energy near infrared (NIR) light can be used for excitation of UCNPs as on-demand light sources resulting in emission peaks throughout the near-UV and visible wavelengths. Towards this goal, we developed nano-size, hydrophilic, non-toxic and biocompatible core-shell nanoparticles with enhanced upconversion intensity for photo-biomodulation studies. Under this approach, un-doped LaF3 (inert) shell and Yb3+ doped LaF3 (active) shell are grown on core LaF3:20% Yb, 2% Tm upconverting nanoparticles for enhanced luminescence for the first time with rapid microwave-assisted synthesis method that employs Polyvinylpyrrolidone (PVP) as biocompatible surfactant. The as-synthesized high efficiency UCNPs are analyzed through XRD, TEM, HRTEM, and Photoluminescence spectrum that is acquired under 980 nm laser excitation. Confocal microscopy is used to visualize nanoparticles in cells. The cellular response to NIR irradiation and upconverted light are visualized by luminescence microscopy.
NASA Astrophysics Data System (ADS)
Hou, Lin; Feng, Qianhua; Wang, Yating; Zhang, Huijuan; Jiang, Guixiang; Yang, Xiaomin; Ren, Junxiao; Zhu, Xiali; Shi, Yuyang; Zhang, Zhenzhong
2015-03-01
Graphene oxide (GO) with strong optical absorption in the near-infrared (NIR) region has shown great potential both in photothermal therapy and drug delivery. In this work, hyaluronic acid (HA)-functionalized GO (HA-GO) was successfully synthesized and controlled loading of mitoxantrone (MIT) onto HA-GO via π- π stacking interaction was investigated. The results revealed that drug-loaded nanosheets with high loading efficiency of 45 wt% exhibited pH-sensitive responses to tumor environment. Owing to the receptor-mediated endocytosis, cellular uptake analysis of HA-GO showed enhanced internalization. In vivo optical imaging test demonstrated that HA-GO nanosheets could enhance the targeting ability and residence time in tumor site. Moreover, the anti-tumor activity of free MIT, MIT/GO, and MIT/HA-GO in combination with NIR laser was investigated using human MCF-7 cells. In vitro cytotoxicity study revealed that HA-GO could stand as a biocompatible nanocarrier and MIT/HA-GO demonstrated remarkably higher toxicity than free MIT and MIT/GO, with IC50 of 0.79 µg ml-1. Tumor cell-killing potency was enhanced when MIT/HA-GO were combined with NIR irradiation, and the IC50 of MIT/HA-GO plus laser irradiation was 0.38 µg ml-1. In vivo, MIT/HA-GO plus NIR laser irradiation with the tumor growth inhibition of 93.52 % displayed greater anti-tumor effect compared with free MIT and MIT/GO with or without laser irradiation. Therefore, the MIT/HA-GO nanosheets may potentially be useful for further development of synergistic cancer therapy.
Namikawa, Tsutomu; Fujisawa, Kazune; Munekage, Eri; Iwabu, Jun; Uemura, Sunao; Tsujii, Shigehiro; Maeda, Hiromichi; Kitagawa, Hiroyuki; Fukuhara, Hideo; Inoue, Keiji; Sato, Takayuki; Kobayashi, Michiya; Hanazaki, Kazuhiro
2018-04-04
The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.
Huang, Lifen; Zhang, Hongcheng; Zhang, Huiyong; Deng, Xing Wang; Wei, Ning
2016-01-01
HY5 (Long Hypocotyles 5) is a key transcription factor in Arabidopsis thaliana that has a pivotal role in seedling development. Soil nitrogen is an essential macronutrient, and its uptake, assimilation and metabolism are influenced by nutrient availability and by lights. To understand the role of HY5 in nitrogen assimilation pathways, we examined the phenotype as well as the expression of selected nitrogen assimilation-related genes in hy5 mutant grown under various nitrogen limiting and nitrogen sufficient conditions, or different light conditions. We report that HY5 positively regulates nitrite reductase gene NIR1 and negatively regulates the ammonium transporter gene AMT1;2 under all nitrogen and light conditions tested, while it affects several other genes in a nitrogen supply-dependent manner. HY5 is not required for light induction of NIR1, AMT1;2 and NIA genes, but it is necessary for high level expression of NIR1 and NIA under optimal nutrient and light conditions. In addition, nitrogen deficiency exacerbates the abnormal root system of hy5. Together, our results suggest that HY5 exhibits the growth-promoting activity only when sufficient nutrients, including lights, are provided, and that HY5 has a complex involvement in nitrogen acquisition and metabolism in Arabidopsis seedlings. PMID:26259199
Photobiomodulation therapy by NIR laser in persistent pain: an analytical study in the rat.
Micheli, Laura; Di Cesare Mannelli, Lorenzo; Lucarini, Elena; Cialdai, Francesca; Vignali, Leonardo; Ghelardini, Carla; Monici, Monica
2017-11-01
Over the past three decades, physicians have used laser sources for the management of different pain conditions obtaining controversial results that call for further investigations. In order to evaluate the pain relieving possibilities of photobiomodulation therapy (PBMT), we tested two near infrared (NIR) laser systems, with different power, against various kinds of persistent hyperalgesia animal models. In rats, articular pain was reproduced by the intra-articular injection of sodium monoiodoacetate (MIA) and complete Freund's adjuvant (CFA), while compressive neuropathy was modelled by the chronic constriction injury of the sciatic nerve (CCI). In MIA and CFA models, (NIR) laser (MLS-Mphi, ASA S.r.l., Vicenza, Italy) application was started 14 days after injury and was performed once a day for a total of 13 applications. In MIA-treated animals, the anti-hyperalgesic effect of laser began 5 min after treatment and vanished after 60 min. The subsequent applications evoked similar effects. In CFA-treated rats, laser efficacy started 5 min after treatment and disappeared after 180 min. In rats that underwent CCI, two treatment protocols with similar fluence but different power output were tested using a new experimental device called Multiwave Locked System laser (MLS-HPP). Treatments began 7 days after injury and were performed during 3 weeks for a total of 10 applications. Both protocols reduced mechanical hyperalgesia and hindlimb weight bearing alterations until 60 min after treatment with a higher efficacy recorded for the animals treated using the higher power output. In conclusion, this study supports laser therapy as a potential treatment for immediate relief of chronic articular or neuropathic pain.
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Richardson, Mark
2013-03-01
Novel techniques for laser beam atmospheric extinction measurements, suitable for several air and space platform applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ= 1064 nm and λ= 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.
Novel atmospheric extinction measurement techniques for aerospace laser system applications
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Richardson, Mark
2013-01-01
Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.
Liu, Feng; Yan, Wuzhao; Chuang, Yen-Jun; Zhen, Zipeng; Xie, Jin; Pan, Zhengwei
2013-01-01
In conventional photostimulable storage phosphors, the optical information written by x-ray or ultraviolet irradiation is usually read out as a visible photostimulated luminescence (PSL) signal under the stimulation of a low-energy light with appropriate wavelength. Unlike the transient PSL, here we report a new optical read-out form, photostimulated persistent luminescence (PSPL) in the near-infrared (NIR), from a Cr3+-doped LiGa5O8 NIR persistent phosphor exhibiting a super-long NIR persistent luminescence of more than 1,000 h. An intense PSPL signal peaking at 716 nm can be repeatedly obtained in a period of more than 1,000 h when an ultraviolet-light (250–360 nm) pre-irradiated LiGa5O8:Cr3+ phosphor is repeatedly stimulated with a visible light or a NIR light. The LiGa5O8:Cr3+ phosphor has promising applications in optical information storage, night-vision surveillance, and in vivo bio-imaging. PMID:23532003
Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields
NASA Astrophysics Data System (ADS)
Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira
2018-04-01
We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.
Design of an MR-compatible fNIRS instrument
NASA Astrophysics Data System (ADS)
Emir, Uzay; Ademoglu, Ahmet; Ozturk, Cengizhan; Aydin, Kubilay; Demiralp, Tamer; Kurt, Adnan; Dincer, Alp; Akin, Ata
2005-04-01
Acquiring functional near infrared spectroscopy (fNIRS) and functional magnetic resonance-imaging (fMRI) data are usually done asynchronously. In order to correlate these two different modalities" data, measurements must be performed at the same time. In this study, we have designed a new MR compatible continuous wave intensity based fNIRS device to overcome this problem. For MR compatible fNIRS, we used two LEDs with wavelengths at 660 and 870 nm. There are four photodiodes for light detection. LEDs operated in a sequential multiplexing mode with adjustable "on" time for each LED. Emitted and diffused light was transferred to and from the tissue through 10 m long single mode plastic optical fibers (INDUSTRIAL FIBER OPTICS, INC.). By using fibers, we overcome MR compatibility problems that can be caused by semi-conductors on probe. This MR compatible fNIRS design can provide synchronous measurements with low cost.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2014-05-01
In the framework of the self-interaction-free time-dependent density-functional theory, we have performed three-dimensional (3D) ab initio calculations of He atoms in near-infrared (NIR) laser fields subject to excitation by a single extreme ultraviolet (XUV) attosecond pulse (SAP). We have explored the dynamical behavior of the subcycle high harmonic generation (HHG) for transitions from the excited states to the ground state and found oscillation structures with respect to the time delay between the SAP and NIR fields. The oscillatory pattern in the photon emission spectra has a period of ˜1.3 fs which is half of the NIR laser optical cycle, similar to that recently measured in the experiments on transient absorption of He [M. Chini et al., Sci. Rep. 3, 1105 (2013), 10.1038/srep01105]. We present the photon emission spectra from 1s2p, 1s3p, 1s4p, 1s5p, and 1s6p excited states as functions of the time delay. We explore the subcycle Stark shift phenomenon in NIR fields and its influence on the photon emission process. Our analysis reveals several interesting features of the subcycle HHG dynamics and we identify the mechanisms responsible for the observed peak splitting in the photon emission spectra.
NASA Astrophysics Data System (ADS)
Yanina, Irina Yu.; Navolokin, Nikita A.; Svenskaya, Yulia I.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Gorin, Dmitry A.; Sukhorukov, Gleb B.; Tuchin, Valery V.
2017-05-01
The goal of this study is to quantify the impact of the in vivo photochemical treatment of rats with obesity using indocyanine green (ICG) dissolved in saline or dispersed in an encapsulated form at NIR laser irradiation, which was monitored by tissue sampling and histochemistry. The subcutaneous injection of the ICG solution or ICG encapsulated into polyelectrolyte microcapsules, followed by diode laser irradiation (808 nm, 8 W/cm2, 1 min), resulted in substantial differences in lipolysis of subcutaneous fat. Most of the morphology alterations occurred in response to the laser irradiation if a free-ICG solution had been injected. In such conditions, membrane disruption, stretching, and even delamination in some cases were observed for a number of cells. The encapsulated ICG aroused similar morphology changes but with weakly expressed adipocyte destruction under the laser irradiation. The Cochran Q test rendered the difference between the treatment alternatives statistically significant. By this means, laser treatment using the encapsulated form of ICG seems more promising and could be used for safe layerwise laser treatment of obesity and cellulite.
Yanina, Irina Yu; Navolokin, Nikita A; Svenskaya, Yulia I; Bucharskaya, Alla B; Maslyakova, Galina N; Gorin, Dmitry A; Sukhorukov, Gleb B; Tuchin, Valery V
2017-05-01
The goal of this study is to quantify the impact of the in vivo photochemical treatment of rats with obesity using indocyanine green (ICG) dissolved in saline or dispersed in an encapsulated form at NIR laser irradiation, which was monitored by tissue sampling and histochemistry. The subcutaneous injection of the ICG solution or ICG encapsulated into polyelectrolyte microcapsules, followed by diode laser irradiation (808 nm, 8 ?? W / cm 2 , 1 min), resulted in substantial differences in lipolysis of subcutaneous fat. Most of the morphology alterations occurred in response to the laser irradiation if a free-ICG solution had been injected. In such conditions, membrane disruption, stretching, and even delamination in some cases were observed for a number of cells. The encapsulated ICG aroused similar morphology changes but with weakly expressed adipocyte destruction under the laser irradiation. The Cochran Q test rendered the difference between the treatment alternatives statistically significant. By this means, laser treatment using the encapsulated form of ICG seems more promising and could be used for safe layerwise laser treatment of obesity and cellulite.
Abay, T Y; Kyriacou, P A
2016-04-01
Monitoring changes in blood volume, blood flow, and oxygenation in tissues is of vital importance in fields such as reconstructive surgery and trauma medicine. Near infrared spectroscopy (NIRS), laser Doppler (LDF) flowmetry, photoplethysmography (PPG), and pulse oximetry (PO) contribute to such fields due to their safe and noninvasive nature. However, the techniques have been rarely investigated simultaneously or altogether. The aim of this study was to investigate all the techniques simultaneously on healthy subjects during vascular occlusion challenges. Sensors were attached on the forearm (NIRS and LDF) and fingers (PPG and PO) of 19 healthy volunteers. Different degrees of vascular occlusion were induced by inflating a pressure cuff on the upper arm. The responses of tissue oxygenation index (NIRS), tissue haemoglobin index (NIRS), flux (LDF), perfusion index (PPG), and arterial oxygen saturation (PO) have been recorded and analyzed. Moreover, the optical densities were calculated from slow varying dc PPG, in order to distinguish changes in venous blood volumes. The indexes showed significant changes (p < 0.05) in almost all occlusions, either venous or over-systolic occlusions. However, differentiation between venous and arterial occlusion by LDF may be challenging and the perfusion index (PI) may not be adequate to indicate venous occlusions. Optical densities may be an additional tool to detect venous occlusions by PPG.
Shanmugam, Sivaprakash; Xu, Jiangtao; Boyer, Cyrille
2016-01-18
Photoregulated polymerizations are typically conducted using high-energy (UV and blue) light, which may lead to undesired side reactions. Furthermore, as the penetration of visible light is rather limited, the range of applications with such wavelengths is likewise limited. We herein report the first living radical polymerization that can be activated and deactivated by irradiation with near-infrared (NIR) and far-red light. Bacteriochlorophyll a (Bachl a) was employed as a photoredox catalyst for photoinduced electron transfer/reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. Well-defined polymers were thus synthesized within a few hours under NIR (λ=850 nm) and far-red (λ=780 nm) irradiation with excellent control over the molecular weight (M(n)/M(w)<1.25). Taking advantage of the good penetration of NIR light, we showed that the polymerization also proceeded smoothly when a translucent barrier was placed between light source and reaction vessel. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Light-directing chiral liquid crystal nanostructures: from 1D to 3D.
Bisoyi, Hari Krishna; Li, Quan
2014-10-21
Endowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these materials is a result of both molecular interaction and geometry changes in the chiral molecular switch upon light irradiation. The doped photoresponsive CLCs undergo light-driven pitch modulation and/or helix inversion, which has many applications in color filters, polarizers, all-optical displays, optical lasers, sensors, energy-saving smart devices, and so on. Recently, we have conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs. The light-driven chiral molecular switches are based on well-recognized azobenzene, dithienylcyclopentene, and spirooxazine derivatives. We have demonstrated high-resolution and lightweight photoaddressable displays without patterned electronics on flexible substrates. The wide tunability of the HTP furnishes reflection colors encompassing the whole visible spectrum and beyond in a reversible manner. Photomodulation of the helical pitch of the CLCs has been achieved by UV, visible, and near-infrared (NIR) light irradiation. NIR-light-induced red, green, and blue (RGB) reflections have been leveraged only by varying the power density of the IR laser. Some chiral switches are found to confer helix inversion to the cholesteric systems, which qualifies the CLCs for applications where circularly polarized light is involved. Dynamic and static primary RGB reflection colors have been achieved in a single film. LC BPs have been fabricated and investigated in the context of self-organized 3D photonic band gap (PBG) materials, and dynamic phototuning of the PBG over the visible region has been achieved. Omnidirectional lasing and tuning of the laser emission wavelength have also been attained in monodisperse photoresponsive CLC microshells fabricated by a capillary-based microfluidic technique. This Account covers the research and development in our laboratory starting from the design concepts and synthesis of photodynamic chiral molecular switches to their applications in the fabrication of photoresponsive CLCs and BPs. Potential and demonstrated practical applications of photoresponsive CLCs, microshells, and BPs are discussed, and the Account concludes with a brief forecast of what lies beyond the horizon in this rapidly expanding and fascinating field.
Sensitivity Differences in Fish Offer Near-Infrared Vision as an Adaptable Evolutionary Trait
Shcherbakov, Denis; Knörzer, Alexandra; Espenhahn, Svenja; Hilbig, Reinhard; Haas, Ulrich; Blum, Martin
2013-01-01
Near-infrared (NIR) light constitutes an integrated part of solar radiation. The principal ability to sense NIR under laboratory conditions has previously been demonstrated in fish. The availability of NIR in aquatic habitats, and thus its potential use as a cue for distinct behaviors such as orientation and detection of prey, however, depends on physical and environmental parameters. In clear water, blue and green light represents the dominating part of the illumination. In turbid waters, in contrast, the relative content of red and NIR radiation is enhanced, due to increased scattering and absorption of short and middle range wavelengths by suspended particles and dissolved colored materials. We have studied NIR detection thresholds using a phototactic swimming assay in five fish species, which are exposed to different NIR conditions in their natural habitats. Nile and Mozambique tilapia, which inhabit waters with increased turbidity, displayed the highest spectral sensitivity, with thresholds at wavelengths above 930 nm. Zebrafish, guppy and green swordtail, which prefer clearer waters, revealed significantly lower thresholds of spectral sensitivity with 825–845 nm for green swordtail and 845–910 nm for zebrafish and guppy. The present study revealed a clear correlation between NIR sensation thresholds and availability of NIR in the natural habitats, suggesting that NIR vision, as an integral part of the whole spectrum of visual abilities, can serve as an evolutionarily adaptable trait in fish. PMID:23691215
Mitochondria-Targeting Magnetic Composite Nanoparticles for Enhanced Phototherapy of Cancer.
Guo, Ranran; Peng, Haibao; Tian, Ye; Shen, Shun; Yang, Wuli
2016-09-01
Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities in current days while the high laser power density demand and low tumor accumulation are key obstacles that have greatly restricted their development. Here, magnetic composite nanoparticles for dual-modal PTT and PDT which have realized enhanced cancer therapeutic effect by mitochondria-targeting are reported. Integrating PTT agent and photosensitizer together, the composite nanoparticles are able to generate heat and reactive oxygen species (ROS) simultaneously upon near infrared (NIR) laser irradiation. After surface modification of targeting ligands, the composite nanoparticles can be selectively delivered to the mitochondria, which amplify the cancer cell apoptosis induced by hyperthermia and the cytotoxic ROS. In this way, better photo therapeutic effects and much higher cytotoxicity are achieved by utilizing the composite nanoparticles than that treated with the same nanoparticles missing mitochondrial targeting unit at a low laser power density. Guided by NIR fluorescence imaging and magnetic resonance imaging, then these results are confirmed in a humanized orthotropic lung cancer model. The composite nanoparticles demonstrate high tumor accumulation and excellent tumor regression with minimal side effect upon NIR laser exposure. Therefore, the mitochondria-targeting composite nanoparticles are expected to be an effective phototherapeutic platform in oncotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nakamura, Yuko; Bernardo, Marcelino; Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Choyke, Peter L.; Kobayashi, Hisataka
2016-01-01
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photon absorbers after irradiation with NIR light. The purpose of this study was to determine if MR imaging can detect changes in the MR properties of tumor within several hours of NIR-PIT. A431 cells were injected subcutaneously in the right and left dorsi of 12 mice. Six days later, the mice were injected with a photon absorber, IR700, conjugated to panitumumab, an antibody targeting epidermal growth factor receptor. One day later, only right sided tumor was exposed to NIR light (treated tumor). MRI was performed 1 day before and 1-2 hours after NIR-PIT using gadofosveset for six mice and gadopentetate dimeglumine for another six mice. T2 relaxation times, the apparent diffusion coefficient (ADC) for the following combinations of b-values: 0-1000, 200-1000 and 500-1000 s/mm2 and enhancement indices were compared before and after NIR-PIT using a two-sided paired t-test. For treated tumors, T2 relaxation time increased after NIR-PIT (p < 0.01) and all three ADC values decreased after NIR-PIT (p < 0.01). Moreover, the enhancement area under the curve (AUC) using gadofosveset increased after NIR-PIT (p = 0.02). In conclusion, prolongation of T2, reductions in ADC and increased enhancement using gadofosveset are seen within 2 hours of NIR-PIT treatment of tumors. Thus, MRI can be a useful imaging biomarker for detecting early therapeutic changes after NIR-PIT. PMID:26885619
Sato, Kazuhide; Nagaya, Tadanobu; Choyke, Peter L.; Kobayashi, Hisataka
2015-01-01
Pleural metastases are common in patients with advanced thoracic cancers and are a cause of considerable morbidity and mortality yet is difficult to treat. Near Infrared Photoimmunotherapy (NIR-PIT) is a cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to NIR-light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of pleural disseminated non-small cell lung carcinoma (NSCLC). In vitro and in vivo experiments were conducted with a HER2, luciferase and GFP expressing NSCLC cell line (Calu3-luc-GFP). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized. In vitro NIR-PIT cytotoxicity was assessed with dead staining, luciferase activity, and GFP fluorescence intensity. In vivo NIR-PIT was performed in mice with tumors implanted intrathoracic cavity or in the flank, and assessed by tumor volume and/or bioluminescence and fluorescence thoracoscopy. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. In vivo NIR-PIT led significant reductions in both tumor volume (p = 0.002 vs. APC) and luciferase activity (p = 0.0004 vs. APC) in a flank model, and prolonged survival (p < 0.0001). Bioluminescence indicated that NIR-PIT lead to significant reduction in pleural dissemination (1 day after PIT; p = 0.0180). Fluorescence thoracoscopy confirmed the NIR-PIT effect on disseminated pleural disease. In conclusion, NIR-PIT has the ability to effectively treat pleural metastases caused by NSCLC in mice. Thus, NIR-PIT is a promising therapy for pleural disseminated tumors. PMID:25897335
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Stothers, Lynn; Molavi, Behnam; Mutabazi, Sharif; Mukisa, Ronald; Macnab, Andrew
2015-02-01
Background: Prior research indicates the epidermal pigment layer of human skin (Melanin) has a significant absorption coefficient in the near infra-red (NIR) region; hence attenuation of light in vivo is a potential confounder for NIR spectroscopy (NIRS). A NIRS method developed for transcutaneous evaluation of bladder function is being investigated as a means of improving the burden of bladder disease in sub-Saharan Africa. This required development of a simple wireless NIRS device suitable for use as a screening tool in patients with pigmented skin where the NIR light emitted would penetrate through the epidermal pigment layer and return in sufficient quantity to provide effective monitoring. Methods: Two healthy subjects, one with pigmented skin and one with fair skin, were monitored as they voided spontaneously using the prototype transcutaneous NIRS device positioned over the bladder. The device was a self-contained wireless unit with light emitting diodes (wavelengths 760 and 850 nanometres) and interoptode distance of 4cm. The raw optical data were transmitted to a laptop where graphs of chromophore change were generated with proprietary software and compared between the subjects and with prior data from asymptomatic subjects. Results: Serial monitoring was successful in both subjects. Voiding volumes varied between 350 and 380 cc. In each subject the patterns of chromophore change, trend and magnitude of change were similar and matched the physiologic increase in total and oxygenated hemoglobin recognized to occur in normal bladder contraction during voiding. Conclusions: Skin pigmentation does not compromise the ability of transcutaneous NIRS to interrogate physiologic change in the bladder during bladder contraction in healthy subjects.
Spectral analysis of lunar analogue samples
NASA Astrophysics Data System (ADS)
Offringa, Marloes; Foing, Bernard
2016-04-01
Analyses of samples derived from terrestrial analogue sites are used to study lunar processes in their geological context (Foing, Stoker, Ehrenfreund, 2011). For this study samples from the volcanic region of the Eifel, Germany collected during field campaigns (Foing et al., 2010), are analyzed with a variety of spectrometers. The aim is to obtain a database of analyzed samples that could be used as a reference for future in situ measurements. Equipment used in the laboratory consists of a Fourier Transform Infrared (FTIR) spectrometer, an X-Ray Fluorescence (XRF) spectrometer, a Raman laser spectrometer, as well as UV-VIS and NIR reflectance spectrometers. The Raman, UV-VIS and NIR are also used in combination with the EXoGeoLab mock-up lander during field campaigns (Foing, Stoker, Ehrenfreund, 2011). Calibration of the UV-VIS and NIR reflectance spectrometers is the main focus of this research in order to obtain the clearest spectra. The calibration of the UV-VIS and NIR reflectance spectrometers requires the use of a good light source as well as suitable optical fibers to create a signal that covers the widest range in wavelengths available. To eliminate noise towards the edges of this range, multiple measurements are averaged and data is processed by dividing the signal by reference spectra. Calibration of the devices by creating a new dark and reference spectra has to take place after every sample measurement. In this way we take into account changes that occur in the signal due to the eating of the devices during the measurements. Moreover, the integration time is adjusted to obtain a clear signal without leading to oversaturation in the reflectance spectrum. The typical integration times for the UV-VIS reflectance spectrometer vary between 1 - 18 s, depending on the amount of daylight during experiments. For the NIR reflectance spectrometer the integration time resulting in the best signals is approximately 150 ms in combination with a broad spectrum light source. Together with taking an average over ±600 measurements per sample this leads to the best spectral signals that can be acquired with this set-up. Obtained spectra can be tested for accuracy by comparing them with stationary laboratory spectrometers such as the FTIR spectrometer. Future campaigns involving the employment of the spectrometers on the ExoGeoLab lander would prove the applicability of the equipment in the field.
Near-Infrared Scintillation of Liquid Argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilly, Elizabeth; Escobar, Carlos
2017-01-01
Liquid argon is well known to scintillate in the vacuum ultraviolet (VUV) range which is inherently difficult to detect. There has been recent evidence to suggest that it also emits near infrared (NIR) light. If this is the case, many large-scale time projection chambers and other similar detectors will be able to maximize light collection while minimizing cost. The goal of this project is to confirm and quantify this NIR emission. In order to accomplish this, an α-source was placed in a volume of highly purified liquid argon and observed using an infrared PMT with a filter excluding light withmore » wavelength <715 nm. Performing a simple counting experiment, there were indications of NIR scintillation. Further analysis is in progress.« less
Kunimatsu, Ryo; Gunji, Hidemi; Tsuka, Yuji; Yoshimi, Yuki; Awada, Tetsuya; Sumi, Keisuke; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Abe, Takaharu; Naoto, Hirose; Yanoshita, Makoto; Tanimoto, Kotaro
2018-07-01
Laser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.42, 2.85, 5.7, or 17.1 J/cm 2 . Cell proliferation was evaluated with BrdU and ATP concentration assays. Cell migration was analyzed by quantitative assessment of wound healing using the Incucyt ® ZOOM system. In addition, phosphorylation of mitogen-activated protein kinase (MAPK) family members including p38 mitogen-activated protein kinase (p38), stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK), and extracellular signal-regulated protein kinase (ERK)1/2) after laser irradiation was examined with western blotting. Compared to the control, cell proliferation was significantly increased by laser irradiation at a dose of 2.85, 5.7, or 17.1 J/cm 2 . Laser irradiation at a dose of 2.85 J/cm 2 induced MC3T3-E1 cells to migrate more rapidly than non-irradiated control cells. Irradiation with the high-frequency 910-nm diode laser at a dose of 2.85 J/cm 2 induced phosphorylation of MAPK/ERK1/2 15 and 30 min later. However, phosphorylation of p38 MAPK and SAPK/JNK was not changed by NIR diode laser irradiation at a dose of 2.85 J/cm 2 . Irradiation with a high-frequency NIR diode laser increased cell division and migration of MT3T3-E1 cells, possibly via MAPK/ERK signaling. These observations may be important for enhancing proliferation and migration of osteoblasts to improve regeneration of bone tissues.
NASA Astrophysics Data System (ADS)
Dou, Ruixia; Du, Zhen; Bao, Tao; Dong, Xinghua; Zheng, Xiaopeng; Yu, Miao; Yin, Wenyan; Dong, Binbin; Yan, Liang; Gu, Zhanjun
2016-06-01
Recently, a combination of chemotherapy with photothermal therapy (PTT) has received great attention for the construction of a near infrared (NIR)-controlled drug-delivery system for synergistic treatment of cancer, ultimately resulting in the enhancement of the therapeutic efficacy of anticancer drugs. Here, we developed a novel system for synergistic cancer therapy based on bismuth sulfide (Bi2S3) nanoparticle-decorated graphene functionalized with polyvinylpyrrolidone (PVP) (named PVP-rGO/Bi2S3). The as-prepared PVP-rGO/Bi2S3 nanocomposite has a high storage capacity for anticancer drugs (~500% for doxorubicin (DOX)) and simultaneously has perfect photothermal conversion efficiency in the NIR region. The results of the in vitro accumulative drug release test manifests that the PVP-rGO/Bi2S3 nanocomposite could be applied as a dual pH- and NIR-responsive nanotherapeutic carrier for the controlled release of DOX from DOX-loaded PVP-rGO/Bi2S3 (PVP-rGO/Bi2S3@DOX). Moreover, the treatment of both cancer cells (including Hela, MCF-7, HepG2 and BEL-7402 cells) and BEL-7402 tumor-bearing mice with the PVP-rGO/Bi2S3@DOX complex followed by NIR laser irradiation produces significantly greater inhibition of cancer cell growth than the treatment with NIR irradiation alone or DOX alone, exhibiting a synergistic antitumor effect. Furthermore, due to the obvious NIR and X-ray absorption ability, the PVP-rGO/Bi2S3 nanocomposite could be employed as a dual-modal contrast agent for both photoacoustic tomography and X-ray computed tomography imaging. In addition to the good biocompatibility, the PVP-rGO/Bi2S3 nanocomposite paves a potential way for the fabrication of theranostic agents for dual-modal imaging-guided chemo-photothermal combined cancer therapy.Recently, a combination of chemotherapy with photothermal therapy (PTT) has received great attention for the construction of a near infrared (NIR)-controlled drug-delivery system for synergistic treatment of cancer, ultimately resulting in the enhancement of the therapeutic efficacy of anticancer drugs. Here, we developed a novel system for synergistic cancer therapy based on bismuth sulfide (Bi2S3) nanoparticle-decorated graphene functionalized with polyvinylpyrrolidone (PVP) (named PVP-rGO/Bi2S3). The as-prepared PVP-rGO/Bi2S3 nanocomposite has a high storage capacity for anticancer drugs (~500% for doxorubicin (DOX)) and simultaneously has perfect photothermal conversion efficiency in the NIR region. The results of the in vitro accumulative drug release test manifests that the PVP-rGO/Bi2S3 nanocomposite could be applied as a dual pH- and NIR-responsive nanotherapeutic carrier for the controlled release of DOX from DOX-loaded PVP-rGO/Bi2S3 (PVP-rGO/Bi2S3@DOX). Moreover, the treatment of both cancer cells (including Hela, MCF-7, HepG2 and BEL-7402 cells) and BEL-7402 tumor-bearing mice with the PVP-rGO/Bi2S3@DOX complex followed by NIR laser irradiation produces significantly greater inhibition of cancer cell growth than the treatment with NIR irradiation alone or DOX alone, exhibiting a synergistic antitumor effect. Furthermore, due to the obvious NIR and X-ray absorption ability, the PVP-rGO/Bi2S3 nanocomposite could be employed as a dual-modal contrast agent for both photoacoustic tomography and X-ray computed tomography imaging. In addition to the good biocompatibility, the PVP-rGO/Bi2S3 nanocomposite paves a potential way for the fabrication of theranostic agents for dual-modal imaging-guided chemo-photothermal combined cancer therapy. Electronic supplementary information (ESI) available: Figures. See DOI: 10.1039/c6nr01543c
Shed a light of wireless technology on portable mobile design of NIRS
NASA Astrophysics Data System (ADS)
Sun, Yunlong; Li, Ting
2016-03-01
Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.
Umesh P. Agarwal; Nancy Kawai
2005-01-01
While cellulosic and lignocellulosic materials have been studied using conventional Raman spectroscopy, availability of near-infrared (NIR) Fourier transform (FT) Raman instrumentation has made studying these materials much more convenient. This is especially true because the problem of laser-induced fluorescence can be avoided or minimized in FT- Raman (NIR Raman)...
A Reversible DNA Logic Gate Platform Operated by One- and Two-Photon Excitations.
Tam, Dick Yan; Dai, Ziwen; Chan, Miu Shan; Liu, Ling Sum; Cheung, Man Ching; Bolze, Frederic; Tin, Chung; Lo, Pik Kwan
2016-01-04
We demonstrate the use of two different wavelength ranges of excitation light as inputs to remotely trigger the responses of the self-assembled DNA devices (D-OR). As an important feature of this device, the dependence of the readout fluorescent signals on the two external inputs, UV excitation for 1 min and/or near infrared irradiation (NIR) at 800 nm fs laser pulses, can mimic function of signal communication in OR logic gates. Their operations could be reset easily to its initial state. Furthermore, these DNA devices exhibit efficient cellular uptake, low cytotoxicity, and high bio-stability in different cell lines. They are considered as the first example of a photo-responsive DNA logic gate system, as well as a biocompatible, multi-wavelength excited system in response to UV and NIR. This is an important step to explore the concept of photo-responsive DNA-based systems as versatile tools in DNA computing, display devices, optical communication, and biology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Song, Hyon Min; Deng, Lin; Khashab, Niveen M
2013-05-21
SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80 °C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs.
NASA Astrophysics Data System (ADS)
Keresztes, Janos C.; Henrottin, Anne; Goodarzi, Mohammad; Wouters, Niels; van Roy, Jeroen; Saeys, Wouter
2015-09-01
Visible-near infrared (Vis-NIR) and short wave infrared (SWIR) hyperspectral imaging (HSI) are gaining interest in the food sorting industry. As for traditional machine vision (MV), spectral image registration is an important step which affects the quality of the sorting system. Unfortunately, it currently still remains challenging to accurately register the images acquired with the different imagers as this requires a reference with good contrast over the full spectral range. Therefore, the objective of this work was to develop an accurate high contrast checkerboard over the full spectral range. From the investigated white and dark materials, Teflon and Acktar were found to present very good contrast over the full spectral range from 400 to 2500 nm, with a minimal contrast ratio of 60% in the Vis-NIR and 98 % in the SWIR. The Metal Velvet self-adhesive coating from Acktar was selected as it also provides low specular reflectance. This was taped onto a near-Lambertian polished Teflon plate and one out of two squares were removed after laser cutting the dark coating with an accuracy below 0.1 mm. As standard technologies such as nano-second pulsed lasers generated unwanted damages on both materials, a pulsed femto-second laser setup from Lasea with 60µm accuracy was used to manufacture the checkerboard. This pattern was monitored with an Imec Vis-NIR and a Headwall SWIR HSI pushbroom hyperspectral camera. Good contrast was obtained over the full range of both HSI systems and the estimated effective focal length for the Vis-NIR HSI was determined with computer vision to be 0.5 mm, close to the lens model at high contrast.
Ghorbani, Farzaneh; Attaran-Kakhki, Neda; Sazgarnia, Ameneh
2017-03-01
Photodynamic therapy (PDT) and photothermal therapy (PTT) are two known optical remedies of cancer. PTT can be combined with other therapies. One of the limitations of optical therapies is the penetration of light into biological tissues, which reduces its effectiveness due to usage of photosensitizers and PTT agents, which are absorbed in the NIR region that provides the maximum penetration. For instance, Indocyanine green (ICG) serves as a photosensitizer and Gold nanostructures as agents for PTT. GGS is a gold nanoshell with two absorption peaks in the NIR and visible regions. The aim of this study is to evaluate the synergistic effect of PDT and PTT in the presence of GGS conjugated with ICG. After synthesizing GGS, ICG was conjugated with GGS. The specifications and cytotoxicity of agents were identified. Cells were irradiated by an 808nm laser with or without the agents and three laser outputs were achieved, with each having four different exposure times. The viability of treated cells was determined via MTT assay. The irradiation of the laser did not produce any significant effect by itself or in the presence of GGS. The maximum cell death recorded for GGS, ICG and GGS-ICG were 15±7%, 50±3% and 31±3% respectively. ICG and GGS-ICG differs significantly for exposures higher than 2250J/cm 2 . The conjugate was provided through a simple process and a greater chemical stability compared to GGS was achieved. Moreover, it induced a stronger photodynamic and photothermal effect on the cells. This is a promising result which can help enhance the effectiveness of a minimally invasive treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong
2015-09-01
Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P < 0.001). Combination therapy showed significantly greater improvements compared to monotherapy at two follow-up visits (P < 0.05). Combination therapy is a safe and more effective strategy than IPL monotherapy for skin rejuvenation in Asian people.
Chan, Kenneth H; Fried, Daniel
2012-02-09
Lasers can ablate/remove tissue in a non-contact mode of operation and a pulsed laser beam does not interfere with the ability to image the tooth surface, therefore lasers are ideally suited for integration with imaging devices for image-guided ablation. Laser energy can be rapidly and efficiently delivered to tooth surfaces using a digitally controlled laser beam scanning system for precise and selective laser ablation with minimal loss of healthy tissues. Under the appropriate irradiation conditions such laser energy can induce beneficial chemical and morphological changes in the walls of the drilled cavity that can increase resistance to further dental decay and produce surfaces with enhanced adhesive properties to restorative materials. Previous studies have shown that images acquired using near-IR transillumination, optical coherence tomography and fluorescence can be used to guide the laser for selective removal of demineralized enamel. Recent studies have shown that NIR reflectance measurements at 1470-nm can be used to obtain images of enamel demineralization with very high contrast. The purpose of this study was to demonstrate that image guided ablation of occlusal lesions can be successfully carried out using a NIR reflectance imaging system coupled with a carbon dioxide laser operating at 9.3-μm with high pulse repetition rates.
Samadi, Akbar; Klingberg, Henrik; Jauffred, Liselotte; Kjær, Andreas; Bendix, Poul Martin; Oddershede, Lene B
2018-05-17
Absorption of near infrared (NIR) light by metallic nanoparticles can cause extreme heating and is of interest for instance in cancer treatment since NIR light has a relatively large penetration depth into biological tissue. Here, we quantify the extraordinary thermoplasmonic properties of platinum nanoparticles and demonstrate their efficiency in photothermal cancer therapy. Although platinum nanoparticles are extensively used for catalysis, they are much overlooked in a biological context. Via direct measurements based on a biological matrix we show that individual irradiated platinum nanoparticles with diameters of 50-70 nm can easily reach surface temperatures up to 900 K. In contrast to gold nanoshells, which are often used for photothermal purposes, we demonstrate that the platinum particles remain stable at these extreme temperatures. The experiments are paralleled by finite element modeling confirming the experimental results and establishing a theoretical understanding of the particles' thermoplasmonic properties. At extreme temperatures it is likely that a vapor layer will form around the plasmonic particle, and we show this scenario to be consistent with direct measurements and simulations. Viability studies demonstrate that platinum nanoparticles themselves are non-toxic at therapeutically relevant concentrations, however, upon laser irradiation we show that they efficiently kill human cancer cells. Therefore, platinum nanoparticles are highly promising candidates for thermoplasmonic applications in the life sciences, in nano-medicine, and for bio-medical engineering.
Nanoplasmonic generation of ultrashort EUV pulses
NASA Astrophysics Data System (ADS)
Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo
2012-10-01
Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.
Intraoperative near-infrared autofluorescence imaging of parathyroid glands.
Ladurner, Roland; Sommerey, Sandra; Arabi, Nora Al; Hallfeldt, Klaus K J; Stepp, Herbert; Gallwas, Julia K S
2017-08-01
To identify parathyroid glands intraoperatively by exposing their autofluorescence using near-infrared light. Fluorescence imaging was carried out during minimally invasive and open parathyroid and thyroid surgery. After identification, the parathyroid glands as well as the surrounding tissue were exposed to near-infrared (NIR) light with a wavelength of 690-770 nm using a modified Karl Storz near-infrared/indocyanine green (NIR/ICG) endoscopic system. Parathyroid tissue was expected to show near-infrared autofluorescence, captured in the blue channel of the camera. Whenever possible the visual identification of parathyroid tissue was confirmed histologically. In preliminary investigations, using the original NIR/ICG endoscopic system we noticed considerable interference of light in the blue channel overlying the autofluorescence. Therefore, we modified the light source by interposing additional filters. In a second series, we investigated 35 parathyroid glands from 25 patients. Twenty-seven glands were identified correctly based on NIR autofluorescence. Regarding the extent of autofluorescence, there were no noticeable differences between parathyroid adenomas, hyperplasia and normal parathyroid glands. In contrast, thyroid tissue, lymph nodes and adipose tissue revealed no substantial autofluorescence. Parathyroid tissue is characterized by showing autofluorescence in the near-infrared spectrum. This effect can be used to distinguish parathyroid glands from other cervical tissue entities.
Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm(3+) and Yb(3+).
Soares, M R N; Ferro, M; Costa, F M; Monteiro, T
2015-12-21
Lanthanide doped inorganic nanoparticles with upconversion luminescence are of utmost importance for biomedical applications, solid state lighting and photovoltaics. In this work we studied the downshifted luminescence, upconversion luminescence (UCL) and blackbody radiation of tetragonal yttrium stabilized zirconia co-doped with Tm(3+) and Yb(3+) single crystals and nanoparticles produced by laser floating zone and laser ablation in liquids, respectively. The photoluminescence (PL) and PL excitation (PLE) were investigated at room temperature (RT). PL spectra exhibit the characteristic lines in UV, blue/green, red and NIR regions of the Tm(3+) (4f(12)) under resonant excitation into the high energy (2S+1)LJ multiplets. Under NIR excitation (980 nm), the samples placed in air display an intense NIR at ∼800 nm due to the (1)G4→(3)H5/(3)H4→(3)H6 transitions. Additionally, red, blue/green and ultraviolet UCL is observed arising from higher excited (1)G4 and (1)D2 multiplets. The power excitation dependence of the UCL intensity indicated that 2-3 low energy absorbed photons are involved in the UCL for low power levels, while for high powers, the identified saturation is dependent on the material size with a enhanced effect on the NPs. The temperature dependence of the UCL was investigated for single crystals and targets used in the ablation. An overall increase of the integrated intensity was found to occur between 12 K and the RT. The thermally activated process is described by activation energies of 10 meV and 30 meV for single crystals and targets, respectively. For the NPs, the UCL was found to be strongly sensitive to pressure conditions. Under vacuum conditions, instead of the narrow lines of the Tm(3+), a wide blackbody radiation was detected, responsible for the change in the emission colour from blue to orange. This phenomenon is totally reversible when the NPs are placed at ambient pressure. The UCL/blackbody radiation in the nanosized material exhibits non-contact pressure colour-based sensor characteristics. Moreover, tuning the color of the blackbody radiation in the nanoparticles by harvesting the low energy photons into the visible spectral region was found to be possible by adjusting the excitation power, paving the way for further developments of these nanoparticles for lighting and photovoltaic applications.
Dong, Xinghua; Yin, Wenyan; Zhang, Xiao; Zhu, Shuang; He, Xiao; Yu, Jie; Xie, Jiani; Guo, Zhao; Yan, Liang; Liu, Xiangfeng; Wang, Qing; Gu, Zhanjun; Zhao, Yuliang
2018-01-31
Chemotherapy resistance remains a major hurdle for cancer therapy in clinic because of the poor cellular uptake and insufficient intracellular release of drugs. Herein, an intelligent, multifunctional MoS 2 nanotheranostic (MoS 2 -PEI-HA) ingeniously decorated with biodegradable hyaluronic acid (HA) assisted by polyethyleneimine (PEI) is reported to combat drug-resistant breast cancer (MCF-7-ADR) after loading with the chemotherapy drug doxorubicin (DOX). HA can not only target CD44-overexpressing MCF-7-ADR but also be degraded by hyaluronidase (HAase) that is concentrated in the tumor microenvironment, thus accelerating DOX release. Furthermore, MoS 2 with strong near-infrared (NIR) photothermal conversion ability can also promote the release of DOX in the acidic tumor environment at a mild 808 nm laser irradiation, achieving a superior antitumor activity based on the programmed response to HAase and NIR laser actuator. Most importantly, HA targeting combined with mild NIR laser stimuli, rather than using hyperthermia, can potently downregulate the expression of drug-resistance-related P-glycoprotein (P-gp), resulting in greatly enhanced intracellular drug accumulation, thus achieving drug resistance reversal. After labeled with 64 Cu by a simple chelation strategy, MoS 2 was employed for real-time positron emission tomography (PET) imaging of MCF-7-ADR tumor in vivo. This multifunctional nanoplatform paves a new avenue for PET imaging-guided spatial-temporal-controlled accurate therapy of drug-resistant cancer.
Heat generation and stability of a plasmonic nanogold system
NASA Astrophysics Data System (ADS)
Ni, Yuan; Kan, Caixia; Gao, Qi; Wei, Jingjing; Xu, Haiying; Wang, Changshun
2016-02-01
The surface plasmon resonance (SPR) of Au nanostructures can be precisely tuned in the visible to near-infrared (vis-NIR) region with the size and morphology. The photothermal effect induced by the SPR can raise the temperature of Au nanostructures and the surrounding matrix under external illumination. In this work, hollow Au nanostructures such as nanoboxes and nanorings with a tunable SPR in the region of 650-1100 nm were obtained by a replacement reaction between HAuCl4 and the as-prepared Ag nanostructures as the sacrificed templates. Compared with the solid Au nanorods, studies on the photothermal conversion and stability of hollow Au nanostructures were systematically carried out with the assistance of the near-infrared (NIR) lasers available. Under NIR laser irradiation, the temperatures of the colloidal Au nanostructures increased rapidly from ~30 °C to ~65 °C. Combining the experimental results with a finite-different time-domain (FDTD) numerical simulation, the heat generation of different Au nanostructures was investigated. With the consideration of the concentration of the Au nanostructures, it is indicated that hollow Au nanostructures are superior to solid Au nanorods in photothermal conversion. On increasing the NIR laser power (3 W), Au nanorods undergo a shape deformation from nanorods to spherical nanoparticles, while the SPR and morphology of hollow Au nanoboxes and nanorings maintain high stability, promising to be candidates for nanoheaters. This work provides a standard to design optimized plasmonic nanoheaters.
Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light
NASA Astrophysics Data System (ADS)
Rodríguez-Fernández, Jessica; Fedoruk, Michael; Hrelescu, Calin; Lutich, Andrey A.; Feldmann, Jochen
2011-06-01
We have coated gold nanorods (NRs) with thermoresponsive microgel shells based on poly(N-isopropylacrylamide) (pNIPAM). We demonstrate by simultaneous laser-heating and optical extinction measurements that the Au NR cores can be simultaneously used as fast optothermal manipulators (switchers) and sensitive optical reporters of the microgel state in a fully externally controlled and reversible manner. We support our results with optical modeling based on the boundary element method and 3D numerical analysis on the temperature distribution. Briefly, we show that due to the sharp increase in refractive index resulting from the optothermally triggered microgel collapse, the longitudinal plasmon band of the coated Au NRs is significantly red-shifted. The optothermal control over the pNIPAM shell, and thereby over the optical response of the nanocomposite, is fully reversible and can be simply controlled by switching on and off a NIR heating laser. In contrast to bulk solution heating, we demonstrate that light-triggering does not compromise colloidal stability, which is of primary importance for the ultimate utilization of these types of nanocomposites as remotely controlled optomechanical actuators, for applications spanning from drug delivery to photonic crystals and nanoscale motion.
Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan
2017-01-18
Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.
Surface plasmon resonance near-infrared spectroscopy.
Ikehata, Akifumi; Itoh, Tamitake; Ozaki, Yukihiro
2004-11-01
Near-infrared (NIR) spectroscopy is ill-suited to microanalysis because of its low absorptivity. We have developed a highly sensitive detection method for NIR spectroscopy based on absorption-sensitive surface plasmon resonance (SPR). The newly named SPR-NIR spectroscopy, which may open the way for NIR spectroscopy in microanalysis and surface science, is realized by an attachment of the Kretschmann configuration equipped with a mechanism for fine angular adjustment of incident light. The angular sweep of incident light enables us to make a tuning of a SPR peak for an absorption band of sample medium. From the dependences of wavelength, incident angle, and thickness of a gold film on the intensity of the SPR peak, it has been found that the absorbance can be enhanced by approximately 100 times compared with the absorbance obtained without the gold film under optimum conditions. This article reports the details of the experimental setup and the characteristics of absorption-sensitive SPR in the NIR region, together with some experimental results obtained by using it.
Sheng, Zonghai; Hu, Dehong; Zheng, Mingbin; Zhao, Pengfei; Liu, Huilong; Gao, Duyang; Gong, Ping; Gao, Guanhui; Zhang, Pengfei; Ma, Yifan; Cai, Lintao
2014-12-23
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.
Design of a miniature solid state NIR spectrometer
NASA Astrophysics Data System (ADS)
Zhang, Hanyi; Wang, Xiaolu L.; Soos, Jolanta I.; Crisp, Joy A.
1995-06-01
For aerospace applications a miniature, solid-state near infrared (NIR) spectrometer based on an acousto-optic tunable filter (AOTF) has been developed and built at Brimrose Corp. of America. In this spectrometer a light emitting diode (LED) array as light source, a set of optical fibers as the lightwave transmission route, and a miniature AOTF as a tunable filter were adopted. This approach makes the spectrometer very compact, light-weight, rugged and reliable, with low operating power and long lifetime.
Rapid calibrated high-resolution hyperspectral imaging using tunable laser source
NASA Astrophysics Data System (ADS)
Nguyen, Lam K.; Margalith, Eli
2009-05-01
We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.
NASA Astrophysics Data System (ADS)
Smausz, T.; Kondász, B.; Gera, T.; Ajtai, T.; Utry, N.; Pintér, M.; Kiss-Albert, G.; Budai, J.; Bozóki, Z.; Szabó, G.; Hopp, B.
2017-10-01
Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV-Vis-NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250-1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.
Autoionization following nanoplasma formation in atomic and molecular clusters
NASA Astrophysics Data System (ADS)
Schütte, Bernd; Lahl, Jan; Oelze, Tim; Krikunova, Maria; Vrakking, Marc J. J.; Rouzée, Arnaud
2016-05-01
Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in molecular oxygen and carbon dioxide clusters as well as in atomic krypton and xenon clusters ionized by intense NIR pulses, for which we find clear bound-state signatures in the electron kinetic energy spectra. By applying terahertz (THz) streaking, we show that the observed autoionization processes take place on a picosecond to nanosecond timescale after the interaction of the NIR laser pulse with the clusters. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Atmospheric effects on laser eye safety and damage to instrumentation
NASA Astrophysics Data System (ADS)
Zilberman, Arkadi; Kopeika, Natan S.
2017-10-01
Electro-optical sensors as well as unprotected human eyes are extremely sensitive to laser radiation and can be permanently damaged from direct or reflected beams. Laser detector/eye hazard depends on the interaction between the laser beam and the media in which it traverses. The environmental conditions including terrain features, atmospheric particulate and water content, and turbulence, may alter the laser's effect on the detector/eye. It is possible to estimate the performance of an electro-optical system as long as the atmospheric propagation of the laser beam can be adequately modeled. More recent experiments and modeling of atmospheric optics phenomena such as inner scale effect, aperture averaging, atmospheric attenuation in NIR-SWIR, and Cn2 modeling justify an update of previous eye/detector safety modeling. In the present work, the influence of the atmospheric channel on laser safety for personnel and instrumentation is shown on the basis of theoretical and experimental data of laser irradiance statistics for different atmospheric conditions. A method for evaluating the probability of damage and hazard distances associated with the use of laser systems in a turbulent atmosphere operating in the visible and NIR-SWIR portions of the electromagnetic spectrum is presented. It can be used as a performance prediction model for directed energy engagement of ground-based or air-based systems.
Hainfeld, James F.; O'Connor, Michael J.; Lin, Ping; Qian, Luping; Slatkin, Daniel N.; Smilowitz, Henry M.
2014-01-01
Gold nanoparticles (AuNPs) absorb light and can be used to heat and ablate tumors. The “tissue window” at ∼800 nm (near infrared, NIR) is optimal for best tissue penetration of light. Previously, large, 50–150 nm, gold nanoshells and nanorods that absorb well in the NIR have been used. Small AuNPs that may penetrate tumors better unfortunately barely absorb at 800 nm. We show that small AuNPs conjugated to anti-tumor antibodies are taken up by tumor cells that catalytically aggregate them (by enzyme degradation of antibodies and pH effects), shifting their absorption into the NIR region, thus amplifying their photonic absorption. The AuNPs are NIR transparent until they accumulate in tumor cells, thus reducing background heating in blood and non-targeted cells, increasing specificity, in contrast to constructs that are always NIR-absorptive. Treatment of human squamous cell carcinoma A431 which overexpresses epidermal growth factor receptor (EGFr) in subcutaneous murine xenografts with anti-EGFr antibodies conjugated to 15 nm AuNPs and NIR resulted in complete tumor ablation in most cases with virtually no normal tissue damage. The use of targeted small AuNPs therefore provides a potent new method of selective NIR tumor therapy. PMID:24520385
Lee, Min-Jeong; Seo, Da-Young; Lee, Hea-Eun; Wang, In-Chun; Kim, Woo-Sik; Jeong, Myung-Yung; Choi, Guang J
2011-01-17
Along with the risk-based approach, process analytical technology (PAT) has emerged as one of the key elements to fully implement QbD (quality-by-design). Near-infrared (NIR) spectroscopy has been extensively applied as an in-line/on-line analytical tool in biomedical and chemical industries. In this study, the film thickness on pharmaceutical pellets was examined for quantification using in-line NIR spectroscopy during a fluid-bed coating process. A precise monitoring of coating thickness and its prediction with a suitable control strategy is crucial to the quality assurance of solid dosage forms including dissolution characteristics. Pellets of a test formulation were manufactured and coated in a fluid-bed by spraying a hydroxypropyl methylcellulose (HPMC) coating solution. NIR spectra were acquired via a fiber-optic probe during the coating process, followed by multivariate analysis utilizing partial least squares (PLS) calibration models. The actual coating thickness of pellets was measured by two separate methods, confocal laser scanning microscopy (CLSM) and laser diffraction particle size analysis (LD-PSA). Both characterization methods gave superb correlation results, and all determination coefficient (R(2)) values exceeded 0.995. In addition, a prediction coating experiment for 70min demonstrated that the end-point can be accurately designated via NIR in-line monitoring with appropriate calibration models. In conclusion, our approach combining in-line NIR monitoring with CLSM and LD-PSA can be applied as an effective PAT tool for fluid-bed pellet coating processes. Copyright © 2010 Elsevier B.V. All rights reserved.
Kang, Heemin; Zhang, Kunyu; Wong, Dexter Siu Hong; Han, Fengxuan; Li, Bin; Bian, Liming
2018-04-21
Macrophages are multifunctional immune cells with diverse physiological functions such as fighting against infection, influencing progression of pathologies, maintaining homeostasis, and regenerating tissues. Macrophages can be induced to adopt distinct polarized phenotypes, such as classically activated pro-inflammatory (M1) phenotypes or alternatively activated anti-inflammatory and pro-healing (M2), to execute diverse and dynamic immune functions. However, unbalanced polarizations of macrophage can lead to various pathologies, such as atherosclerosis, obesity, tumor, and asthma. Thus, the capability to remotely control macrophage phenotypes is important to the success of treating many pathological conditions involving macrophages. In this study, we developed an upconversion nanoparticle (UCNP)-based photoresponsive nanocarrier for near-infrared (NIR) light-mediated control of intracellular calcium levels to regulate macrophage polarization. UCNP was coated with mesoporous silica (UCNP@mSiO 2 ), into which loaded calcium regulators that can either supply or deplete calcium ions. UCNP@mSiO 2 was chemically modified through serial coupling of photocleavable linker and Arg-Gly-Asp (RGD) peptide-bearing molecular cap via cyclodextrin-adamantine host-guest complexation. The RGD-bearing cap functioned as the photolabile gating structure to control the release of calcium regulators and facilitated the cellular uptake of UCNP@mSiO 2 nanocarrier. The upconverted UV light emission from the UCNP@mSiO 2 under NIR light excitation triggered the cleavage of cap and intracellular release of calcium regulators, thereby allowing temporal regulation on the intracellular calcium levels. Application of NIR light through skin tissue promoted M1 or M2 polarization of macrophages, by elevating or depleting intracellular calcium levels, respectively. To the best of our knowledge, this is the first demonstration of NIR light-mediated remote control on macrophage polarization. This photoresponsive nanocarrier offers the potential to remotely manipulate in vivo immune functions, such as inflammation or tissue regeneration, via NIR light-controlled macrophage polarization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gao, Wen; Li, Shuangshuang; Liu, Zhenhua; Sun, Yuhui; Cao, Wenhua; Tong, Lili; Cui, Guanwei; Tang, Bo
2017-09-01
Attacking the supportive vasculature network of a tumor offers an important new avenue for cancer therapy. Herein, a near-infrared (NIR) laser-activated "nanobomb" was developed as a noninvasive and targeted physical therapeutic strategy to effectively disrupt tumor neovasculature in an accurate and expeditious manner. This "nanobomb" was rationally fabricated via the encapsulation of vinyl azide (VA) into c(RGDfE) peptide-functionalized, hollow copper sulfide (HCuS) nanoparticles. The resulting RGD@HCuS(VA) was selectively internalized into integrin α v β 3 -expressing tumor vasculature endothelial cells and dramatically increased the photoacoustic signals from the tumor neovasculature, achieving a maximum signal-to-noise ratio at 4 h post-injection. Upon NIR irradiation, the local temperature increase triggered VA to release N 2 bubbles rapidly. Subsequently, these N 2 bubbles could instantly explode to destroy the neovasculature and further induce necrosis of the surrounding tumor cells. A single-dose injection of RGD@HCuS(VA) led to complete tumor regression after laser irradiation, with no tumor regrowth for 30 days. More importantly, high-resolution photoacoustic angiography, combined with excellent biodegradability, facilitated the precise destruction of tumor neovasculature by RGD@HCuS(VA) without damaging normal tissues. These results demonstrate the great potential of this "nanobomb" for clinical translation to treat cancer patients with NIR laser-accessible orthotopic tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao
2015-09-24
Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL 'opens' to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.
NASA Astrophysics Data System (ADS)
Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao
2015-09-01
Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL ‘opens’ to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence
2014-05-01
Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibersmore » leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.« less
Estimating Leaf Water Status from Vis-Nir Reflectance and Transmittance
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2017-01-01
Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Established approaches involve measurements in the thermal infrared and the 900-2000nm reflective infrared. Less popular UV-visible-NIR techniques presumably deserve research attention, because photochemical changes linked to plant water status manifest spectral light scattering and absorption changes. Here we monitored the visible and NIR light reflected from the leaf interior as well as the leaf transmittance as the relative water content of corn (Zeamays L.) leaves decreased. Our results highlight the importance of both scattering effects and effects due to absorption by leaf pigments.
Recent Advances of Light-Mediated Theranostics
Ai, Xiangzhao; Mu, Jing; Xing, Bengang
2016-01-01
Currently, precision theranostics have been extensively demanded for the effective treatment of various human diseases. Currently, efficient therapy at the targeted disease areas still remains challenging since most available drug molecules lack of selectivity to the pathological sites. Among different approaches, light-mediated therapeutic strategy has recently emerged as a promising and powerful tool to precisely control the activation of therapeutic reagents and imaging probes in vitro and in vivo, mostly attributed to its unique properties including minimally invasive capability and highly spatiotemporal resolution. Although it has achieved initial success, the conventional strategies for light-mediated theranostics are mostly based on the light with short wavelength (e.g., UV or visible light), which may usually suffer from several undesired drawbacks, such as limited tissue penetration depth, unavoidable light absorption/scattering and potential phototoxicity to healthy tissues, etc. Therefore, a near-infrared (NIR) light-mediated approach on the basis of long-wavelength light (700-1000 nm) irradiation, which displays deep-tissue penetration, minimized photo-damage and low autofluoresence in living systems, has been proposed as an inspiring alternative for precisely phototherapeutic applications in the last decades. Despite numerous NIR light-responsive molecules have been currently proposed for clinical applications, several inherent drawbacks, such as troublesome synthetic procedures, low water solubility and limited accumulation abilities in targeted areas, heavily restrict their applications in deep-tissue therapeutic and imaging studies. Thanks to the amazing properties of several nanomaterials with large extinction coefficient in the NIR region, the construction of NIR light responsive nanoplatforms with multifunctions have become promising approaches for deep-seated diseases diagnosis and therapy. In this review, we summarized various light-triggered theranostic strategies and introduced their great advances in biomedical applications in recent years. Moreover, some other promising light-assisted techniques, such as photoacoustic and Cerenkov radiation, were also systemically discussed. Finally, the potential challenges and future perspectives for light-mediated deep-tissue diagnosis and therapeutics were proposed. PMID:27877246
Sen, Anish N; Gopinath, Shankar P; Robertson, Claudia S
2016-07-01
Near-infrared spectroscopy (NIRS) is a technique by which the interaction between light in the near-infrared spectrum and matter can be quantitatively measured to provide information about the particular chromophore. Study into the clinical application of NIRS for traumatic brain injury (TBI) began in the 1990s with early reports of the ability to detect intracranial hematomas using NIRS. We highlight the advances in clinical applications of NIRS over the past two decades as they relate to TBI. We discuss recent studies evaluating NIRS techniques for intracranial hematoma detection, followed by the clinical application of NIRS in intracranial pressure and brain oxygenation measurement, and conclude with a summary of potential future uses of NIRS in TBI patient management.
Smart filters: from VIS/NIR to MW/LWIR protection
NASA Astrophysics Data System (ADS)
Donval, Ariela; Fisher, Tali; Lipman, Ofir; Oron, Moshe
2014-06-01
New development of imaging systems implies the use of multi band wavelength, VIS and IR, for imaging enhancement and more data presenting. Some of those systems, such as
NASA Astrophysics Data System (ADS)
Simon, Jacob C.; Curtis, Donald A.; Darling, Cynthia L.; Fried, Daniel
2018-02-01
In vivo and in vitro studies have demonstrated that near-infrared (NIR) light at λ=1300-1700-nm can be used to acquire high contrast images of enamel demineralization without interference of stains. The objective of this study was to determine if a relationship exists between the NIR image contrast of occlusal lesions and the depth of the lesion. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system which captures λ=1300-nm occlusal transillumination, and λ=1500-1700-nm cross-polarized reflectance images. Image analysis software was used to calculate the lesion contrast detected in both images from matched positions of each imaging modality. Samples were serially sectioned across the lesion with a precision saw, and polarized light microscopy was used to measure the respective lesion depth relative to the dentinoenamel junction. Lesion contrast measured from NIR crosspolarized reflectance images positively correlated (p<0.05) with increasing lesion depth and a statistically significant difference between inner enamel and dentin lesions was observed. The lateral width of pit and fissures lesions measured in both NIR cross-polarized reflectance and NIR transillumination positively correlated with lesion depth.
NASA Astrophysics Data System (ADS)
Wierzbicki, Damian; Fryskowska, Anna; Kedzierski, Michal; Wojtkowska, Michalina; Delis, Paulina
2018-01-01
Unmanned aerial vehicles are suited to various photogrammetry and remote sensing missions. Such platforms are equipped with various optoelectronic sensors imaging in the visible and infrared spectral ranges and also thermal sensors. Nowadays, near-infrared (NIR) images acquired from low altitudes are often used for producing orthophoto maps for precision agriculture among other things. One major problem results from the application of low-cost custom and compact NIR cameras with wide-angle lenses introducing vignetting. In numerous cases, such cameras acquire low radiometric quality images depending on the lighting conditions. The paper presents a method of radiometric quality assessment of low-altitude NIR imagery data from a custom sensor. The method utilizes statistical analysis of NIR images. The data used for the analyses were acquired from various altitudes in various weather and lighting conditions. An objective NIR imagery quality index was determined as a result of the research. The results obtained using this index enabled the classification of images into three categories: good, medium, and low radiometric quality. The classification makes it possible to determine the a priori error of the acquired images and assess whether a rerun of the photogrammetric flight is necessary.
Li, Qingpo; Li, Wei; Di, Haixiao; Luo, Lihua; Zhu, Chunqi; Yang, Jie; Yin, Xiaoyi; Yin, Hang; Gao, Jianqing; Du, Yongzhong; You, Jian
2018-05-10
The targeted drug delivery with the help of nanocarriers and the controlled drug release at the lesion sites are the most effective ways to enhance therapeutic efficacy and reduce side effects. Here, we built a light sensitive liposome (Her2-I&D-LSL) which was formed by a special phospholipid (PLsPC) and a hydrophobically modified photosensitizer (ICG-ODA). DOX was employed as the therapeutic drug, encapsulating in the internal phase of the liposome whose surface was modified by Her2 antibodies for recognizing tumor cells with high Her2 receptor expression. Mediated by NIR light, Her2-I&D-LSL was proved to generate sufficient ROS to realize PDT, which then triggered the release of DOX for combined chemotherapy. The ROS generation and DOX release were verified to be strictly controlled by NIR light and the proportion of ICG-ODA. Thanks to the mediation of Her2 receptor, the specific DOX release and the combination of PDT-chemotherapy triggered by NIR light, Her2-I&D-LSL showed a significant accumulation in MCF7 and SKOV3 tumors, thus leading to the strongest tumor growth inhibition effect compared to PDT alone (I-LSL) or chemotherapy alone (D-LSL). Her2-I&D-LSL also possessed a great biocompatibility due to the targeted treatment, holding promise for future cancer therapy in clinic. Copyright © 2018 Elsevier B.V. All rights reserved.
Ultrafast dynamics in co-sensitized photocatalysts under visible and NIR light irradiation.
Patwari, Jayita; Chatterjee, Arka; Sardar, Samim; Lemmens, Peter; Pal, Samir Kumar
2018-04-18
Co-sensitization to achieve a broad absorption window is a widely accepted technique in light harvesting nanohybrid synthesis. Protoporphyrin (PPIX) and squaraine (SQ2) are two organic sensitizers absorbing in the visible and NIR wavelength regions of the solar spectrum, respectively. In the present study, we have sensitized zinc oxide (ZnO) nanoparticles using PPIX and SQ2 simultaneously for their potential use in broad-band solar light harvesting in photocatalysis. Förster resonance energy transfer (FRET) from PPIX to SQ2 in close proximity to the ZnO surface has been found to enhance visible light photocatalysis. In order to confirm the effect of intermolecular FRET in photocatalysis, the excited state lifetime of the energy donor dye PPIX has been modulated by inserting d10 (ZnII) and d7 (CoII) metal ions in the central position of the dye (PP(Zn) and PP(Co)). In the case of PP(Co)-SQ2, extensive photo-induced ligand to metal charge transfer counteracts the FRET efficiency while efficient FRET has been observed for the PP(Zn)-SQ2 pair. This observation has been justified by the comparison of the visible light photocatalysis of the respective nanohybrids with several control studies. We have also investigated the NIR photocatalysis of the co-sensitized nanohybrids which reveals that reduced aggregation of SQ2 due to co-sensitization of PPIX increases the NIR photocatalysis. However, core-metalation of PPIX reduces the NIR photocatalytic efficacy, most probably due to excited state charge transfer from SQ2 to the metal centre of PP(Co)/PP(Zn) through the conduction band of the host ZnO nanoparticles.
Metz, A J; Klein, S D; Scholkmann, F; Wolf, U
2017-01-01
We are increasingly exposed to colored light, but its impact on human physiology is not yet extensively investigated. In the present study we aimed to determine the effects of colored light on human cerebral Mayer wave activity (MWA). We measured oxy- ([O 2 Hb]), deoxy- ([HHb]), total hemoglobin ([tHb]) concentrations and tissue oxygen saturation (StO 2 ) by functional near-infrared spectroscopy (fNIRS) in the left and right pre-frontal cortex (L-PFC, R-PFC) of 17 subjects (median age: 29 years, 6 women). In a randomized crossover design subjects were exposed to blue, red, green, and yellow LED light for 10 min. Pre-light (8 min, baseline) and post-light (15 min, recovery) conditions were darkness. MWA was calculated from band-pass filtered fNIRS signals (~0.08-0.12 Hz). The medians from the last 3 min of each period (baseline, light exposure, recovery) were statistically analyzed. MWA was increased during red and green light vs. baseline and after blue light exposure in recovery in the L-PFC. MWA differed depending on the chosen frequency range, filter design, and type of signals to analyze (raw intensity, hemoglobin signal from multi-distance method or modified Beer-Lambert law, or within hemoglobin signals).
700 W blue fiber-coupled diode-laser emitting at 450 nm
NASA Astrophysics Data System (ADS)
Balck, A.; Baumann, M.; Malchus, J.; Chacko, R. V.; Marfels, S.; Witte, U.; Dinakaran, D.; Ocylok, S.; Weinbach, M.; Bachert, C.; Kösters, A.; Krause, V.; König, H.; Lell, A.; Stojetz, B.; Löffler, A.; Strauss, U.
2018-02-01
A high-power blue laser source was long-awaited for processing materials with low absorption in the near infrared (NIR) spectral range like copper or gold. Due to the huge progress of GaN-based semiconductors, the performance of blue diode-lasers has made a major step forward recently. With the availability of unprecedented power levels at cw-operating blue diode-lasers emitting at 450 nm, it was possible to set up a high-power diode-laser in the blue spectral range to address these conventional laser applications and probably beyond that to establish completely new utilizations for lasers. Within the scope of the research project "BlauLas", funded within the German photonic initiative "EFFILAS" [8] by the German Federal Ministry of Education and Research (BMBF), Laserline in cooperation with OSRAM aims to realize a cw fiber-coupled diode-laser exceeding 1 kW blue laser power. In this paper the conceptual design and experimental results of a 700 W blue fiber-coupled diode-laser are presented. Initially a close look had to be taken on the mounting techniques of the semiconductors to serve the requirements of the GaN laser diodes. Early samples were used for extensive long term tests to investigate degradation processes. With first functional laser-modules we set up fiber-coupled laser-systems for further testing. Besides adaption of well-known optical concepts a main task within the development of the laser system was the selection and examination of suitable materials and assembling in order to minimize degradation and reach adequate lifetimes. We realized R&D blue lasersystems with lifetimes above 5,000 h, which enable first application experiments on processing of various materials as well as experiments on conversion to white-light.
Laser-Induced Breakdown Spectroscopy: Capabilities and Applications
2010-07-01
substances such as drugs, counterfeit goods, and laundered money . It may even be possible to pinpoint specific manufacturing facilities based on...point detection or standoff mode operation. LIBS used in conjunction with broadband detectors (ultraviolet [ UV ]-visible[VIS]-near-infrared[NIR] spectral...lines in the UV -VIS-NIR spectral range. Although most early LIBS applications involved metal targets, LIBS has recently been applied to a variety
Optical and Near-Infrared Structural Properties of Cluster Galaxies at z ~ 0.3
NASA Astrophysics Data System (ADS)
La Barbera, F.; Busarello, G.; Merluzzi, P.; Massarotti, M.; Capaccioli, M.
2002-06-01
Structural parameters (half-light radius re, mean effective surface brightness <μ>e, and Sersic index n, parameterizing the light profile shape) are derived for a sample of galaxies in the rich cluster AC 118 at z=0.31, so far the largest (N=93) sample of galaxies at intermediate redshift with structural parameters measured in the near-infrared. The parameters are obtained in two optical wavebands (V and R) and in the K band, corresponding approximately to the B, V, and H rest frame. The distributions of re at z=0.31 match those for the Coma Cluster (i.e., for the local universe) both in the optical and in the NIR. The K-band distribution is of particular interest, since the NIR light mimics the mass distribution of galaxies. The similarity of the distributions for the two clusters (AC 118 and Coma) proves that the galaxies at the bright end of the luminosity function did not significantly change their sizes since z~0.3 to the present epoch. The ratio of the optical to the NIR half-light radius shows a marked trend with the shape of the light profile (Sersic index n). In galaxies with n>~4 (typical bright ellipticals) re,NIR~0.6re,opt, while the average ratio is 0.8 for galaxies with lower n (typical disk systems). Moreover, the NIR Sersic index is systematically larger than in the optical for n<~4. These results, translated into optical and optical-NIR color gradients, imply that the optical color gradients at z~0.3 are similar to those of nearby galaxies. The optical-NIR color gradients are in the average larger, ranging from -0.73 mag dex-1 for n<~4 to -0.35 mag dex-1 for n>~4. Models with ``pure age'' or ``pure metallicity'' gradients are unable to reconcile our color gradients estimates with observations at z~0, but we argue that the combined effects of age and metallicity might explain consistently the observed data: passive evolution (plus the possible effect of dust absorption) may account for the differences between the optical and NIR structural properties. The lack of any major change in re,NIR since z~0.3 suggests that merging involving bright galaxies did not play a significant role in the last ~4.4 Gyr (ΩM=0.3, ΩΛ=0, H0=50 km s-1 Mpc-1). The results of the present paper will be applied to the study of the scaling laws in subsequent works. Based on observations collected at European Southern Observatory (ESO 62.O-0369, 63.O-0257, 64.O-0236) and on data from the STScI Science Archive.
Vankayala, Raviraj; Lin, Chun-Chih; Kalluru, Poliraju; Chiang, Chi-Shiun; Hwang, Kuo Chu
2014-07-01
Previously, gold nanoshells were shown to be able to effectively convert photon energy to heat, leading to hyperthermia and suppression of tumor growths in mice. Herein, we show that in addition to the nanomaterial-mediated photothermal effects (NmPTT), gold nanoshells (including, nanocages, nanorod-in-shell and nanoparticle-in-shell) not only are able to absorb NIR light, but can also emit fluorescence, sensitize formation of singlet oxygen and exert nanomaterial-mediated photodynamic therapeutic (NmPDT) complete destruction of solid tumors in mice. The modes of NmPDT and NmPTT can be controlled and switched from one to the other by changing the excitation wavelength. In the in vitro experiments, gold nanocages and nanorod-in-shell show larger percentage of cellular deaths originating from NmPDT along with the minor fraction of NmPTT effects. In contrast, nanoparticle-in-shell exhibits larger fraction of NmPTT-induced cellular deaths together with minor fraction of NmPDT-induced apoptosis. Fluorescence emission spectra and DPBF quenching studies confirm the generation of singlet O2 upon NIR photoirradiation. Both NmPDT and NmPTT effects were confirmed by measurements of reactive oxygen species (ROS) and subsequent sodium azide quenching, heat shock protein expression (HSP 70), singlet oxygen sensor green (SOSG) sensing, changes in mitochondria membrane potential and apoptosis in the cellular experiments. In vivo experiments further demonstrate that upon irradiation at 980 nm under ultra-low doses (∼150 mW/cm(2)), gold nanocages mostly exert NmPDT effect to effectively suppress the B16F0 melanoma tumor growth. The combination of NmPDT and NmPTT effects on destruction of solid tumors is far better than pure NmPTT effect by 808 nm irradiation and also doxorubicin. Overall, our study demonstrates that gold nanoshells can serve as excellent multi-functional theranostic agents (fluorescence imaging + NmPDT + NmPTT) upon single photon NIR light excitation under ultra-low laser doses. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, C. O.; Rubinov, P.; Tilly, E.
After a short review of previous attempts to observe and measure the near-infrared scintillation in liquid argon, we present new results obtained with NIR, a dedicated cryostat at the Fermilab Proton Assembly Building (PAB). The new results give confidence that the near-infrared light can be used as the much needed light signal in large liquid argon time projection chambers.11 pages,
NASA Astrophysics Data System (ADS)
Mao, Yamin; Wang, Kun; He, Kunshan; Ye, Jinzuo; Yang, Fan; Zhou, Jian; Li, Hao; Chen, Xiuyuan; Wang, Jun; Chi, Chongwei; Tian, Jie
2017-06-01
In minimally invasive surgery, the white-light thoracoscope as a standard imaging tool is facing challenges of the low contrast between important anatomical or pathological regions and surrounding tissues. Recently, the near-infrared (NIR) fluorescence imaging shows superior advantages over the conventional white-light observation, which inspires researchers to develop imaging systems to improve overall outcomes of endoscopic imaging. We developed an NIR and white-light dual-channel thoracoscope system, which achieved high-fluorescent signal acquisition efficiency and the simultaneously optimal visualization of the NIR and color dual-channel signals. The system was designed to have fast and accurate image registration and high signal-to-background ratio by optimizing both software algorithms and optical hardware components for better performance in the NIR spectrum band. The system evaluation demonstrated that the minimally detectable concentration of indocyanine green (ICG) was 0.01 μM, and the spatial resolution was 35 μm. The in vivo feasibility of our system was verified by the preclinical experiments using six porcine models with the intravenous injection of ICG. Furthermore, the system was successfully applied for guiding the minimally invasive segmentectomy in three lung cancer patients, which revealed that our system held great promise for the clinical translation in lung cancer surgeries.
Ripoll, G; Lobón, S; Joy, M
2018-09-01
Measurement of thiobarbituric acid reactive substances (TBARS) is a well-established method for determine lipid oxidation in meat. This assay, however, is time-consuming and generates undesired chemical waste. Dam's milk is the principal source of vitamins and provitamins that delay lipid oxidation of light lamb meat; these compounds are stored in the lamb's muscle tissue. Hence, lamb meat could be used to determine the origin of the dam's diet. The aim of this study is to evaluate Near-infrared reflectance spectroscopy (NIRS) as a tool for determining the lipid peroxidation of light lamb meat and differentiate the meat of light lambs according the diet of their dams during lactation (grazing alfalfa, lucerne, or fed a total mixed ration). NIRS using select wavelengths was able to detect the lipid oxidation of meat (TBARS method). NIRS can detect analytes at concentrations of parts per million. Moreover, the feed diets were discriminated successfully. Copyright © 2018 Elsevier Ltd. All rights reserved.
Far red/near infrared light-induced cardioprotection under normal and diabetic conditions
NASA Astrophysics Data System (ADS)
Keszler, Agnes; Baumgardt, Shelley; Hwe, Christopher; Bienengraeber, Martin
2015-03-01
Far red/near infrared light (NIR) is beneficial against cardiac ischemia and reperfusion injury (I/R), although the exact underlying mechanism is unknown. Previously we established that NIR enhanced the cardioprotective effect of nitrite in the rabbit heart. Furthermore, we observed that the nitrosyl myoglobin (MbNO) level in ischemic tissue decreased upon irradiation of the heart. Our hypothesis was that protection against I/R is dependent on nitric oxide (NO)-release from heme-proteins, and remains present during diabetes. When mice were subjected to I/R NIR (660 nm) applied during the beginning of reperfusion reduced infarct size dose dependently compared to untreated animals. Similarly, the isolated (Langendorff) heart model resulted in sustained left ventricular diastolic pressure after I/R in NIR-treated hearts. NIRinduced protection was preserved in a diabetic mouse model (db/db) and during acute hyperglycemia. NIR liberated NO from nitrosyl hemoglobin (HbNO) and MbNO as well as from HbNO isolated from the blood of diabetic animals. In the Langendorff model, after application of the nitrosylated form of a hemoglobin-based oxygen carrier as an NO donor NIR induced an increase in NADH level, suggesting a mild inhibition of mitochondrial respiration by NO during reperfusion. Taken together, NIR applied during reperfusion protects the myocardium against I/R in a NO-dependent and mitochondrion-targeted manner. This unique mechanism is conserved under diabetic conditions where other protective strategies fail.
NASA Astrophysics Data System (ADS)
Bicanic, D.; Streza, M.; Dóka, O.; Valinger, D.; Luterotti, S.; Ajtony, Zs.; Kurtanjek, Z.; Dadarlat, D.
2015-09-01
Carotenes found in a diversity of fruits and vegetables are among important natural antioxidants. In a study described in this paper, the total carotenoid content (TCC) in seven different products derived from thermally processed tomatoes was determined using laser photoacoustic spectroscopy (LPAS), infrared lock-in thermography (IRLIT), and near-infrared spectroscopy (NIRS) combined with chemometrics. Results were verified versus data obtained by traditional VIS spectrophotometry (SP) that served as a reference technique. Unlike SP, the IRLIT, NIRS, and LPAS require a minimum of sample preparation which enables practically direct quantification of the TCC.
Funane, Tsukasa; Sato, Hiroki; Yahata, Noriaki; Takizawa, Ryu; Nishimura, Yukika; Kinoshita, Akihide; Katura, Takusige; Atsumori, Hirokazu; Fukuda, Masato; Kasai, Kiyoto; Koizumi, Hideaki; Kiguchi, Masashi
2015-01-01
Abstract. It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance (signal depth×Hb kind×task) indicated that the main effect of fNIRS signal depth on the correlation is significant [F(1,1286)=5.34, p<0.05]. This result indicates that the MD-ICA method successfully separates fNIRS signals into spatially deep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method. PMID:26157983
NASA Astrophysics Data System (ADS)
Gao, Shengkui; Mondal, Suman B.; Zhu, Nan; Liang, RongGuang; Achilefu, Samuel; Gruev, Viktor
2015-01-01
Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use.
Upconverting fluorescent nanoparticles for biodetection and photoactivation
NASA Astrophysics Data System (ADS)
Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong
2013-03-01
Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.
NASA Astrophysics Data System (ADS)
Lu, Mindan; Kang, Ning; Chen, Chuan; Yang, Liuqing; Li, Yang; Hong, Minghui; Luo, Xiangang; Ren, Lei; Wang, Xiumin
2017-11-01
Near-infrared (NIR) triggered cyanine dyes have attracted considerable attention in multimodal tumor theranostics. However, NIR cyanine dyes used in tumor treatment often suffer from low fluorescence intensity and weak singlet oxygen generation efficiency, resulting in inadequate diagnostic and therapy efficacy for tumors. It is still a great challenge to improve both the photodynamic therapy (PDT) and fluorescent imaging (FLI) efficacy of cyanine dyes in tumor applications. Herein, a novel multifunctional nanoagent AuNRs@SiO2-IR795 was developed to realize the integrated photothermal/photodynamic therapy (PTT/PDT) and FLI at a very low dosage of IR795 (0.4 μM) based on metal-enhanced fluorescence (MEF) effects. In our design, both the fluorescence intensity and reactive oxygen species of AuNRs@SiO2-IR795 nanocomposites were significantly enhanced up to 51.7 and 6.3 folds compared with free IR795, owing to the localized surface plasmon resonance band of AuNRs overlapping with the absorption or fluorescence emission band of the IR795 dye. Under NIR laser irradiation, the cancer cell inhibition efficiency in vitro with synergetic PDT/PTT was up to 82.3%, compared with 10.3% for free IR795. Moreover, the enhanced fluorescence intensity of our designed nanocomposites was helpful to track their behavior in tumor cells. Therefore, our designed nanoagents highlight the applications of multimodal diagnostics and therapy in tumors based on MEF.
Type II Supernova Light Curves and Spectra from the CfA
NASA Astrophysics Data System (ADS)
Hicken, Malcolm; Friedman, Andrew S.; Blondin, Stephane; Challis, Peter; Berlind, Perry; Calkins, Mike; Esquerdo, Gil; Matheson, Thomas; Modjaz, Maryam; Rest, Armin; Kirshner, Robert P.
2017-11-01
We present multiband photometry of 60 spectroscopically confirmed supernovae (SNe): 39 SNe II/IIP, 19 IIn, 1 IIb, and 1 that was originally classified as a IIn but later as a Ibn. Of these, 46 have only optical photometry, 6 have only near-infrared (NIR) photometry, and 8 have both optical and NIR. The median redshift of the sample is 0.016. We also present 195 optical spectra for 48 of the 60 SN. There are 26 optical and 2 NIR light curves of SNe II/IIP with redshifts z> 0.01, some of which may give rise to useful distances for cosmological applications. All photometry was obtained between 2000 and 2011 at the Fred Lawrence Whipple Observatory (FLWO), via the 1.2 m and 1.3 m PAIRITEL telescopes for the optical and NIR, respectively. Each SN was observed in a subset of the u\\prime {UBVRIr}\\prime I\\prime {{JHK}}s bands. There are a total of 2932 optical and 816 NIR light curve points. Optical spectra were obtained using the FLWO 1.5 m Tillinghast telescope with the FAST spectrograph and the MMT Telescope with the Blue Channel Spectrograph. Our photometry is in reasonable agreement with select samples from the literature: two-thirds of our star sequences have average V offsets within ±0.02 mag and roughly three-quarters of our light curves have average differences within ±0.04 mag. The data from this work and the literature will provide insight into SN II explosions, help with developing methods for photometric SN classification, and contribute to their use as cosmological distance indicators.
NASA Astrophysics Data System (ADS)
Henderson, Eric R.; DSouza, Alisha V.; Paulsen, Keith D.; Pogue, Brian W.
2017-02-01
Sarcomas are cancers of the bones, muscles, nerves, and fat that require complete surgical removal for cure. The primary surgical goal therefore is to remove the tumor with a zone of normal, non-cancerous tissue surrounding the tumor, considered a `negative' surgical margin. At present, surgeons rely on radiologic imaging and visual and tactile clues to gauge cancer depth and guide surgical excision. This can result in removal of too much or too little tissue, which can lead to unnecessary removal of vital structures or incomplete cancer removal, respectively. Both results can have negative effects on ultimate patient outcome, with positive margins reported in 23% of sarcoma surgeries. Near-infrared (NIR) fluorescence probes are molecules that when stimulated with specific, known frequencies of near-infrared light will emit light of another distinct frequency. NIR light penetrates human tissue reasonably well and therefore can be used to detect the presence and location of unseen structures labeled with NIR fluorescence probes through several centimeters of tissue. Intra-operative near-infrared (NIR) fluorescence probes have been effective for this purpose in brain tumor surgery and may be applicable to sarcoma surgery. Foundational research is needed to explore the potential of this affibody probe and perfusion probes to estimate margin thickness in sarcoma surgery. In this study we will determine if sarcoma labeling using NIR fluorescence probes is superior with perfusion probes or a novel affibody probe. We will also determine whether NIR fluorescence using perfusion probes or a novel affibody probe can be correlated accurately to margin thickness.
Bai, Gongxun; Yuan, Shuoguo; Zhao, Yuda; Yang, Zhibin; Choi, Sin Yuk; Chai, Yang; Yu, Siu Fung; Lau, Shu Ping; Hao, Jianhua
2016-09-01
A 2D system of Er-doped MoS2 layered nanosheets is developed. Structural studies indicate that the Er atoms can be substitutionally introduced into MoS2 to form stable doping. Density functional theory calculation implies that the system remains stable. Both NIR-to-NIR up-conversion and down-conversion light-emissions are observed in 2D transition metal dichalcogenides, ascribed to the energy transition from Er(3+) dopants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ankersmit, Marjolein; van Dam, Dieuwertje A.; van Rijswijk, Anne-Sophie; van den Heuvel, Baukje; Tuynman, Jurriaan B.; Meijerink, Wilhelmus J. H. J.
2017-01-01
Background. Although rare, injury to the common bile duct (CBD) during laparoscopic cholecystectomy (LC) can be reduced by better intraoperative visualization of the cystic duct (CD) and CBD. The aim of this study was to establish the efficacy of early visualization of the CD and the added value of CBD identification, using near-infrared (NIR) light and the fluorescent agent indocyanine green (ICG), in patients at increased risk of bile duct injury. Materials and Methods. Patients diagnosed with complicated cholecystitis and scheduled for LC were included. The CBD and CD were visualized with NIR light before and during dissection of the liver hilus and at critical view of safety (CVS). Results. Of the 20 patients originally included, 2 were later excluded due to conversion. In 6 of 18 patients, the CD was visualized early during dissection and prior to imaging with conventional white light. The CBD was additionally visualized with ICG-NIR in 7 of 18 patients. In 1 patient, conversion was prevented due to detection of the CD and CBD with ICG-NIR. Conclusions. Early visualization of the CD or additional identification of the CBD using ICG-NIR in patients with complicated cholecystolithiasis can be helpful in preventing CBD injury. Future studies should attempt to establish the optimal dosage and time frame for ICG administration and bile duct visualization with respect to different gallbladder pathologies. PMID:28178882
NASA Astrophysics Data System (ADS)
Ingle, Ninad; Gu, Ling; Mohanty, Samarendra K.
2011-03-01
Here, we report in situ formation of microstructures from the regular constituents of culture media near live cells using spatially-structured near infrared (NIR) laser beam. Irradiation with the continuous wave (cw) NIR laser microbeam for few seconds onto the regular cell culture media containing fetal bovine serum resulted in accumulation of dense material inside the media as evidenced by phase contrast microscopy. The time to form the phase dense material was found to depend on the laser beam power. Switching off the laser beam led to diffusion of phase dark material. However, the proteins could be stitched together by use of carbon nanoparticles and continuous wave (cw) Ti: Sapphire laser beam. Further, by use of spatially-structured beam profiles different structures near live cells could be formed. The microfabricated structure could be held by the Gravito-optical trap and repositioned by movement of the sample stage. Orientation of these microstructures was achieved by rotating the elliptical laser beam profile. Thus, multiple microstructures were formed and organized near live cells. This method would enable study of response of cells/axons to the immediate physical hindrance provided by such structure formation and also eliminate the biocompatibility requirement posed on artificial microstructure materials.
Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy
Feng, Wei; Chen, Liang; Qin, Ming; Zhou, Xiaojun; Zhang, Qianqian; Miao, Yingke; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong
2015-01-01
Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy. PMID:26632249
Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy
NASA Astrophysics Data System (ADS)
Feng, Wei; Chen, Liang; Qin, Ming; Zhou, Xiaojun; Zhang, Qianqian; Miao, Yingke; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong
2015-12-01
Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy.
NASA Astrophysics Data System (ADS)
Yuan, Youyong; Wang, Zuyong; Cai, Pingqiang; Liu, Jie; Liao, Lun-De; Hong, Minghui; Chen, Xiaodong; Thakor, Nitish; Liu, Bin
2015-02-01
The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin αvβ3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 μg mL-1, while the IC50 for chemotherapy and photothermal therapy alone is 147.8 μg mL-1 and 36.2 μg mL-1, respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy.
Moro, Cécile; El Massri, Nabil; Darlot, Fannie; Torres, Napoleon; Chabrol, Claude; Agay, Diane; Auboiroux, Vincent; Johnstone, Daniel M; Stone, Jonathan; Mitrofanis, John; Benabid, Alim-Louis
2016-10-01
We have reported previously that intracranial application of near-infrared light (NIr) - when delivered at the lower doses of 25J and 35J - reduces clinical signs and offers neuroprotection in a subacute MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey model of Parkinson's disease. In this study, we explored whether a higher NIr dose (125J) generated beneficial effects in the same MPTP monkey model (n=15). We implanted an NIr (670nm) optical fibre device within a midline region of the midbrain in macaque monkeys, close to the substantia nigra of both sides. MPTP injections (1.8-2.1mg/kg) were made over a five day period, during which time the NIr device was turned on and left on continuously throughout the ensuing three week survival period. Monkeys were evaluated clinically and their brains processed for immunohistochemistry and stereology. Our results showed that the higher NIr dose did not have any toxic impact on cells at the midbrain implant site. Further, this NIr dose resulted in a higher number of nigral tyrosine hydroxylase immunoreactive cells when compared to the MPTP group. However, the higher NIr dose monkeys showed little evidence for an increase in mean clinical score, number of nigral Nissl-stained cells and density of striatal tyrosine hydroxylase terminations. In summary, the higher NIr dose of 125J was not as beneficial to MPTP-treated monkeys as compared to the lower doses of 25J and 35J, boding well for strategies of NIr dose delivery and device energy consumption in a future clinical trial. Copyright © 2016 Elsevier B.V. All rights reserved.
Note: Retrofitting an analog spectrometer for high resolving power in NUV-NIR
NASA Astrophysics Data System (ADS)
Taylor, Andrew S.; Batishchev, Oleg V.
2017-11-01
We demonstrate how an older spectrometer designed for photographic films can be efficiently retrofitted with a narrow laser-cut slit and a modern μm-pixel-size imaging CMOS camera, yielding sub-pm resolution in the broad near ultraviolet to near infrared (NUV-NIR) spectral range. Resolving power approaching 106 is achieved. Such digital retrofitting of an analog instrument is practical for research and teaching laboratories.
Li, Jiong; Wang, Xuandong; Zheng, Dongye; Lin, Xinyi; Wei, Zuwu; Zhang, Da; Li, Zhuanfang; Zhang, Yun; Wu, Ming; Liu, Xiaolong
2018-05-22
Theranostic nanoprobes integrated with dual-modal imaging and therapeutic functions, such as photodynamic therapy (PDT), have exhibited significant potency in cancer treatments due to their high imaging accuracy and non-invasive advantages for cancer elimination. However, biocompatibility and highly efficient accumulation of these nanoprobes in tumor are still unsatisfactory for clinical application. In this study, a photosensitizer -loaded magnetic nanobead with surface further coated with a layer of cancer cell membrane (SSAP-Ce6@CCM) was designed to improve the biocompatibility and cellular uptake and ultimately achieve enhanced MR/NIR fluorescence imaging and PDT efficacy. Compared with similar nanobeads without CCM coating, SSAP-Ce6@CCM showed significantly enhanced cellular uptake, as evidenced by Prussian blue staining, confocal laser scanning microscopy (CLSM) and flow cytometric analysis. Consequently, SSAP-Ce6@CCM displayed a more distinct MR/NIR imaging ability and more obvious photo-cytotoxicity towards cancer cells under 670 nm laser irradiation. Furthermore, the enhanced PDT effect benefited from the surface coating of cancer cell membrane was demonstrated in SMMC-7721 tumor-bearing mice through tumor growth observation and tumor tissue pathological examination. Therefore, this CCM-disguised nanobead that integrated the abilities of MR/NIR fluorescence dual-modal imaging and photodynamic therapy might be a promising theranostic platform for tumor treatment.
Critical Review of Noninvasive Optical Technologies for Wound Imaging
Jayachandran, Maanasa; Rodriguez, Suset; Solis, Elizabeth; Lei, Jiali; Godavarty, Anuradha
2016-01-01
Significance: Noninvasive imaging approaches can provide greater information about a wound than visual inspection during the wound healing and treatment process. This review article focuses on various optical imaging techniques developed to image different wound types (more specifically ulcers). Recent Advances: The noninvasive optical imaging approaches in this review include hyperspectral imaging, multispectral imaging, near-infrared spectroscopy (NIRS), diffuse reflectance spectroscopy, optical coherence tomography, laser Doppler imaging, laser speckle imaging, spatial frequency domain imaging, and fluorescence imaging. The various wounds imaged using these techniques include open wounds, chronic wounds, diabetic foot ulcers, decubitus ulcers, venous leg ulcers, and burns. Preliminary work in the development and implementation of a near-infrared optical scanner for wound imaging as a noncontact hand-held device is briefly described. The technology is based on NIRS and has demonstrated its potential to differentiate a healing from nonhealing wound region. Critical Issues: While most of the optical imaging techniques can penetrate few hundred microns to a 1–2 mm from the wound surface, NIRS has the potential to penetrate deeper, demonstrating the potential to image internal wounds. Future Directions: All the technologies are currently at various stages of translational efforts to the clinic, with NIRS holding a greater promise for physiological assessment of the wounds internal, beyond the gold-standard visual assessment. PMID:27602254
Early caries imaging and monitoring with near-infrared light.
Fried, Daniel; Featherstone, John D B; Darling, Cynthia L; Jones, Robert S; Ngaotheppitak, Patara; Bühler, Christopher M
2005-10-01
Enamel is highly transparent in the near infrared (NIR); therefore, this region of the electromagnetic spectrum is suited ideally for the development of new optical diagnostic tools for the detection and imaging of early dental caries. This article discusses the NIR optical properties of sound and demineralized dental enamel and the potential use of polarization sensitive optical coherence tomography and NIR transillumination for the imaging of dental caries.
NASA Astrophysics Data System (ADS)
Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel
2016-02-01
Clinicians need technologies to improve the diagnosis of questionable occlusal carious lesions (QOC's) and determine if decay has penetrated to the underlying dentin. Assessing lesion depth from near-infrared (NIR) images holds great potential due to the high transparency of enamel and stain to NIR light at λ=1300-1700-nm, which allows direct visualization and quantified measurements of enamel demineralization. Unfortunately, NIR reflectance measurements alone are limited in utility for approximating occlusal lesion depth >200-μm due to light attenuation from the lesion body. Previous studies sought to combine NIR reflectance and transillumination measurements taken at λ=1300-nm in order to estimate QOC depth and severity. The objective of this study was to quantify the change in lesion contrast and size measured from multispectral NIR reflectance and transillumination images of natural occlusal carious lesions with increasing lesion depth and severity in order to determine the optimal multimodal wavelength combinations for estimating QOC depth. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system at prominent wavelengths within the λ=1300-1700-nm spectral region. Image analysis software was used to calculate lesion contrast and area values between sound and carious enamel regions.
NASA Astrophysics Data System (ADS)
Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis
2011-03-01
Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.
Mazloomi-Rezvani, Mahsa; Salami-Kalajahi, Mehdi; Roghani-Mamaqani, Hossein
2018-06-01
Different core-shell nanoparticles with Au as core and stimuli-responsive polymers such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(N-isopropylacrylamide) (PNIPAAm), poly(N,N'-methylenebis(acrylamide)) (PMBA), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) as shells were fabricated via inverse emulsion polymerization. Dynamic light scattering (DLS) was used to investigate particles sizes and particle size distributions and transmission electron microscopy (TEM) was applied to observe the core-shell structure of Au-polymer nanoparticles. Also, surface charge of all samples was studied by measurement of zeta potentials. Synthesized core-shell nanoparticles were utilized as nanocarriers of DOX as anti-cancer drug and drug release behaviors were investigated in dark room and under irradiation of near-infrared (NIR) light. Results showed that all core-shell samples have particle sizes less than 100 nm with narrow particle size distributions. Moreover, amount of drug loading decreased by increasing zeta potential. In dark room, lower pH resulted in higher cumulative drug release due to better solubility of DOX in acidic media. Also, NIR lighting on DOX-loaded samples led to increasing cumulative drug release significantly. However, DOX-loaded Au-PAA and Au-PMAA showed higher drug release at pH = 7.4 compared to 5.3 under NIR lighting. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David
2018-03-01
Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.
Near-IR, blue, and UV generation by frequency conversion of a Tm:YAP laser
NASA Astrophysics Data System (ADS)
Cole, Brian; Goldberg, Lew; Chinn, Steve
2018-02-01
We describe generation of near-infrared (944nm, 970nm), blue (472nm, 485nm), and UV (236 nm) light by frequency up-conversion of 2 μm output of a compact and efficient passively Q-switched Tm:YAP laser. The Tm:YAP laser source was near diffraction limited with maximum Q-switched pulse peak power of 190 kW. For second harmonic generation (SHG) of NIR, both periodically poled lithium niobate (PPLN) and lithium tri-borate (LBO) were evaluated, with 58% conversion efficiency and 3.1 W of 970 nm power achieved with PPLN. The PPLN 970nm emission was frequency doubled in 20mm long type I LBO, generating 1.1 W at 485nm with a conversion efficiency of 34%. With LBO used for frequency doubling of 2.3 W of 1888 nm Tm:YAP output to 944nm, 860mW was generated, with 37% conversion efficiency. Using a second LBO crystal to generate the 4th harmonic, 545mW of 472nm power was generated, corresponding to 64% conversion efficiency. To generate the 8th harmonic of Tm:YAP laser emission, the 472nm output of the second LBO was frequency doubled in a 7mm long BBO crystal, generating 110 mW at 236nm, corresponding to 21% conversion efficiency.
NASA Astrophysics Data System (ADS)
Diop, Mamadou; Wright, Eric; Toronov, Vladislav; Lee, Ting-Yim; St. Lawrence, Keith
2014-05-01
Broadband continuous-wave near-infrared spectroscopy (CW-NIRS) is an attractive alternative to time-resolved and frequency-domain techniques for quantifying cerebral blood flow (CBF) and oxygen metabolism in newborns. However, efficient light collection is critical to broadband CW-NIRS since only a small fraction of the injected light emerges from any given area of the scalp. Light collection is typically improved by optimizing the contact area between the detection system and the skin by means of light guides with large detection surface. Since the form-factor of these light guides do not match the entrance of commercial spectrometers, which are usually equipped with a narrow slit to improve their spectral resolution, broadband NIRS spectrometers are typically custom-built. Nonetheless, off-the-shelf spectrometers have attractive advantages compared to custom-made units, such as low cost, small footprint, and wide availability. We demonstrate that off-the-shelf spectrometers can be easily converted into suitable instruments for deep tissue spectroscopy by improving light collection, while maintaining good spectral resolution, and reducing measurement noise. The ability of this approach to provide reliable cerebral hemodynamics was illustrated in a piglet by measuring CBF and oxygen metabolism under different anesthetic regimens.
NASA Astrophysics Data System (ADS)
You, Chaoqun; Wu, Hongshuai; Wang, Mingxin; Gao, Zhiguo; Zhang, Xiangyang; Sun, Baiwang
2018-01-01
Polymeric biomaterials that can be smartly disassembled through the cleavage of the covalent bonds in a controllable way upon an environmental stimulus such as pH change, redox, special enzymes, temperature, or ultrasound, as well as light irradiation, but are otherwise stable under normal physiological conditions have attracted great attention in recent decades. The 2-(4-aminophenyl) benzothiazole molecule (CJM-126), as one of the benzothiazole derivatives, has exhibited a synergistic effect with cisplatin (CDDP) and restrains the bioactivities of a series of human breast cancer cell lines. In our study, novel NIR-responsive targeted binary-drug-loaded nanoparticles encapsulating indocyanine green (ICG) dye were prepared as a new co-delivery and combined therapeutic vehicle. The prepared drug-loaded polymeric nanoparticles (TNPs/CDDP-ICG) are stable under normal physiological conditions, while burst drugs release upon NIR laser irradiation in a mild acidic environment. The results further confirmed that the designed co-delivery platform showed higher cytotoxicity than the single free CDDP due to the synergistic treatment of CJM-126 and CDDP in vitro. Taken together, the work might provide a promising approach for effective site-specific antitumor therapy.
NASA Astrophysics Data System (ADS)
Zhu, Ren; Wu, Lan; Wang, Shiming; Ye, Linhua; Ding, Zhihua
2008-03-01
As a fast, non-destructive analysis method, Fourier transform (FT) near-infrared (NIR) spectroscopy is very suitable and effective for online quality analysis of traditional Chinese medicine (TCM) manufacturing process. In this thesis, the theoretics of FT-NIRS was analyzed and an FT-NIR spectrometer with 4 cm -1 resolution in the 12500-5000 cm -1 frequency range was designed. The spectrometer was based on a Michelson interferometer with Bromine tungsten lamp as the NIR light source and InGaAs detector to collect the interference signal. Each element was designed and chosen to provide maximum sensitivity in the NIR spectral region. A fiber-optic flow cell system was used to realize online analysis of traditional Chinese medicine. The performance of the spectrometer was evaluated and the feasibility of using FT-NIR spectrometer to get absorption spectra of traditional Chinese medicine was demonstrated.
Oliinyk, Olena S.; Chernov, Konstantin G.
2017-01-01
Bacterial photoreceptors absorb light energy and transform it into intracellular signals that regulate metabolism. Bacterial phytochrome photoreceptors (BphPs), some cyanobacteriochromes (CBCRs) and allophycocyanins (APCs) possess the near-infrared (NIR) absorbance spectra that make them promising molecular templates to design NIR fluorescent proteins (FPs) and biosensors for studies in mammalian cells and whole animals. Here, we review structures, photochemical properties and molecular functions of several families of bacterial photoreceptors. We next analyze molecular evolution approaches to develop NIR FPs and biosensors. We then discuss phenotypes of current BphP-based NIR FPs and compare them with FPs derived from CBCRs and APCs. Lastly, we overview imaging applications of NIR FPs in live cells and in vivo. Our review provides guidelines for selection of existing NIR FPs, as well as engineering approaches to develop NIR FPs from the novel natural templates such as CBCRs. PMID:28771184
Synthesis of Core-shell Lanthanide-doped Upconversion Nanocrystals for Cellular Applications.
Ai, Xiangzhao; Lyu, Linna; Mu, Jing; Hu, Ming; Wang, Zhimin; Xing, Bengang
2017-11-10
Lanthanide-doped upconversion nanocrystals (UCNs) have attracted much attention in recent years based on their promising and controllable optical properties, which allow for the absorption of near-infrared (NIR) light and can subsequently convert it into multiplexed emissions that span over a broad range of regions from the UV to the visible to the NIR. This article presents detailed experimental procedures for high-temperature co-precipitation synthesis of core-shell UCNs that incorporate different lanthanide ions into nanocrystals for efficiently converting deep-tissue penetrable NIR excitation (808 nm) into a strong blue emission at 480 nm. By controlling the surface modification with biocompatible polymer (polyacrylic acid, PAA), the as-prepared UCNs acquires great solubility in buffer solutions. The hydrophilic nanocrystals are further functionalized with specific ligands (dibenzyl cyclooctyne, DBCO) for localization on the cell membrane. Upon NIR light (808 nm) irradiation, the upconverted blue emission can effectively activate the light-gated channel protein on the cell membrane and specifically regulate the cation (e.g., Ca 2+ ) influx in the cytoplasm. This protocol provides a feasible methodology for the synthesis of core-shell lanthanide-doped UCNs and subsequent biocompatible surface modification for further cellular applications.
Li, Xiaoli; Liu, Xiaomin
2014-01-01
In the last two decades, functional near-infrared spectroscopy (fNIRS) is getting more and more popular as a neuroimaging technique. The fNIRS instrument can be used to measure local hemodynamic response, which indirectly reflects the functional neural activities in human brain. In this study, an easily implemented way to establish DAQ-device-based fNIRS system was proposed. Basic instrumentation components (light sources driving, signal conditioning, sensors, and optical fiber) of the fNIRS system were described. The digital in-phase and quadrature demodulation method was applied in LabVIEW software to distinguish light sources from different emitters. The effectiveness of the custom-made system was verified by simultaneous measurement with a commercial instrument ETG-4000 during Valsalva maneuver experiment. The light intensity data acquired from two systems were highly correlated for lower wavelength (Pearson's correlation coefficient r = 0.92, P < 0.01) and higher wavelength (r = 0.84, P < 0.01). Further, another mental arithmetic experiment was implemented to detect neural activation in the prefrontal cortex. For 9 participants, significant cerebral activation was detected in 6 subjects (P < 0.05) for oxyhemoglobin and in 8 subjects (P < 0.01) for deoxyhemoglobin. PMID:25180044
[Research on NIR equivalent spectral measurement].
Wang, Zhi-Hong; Liu, Jie; Sun, Yu-Yang; Teng, Fei; Lin, Jun
2013-04-01
When the spectra of the diffuse reflectance of low reflectivity samples or the transmittance of low transmisivity samples are measured by a portable near infrared (NIR) spectrometer, because there is the noise of the spectrometer, the smaller the reflectance or transmittance of the sample, the lower its SNR. Even if treated by denoise methods, the spectra can not meet the requirement of NIR analysis. So the equivalent spectrum measure method was researched. Based on the intensity of the reflected or transmitted signal by the sample under the traditional measure conditions, the light current of the spectrometer was enlarged, and then the signal of the measured sample increased; the reflected or transmitted light of the measure reference was reduced to avoid the signal of the measure reference over range. Moreover the equivalent spectrum of the sample was calculated in order to make it identical with the spectrum measured by traditional method. Thus the NIR spectral SNR was improved. The results of theory analysis and experiments show that if the light signal of the spectrometer was properly increased according to the reflected or transmitted signal of the low reflectivity or transmisivity sample, the equivalent spectrum was the same as the spectrum measured by traditional method and its SNR was improved.
NASA Astrophysics Data System (ADS)
Paik, Seung-ho; Kim, Beop-Min
2016-03-01
fNIRS is a neuroimaging technique which uses near-infrared light source in the 700-1000 nm range and enables to detect hemodynamic changes (i.e., oxygenated hemoglobin, deoxygenated hemoglobin, blood volume) as a response to various brain processes. In this study, we developed a new, portable, prefrontal fNIRS system which has 12 light sources, 15 detectors and 108 channels with a sampling rate of 2 Hz. The wavelengths of light source are 780nm and 850nm. ATxmega128A1, 8bit of Micro controller unit (MCU) with 200~4095 resolution along with MatLab data acquisition algorithm was utilized. We performed a simple left and right finger movement imagery tasks which produced statistically significant changes of oxyhemoglobin concentrations in the dorsolateral prefrontal cortex (dlPFC) areas. We observed that the accuracy of the imagery tasks can be improved by carrying out neurofeedback training, during which a real-time feedback signal is provided to a participating subject. The effects of the neurofeedback training was later visually verified using the 3D NIRfast imaging. Our portable fNIRS system may be useful in non-constraint environment for various clinical diagnoses.
Qing, Zhao-shen; Ji, Bao-ping; Shi, Bo-lin; Zhu, Da-zhou; Tu, Zhen-hua; Zude, Manuela
2008-06-01
In the present study, improved laser-induced light backscattering imaging was studied regarding its potential for analyzing apple SSC and fruit flesh firmness. Images of the diffuse reflection of light on the fruit surface were obtained from Fuji apples using laser diodes emitting at five wavelength bands (680, 780, 880, 940 and 980 nm). Image processing algorithms were tested to correct for dissimilar equator and shape of fruit, and partial least squares (PLS) regression analysis was applied to calibrate on the fruit quality parameter. In comparison to the calibration based on corrected frequency with the models built by raw data, the former improved r from 0. 78 to 0.80 and from 0.87 to 0.89 for predicting SSC and firmness, respectively. Comparing models based on mean value of intensities with results obtained by frequency of intensities, the latter gave higher performance for predicting Fuji SSC and firmness. Comparing calibration for predicting SSC based on the corrected frequency of intensities and the results obtained from raw data set, the former improved root mean of standard error of prediction (RMSEP) from 1.28 degrees to 0.84 degrees Brix. On the other hand, in comparison to models for analyzing flesh firmness built by means of corrected frequency of intensities with the calibrations based on raw data, the former gave the improvement in RMSEP from 8.23 to 6.17 N x cm(-2).
Simple route to (NH4)xWO3 nanorods for near infrared absorption
NASA Astrophysics Data System (ADS)
Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio
2012-05-01
Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30612c
Huang, Dazhen; Zou, Ye; Jiao, Fei; Zhang, Fengjiao; Zang, Yaping; Di, Chong-an; Xu, Wei; Zhu, Daoben
2015-05-06
Organic photothermoelectric (PTE) materials are promising candidates for various photodetection applications. Herein, we report on poly[Cux(Cu-ett)]:PVDF, which is an excellent polymeric thermoelectric composite, possesses unprecedented PTE properties. The NIR light irradiation on the poly[Cu(x)(Cu-ett)]:PVDF film could induce obvious enhancement in Seebeck coefficient from 52 ± 1.5 to 79 ± 5.0 μV/K. By taking advantage of prominent photothermoelectric effect of poly[Cu(x)(Cu-ett)]:PVDF, an unprecedented voltage of 12 mV was obtained. This excellent performance enables its promising applications in electricity generation from solar energy and NIR detection to a wide range of light intensities ranging from 1.7 mW/cm(2) to 17 W/cm(2).
Multispectral fluorescence imaging techniques for nondestructive food safety inspection
NASA Astrophysics Data System (ADS)
Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren
2004-03-01
The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.
NASA Astrophysics Data System (ADS)
Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.
2018-04-01
Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.
NASA Astrophysics Data System (ADS)
Sordillo, Diana C.; Sordillo, Laura A.; Shi, Lingyan; Budansky, Yury; Sordillo, Peter P.; Alfano, Robert R.
2015-02-01
Near- infrared (NIR) light with wavelengths from 650 nm to 950 nm (known as the first NIR window) has conventionally been used as a non-invasive technique that can reach deeper penetration depths through media than light at shorter wavelengths. Recently, several novel, NIR, label-free, techniques have been developed to assess Paget's disease of bone, osteoporosis and bone microfractures. We designed a Bone Optical Analyzer (BOA) which utilizes the first window to measure changes of Hb and HbO2. Paget's disease is marked by an increase in vascularization in bones, and this device can enable easy diagnosis and more frequent monitoring of the patient's condition, without exposing him to a high cumulative dose of radiation. We have also used inverse imaging algorithms to reconstruct 2D and 3D maps of the bone's structure. This device could be used to assess diseases such as osteoporosis. Using 800 nm femtosecond excitation with two-photon (2P) microscopy, we acquired 2PM images of the periosteum and spatial frequency spectra (based on emission of collagen) from the periosteal regions. This technique can provide information on the structure of the periosteum and can detect abnormalities which may be an indication of disease. Most recently, we showed that longer NIR wavelengths in the second and third NIR windows (1100 nm-1350 nm, 1600 nm-1870 nm), could be used to image bone microfractures. Use of NIR light could allow for repeated studies in patients with diseases such as Paget's and osteoporosis quickly and non-invasively, and could impact the current management for these diseases.
NASA Astrophysics Data System (ADS)
Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Brenner, Carsten; Gerhardt, Nils C.; Hofmann, Martin
2017-02-01
Microscopy imaging with a single technology is usually restricted to a single contrast mechanism. Multimodal imaging is a promising technique to improve the structural information that could be obtained about a device under test (DUT). Due to the different contrast mechanisms of laser scanning microscopy (LSM), confocal laser scanning microscopy (CLSM) and optical beam induced current microscopy (OBICM), a combination could improve the detection of structures in integrated circuits (ICs) and helps to reveal their layout. While OBIC imaging is sensitive to the changes between differently doped areas and to semiconductor-metal transitions, CLSM imaging is mostly sensitive to changes in absorption and reflection. In this work we present the implementation of OBIC imaging into a CLSM. We show first results using industry standard Atmel microcontrollers (MCUs) with a feature size of about 250nm as DUTs. Analyzing these types of microcontrollers helps to improve in the field of side-channel attacks to find hardware Trojans, possible spots for laser fault attacks and for reverse engineering. For the experimental results the DUT is placed on a custom circuit board that allows us to measure the current while imaging it in our in-house built stage scanning microscope using a near infrared (NIR) laser diode as light source. The DUT is thinned and polished, allowing backside imaging through the Si-substrate. We demonstrate the possibilities using this optical setup by evaluating OBIC, LSM and CLSM images above and below the threshold of the laser source.
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.
Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek
2015-10-01
Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael, Jr.; Anton, Rein; Romanowski, Marek
2015-10-01
Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.
A Colloidal-Quantum-Dot-Based Self-Charging System via the Near-Infrared Band.
Baek, Se-Woong; Cho, Jungmin; Kim, Joo-Seong; Kim, Changjo; Na, Kwangmin; Lee, Sang-Hoon; Jun, Sunhong; Song, Jung Hoon; Jeong, Sohee; Choi, Jang Wook; Lee, Jung-Yong
2018-05-11
A novel self-charging platform is proposed using colloidal-quantum-dot (CQD) photovoltaics (PVs) via the near-infrared (NIR) band for low-power electronics. Low-bandgap CQDs can convert invisible NIR light sources to electrical energy more efficiently than wider spectra because of reduced thermalization loss. This energy-conversion strategy via NIR photons ensures an enhanced photostability of the CQD devices. Furthermore, the NIR wireless charging system can be concealed using various colored and NIR-transparent fabric or films, providing aesthetic freedom. Finally, an NIR-driven wireless charging system is demonstrated for a wearable healthcare bracelet by integrating a CQD PVs receiver with a flexible lithium-ion battery and entirely embedding them into a flexible strap, enabling permanent self-charging without detachment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laser-Induced Breakdown Spectroscopy Infrared Emission From Inorganic and Organic Substances
2006-11-01
using a liquid-nitrogen cooled indium antimonide (InSb) detector and the signal was recorded using a gated electronic circuit (boxcar averager). All...contaminants by analyzing the atomic spectral emission lines that result subsequent to plasmas generated by laser power. The ultraviolet-visible-near infrared...UV- Vis-NIR) spectral region exploited in conventional LIBS largely elucidates the elemental composition of the laser target by profiling these
How safe is gamete micromanipulation by laser tweezers?
NASA Astrophysics Data System (ADS)
Koenig, Karsten; Tromberg, Bruce J.; Tadir, Yona; Berns, Michael W.
1998-04-01
Laser tweezers, used as novel sterile micromanipulation tools of living cells, are employed in laser-assisted in vitro fertilization (IVF). For example, controlled spermatozoa transport with 1064 nm tweezers to human egg cells has been performed in European clinics in cases of male infertility. The interaction of approximately 100 mW near infrared (NIR) trapping beams at MW/cm2 intensity with human gametes results in low mean less than 2 K temperature increases and less than 100 pN trapping forces. Therefore, photothermal or photomechanical induced destructive effects appear unlikely. However, the high photon flux densities may induce simultaneous absorption of two NIR photons resulting in nonlinear interactions. These nonlinear interactions imply non-resonant two-photon excitation of endogenous cellular chromophores. In the case of less than 800 nm tweezers, UV- like damage effects may occur. The destructive effect is amplified when multimode cw lasers are used as tweezer sources due to longitudinal mode-beating effects and partial mode- locking. Spermatozoa damage within seconds using 760 nm traps due to formation of unstable ps pulses in a cw Ti:Sa ring laser is demonstrated. We recommend the use of greater than or equal to 800 nm traps for optical gamete micromanipulation. To our opinion, further basic studies on the influence of nonlinear effects of laser tweezers on human gamete are necessary.
Wong, Pamela T; Chen, Dexin; Tang, Shengzhuang; Yanik, Sean; Payne, Michael; Mukherjee, Jhindan; Coulter, Alexa; Tang, Kenny; Tao, Ke; Sun, Kang; Baker, James R; Choi, Seok Ki
2015-12-02
Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimating the spatial resolution of fNIRS sensors for BCI purposes
NASA Astrophysics Data System (ADS)
Almajidy, Rand Kasim; Kirch, Robert D.; Christ, Olaf; Hofmann, Ulrich G.
2014-03-01
Differential near infrared sensors recently sparked a growing interest as a promising measuring modality for brain computer interfacing. In our study we present the design and characterization of novel, differential functional NIRS sensors, intended to record hemodynamic changes of the human motor cortex in the hand-area during motor imagery tasks. We report on the spatial characterization of a portable, multi-channel NIRS system with one module consisting of two central light emitting diodes (LED) (770 nm and 850 nm) and four symmetric pairs of radially aligned photodiodes (PD) resembling a plus symbol. The other sensor module features four similar, differential light paths crossing in the center of a star. Characterization was performed on a concentric, double beaker phantom, featuring a PBS/intralipid/blood mixture (97/1/2%). In extension of previous work, the inner, oxygenated beaker was covered by neoprene sleeves with holes of various sizes, thus giving an estimate on the spatial limits of the NIRS sensor's measurement volume. The star shaped sensor module formed a diffuse focus of approximately 3 cm in diameter at 1.4 cm depth, whereas the plus shaped arrangement suggested a concentric ring of four separate regions of interest, overall larger than 6 cm. The systems measurement sensitivity could be improved by removing ambient light from the sensing photodiodes by optical filtering. Altogether, we conclude that both our novel fNIRS design as well as its electronics perform well in the double-layered oxygenation phantom and are thus suitable for in-vivo testing.
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo; Mondal, Soumen; Das, Ramkrishna; Banerjee, D. P. K.; Ashok, N. M.; Hambsch, Franz-Josef; Dutta, Somnath
2018-05-01
We describe the time-dependent properties of a new spectroscopically confirmed Mira variable, which was discovered in 2013 as MASTER-Net Optical Transient J212444.87+321738.3 toward the Cygnus constellation. We have performed long-term optical/near-infrared (NIR) photometric and spectroscopic observations to characterize the object. From the optical/NIR light curves, we estimate a variability period of 465 ± 30 days. The wavelength-dependent amplitudes of the observed light curves range from ΔI ∼ 4 mag to ΔK ∼ 1.5 mag. The (J ‑ K) color index varies from 1.78 to 2.62 mag over phases. Interestingly, a phase lag of ∼60 days between optical and NIR light curves is also seen, as in other Miras. Our optical/NIR spectra show molecular features of TiO, VO, CO, and strong water bands that are a typical signature of oxygen-rich Mira. We rule out S- or C-type as ZrO bands at 1.03 and 1.06 μm and C2 band at 1.77 μm are absent. We estimate the effective temperature of the object from the Spectral Energy Distribution, and distance and luminosity from standard Period–Luminosity relations. The optical/NIR spectra display time-dependent atomic and molecular features (e.g., TiO, Na I, Ca I, H2O, CO), as commonly observed in Miras. Such spectroscopic observations are useful for studying pulsation variability in Miras.
Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey
2017-06-01
Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm 2 . We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications.
NASA Astrophysics Data System (ADS)
Lai, Xuesen; Li, Xitao; Lv, Xinding; Zheng, Yan-Zhen; Meng, Fanli; Tao, Xia
2017-12-01
Extending the spectral absorption of perovskite solar cells (PSCs) from visible into near-infrared (NIR) range is a promising strategy to minimize non-absorption loss of solar photons and enhance the cell photovoltaic performance. Herein, we report on for the first time a viable strategy of incorporating IR806 dye-sensitized upconversion nanocrystals (IR806-UCNCs) into planar PSC for broadband upconversion of NIR light (800-1000 nm) into perovskite absorber-responsive visible emissions. A smart trick is firstly adopted to prepare hydrophilic IR806-UCNCs via a NOBF4 assisted two-step ligand-exchange that allows incorporating with perovskite precursor for in-situ growth of upconverting planar perovskite film. Unlike typically reported upconverting nanoparticles with narrow NIR absorption, the as-prepared IR806-UCNCs are able to harvest NIR light broadly and then transfer the captured energy to the UCNCs for an efficient visible upconversion. The IR806-UCNCs-incorporated cell exhibits a power conversion efficiency of 17.49%, corresponding to 29% increment from that of the pristine cell (13.52%). This strategy provides a feasible way to enable the most efficient harvesting of NIR sunlight for solar cells and other optoelectric devices.
UV/vis and NIR light-responsive spiropyran self-assembled monolayers.
Ivashenko, Oleksii; van Herpt, Jochem T; Feringa, Ben L; Rudolf, Petra; Browne, Wesley R
2013-04-02
Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopies (XPS). The SAMs obtained are composed of the ring-closed form (i.e., spiropyran) only. Irradiation with UV light results in conversion of the monolayer to the merocyanine form (MC), manifested in the appearance of an N(+) contribution in the N 1s region of the XPS spectrum of the SAMs, the characteristic absorption band of the MC form in the visible region at 555 nm, and the C-O stretching band in the SERS spectrum. Recovery of the initial state of the monolayer was observed both thermally and after irradiation with visible light. Several switching cycles were performed and monitored by SERS spectroscopy, demonstrating the stability of the SAMs during repeated switching between SP and MC states. A key finding in the present study is that ring-opening of the surface-immobilized spiropyrans can be induced by irradiation with continuous wave NIR (785 nm) light as well as by irradiation with UV light. We demonstrate that ring-opening by irradiation at 785 nm proceeds by a two-photon absorption pathway both in the SAMs and in the solid state. Hence, spiropyran SAMs on gold can undergo reversible photochemical switching from the SP to the MC form with both UV and NIR and the reverse reaction induced by irradiation with visible light or heating. Furthermore, the observation of NIR-induced switching with a continuous wave source holds important consequences in the study of photochromic switches on surfaces using SERS and emphasizes the importance of the use of multiple complementary techniques in characterizing photoresponsive SAMs.
Li, Jinghua; Zhang, Fengshou; Hu, Zhigang; Song, Weidong; Li, Guangda; Liang, Gaofeng; Zhou, Jun; Li, Ke; Cao, Yang; Luo, Zhong; Cai, Kaiyong
2017-07-01
The study reports a biocompatible smart drug delivery system based on a doxorubicin (DOX) blending phase-change material of 1-pentadecanol loaded hollow magnetic Prussian blue nanoparticles, resulting in HMNP-PB@Pent@DOX. The system possesses concentration-dependent high thermogenesis (>50 °C) when applying a near-infrared (NIR) laser irradiation only for 5 min. Furthermore, the system realizes near "zero release" of drug and is efficiently triggered by NIR for drug delivery in an "on" and "off" manner, thus inducing cell apoptosis in vitro and in vivo. Moreover, the system clearly indicates tumor site with trimodal imaging of magnetic resonance imaging, photoacoustic tomography imaging, and infrared thermal imaging. Furthermore, the system achieves efficient chemo-photothermal combined tumor therapy in vivo with 808 nm laser irradiation for 5 min at 1.2 W cm -2 , revealing the good tumor inhibition effect comparing with those of chemotherapy or photothermal therapy alone. The system is also confirmed to be biocompatible in regard to the mortality rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dental optical tomography with upconversion nanoparticles—a feasibility study
Long, Feixiao; Intes, Xavier
2017-01-01
Abstract. Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications. PMID:28586852
Dental optical tomography with upconversion nanoparticles—a feasibility study
NASA Astrophysics Data System (ADS)
Long, Feixiao; Intes, Xavier
2017-06-01
Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications.
Dental optical tomography with upconversion nanoparticles-a feasibility study.
Long, Feixiao; Intes, Xavier
2017-06-01
Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications.
NASA Astrophysics Data System (ADS)
Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.
2015-12-01
Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06847a
Nakajima, Kohei; Kimura, Toshihiro; Takakura, Hideo; Yoshikawa, Yasuo; Kameda, Atsushi; Shindo, Takayuki; Sato, Kazuhide; Kobayashi, Hisataka; Ogawa, Mikako
2018-04-13
The aim of this study was to develop and assess a novel implantable, wireless-powered, light-emitting diode (LED) for near-infrared photoimmunotherapy (NIR-PIT). NIR-PIT is a recently developed cancer therapy that uses NIR light and antibody-photosensitizer conjugates and is able to induce cancer-specific cell death. Due to limited light penetration depth it is currently unable to treat tumors in deep tissues. Use of implanted LED might potentially overcome this limitation. The wireless LED system was able to emit NIR light up to a distance of 20 cm from the transmitter coil by using low magnetic fields as compliant with limits for use in humans. Results indicated that the LED system was able to kill tumor cells in vitro and to suppress tumor growth in implanted tumor-bearing mice. Results indicated that the proposed implantable wireless LED system was able to suppress tumor growth in vivo . These results are encouraging as wireless LED systems such as the one here developed might be a possible solution to treat tumors in deep regions in humans. Further research in this area would be important. An implantable LED system was developed. It consisted of a LED capsule including two LED sources and a receiver coil coupled with an external coil and power source. Wireless power transmission was guaranteed by using electromagnetic induction. The system was tested in vitro by using EGFR-expressing cells and HER2-expressing cells. The system was also tested in vivo in tumor-bearing mice.
NASA Astrophysics Data System (ADS)
Shinzawa, Hideyuki; Mizukado, Junji
2018-03-01
Tensile deformations of a partially miscible blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG) is studied by a rheo-optical characterization near-infrared (NIR) technique to probe deformation behavior during tensile deformation. Sets of NIR spectra of the polymer samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While deformations of the samples were readily captured as strain-dependent NIR spectra, the entire feature of the spectra was overwhelmed with the baseline fluctuation induced by the decrease in the sample thickness and subsequent change in the light scattering. Several pretreatment techniques, including multiplicative scatter collection (MSC) and null-space projection, are subjected to the NIR spectra prior to the determination of the sequential order of the spectral intensity changes by two-dimensional (2D) correlation analysis. The comparison of the MSC and null-space projection provided an interesting insight into the system, especially deformation-induced variation of light scattering observed during the tensile testing of the polymer sample. In addition, the sequential order determined with the 2D correlation spectra revealed that orientation of a specific part of PMMA chain occurs before that of the others because of the interaction between Cdbnd O group of PMMA and terminal sbnd OH group of PEG.
Jablonski-Momeni, Anahita; Jablonski, Boris; Lippe, Nikola
2017-01-01
Apart from the visual detection of caries, X-rays can be taken for detection of approximal lesions. The Proxi head of VistaCam iX intraoral camera system uses near-infrared light (NIR) to enable caries detection in approximal surfaces. The aim of this study was to evaluate the performance of the NIR for the detection of approximal enamel lesions by comparison with radiographic findings. One hundred ninety-three approximal surfaces from 18 patients were examined visually and using digital radiographs for presence or absence of enamel lesions. Then digital images of each surface were produced using the near-infrared light. Correlation between methods was assessed using Spearman's rank correlation coefficient ( r s ). Agreement between radiographic and NIR findings was calculated using the kappa coefficient. McNemar's test was used to analyse differences between the radiographic and NIR findings ( α =0.05). Moderate correlation was found between all detection methods ( r s =0.33-0.50, P <0.0001). Agreement between the radiographic and NIR findings was moderate ( κ =0.50, 95% CI=0.37-0.62) for the distinction between sound surfaces and enamel caries. No significant differences were found between the findings ( P =0.07). Radiographs and NIR were found to be comparable for the detection of enamel lesions in permanent teeth.
Jablonski-Momeni, Anahita; Jablonski, Boris; Lippe, Nikola
2017-01-01
Objectives/Aims: Apart from the visual detection of caries, X-rays can be taken for detection of approximal lesions. The Proxi head of VistaCam iX intraoral camera system uses near-infrared light (NIR) to enable caries detection in approximal surfaces. The aim of this study was to evaluate the performance of the NIR for the detection of approximal enamel lesions by comparison with radiographic findings. Materials and methods: One hundred ninety-three approximal surfaces from 18 patients were examined visually and using digital radiographs for presence or absence of enamel lesions. Then digital images of each surface were produced using the near-infrared light. Correlation between methods was assessed using Spearman’s rank correlation coefficient (rs). Agreement between radiographic and NIR findings was calculated using the kappa coefficient. McNemar’s test was used to analyse differences between the radiographic and NIR findings (α=0.05). Results: Moderate correlation was found between all detection methods (rs=0.33–0.50, P<0.0001). Agreement between the radiographic and NIR findings was moderate (κ=0.50, 95% CI=0.37–0.62) for the distinction between sound surfaces and enamel caries. No significant differences were found between the findings (P=0.07). Conclusion: Radiographs and NIR were found to be comparable for the detection of enamel lesions in permanent teeth. PMID:29607082
Fourier transform spectra of quantum dots
NASA Astrophysics Data System (ADS)
Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.
2009-09-01
Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.
Fourier transform spectra of quantum dots
NASA Astrophysics Data System (ADS)
Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.
2010-05-01
Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.
Optical NIR monitoring of skeletal muscle contraction
NASA Astrophysics Data System (ADS)
Lago, Paolo; Gelmetti, Andrea; Pavesi, Roberta; Zambarbieri, Daniela
1996-12-01
NIR spectroscopy allows monitoring of muscle oxygenation and perfusion during contraction. The knowledge of modifications of blood characteristics in body tissues has relevant clinical interest. A compact and reliable device, which makes use of two laser diodes at 750 and 810 nm coupled with the skin surface through optical fibers, was tested. NIR and surface EMG signals during isometric contractions both in normal and ischaemic conditions were analyzed. A set of parameters from the 750/810 spectroscopic curve was analyzed. Two different categories depending on the recovery rate from maximal voluntary contraction to basal oxygenation conditions were found. This behavior can give information about metabolic modifications during muscle fatigue. Interesting results in testing isokinetic rehabilitation training were also obtained.
Hu, Ming; Zhao, Jixian; Ai, Xiangzhao; Budanovic, Maja; Mu, Jing; Webster, Richard D; Cao, Qian; Mao, Zongwan; Xing, Bengang
2016-09-13
Platinum-based chemotherapy, although it has been well proven to be effective in the battle against cancer, suffers from limited specificity, severe side effects and drug resistance. The development of new alternatives with potent anticancer effects and improved specificity is therefore urgently needed. Recently, there are some new chemotherapy reagents based on photoactive Re(i) complexes which have been reported as promising alternatives to improve specificity mainly attributed to the spatial and temporal activation process by light irradiation. However, most of them respond to short-wavelength light (e.g. UV, blue or green light), which may cause unwanted photo damage to cells. Herein, we demonstrate a system for near-infrared (NIR) light controlled activation of Re(i) complex cytotoxicity by integration of photoactivatable Re(i) complexes and lanthanide-doped upconversion nanoparticles (UCNPs). Upon NIR irradiation at 980 nm, the Re(i) complex can be locally activated by upconverted UV light emitted from UCNPs and subsequently leads to enhanced cell lethality. Cytotoxicity studies showed effective inactivation of both drug susceptible human ovarian carcinoma A2780 cells and cisplatin resistant subline A2780cis cells by our UCNP based system with NIR irradiation, and there was minimum light toxicity observed in the whole process, suggesting that such a system could provide a promising strategy to control localized activation of Re(i) complexes and therefore minimize potential side effects.
NASA Astrophysics Data System (ADS)
Dowell, Adam; Chen, Wenxue; Biswal, Nrusingh; Ayala-Orozco, Ciceron; Giuliano, Mario; Schiff, Rachel; Halas, Naomi J.; Joshi, Amit
2012-03-01
Gold nanoshells with NIR plasmon resonance can be modified to simultaneously enhance conjugated NIR fluorescence dyes and T2 contrast of embedded iron-oxide nanoparticles, and molecularly targeted to breast and other cancers. We calibrated the theranostic performance of magneto-fluorescent nanoshells, and contrasted the performance of molecularly targeted and untargeted nanoshells for breast cancer therapy, employing MCF-7L and their HER2 overexpressing derivative MCF-7/HER2-18 breast cancer cells as in vitro model systems. Silica core gold nanoshells with plasmon resonance on ~810 nm were doped with NIR dye ICG and ~10 nm iron-oxide nanoparticles in a ~20 nm epilayer of silica. A subset of nanoshells was conjugated to antibodies targeting HER2. Cell viability with varying laser power levels in presence and absence of bare and HER2-targeted nanoshells was assessed by calcein and propidium iodide staining. For MCF-7L cells, increasing power resulted in increased cell death (F=5.63, p=0.0018), and bare nanoshells caused more cell death than HER2-targeted nanoshells or laser treatment alone (F=30.13, p<0.001). For MCF-7/HER2-18 cells, death was greater with HER2-targeted nanoshells and was independent of laser power. This study demonstrates the capability of magneto-fluorescent nanocomplexes for imaging and therapy of breast cancer cells, and the advantages of targeting receptors unique to cancer cells.
NASA Astrophysics Data System (ADS)
Burns, Joshua M.; Schaefer, Elise; Anvari, Bahman
2018-02-01
Light-activated theranostic constructs provide a multi-functional platform for optical imaging and phototherapeutic applications. Our group has engineered nano-sized vesicles derived from erythrocytes that encapsulate the FDAapproved near infrared (NIR) absorber indocyanine green (ICG). We refer to these constructs as NIR erythrocytemimicking transducers (NETs). Once photo-excited by NIR light these constructs can transduce the photons energy to emit fluorescence, generate heat, or induce chemical reactions. In this study, we investigated fluorescence imaging of NETs embedded within tumor phantoms using spatial frequency domain imaging (SFDI). Using SFDI, we were able to fluorescently image simulated tumors doped with different concentration of NETs. These preliminary results suggest that NETs can be used in conjunction with SFDI for potential tumor imaging applications.
Utilization of functional near infrared spectroscopy for non-invasive evaluation
NASA Astrophysics Data System (ADS)
Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.
2016-07-01
The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.
Near infrared spectrum simulation applied to human skin for diagnosis
NASA Astrophysics Data System (ADS)
Tsai, Chen-Mu; Fang, Yi-Chin; Wang, Chih-Yu; Chiu, Pin-Chun; Wu, Guo-Ying; Zheng, Wei-Chi; Chemg, Shih-Hao
2007-11-01
This research proposes a new method for skin diagnose using near infrared as the light source (750nm~1300nm). Compared to UV and visible light, near infrared might penetrate relatively deep into biological soft tissue in some cases although NIR absorption property of tissue is not a constant for water, fat, and collagen etc. In the research, NIR absorption and scattering properties for skin are discussed firstly using the theory of molecule vibration from Quantum physics and Solid State Physics; secondly the practical model for various NIR absorption spectrum to skin tissue are done by optical simulation for human skin. Finally, experiments are done for further identification of proposed model for human skin and its reaction to near infrared. Results show success with identification from both theory and experiments.
Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery.
Haine, Aung Thu; Niidome, Takuro
2017-01-01
Gold nanorods are promising metals in several biomedical applications such as bioimaging, thermal therapy, and drug delivery. Gold nanorods have strong absorption bands in near-infrared (NIR) light region and show photothermal effects. Since NIR light can penetrate deeply into tissues, their unique optical, chemical, and biological properties have attracted considerable clinical interest. Gold nanorods are expected to act not only as on-demand thermal converters for photothermal therapy but also as mediators of a controlled drug-release system responding to light irradiation. In this review, we discuss current progress using gold nanorods as bioimaging platform, phototherapeutic agents, and drug delivery vehicles.
Robust Behavior Recognition in Intelligent Surveillance Environments.
Batchuluun, Ganbayar; Kim, Yeong Gon; Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung
2016-06-30
Intelligent surveillance systems have been studied by many researchers. These systems should be operated in both daytime and nighttime, but objects are invisible in images captured by visible light camera during the night. Therefore, near infrared (NIR) cameras, thermal cameras (based on medium-wavelength infrared (MWIR), and long-wavelength infrared (LWIR) light) have been considered for usage during the nighttime as an alternative. Due to the usage during both daytime and nighttime, and the limitation of requiring an additional NIR illuminator (which should illuminate a wide area over a great distance) for NIR cameras during the nighttime, a dual system of visible light and thermal cameras is used in our research, and we propose a new behavior recognition in intelligent surveillance environments. Twelve datasets were compiled by collecting data in various environments, and they were used to obtain experimental results. The recognition accuracy of our method was found to be 97.6%, thereby confirming the ability of our method to outperform previous methods.
Switchable Materials for Smart Windows.
Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J
2016-06-07
This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.
Physics-based subsurface visualization of human tissue.
Sharp, Richard; Adams, Jacob; Machiraju, Raghu; Lee, Robert; Crane, Robert
2007-01-01
In this paper, we present a framework for simulating light transport in three-dimensional tissue with inhomogeneous scattering properties. Our approach employs a computational model to simulate light scattering in tissue through the finite element solution of the diffusion equation. Although our model handles both visible and nonvisible wavelengths, we especially focus on the interaction of near infrared (NIR) light with tissue. Since most human tissue is permeable to NIR light, tools to noninvasively image tumors, blood vasculature, and monitor blood oxygenation levels are being constructed. We apply this model to a numerical phantom to visually reproduce the images generated by these real-world tools. Therefore, in addition to enabling inverse design of detector instruments, our computational tools produce physically-accurate visualizations of subsurface structures.
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images
Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek
2015-01-01
Abstract. Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures. PMID:26440760
Penetration depth measurement of near-infrared hyperspectral imaging light for milk powder
USDA-ARS?s Scientific Manuscript database
The increasingly common application of near-infrared (NIR) hyperspectral imaging technique to the analysis of food powders has led to the need for optical characterization of samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR hyperspectral imaging ligh...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Bennett E.; Roder, Paden B.; Hanson, Jennifer L.
2015-03-13
Photodynamic therapy has been used for several decades in the treatment of solid tumors through the generation of reactive singlet-oxygen species (1O2). Recently, nanoscale metallic and semiconducting materials have been reported to act as photosensitizing agents with additional diagnostic and therapeutic functionality. To date there have been no reports of observing the generation of singlet-oxygen at the level of single nanostructures, particularly at near infrared (NIR) wavelengths. Here we demonstrate that NIR laser-tweezers can be used to observe the formation of singlet-oxygen produced from individual silicon and gold nanowires via use of a commercially available reporting dye. The laser trapmore » also induces 2-photon photoexcitation of the dye following a chemical reaction with singlet oxygen. Corresponding 2-photon emission spectra confirms the generation of singlet oxygen from individual silicon nanowires at room temperature (30°C), suggesting a range of applications in understanding the impact of 1O2 on individual cancer cells.« less
Multispectral laser imaging for advanced food analysis
NASA Astrophysics Data System (ADS)
Senni, L.; Burrascano, P.; Ricci, M.
2016-07-01
A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.
2-photon laser scanning microscopy on native human cartilage
NASA Astrophysics Data System (ADS)
Martini, Joerg; Toensing, Katja; Dickob, Michael; Anselmetti, Dario
2005-08-01
Native hyaline cartilage from a human knee joint was directly investigated with laser scanning microscopy via 2-photon autofluorescence excitation with no additional staining or labelling protocols in a nondestructive and sterile manner. Using a femtosecond, near-infrared (NIR) Ti:Sa laser for 2-photon excitation and a dedicated NIR long distance objective, autofluorescence imaging and measurements of the extracellular matrix (ECM) tissue with incorporated chondrocytes were possible with a penetration depth of up to 460 μm inside the sample. Via spectral autofluorescence separation these experiments allowed the discrimination of chondrocytes from the ECM and therefore an estimate of chondrocytic cell density within the cartilage tissue to approximately 0.2-2•107cm3. Furthermore, a comparison of the relative autofluorescence signals between nonarthritic and arthritic cartilage tissue exhibited distinct differences in tissue morphology. As these morphological findings are in keeping with the macroscopic diagnosis, our measurement has the potential of being used in future diagnostic applications.
Thomas, Reju George; Moon, Myeong Ju; Surendran, Suchithra Poilil; Park, Hyeong Ju; Park, In-Kyu; Lee, Byeong-Il; Jeong, Yong Yeon
2018-02-15
Paclitaxel (PTX) loaded hydrophobically modified glycol chitosan (HGC) micelle is biocompatible in nature, but it requires cancer targeting ability and stimuli release property for better efficiency. To improve tumor retention and drug release characteristic of HGC-PTX nanomicelles, we conjugated cancer targeting heptamethine dye, MHI-148, which acts as an optical imaging agent, targeting moiety and also trigger on-demand drug release on application of NIR 808 nm laser. The amine group of glycol chitosan modified with hydrophobic 5β-cholanic acid and the carboxyl group of MHI-148 were bonded by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide chemistry. Paclitaxel was loaded to MHI-HGC nanomicelle by an oil-in-water emulsion method, thereby forming MHI-HGC-PTX. Comparison of near infrared (NIR) dyes, MHI-148, and Flamma-774 conjugated to HGC showed higher accumulation for MHI-HGC in 4T1 tumor and 4T1 tumor spheroid. In vitro studies showed high accumulation of MHI-HGC-PTX in 4T1 and SCC7 cancer cell lines compared to NIH3T3 cell line. In vivo fluorescence imaging of the 4T1 and SCC7 tumor showed peak accumulation of MHI-HGC-PTX at day 1 and elimination from the body at day 6. MHI-HGC-PTX showed good photothermal heating ability (50.3 °C), even at a low concentration of 33 μg/ml in 1 W/cm 2 808 nm laser at 1 min time point. Tumor reduction studies in BALB/c nude mice with SCC7 tumor showed marked reduction in MHI-HGC-PTX in the PTT group combined with photothermal therapy compared to MHI-HGC-PTX in the group without PTT. MHI-HGC-PTX is a cancer theranostic agent with cancer targeting and optical imaging capability. Our studies also showed that it has cancer targeting property independent of tumor type and tumor reduction property by combined photothermal and chemotherapeutic effects.
NASA Astrophysics Data System (ADS)
Qu, Jianan Y.; Suria, David; Wilson, Brian C.
1998-05-01
The primary goal of these studies was to demonstrate that NIR Raman spectroscopy is feasible as a rapid and reagentless analytic method for clinical diagnostics. Raman spectra were collected on human serum and urine samples using a 785 nm excitation laser and a single-stage holographic spectrometer. A partial east squares method was used to predict the analyte concentrations of interest. The actual concentrations were determined by a standard clinical chemistry. The prediction accuracy of total protein, albumin, triglyceride and glucose in human sera ranged from 1.5 percent to 5 percent which is greatly acceptable for clinical diagnostics. The concentration measurements of acetaminophen, ethanol and codeine inhuman urine have demonstrated the potential of NIR Raman technology in screening of therapeutic drugs and substances of abuse.
Kong, Xin Ying; Choo, Yen Yee; Chai, Siang-Piao; Soh, Ai Kah; Mohamed, Abdul Rahman
2016-12-06
Photocatalytic CO 2 reduction over the UV-Vis-NIR broad spectrum was realized for the first time. The presence of surface oxygen vacancy defects on Bi 2 WO 6 resulted in significant photocatalytic enhancement over the pristine counterpart under UV and visible light irradiation. Meanwhile, the photocatalytic responsiveness of Bi 2 WO 6 -OV was successfully extended to the NIR region.
2012-06-01
thin layer of Au. The unique property of Au NS is the tunability of its plasma resonance. Au NS can accumulate heat upon irradiation with NIR light...which is very useful for biomedical applications because tissues are transparent to NIR. Using NIR irradiation , the Au NS can be induced to...and 6161.5 Dalton for the product. Figure 1. (a) UV_VIS spectrum of Au nanoshell. Insect is TEM image of Au Nanoshell, scale bar: 20 nm. (b
Near-infrared scintillation of liquid argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, T.; Escobar, C. O.; Lippincott, W. H.
2016-03-03
Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7more » $$\\mu$$m < $$\\lambda$$; < 1.5$$\\mu$$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.« less
Laboratory and Field Spectroscopy of Moon analogue material
NASA Astrophysics Data System (ADS)
Offringa, Marloes; Foing, Bernard H.
2016-07-01
Samples derived from terrestrial analogue sites are studied to gain insight into lunar processes in their geological context (Foing, Stoker, Ehrenfreund, 2011). For this study samples from the volcanic region of the Eifel, Germany collected during our latest field campaigns in November 2015 and February 2016 (Foing et al., 2010), are analyzed with a variety of spectrometers. The aim is to obtain a database of analyzed samples that could be used as a reference for future in situ measurements. We also use a documented set of Moon-Mars relevant minerals curated at VU Amsterdam. We are using systematically for all samples UV-VIS and NIR reflectance spectrometers, and sporadically a Fourier Transform Infrared (FTIR) spectrometer, an X-Ray Fluorescence (XRF) spectrometer and a Raman laser spectrometer on control samples. Calibration of the UV-VIS and NIR reflectance spectrometers is the main focus of this research in order to obtain the clearest spectra. The calibration of the UV-VIS and NIR reflectance spectrometers requires the use of a good light source as well as suitable optical fibers to create a signal that covers the widest range in wavelengths available. To eliminate noise towards the edges of this range, multiple measurements are averaged and data is processed by dividing the signal by reference spectra. Obtained spectra can be tested for accuracy by comparing them with stationary laboratory spectrometers such as the FTIR spectrometer. The Raman, UV-VIS and NIR are also used in combination with the ExoGeoLab mock-up lander during field campaigns (Foing, Stoker, Ehrenfreund, 2011) also brought again to Eifel in February 2016, to prove the applicability of the equipment in the field. Acknowledgements: we thank Dominic Doyle for ESTEC optical lab support, Euan Monaghan (Leiden U) for FTIR measurement support, Wim van Westrenen for access to VU samples, Oscar Kamps (Utrecht U./ESTEC), Aidan Cowley (EAC) and Matthias Sperl (DLR) for support discussions
A goggle navigation system for cancer resection surgery
NASA Astrophysics Data System (ADS)
Xu, Junbin; Shao, Pengfei; Yue, Ting; Zhang, Shiwu; Ding, Houzhu; Wang, Jinkun; Xu, Ronald
2014-02-01
We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries. The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model. Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and surgical guidance.
Early optical detection of cerebral edema in vivo.
Gill, Amandip S; Rajneesh, Kiran F; Owen, Christopher M; Yeh, James; Hsu, Mike; Binder, Devin K
2011-02-01
Cerebral edema is a significant cause of morbidity and mortality in diverse disease states. Currently, the means to detect progressive cerebral edema in vivo includes the use of intracranial pressure (ICP) monitors and/or serial radiological studies. However, ICP measurements exhibit a high degree of variability, and ICP monitors detect edema only after it becomes sufficient to significantly raise ICP. The authors report the development of 2 distinct minimally invasive fiberoptic near-infrared (NIR) techniques able to directly detect early cerebral edema. Cytotoxic brain edema was induced in adult CD1 mice via water intoxication by intraperitoneal water administration (30% body weight intraperitoneally). An implantable dual-fiberoptic probe was stereotactically placed into the cerebral cortex and connected to optical source and detector hardware. Optical sources consisted of either broadband halogen illumination or a single-wavelength NIR laser diode, and the detector was a sensitive NIR spectrometer or optical power meter. In one subset of animals, a left-sided craniectomy was performed to obtain cortical biopsies for water-content determination to verify cerebral edema. In another subset of animals, an ICP transducer was placed on the contralateral cortex, which was synchronized to a computer and time stamped. Using either broadband illumination with NIR spectroscopy or single-wavelength laser diode illumination with optical power meter detection, the authors detected a reduction in NIR optical reflectance during early cerebral edema. The time intervals between water injection (Time Point 0), optical trigger (defined as a 2-SD change in optical reflectance from baseline), and defined threshold ICP values of 10, 15 and 20 mm Hg were calculated. Reduction in NIR reflectance occurred significantly earlier than any of the ICP thresholds (p < 0.001). Saline-injected control mice exhibited a steady baseline optical signal. There was a significant correlation between reflectance change and tissue specific gravity of the cortical biopsies, further validating the dual-fiberoptic probe as a direct measure of cerebral edema. Compared with traditional ICP monitoring, the aforementioned minimally invasive NIR techniques allow for the significantly earlier detection of cerebral edema, which may be of clinical utility in the identification and thus early treatment of cerebral edema.
NASA Astrophysics Data System (ADS)
Zhou, Fang; Zheng, Bin; Zhang, Ying; Wu, Yudong; Wang, Hanjie; Chang, Jin
2016-06-01
Combined therapy now plays a major role in cancer therapy due to the outcome of huge amounts of scientific experiments in recent years. However, all systems designed previously have been unable to simultaneously deliver therapy effects using several methods to produce a greater overall therapeutic effect. To solve the problem, we constructed a delivery system of near-infrared light (NIR)-triggered reactive oxygen species (ROS)-sensitive nanoparticles (NPs) for simultaneous chemotherapy and photodynamic therapy (PDT). The inner NP was assembled from a hydrophobic upconverting nanoparticle (UCN) core, with a thin silica shell linked with rose bengal (RB). Finally, a type of ROS-induced biodegradable polymer named poly-(1, 4-phenyleneacetone dimethylenethioketal) (PPADT) was self-assembled to form the NP as an outer shell to load the inner NP and doxorubicin (DOX). As the results show, the UCN core works as a transducer to convert deeply penetrating NIR to visible light for activating the photosensitizer RB for PDT under NIR excitation. In the meantime, the redundant ROS caused PPADT to biodegrade to release the loaded DOX, realizing simultaneous chemotherapy and PDT. Properties such as structure, size distribution, morphology, Fourier transform infrared spectroscopy, ROS production test, cell uptake test and combined therapy treatment effect in vitro were evaluated to prove NIR triggered ROS-sensitive (UCN/SiO2-RB + DOX)@PPADT NPs. Based on our data, this delivery system could provide an effective means to realize simultaneous chemotherapy and PDT through external NIR-triggered ROS sensitivity.
SIGNATURES OF GRAVITATIONAL INSTABILITY IN RESOLVED IMAGES OF PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ruobing; Vorobyov, Eduard; Pavlyuchenkov, Yaroslav
2016-06-01
Protostellar (class 0/I) disks, which have masses comparable to those of their nascent host stars and are fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and millimeter-wave interferometry, we explore the observational signatures of GI in disks using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and millimeter dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of astronomical units, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane; therefore,more » arms scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. In contrast, collapsed clumps formed by disk fragmentation have such strong local gravitational fields that their scattering photospheres are at lower altitudes; such fragments appear fainter than their surroundings in NIR scattered light. Spiral arms and streamers recently imaged in four FU Ori systems at NIR wavelengths resemble GI-induced structures and support the interpretation that FUors are gravitationally unstable protostellar disks. At millimeter wavelengths, both spirals and clumps appear brighter in thermal emission than the ambient disk and can be detected by ALMA at distances up to 0.4 kpc with one hour integration times at ∼0.″1 resolution. Collapsed fragments having masses ≳1 M {sub J} can be detected by ALMA within ∼10 minutes.« less
Qiu, Meng; Wang, Dou; Liang, Weiyuan; Liu, Liping; Zhang, Yin; Chen, Xing; Sang, David Kipkemoi; Xing, Chenyang; Li, Zhongjun; Dong, Biqin; Xing, Feng; Fan, Dianyuan; Bao, Shiyun; Zhang, Han; Cao, Yihai
2018-01-16
A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.
Thermal lensing in ocular media
NASA Astrophysics Data System (ADS)
Vincelette, Rebecca Lee
2009-12-01
This research was a collaborative effort between the Air Force Research Laboratory (AFRL) and the University of Texas to examine the laser-tissue interaction of thermal lensing induced by continuous-wave, CW, near-infrared, NIR, laser radiation in the eye and its influence on the formation of a retinal lesion from said radiation. CW NIR laser radiation can lead to a thermal lesion induced on the retina given sufficient power and exposure duration as related to three basic parameters; the percent of transmitted energy to, the optical absorption of, and the size of the laser-beam created at the retina. Thermal lensing is a well-known phenomenon arising from the optical absorption, and subsequent temperature rise, along the path of the propagating beam through a medium. Thermal lensing causes the laser-beam profile delivered to the retina to be time dependent. Analysis of a dual-beam, multidimensional, high-frame rate, confocal imaging system in an artificial eye determined the rate of thermal lensing in aqueous media exposed to 1110, 1130, 1150 and 1318-nm wavelengths was related to the power density created along the optical axis and linear absorption coefficient of the medium. An adaptive optics imaging system was used to record the aberrations induced by the thermal lens at the retina in an artificial eye during steady-state. Though the laser-beam profiles changed over the exposure time, the CW NIR retinal damage thresholds between 1110--1319-nm were determined to follow conventional fitting algorithms which neglected thermal lensing. A first-order mathematical model of thermal lensing was developed by conjoining an ABCD beam propagation method, Beer's law of attenuation, and a solution to the heat-equation with respect to radial diffusion. The model predicted that thermal lensing would be strongest for small (< 4-mm) 1/e2 laser-beam diameters input at the corneal plane and weakly transmitted wavelengths where less than 5% of the energy is delivered to the retina. The model predicted thermal lensing would cause the retinal damage threshold for wavelengths above 1300-nm to increase with decreasing beam-diameters delivered to the corneal plane, a behavior which was opposite of equivalent conditions simulated without thermal lensing.
Wang, Ying; Lin, Xudong; Chen, Xi; Chen, Xian; Xu, Zhen; Zhang, Wenchong; Liao, Qinghai; Duan, Xin; Wang, Xin; Liu, Ming; Wang, Feng; He, Jufang; Shi, Peng
2017-10-01
Many nanomaterials can be used as sensors or transducers in biomedical research and they form the essential components of transformative novel biotechnologies. In this study, we present an all-optical method for tetherless remote control of neural activity using fully implantable micro-devices based on upconversion technology. Upconversion nanoparticles (UCNPs) were used as transducers to convert near-infrared (NIR) energy to visible light in order to stimulate neurons expressing different opsin proteins. In our setup, UCNPs were packaged in a glass micro-optrode to form an implantable device with superb long-term biocompatibility. We showed that remotely applied NIR illumination is able to reliably trigger spiking activity in rat brains. In combination with a robotic laser projection system, the upconversion-based tetherless neural stimulation technique was implemented to modulate brain activity in various regions, including the striatum, ventral tegmental area, and visual cortex. Using this system, we were able to achieve behavioral conditioning in freely moving animals. Notably, our microscale device was at least one order of magnitude smaller in size (∼100 μm in diameter) and two orders of magnitude lighter in weight (less than 1 mg) than existing wireless optogenetic devices based on light-emitting diodes. This feature allows simultaneous implantation of multiple UCNP-optrodes to achieve modulation of brain function to control complex animal behavior. We believe that this technology not only represents a novel practical application of upconversion nanomaterials, but also opens up new possibilities for remote control of neural activity in the brains of behaving animals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measurement of refractive index of hemoglobin in the visible/NIR spectral range
NASA Astrophysics Data System (ADS)
Lazareva, Ekaterina N.; Tuchin, Valery V.
2018-03-01
This study is focused on the measurements of the refractive index of hemoglobin solutions in the visible/near-infrared (NIR) spectral range at room temperature for characteristic laser wavelengths: 480, 486, 546, 589, 644, 656, 680, 930, 1100, 1300, and 1550 nm. Measurements were performed using the multiwavelength Abbe refractometer. Aqua hemoglobin solutions of different concentrations obtained from human whole blood were investigated. The specific increment of refractive index on hemoglobin concentration and the Sellmeier coefficients were calculated.
Progress in the Field of Constructing Near-Infrared Light-Responsive Drug Delivery Platforms.
Zhou, Fang; Wang, Hanjie; Chang, Jin
2016-03-01
Stimuli-responsive materials have taken replace of traditional drug carriers due to their ability to achieve controlled release of their encapsulated contents. A variety of sensitive materials, such as polymers that respond to pH, light, and magnetic fields, are widely used to construct drug carriers, and achieved good results. Specifically, near-infrared light (NIR) responsive materials are of particular interest in drug delivery, as NIR can penetrate body tissue and is minimally absorbed by the body's water and hemoglobin and is less harmful to healthy cells than UV or visible light. Thus, the near-infrared excitation drug delivery systems (NIRDDSs) have some essential advantages just like being efficient to kill tumor cells, accurate to achieve the tumor sites and less damage to human body. Also, in the process of building the carriers, we may achieve a combination of controlled release chemotherapy, photothermal therapy (PTT) or photodynamic therapy (PDT). In addition, besides utilizing as drug delivery platforms, some carriers can achieve multifunctional tumor diagnosis and treatment, such as magnetic resonance imaging, optical imaging, drug carriers and PTT. In this review, based on the mechanism of NIR, we highlight diverse near-infrared light-responsive drug delivery platforms and recent advances in the development of NIRDDSs for cancer therapy primarily.
Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin
2016-04-28
Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.
Wan, Dehui; Chen, Hsuen-Li; Tseng, Shao-Chin; Wang, Lon A; Chen, Yung-Pin
2010-01-26
In this paper, we report a new optical data storage method: photomodification of hollow gold nanoparticle (HGN) monolayers induced by one-shot deep-ultraviolet (DUV) KrF laser recording. As far as we are aware, this study is the first to apply HGNs in optical data storage and also the first to use a recording light source for the metal nanoparticles (NPs) that is not a surface plasmon resonance (SPR) wavelength. The short wavelength of the recording DUV laser improved the optical resolution dramatically. We prepared HGNs exhibiting two absorbance regions: an SPR peak in the near-infrared (NIR) region and an intrinsic material extinction in the DUV region. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue shift of the SPR peak. Employing this approach, we demonstrated its patterning ability with a resolving power of a half-micrometer (using a phase mask) and developed a readout method (using a blue-ray laser microscope). Moreover, we prepared large-area, uniform patterns of monolayer HGNs on various substrates (glass slides, silicon wafers, flexible plates). If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs (e.g., compact discs).
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Pu, Yang; Sordillo, P. P.; Budansky, Yury; Alfano, Robert R.
2014-03-01
Near-infrared (NIR) light in the wavelengths of 700 nm to 2,000 nm has three NIR optical, or therapeutic, windows, which allow for deeper depth penetration in scattering tissue media. Microfractures secondary to repetitive stress, particularly in the lower extremities, are an important problem for military recruits and athletes. They also frequently occur in the elderly, or in patients taking bisphosphonates or denosumab. Microfractures can be early predictors of a major bone fracture. Using the second and third NIR therapeutic windows, we investigated the results from images of chicken bone and human tibial bone with microfractures and non-displaced fractures with and without overlying tissues of various thicknesses. Images of bone with microfractures and non-displaced fractures with tissue show scattering photons in the third NIR window with wavelengths between 1,650 nm and 1,870 nm are diminished and absorption is increased slightly from and second NIR windows. Results from images of fractured bones show the attenuation length of light through tissue in the third optical window to be larger than in the second therapeutic window. Use of these windows may aid in the detection of bone microfractures, and thus reduce the incidence of major bone fracture in susceptible groups.
Optical diagnosis of testicular torsion: feasibility and methodology
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Macnab, Andrew; Stothers, Lynn; Kajbafzadeh, A. M.
2014-03-01
Background: Torsion of the testis compromises blood flow through the spermatic cord; testicular ischemia results which if not diagnosed promptly and corrected surgically irrevocably damages the testis. Current diagnostic modalities aimed at rationalizing surgical exploration by demonstrating interruption of spermatic cord blood flow or testicular ischemia have limited applicability. Near infrared spectroscopy (NIRS) offers a non-invasive optical method for detection of ischemia; continuous wave and frequency domain devices have been used experimentally; no device customized for clinical use has been designed. Methods: A miniature spatially resolved NIRS device with light emitting diode light source was applied over the right and left spermatic cord and the difference in oxygen saturation between the two sides measured. Results: In a 14-month old boy with a history of unilateral testicular pain color Doppler ultrasonography was equivocal but the NIRS-derived tissue oxygen saturation index (TSI) was significantly reduced on the left side. Confirmation of torsion of the left testicle was made surgically. Conclusions: Spatially resolved NIRS monitoring of spermatic cord oxygen saturation is feasible in children, adding to prior studies of testicular oxygen saturation in adults. Customized device design and further clinical trials would enhance the applicability of NIRS as a diagnostic entity for torsion.
Maia, A M A; Karlsson, L; Margulis, W; Gomes, A S L
2011-10-01
The aim of this paper was to evaluate a transillumination (TI) system using near-infrared (NIR) light and bitewing radiographs for the detection of early approximal enamel caries lesions. Mesiodistal sections of teeth (n = 14) were cut with various thicknesses from 1.5 mm to 4.75 mm. Both sides of each section were included, 17 approximal surfaces with natural enamel caries and 11 surfaces considered intact. The approximal surfaces were illuminated by NIR light and X-ray. Captured images were analysed by two calibrated specialists in radiology, and re-analysed after 6 months using stereomicroscope images as a gold standard. The interexaminer reliability (Kappa test statistic) for the NIR TI technique showed moderate agreement on first (0.55) and second (0.48) evaluation, and low agreement for bitewing radiographs on first (0.26) and second (0.32) evaluation. In terms of accuracy, the sensitivity for the NIR TI system was 0.88 and the specificity was 0.72. For the bitewing radiographs the sensitivity ranged from 0.35 to 0.53 and the specificity ranged from 0.50 to 0.72. In the same samples and conditions tested, NIR TI images showed reliability and the enamel caries surfaces were better identified than on dental radiographs.
Maia, A M A; Karlsson, L; Margulis, W; Gomes, A S L
2011-01-01
Objectives The aim of this paper was to evaluate a transillumination (TI) system using near-infrared (NIR) light and bitewing radiographs for the detection of early approximal enamel caries lesions. Methods Mesiodistal sections of teeth (n = 14) were cut with various thicknesses from 1.5 mm to 4.75 mm. Both sides of each section were included, 17 approximal surfaces with natural enamel caries and 11 surfaces considered intact. The approximal surfaces were illuminated by NIR light and X-ray. Captured images were analysed by two calibrated specialists in radiology, and re-analysed after 6 months using stereomicroscope images as a gold standard. Results The interexaminer reliability (Kappa test statistic) for the NIR TI technique showed moderate agreement on first (0.55) and second (0.48) evaluation, and low agreement for bitewing radiographs on first (0.26) and second (0.32) evaluation. In terms of accuracy, the sensitivity for the NIR TI system was 0.88 and the specificity was 0.72. For the bitewing radiographs the sensitivity ranged from 0.35 to 0.53 and the specificity ranged from 0.50 to 0.72. Conclusion In the same samples and conditions tested, NIR TI images showed reliability and the enamel caries surfaces were better identified than on dental radiographs. PMID:21960400
Wound size measurement of lower extremity ulcers using segmentation algorithms
NASA Astrophysics Data System (ADS)
Dadkhah, Arash; Pang, Xing; Solis, Elizabeth; Fang, Ruogu; Godavarty, Anuradha
2016-03-01
Lower extremity ulcers are one of the most common complications that not only affect many people around the world but also have huge impact on economy since a large amount of resources are spent for treatment and prevention of the diseases. Clinical studies have shown that reduction in the wound size of 40% within 4 weeks is an acceptable progress in the healing process. Quantification of the wound size plays a crucial role in assessing the extent of healing and determining the treatment process. To date, wound healing is visually inspected and the wound size is measured from surface images. The extent of wound healing internally may vary from the surface. A near-infrared (NIR) optical imaging approach has been developed for non-contact imaging of wounds internally and differentiating healing from non-healing wounds. Herein, quantitative wound size measurements from NIR and white light images are estimated using a graph cuts and region growing image segmentation algorithms. The extent of the wound healing from NIR imaging of lower extremity ulcers in diabetic subjects are quantified and compared across NIR and white light images. NIR imaging and wound size measurements can play a significant role in potentially predicting the extent of internal healing, thus allowing better treatment plans when implemented for periodic imaging in future.
Photo-induced heat generation in non-plasmonic nanoantennas.
Danesi, Stefano; Gandolfi, Marco; Carletti, Luca; Bontempi, Nicolò; De Angelis, Costantino; Banfi, Francesco; Alessandri, Ivano
2018-05-24
Light-to-heat conversion in non-plasmonic, high refractive index nanoantennas is a key topic for many applications, including Raman sensing, laser writing, nanofabrication and photo-thermal therapy. However, heat generation and propagation in non-plasmonic antennas is increasingly debated and contradictory results have been reported so far. Here we report a finite element analysis of the steady-state temperature distribution and heat flow in SiO2/Si core/shell systems (silicon nanoshells) irradiated with different continuous wave lasers (λ = 532, 633 and 785 nm), under real working conditions. The complex interplay among the optical properties, morphology, degree of crystallinity of the nanoshells, thickness dependence of thermal conductivity and interactions with the substrate has been elucidated. This study reveals that all of these parameters can be appropriately combined for obtaining either stable nanoshells for Raman sensing or highly efficient sources of local heating. The optimal balance between thermal stability and field enhancement was found for crystalline Si shell layers with thicknesses ranging from 40 to 60 nm, irradiated by a NIR laser source. On the other hand, non-conformal amorphous or crystalline shell layers with a thickness >50 nm can reach a very high local temperature (above 1000 K) when irradiated with a low power density (less than 1 mW μm-2) laser sources. This work provides a general approach for an extensive investigation of the opto-thermal properties of high-index nanoantennas.
Fu, Bo; Ji, Xiaoming; Zhao, Mingqin; He, Fan; Wang, Xiaoli; Wang, Yiding; Liu, Pengfei; Niu, Lu
2016-09-01
Flavonoids are important secondary metabolites in plants regulated by the environment. To analyze the effect of light quality on the accumulation of flavonoids, we performed a rapid analysis of flavonoids in extracts of tobacco leaves using UHPLC-QTOF. A total of 12 flavonoids were detected and identified in tobacco leaves, which were classified into flavonoid methyl derivatives and flavonoid glycoside derivatives according to the groups linked to the flavonoid core. Correlation analysis was further conducted to investigate the effect of different wavelengths of light on their accumulation. The content of flavonoid methyl derivatives was positively correlated with the proportions of far-red light (FR; 716-810nm) and near-infrared light (NIR; 810-2200nm) in the sunlight spectrum and negatively correlated with the proportion of ultraviolet (UV-A; 350-400nm) and the red/far-red ratio (R/FR). By contrast, the content of flavonoid glycoside derivatives was positively correlated with the proportion of UV-A and the R/FR, and negatively correlated with FR and NIR. The results indicated that light quality with higher proportions of FR and NIR increases the activity of flavonoid methyltransferases but suppresses the activity of flavonoid glycoside transferases. While a high proportion of UV-A and a high R/FR can increase flavonoid glycoside transferase activity but suppress flavonoid methyltransferase activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamic Features for Iris Recognition.
da Costa, R M; Gonzaga, A
2012-08-01
The human eye is sensitive to visible light. Increasing illumination on the eye causes the pupil of the eye to contract, while decreasing illumination causes the pupil to dilate. Visible light causes specular reflections inside the iris ring. On the other hand, the human retina is less sensitive to near infra-red (NIR) radiation in the wavelength range from 800 nm to 1400 nm, but iris detail can still be imaged with NIR illumination. In order to measure the dynamic movement of the human pupil and iris while keeping the light-induced reflexes from affecting the quality of the digitalized image, this paper describes a device based on the consensual reflex. This biological phenomenon contracts and dilates the two pupils synchronously when illuminating one of the eyes by visible light. In this paper, we propose to capture images of the pupil of one eye using NIR illumination while illuminating the other eye using a visible-light pulse. This new approach extracts iris features called "dynamic features (DFs)." This innovative methodology proposes the extraction of information about the way the human eye reacts to light, and to use such information for biometric recognition purposes. The results demonstrate that these features are discriminating features, and, even using the Euclidean distance measure, an average accuracy of recognition of 99.1% was obtained. The proposed methodology has the potential to be "fraud-proof," because these DFs can only be extracted from living irises.
Common aperture multispectral spotter camera: Spectro XR
NASA Astrophysics Data System (ADS)
Petrushevsky, Vladimir; Freiman, Dov; Diamant, Idan; Giladi, Shira; Leibovich, Maor
2017-10-01
The Spectro XRTM is an advanced color/NIR/SWIR/MWIR 16'' payload recently developed by Elbit Systems / ELOP. The payload's primary sensor is a spotter camera with common 7'' aperture. The sensor suite includes also MWIR zoom, EO zoom, laser designator or rangefinder, laser pointer / illuminator and laser spot tracker. Rigid structure, vibration damping and 4-axes gimbals enable high level of line-of-sight stabilization. The payload's list of features include multi-target video tracker, precise boresight, strap-on IMU, embedded moving map, geodetic calculations suite, and image fusion. The paper describes main technical characteristics of the spotter camera. Visible-quality, all-metal front catadioptric telescope maintains optical performance in wide range of environmental conditions. High-efficiency coatings separate the incoming light into EO, SWIR and MWIR band channels. Both EO and SWIR bands have dual FOV and 3 spectral filters each. Several variants of focal plane array formats are supported. The common aperture design facilitates superior DRI performance in EO and SWIR, in comparison to the conventionally configured payloads. Special spectral calibration and color correction extend the effective range of color imaging. An advanced CMOS FPA and low F-number of the optics facilitate low light performance. SWIR band provides further atmospheric penetration, as well as see-spot capability at especially long ranges, due to asynchronous pulse detection. MWIR band has good sharpness in the entire field-of-view and (with full HD FPA) delivers amount of detail far exceeding one of VGA-equipped FLIRs. The Spectro XR offers level of performance typically associated with larger and heavier payloads.
NASA Astrophysics Data System (ADS)
Liu, Ting; Tian, Jiguang; Chen, Zhaolong; Liang, Ying; Liu, Jiao; Liu, Si; Li, Huihui; Zhan, Jinhua; Yang, Xingsheng
2014-08-01
Photothermal ablation (PTA) is a promising avenue in the area of cancer therapeutics that destroys tumor cells through conversion of near-infrared (NIR) laser light to heat. Hollow gold nanospheres (HGNs) are one of the few materials that are capable of converting light to heat and have been previously used for photothermal ablation studies. Selective delivery of functional nanoparticles to the tumor site is considered as an effective therapeutic approach. In this paper, we demonstrated the anti-cancer potential of HGNs. HGNs were conjugated with monoclonal antibody (anti-TROP2) in order to target cervical cancer cells (HeLa) that contain abundant trophoblast cell surface antigen 2 (TROP2) on the cell surface. The efficient uptake and intracellular location of these functionalized HGNs were studied through application of inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy (TEM). Cytotoxicity induced by PTA was measured using CCK-8 assay. HeLa cells incubated with naked HGNs (0.3-3 nmol L-1) within 48 h did not show obvious cytotoxicity. Under laser irradiation at suitable power, anti-TROP2 conjugated HGNs achieved significant tumor cell growth inhibition in comparison to the effects of non-specific PEGylated HGNs (P < 0.05). γH2AX assay results revealed higher occurrences of DNA-DSBs with anti-TROP2 conjugated HGNs plus laser radiation as compared to treatment with laser alone. Flow cytometry analysis showed that the amount of cell apoptosis was increased after laser irradiation with anti-TROP2 conjugated HGNs (P < 0.05). Anti-TROP2 conjugated HGNs resulted in down-regulation of Bcl-2 expression and up-regulation of Bax expression. Our study results confirmed that anti-TROP2 conjugated HGNs can selectively destroy cervical cancer cells through inducing its apoptosis and DNA damages. We propose that HGNs have the potentials to mediate targeted cancer treatment.
Damage Thresholds for Exposure to NIR and Blue Lasers in an In Vitro RPE Cell System
2006-07-01
damage , and to identify antioxidants capable of protecting these cells from laser-in- duced cell death. MATERIALS AND METHODS The human RPE cell...melanosomes in blue laser-induced damage in vitro, which confirms the view that melanin plays an important role in photochemical damage mechanisms in...community has only a validating role in the animal ED50 damage threshold data used by safety committees. Systems of in vitro analysis must be
Wang, Lei; Li, Baoqiang; Xu, Feng; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu
2017-10-15
Innovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation. The thermo-responsive unit (poly N-isopropylacrylamide) endowed chitosan hydrogel with temperature-triggered volume shrinkage and reversible swelling/de-swelling behavior. The chitosan hybrid hydrogel embedded with photothermal carbon exhibited distinct NIR-triggered volume shrinkage (∼42% shrinkage) in response to temperature elevation as induced by NIR laser irradiation. As a demonstration, doxorubicin release rate was accelerated and approximately 40 times higher than that from non-irradiated hydrogels. The UV-crosslinkable and thermal-responsive hybrid hydrogel served as in situ forming hydrogel-based drug depot is developed for NIR-triggered localized on-demand release. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transmission in near-infrared optical windows for deep brain imaging.
Shi, Lingyan; Sordillo, Laura A; Rodríguez-Contreras, Adrián; Alfano, Robert
2016-01-01
Near-infrared (NIR) radiation has been employed using one- and two-photon excitation of fluorescence imaging at wavelengths 650-950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR-low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100-1,350 nm), third (III, 1,600-1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kong, Xiangduo; Mohanty, Samarendra K.; Stephens, Jared; Heale, Jason T.; Gomez-Godinez, Veronica; Shi, Linda Z.; Kim, Jong-Soo; Yokomori, Kyoko; Berns, Michael W.
2009-01-01
Proper recognition and repair of DNA damage is critical for the cell to protect its genomic integrity. Laser microirradiation ranging in wavelength from ultraviolet A (UVA) to near-infrared (NIR) can be used to induce damage in a defined region in the cell nucleus, representing an innovative technology to effectively analyze the in vivo DNA double-strand break (DSB) damage recognition process in mammalian cells. However, the damage-inducing characteristics of the different laser systems have not been fully investigated. Here we compare the nanosecond nitrogen 337 nm UVA laser with and without bromodeoxyuridine (BrdU), the nanosecond and picosecond 532 nm green second-harmonic Nd:YAG, and the femtosecond NIR 800 nm Ti:sapphire laser with regard to the type(s) of damage and corresponding cellular responses. Crosslinking damage (without significant nucleotide excision repair factor recruitment) and single-strand breaks (with corresponding repair factor recruitment) were common among all three wavelengths. Interestingly, UVA without BrdU uniquely produced base damage and aberrant DSB responses. Furthermore, the total energy required for the threshold H2AX phosphorylation induction was found to vary between the individual laser systems. The results indicate the involvement of different damage mechanisms dictated by wavelength and pulse duration. The advantages and disadvantages of each system are discussed. PMID:19357094
Preliminary Study for Designing a Novel Vein-Visualizing Device
Kim, Donghoon; Kim, Yujin; Yoon, Siyeop; Lee, Deukhee
2017-01-01
Venipuncture is an important health diagnosis process. Although venipuncture is one of the most commonly performed procedures in medical environments, locating the veins of infants, obese, anemic, or colored patients is still an arduous task even for skilled practitioners. To solve this problem, several devices using infrared light have recently become commercially available. However, such devices for venipuncture share a common drawback, especially when visualizing deep veins or veins of a thick part of the body like the cubital fossa. This paper proposes a new vein-visualizing device applying a new penetration method using near-infrared (NIR) light. The light module is attached directly on to the declared area of the skin. Then, NIR beam is rayed from two sides of the light module to the vein with a specific angle. This gives a penetration effect. In addition, through an image processing procedure, the vein structure is enhanced to show it more accurately. Through a phantom study, the most effective penetration angle of the NIR module is decided. Additionally, the feasibility of the device is verified through experiments in vivo. The prototype allows us to visualize the vein patterns of thicker body parts, such as arms. PMID:28178227
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-01-01
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-05-10
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.
Scarapicchia, Vanessa; Brown, Cassandra; Mayo, Chantel; Gawryluk, Jodie R.
2017-01-01
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function. PMID:28867998
Wu, J; Fried, D
2009-03-01
Sound enamel manifests peak transparency in the near-IR (NIR) at 1310-nm, therefore the near-IR is ideally suited for high contrast imaging of dental caries. The purpose of this study was to acquire images of early demineralized enamel on the buccal and occlusal surfaces of extracted human teeth using NIR reflectance imaging and compare the contrast of those images with the contrast of images taken using other methods. Fifteen human molars were used in this in vitro study. Teeth were painted with a clear acid-resistant varnish, leaving two 2 mm x 2 mm windows on the buccal and occlusal surfaces of each tooth for demineralization. Artificial lesions were produced in the exposed windows after a 2-day exposure to a demineralizing solution at pH 4.5. Lesions were imaged using NIR transillumination, NIR and visible light reflectance, and fluorescence imaging methods. Crossed polarizers were used where appropriate to improve contrast. Polarization sensitive optical coherence tomography (PS-OCT) was also used to non-destructively assess the depth and severity of demineralization in each sample window. NIR reflectance imaging had the highest image contrast for both the buccal and occlusal groups and it was significantly higher contrast than visible light reflectance (P < 0.05). The results of the study suggest that NIR reflectance imaging is a promising new method for acquiring high contrast images of early demineralization on tooth surfaces. Copyright 2009 Wiley-Liss, Inc.
Transillumination and reflectance probes for in vivo near-IR imaging of dental caries
NASA Astrophysics Data System (ADS)
Simon, Jacob C.; Lucas, Seth A.; Staninec, Michal; Tom, Henry; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel
2014-02-01
Previous studies have demonstrated the utility of near infrared (NIR) imaging for caries detection employing transillumination and reflectance imaging geometries. Three intra-oral NIR imaging probes were fabricated for the acquisition of in vivo, real time videos using a high definition InGaAs SWIR camera and near-IR broadband light sources. Two transillumination probes provide occlusal and interproximal images using 1300-nm light where water absorption is low and enamel manifests the highest transparency. A third reflectance probe utilizes cross polarization and operates at >1500-nm, where water absorption is higher which reduces the reflectivity of sound tissues, significantly increasing lesion contrast. These probes are being used in an ongoing clinical study to assess the diagnostic performance of NIR imaging for the detection of caries lesions in teeth scheduled for extraction for orthodontic reasons.
Balconi, Michela; Vanutelli, Maria Elide
2016-01-01
The brain activity, considered in its hemodynamic (optical imaging: functional Near-Infrared Spectroscopy, fNIRS) and electrophysiological components (event-related potentials, ERPs, N200) was monitored when subjects observed (visual stimulation, V) or observed and heard (visual + auditory stimulation, VU) situations which represented inter-species (human-animal) interactions, with an emotional positive (cooperative) or negative (uncooperative) content. In addition, the cortical lateralization effect (more left or right dorsolateral prefrontal cortex, DLPFC) was explored. Both ERP and fNIRS showed significant effects due to emotional interactions which were discussed at light of cross-modal integration effects. The significance of inter-species effect for the emotional behavior was considered. In addition, hemodynamic and EEG consonant results and their value as integrated measures were discussed at light of valence effect. PMID:26976052
Building Computer Free Sorting Devices Based on Reflection of Visible and NIR Wavelengths
USDA-ARS?s Scientific Manuscript database
NIR and visible light reflection from food products has long been the basis of scientific research for the detection of defects and contaminants as well as food quality attributes. Most of the research in this area reports derived calibration equations that indicate the potential of using the techno...
Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey
2017-01-01
Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm2. We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications. PMID:28663912
Light responsive hybrid nanofibres for on-demand therapeutic drug and cell delivery.
Li, Yan-Fang; Slemming-Adamsen, Peter; Wang, Jing; Song, Jie; Wang, Xueqin; Yu, Ying; Dong, Mingdong; Chen, Chunying; Besenbacher, Flemming; Chen, Menglin
2017-08-01
Smart materials for on-demand delivery of therapeutically active agents are challenging in pharmaceutical and biomaterials science. In the present study, we report hybrid nanofibres capable of being reversibly controlled to pulsatile deliver both therapeutic drugs and cells on-demand of near-infrared (NIR) light. The nanofibres, fabricated by co-electrospinning of poly (N-isopropylacrylamide), silica-coated gold nanorods and polyhedral oligomeric silsesquinoxanes have, for the first time, demonstrated rapid, reversible large-volume changes of 83% on-demand with NIR stimulation, with retained nanofibrous morphology. Combining with the extracellular matrix-mimicking fibrillary properties, the nanofibres achieved accelerated release of model drug or cells on demand with NIR triggering. The release of the model drug doxorubicin demonstrated normal anti-cancer efficacy by reducing the viability of human cervical cancer HeLa cells by 97% in 48 h. In parallel, the fibres allowed model cell NIH3T3 fibroblast entrapment, adhesion, proliferation, differentiation and, upon NIR irradiation, cell release with undisturbed cellular function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Application of NIR spectroscopy in the assessment of diabetic foot disorders
NASA Astrophysics Data System (ADS)
Schleicher, Eckhard; Hampel, Uwe; Freyer, Richard
2001-10-01
Diabetic foot syndrome (DFS) is a common sequel of long-term diabetes mellitus. There is a urgent need of noninvasive, objective and quantitative diagnostic tools to assess tissue viability and perfusion for a successful therapy. NIR spectroscopy seems to be qualified to measure local capillary hemoglobin saturation of the outer extremities in patients with progressive diabetic disorders. We investigate how NIR spectroscopy can be applied to the assessment of diabetic foot problems such as neuropathy and angiopathy. Thereby we use spatially resolved spectroscopy in conjunction with a specially developed continuous-wave laser spectrometer. Comparison of intra- and interindividual measurements is expected to yield quantitative measures of local tissue viability which is a prerequisite for a successful therapy.
Mignon, Charles; Uzunbajakava, Natallia E; Castellano-Pellicena, Irene; Botchkareva, Natalia V; Tobin, Desmond J
2018-04-17
The past decade has witnessed a rapid expansion of photobiomodulation (PBM), demonstrating encouraging results for the treatment of cutaneous disorders. Confidence in this approach, however, is impaired not only by a lack of understanding of the light-triggered molecular cascades but also by the significant inconsistency in published experimental outcomes, design of the studies and applied optical parameters. This study aimed at characterizing the response of human dermal fibroblast subpopulations to visible and near-infrared (NIR) light in an attempt to identify the optical treatment parameters with high potential to address deficits in aging skin and non-healing chronic wounds. Primary human reticular and papillary dermal fibroblasts (DF) were isolated from the surplus of post-surgery human facial skin. An in-house developed LED-based device was used to irradiate cell cultures using six discrete wavelengths (450, 490, 550, 590, 650, and 850 nm). Light dose-response at a standard oxygen concentration (20%) at all six wavelengths was evaluated in terms of cell metabolic activity. This was followed by an analysis of the transcriptome and procollagen I production at a protein level, where cells were cultured in conditions closer to in vivo at 2% environmental oxygen and 2% serum. Furthermore, the production of reactive oxygen species (ROS) was accessed using real-time fluorescence confocal microscopy imaging. Here, production of ROS in the presence or absence of antioxidants, as well as the cellular localization of ROS, was evaluated. In terms of metabolic activity, consecutive irradiation with short-wavelength light (⇐530 nm) exerted an inhibitory effect on DF, while longer wavelengths (>=590 nm) had essentially a neutral effect. Cell behavior following treatment with 450 nm was biphasic with two distinct states: inhibitory at low- to mid- dose levels (<=30 J/cm 2 ), and cytotoxic at higher dose levels (>30 J/cm 2 ). Cell response to blue light was accompanied by a dose-dependent release of ROS that was localized in the perinuclear area close to mitochondria, which was attenuated by an antioxidant. Overall, reticular DFs exhibited a greater sensitivity to light treatment at the level of gene expression than did papillary DFs, with more genes significantly up- or down- regulated. At the intra-cellular signaling pathway level, the up- or down- regulation of vital pathways was observed only for reticular DF, after treatment with 30 J/cm 2 of blue light. At the cellular level, short visible wavelengths exerted a greater inhibitory effect on reticular DF. Several genes involved in the TGF-β signaling pathway were also affected. In addition, procollagen I production was inhibited. By contrast, 850 nm near-infrared (NIR) light (20 J/cm 2 ) exerted a stimulatory metabolic effect in these cells, with no detectable intracellular ROS formation. Here too, reticular DF were more responsive than papillary DF. This stimulatory effect was only observed under in vivo-like low oxygen conditions, corresponding to normal dermal tissue oxygen levels (approximately 2%). This study highlights a differential impact of light on human skin cells with upregulation of metabolic activity with NIR light, and inhibition of pro-collagen production and proliferation in response to blue light. These findings open-up new avenues for developing therapies for different cutaneous conditions (e.g., treatment of keloids and fibrosis) or differential therapy at distinct stages of wound healing. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene
High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or othermore » photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.« less