Science.gov

Sample records for nitric oxide pathway

  1. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    PubMed

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development.

  2. New regulatory, signaling pathways, and sources of nitric oxide.

    PubMed

    Pluta, Ryszard M

    2011-01-01

    Discovered in 1980 by the late Robert F. Furchgott, endothelium-derived relaxing factor, nitric oxide (NO), has been in the forefront of vascular research for several decades. What was originally a narrow approach, has been significantly widened due to major advances in understanding the chemical and biological properties of NO as well as its signaling pathways and discovering new sources of this notorious free radical gas. In this review, recent discoveries regarding NO and their implications on therapy for delayed cerebral vasospasm are presented.

  3. Oscillations of nitric oxide concentration in the perturbed denitrification pathway of Paracoccus denitrificans.

    PubMed Central

    Kucera, I

    1992-01-01

    The metabolism of nitric oxide in Paracoccus denitrificans has been studied using a Clark-type electrode. The uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) and the SH reagent N-ethylmaleimide, both of which released nitric oxide from cells respiring nitrite, were found to be efficient inhibitors of nitric oxide reductase activity. Control experiments with another uncoupler, pentachlorophenol, showed that the inhibitory effect of CCCP was not the result of a decrease in membrane potential. The denitrification pathway in cells with partly inhibited nitric oxide reductase, or in a reconstituted system containing purified nitric reductase and membrane vesicles, exhibited marked sustained oscillations of nitric oxide concentration. The occurrence of the oscillations was strictly dependent on the initial concentration of nitrite. The observed oscillatory kinetics is considered to reflect two regulatory signals destabilizing the denitrification pathway, namely the inhibition of nitric oxide reductase by nitric oxide and/or by nitrite. PMID:1325776

  4. [Nitric oxide].

    PubMed

    Rovira, I

    1995-01-01

    Nitric oxide was identified as the relaxing factor derived from the endothelium in 1987. Nitric oxide synthesis allows the vascular system to maintain a state of vasodilation, thereby regulating arterial pressure. Nitric oxide is also found in platelets, where it inhibits adhesion and aggregation; in the immune system, where it is responsible for the cytotoxic action of macrophages; and in the nervous system, where it acts as neurotransmitter. A deficit in endogenous synthesis of nitric oxide contributes to such conditions as essential arterial hypertension, pulmonary hypertension and heart disease. An excess of nitrous oxide induced by endotoxins and cytokinins, meanwhile, is believed to be responsible for hypotension in septic shock and for hyperdynamic circulatory state in cirrhosis of the liver. Nitric oxide has also been implicated in the rejection of transplanted organs and in cell damage after reperfusion. Inhaled nitrous oxide gas reduces pulmonary hypertension without triggering systemic hypotension in both experimental and clinical conditions. It also produces selective vasodilation when used to ventilate specific pulmonary areas, thereby improving the ventilation/perfusion ratio and, hence, oxygenation. Nitric oxide inhalation is effective in pulmonary hypertension-coincident with chronic obstructive lung disease, in persistent neonatal pulmonary hypertension and in pulmonary hypertension with congenital or acquired heart disease. Likewise, it reduces intrapulmonary shunt in acute respiratory failure and improves gas exchange. Under experimental conditions nitric oxide acts as a bronchodilator, although it seems to be less effective for this purpose in clinical use.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Identification of gene variants related to the nitric oxide pathway in patients with acute coronary syndrome.

    PubMed

    Umman, B; Cakmakoglu, B; Cincin, Z B; Kocaaga, M; Emet, S; Tamer, S; Gokkusu, C

    2015-12-10

    Dysfunction of vascular endothelium is known to have an essential role in the atherosclerotic process by releasing mediators including nitric oxide (NO). Nitric oxide maintains endothelial balance by controlling cellular processes of vascular smooth muscle cells. Evidence suggests that variations in the NO pathway could include atherosclerotic events. The objective of this study was to determine the possible effects of genes on the nitric oxide pathway in the development of acute coronary syndrome (ACS). The blood samples of 100 patients with ACS and 100 controls were collected at Istanbul University, Department of Cardiology. DNA samples were genotyped by using Illumina Cyto-SNP-12 BeadChip. The additive model and Correlation/Trend Test were selected for association analysis. Afterwards, a Q-Q graphic was drawn to compare expected and obtained values. A Manhattan plot was produced to display p-values that were generated by -log10(P) function for each SNP. The p-values under 1×10(-4) were selected as statistically significant SNPs while p-values under 5×10(-2) were considered as suspicious biomarker candidates. Nitric oxide pathway analysis was then used to find the single nucleotide polymorphisms (SNPs) related to ACS. As a result, death-associated protein kinase 3 (DAPK) (rs10426955) was found to be most statistically significant SNP. The most suspicious biomarker candidates associated with the nitric oxide pathway analysis were vascular endothelial growth factor A (VEGFA), methionine sulfoxide reductase A (MSRA), nitric oxide synthase 1 (NOS1), and GTP cyclohydrolase I (GCH-1). Further studies with large sample groups are necessary to clarify the exact role of nitric oxide in the development of disease.

  6. Nitric oxide

    Integrated Risk Information System (IRIS)

    Nitric oxide ; CASRN 10102 - 43 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  7. Nitric oxide pathways in circular muscle of the rat jejunum before and after small bowel transplantation.

    PubMed

    Balsiger, B M; Duenes, J A; Ohtani, N; Shibata, C; Farrugia, G; Anding, W J; Sarr, M G

    2000-01-01

    Previous studies suggest that nitric oxide synthase is upregulated after small bowel transplantation which may have implications in enteric dysfunction after small bowel transplantation. The aim of this study was to determine the role of nitric oxide in nonadrenergic, noncholinergic inhibitory function after small bowel transplantation in rat jejunal circular muscle. The following four groups of rats (n = >/=8 rats per group) were studied: Neurally intact control animals; 1 week after anesthesia and sham celiotomy, and either 1 week or 8 weeks after isogeneic, orthotopic small bowel transplantation. Full-thickness jejunal circular muscle strips were evaluated under isometric conditions for spontaneous contractile activity, response to electrical field stimulation, and effects of exogenous nitric oxide and nitric oxide antagonists. Spontaneous activity did not differ among groups. Electrical field stimulation inhibited activity similarly in all groups. Exogenous nitric oxide, NG-monomethyl L-arginine monoacetate salt (a nitric oxide synthase inhibitor), and methylene blue (cGMP antagonist) had no effect on spontaneous activity. Neither nitric oxide antagonist altered the inhibitory response to neural excitation by electrical field stimulation in any group. Nitric oxide, a known inhibitory neurotransmitter in other gut smooth muscle, has no apparent role in rat jejunal circular muscle before or after small bowel transplantation.

  8. Mangiferin prevents guinea pig tracheal contraction via activation of the nitric oxide-cyclic GMP pathway.

    PubMed

    Vieira, Aline B; Coelho, Luciana P; Insuela, Daniella B R; Carvalho, Vinicius F; dos Santos, Marcelo H; Silva, Patricia Mr; Martins, Marco A

    2013-01-01

    Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1-10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K⁺ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca²⁺-induced contractions in K⁺ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L

  9. Nitric Oxide Mediates the Glutamate-dependent Pathway for Neurotransmission in Sepia officinalis Chromatophore Organs

    PubMed Central

    Mattiello, Teresa; Fiore, Gabriella; Brown, Euan R.; d'Ischia, Marco; Palumbo, Anna

    2010-01-01

    Chromatophore organs are complex and unique structures responsible for the variety of body coloration patterns used by cephalopods to communicate and camouflage. They are formed by a pigment-containing cytoelastic sacculus, surrounded by muscle fibers directly innervated from the brain. Muscle contraction and relaxation are responsible for expansion and retraction of the pigment-containing cell. Their functioning depends on glutamate and Phe-Met-Arg-Phe-NH2-related peptides, which induce fast and slow cell expansion, respectively, and 5-hydroxytryptamine, which induces retraction. Apart from these three substances and acetylcholine, which acts presynaptically, no other neuroactive compounds have so far been found to be involved in the neuroregulation of chromatophore physiology, and the detailed signaling mechanisms are still little understood. Herein, we disclose the role of nitric oxide (NO) as mediator in one of the signaling pathways by which glutamate activates body patterning. NO and nitric-oxide synthase have been detected in pigment and muscle fibers of embryo, juvenile, and adult chromatophore organs from Sepia officinalis. NO-mediated Sepia chromatophore expansion operates at slower rate than glutamate and involves cGMP, cyclic ADP-ribose, and ryanodine receptor activation. These results demonstrate for the first time that NO is an important messenger in the long term maintenance of the body coloration patterns in Sepia. PMID:20516065

  10. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages

    PubMed Central

    Rath, Meera; Müller, Ingrid; Kropf, Pascale; Closs, Ellen I.; Munder, Markus

    2014-01-01

    Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase, which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline–NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and anti-inflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th)1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions, and cancer. PMID:25386178

  11. Behavioral despair associated with a mouse model of Crohn's disease: Role of nitric oxide pathway.

    PubMed

    Heydarpour, Pouria; Rahimian, Reza; Fakhfouri, Gohar; Khoshkish, Shayan; Fakhraei, Nahid; Salehi-Sadaghiani, Mohammad; Wang, Hongxing; Abbasi, Ata; Dehpour, Ahmad Reza; Ghia, Jean-Eric

    2016-01-04

    Crohn's disease (CD) is associated with increased psychiatric co-morbidities. Nitric oxide (NO) is implicated in inflammation and tissue injury in CD, and it may also play a central role in pathogenesis of the accompanying behavioral despair. This study investigated the role of the NO pathway in behavioral despair associated with a mouse model of CD. Colitis was induced by intrarectal (i.r.) injection of 2,4,6-trinitrobenzenesulfonic acid (10mg TNBS in 50% ethanol). Forced swimming test (FST), pharmacological studies and tissues collection were performed 72 h following TNBS administration. To address a possible inflammatory origin for the behavioral despair following colitis induction, tumor necrosis factor-alpha (TNF-α) level was measured in both the hippocampal and colonic tissue samples. In parallel, hippocampal inducible nitric oxide synthase (iNOS) and nitrite level were evaluated. Pharmacological studies targeting the NO pathway were performed 30-60 min before behavioral test. Colitis was confirmed by increased colonic TNF-α level and microscopic score. Colitic mice demonstrated a significantly higher immobility time in the FST associated to a significant increase of hippocampal TNF-α, iNOS expression and nitrite content. Acute NOS inhibition using either Nω-nitro-l-arginine methyl ester (a non-specific NOS inhibitor) or aminoguanidine hydrochloride (a specific iNOS inhibitor) decreased the immobility time in colitic groups. Moreover, acute treatment with both NOS inhibitors decreased the TNF-α level and nitrite content in the hippocampal samples. This study suggests that the NO pathway may be involved in the behavioral effects in the mouse TNBS model of CD. These findings endow new insights into the gut-brain communication during the development of colonic inflammation, which may ultimately lead to improved therapeutic strategies to combat behavior changes associated with gastrointestinal disorders.

  12. Pathogenesis and treatment of the cardiorenal syndrome: Implications of L-arginine-nitric oxide pathway impairment.

    PubMed

    Rajapakse, Niwanthi W; Nanayakkara, Shane; Kaye, David M

    2015-10-01

    A highly complex interplay exists between the heart and kidney in the setting of both normal and abnormal physiology. In the context of heart failure, a pathophysiological condition termed the cardiorenal syndrome (CRS) exists whereby dysfunction in the heart or kidney can accelerate pathology in the other organ. The mechanisms that underpin CRS are complex, and include neuro-hormonal activation, oxidative stress and endothelial dysfunction. The endothelium plays a central role in the regulation of both cardiac and renal function, and as such impairments in endothelial function can lead to dysfunction of both these organs. In particular, reduced bioavailability of nitric oxide (NO) is a key pathophysiologic component of endothelial dysfunction. The synthesis of NO by the endothelium is critically dependent on the plasmalemmal transport of its substrate, L-arginine, via the cationic amino acid transporter-1 (CAT1). Impaired L-arginine-NO pathway activity has been demonstrated individually in heart and renal failure. Recent findings suggest abnormalities of the L-arginine-NO pathway also play a role in the pathogenesis of CRS and thus this pathway may represent a potential new target for the treatment of heart and renal failure.

  13. Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide.

    PubMed

    Reichler, Stuart A; Torres, Jonathan; Rivera, Amy L; Cintolesi, Viviana A; Clark, Greg; Roux, Stanley J

    2009-01-01

    Plant and animal cells release or secrete ATP by various mechanisms, and this activity allows extracellular ATP to serve as a signalling molecule. Recent reports suggest that extracellular ATP induces plant responses ranging from increased cytosolic calcium to changes in auxin transport, xenobiotic resistance, pollen germination, and growth. Although calcium has been identified as a secondary messenger for the extracellular ATP signal, other parts of this signal transduction chain remain unknown. Increasing the extracellular concentration of ATPgammaS, a poorly-hydrolysable ATP analogue, inhibited both pollen germination and pollen tube elongation, while the addition of AMPS had no effect. Because pollen tube elongation is also sensitive to nitric oxide, this raised the possibility that a connection exists between the two pathways. Four approaches were used to test whether the germination and growth effects of extracellular ATPgammaS were transduced via nitric oxide. The results showed that increases in extracellular ATPgammaS induced increases in cellular nitric oxide, chemical agonists of the nitric oxide signalling pathway lowered the threshold of extracellular ATPgammaS that inhibits pollen germination, an antagonist of guanylate cyclase, which can inhibit some nitric oxide signalling pathways, blocked the ATPgammaS-induced inhibition of both pollen germination and pollen tube elongation, and the effects of applied ATPgammaS were blocked in nia1nia2 mutants, which have diminished NO production. The concurrence of these four data sets support the conclusion that the suppression of pollen germination and pollen tube elongation by extracellular nucleotides is mediated in part via the nitric oxide signalling pathway.

  14. Bioanalytical profile of the L-arginine/nitric oxide pathway and its evaluation by capillary electrophoresis◇

    PubMed Central

    Boudko, Dmitri Y.

    2007-01-01

    This review briefly summarizes recent progress in fundamental understanding and analytical profiling of the L-arginine/nitric oxide (NO) pathway. It focuses on key analytical references of NO actions and on the experimental acquisition of these references in vivo, with capillary electrophoresis (CE) and high-performance capillary electrophoresis (HPCE) comprising one of the most flexible and technologically promising analytical platform for comprehensive high-resolution profiling of NO-related metabolites. Second aim of this review is to express demands and bridge efforts of experimental biologists, medical professionals and chemical analysis-oriented scientists who strive to understand evolution and physiological roles of NO and to develop analytical methods for use in biology and medicine. PMID:17329176

  15. Nitric oxide signaling pathway activation inhibits the immune escape of pancreatic carcinoma cells

    PubMed Central

    LU, YEBIN; HU, JUANJUAN; SUN, WEIJIA; DUAN, XIAOHUI; CHEN, XIONG

    2014-01-01

    The aim of the present study was to investigate the effect of the nitric oxide signaling pathway on immune escape; thus, a tumorigenesis model was established using nude mice. The mice were inoculated with pancreatic carcinoma cells and divided into two groups, a glyceryl trinitrate (GTN) and a placebo group. When tumor volumes reached 150 mm3, the mice in the GTN group were treated with GTN transdermal patches (dose, 7.3 μg/h) while the mice in the placebo group were administered untreated patches. Following treatment, the tumor volume was recorded every 3–4 days and after 28 days, the tumors were analyzed. The results indicated that GTN treatment may reduce the levels of soluble major histocompatibility complex class I chain-related molecules, and natural killer group 2 member D, as well as inhibiting tumor growth. PMID:25364398

  16. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway.

    PubMed

    Frungillo, Lucas; Skelly, Michael J; Loake, Gary J; Spoel, Steven H; Salgado, Ione

    2014-11-11

    Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.

  17. Induction of alternative respiratory pathway involves nitric oxide, hydrogen peroxide and ethylene under salt stress.

    PubMed

    Wang, Huahua; Huang, Junjun; Bi, Yurong

    2010-12-01

    Alternative respiratory pathway (AP) plays an important role in plant thermogenesis, fruit ripening and responses to environmental stresses. AP may participate in the adaptation to salt stress since salt stress increased the activity of the AP. Recently, new evidence revealed that ethylene and hydrogen peroxide (H(2)O(2)) are involved in the salt-induced increase of the AP, which plays an important role in salt tolerance in Arabidopsis callus, and ethylene may be acting downstream of H(2)O(2). Recent observations also indicated both ethylene and nitric oxide (NO) act as signaling molecules in responses to salt stress, and ethylene may be a part of the downstream signal molecular in NO action. In this addendum, a hypothetical model for NO function in regulation of H(2)O(2)- and ethylene-mediated induction of AP under salt stress is presented.

  18. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  19. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  20. Localized and Controlled Delivery of Nitric Oxide to the Conventional Outflow Pathway via Enzyme Biocatalysis: Toward Therapy for Glaucoma.

    PubMed

    Chandrawati, Rona; Chang, Jason Y H; Reina-Torres, Ester; Jumeaux, Coline; Sherwood, Joseph M; Stamer, W Daniel; Zelikin, Alexander N; Overby, Darryl R; Stevens, Molly M

    2017-02-21

    Nitric oxide (NO) is able to lower intraocular pressure (IOP); however, its therapeutic effects on outflow physiology are location- and dose-dependent. An NO delivery platform that directly targets the resistance-generating region of the conventional outflow pathway and locally liberates a controlled dose of NO is reported. An increase in outflow facility (decrease in IOP) is demonstrated in a mouse model.

  1. Effect of N-nitrosodimethylamine on inducible nitric oxide synthase expression and production of nitric oxide by neutrophils and mononuclear cells: the role of JNK signalling pathway.

    PubMed

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Garley, Marzena; Jablonski, Jakub; Radziwon, Piotr

    2011-07-01

    In neutrophils (PMN) and mononuclear cells (PBMC), one of the enzymes responsible for nitric oxide (NO) synthesis is inducible nitric oxide synthase (iNOS). Changes in iNOS expression result from various signalling pathways including the mitogen-activated protein kinase (MAPK) pathway activated by endogenic and exogenic factors. N-nitrosodimethylamine (NDMA) is a xenobiotic with widespread occurrence in human environment and has an effect on cells of the immune system. The aim of this study was to determine the effect of NDMA on iNOS expression and NO production by human PMN and PBMC cells in the light of superoxide anion production by PMN cells. Moreover, the role of JNK and p38 pathways in NO production with involvement of iNOS was studied. Additionally, the function of JNK pathway in generation of superoxide anion was determined. Moreover, nitrotyrosine expression was studied in PMN and PBMC cells in the presence of NDMA. This work shows that NDMA increases iNOS expression and NO production by PMN and PBMC cells. In addition, elevated expression of phospho-JNK and phospho-p38, which are markers of JNK and p38 MAPK pathways activation, were observed. Lower iNOS expression and NO production by neutrophils exposed to extended action of NDMA were observed after application of inhibitor of JNK and p38 pathways. Lower phospho-p38 expression in PMN stimulated by NDMA was found as a result of arresting JNK pathway, whereas, application of inhibitor of p38 pathway resulted in enhanced phospho-JNK expression in PMN and PBMC cells. Increased ability to release superoxide anion by NDMA-stimulated PMN cells was observed. This ability was reduced after the application of inhibitor of JNK pathway. In PMN and PBMC cells exposed to NDMA, an increased expression of nitrotyrosine, which is dependant on JNK and p38 pathways that are activated by this particular xenobiotic, was observed. Generally, increased induction of iNOS related to elevated production of NO by PMN and PBMC

  2. The Nitric Oxide/Cyclic GMP Pathway in Organ Transplantation: Critical Role in Successful Lung Preservation

    NASA Astrophysics Data System (ADS)

    Pinsky, David J.; Naka, Yoshifumi; Chowdhury, Nepal C.; Liao, Hui; Oz, Mehmet C.; Michler, Robert E.; Kubaszewski, Eugeniusz; Malinski, Tadeusz; Stern, David M.

    1994-12-01

    Reestablishment of vascular homeostasis following ex vivo preservation is a critical determinant of successful organ transplantation. Because the nitric oxide (NO) pathway modulates pulmonary vascular tone and leukocyte/endothelial interactions, we hypothesized that reactive oxygen intermediates would lead to decreased NO (and hence cGMP) levels following pulmonary reperfusion, leading to increased pulmonary vascular resistance and leukostasis. Using an orthotopic rat model of lung transplantation, a porphyrinic microsensor was used to make direct in vivo measurements of pulmonary NO. NO levels measured at the surface of the transplanted lung plummeted immediately upon reperfusion, with levels moderately increased by topical application of superoxide dismutase. Because cGMP levels declined in preserved lungs after reperfusion, this led us to buttress the NO pathway by adding a membrane-permeant cGMP analog to the preservation solution. Compared with grafts stored in its absence, grafts stored with supplemental 8-Br-cGMP and evaluated 30 min after reperfusion demonstrated lower pulmonary vascular resistances with increased graft blood flow, improved arterial oxygenation, decreased neutrophil infiltration, and improved recipient survival. These beneficial effects were dose dependent, mimicked by the type V phosphodiesterase inhibitor 2-o-propoxyphenyl-8-azapurin-6-one, and inhibited by a cGMP-dependent protein kinase antagonist, the R isomer of 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphorothioate. Augmenting the NO pathway at the level of cGMP improves graft function and recipient survival following lung transplantation.

  3. Beneficial effects of L-arginine–nitric oxide-producing pathway in rats treated with alloxan

    PubMed Central

    Vasilijević, Ana; Buzadžić, Biljana; Korać, Aleksandra; Petrović, Vesna; Janković, Aleksandra; Korać, Bato

    2007-01-01

    In an attempt to elucidate molecular mechanisms and factors involved in β cell regeneration, we evaluated a possible role of the l-arginine–nitric oxide (NO)-producing pathway in alloxan-induced diabetes mellitus. Diabetes was induced in male Mill Hill rats with a single alloxan dose (120 mg kg−1). Both non-diabetic and diabetic groups were additionally separated into three subgroups: (i) receiving l-arginine · HCl (2.25%), (ii) receiving l-NAME · HCl (0.01%) for 12 days as drinking liquids, and (iii) control. Treatment of diabetic animals started after diabetes induction (glucose level ≥ 12 mmol l−1). We found that disturbed glucose homeostasis, i.e. blood insulin and glucose levels in diabetic rats was restored after l-arginine treatment. Immunohistochemical findings revealed that l-arginine had a favourable effect on β cell neogenesis, i.e. it increased the area of insulin-immunopositive cells. Moreover, confocal microscopy showed colocalization of insulin and pancreas duodenum homeobox-1 (PDX-1) in both endocrine and exocrine pancreas. This increase in insulin-expressing cells was accompanied by increased cell proliferation (observed by proliferating cell nuclear antigen-PCNA immunopositivity) which occurred in a regulated manner since it was associated with increased apoptosis (detected by the TUNEL method). Furthermore, l-arginine enhanced both nuclear factor-kB (NF-kB) and neuronal nitric oxide synthase (nNOS) immunopositivities. The effect of l-arginine on antioxidative defence was observed especially in restoring to control level the diabetes-induced increase in glutathione peroxidase activity. In contrast to l-arginine, diabetic pancreas was not affected by l-NAME supplementation. In conclusion, the results suggest beneficial l-arginine effects on alloxan-induced diabetes resulting from the stimulation of β cell neogenesis, including complex mechanisms of transcriptional and redox regulation. PMID:17717015

  4. Nitric oxide signaling in plants.

    PubMed

    Shapiro, Allan D

    2005-01-01

    Plants have four nitric oxide synthase (NOS) enzymes. NOS1 appears mitochondrial, and inducible nitric oxide synthase (iNOS) chloroplastic. Distinct peroxisomal and apoplastic NOS enzymes are predicted. Nitrite-dependent NO synthesis is catalyzed by cytoplasmic nitrate reductase or a root plasma membrane enzyme, or occurs nonenzymatically. Nitric oxide undergoes both catalyzed and uncatalyzed oxidation. However, there is no evidence of reaction with superoxide, and S-nitrosylation reactions are unlikely except during hypoxia. The only proven direct targets of NO in plants are metalloenzymes and one metal complex. Nitric oxide inhibits apoplastic catalases/ascorbate peroxidases in some species but may stimulate these enzymes in others. Plants also have the NO response pathway involving cGMP, cADPR, and release of calcium from internal stores. Other known targets include chloroplast and mitochondrial electron transport. Nitric oxide suppresses Fenton chemistry by interacting with ferryl ion, preventing generation of hydroxyl radicals. Functions of NO in plant development, response to biotic and abiotic stressors, iron homeostasis, and regulation of respiration and photosynthesis may all be ascribed to interaction with one of these targets. Nitric oxide function in drought/abscisic acid (ABA)-induction of stomatal closure requires nitrate reductase and NOS1. Nitric oxide synthasel likely functions to produce sufficient NO to inhibit photosynthetic electron transport, allowing nitrite accumulation. Nitric oxide is produced during the hypersensitive response outside cells undergoing programmed cell death immediately prior to loss of plasma membrane integrity. A plasma membrane lipid-derived signal likely activates apoplastic NOS. Nitric oxide diffuses within the apoplast and signals neighboring cells via hydrogen peroxide (H2O2)-dependent induction of salicylic acid biosynthesis. Response to wounding appears to involve the same NOS and direct targets.

  5. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1

    PubMed Central

    Otero, Miguel; Lago, Rocío; Lago, Francisca; Reino, Juan Jesús Gomez; Gualillo, Oreste

    2005-01-01

    The objective of the present study was to investigate the effect of leptin, alone or in combination with IL-1, on nitric oxide synthase (NOS) type II activity in vitro in human primary chondrocytes, in the mouse chondrogenic ATDC5 cell line, and in mature and hypertrophic ATDC5 differentiated chondrocytes. For completeness, we also investigated the signalling pathway of the putative synergism between leptin and IL-1. For this purpose, nitric oxide production was evaluated using the Griess colorimetric reaction in culture medium of cells stimulated over 48 hours with leptin (800 nmol/l) and IL-1 (0.025 ng/ml), alone or combined. Specific pharmacological inhibitors of NOS type II (aminoguanidine [1 mmol/l]), janus kinase (JAK)2 (tyrphostin AG490 and Tkip), phosphatidylinositol 3-kinase (PI3K; wortmannin [1, 2.5, 5 and 10 μmol/l] and LY294002 [1, 2.5, 5 and 10 μmol/l]), mitogen-activated protein kinase kinase (MEK)1 (PD098059 [1, 5, 10, 20 and 30 μmol/l]) and p38 kinase (SB203580 [1, 5, 10, 20 and 30 μmol/l]) were added 1 hour before stimulation. Nitric oxide synthase type II mRNA expression in ATDC5 chondrocytes was investigated by real-time PCR and NOS II protein expression was analyzed by western blot. Our results indicate that stimulation of chondrocytes with IL-1 results in dose-dependent nitric oxide production. In contrast, leptin alone was unable to induce nitric oxide production or expression of NOS type II mRNA or its protein. However, co-stimulation with leptin and IL-1 resulted in a net increase in nitric oxide concentration over IL-1 challenge that was eliminated by pretreatment with the NOS II specific inhibitor aminoguanidine. Pretreatment with tyrphostin AG490 and Tkip (a SOCS-1 mimetic peptide that inhibits JAK2) blocked nitric oxide production induced by leptin/IL-1. Finally, wortmannin, LY294002, PD098059 and SB203580 significantly decreased nitric oxide production. These findings were confirmed in mature and hypertrophic ATDC5 chondrocytes, and

  6. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1.

    PubMed

    Otero, Miguel; Lago, Rocío; Lago, Francisca; Reino, Juan Jesús Gomez; Gualillo, Oreste

    2005-01-01

    The objective of the present study was to investigate the effect of leptin, alone or in combination with IL-1, on nitric oxide synthase (NOS) type II activity in vitro in human primary chondrocytes, in the mouse chondrogenic ATDC5 cell line, and in mature and hypertrophic ATDC5 differentiated chondrocytes. For completeness, we also investigated the signalling pathway of the putative synergism between leptin and IL-1. For this purpose, nitric oxide production was evaluated using the Griess colorimetric reaction in culture medium of cells stimulated over 48 hours with leptin (800 nmol/l) and IL-1 (0.025 ng/ml), alone or combined. Specific pharmacological inhibitors of NOS type II (aminoguanidine [1 mmol/l]), janus kinase (JAK)2 (tyrphostin AG490 and Tkip), phosphatidylinositol 3-kinase (PI3K; wortmannin [1, 2.5, 5 and 10 micromol/l] and LY294002 [1, 2.5, 5 and 10 micromol/l]), mitogen-activated protein kinase kinase (MEK)1 (PD098059 [1, 5, 10, 20 and 30 micromol/l]) and p38 kinase (SB203580 [1, 5, 10, 20 and 30 micromol/l]) were added 1 hour before stimulation. Nitric oxide synthase type II mRNA expression in ATDC5 chondrocytes was investigated by real-time PCR and NOS II protein expression was analyzed by western blot. Our results indicate that stimulation of chondrocytes with IL-1 results in dose-dependent nitric oxide production. In contrast, leptin alone was unable to induce nitric oxide production or expression of NOS type II mRNA or its protein. However, co-stimulation with leptin and IL-1 resulted in a net increase in nitric oxide concentration over IL-1 challenge that was eliminated by pretreatment with the NOS II specific inhibitor aminoguanidine. Pretreatment with tyrphostin AG490 and Tkip (a SOCS-1 mimetic peptide that inhibits JAK2) blocked nitric oxide production induced by leptin/IL-1. Finally, wortmannin, LY294002, PD098059 and SB203580 significantly decreased nitric oxide production. These findings were confirmed in mature and hypertrophic ATDC5

  7. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen

    PubMed Central

    Quinteros, Fernanda A.; Duvilanski, Beatriz H.; Cabilla, Jimena P.

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary. PMID:27611913

  8. Detoxification of nitric oxide by flavohemoglobin and the denitrification pathway in the maize pathogen Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ephemeral nitric oxide (NO) is a free radical, highly reactive, environmentally rare, and a potent signaling molecule in organisms across kingdoms of life. This gaseous small molecule can freely transverse membranes and has been implicated in aspects of pathogenicity both in animal and plant ho...

  9. Nitric oxide detoxification by Fusarium verticillioides involves flavohemoglobins and the denitrification pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) is a highly mobile and potent signaling molecule, yet as a free radical it can also cause nitrosative stress to cells. To alleviate negative effects from excessive accumulation of endogenous NO or from potential exogenous sources, flavohemoglobin proteins can convert NO into nonto...

  10. Signaling pathway for nitric oxide generation with simulated ischemia in flow-adapted endothelial cells.

    PubMed

    Wei, Z; Al-Mehdi, A B; Fisher, A B

    2001-11-01

    Ischemia in the intact ventilated lung (oxygenated ischemia) leads to endothelial generation of reactive oxygen species (ROS) and nitric oxide (NO). This study investigated the signaling pathway for NO generation with oxygenated ischemia in bovine pulmonary artery endothelial cells (BPAEC) that were flow adapted in vitro. BPAECs were cultured in an artificial capillary system and subjected to abrupt cessation of flow (ischemia) under conditions where cellular oxygenation was maintained. Immunoblotting and dichlorofluorescein/triazolofluorescein fluorescence were used to assess extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation and ROS/NO generation, respectively. ERK1/2 phosphorylation significantly increased during ischemia, whereas total ERK1/2 did not change. ERK1/2 phosphorylation was suppressed by an inhibitor of tyrosine phosphorylation (genestein), cholesterol-binding reagents (filipin or cyclodextrin), or inhibitors of ROS (diphenyleneiodonium, N-acetylcysteine, or catalase), suggesting a role for both membrane cholesterol and ROS in ERK1/2 activation. Ischemia resulted in a 1.8-fold increase in NO generation that was suppressed by inhibitors of ERK1/2 activation (PD-98059 or U-0126). A calmodulin inhibitor (calmidizolium) or removal of Ca2+ from the medium also blocked NO generation, indicating that endothelial NO synthase (eNOS) is the activated isoform. These results indicate ischemia induces NO generation (possibly through a membrane cholesterol-sensitive flow sensor), the ERK1/2 cascade mediates signaling from the sensor to eNOS, and ROS are required for ERK activation.

  11. Exercise status affects skin perfusion via prostaglandin, nitric oxide, and EDHF pathways in diabetes.

    PubMed

    Colberg, Sheri R; Azoury, Krystel R; Parson, Henri K; Vinik, Aaron I

    2009-03-01

    Participation in regular exercise training improves dorsal skin perfusion, while type 2 diabetes mellitus (T2 DM) often limits it via reductions in the action or release of vasodilatory compounds. This study was undertaken to investigate the relative contributions of prostaglandins (PG), nitric oxide (NO), and endothelial-derived hyperpolarizing factor (EDHF) in dorsal foot skin perfusion in individuals with and without T2 DM and a sedentary lifestyle. Participants included 24 individuals with T2 DM and 28 nondiabetic controls whose exercise status was determined via questionnaire. Their dorsal foot skin perfusion was measured at rest using laser Doppler assessment during localized heating to 44 degrees C with oral aspirin (ASA, 325 mg) treatment. In addition, they received an infusion via a subcutaneous microdialysis probe of either saline (left foot) or L-NAME, a NOS-inhibitor (right foot). Compared to normative data without ASA, heat-stimulated perfusion in regular exercisers (n=22) was significantly more suppressed by ASA and by ASA/L-NAME than in sedentary individuals (n=30). Chronic exercisers exhibit a greater reliance on PG and lesser involvement of EDHF with unchanged NO compared to sedentary individuals, who rely more on EDHF and less on PG release. One possible exception may be diabetic, sedentary individuals, who may rely somewhat more on NO than EDHF. These results suggest that regular exercise may exhibit the greatest effect on the normal functioning of these vasodilatory pathways, although diabetes and a sedentary state together may somewhat alter their relative importance.

  12. Attenuation of malonate-induced degeneration of the nigrostriatal pathway by inhibitors of nitric oxide synthase.

    PubMed

    Connop, B P; Boegman, R J; Beninger, R J; Jhamandas, K

    1996-04-01

    Focal infusions of the succinate dehydrogenase inhibitor, malonate, into the substantia nigra pars compacta (SNc) of adult Sprague-Dawley rats resulted in a substantial depletion of ipsilateral striatal tyrosine hydroxylase (TH) activity. The percentage decrease in striatal TH activity following intranigral malonate (0.5 mumol/0.5 microliter) infusion was similar at 4 (58%) and 7 days (62%) post-infusion. To assess the role of N-methyl-D-aspartate (NMDA) receptor activation in malonate neurotoxicity, animals were pretreated with the NMDA receptor antagonist MK-801 (2 x 5 mg/kg, i.p.). Four days post-infusion of malonate (0.5 mumol/0.5 microliter) into the SNc, striatal TH activity was depleted by 58% in vehicle pretreated animals and 14% in the presence of MK-801 indicating a significant neuroprotective effect of MK-801 on malonate action. To determine the role of nitric oxide (NO) in malonate-induced nigral toxicity, the actions of malonate were evaluated in the presence of the nitric oxide synthase (NOS) inhibitors, 7-nitro indazole (7-NI) and N omega-nitro-L-arginine methyl ester (L- NAME). Systemic injections of 7-NI (20, 30, 40, 50 and 75 mg/kg, i.p.) produced a dose-related inhibition of nigral NOS activity which was maximal at a dose of 40 mg/kg. Intranigral infusion of malonate with 20 and 50 mg/kg 7-NI pretreatment produced a 46 and 31% decrease in striatal TH activity, respectively. Thus, a significant protective effect at the higher but not lower dose of 7-NI was observed. Pretreatment with a L- NAME regimen (2 x 250 mg/kg; i.p.), previously shown to inhibit brain NOS activity by greater than 86%, also produced a significant neuroprotective effect against malonate-induced neurotoxicity (30% decrease). The results of this study suggest that malonate-induced toxicity to the dopaminergic neurons of the nigrostriatal pathway is mediated, at least in part, by NMDA receptor activation and the formation of NO.

  13. Nitric oxide modulates salt and sugar responses via different signaling pathways.

    PubMed

    Newland, Philip L; Yates, Paul

    2008-04-01

    Locusts lay their eggs by digging into a substrate using rhythmic opening and closing movements of ovipositor valves at the end of the abdomen. The digging rhythm is inhibited by chemosensory stimulation of chemoreceptors on the valves. Nitric oxide (NO) modulated the effects of chemosensory stimulation on the rhythm. Stimulation with either sucrose or sodium chloride (NaCl) stopped the digging rhythm, whereas simultaneous bath application of the NO inhibitor, N-nitro-L-arginine methyl ester (L-NAME), increased the duration for which the digging rhythm stopped. Increasing NO levels caused a significant reduction in the cessation of the rhythm in response to the same 2 chemicals. Bath applying cyclic guanosine monophosphate (cGMP), the soluble guanylate inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and the generic protein kinase inhibitor H-7 had no effect on the duration for which the rhythm stopped in response to NaCl stimulation. Conversely, bath application of cGMP and ODQ resulted in a significant decrease and increase, respectively, in the duration for which the digging rhythm stopped when stimulated with sucrose. Moreover, bath application of the selective protein kinase G (PKG) inhibitor KT-5823 also resulted in a significant increase in the duration of cessation of the rhythm when stimulated with sucrose. Results suggest that NO modulates the behavioral responses to NaCl via a cGMP/PKG-independent pathway while modulating the responses to sucrose via a NO-cGMP/PKG-dependent pathway.

  14. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    PubMed Central

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  15. Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana

    PubMed Central

    Hussain, Adil; Mun, Bong-Gyu; Imran, Qari M.; Lee, Sang-Uk; Adamu, Teferi A.; Shahid, Muhammad; Kim, Kyung-Min; Yun, Byung-Wook

    2016-01-01

    Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants. PMID:27446194

  16. Integrins mediate mechanical compression-induced endothelium-dependent vasodilation through endothelial nitric oxide pathway.

    PubMed

    Lu, Xiao; Kassab, Ghassan S

    2015-09-01

    Cardiac and skeletal muscle contraction lead to compression of intramuscular arterioles, which, in turn, leads to their vasodilation (a process that may enhance blood flow during muscle activity). Although endothelium-derived nitric oxide (NO) has been implicated in compression-induced vasodilation, the mechanism whereby arterial compression elicits NO production is unclear. We cannulated isolated swine (n = 39) myocardial (n = 69) and skeletal muscle (n = 60) arteriole segments and exposed them to cyclic transmural pressure generated by either intraluminal or extraluminal pressure pulses to simulate compression in contracting muscle. We found that the vasodilation elicited by internal or external pressure pulses was equivalent; moreover, vasodilation in response to pressure depended on changes in arteriole diameter. Agonist-induced endothelium-dependent and -independent vasodilation was used to verify endothelial and vascular smooth muscle cell viability. Vasodilation in response to cyclic changes in transmural pressure was smaller than that elicited by pharmacological activation of the NO signaling pathway. It was attenuated by inhibition of NO synthase and by mechanical removal of the endothelium. Stemming from previous observations that endothelial integrin is implicated in vasodilation in response to shear stress, we found that function-blocking integrin α5β1 or αvβ3 antibodies attenuated cyclic compression-induced vasodilation and NOx (NO(-)2 and NO(-)3) production, as did an RGD peptide that competitively inhibits ligand binding to some integrins. We therefore conclude that integrin plays a role in cyclic compression-induced endothelial NO production and thereby in the vasodilation of small arteries during cyclic transmural pressure loading.

  17. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway.

    PubMed

    Gniazdowska, Agnieszka; Krasuska, Urszula; Bogatek, Renata

    2010-11-01

    The connection between classical phytohormone-ethylene and two signaling molecules, nitric oxide (NO) and hydrogen cyanide (HCN), was investigated in dormancy removal and germination "sensu stricto" of apple (Malus domestica Borkh.) embryos. Deep dormancy of apple embryos was removed by short-term (3-6 h) pre-treatment with NO or HCN. NO- or HCN-mediated stimulation of germination was associated with enhanced emission of ethylene by the embryos, coupled with transient increase in ROS concentration in embryos. Ethylene vapors stimulated germination of dormant apple embryos and eliminated morphological anomalies characteristic for young seedlings developed from dormant embryos. Inhibitors of ethylene receptors completely impeded beneficial effect of NO and HCN on embryo germination. NO- and HCN-induced ethylene emission by apple embryo was only slightly reduced by inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity during first 4 days of germination. Short-term pre-treatment of the embryos with NO and HCN modified activity of both key enzymes of ethylene biosynthetic pathway: ACC synthase and ACC oxidase. Activity of ACC synthase declined during first 4 days of germination, while activity of ACC oxidase increased markedly at that time. Additional experiments point to non-enzymatic conversion of ACC to ethylene in the presence of ROS (H(2)O(2)). The results indicate that NO and HCN may alleviate dormancy of apple embryos "via" transient accumulation of ROS, leading to enhanced ethylene emission which is required to terminate germination "sensu stricto". Therefore, ethylene seems to be a trigger factor in control of apple embryo dormancy removal and germination.

  18. Integrins mediate mechanical compression–induced endothelium-dependent vasodilation through endothelial nitric oxide pathway

    PubMed Central

    Lu, Xiao

    2015-01-01

    Cardiac and skeletal muscle contraction lead to compression of intramuscular arterioles, which, in turn, leads to their vasodilation (a process that may enhance blood flow during muscle activity). Although endothelium-derived nitric oxide (NO) has been implicated in compression-induced vasodilation, the mechanism whereby arterial compression elicits NO production is unclear. We cannulated isolated swine (n = 39) myocardial (n = 69) and skeletal muscle (n = 60) arteriole segments and exposed them to cyclic transmural pressure generated by either intraluminal or extraluminal pressure pulses to simulate compression in contracting muscle. We found that the vasodilation elicited by internal or external pressure pulses was equivalent; moreover, vasodilation in response to pressure depended on changes in arteriole diameter. Agonist-induced endothelium-dependent and -independent vasodilation was used to verify endothelial and vascular smooth muscle cell viability. Vasodilation in response to cyclic changes in transmural pressure was smaller than that elicited by pharmacological activation of the NO signaling pathway. It was attenuated by inhibition of NO synthase and by mechanical removal of the endothelium. Stemming from previous observations that endothelial integrin is implicated in vasodilation in response to shear stress, we found that function-blocking integrin α5β1 or αvβ3 antibodies attenuated cyclic compression–induced vasodilation and NOx (NO−2 and NO−3) production, as did an RGD peptide that competitively inhibits ligand binding to some integrins. We therefore conclude that integrin plays a role in cyclic compression–induced endothelial NO production and thereby in the vasodilation of small arteries during cyclic transmural pressure loading. PMID:26324675

  19. Thymoquinone mitigate ischemia-reperfusion-induced liver injury in rats: a pivotal role of nitric oxide signaling pathway.

    PubMed

    Abd-Elbaset, Mohamed; Arafa, El-Shaimaa A; El Sherbiny, Gamal A; Abdel-Bakky, Mohamed S; Elgendy, Abdel Nasser A M

    2017-01-01

    Oxidative and nitrosative stress-induced endothelial cell damage play an essential role in the pathogenesis of hepatic ischemia-reperfusion (IR) injury. IR is associated with reduced eNOS expression and exacerbated by superimposed stress. NOSTRIN induces intracellular endothelial nitric oxide synthase (eNOS) translocation and inducible nitric oxide synthase (iNOS) increases nitric oxide (NO) production. Our aim was to assess hepatic expression of iNOS, eNOS, and NOSTRIN in IR with or without N-acetylcysteine (NAC) or thymoquinone (TQ) pretreatment and to compare their hepatoprotective effects. Surgical induction of IR was performed by occlusion of hepatic pedicle for 30 min with mini-clamp and reperfused for 30 min. The effects of TQ (20 mg/kg/day) or NAC (300 mg/kg/day) administered orally for 10 days were evaluated by serum ALT and AST, oxidative stress parameters, NO production, and histopathological analysis. Also, localization and expression of iNOS, eNOS, and NOSTRIN were assessed by immunofluorescence. TQ or NAC pretreatment significantly decreased elevated serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and myeloperoxidase (MPO) activities, malondialdehyde (MDA) level, and NO production. In addition, they restored the depleted GSH content and alleviated histopathological changes. Furthermore, they up-regulated eNOS and down-regulated iNOS and NOSTRIN expressions. TQ exerts its hepatoprotective effect, at least in part, by nitric oxide signaling pathway through modulation of iNOS, eNOS, and NOSTRIN expressions as well as suppression of oxidative stress.

  20. Diethylcarbamazine activity against Brugia malayi microfilariae is dependent on inducible nitric-oxide synthase and the cyclooxygenase pathway

    PubMed Central

    McGarry, Helen F; Plant, Leigh D; Taylor, Mark J

    2005-01-01

    Background Diethylcarbamazine (DEC) has been used for many years in the treatment of human lymphatic filariasis. Its mode of action is not well understood, but it is known to interact with the arachidonic acid pathway. Here we have investigated the contribution of the nitric oxide and cyclooxygenase (COX) pathways to the activity of DEC against B. malayi microfilariae in mice. Methods B. malayi microfilariae were injected intravenously into mice and parasitaemia was measured 24 hours later. DEC was then administered to BALB/c mice with and without pre-treatment with indomethacin or dexamethasone and the parasitaemia monitored. To investigate a role for inducible nitric oxide in DEC's activity, DEC and ivermectin were administered to microfilaraemic iNOS-/- mice and their background strain (129/SV). Western blot analysis was used to determine any effect of DEC on the production of COX and inducible nitric-oxide synthase (iNOS) proteins. Results DEC administered alone to BALB/c mice resulted in a rapid and profound reduction in circulating microfilariae within five minutes of treatment. Microfilarial levels began to recover after 24 hours and returned to near pre-treatment levels two weeks later, suggesting that the sequestration of microfilariae occurs independently of parasite killing. Pre-treatment of animals with dexamethasone or indomethacin reduced DEC's efficacy by almost 90% or 56%, respectively, supporting a role for the arachidonic acid and cyclooxygenase pathways in vivo. Furthermore, experiments showed that treatment with DEC results in a reduction in the amount of COX-1 protein in peritoneal exudate cells. Additionally, in iNOS-/- mice infected with B. malayi microfilariae, DEC showed no activity, whereas the efficacy of another antifilarial drug, ivermectin, was unaffected. Conclusion These results confirm the important role of the arachidonic acid metabolic pathway in DEC's mechanism of action in vivo and show that in addition to its effects on the 5

  1. Nitric oxide enhancement strategies

    PubMed Central

    Bryan, Nathan S

    2015-01-01

    It is becoming increasingly clear that many diseases are characterized or associated with perturbations in nitric oxide (NO) production/signaling. Therapeutics or strategies designed to restore normal NO homeostasis will likely have broad application and utility. This highly complex and multistep pathway for NO production and subsequent target activation provides many steps in the endogenous pathway that may be useful targets for drug development for cardiovascular disease, antimicrobial, cancer, wound healing, etc. This article will summarize known strategies that are currently available or in development for enhancing NO production or availability in the human body. Each strategy will be discussed including exogenous sources of NO, use of precursors to promote NO production and downstream pathways affected by NO production with advantages and disadvantages highlighted for each. Development of NO-based therapeutics is and will continue to be a major focus of biotech, academia as well as pharmaceutical companies. Application of safe and effective strategies will certainly transform health and disease. PMID:28031863

  2. Toxoplasma gondii infection of activated J774-A1 macrophages causes inducible nitric oxide synthase degradation by the proteasome pathway.

    PubMed

    Padrão, Juliana da Cruz; Cabral, Gabriel Rabello de Abreu; da Silva, Maria de Fátima Sarro; Seabra, Sergio Henrique; DaMatta, Renato Augusto

    2014-10-01

    Classically activated macrophages produce nitric oxide (NO), which is a potent microbicidal agent. NO production is catalyzed by inducible nitric oxide synthase (iNOS), which uses arginine as substrate producing NO and citruline. However, it has been demonstrated that NO production is inhibited after macrophage infection of Toxoplasma gondii, the agent of toxoplasmosis, due to iNOS degradation. Three possible iNOS degradation pathways have been described in activated macrophages: proteasome, calpain and lysosomal. To identify the iNOS degradation pathway after T. gondii infection, J774-A1 macrophage cell line was activated with lipopolysaccharide and interferon-gamma for 24 h, treated with the following inhibitors, lactacystin (proteasome), calpeptin (calpain), or concanamycin A (lysosomal), and infected with the parasite. NO production and iNOS expression were evaluated after 2 and 6 h of infection. iNOS was degraded in J774-A1 macrophages infected with T. gondii. However, treatment with lactacystin maintained iNOS expression in J774-A1 macrophages infected for 2 h by T. gondii, and after 6 h iNOS was localized in aggresomes. iNOS was degraded after parasite infection of J774-A1 macrophages treated with calpeptin or concanamycin A. NO production confirmed iNOS expression profiles. These results indicate that T. gondii infection of J774-A1 macrophages caused iNOS degradation by the proteasome pathway.

  3. The red blood cell: a new key player in cardiovascular homoeostasis? Focus on the nitric oxide pathway.

    PubMed

    Porro, Benedetta; Eligini, Sonia; Squellerio, Isabella; Tremoli, Elena; Cavalca, Viviana

    2014-08-01

    RBCs (red blood cells) have a fundamental role in the regulation of vascular homoeostasis thanks to the ability of these cells to carry O2 (oxygen) between respiratory surfaces and metabolizing tissues and to release vasodilator compounds, such as ATP and NO (nitric oxide), in response to tissue oxygenation. More recently it has been shown that RBCs are also able to produce NO endogenously as they express a functional NOS (nitric oxide synthase), similar to the endothelial isoform. In addition, RBCs carry important enzymes and molecules involved in L-arginine metabolism, such as arginase, NO synthesis inhibitors and the cationic amino acid transporters. Altogether these findings strongly support the role of these cells as producers, vehicles and scavengers of NO, therefore affecting several physiological processes such as blood rheology and cell adhesion. Consequently, the importance of alterations in the L-arginine/NO metabolic pathway induced by specific conditions, e.g. oxidative stress, in different pathological settings have been investigated. In the present review we discuss the role of RBCs in vascular homoeostasis, focusing our attention on the importance of the NO pathway alterations in cardiovascular diseases and their relationship to major risk factors.

  4. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway.

    PubMed

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Murray, Andrew J; Griffin, Julian L

    2015-02-01

    Inorganic nitrate was once considered an oxidation end product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach, we mechanistically defined that nitrate not only increases the expression of thermogenic genes in brown adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious comorbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Because resulting beige/brite cells exhibit antiobesity and antidiabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome.

  5. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    PubMed Central

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  6. The nitric oxide producing reactions of hydroxyurea.

    PubMed

    King, S Bruce

    2003-03-01

    Hydroxyurea is used to treat a variety of cancers and sickle cell disease. Despite this widespread use, a complete mechanistic understanding of the beneficial actions of this compound remains to be understood. Hydroxyurea inhibits ribonucleotide reductase and increases the levels of fetal hemoglobin, which explains a portion of the effects of this drug. Administration of hydroxyurea to patients results in a significant increase in levels of iron nitrosyl hemoglobin, nitrite and nitrate suggesting the in vivo metabolism of hydroxyurea to nitric oxide. Formation of nitric oxide from hydroxyurea may explain a portion of the observed effects of hydroxyurea treatment. At the present, the mechanism or mechanisms of nitric oxide release, the identity of the in vivo oxidant and the site of metabolism remain to be identified. Chemical oxidation of hydroxyurea produces nitric oxide and nitroxyl, the one-electron reduced form of nitric oxide. These oxidative pathways generally proceed through the nitroxide radical (2) or C-nitrosoformamide (3). Biological oxidants, including both iron and copper containing enzymes and proteins, also convert hydroxyurea to nitric oxide or its decomposition products in vitro and these reactions also occur through these intermediates. A number of other reactions of hydroxyurea including the reaction with ribonucleotide reductase and irradiation demonstrate the potential to release nitric oxide and should be further investigated. Gaining an understanding of the metabolism of hydroxyurea to nitric oxide will provide valuable information towards the treatment of these disorders and may lead to the development of better therapeutic agents.

  7. Arsenic trioxide prevents nitric oxide production in lipopolysaccharide -stimulated RAW 264.7 by inhibiting a TRIF-dependent pathway.

    PubMed

    Takahashi, Miyuki; Ota, Akinobu; Karnan, Sivasundaram; Hossain, Ekhtear; Konishi, Yuko; Damdindorj, Lkhagvasuren; Konishi, Hiroyuki; Yokochi, Takashi; Nitta, Masakazu; Hosokawa, Yoshitaka

    2013-02-01

    Arsenic trioxide (ATO) is one of the most potent drugs in cancer chemotherapy, and is highly effective in treating both newly diagnosed and relapse patients with acute promyelocytic leukemia (APL). Despite a number of reports regarding the molecular mechanisms by which ATO promotes anti-tumor or pro-apoptotic activity in hematological and other solid malignancies, the effects of ATO on immune responses remain poorly understood. To further understand and clarify the effects of ATO on immune responses, we sought to examine whether ATO affects the production of nitric oxide (NO) in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, RAW 264.7. Arsenic trioxide was found to prevent NO production in a dose-dependent manner. Arsenic trioxide significantly inhibited the increase in inducible nitric oxide synthase (iNOS) at both the mRNA and protein levels. Furthermore, our analyses revealed that the inhibitory effect of ATO on iNOS expression was ascribed to the prevention of IRF3 phosphorylation, interferon (IFN)-β expression, and STAT1 phosphorylation, but not the prevention of the MyD88-dependent pathway. Taken together, our results indicate that ATO prevents NO production by inhibiting the TIR-domain-containing adaptor protein inducing IFN-β (TRIF)-dependent pathway, thus highlighting an anti-inflammatory property of ATO in innate immunity.

  8. Nitric oxide signaling pathways at neural level in invertebrates: functional implications in cnidarians.

    PubMed

    Cristino, Luigia; Guglielmotti, Vittorio; Cotugno, Antonio; Musio, Carlo; Santillo, Silvia

    2008-08-15

    Nitric oxide (NO) is a small molecule with unconventional properties. It is found in organisms throughout the phylogenetic scale, from fungi to mammals, in which it acts as an intercellular messenger of main physiological events, or even as an intracellular messenger in invertebrates. In both vertebrates and invertebrates, NO is involved in many processes, regulated in part by cyclic guanosine monophosphate (cGMP), and reacts with different oxygen molecular species. The presence of NO in the early-diverging metazoan phylum of Cnidaria, of which Hydra represents the first known species having a nervous system, supports a role of this molecule as an ancestral neural messenger with physiological roles that remain to be largely elucidated. Therefore, our novel findings on the presence of NO in Hydra are here integrated in such a comparative frame.

  9. Nitric Oxide Production in Plants

    PubMed Central

    Planchet, Elisabeth

    2006-01-01

    There is now general agreement that nitric oxide (NO) is an important and almost universal signal in plants. Nevertheless, there are still many controversial observations and opinions on the importance and function of NO in plants. Partly, this may be due to the difficulties in detecting and even more in quantifying NO. Here, we summarize major pathways of NO production in plants, and briefly discuss some methodical problems. PMID:19521475

  10. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-09-01

    Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1μg/kg each) or l-694,247 (5-HT1D agonist; 0.0125μg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125μg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release.

  11. SUPPRESSION OF THE NITRIC OXIDE PATHWAY IN METASTATIC RENAL CELL CARCINOMA PATIENTS RECEIVING VEGF-SIGNALING INHIBITORS

    PubMed Central

    Robinson, Emily S.; Khankin, Eliyahu V.; Choueiri, Toni K.; Dhawan, Mallika D.; Rogers, Miranda J.; Karumanchi, S. Ananth; Humphreys, Benjamin D.

    2010-01-01

    Therapies that target the vascular endothelial growth factor (VEGF) pathway cause hypertension but the mechanism remains unknown. This cross-sectional study tested the hypothesis that VEGF inhibition causes hypertension by suppressing VEGF-mediated vasodilatory pathways. Urine was collected from 80 patients with metastatic renal cell carcinoma from 2002–2009, 40 at baseline and 40 while on VEGF inhibitors. Measured urinary biomarkers include albumin, metabolites of the nitric oxide pathway and its downstream effector, cGMP, and prostaglandin pathway biomarkers prostaglandin E2, 6-keto PGF 1α, and cAMP, all normalized to urinary creatinine. The mean age in both groups was 61.8 years, 76% were male, and urinary albumin was higher in patients receiving VEGF inhibitors (median 18.4mg/g vs. 4.6 mg/g; p=0.009). cGMP/Cr was suppressed in patients on VEGF inhibitors (0.28 pmol/ug vs. 0.39 pmol/ug; p=0.01), with a trend toward suppression of nitrate/Cr (0.46 umol/mg vs. 0.62 umol/mg; p=0.09). Both comparisons were strengthened when patients on bevacizumab were excluded and only those receiving small molecule tyrosine kinase inhibitors were analyzed (cGMP/Cr, p=0.003; Nitrate/Cr, p=0.01). Prostaglandin E2, 6-keto PGF1α, and cAMP did not differ between groups. These results suggest that hypertension induced by VEGF inhibitors is mediated by suppression of nitric oxide production. Prospective studies are needed to explore whether these biomarkers may be useful predictors of efficacy in patients receiving VEGF-targeted therapies. PMID:20956731

  12. Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway.

    PubMed

    Tossi, Vanesa; Amenta, Melina; Lamattina, Lorenzo; Cassia, Raúl

    2011-06-01

    The link between ultraviolet (UV)-B, nitric oxide (NO) and phenylpropanoid biosynthetic pathway (PPBP) was studied in maize and Arabidopsis. The transcription factor (TF) ZmP regulates PPBP in maize. A genetic approach using P-rr (ZmP+) and P-ww (ZmP⁻) maize lines demonstrate that: (1) NO protects P-rr leaves but not P-ww from UV-B-induced reactive oxygen species (ROS) and cell damage; (2) NO increases flavonoid and anthocyanin content and prevents chlorophyll loss in P-rr but not in P-ww and (3) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) blocks the UV-B-induced expression of ZmP and their targets CHS and CHI suggesting that NO plays a key role in the UV-B-regulated PPBP. Involvement of endogenous NO was studied in Arabidopsis nitric oxide dioxygenase (NOD) plants that express a NO dioxygenase gene under the control of a dexamethasone (DEX)-inducible promoter. Expression of HY5 and MYB12, TFs involved in PPBP regulation, was induced by UV-B, reduced by DEX in NOD plants and recovered by subsequent NO treatment. C4H regulates synapate esters synthesis and is UV-B-induced in a NO-independent pathway. Data indicate that UV-B perception increases NO concentration, which protects plant against UV-B by two ways: (1) scavenging ROS; and (2) up-regulating the expression of HY5, MYB12 and ZmP, resulting in the PPBP activation.

  13. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin

    PubMed Central

    1992-01-01

    Nitric oxide (NO) is a short-lived biologic mediator that is shown to be induced in various cell types and to cause many metabolic changes in target cells. Inhibition of tumor cell growth and antimicrobial activity has been attributed to the stimulation of the inducible type of the NO synthase (NOS). However, there is limited evidence for the existence of such inducible NOS in a human cell type. We show here the induction of NO biosynthesis in freshly isolated human hepatocytes (HC) after stimulation with interleukin 1, tumor necrosis factor (TNF), IFN- gamma, and endotoxin. Increased levels of nitrite (NO2-) and nitrate (NO3-) in culture supernatants were associated with NADPH-dependent NOS activity in the cell lysates. The production of NO2- and NO3- was inhibited by NG-monomethyl L-arginine and was associated with an increase in cyclic guanylate monophosphate release. The data presented here provide evidence for the existence of typical inducible NO biosynthesis in a human cell type. PMID:1377225

  14. Release of nitric oxide during the T cell-independent pathway of macrophage activation

    SciTech Connect

    Beckerman, K.P.; Rogers, H.W.; Corbett, J.A.; Schreiber, R.D.; McDaniel, M.L.; Unanue, E.R. )

    1993-02-01

    Immunodeficient mice are remarkably resistant to Listeria monocytogenes (LM) infection. The authors examined the role that nitric oxide (NO) plays in the CB-17/lcr SCID (SCID) response to LM. SCID spleen cells produced large quantities of NO (as measured by nitrite formation) when incubated in the presence of heat-killed LM. NO produced large quantities of nitrite in response to LM, but only in the presence of IFN-[gamma]. The production of NO induced by LM was not affected by neutralizing antibodies to TNF or IL-1. The production of NO was inhibited by addition of either of two inhibitors of NO synthase, N[sup G]-monomethyl arginine, or aminoguanidine. In a different situation, NK cells that were stimulated by TNF and Listeria products to release IFN-[gamma] did not produce NO. Macrophages cultured with IFN-[gamma] killed live LM. This increased killing of LM was significantly inhibited by amino-guanidine. In vivo, administration of aminoguanidine resulted in a marked increase in the mortality and spleen bacterial loads of LM-infected SCID or immunocompetent control mice. It is concluded that NO is a critical effector molecule of T cell-independent natural resistence of LM as studied in the SCID mouse, and that the NO-mediated response is essential for both SCID and immunocompetent host to survive after LM infection. 37 refs., 7 figs.

  15. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111)

    SciTech Connect

    Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos

    2014-10-03

    Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H₂ at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N₂O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.

  16. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis.

    PubMed

    Souza, Cleverson D

    2015-03-15

    This study evaluated the role of the mitogen-activated protein kinase (MAPK)-p38 pathway in the nitric oxide synthase (iNOS) expression and nitric oxide (NO) production by bovine monocyte-derived macrophages ingesting Mycobacterium avium subsp. paratuberculosis (MAP) organisms in vitro. Bovine monocyte-derived macrophages were incubated with MAP organisms with or without a specific inhibitor of the MAPKp38 pathway and activation of the MAPKp38, interleukin - (IL) IL-10, IL-12, iNOS mRNA expression and NO production were evaluated. Incubation of macrophages with MAP organisms activates the MAPKp38 pathway at early time points post infection. Chemically inhibition of MAPKp38 before incubation of bovine macrophages with MAP resulted in increased expression of IL-12 mRNA at 2, 6 and 24h, decreased expression of IL-10 mRNA at 2, 6 and 24h and increased expression of iNOS mRNA at 2 and 6h. Nitric oxide was evaluated to indirectly determine the effects of MAPKp38 pathway on the anti-microbial activity of bovine macrophages. Incubation of bovine macrophages with MAP resulted in modest increased production of NO at 4 and 6h post infection. Pretreatment of bovine macrophages with the MAPKp38 inhibitor SB203580 before addition of MAP organisms resulted in increased production of NO at 2, 4, 6 and 24h post infection. This study expanded our knowledge of the importance of the MAPKp38 pathway in limiting an appropriate macrophage response to MAP and suggested how activation of MAPKp38 pathway may be a target of this organism to disrupt earlier antimicrobial mechanisms of macrophages. These findings raises the interesting possibility that the cellular manipulation of MAPKp38 may be useful in designing novel vaccines against MAP.

  17. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats.

    PubMed

    Zhang, Cheng-Xi; Pan, Si-Nian; Meng, Rong-Sen; Peng, Chao-Quan; Xiong, Zhao-Jun; Chen, Bao-Lin; Chen, Guang-Qin; Yao, Feng-Juan; Chen, Yi-Li; Ma, Yue-Dong; Dong, Yu-Gang

    2011-01-01

    1. Metformin is an activator of AMP-activated protein kinase (AMPK). Recent studies suggest that pharmacological activation of AMPK inhibits cardiac hypertrophy. In the present study, we examined whether long-term treatment with metformin could attenuate ventricular hypertrophy in a rat model. The potential involvement of nitric oxide (NO) in the effects of metformin was also investigated. 2. Ventricular hypertrophy was established in rats by transaortic constriction (TAC). Starting 1 week after the TAC procedure, rats were treated with metformin (300 mg/kg per day, p.o.), N(G)-nitro-L-arginine methyl ester (L-NAME; 50 mg/kg per day, p.o.) or both for 8 weeks prior to the assessment of haemodynamic function and cardiac hypertrophy. 3. Cultured cardiomyocytes were used to examine the effects of metformin on the AMPK-endothelial NO synthase (eNOS) pathway. Cells were exposed to angiotensin (Ang) II (10⁻⁶ mol/L) for 24 h under serum-free conditions in the presence or absence of metformin (10⁻³ mol/L), compound C (10⁻⁶ mol/L), L-NAME (10⁻⁶ mol/L) or their combination. The rate of incorporation of [³H]-leucine was determined, western blotting analyses of AMPK-eNOS, neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) were undertaken and the concentration of NO in culture media was determined. 4. Transaortic constriction resulted in significant haemodynamic dysfunction and ventricular hypertrophy. Myocardial fibrosis was also evident. Treatment with metformin improved haemodynamic function and significantly attenuated ventricular hypertrophy. Most of the effects of metformin were abolished by concomitant L-NAME treatment. L-NAME on its own had no effect on haemodynamic function and ventricular hypertrophy in TAC rats. 5. In cardiomyocytes, metformin inhibited AngII-induced protein synthesis, an effect that was suppressed by the AMPK inhibitor compound C or the eNOS inhibitor L-NAME. The improvement in cardiac structure and

  18. Interactions between Nitric Oxide and Hypoxia-Inducible Factor Signaling Pathways in Inflammatory Disease

    PubMed Central

    Olson, Nels; van der Vliet, Albert

    2011-01-01

    Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O2) consumption and redistribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders. PMID

  19. Pathways for conversion of char nitrogen to nitric oxide at pulverized coal combustion conditions.

    SciTech Connect

    Molina, Alejandro; Shaddix, Christopher R.; Blevins, Linda Gail; Murphy, Jeffrey J.

    2004-03-01

    The conversion of nitrogen in char (char-N) to NO was studied both experimentally and computationally. In the experiments, pulverized coal char was produced from a U.S. high-volatile bituminous coal and burned in a dilute suspension at 1170 K, 1370 K and 1570 K, at an excess oxygen concentration of 8% (dry), with different levels of background NO. In some experiments, hydrogen bromide (HBr) was added to the vitiated air as a tool to alter the concentration of gas-phase radicals. During char combustion, low NO concentration and high temperature promoted the conversion of char-N to NO. HBr addition altered NO production in a way that depended on temperature. At 1170 K the presence of HBr increased NO production by 80%, whereas the addition of HBr decreased NO production at higher temperatures by 20%. To explain these results, three mechanistic descriptions of char-N evolution during combustion were evaluated with computational models that simulated (a) homogeneous chemistry in a plug-flow reactor with entrained particle combustion, and (b) homogeneous chemistry in the boundary layer surrounding a reacting particle. The observed effect of HBr on NO production could only be captured by a chemical mechanism that considered significant release of HCN from the char particle. Release of HCN also explained changes in NO production with temperature and NO concentration. Thus, the combination of experiments and simulations suggests that HCN evolution from the char during pulverized coal combustion plays an essential role in net NO production. Keywords: Coal; Char; Nitric oxide; Halogen.

  20. Signal transduction pathways in erythrocyte nitric oxide metabolism under high fibrinogen levels

    NASA Astrophysics Data System (ADS)

    Saldanha, Carlota; Freitas, T.; Lopez de Almeida, J. P.; Silva-Herdade, A.

    2014-05-01

    Previous studies show that the fibrinogen molecule modulates the metabolism of nitric oxide (NO) in erythrocyte. The in vitro induced hiperfibrinogenemia interferes in the metabolism of the NO in the erythrocyte in dependence of the phosphorylation degree of the band 3. The soluble form of fibrinogen binds into CD47 protein present in the erythrocyte membrane. The soluble thrombomodulin is an inflammatory marker that binds to the erythrocyte CD47 in a site with a sequence peptide known as 4N1K. A study done in vitro shows that when hiperfibrinogenemia was induced in the presence of the peptide 4N1K agonist of CD47 it were observed variations in the efflux of NO from erythrocyte and an increase in the concentrations of GSNO, peroxinitrite, nitrite and nitrate of the erythrocytes. The aim of this work was to study the influence of the peptide 4N1K, on the metabolism of NO in the erythrocyte under high fibrinogen concentration and in the presence of inhibitors of the status of phosphorylation of protein band 3. In this in vitro study, whole blood samples were harvested from healthy subjects and NO, peroxynitrite, nitrite, nitrate and S-nitro-glutathione (GSNO) were determined in presence of 4N1K, calpeptine, Syk inhibitor and under high fibrinogen concentrations. The results obtained in erythrocytes under high fibrinogen levels when 4N1K is present with the Syk inhibitor or with calpeptine, showed in relation to the control samples increased significant concentrations of efflux of NO and of peroxynitrite, nitrite, nitrate and GSNO. In conclusion it was verified that in the in vitro model of hiperfibrinogenemia the peptide 4N1K, agonist of CD47, induces mobilization of NO in the erythrocyte in dependence of the status of phosphorylation of protein band 3.

  1. Passive stretch reduces calpain activity through nitric oxide pathway in unloaded soleus muscles.

    PubMed

    Xu, Peng-Tao; Li, Quan; Sheng, Juan-Juan; Chang, Hui; Song, Zhen; Yu, Zhi-Bin

    2012-08-01

    Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.

  2. The Function of the Glutamate-Nitric Oxide-cGMP Pathway in Brain in Vivo and Learning Ability Decrease in Parallel in Mature Compared with Young Rats

    ERIC Educational Resources Information Center

    Piedrafita, Blanca; Cauli, Omar; Montoliu, Carmina; Felipo, Vicente

    2007-01-01

    Aging is associated with cognitive impairment, but the underlying mechanisms remain unclear. We have recently reported that the ability of rats to learn a Y-maze conditional discrimination task depends on the function of the glutamate-nitric oxide-cGMP pathway in brain. The aims of the present work were to assess whether the ability of rats to…

  3. Bacterial nitric oxide synthases.

    PubMed

    Crane, Brian R; Sudhamsu, Jawahar; Patel, Bhumit A

    2010-01-01

    Nitric oxide synthases (NOSs) are multidomain metalloproteins first identified in mammals as being responsible for the synthesis of the wide-spread signaling and protective agent nitric oxide (NO). Over the past 10 years, prokaryotic proteins that are homologous to animal NOSs have been identified and characterized, both in terms of enzymology and biological function. Despite some interesting differences in cofactor utilization and redox partners, the bacterial enzymes are in many ways similar to their mammalian NOS (mNOS) counterparts and, as such, have provided insight into the structural and catalytic properties of the NOS family. In particular, spectroscopic studies of thermostable bacterial NOSs have revealed key oxyheme intermediates involved in the oxidation of substrate L-arginine (Arg) to product NO. The biological functions of some bacterial NOSs have only more recently come to light. These studies disclose new roles for NO in biology, such as taking part in toxin biosynthesis, protection against oxidative stress, and regulation of recovery from radiation damage.

  4. Nitric oxide neurotoxicity.

    PubMed

    Dawson, V L; Dawson, T M

    1996-06-01

    Derangements in glutamate neurotransmission have been implicated in several neurodegenerative disorders including, stroke, epilepsy, Huntington's disease, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS). Activation of the N-methyl-D-aspartate (NMDA) receptor subtype of glutamate receptors results in the influx of calcium which binds calmodulin and activates neuronal nitric oxide synthase (nNOS), to convent L-arginine to citrulline and nitric oxide (NO). NO has many roles in the central nervous system as a messenger molecule, however, when generated in excess NO can be neurotoxic. Excess NO is in part responsible for glutamate neurotoxicity in primary neuronal cell culture and in animal models of stroke. It is likely that most of the neurotoxic actions of NO are mediated by peroxynitrite (ONOO-), the reaction product from NO and superoxide anion. In pathologic conditions, peroxynitrite and oxygen free radicals can be generated in excess of a cell antioxidant capacity resulting in severe damage to cellular constituents including proteins, DNA and lipids. The inherent biochemical and physiological characteristics of the brain, including high lipid concentrations and energy requirements, make it particularly susceptible to free radical and oxidant mediated insult. Increasing evidence indicates that many neurologic disorders may have components of free radical and oxidative stress induced injury.

  5. The vitamin D receptor and inducible nitric oxide synthase associated pathways in acquired resistance to Cooperia oncophora infection in cattle

    PubMed Central

    2011-01-01

    Cooperia oncophora is an economically important gastrointestinal nematode in ruminants. Acquired resistance to Cooperia oncophora infection in cattle develops rapidly as a result of prior infections. Naïve cattle, when given a primary infection of high-dose infective L3 larvae, develop a strong immunity to subsequent reinfection. Compared to primary infection, reinfection resulted in a marked reduction in worm establishment. In order to understand molecular mechanisms underlying the development of acquired resistance, we characterized the transcriptomic responses of the bovine small intestine to a primary infection and reinfection. A total of 23 pathways were significantly impacted during infection. The vitamin D receptor activation was strongly induced only during reinfection, suggesting that this pathway may play an important role in the development of acquired resistance via its potential roles in immune regulation and intestinal mucosal integrity maintenance. The expression of inducible nitric oxide synthase (NOS2) was strongly induced during reinfection but not during primary infection. As a result, several canonical pathways associated with NOS2 were impacted. The genes involved in eicosanoid synthesis, including prostaglandin synthase 2 (PTGS2 or COX2), remained largely unchanged during infection. The rapid development of acquired resistance may help explain the lack of relative pathogenicity by Cooperia oncophora infection in cattle. Our findings facilitate the understanding of molecular mechanisms underlying the development of acquired resistance, which could have an important implication in vaccine design. PMID:21414188

  6. The Nitric oxide/CGMP/KATP pathway mediates systemic and central antinociception induced by resistance exercise in rats.

    PubMed

    Galdino, Giovane S; Xavier, Carlos H; Almeida, Renato; Silva, Grazielle; Fontes, Marcos A; Menezes, Gustavo; Duarte, Igor D; Perez, Andrea C

    2015-01-01

    Resistance exercise (RE) is characterized to increase strength, tone, mass, and/or muscular endurance and also for produces many beneficial effects, such as blood pressure and osteoporosis reduction, diabetes mellitus control, and analgesia. However, few studies have investigated endogenous mechanisms involved in the RE-induced analgesia. Thus, the aim of this study was evaluate the role of the NO/CGMP/KATP pathway in the antinociception induced by RE. Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by mechanical nociceptive test (paw-withdrawal). To investigate the involvement of the NO/CGMP/KATP pathway the following nitric oxide synthase (NOS) non-specific and specific inhibitors were used: N-nitro-l-arginine (NOArg), Aminoguanidine, N5-(1-Iminoethyl)-l-ornithine dihydrocloride (l-NIO), Nω-Propyl-l-arginine (l-NPA); guanylyl cyclase inhibitor, 1H-[1,2,4]oxidiazolo[4,3-a]quinoxalin-1-one (ODQ); and KATP channel blocker, Glybenclamide; all administered subcutaneously, intrathecally and intracerebroventricularly. Plasma and cerebrospinal fluid (CSF) nitrite levels were determined by spectrophotometry. The RE protocol produced antinociception, which was significantly reversed by NOS specific and unspecific inhibitors, guanylyl cyclase inhibitor (ODQ) and KATP channel blocker (Glybenclamide). RE was also responsible for increasing nitrite levels in both plasma and CSF. These finding suggest that the NO/CGMP/KATP pathway participates in antinociception induced by RE.

  7. The new nitric oxide donor cyclohexane nitrate induces vasorelaxation, hypotension, and antihypertensive effects via NO/cGMP/PKG pathway

    PubMed Central

    Mendes-Júnior, Leônidas das G.; Guimarães, Driele D.; Gadelha, Danilo D. A.; Diniz, Thiago F.; Brandão, Maria C. R.; Athayde-Filho, Petrônio F.; Lemos, Virginia S.; França-Silva, Maria do S.; Braga, Valdir A.

    2015-01-01

    We investigated the cardiovascular effects induced by the nitric oxide donor Cyclohexane Nitrate (HEX). Vasodilatation, NO release and the effects of acute or sub-chronic treatment with HEX on cardiovascular parameters were evaluated. HEX induced endothelium-independent vasodilatation (Maximum effect [efficacy, ME] = 100.4 ± 4.1%; potency [pD2] = 5.1 ± 0.1). Relaxation was attenuated by scavenging nitric oxide (ME = 44.9 ± 9.4% vs. 100.4 ± 4.1%) or by inhibiting the soluble guanylyl cyclase (ME = 38.5 ± 9.7% vs. 100.4 ± 4.1%). In addition, pD2 was decreased after non-selective blockade of K+ channels (pD2 = 3.6 ± 0.1 vs. 5.1 ± 0.1) or by inhibiting KATP channels (pD2 = 4.3 ± 0.1 vs. 5.1 ± 0.1). HEX increased NO levels in mesenteric arteries (33.2 ± 2.3 vs. 10.7 ± 0.2 au, p < 0.0001). Intravenous acute administration of HEX (1–20 mg/kg) induced hypotension and bradycardia in normotensive and hypertensive rats. Furthermore, starting at 6 weeks after the induction of 2K1C hypertension, oral treatment with the HEX (10 mg/Kg/day) for 7 days reduced blood pressure in hypertensive animals (134 ± 6 vs. 170 ± 4 mmHg, respectively). Our data demonstrate that HEX is a NO donor able to produce vasodilatation via NO/cGMP/PKG pathway and activation of the ATP-sensitive K+ channels. Furthermore, HEX acutely reduces blood pressure and heart rate as well as produces antihypertensive effect in renovascular hypertensive rats. PMID:26379557

  8. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    SciTech Connect

    Tsujita, Maristela; Batista, Wagner L.; Ogata, Fernando T.; Monteiro, Hugo P. Arai, Roberto J.

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  9. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis.

    PubMed

    Tsujita, Maristela; Batista, Wagner L; Ogata, Fernando T; Stern, Arnold; Monteiro, Hugo P; Arai, Roberto J

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  10. Elements of the nitric oxide/cGMP pathway expressed in cerebellar granule cells: biochemical and functional characterisation.

    PubMed

    Jurado, Sandra; Sánchez-Prieto, José; Torres, Magdalena

    2004-11-01

    It is known that the nitric oxide (NO)/cGMP pathway affects neuronal development and the expression of the different proteins is developmentally dependent in several brain areas. However, so far there are no data on the expression of the proteins involved in this signalling system during the development of the cerebellar granule cell, one of the most widely used models of neuronal development. This study was accordingly designed to analyse the developmental regulation of neuronal nitric oxide synthase (nNOS), soluble guanylyl cyclase subunits (alpha1, alpha2 and beta1) and cGMP-dependent protein kinases (cGK I and cGK II) in cerebellar granule cells through real time-polymerase chain reaction (RT-PCR) and Western blotting. We were able to detect guanylyl cyclase subunits and cGK I and cGK II in cerebellar granule cells at every stage of development examined (cells freshly isolated from 7-day-old rat pups, and cells cultured for 7 days or 14 days). Expression levels, nevertheless, varied significantly at each stage. nNOS, alpha2 and beta1 and cGK II levels increased during granule cell development, while alpha1 and cGK I showed an opposite behaviour pattern; the levels of these latter proteins diminished as the cells matured. The functionality of this pathway was assessed by stimulating cells kept in culture for 7 days with DEA/NO or with N-methyl-D-aspartate (NMDA). Cells responded by increasing intracellular cGMP and activating cGMP-dependent protein kinase activity, which effectively phosphorylated two well-known substrates of this activity, the vasodilator stimulated phosphoprotein (VASP) and the cAMP response element binding protein (CREB). In summary, through both functional and biochemical tests, this is the first demonstration of a complete NO/cGMP signalling transduction pathway in cerebellar granule cells. Our results also indicate the developmental regulation of the proteins in this system.

  11. Nitric oxide and brassinosteroids mediated fungal endophyte-induced volatile oil production through protein phosphorylation pathways in Atractylodes lancea plantlets.

    PubMed

    Ren, Cheng-Gang; Dai, Chuan-Chao

    2013-11-01

    Fungal endophytes have been isolated from almost every plant, infecting their hosts without causing visible disease symptoms, and yet have still proved to be involved in plant secondary metabolites accumulation. To decipher the possible physiological mechanisms of the endophytic fungus-host interaction, the role of protein phosphorylation and the relationship between endophytic fungus-induced kinase activity and nitric oxide (NO) and brassinolide (BL) in endophyte-enhanced volatile oil accumulation in Atractylodes lancea plantlets were investigated using pharmacological and biochemical approaches. Inoculation with the endophytic fungus Gilmaniella sp. AL12 enhanced the activities of total protein phosphorylation, Ca²⁺-dependent protein kinase, and volatile oil accumulation in A. lancea plantlets. The upregulation of protein kinase activity could be blocked by the BL inhibitor brassinazole. Furthermore, pretreatments with the NO-specific scavenger cPTIO significantly reduced the increased activities of protein kinases in A. lancea plantlets inoculated with endophytic fungus. Pretreatments with different protein kinase inhibitors also reduced fungus-induced NO production and volatile oil accumulation, but had barely no effect on the BL level. These data suggest that protein phosphorylation is required for endophyte-induced volatile oil production in A. lancea plantlets, and that crosstalk between protein phosphorylation and the NO pathway may occur and act as a downstream signaling event of the BL pathway.

  12. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway

    PubMed Central

    Franchin, Marcelo; da Cunha, Marcos Guilherme; Denny, Carina; Napimoga, Marcelo Henrique; Cunha, Thiago Mattar; Bueno-Silva, Bruno; Matias de Alencar, Severino; Ikegaki, Masaharu; Luiz Rosalen, Pedro

    2013-01-01

    The aim of this study was to evaluate the activity of the ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and its fractions on the modulation of neutrophil migration in the inflammatory process, and the participation of nitric oxide (NO) pathway, as well as to check the chemical profile of the bioactive fraction. EEGP and its aqueous fraction decreased neutrophil migration in the peritoneal cavity and also the interaction of leukocytes (rolling and adhesion) with endothelial cells. The levels of chemokines CXCL1/KC and CXCL2/MIP-2 were not altered after treatment with EEGP and the aqueous fraction. It was found that the injection of NO pathway antagonists abolished the EEGP and the aqueous fraction inhibitory activity on the neutrophil migration. The expression of intercellular adhesion molecule type 1 (ICAM-1) was reduced, and nitrite levels increased after treatment with EEGP and aqueous fraction. In the carrageenan-induced paw edema model, EEGP and the aqueous fraction showed antiedema activity. No pattern of flavonoid and phenolic acid commonly found in propolis samples of Apis mellifera could be detected in the aqueous fraction samples. These data indicate that the aqueous fraction found has promising bioactive substances with anti-inflammatory activity. PMID:23737853

  13. Effects of lipoprotein-associated phospholipase A2 on arginase/nitric oxide pathway in hemodialysis patients.

    PubMed

    Tektaş, Ayşegül Korkmaz; Uslu, Sema; Yalçin, Ahmet Uğur; Sahin, Garip; Temiz, Gökhan; Kara, Mehmet; Temel, Halide Edip; Demirkan, Emine Sütken; Colak, Ertuğrul; Colak, Omer

    2012-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) and arginase are recently described inflammatory biomarkers associated with cardiovascular disease. In this study, we aimed to investigate the possible effects of serum Lp-PLA2 mass levels on arginase/nitric oxide (NO) pathway as a cardiovascular risk marker in hemodialysis (HD) patients. Forty-three HD patients and 15 healthy subjects were included in this study. Lipid profile, high sensitivity C-reactive protein (hs-CRP), albumin, creatinine, body mass index (BMI), Lp-PLA2 and total nitrite levels, and arginase activity were determined in serum samples from patients and control subjects. Lp-PLA2 levels were found to be positively correlated with arginase, triglycerides, total cholesterol, low-density lipoprotein-cholesterol, and age and negatively correlated with high-density lipoprotein-cholesterol and total nitrite levels, while there was no correlation with BMI and hs-CRP, albumin, and creatinine levels in HD patients. We conclude that elevated Lp-PLA2 mass levels may contribute to impaired arginase/NO pathway in HD patients and that increased the arginase activity and Lp-PLA2 mass levels with decreased total nitrite levels seem to be useful biochemical markers in terms of reflecting endothelial dysfunction and associated cardiovascular risks in HD patients.

  14. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells

    PubMed Central

    Felley-Bosco, Emanuela; Bender, Florent C.; Courjault-Gautier, Françoise; Bron, Claude; Quest, Andrew F. G.

    2000-01-01

    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway. PMID:11114180

  15. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells.

    PubMed

    Felley-Bosco, E; Bender, F C; Courjault-Gautier, F; Bron, C; Quest, A F

    2000-12-19

    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway.

  16. Nitric oxide induces thioredoxin-1 nuclear translocation: Possible association with the p21Ras survival pathway

    SciTech Connect

    Arai, Roberto J.; Yodoi, J.; Debbas, V.; Laurindo, Francisco R.; Stern, A.; Monteiro, Hugo P. . E-mail: hpmonte@uol.com.br

    2006-10-06

    One of the major redox-regulating molecules with thiol reducing activity is thioredoxin-1 (TRX-1). TRX-1 is a multifunctional protein that exists in the extracellular millieu, cytoplasm, and nucleus, and has a distinct role in each environment. It is well known that TRX-1 promptly migrates to the nuclear compartment in cells exposed to oxidants. However, the intracellular location of TRX-1 in cells exposed to nitrosothiols has not been investigated. Here, we demonstrated that the exposure of HeLa cells to increasing concentrations of the nitrosothiol S-nitroso-N-acetylpenicillamine (SNAP) promoted TRX-1 nuclear accumulation. The SNAP-induced TRX-1 translocation to the nucleus was inhibited by FPTIII, a selective inhibitor of p21Ras. Furthermore, TRX-1 migration was attenuated in cells stably transfected with NO insensitive p21Ras (p21{sup RasC118S}). Downstream to p21Ras, the MAP Kinases ERK1/2 were activated by SNAP under conditions that promote TRX-1 nuclear translocation. Inhibition of MEK prevented SNAP-stimulated ERK1/2 activation and TRX-1 nuclear migration. In addition, cells treated with p21Ras or MEK inhibitor showed increased susceptibility to cell death induced by SNAP. In conclusion, our observations suggest that the nuclear translocation of TRX-1 is induced by SNAP involving p21Ras survival pathway.

  17. Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo.

    PubMed Central

    Yamasaki, H

    2000-01-01

    Air pollution studies have shown that nitric oxide (NO), a gaseous free radical, is a potent photosynthetic inhibitor that reduces CO2 uptake activity in leaves. It is now recognized that NO is not only an air pollutant but also an endogenously produced metabolite, which may play a role in regulating plant cell functions. Although many studies have suggested the presence of mammalian-type NO synthase (NOS) in plants, the source of NO is still not clear. There has been a number of studies indicating that plant cells possess a nitrite-dependent NO production pathway which can be distinguished from the NOS-mediated reaction. Nitrate reductase (NR) has been recently found to be capable of producing NO through one-electron reduction of nitrite using NAD(P)H as an electron donor. This review focuses on current understanding of the mechanism for the nitrite-dependent NO production in plants. Impacts of NO produced by NR on photosynthesis are discussed in association with photo-oxidative stress in leaves. PMID:11128001

  18. Detection of nitric oxide pollution

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Weisbach, M. F.

    1973-01-01

    Studies of absorption spectra enhancement of certain atomic and molecular species inserter in dye-laser cavities have indicated that nitric oxide can be determined at low concentrations. Absorption coefficient of small amounts of nitric oxide in intra-laser-cavity absorption cell containing helium is enhanced by more than two orders of magnitude.

  19. Possible involvement of nitric oxide (NO) signaling pathway in the antidepressant-like effect of MK-801(dizocilpine), a NMDA receptor antagonist in mouse forced swim test.

    PubMed

    Dhir, Ashish; Kulkarni, S K

    2008-03-01

    L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) is an important signaling pathway involved in depression. With this information, the present study aimed to study the involvement of this signaling pathway in the antidepressant-like action of MK-801 (dizocilpine; N-methyl-d-aspartate receptor antagonist) in the mouse forced-swim test. Total immobility period was recorded in mouse forced swim test for 6 min. MK-801 (5-25 microg/kg., ip) produced a U-shaped curve in reducing the immobility period. The antidepressant-like effect of MK-801 (10 microg/kg, ip) was prevented by pretreatment with L-arginine (750 mg/kg, ip) [substrate for nitric oxide synthase (NOS)]. Pretreatment of mice with 7-nitroindazole (7-NI) (25 mg/kg, ip) [a specific neuronal nitric oxide synthase inhibitor] produced potentiation of the action of subeffective dose of MK-801 (5 microg/kg, ip). In addition, treatment of mice with methylene blue (10 mg/kg, ip) [direct inhibitor of both nitric oxide synthase and soluble guanylate cyclase] potentiated the effect of MK-801 (5 microg/kg, ip) in the forced-swim test. Further, the reduction in the immobility period elicited by MK-801 (10 microg/kg, ip) was also inhibited by pretreatment with sildenafil (5 mg/kg, ip) [phosphodiesterase 5 inhibitor]. The various modulators used in the study and their combination did not produce any changes in locomotor activity per se and in combination with MK-801. MK-801 however, at higher doses (25 microg/kg, ip) produced hyperlocomotion. The results demonstrated the involvement of nitric oxide signaling pathway in the antidepressant-like effect of MK-801 in mouse forced-swim test.

  20. Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways.

    PubMed

    Raber, Patrick L; Thevenot, Paul; Sierra, Rosa; Wyczechowska, Dorota; Halle, Daniel; Ramirez, Maria E; Ochoa, Augusto C; Fletcher, Matthew; Velasco, Cruz; Wilk, Anna; Reiss, Krzysztof; Rodriguez, Paulo C

    2014-06-15

    The accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing hosts is a hallmark of malignancy-associated inflammation and a major mediator for the induction of T cell suppression in cancer. MDSC can be divided phenotypically into granulocytic (G-MDSC) and monocytic (Mo-MDSC) subgroups. Several mechanisms mediate the induction of T cell anergy by MDSC; however, the specific role of these pathways in the inhibitory activity of MDSC subpopulations remains unclear. Therefore, we aimed to determine the effector mechanisms by which subsets of tumor-infiltrating MDSC block T cell function. We found that G-MDSC had a higher ability to impair proliferation and expression of effector molecules in activated T cells, as compared to Mo-MDSC. Interestingly, both MDSC subgroups inhibited T cells through nitric oxide (NO)-related pathways, but expressed different effector inhibitory mechanisms. Specifically, G-MDSC impaired T cells through the production of peroxynitrites (PNT), while Mo-MDSC suppressed by the release of NO. The production of PNT in G-MDSC depended on the expression of gp91(phox) and endothelial NO synthase (eNOS), while inducible NO synthase (iNOS) mediated the generation of NO in Mo-MDSC. Deletion of eNOS and gp91(phox) or scavenging of PNT blocked the suppressive function of G-MDSC and induced anti-tumoral effects, without altering Mo-MDSC inhibitory activity. Furthermore, NO-scavenging or iNOS knockdown prevented Mo-MDSC function, but did not affect PNT production or suppression by G-MDSC. These results suggest that MDSC subpopulations utilize independent effector mechanisms to regulate T cell function. Inhibition of these pathways is expected to specifically block MDSC subsets and overcome immune suppression in cancer.

  1. Prenatal lipopolysaccharide exposure causes mesenteric vascular dysfunction through the nitric oxide and cyclic guanosine monophosphate pathway in offspring.

    PubMed

    Wang, Xinquan; Wang, Jialiang; Luo, Hao; Chen, Caiyu; Pei, Fang; Cai, Yue; Yang, Xiaoli; Wang, Na; Fu, Jinjuan; Xu, Zaichen; Zhou, Lin; Zeng, Chunyu

    2015-09-01

    Cardiovascular diseases, such as hypertension, could be programmed in fetal life. Prenatal lipopolysaccharide (LPS) exposure in utero results in increased blood pressure in offspring, but the vascular mechanisms involved are unclear. Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS (0.79mg/kg) or saline (0.5ml) on gestation days 8, 10, and 12. The offspring of LPS-treated dams had higher blood pressure and decreased acetylcholine (ACh)-induced relaxation and increased phenylephrine (PE)-induced contraction in endothelium-intact mesenteric arteries. Endothelium removal significantly enhanced the PE-induced contraction in offspring of control but not LPS-treated dams. The arteries pretreated with l-NAME to inhibit nitric oxide synthase (eNOS) in the endothelium or ODQ to inhibit cGMP production in the vascular smooth muscle had attenuated ACh-induced relaxation but augmented PE-induced contraction to a larger extent in arteries from offspring of control than those from LPS-treated dams. In addition, the endothelium-independent relaxation caused by sodium nitroprusside was also decreased in arteries from offspring of LPS-treated dams. The functional results were accompanied by a reduction in the expressions of eNOS and soluble guanylate cyclase (sGC) and production of NO and cGMP in arteries from offspring of LPS-treated dams. Furthermore, LPS-treated dam's offspring arteries had increased oxidative stress and decreased antioxidant capacity. Three-week treatment with TEMPOL, a reactive oxygen species (ROS) scavenger, normalized the alterations in the levels of ROS, eNOS, and sGC, as well as in the production of NO and cGMP and vascular function in the arteries of the offspring of LPS-treated dams. In conclusion, prenatal LPS exposure programs vascular dysfunction of mesenteric arteries through increased oxidative stress and impaired NO-cGMP signaling pathway.

  2. The prelimbic cortex muscarinic M₃ receptor-nitric oxide-guanylyl cyclase pathway modulates cardiovascular responses in rats.

    PubMed

    Fassini, Aline; Antero, Leandro S; Corrêa, Fernando M A; Joca, Sâmia R; Resstel, Leonardo B M

    2015-05-01

    The prelimbic cortex (PL), a limbic structure, sends projections to areas involved in the control of cardiovascular responses. Stimulation of the PL with acetylcholine (ACh) evokes depressor and tachycardiac responses mediated by local PL muscarinic receptors. Early studies demonstrated that stimulation of muscarinic receptors induced nitric oxide (NO) synthesis and cyclic guanosine cyclic monophosphate (cGMP) formation. Hence, this study investigates which PL muscarinic receptor subtype is involved in the cardiovascular response induced by ACh and tests the hypothesis that cardiovascular responses caused by muscarinic receptor stimulation in the PL are mediated by local NO and cGMP formation. PL pretreatment with J104129 (an M3 receptor antagonist) blocked the depressor and tachycardiac response evoked by injection of ACh into the PL. Pretreatment with either pirenzepine (an M1 receptor antagonist) or AF-DX 116 (an M2 and M4 receptor antagonist) did not affect cardiovascular responses evoked by ACh. Moreover, similarly to the antagonism of PL M3 receptors, pretreatment with N(ω)-propyl-L-arginine (an inhibitor of neuronal NO synthase), carboxy-PTIO(S)-3-carboxy-4-hydroxyphenylglicine (an NO scavenger), or 1H-[1,2,4]oxadiazolol-[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) blocked both the depressor and the tachycardiac response evoked by ACh. The current results demonstrate that cardiovascular responses evoked by microinjection of ACh into the PL are mediated by local activation of the M3 receptor-NO-guanylate cyclase pathway.

  3. Microinjection of l-glutamate into the nucleus ambiguus partially inhibits gastric motility through the NMDA receptor - nitric oxide pathway.

    PubMed

    Sun, Hong-Zhao; Zhao, Shu-Zhen; Ai, Hong-Bin

    2014-06-01

    We have previously reported that both l-glutamate (l-Glu) and nitric oxide (NO) modulate gastric motility in the nucleus ambiguus (NA). The aim of this study is to explore the potential correlation between the l-Glu and NO. A latex balloon connected to a pressure transducer was inserted into the pylorus through the fundus of anesthetized male Wistar rats to continuously record changes in gastric smooth muscle contractile curves. Pretreatment with the NO-synthase inhibitor N-nitro-l-arginine methylester (l-NAME) did not completely abolish the inhibitory effect of l-Glu on gastric motility, but intravenous injection of the ganglionic blocker hexamethonium bromide (Hb) did. By using a specific N-methyl-d-aspartic acid (NMDA) receptor antagonist, we blocked the inhibitory effect of the NO-donor sodium nitroprusside (SNP) on gastric motility. These results suggest that microinjections of l-Glu into the NA inhibits gastric motility by activating the cholinergic preganglionic neurons, partially through the NMDA receptor - NO pathway.

  4. The nitric-oxide reductase from Paracoccus denitrificans uses a single specific proton pathway.

    PubMed

    ter Beek, Josy; Krause, Nils; Reimann, Joachim; Lachmann, Peter; Ädelroth, Pia

    2013-10-18

    The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H(+) + 2e(-) → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.

  5. Lower urinary tract symptoms/benign prostatic hypertrophy and vascular function: Role of the nitric oxide-phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate pathway.

    PubMed

    Higashi, Yukihito

    2017-03-22

    It is well known that there is an association of lower urinary tract symptoms/benign prostatic hypertrophy with cardiovascular disease, suggesting that lower urinary tract symptoms/benign prostatic hypertrophy is a risk factor for cardiovascular events. Vascular function, including endothelial function and vascular smooth muscle function, is involved in the pathogenesis, maintenance and development of atherosclerosis, leading to cardiovascular events. Vascular dysfunction per se should also contribute to lower urinary tract symptoms/benign prostatic hypertrophy. Both lower urinary tract symptoms/benign prostatic hypertrophy and vascular dysfunction have cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus, aging, obesity and smoking. Inactivation of the phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate-nitric oxide pathway causes lower urinary tract symptoms/benign prostatic hypertrophy through an enhancement of sympathetic nervous activity, endothelial dysfunction, increase in Rho-associated kinase activity and vasoconstriction, and decrease in blood flow of pelvic viscera. Both endogenous nitric oxide and exogenous nitric oxide act as vasodilators on vascular smooth muscle cells through an increase in the content of cyclic guanosine 3',5'-monophosphate, which is inactivated by phosphodiesterase type 5. In a clinical setting, phosphodiesterase type 5 inhibitors are widely used in patients with lower urinary tract symptoms/benign prostatic hypertrophy. Phosphodiesterase type 5 inhibitors might have beneficial effects on vascular function through not only inhibition of cyclic guanosine 3',5'-monophosphate degradation, but also increases in testosterone levels and nitric oxide bioavailability, increase in the number and improvement of the function of endothelial progenitor cells, and decrease in insulin resistance. In the present review, the relationships between lower urinary tract symptoms/benign prostatic hypertrophy, the

  6. Involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of bis selenide in the mouse tail suspension test.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Bortolatto, Cristiani F; Rocha, João B T; Nogueira, Cristina W

    2010-06-10

    The present study investigated a possible antidepressant-like effect of bis selenide by using the forced swimming and the tail suspension tests. The involvement of the l-arginine-nitric oxide-cyclic guanosine monophosphate signaling pathway in the antidepressant-like action of bis selenide was investigated. Bis selenide, given by oral route at doses of 0.5-5mg/kg, decreased the immobility time in the forced swimming and tail suspension tests. Pretreatment with l-arginine (750mg/kg, intraperitoneal, i.p., a nitric oxide precursor), sildenafil (5mg/kg, i.p., a phosphodiesterase 5 inhibitor) or S-nitroso-N-acetyl-penicillamine (25microg/site, intracerebroventricular, i.c.v., a nitric oxide donor) reversed the reduction in the immobility time elicited by bis selenide (1mg/kg, p.o.) in the tail suspension test. Bis selenide (0.1mg/kg, p.o., a subeffective dose) produced a synergistic antidepressant-like effect with N(G)-nitro-L-arginine (0.3mg/kg, i.p., an inhibitor of nitric oxide synthase) or 7-nitroindazole (25mg/kg, i.p., a specific neuronal nitric oxide synthase inhibitor) in the tail suspension test. Pretreatment of animals with methylene blue (10mg/kg, i.p., an inhibitor of nitric oxide synthase and soluble guanylate cyclase) or 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (30pmol, i.c.v., a specific inhibitor of soluble guanylate cyclase), at subeffective doses, caused a synergistic effect with bis selenide in the tail suspension test. Bis selenide (1mg/kg, p.o.), at an effective dose in the forced swimming and tail suspension tests, caused a significant decrease in the mouse cerebral nitrate/nitrite levels. The antidepressant-like effect of bis selenide in the tail suspension test is dependent on the inhibition of the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway.

  7. Nitric oxide and cardiovascular system.

    PubMed

    Cengel, Atiye; Sahinarslan, Asife

    2006-12-01

    Endothelium has many important functions including the control of blood-tissue permeability and vascular tonus, regulation of vascular surface properties for homeostasis and inflammation. Nitric oxide is the chief molecule in regulation of endothelial functions. Nitric oxide deficiency, which is also known as endothelial dysfunction, is the first step for the occurrence of many disease states in cardiovascular system including heart failure, hypertension, dyslipidemia, insulin resistance, diabetes mellitus, hyperhomocysteinemia and smoking. This review deals with the importance of nitric oxide for cardiovascular system. It also includes the latest improvements in the diagnosis and treatment of endothelial dysfunction.

  8. Extracellular cGMP Modulates Learning Biphasically by Modulating Glycine Receptors, CaMKII and Glutamate-Nitric Oxide-cGMP Pathway

    PubMed Central

    Cabrera-Pastor, Andrea; Malaguarnera, Michele; Taoro-Gonzalez, Lucas; Llansola, Marta; Felipo, Vicente

    2016-01-01

    It has been proposed that extracellular cGMP modulates the ability to learn a Y maze task, but the underlying mechanisms remained unknown. Here we show that extracellular cGMP, at physiological concentrations, modulates learning in the Y maze in a biphasic way by modulating the glutamate-nitric oxide-cGMP pathway in cerebellum. Extracellular cGMP reduces glycine receptors activation inducing a voltage-dependent calcium-channels-mediated increase of calcium in Purkinje neurons. This calcium increase modulates CaMKII phosphorylation in a biphasic way. When basal calcium concentration is low extracellular cGMP reduces CaMKII phosphorylation, increasing nitric oxide synthase activity, the glutamate-NO-cGMP pathway function and learning ability. When basal calcium is normal extracellular cGMP increases CaMKII phosphorylation, reducing nitric oxide synthase activity, the pathway function and learning. These data unveil new mechanisms modulating learning in the Y maze and likely other learning types which may be therapeutic targets to improve learning in pathological situations associated with altered cGMP levels. PMID:27634333

  9. Microparticles Carrying Sonic Hedgehog Favor Neovascularization through the Activation of Nitric Oxide Pathway in Mice

    PubMed Central

    Benameur, Tarek; Soleti, Raffaella; Porro, Chiara; Andriantsitohaina, Ramaroson; Martínez, Maria Carmen

    2010-01-01

    Background Microparticles (MPs) are vesicles released from plasma membrane upon cell activation and during apoptosis. Human T lymphocytes undergoing activation and apoptosis generate MPs bearing morphogen Shh (MPsShh+) that are able to regulate in vitro angiogenesis. Methodology/Principal Findings Here, we investigated the ability of MPsShh+ to modulate neovascularization in a model of mouse hind limb ischemia. Mice were treated in vivo for 21 days with vehicle, MPsShh+, MPsShh+ plus cyclopamine or cyclopamine alone, an inhibitor of Shh signalling. Laser doppler analysis revealed that the recovery of the blood flow was 1.4 fold higher in MPsShh+-treated mice than in controls, and this was associated with an activation of Shh pathway in muscles and an increase in NO production in both aorta and muscles. MPsShh+-mediated effects on flow recovery and NO production were completely prevented when Shh signalling was inhibited by cyclopamine. In aorta, MPsShh+ increased activation of eNOS/Akt pathway, and VEGF expression, being inhibited by cyclopamine. By contrast, in muscles, MPsShh+ enhanced eNOS expression and phosphorylation and decreased caveolin-1 expression, but cyclopamine prevented only the effects of MPsShh+ on eNOS pathway. Quantitative RT-PCR revealed that MPsShh+ treatment increased FGF5, FGF2, VEGF A and C mRNA levels and decreased those of α5-integrin, FLT-4, HGF, IGF-1, KDR, MCP-1, MT1-MMP, MMP-2, TGFβ1, TGFβ2, TSP-1 and VCAM-1, in ischemic muscles. Conclusions/Significance These findings suggest that MPsShh+ may contribute to reparative neovascularization after ischemic injury by regulating NO pathway and genes involved in angiogenesis. PMID:20856928

  10. 49 CFR 173.337 - Nitric oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nitric oxide. 173.337 Section 173.337... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.337 Nitric oxide. (a) Nitric oxide must be... valve and valve seat that will not deteriorate in contact with nitric oxide. Cylinders or valves may...

  11. 49 CFR 173.337 - Nitric oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nitric oxide. 173.337 Section 173.337... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.337 Nitric oxide. (a) Nitric oxide must be... valve and valve seat that will not deteriorate in contact with nitric oxide. Cylinders or valves may...

  12. 49 CFR 173.337 - Nitric oxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nitric oxide. 173.337 Section 173.337... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.337 Nitric oxide. (a) Nitric oxide must be... valve and valve seat that will not deteriorate in contact with nitric oxide. Cylinders or valves may...

  13. 49 CFR 173.337 - Nitric oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitric oxide. 173.337 Section 173.337... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.337 Nitric oxide. (a) Nitric oxide must be... valve and valve seat that will not deteriorate in contact with nitric oxide. Cylinders or valves may...

  14. Parallel evolution of Nitric Oxide signaling: Diversity of synthesis & memory pathways

    PubMed Central

    Moroz, Leonid L.; Kohn, Andrea B.

    2014-01-01

    The origin of NO signaling can be traceable back to the origin of life with the large scale of parallel evolution of NO synthases (NOSs). Inducible-like NOSs may be the most basal prototype of all NOSs and that neuronal-like NOS might have evolved several times from this prototype. Other enzymatic and non-enzymatic pathways for NO synthesis have been discovered using reduction of nitrites, an alternative source of NO. Diverse synthetic mechanisms can co-exist within the same cell providing a complex NO-oxygen microenvironment tightly coupled with cellular energetics. The dissection of multiple sources of NO formation is crucial in analysis of complex biological processes such as neuronal integration and learning mechanisms when NO can act as a volume transmitter within memory-forming circuits. In particular, the molecular analysis of learning mechanisms (most notably in insects and gastropod molluscs) opens conceptually different perspectives to understand the logic of recruiting evolutionarily conserved pathways for novel functions. Giant uniquely identified cells from Aplysia and related species precent unuque opportunities for integrative analysis of NO signaling at the single cell level. PMID:21622160

  15. Chemiluminescence of nitric oxide

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Rusch, D. W.

    1981-01-01

    Measurements of the intensities of the delta and gamma bands of nitric oxide in the nighttime terrestrial thermosphere are presented and used to infer the rate coefficient for the transition from the C 2 Pi to the A 2 Sigma + states. The nightglow spectrum was observed between 1900 and 2300 A at a resolution of 15 A by a rocket-borne scanning 1/4-m spectrometer pointing north at an apogee of 150 km. Progressions of the delta, gamma and epsilon bands are identified on the spectra by the construction of synthetic spectra, and the contributions of resonance fluorescence to the total band intensities are calculated. Finally, the ratio of the sum of the gamma bands for v-prime = 0 to the sum of the delta bands for v-prime = 0 is used to derive a branching ratio of 0.21 + or - 0.04 to the A 2 Sigma + state, which yields a probability for the C-A transition of 5.6 + or - 1.5 x to the 6th/sec.

  16. Nitric oxide/cGMP pathway signaling actively down-regulates α4β1-integrin affinity: an unexpected mechanism for inducing cell de-adhesion

    PubMed Central

    2011-01-01

    Background Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Results Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. Conclusions We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling

  17. Endothelial nitric oxide synthase regulates white matter changes via the BDNF/TrkB pathway after stroke in mice.

    PubMed

    Cui, Xu; Chopp, Michael; Zacharek, Alex; Ning, Ruizhuo; Ding, Xiaoshuang; Roberts, Cynthia; Chen, Jieli

    2013-01-01

    Stroke induced white matter (WM) damage is associated with neurological functional deficits, but the underlying mechanisms are not well understood. In this study, we investigate whether endothelial nitric oxide synthase (eNOS) affects WM-damage post-stroke. Adult male wild-type (WT) and eNOS knockout (eNOS(-/-)) mice were subjected to middle cerebral artery occlusion. Functional evaluation, infarct volume measurement, immunostaining and primary cortical cell culture were performed. To obtain insight into the mechanisms underlying the effects of eNOS(-/-) on WM-damage, measurement of eNOS, brain-derived neurotrophic factor (BDNF) and its receptor TrkB in vivo and in vitro were also performed. No significant differences were detected in the infarction volume, myelin density in the ipsilateral striatal WM-bundles and myelin-based protein expression in the cerebral ischemic border between WT and eNOS(-/-) mice. However, eNOS(-/-) mice showed significantly: 1) decreased functional outcome, concurrent with decreases of total axon density and phosphorylated high-molecular weight neurofilament density in the ipsilateral striatal WM-bundles. Correlation analysis showed that axon density is significantly positive correlated with neurological functional outcome; 2) decreased numbers of oligodendrocytes / oligodendrocyte progenitor cells in the ipsilateral striatum; 3) decreased synaptophysin, BDNF and TrkB expression in the ischemic border compared with WT mice after stroke (n = 12/group, p<0.05). Primary cortical cell culture confirmed that the decrease of neuronal neurite outgrowth in the neurons derived from eNOS(-/-) mice is mediated by the reduction of BDNF/TrkB (n = 6/group, p<0.05). Our data show that eNOS plays a critical role in WM-damage after stroke, and eNOS(-/-)-induced decreases in the BDNF/TrkB pathway may contribute to increased WM-damage, and thereby decrease functional outcome.

  18. Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/Slug signaling pathway

    PubMed Central

    Hwang, Jung Hoo; Park, Soo Jung; Ko, Won Gyu; Kang, Seong-Mun; Lee, Da Bin; Bang, Junho; Park, Byung-Joo; Wee, Chung-Beum; Kim, Dae Joon; Jang, Ik-Soon; Ko, Jae-Hong

    2017-01-01

    Nitric oxide (NO) is an important signaling molecule and a component of the inflammatory cascade. Besides, it is also involved in tumorigenesis. Aberrant upregulation and activation of the ERK cascade by NO often leads to tumor cell development. However, the role of ERK inactivation induced by the negative regulation of NO during apoptosis is not completely understood. In this study, treatment of A549 and PC9 human lung adenocarcinoma cell lines with cordycepin led to a reduction in their viability. Analysis of the effect of cordycepin treatment on ERK/Slug signaling activity in the A549 cell line revealed that LPS-induced inflammatory microenvironments could stimulate the expression of TNF-α, CCL5, IL-1β, IL-6, IL-8 and upregulate NO, phospho-ERK (p-ERK), and Slug expression. In addition, constitutive expression of NO was observed. Cordycepin inhibited LPS-induced stimulation of iNOS, NO, p-ERK, and Slug expression. L-NAME, an inhibitor of NOS, inhibited p-ERK and Slug expression. It was also found that cordycepin-mediated inhibition of ERK downregulated Slug, whereas overexpression of ERK led to an upregulation of Slug levels in the cordycepin-treated A549 cells. Inhibition of Slug by siRNA induced Bax and caspase-3, leading to cordycepin-induced apoptosis. Cordycepin-mediated inhibition of ERK led to a reduction in phospho-GSK3β (p-GSK3β) and Slug levels, whereas LiCl, an inhibitor of GSK3β, upregulated p-GSK3β and Slug. Overall, the results obtained indicate that cordycepin inhibits the ERK/Slug signaling pathway through the activation of GSK3β which, in turn, upregulates Bax, leading to apoptosis of the lung cancer cells.

  19. Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis.

    PubMed

    Martin, Sophie; Giannone, Grégory; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2003-07-01

    1. Epidemiological studies have suggested that moderate consumption of natural dietary polyphenolic compounds might reduce the risk of cardiovascular disease and also protect against cancer. The present study investigates the effects of delphinidin, an anthocyanin present in red wine, on bovine aortic endothelial cells apoptosis. 2. Based on flow cytometry, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis and detection of mitochondrial cytochrome c release, we show that delphinidin (10(-2) g l(-1)) alone had no effect either on necrosis or on apoptosis, but it significantly reduced apoptosis elicited by actinomycin D (1 micro g ml(-1), 24 h) and 7beta-hydroxycholesterol (10 micro g ml(-1), 18 h). 3. The protective effect of delphinidin was abolished by inhibitors of nitric oxide-synthase (NOS) (L-NA, 100 micro M and SMT, 100 micro M), guanylyl cyclase (ODQ, 100 micro M) and MAP kinase (PD98059, 30 micro M). 4. Western blot analysis and protein detection by confocal microscopy demonstrate that the antiapoptotic effect of delphinidin was associated with an increased endothelial NOS expression mediated by a MAP kinase pathway. 5. Finally, delphinidin alone had no effect on cytosolic-free calcium ([Ca(2+)](i)), but normalized the changes in [Ca(2+)](i) produced by actinomycin D towards the control values, suggesting that the antiapoptotic effect of delphinidin is associated with the maintenance of [Ca(2+)](i) in the physiological range. 6. All of the observed effects of delphinidin may preserve endothelium integrity, the alteration of which lead to pathologies including cardiovascular diseases, such as atherosclerosis, and is often associated with cancers. In conclusion, the protective effect of delphinidin against endothelial cell apoptosis contributes to understand the potential benefits of a consumption rich in polyphenols.

  20. Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways.

    PubMed

    Duluc, Lucie; Jacques, Caroline; Soleti, Raffaella; Iacobazzi, Francesco; Simard, Gilles; Andriantsitohaina, Ramaroson

    2013-04-01

    Red wine polyphenolic compounds (RWPC) are reported to exert vasculoprotective properties on endothelial cells, involving nitric oxide (NO) release via a redox-sensitive pathway. This NO release involves the activation of the estrogen receptor-alpha (ERα). Paradoxical effects of a RWPC treatment occur in a rat model of post-ischemic neovascularization, where a low-dose is pro-angiogenic while a higher dose is anti-angiogenic. NO and ERα are key regulators of mitochondrial capacity, and angiogenesis is a highly energetic process associated with mitochondrial biogenesis. However, whether RWPC induces changes in mitochondrial capacity has never been addressed. We investigated the effects of RWPC at low (10(-4)g/l, LCP) and high concentration (10(-2)g/l, HCP) in human endothelial cells. Mitochondrial respiration, expression of mitochondrial biogenesis factors and mitochondrial DNA content were assessed using oxygraphy and quantitative PCR respectively. In vitro capillary formation using ECM gel(®) was also performed. Treatment with LCP increased mitochondrial respiration, with a maximal effect achieved at 48h. LCP also increased expression of several mitochondrial biogenesis factors and mitochondrial DNA content. In contrast, HCP did not affect these parameters. Furthermore, LCP modulated both mitochondrial capacity and angiogenesis through mechanisms sensitive to ER, NADPH oxidase and NO-synthase inhibitors. Finally, the inhibition of mitochondrial protein synthesis abolished the pro-angiogenic capacity of LCP. These results suggest a possible association between the modulation of mitochondrial capacity by LCP and its pro-angiogenic activity. These data provide evidence for a role of mitochondria in the regulation of angiogenesis by RWPC.

  1. Endothelium-dependent vasodilation effects of Panax notoginseng and its main components are mediated by nitric oxide and cyclooxygenase pathways

    PubMed Central

    Wang, Yanyan; Ren, Yu; Xing, Leilei; Dai, Xiangdong; Liu, Sheng; Yu, Bin; Wang, Yi

    2016-01-01

    Panax notoginseng, a traditional Chinese herbal medicine, has been used for the treatment of cardiovascular diseases. The main bioactive components of this species are Panax notoginseng saponins (PNS). The present study aimed to investigate the effects of PNS and five of its main components (ginsenosides Rg1, Re, Rb1 and Rd, and notoginsenoside R1) on rat aorta rings pre-contracted with norepinephrine (NE) and to determine the underlying mechanism of action. Isolated aorta rings (with or without intact endothelium) from adult male Wistar rats were stimulated with NE to induce vasoconstriction, and subsequently treated with different concentrations of PNS and its five main components (Rg1, Re, Rb1, R1 and Rd) separately. This procedure was repeated after pre-incubation with the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and the cyclooxygenase (COX) inhibitor indomethacin (INDO), in order to elucidate the mechanism of action of PNS and its components. The results demonstrated that PNS and the components Rg1, Re, Rb1 and R1, but not Rd, induced vessel relaxation in a concentration-dependent manner when the endothelium lining was intact. NO synthase inhibitor L-NAME and guanylate cyclase inhibitor ODQ attenuated the diastolic effects of PNS, Rg1, Re, Rb1 and R1 in aortic rings with intact endothelium. By contrast, INDO, a known COX inhibitor weakened the vasodilation effects of PNS, Re and Rb1 but demonstrated no effect on Rg1 and R1. In conclusion, PNS and two of its main components (Re and Rb1) exert vasodilating effects through the NO and COX pathways. PMID:28101178

  2. Intracoronary secretin increases cardiac perfusion and function in anaesthetized pigs through pathways involving β-adrenoceptors and nitric oxide.

    PubMed

    Grossini, Elena; Molinari, Claudio; Morsanuto, Vera; Mary, David A S G; Vacca, Giovanni

    2013-05-01

    Secretin has been implicated in cardiovascular regulation through its specific receptors, as well as through β-adrenoceptors and nitric oxide, although data on its direct effect on coronary blood flow and cardiac function have remained scarce. The present study aimed to determine the primary in vivo effect of secretin on cardiac function and perfusion and the mechanisms related to the autonomic nervous system, secretin receptors and NO. In addition, in coronary endothelial cells the intracellular pathways involved in the effects of secretin on NO release were also examined. In 30 pigs, intracoronary secretin infusion at 2.97 pg for each millilitre per minute of coronary blood flow at constant heart rate and aortic blood pressure increased coronary blood flow, maximal rate of change of left ventricular pressure, segmental shortening, cardiac output and coronary NO release (P<0.05). These responses were graded in a further five pigs. Moreover, while blockade of muscarinic cholinoreceptors (n=5) and of α-adrenoceptors (n=5) did not abolish the observed responses to secretin, blockade of β1-adrenoceptors (n=5) prevented the effects of secretin on cardiac function. In addition, blockade of β2-adrenoceptors (n=5) and NO synthase inhibition (n=5) prevented the coronary response and the effect of secretin on NO release. All these effects were abolished by a secretin receptor inhibitor (n=5). In coronary endothelial cells, the increased NO production caused by secretin was found to be related to cAMP/protein kinase A signalling activated as downstream effectors of stimulation of secretin receptors and β2-adrenoceptors. In conclusion, in anaesthetized pigs secretin primarily increased cardiac function and perfusion through the involvement of specific receptors, β-adrenoceptors and NO release.

  3. The analgesic effect of apelin-13 and its mechanism of action within the nitric oxide and serotonin pathways

    PubMed Central

    Turtay, MG; Karabas, M; Parlakpinar, H; Colak, C; Sagir, M

    2015-01-01

    Background: Apelin has various effects on a lot of systems such as central nervous system and cardiovascular system. This study investigated the possible analgesic effects of apelin-13 using the hot-plate and the tail-flick thermal analgesia tests in rats. We also evaluated the mechanism underlying the analgesic effects of apelin-13 by pretreating with Nw-nitro-L-arginine methyl ester (L-NAME) or ondansetron. Material & Methods: Forty male rats were used. The rats were randomly assigned to five groups according to the treatment received: Group I: Control; Group II: Morphine; Group III: Apelin-13; Group IV: Apelin-13+L-NAME; Group V: Apelin-13+Ondansetron. Acute thermal pain was modeled using the hot-plate and the tail-flick tests. Results: During the hot-plate test, i.p. Morphine and apelin-13 administered at zero- and 30 min produced significantly greater analgesic effects compared to the control. When the nitric oxide pathway was inhibited by administration of L-NAME with apelin-13, the analgesic effect continued. When apelin-13 and ondansetron were co-administered, the analgesic effect of apelin-13 disappeared at zero- and 30 min. During the tail-flick test, at 30 min, significantly higher levels of analgesia were observed in both the morphine and apelin group (which did not differ from each other) compared to the control group. L-NAME co-administered with apelin-13 did not affect the degree of analgesia, but apelin-13 co-administered with ondansetron was associated with a greater reduction in analgesia compared to the other groups. Conclusion: Our results demonstrate that apelin-13 exerts an analgesic effect; co-administration of apelin-13 and ondansetron inhibits antinociception, an effect apparently mediated by five-hydroxytryptamine-three (5-HT3) receptors. Hippokratia 2015; 19 (4): 319-323. PMID:27688696

  4. Estradiol reduces depressive-like behavior through inhibiting nitric oxide/cyclic GMP pathway in ovariectomized mice.

    PubMed

    Heydarpour, Pouria; Salehi-Sadaghiani, Mohammad; Javadi-Paydar, Mehrak; Rahimian, Reza; Fakhfouri, Gohar; Khosravi, Mohsen; Khoshkish, Shayan; Gharedaghi, Mohammad Hadi; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2013-02-01

    Estradiol decline has been associated with depressive-like behavior in female mice and NO has been suggested to play a major role in the pathogenesis of major depression. This study was conducted to investigate the antidepressant-like effects of acute estradiol administration in female ovariectomized (OVX) mice and the possible role of nitric oxide (NO)/cyclic GMP (cGMP) pathway. To this end, bilateral ovariectomy was performed in female mice and different doses of estradiol were injected alone or in combination with non-specific NO synthase (NOS) inhibitor (L-NAME), selective neural NOS (nNOS) inhibitor (7-NI), an NO precursor (L-arginine) or selective phosphodiesterase type 5 inhibitor (sildenafil). The duration of immobility was recorded in the forced swimming test (FST) to assess the depressive behavior. Moreover, hippocampal levels of NO were determined in select groups. 10 days following the procedure, OVX mice showed significantly prolonged immobility time in comparison with the sham group. Estradiol (3, 10, and 30 μg/kg, s.c.), when injected 1 h prior to FST, exerted antidepressant-like effects in OVX mice. Both L-NAME (30 mg/kg, i.p.), and 7-NI (50 mg/kg, i.p.) significantly reduced the immobility times of OVX mice. Administration of a sub-effective dose of L-NAME (10mg/kg), 15 min after a sub-effective dose of estradiol (1 μg/kg, s.c.) had a robust antidepressant-like effect in OVX mice. Also a sub-effective dose of 7-NI (25 mg/kg), 30 min after a sub-effective dose of estradiol (1 μg/kg, s.c.) showed antidepressant-like effect in OVX mice. Both the NO precursor L-arginine (750 mg/kg, i.p.) and the cGMP-specific phosphodiesterase type 5 inhibitor sildenafil (5 mg/kg, i.p.), 30 min before estradiol treatment, prevented the antidepressant-like effect of a potent dose of estradiol (10 μg/kg, s.c.) in OVX mice. The present findings suggest that suppression of the NO synthase/NO/cGMP pathway may be involved in the antidepressant-like effects of estradiol

  5. Respective role of lipoxygenase and nitric oxide-synthase pathways in plasma histamine-induced macromolecular leakage inconscious hamsters

    PubMed Central

    Gimeno, G; Carpentier, P H; Desquand-Billiald, S; Finet, M; Hanf, R

    1999-01-01

    phase of histamine-induced hypotension.Thus, plasma histamine can trigger both an immediate cysteinyl-leukotriene (Cys-LT)-dependent and a late nitric oxide (NO)-mediated inflammatory cascade. Although the cyclo-oxygenase (COX) pathway might account for histamine-induced venule dilatation, it would not influence histamine-induced extravasation. PMID:10372823

  6. Nitric oxide stimulates human sperm motility via activation of the cyclic GMP/protein kinase G signaling pathway.

    PubMed

    Miraglia, Erica; De Angelis, Federico; Gazzano, Elena; Hassanpour, Hossain; Bertagna, Angela; Aldieri, Elisabetta; Revelli, Alberto; Ghigo, Dario

    2011-01-01

    Nitric oxide (NO), a modulator of several physiological processes, is involved in different human sperm functions. We have investigated whether NO may stimulate the motility of human spermatozoa via activation of the soluble guanylate cyclase (sGC)/cGMP pathway. Sperm samples obtained by masturbation from 70 normozoospermic patients were processed by the swim-up technique. The kinetic parameters of the motile sperm-rich fractions were assessed by computer-assisted sperm analysis. After a 30-90  min incubation, the NO donor S-nitrosoglutathione (GSNO) exerted a significant enhancing effect on progressive motility (77, 78, and 78% vs 66, 65, and 62% of the control at the corresponding time), straight linear velocity (44, 49, and 48 μm/s vs 34, 35, and 35.5 μm/s), curvilinear velocity (81, 83, and 84 μm/s vs 68 μm/s), and average path velocity (52, 57, and 54 μm/s vs 40, 42, and 42 μm/s) at 5 μM but not at lower concentrations, and in parallel increased the synthesis of cGMP. A similar effect was obtained with the NO donor spermine NONOate after 30 and 60  min. The GSNO-induced effects on sperm motility were abolished by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (a specific sGC inhibitor) and mimicked by 8-bromo-cGMP (8-Br-cGMP; a cell-permeating cGMP analog); the treatment with Rp-8-Br-cGMPS (an inhibitor of cGMP-dependent protein kinases) prevented both the GSNO- and the 8-Br-cGMP-induced responses. On the contrary, we did not observe any effect of the cGMP/PRKG1 (PKG) pathway modulators on the onset of hyperactivated sperm motility. Our results suggest that NO stimulates human sperm motility via the activation of sGC, the subsequent synthesis of cGMP, and the activation of cGMP-dependent protein kinases.

  7. Protective Effect of Edaravone Against Cyclosporine-Induced Chronic Nephropathy Through Antioxidant and Nitric Oxide Modulating Pathways in Rats

    PubMed Central

    Sattarinezhad, Elahe; Panjehshahin, Mohammad Reza; Torabinezhad, Simin; Kamali-Sarvestani, Eskandar; Farjadian, Shirin; Pirsalami, Fatema; Moezi, Leila

    2017-01-01

    Background: Cyclosporine A (CsA) is an immunosuppressant with therapeutic indications in various immunological diseases; however, its use is associated with chronic nephropathy. Oxidative stress has a crucial role in CsA-induced nephrotoxicity. The present study evaluates the protective effect of edaravone on CsA-induced chronic nephropathy and investigates its antioxidant and nitric oxide modulating property. Methods: Male Sprague-Dawley rats (n=66) were distributed into nine groups, including a control (group 1) (n=7). Eight groups received CsA (15 mg/kg) for 28 days while being treated. The groups were categorized as: Group 2: Vehicle (n=10)Groups 3, 4, and 5: Edaravone (1, 5, and 10 mg/kg) (n=7 each)Group 6: Diphenyliodonium chloride, a specific endothelial nitric oxide synthase (eNOS) inhibitor (n=7)Group 7: Aminoguanidine, a specific inducible nitric oxide synthase (iNOS) inhibitor (n=7)Group 8: Edaravone (10 mg/kg) plus diphenyliodonium chloride (n=7)Group 9: Edaravone (10 mg/kg) plus aminoguanidine (n=7) Blood urea nitrogen and serum creatinine levels, malondialdehyde, superoxide dismutase, and glutathione reductase enzyme activities were measured using standard kits. Renal histopathological evaluations and measurements of eNOS and iNOS gene expressions by RT-PCR were also performed. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s test (SPSS software version 18.0). Results: Edaravone (10 mg/kg) significantly attenuated CsA-induced oxidative stress, renal dysfunction, and kidney tissue injury. Aminoguanidine improved the renoprotective effect of edaravone. Edaravone reduced the elevated mRNA level of iNOS, but could not alter the level of eNOS mRNA significantly. Conclusion: Edaravone protects against CsA-induced chronic nephropathy using antioxidant property and probably through inhibiting iNOS gene expression. PMID:28360443

  8. Cuminum cyminum, a dietary spice, attenuates hypertension via endothelial nitric oxide synthase and NO pathway in renovascular hypertensive rats.

    PubMed

    Kalaivani, Periyathambi; Saranya, Ramesh Babu; Ramakrishnan, Ganapathy; Ranju, Vijayan; Sathiya, Sekar; Gayathri, Veeraraghavan; Thiyagarajan, Lakshmi Kantham; Venkhatesh, Jayakothanda Ramaswamy; Babu, Chidambaram Saravana; Thanikachalam, Sadagopan

    2013-01-01

    Cuminum cyminum (CC) is a commonly used spice in South Indian foods. It has been traditionally used for the treatment and management of sleep disorders, indigestion, and hypertension. The present study was carried out to scientifically evaluate the anti-hypertensive potential of standardized aqueous extract of CC seeds and its role in arterial endothelial nitric oxide synthase expression, inflammation, and oxidative stress in renal hypertensive rats. Renal hypertension was induced by the two-kidney one-clip (2K/1C) method in rats. Systolic blood pressure (SBP), plasma nitrate/nitrite, carotid-eNOS, renal-TNF-α, IL-6, Bax, Bcl-2, thioredoxin 1 (TRX1), and thioredoxin reductase 1 (TRXR1) mRNA expressions were studied to demonstrate the anti-hypertensive action of CC. Cuminum cyminum was administered orally (200 mg/kg b.wt) for a period of 9 weeks; it improved plasma nitric oxide and decreased the systolic blood pressure in hypertensive rats. It also up-regulated the gene expression of eNOS, Bcl-2, TRX1, and TRXR1; and down-regulated Bax, TNF-α, and IL-6. These data reveal that CC seeds augment endothelial functions and ameliorate inflammatory and oxidative stress in hypertensive rats. The present report is the first of its kind to demonstrate the mechanism of anti-hypertensive action of CC seeds in an animal model of renovascular hypertension.

  9. Effects of D-penicillamine on pentylenetetrazole-induced seizures in mice: involvement of nitric oxide/NMDA pathways.

    PubMed

    Rahimi, Nastaran; Sadeghzadeh, Mitra; Javadi-Paydar, Mehrak; Heidary, Mahmoud Reza; Jazaeri, Farahnaz; Dehpour, Ahmad R

    2014-10-01

    Besides the clinical applications of penicillamine, some reports show that use of D-penicillamine (D-pen) has been associated with adverse effects such as seizures. So, the purpose of this study was to evaluate the effects of D-pen on pentylenetetrazole (PTZ)-induced seizures in male NMRI mice. It also examined whether N-methyl-D-aspartate (NMDA) receptor/nitrergic system blockage was able to alter the probable effects of D-pen. Different doses of D-pen (0.1, 0.5, 1, 10, 100, 150, and 250 mg/kg) were administered intraperitoneally (i.p.) 90 min prior to induction of seizures. D-Penicillamine at a low dose (0.5 mg/kg, i.p.) had anticonvulsant effects, whereas at a high dose (250 mg/kg, i.p.), it was proconvulsant. Both anti- and proconvulsant effects of D-pen were blocked by a single dose of a nonspecific inhibitor of nitric oxide synthase (NOS), L-NAME (10 mg/kg, i.p.), and a single dose of a specific inhibitor of neuronal nitric oxide synthase (nNOS), 7-nitroindazole (30 mg/kg, i.p.). A selective inhibitor of iNOS, aminoguanidine (100 mg/kg, i.p.), had no effect on these activities. An NMDA receptor antagonist, MK-801 (0.05 mg/kg, i.p.), alters the anti- and proconvulsant effects of D-pen. The results of the present study showed that the nitric oxide system and NMDA receptors may contribute to the biphasic effects of D-pen, which remain to be clarified further.

  10. Unravelling the cardiovascular effects induced by alpha-terpineol: a role for the nitric oxide-cGMP pathway.

    PubMed

    Ribeiro, Thaís P; Porto, Dayanne L; Menezes, Camilla P; Antunes, Alessandra A; Silva, Darízy F; De Sousa, Damião P; Nakao, Lia S; Braga, Valdir A; Medeiros, Isac A

    2010-08-01

    1. Alpha-terpineol is a monoterpene found in the essential oils of several aromatic plant species. In the present study, we investigated the mechanisms underlying the cardiovascular changes induced by alpha-terpineol in rats. 2. In normotensive rats, administration of alpha-terpineol (1, 5, 10, 20 and 30 mg/kg, i.v.) produced a dose-dependent hypotension (-10 +/- 3, -20 +/- 8, -39 +/- 16, -52 +/- 21 and -57 +/- 23 mmHg, respectively; n = 5) followed by tachycardia. The hypotensive responses to 1, 5, 10, 20 and 30 mg/kg, i.v., alpha-terpineol were significantly attenuated following the administration of N(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg, i.v.; -2 +/- 1, -5 +/- 2, -7 +/- 3, -22 +/- 9 and -22 +/- 10 mmHg, respectively; P < 0.05; n = 5). 3. In 10 micromol/L phenylephrine (PE)-precontracted mesenteric artery rings, alpha-terpineol (10(-12) to 10(-5) mol/L) caused a concentration-dependent relaxation (maximum relaxation 61 +/- 6%; n = 7). After removal of the endothelium, the vasorelaxation elicited by alpha-terpineol was attenuated (maximum relaxation 20 +/- 1%; P < 0.05; n = 7). In addition, vasorelaxation induced by alpha-terpineol in rings pretreated with 100 or 300 micromol/L l-NAME, 30 micromol/L hydroxocobalamin or 10 micromol/L 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one was attenuated (maximum relaxation 18 +/- 3, 23 +/- 3, 24 +/- 7 and 21 +/- 1%, respectively; n = 6; P < 0.05). 4. Furthermore, in a rabbit aortic endothelial cell line, 10(-6), 10(-5) and 10(-4) mol/L alpha-terpineol induced concentration-dependent increases in nitric oxide (NO) levels (12 +/- 6, 18 +/- 9 and 34 +/- 12%Delta fluorescence, respectively; n = 3). 5. In conclusion, using combined functional and biochemical approaches in the present study, we were able to demonstrate that alpha-terpineol-induced hypotension and vasorelaxation are mediated, at least in part, by the endothelium, most likely via NO release and activation of the NO-cGMP pathway.

  11. Nitric oxide synthase-cyclo-oxygenase pathways in organum vasculosum laminae terminalis: possible role in pyrogenic fever in rabbits.

    PubMed Central

    Lin, J. H.; Lin, M. T.

    1996-01-01

    1. Fever was induced in rabbits by administration of Escherichia coli endotoxin (lipopolysaccharide; LPS; 0.001-10 micrograms) into the organum vasculosum laminae terminalis (OVLT). Deep body temperature was evaluated over a period of 7 h. 2. The LPS-induced febrile response was mimicked by intra-OVLT injection of the nitric oxide (NO) donors, S-nitroso-acetylpenicillamine (SNAP, 1-10 micrograms), sodium nitroprusside (SNP, 50 micrograms), or hydroxylamine (10 micrograms), the cyclic GMP analogue 8-bromo-cyclic GMP (8-Br-cyclic GMP, 10-100 micrograms), or prostaglandin E2 (PGE2, 0.2 micrograms). 3. Dexamethasone (Dex, a potent inhibitor of the transcription of inducible NO synthase, iNOS, 10 micrograms), anisomycin (a protein synthesis inhibitor, 100 micrograms), L-N5-(1-iminoethyl)ornithine (L-NIO; an irreversible NOS inhibitor, 10-200 micrograms), aminoguanidine (a specific iNOS inhibitor, 1000 micrograms), or NG-methyl-L-arginine acetate (L-NMMA, a NOS inhibitor, 100 micrograms) inhibited fever induced by LPS when injected into the OVLT 1 h before LPS injection. An intra-OVLT dose of 1000 micrograms of NG-nitro-L-arginine methyl ester (L-NAME, a potent inhibitor of constitutive NOS) did not exhibit antipyretic effects. 4. Methylene blue (an inhibitor of NOS and soluble guanylate cyclase, 1-10 micrograms), 6-(phenylamino)-5,8-quinolinedione (LY-83583; an inhibitor of soluble guanylate cyclase and NO release, 20 micrograms), or indomethacin (an inhibitor of cyclo-oxygenase, COX, 400 micrograms) inhibited fever induced by LPS when injected into the OVLT 1 h before LPS injection. Pretreatment with methylene blue or haemoglobin (a NO scavenger, 100 micrograms) attenuated the fever induced by intra-OVLT injection of SNAP. 5. The PGE2-induced fever was potentiated, rather then attenuated, by pretreatment with an intra-OVLT dose of animoguanidine (1000 micrograms), L-NMMA (100 micrograms) or L-NIO (200 micrograms). 6. These results suggest that iNOS-COX pathways in the

  12. Involvement of nitric oxide pathways in short term modulation of tyrosine hydroxylase activity by endothelins 1 and 3 in the rat anterior hypothalamus.

    PubMed

    Morgazo, Carolina; Perfume, Guadalupe; Legaz, Guillermina; di Nunzio, Andrea; Hope, Sandra I; Bianciotti, Liliana G; Vatta, Marcelo S

    2005-09-02

    The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.

  13. Increased contribution of L-arginine-nitric oxide pathway in aorta of mice lacking the gene for vimentin.

    PubMed

    Zhang, J; Henrion, D; Ebrahimian, T; Benessiano, J; Colucci-Guyon, E; Langa, F; Lévy, B I; Boulanger, C M

    2001-10-01

    Experiments were designed to investigate endothelial function in the aorta of mice lacking the gene for the cytoskeleton protein vimentin (vim -/- ). Rings with and without endothelium from wild-type (vim +/+ ), heterozygous (vim +/- ), and homozygous (vim -/- ) mice were suspended in organ chambers to record of changes in isometric tension. During phenylephrine contraction, acetylcholine evoked comparable endothelium-dependent relaxations in the three groups. In the presence of Nomega-nitro-L-arginine, acetylcholine caused endothelium-dependent contractions, which were greater in vim -/- than in vim +/+ and vim +/- aortas. Indomethacin did not affect relaxation to acetylcholine in vim +/+ or in vim +/-, but it significantly increased the maximal response in vim -/- (67 +/- 7 vs. 102 +/- 4%). Response to acetylcholine in vim -/- aortas was not affected by cyclooxygenase type 2 inhibitor NS-398, the thromboxane receptor antagonist SQ-29,548, or superoxide dismutase. Relaxations to sodium nitroprusside were not different between vim +/+ and vim -/- mice and were not affected by cyclooxygenase inhibition. Cyclic guanosine monophosphate levels, which were increased to a comparable level by acetylcholine in vim +/+ and vim -/-, were augmented by indomethacin in vim -/- aortas but not in vim +/+ aortas. Expression of endothelial nitric oxide synthase was not different between vim +/+ and vim -/- preparations. These results suggest that despite comparable endothelium-dependent responses to acetylcholine, endothelial cells from vim -/- mice release a cyclooxygenase product that compensates the augmented contribution of nitric oxide.

  14. Minocycline attenuates cirrhotic cardiomyopathy and portal hypertension in a rat model: Possible involvement of nitric oxide pathway

    PubMed Central

    Mousavi, Seyyedeh Elaheh; Rezayat, Seyed Mahdi; Nobakht, Maliheh; Saeedi Saravi, Seyed Soheil; Yazdani, Iraj; Rashidian, Amir; Dehpour, Ahmad Reza

    2016-01-01

    Objective(s): An increase in nitric oxide (NO) production has been reported in cirrhotic cardiomyopathy and, portal hypertension. Since minocycline has been shown to inhibit NO overproduction, we aimed to examine its role in a rat model of CCl4-induced cirrhotic cardiovascular complications. Materials and Methods: Portal pressure and inotropic responsiveness of isolated papillary muscles to isoproterenol were measured in cirrhotic rats, following minocycline (50 mg/kg/day for 8 weeks) treatment. Moreover, isolated papillary muscles were incubated with nonselective and selective nitric oxide synthase (NOS) inhibitors, N (ω)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) respectively, in an organ bath. Ventricular expression and localization of inducible NOS (iNOS), tumor necrosis factor-alpha (TNF-α) and serum nitrite concentration were evaluated. Results: We found a decreased portal hypertension in minocycline-treated cirrhotic rats. Cirrhosis decreased contractility in response to isoproterenol stimulation, which was significantly attenuated by minocycline. Incubation with either L-NAME or AG reversed the impaired contractility in cirrhotic rats. Furthermore, minocycline decreased iNOS expression and localization in cardiomyocytes. A drop in serum nitrite and cardiac TNF-α level were also observed in cirrhotic rat that were treated by minocycline. Conclusion: The results suggest that minocycline may improve impaired cardiac contractility and hyperdynamic state in cirrhotic rats, and this effect could be mediated by NO-dependent mechanism. PMID:27917279

  15. Arginine metabolism: nitric oxide and beyond.

    PubMed Central

    Wu, G; Morris, S M

    1998-01-01

    Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes. PMID:9806879

  16. Low nanomolar serotonin inhibits the glutamate receptor/nitric oxide/cyclic GMP pathway in slices from adult rat cerebellum.

    PubMed

    Maura, G; Guadagnin, A; Raiteri, M

    1995-09-01

    The function of serotonin afferents to the cerebellum has been investigated by monitoring the effects of serotoninergic drugs on the production of cyclic GMP elicited in cerebellar slices by activation of ionotropic glutamate receptors. Exposure of adult rat cerebellar slices to N-methyl-D-aspartate (1 nM to 1 microM) or to (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA; 1 nM to 10 microM) elicited concentration-dependent and saturable rises in the levels of cyclic GMP. These responses were blocked by selective antagonists at the N-methyl-D-aspartate or AMPA receptors and by inhibiting nitric oxide synthase, but were insensitive to tetrodotoxin. When tested between 0.1 and 10 nM, serotonin, the serotonin1A receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin and the serotonin2 receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane inhibited, concentration-dependently, the cyclic GMP responses evoked by near-maximal (0.1 microM) concentrations of N-methyl-D-aspartate or AMPA. The EC50 values (concentrations causing half-maximal effect) ranged between 0.7 and 2.1 nM. The actions of serotonin were totally abolished by methiothepin, a mixed-type serotonin receptor antagonist. Thus, the serotonergic cerebellar afferents may exert a potent inhibitory control on the excitatory transmission mediated by N-methyl-D-aspartate and AMPA receptors; the inhibition occurs through both serotonin1A and serotonin2 receptors. As the glutamate receptor-dependent cyclic GMP responses involve production of nitric oxide, a diffusible activator of guanylate cyclase, the above inhibitory serotonin receptors may have multiple localization.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Anti-hyperalgesic effect of systemic magnesium sulfate in carrageenan-induced inflammatory pain in rats: influence of the nitric oxide pathway.

    PubMed

    Srebro, Dragana P; Vučković, Sonja; Vujović, Katarina Savić; Prostran, Milica

    2014-01-01

    This study investigated whether systemic magnesium sulfate (an antagonist at the glutamate subtype of N-methyl-D-aspartate receptor) affects inflammatory pain, and whether the nitric oxide pathway is involved. Carrageenan (0.5%, 0.1 mL, intraplantar)-induced mechanical hyperalgesia was evaluated using the electronic von Frey test in male Wistar rats. Magnesium sulfate had no effect when injected locally into the inflamed rat paw. However, subcutaneous magnesium sulfate, at doses of 0.5, 5, 15 and 30 mg/kg, reduced the hyperalgesia by 44.4 ± 8.8, 68 ± 8.4, 24.6 ± 6.9 and 45.3 ± 6.7% respectively. N-nitro-L-arginine methyl ester hydrochloride (L-NAME) (3 and 5 mg/kg, intraperitoneal), a non-selective nitric oxide synthase inhibitor, significantly reduced the effects of magnesium sulfate. Also, L-arginine (0.4 mg/kg, subcutaneously) significantly reversed the effect of L-NAME in the magnesium sulfate-treated rats. A selective inhibitor of neuronal or inducible nitric oxide synthase, N-ω-Propyl-L-arginine hydrochloride (L-NPA) (0.5, 1 and 2 mg/kg, intraperitoneal) and S-methylisothiourea (SMT) (0.005, 0.01 and 0.015 mg/kg, intraperitoneal) reduced the effect of magnesium sulfate significantly only at the highest doses tested. When given alone, L-NAME (3 and 5 mg/kg) L-NPA (2 mg/kg) and SMT (0.015 mg/kg) did not have any influence on carrageenan-induced hyperalgesia. The present study revealed that magnesium sulfate is effective against inflammatory pain after systemic, but not after local peripheral administration, and activation of the nitric oxide pathway is probably involved in the anti-hyperalgesic effect of magnesium sulfate. Low doses of systemic magnesium sulfate given as a pretreatment or a treatment might have a beneficial effect in patients with inflammatory somatic pain.

  18. Functional inhibition of urea transporter UT-B enhances endothelial-dependent vasodilatation and lowers blood pressure via L-arginine-endothelial nitric oxide synthase-nitric oxide pathway.

    PubMed

    Sun, Yi; Lau, Chi-Wai; Jia, Yingli; Li, Yingjie; Wang, Weiling; Ran, Jianhua; Li, Fei; Huang, Yu; Zhou, Hong; Yang, Baoxue

    2016-01-07

    Mammalian urea transporters (UTs), UT-A and UT-B, are best known for their role in urine concentration. UT-B is especially distributed in multiple extrarenal tissues with abundant expression in vascular endothelium, but little is known about its role in vascular function. The present study investigated the physiological significance of UT-B in regulating vasorelaxations and blood pressure. UT-B deletion in mice or treatment with UT-B inhibitor PU-14 in Wistar-Kyoto rats (WKYs) and spontaneous hypertensive rats (SHRs) reduced blood pressure. Acetylcholine-induced vasorelaxation was significantly augmented in aortas from UT-B null mice. PU-14 concentration-dependently produced endothelium-dependent relaxations in thoracic aortas and mesenteric arteries from both mice and rats and the relaxations were abolished by N(ω)-nitro-L-arginine methyl ester. Both expression and phosphorylation of endothelial nitric oxide synthase (eNOS) were up-regulated and expression of arginase I was down-regulated when UT-B was inhibited both in vivo and in vitro. PU-14 induced endothelium-dependent relaxations to a similar degree in aortas from 12 weeks old SHRs or WKYs. In summary, here we report for the first time that inhibition of UT-B plays an important role in regulating vasorelaxations and blood pressure via up-regulation of L-arginine-eNOS-NO pathway, and it may become another potential therapeutic target for the treatment of hypertension.

  19. Functional inhibition of urea transporter UT-B enhances endothelial-dependent vasodilatation and lowers blood pressure via L-arginine-endothelial nitric oxide synthase-nitric oxide pathway

    PubMed Central

    Sun, Yi; Lau, Chi-Wai; Jia, Yingli; Li, Yingjie; Wang, Weiling; Ran, Jianhua; Li, Fei; Huang, Yu; Zhou, Hong; Yang, Baoxue

    2016-01-01

    Mammalian urea transporters (UTs), UT-A and UT-B, are best known for their role in urine concentration. UT-B is especially distributed in multiple extrarenal tissues with abundant expression in vascular endothelium, but little is known about its role in vascular function. The present study investigated the physiological significance of UT-B in regulating vasorelaxations and blood pressure. UT-B deletion in mice or treatment with UT-B inhibitor PU-14 in Wistar-Kyoto rats (WKYs) and spontaneous hypertensive rats (SHRs) reduced blood pressure. Acetylcholine-induced vasorelaxation was significantly augmented in aortas from UT-B null mice. PU-14 concentration-dependently produced endothelium-dependent relaxations in thoracic aortas and mesenteric arteries from both mice and rats and the relaxations were abolished by Nω-nitro-L-arginine methyl ester. Both expression and phosphorylation of endothelial nitric oxide synthase (eNOS) were up-regulated and expression of arginase I was down-regulated when UT-B was inhibited both in vivo and in vitro. PU-14 induced endothelium-dependent relaxations to a similar degree in aortas from 12 weeks old SHRs or WKYs. In summary, here we report for the first time that inhibition of UT-B plays an important role in regulating vasorelaxations and blood pressure via up-regulation of L-arginine-eNOS-NO pathway, and it may become another potential therapeutic target for the treatment of hypertension. PMID:26739766

  20. Oxidized LDL at low concentration promotes in-vitro angiogenesis and activates nitric oxide synthase through PI3K/Akt/eNOS pathway in human coronary artery endothelial cells

    SciTech Connect

    Yu, Shan; Wong, Siu Ling; Lau, Chi Wai; Huang, Yu; Yu, Cheuk-Man

    2011-04-01

    Research highlights: {yields} Low-concentration oxidized LDL enhances angiogenesis through nitric oxide (NO). {yields} Oxidized LDL increases intracellular NO levels via eNOS phosphorylation. {yields} Akt/PI3K signaling mediates oxidized LDL-induced eNOS phosphorylation. -- Abstract: It has long been considered that oxidized low-density lipoprotein (oxLDL) causes endothelial dysfunction and is remarkably related to the development of atherosclerosis. However, the effect of oxLDL at very low concentration (<10 {mu}g/ml) on the endothelial cells remains speculative. Nitric oxide (NO) has a crucial role in the endothelial cell function. In this study, we investigated the effect of oxLDL at low concentration on NO production and proliferation, migration, tube formation of the human coronary artery endothelial cells (HCAEC). Results showed that oxLDL at 5 {mu}g/ml enhanced HCAEC proliferation, migration and tube formation. These phenomena were accompanied by an increased intracellular NO production. L-NAME (a NOS inhibitor), LY294002 and wortmannin (PI3K inhibitors) could abolish oxLDL-induced angiogenic effects and prevent NO production in the HCAEC. The phosphorylation of Akt, PI3K and eNOS were up-regulated by oxLDL, which was attenuated by LY294002. Our results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC.

  1. [Nitric oxide production in plants].

    PubMed

    Małolepsza, Urszula

    2007-01-01

    There are still many controversial observations and opinions on the cellular/subcellular localization and sources of endogenous nitric oxide synthesis in plant cells. NO can be produced in plants by non-enzymatic and enzymatic systems depending on plant species, organ or tissue as well as on physiological state of the plant and changing environmental conditions. The best documented reactions in plant that contribute to NO production are NO production from nitrite as a substrate by cytosolic (cNR) and membrane bound (PM-NR) nitrate reductases (NR), and NO production by several arginine-dependent nitric oxide synthase-like activities (NOS). The latest papers indicate that mitochondria are an important source of arginine- and nitrite-dependent NO production in plants. There are other potential enzymatic sources of NO in plants including xanthine oxidoreductase, peroxidase, cytochrome P450.

  2. Nitric oxide reburning with methane

    SciTech Connect

    Kumpaty, S.K.; Subramanian, K.

    1996-12-31

    This paper deals with initial findings from the ongoing, three-year DOE program that began on 02/01/1995. The program involves computer simulation studies to aid in planning and conducting a series of experiments that will extend the knowledge of reburning process. The objective of this work is to find nitric oxide reduction effectiveness for various reburning fuels and identify both homogeneous and heterogeneous reaction mechanisms characterizing NO reduction.

  3. Nitric oxide enhances increase in cytosolic Ca(2+) and promotes nicotine-triggered MAPK pathway in PC12 cells.

    PubMed

    Kajiwara, Aya; Tsuchiya, Yukihiro; Takata, Tsuyoshi; Nyunoya, Mayumi; Nozaki, Naohito; Ihara, Hideshi; Watanabe, Yasuo

    2013-11-01

    The purpose of this study was to investigate the roles of neuronal nitric oxide synthase (nNOS), Ca(2+)/calmodulin (CaM)-dependent protein kinases (CaMKs), and protein kinase C (PKC) in nicotine-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) activation. Treatment with nicotine stimulated ERK1/2 and p38 MAPK phosphorylation in the PC12 cells expressing nNOS (NPC12 cells) as compared with that in control PC12 cells. An inhibitor of L-type voltage-sensitive Ca(2+) channel suppressed the nicotine-induced phosphorylation of p38 MAPK. The inhibition of CaMK-kinase, the upstream activator of CaMKI and CaMKIV, did not inhibit the enhanced their phosphorylation. ERK1/2 phosphorylation was attenuated by inhibitors of p38 MAPK, PKC, and MAPK-kinase 1/2, indicating the involvement of these protein kinases upstream of ERK1/2. Furthermore, we found that nNOS expression enhances the nicotine-induced increase in the intracellular concentration of Ca(2+), using the Ca(2+)-sensitive fluorescent probe Fura2. These data suggest that NO promotes nicotine-triggered Ca(2+) transient in PC12 cells to activate possibly CaMKII, leading to sequential phosphorylation of p38 MAPK and ERK1/2.

  4. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2.

    PubMed

    Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R; Chipuk, Jerry E; Grimm, Elizabeth A; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G

    2014-02-15

    Melanoma is one of the cancers of fastest-rising incidence in the world. Inducible nitric oxide synthase (iNOS) is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K-AKT-mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p70 ribosomal S6 kinase (p-P70S6K), p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of tuberous sclerosis complex (TSC) 2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Ras homolog enriched in brain (Rheb), a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of the mTOR pathway members. Exogenously supplied NO was also sufficient to reverse the mTOR pathway inhibition by the B-Raf inhibitor vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers.

  5. Nitric oxide: a challenge to chiropractic

    PubMed Central

    Morgan, Lon

    2000-01-01

    The 1998 Nobel Prize in Physiology or Medicine recognized the biological significance of nitric oxide. Nitric oxide is derived from the amino acid arginine. It is intimately involved with circulatory vessel dilation where, for example, it protects against heart attacks, and is the basis for new medications such as Sildenafil (Viagra). Nitric oxide acts as a neurotransmitter and can modulate many neurological reactions. The immune system uses nitric oxide to destroy pathogens by interfering with key enzymes. Nitric oxide is responsible for both osteoclastic and osteoblastic responses in bone and is a key player in the degenerative aspects of arthritis. The process of apoptosis employs nitric oxide in the orderly removal of unneeded cells. There is clear evidence that major signaling and control mechanisms exist in the body apart from the nervous system. Chiropractic is thus faced with the challenge of how to incorporate this new knowledge which conflicts with traditional chiropractic concepts.

  6. Nitric oxide, malnutrition and chronic renal failure.

    PubMed

    Brunini, Tatiana M C; Moss, Monique B; Siqueira, Mariana A S; Santos, Sérgio F F; Lugon, Jocemir R; Mendes-Ribeiro, Antônio C

    2007-04-01

    The conditionally essential amino acid L-arginine is the substrate for nitric oxide (NO) synthesis, a key second messenger involved in physiological functions including endothelium-dependent vascular relaxation and inhibition of platelet adhesion and aggregation. Extracellular L-arginine transport seems to be essential for the production of NO by the action of NO synthases (NOS), even when the intracellular levels of L-arginine are available in excess (L-arginine paradox). Chronic renal failure (CRF) is a complex clinical condition associated with accelerated atherosclerosis and thrombosis leading to cardiovascular events. Various studies document that markers of malnutrition and inflammation, such as low body mass index (BMI), C-reactive protein (CRP) and interleukin-6 (IL-6), are strong independent predictors of cardiovascular mortality in patients with end-stage renal disease (ESRD). There is considerable literature demonstrating that a disturbance in the nitric oxide control mechanism plays a role in mediating the haemodynamic and haemostatic disorders present in CRF. Endogenous analogues of L-arginine, ADMA and L-NMMA, which can inhibit NO synthesis and L-arginine transport, are increased whilst L-arginine is reduced in plasma from all stages of CRF patients. In this context, the uptake of L-arginine in blood cells is increased in undialysed CRF patients and in patients treated by CAPD and haemodialysis. In platelets obtained from haemodialysis patients, the activation of L-arginine transport and NO production was limited to well-nourished patients. Impairment in nitric oxide bioactivity, coupled with malnutrition and inflammation, may contribute to increased incidence of atherothrombotic events in CRF. This article summarizes the current knowledge of L-arginine-nitric oxide pathway and malnutrition in CRF and briefly describes possible therapeutic interventions.

  7. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages

    PubMed Central

    Datta, Debika; Khatri, Preeti; Banerjee, Chaitali; Singh, Ambika; Meena, Ramavatar; Saha, Dhira Rani; Raman, Rajagopal; Rajamani, Paulraj; Mitra, Abhijit; Mazumder, Shibnath

    2016-01-01

    Mycobacterium fortuitum causes ‘mycobacteriosis’ in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM. PMID:26752289

  8. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide.

    PubMed

    Arias-Salvatierra, Daniela; Silbergeld, Ellen K; Acosta-Saavedra, Leonor C; Calderon-Aranda, Emma S

    2011-02-01

    Inflammatory stimulus during development increases the risk for adverse neurologic outcome. One possible mechanism is disrupting neuronal migration. Using lipopolysaccharide (LPS)-treatment to assess inflammatory stimulus on neuronal migration of cerebellar granule neurons, we previously found that LPS-activation increased the neuronal migration. The precise mechanisms behind these effects have not been investigated. Independently, it was shown that nitric oxide (NO(•-)) regulates neuronal migration during development, that NO(•-) is produced by inducible nitric oxide synthase (iNOS) in response to LPS through the activation of nuclear factor (NF)-κB, and that LPS induce the expression of genes under the transcriptional control of NF-κB in primary cultures from developing mouse cerebellum. To investigate the relationship between these events, we used this culture model to study the role of NO(•-) produced by iNOS through NF-κB signaling pathway, in the effect of LPS on neuron migration. LPS increased NO(•-) production, iNOS protein levels and NF-κB nuclear levels; concomitantly with NO(•-) production, LPS increased the neuronal migration as compared to non stimulated cultures. The necessary roles of the NO(•-) and iNOS were demonstrated by chelating of NO(•-) with hemoglobin and the inhibition of iNOS by 1400W. Each of these treatments reduced neuronal migration induced by LPS. The role of NF-κB was showed by using the inhibitor JSH-23, which decreased NO(•-) production and neuronal migration in LPS activated cultures. These results suggest that neuronal migration during development is susceptible to be modified by pro-inflammatory stimulus such as LPS through intracellular pathways associated with their receptors.

  9. Metal allergens induce nitric oxide production by mouse dermal fibroblasts via the hypoxia-inducible factor-2α-dependent pathway.

    PubMed

    Kuroishi, Toshinobu; Bando, Kanan; Endo, Yasuo; Sugawara, Shunji

    2013-09-01

    Nickel (Ni) has been shown to be one of the most frequent metal allergens. We have already reported a murine metal allergy model with pathogen-associated molecular patterns (PAMPs) as adjuvants. Interleukin (IL)-1β plays a critical role in our mouse model. Because nonimmune cells, including fibroblasts, play important roles in local allergic inflammation, we investigated whether Ni induces inflammatory responses in mouse dermal fibroblasts (MDF). We also analyzed the synergistic effects between Ni, PAMPs, and IL-1β. MDF stimulated with Ni produced a significantly higher amount of nitric oxide (NO) in a dose-dependent manner. NO production was augmented by costimulation with IL-1β but not with PAMPs. On the other hand, IL-1β or PAMPs induced a significantly higher amount of IL-6 production by MDF, but no augmentation was detected in the presence of Ni. A specific inhibitor for inducible nitric oxide synthase (iNOS) inhibited Ni-induced NO production. iNOS mRNA expression was significantly higher in MDF stimulated with Ni, IL-1β, or both. A specific inhibitor for hypoxia-inducible factor (HIF)-2α, but not HIF-1α, inhibited NO production. Another frequent metal allergen, cobalt, also induced iNOS expression and NO production by MDF via the HIF-2α-dependent pathway. The inhibitor for iNOS augmented ear swelling in Ni allergy mouse model. On the other hand, HIF-2α inhibitor attenuates allergic inflammation. These results indicate that metal allergens induce NO production in MDF via the HIF-2α-dependent pathway and IL-1β augments NO production, which suggests that the NO induced by metal allergens plays a pathological role in metal allergies.

  10. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages.

    PubMed

    Datta, Debika; Khatri, Preeti; Banerjee, Chaitali; Singh, Ambika; Meena, Ramavatar; Saha, Dhira Rani; Raman, Rajagopal; Rajamani, Paulraj; Mitra, Abhijit; Mazumder, Shibnath

    2016-01-01

    Mycobacterium fortuitum causes 'mycobacteriosis' in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.

  11. Activation of nuclear factor erythroid 2-related factor 2 coordinates dimethylarginine dimethylaminohydrolase/PPAR-γ/endothelial nitric oxide synthase pathways that enhance nitric oxide generation in human glomerular endothelial cells.

    PubMed

    Luo, Zaiming; Aslam, Shakil; Welch, William J; Wilcox, Christopher S

    2015-04-01

    Dimethylarginine dimethylaminohydrolase (DDAH) degrades asymmetric dimethylarginine, which inhibits nitric oxide (NO) synthase (NOS). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that binds to antioxidant response elements and transcribes many antioxidant genes. Because the promoters of the human DDAH-1 and DDAH-2, endothelial NOS (eNOS) and PPAR-γ genes contain 2 to 3 putative antioxidant response elements, we hypothesized that they were regulated by Nrf2/antioxidant response element. Incubation of human renal glomerular endothelial cells with the Nrf2 activator tert-butylhydroquinone (20 μmol·L(-1)) significantly (P<0.05) increased NO and activities of NOS and DDAH and decreased asymmetric dimethylarginine. It upregulated genes for hemoxygenase-1, eNOS, DDAH-1, DDAH-2, and PPAR-γ and partitioned Nrf2 into the nucleus. Knockdown of Nrf2 abolished these effects. Nrf2 bound to one antioxidant response element on DDAH-1 and DDAH-2 and PPAR-γ promoters but not to the eNOS promoter. An increased eNOS and phosphorylated eNOS (P-eNOSser-1177) expression with tert-butylhydroquinone was prevented by knockdown of PPAR-γ. Expression of Nrf2 was reduced by knockdown of PPAR-γ, whereas PPAR-γ was reduced by knockdown of Nrf2, thereby demonstrating 2-way positive interactions. Thus, Nrf2 transcribes HO-1 and other genes to reduce reactive oxygen species, and DDAH-1 and DDAH-2 to reduce asymmetric dimethylarginine and PPAR-γ to increase eNOS and its phosphorylation and activity thereby coordinating 3 pathways that enhance endothelial NO generation.

  12. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis

    PubMed Central

    Du, Jing; Li, Manli; Kong, Dongdong; Wang, Lei; Lv, Qiang; Wang, Jinzheng; Bao, Fang; Gong, Qingqiu; Xia, Jinchan; He, Yikun

    2014-01-01

    After germination, cotyledons undertake the major role in supplying nutrients to the pre-photoautorophy angiosperm seedlings until they senesce. Like other senescence processes, cotyledon senescence is a programmed degenerative process. Nitric oxide can induce premature cotyledon senescence in Arabidopsis thaliana, yet the underlying mechanism remains elusive. A screen for genetic mutants identified the nes1 mutant, in which cotyledon senescence was accelerated by nitric oxide. Map-based cloning revealed that NES1 is allelic to a previously reported mitotic checkpoint family gene, MAD1. The nes1/mad1 mutants were restored to the wild type, in response to nitric oxide, by transforming them with pNES1::NES1. Ectopic expression of NES1 in the wild type delayed nitric oxide-mediated cotyledon senescence, confirming the repressive role of NES1. Moreover, two positive regulators of leaf senescence, the ethylene signalling component EIN2 and the transcription factor ORE1/AtNAC2/ANAC092, were found to function during nitric oxide-induced senescence in cotyledons. The block of ORE1 function delayed senescence and ectopic expression induced the process, revealing the positive role of ORE1. EIN2 was required to induce ORE1. Furthermore, the genetic interaction analysis between NES1 and ORE1 showed that the ore1 loss-of-function mutants were epistatic to nes1, suggesting the dominant role of ORE1 and the antagonistic role of NES1 during nitric oxide-induced cotyledon senescence in Arabidopsis. PMID:24336389

  13. Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways.

    PubMed

    Garcia-Mata, Carlos; Lamattina, Lorenzo

    2007-01-01

    Nitric oxide (NO) is an important signaling component of ABA-induced stomatal closure. However, only fragmentary data are available about NO effect on the inhibition of stomatal opening. Here, we present results supporting that, in Vicia faba guard cells, there is a critical Ca2+-dependent NO increase required for the ABA-mediated inhibition of stomatal opening. Light-induced stomatal opening was inhibited by exogenous NO in V. faba epidermal strips. Furthermore, ABA-mediated inhibition of stomatal opening was blocked by the specific NO scavenger cPTIO, supporting the involvement of endogenous NO in this process. Since the raise in Ca2+ concentration is a pre-requisite in ABA-mediated inhibition of stomatal opening, it was interesting to establish how does Ca2+, NO and ABA interact in the inhibition of light-induced stomatal opening. The permeable Ca2+ specific buffer BAPTA-AM blocked both ABA- and Ca2+- but not NO-mediated inhibition of stomatal opening. The NO synthase (NOS) specific inhibitor L-NAME prevented Ca2+-mediated inhibition of stomatal opening, indicating that a NOS-like activity was required for Ca2+ signaling. Furthermore, experiments using the NO specific fluorescent probe DAF-2DA indicated that Ca2+ induces an increase of endogenous NO. These results indicate that, in addition to the roles in ABA-triggered stomatal closure, both NO and Ca2+ are active components of signaling events acting in ABA inhibition of light-induced stomatal opening. Results also support that Ca2+ induces the NO production through the activation of a NOS-like activity.

  14. Nitric oxide in marine photosynthetic organisms.

    PubMed

    Kumar, Amit; Castellano, Immacolata; Patti, Francesco Paolo; Palumbo, Anna; Buia, Maria Cristina

    2015-05-01

    Nitric oxide is a versatile and powerful signaling molecule in plants. However, most of our understanding stems from studies on terrestrial plants and very little is known about marine autotrophs. This review summarizes current knowledge about the source of nitric oxide synthesis in marine photosynthetic organisms and its role in various physiological processes under normal and stress conditions. The interactions of nitric oxide with other stress signals and cross talk among secondary messengers are also highlighted.

  15. Study of Atmospheric Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.

    1998-01-01

    We investigated the contribution of energetic nitrogen atoms to the production of nitric oxide in the thermosphere and their influence on the infrared emission spectrum. The nitric oxide molecules are important contributors to the cooling of the atmosphere. We first pointed out that in determining the energy distribution of the nitrogen atoms, it is important to take into account the thermal motion of the atmospheric gases. It had been ignored in all earlier studies. The source spectra are broadened considerably by the center of mass motion of the reactants. We worked out the consequences for the production of nitric oxide at night, using as sources of energetic N atoms, NO(+) + e yield N + O, N(D-2) + O yield N + O. The high energy tail is enhanced by orders of magnitude. We had earlier suggested (Sharma et al. 1993) that the reaction of energetic nitrogen atoms with O2 was responsible for the rotationally enhanced NO identified in the infrared spectrum. Our calculations provided quantitative confirmation of the suggestion. We proceeded to explore the validity of another approximation used in earlier analyses, the hard sphere approximation for the energy loss in elastic collisions. We carried out precise quantum mechanical calculations of the elastic 2 differential scattering of nitrogen atoms in collisions with oxygen atoms and showed that although the hard sphere approximation was nowhere of high precision, reasonable results could be obtained with an effective cross section of 6 x 10(exp 15)sq cm. We also initiated a program to include inelastic energy loss processes in the determination of the energy distribution function. We began a calculation of the rotation and vibrational excitation cross sections of molecular nitrogen and nitrogen atoms and developed a method for including inelastic energy loss as a function of scattering angle in the Boltzmann equation. A procedure for obtaining the solution of the Boltzman equation was worked out.

  16. Novel effects of nitric oxide

    NASA Technical Reports Server (NTRS)

    Davis, K. L.; Martin, E.; Turko, I. V.; Murad, F.

    2001-01-01

    Nitric oxide (NO), a simple free radical gas, elicits a surprisingly wide range of physiological and pathophysiological effects. NO interacts with soluble guanylate cyclase to evoke many of these effects. However, NO can also interact with molecular oxygen and superoxide radicals to produce reactive nitrogen species that can modify a number of macromolecules including proteins, lipids, and nucleic acids. NO can also interact directly with transition metals. Here, we have reviewed the non--3',5'-cyclic-guanosine-monophosphate-mediated effects of NO including modifications of proteins, lipids, and nucleic acids.

  17. Inducible nitric oxide synthase (iNOS) drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2

    PubMed Central

    Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A.; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R.; Chipuk, Jerry E.; Grimm, Elizabeth A.; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G.

    2014-01-01

    Melanoma is one of the cancers of fastest-rising incidence in the world. iNOS is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K/AKT/mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p-P70S6K, p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of TSC2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Rheb, a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of mTOR pathway members. Exogenously-supplied NO was also sufficient to reverse mTOR pathway inhibition by the B-Raf inhibitor Vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers. PMID:24398473

  18. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway.

  19. Exercise aggravates cardiovascular risks and mortality in rats with disrupted nitric oxide pathway and treated with recombinant human erythropoietin.

    PubMed

    Meziri, Fayçal; Binda, Delphine; Touati, Sabeur; Pellegrin, Maxime; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-08-01

    Chronic administration of recombinant human erythropoietin (rHuEPO) can generate serious cardiovascular side effects such as arterial hypertension (HTA) in clinical and sport fields. It is hypothesized that nitric oxide (NO) can protect from noxious cardiovascular effects induced by chronic administration of rHuEPO. On this base, we studied the cardiovascular effects of chronic administration of rHuEPO in exercise-trained rats treated with an inhibitor of NO synthesis (L-NAME). Rats were treated or not with rHuEPO and/or L-NAME during 6 weeks. During the same period, rats were subjected to treadmill exercise. The blood pressure was measured weekly. Endothelial function of isolated aorta and small mesenteric arteries were studied and the morphology of the latter was investigated. L-NAME induced hypertension (197 ± 6 mmHg, at the end of the protocol). Exercise prevented the rise in blood pressure induced by L-NAME (170 ± 5 mmHg). However, exercise-trained rats treated with both rHuEPO and L-NAME developed severe hypertension (228 ± 9 mmHg). Furthermore, in these exercise-trained rats treated with rHuEPO/L-NAME, the acetylcholine-induced relaxation was markedly impaired in isolated aorta (60% of maximal relaxation) and small mesenteric arteries (53%). L-NAME hypertension induced an internal remodeling of small mesenteric arteries that was not modified by exercise, rHuEPO or both. Vascular ET-1 production was not increased in rHuEPO/L-NAME/training hypertensive rats. Furthermore, we observed that rHuEPO/L-NAME/training hypertensive rats died during the exercise or the recovery period (mortality 51%). Our findings suggest that the use of rHuEPO in sport, in order to improve physical performance, represents a high and fatal risk factor, especially with pre-existing cardiovascular risk.

  20. Protein kinase C and tyrosine kinase pathways regulate lipopolysaccharide-induced nitric oxide synthase activity in RAW 264.7 murine macrophages.

    PubMed Central

    Paul, A; Pendreigh, R H; Plevin, R

    1995-01-01

    1. In RAW 264.7 macrophages, lipopolysaccharide (LPS) and gamma-interferon (IFN gamma) alone or in combination stimulated the induction of nitric oxide synthase (iNOS) activity and increased the expression of the 130 kDa isoform of NOS. 2. LPS-induced NOS activity was reduced by incubation with CD14 neutralising antibodies and abolished in macrophages deprived of serum. 3. LPS stimulated a small increase in protein kinase C (PKC) activity in RAW 264.7 macrophages which was dependent on the presence of serum. However, IFN gamma did not potentiate LPS-stimulated PKC activity. 4. The protein kinase C inhibitor, Ro-318220, abolished both LPS- and IFN gamma-stimulated protein kinase C activity and the induction of NOS activity. 5. LPS- and IFN gamma-induced NOS activity was reduced by the tyrosine kinase inhibitor genestein. Genestein also reduced LPS-stimulated protein kinase C activity but did not affect the response to the protein kinase C activator, tetradecanoylphorbol acetate (TPA). 6. Nicotinamide, an inhibitor of poly-ADP ribosylation, abolished LPS- and IFN gamma-induced NOS activity. 7. Brefeldin A, an inhibitor of a factor which stimulates nucleotide exchange activity on the 21 kDa ADP-ribosylation factor, ARF, reduced LPS- and IFN gamma-induced NOS activity by approximately 80%. 8. These results suggest the involvement of protein kinase C, tyrosine kinase and poly-ADP ribosylation pathways in the regulation of the induction of nitric oxide synthase in RAW 264.7 macrophages by LPS and IFN gamma. Images Figure 2 PMID:7533621

  1. Nitric oxide fumigation for postharvest pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide fumigation is effective against all arthropod pests at various life stages tested. Nine insect pests at various life stages and bulb mites were subjected to nitric oxide fumigation treatments under ultralow oxygen conditions of =50 ppm O2 in 1.9L glass jars as fumigation chambers. The ...

  2. Antidepressant-like effect of atorvastatin in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway.

    PubMed

    Shahsavarian, Arash; Javadi, Shiva; Jahanabadi, Samane; Khoshnoodi, Mina; Shamsaee, Javad; Shafaroodi, Hamed; Mehr, Shahram Ejtemaei; Dehpour, Ahmadreza

    2014-12-15

    Atorvastatin is a synthetic and lipophilic statin which has been reported to have a positive role in reducing depression. The potential antidepressant-like effects of atorvastatin and the possible involvement of peroxisome proliferator-activated receptor gamma (PPAR_γ) and nitric oxide system were determined using forced swimming test (FST) in mice was studied. Atorvastatin (0.01, 0.1 and 1 mg/kg, p.o.) was administered 1 h before FST. To assess the involvement of PPAR_γ in the possible antidepressant effect of atorvastatin, pioglitazone, a PPAR_γ agonist (5 mg/kg), and GW-9662, a specific PPAR_γ antagonist (2 mg/kg), was co-administered with atorvastatin (0.01 mg/kg, p.o.) and then FST was performed. The possible role of nitric oxide pathway was determined by using co-administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p.), and a NO precursor, L-arginine (750 mg/kg, i.p.) with sub-effective doses of atorvastatin and pioglitazone. Immobility time was significantly decreased after atorvastatin administration (0.1 and 1 mg/kg, p.o.). Administration of pioglitazone or L-NAME in combination with the sub-effective dose of atorvastatin (0.01 mg/kg, p.o.) reduced the immobility time in the FST compared to drugs alone, showing the participation of these pathways; while co-administration of non-effective doses of atorvastatin and pioglitazone with GW9662 or L-arginine reversed antidepressant-like effect of atorvastatin in FST. Data from concurrent use of GW9662 and atorvastatin also demonstrated that the antidepressant effect of atorvastatin was significantly reversed by GW9662. The antidepressant-like effect of atorvastatin on mice in the FST is mediated at least in part through PPAR_γ receptors and NO pathway.

  3. The modulation of NMDA receptors and L-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test.

    PubMed

    Cunha, Mauricio P; Pazini, Francis L; Ludka, Fabiana K; Rosa, Julia M; Oliveira, Ágatha; Budni, Josiane; Ramos-Hryb, Ana B; Lieberknecht, Vicente; Bettio, Luis E B; Martín-de-Saavedra, Maria D; López, Manuela G; Tasca, Carla I; Rodrigues, Ana Lúcia S

    2015-04-01

    The modulation of N-methyl-D-aspartate receptor (NMDAR) and L-arginine/nitric oxide (NO) pathway is a therapeutic strategy for treating depression and neurologic disorders that involves excitotoxicity. Literature data have reported that creatine exhibits antidepressant and neuroprotective effects, but the implication of NMDAR and L-arginine/nitric oxide (NO) pathway in these effects is not established. This study evaluated the influence of pharmacological agents that modulate NMDAR/L-arginine-NO pathway in the anti-immobility effect of creatine in the tail suspension test (TST) in mice. The NOx levels and cellular viability in hippocampal and cerebrocortical slices of creatine-treated mice were also evaluated. The anti-immobility effect of creatine (10 mg/kg, po) in the TST was abolished by NMDA (0.1 pmol/mouse, icv), D-serine (30 µg/mouse, icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, polyamine site NMDAR antagonist), L-arginine (750 mg/kg, ip, NO precursor), SNAP (25 μg/mouse, icv, NO donor), L-NAME (175 mg/kg, ip, non-selective NOS inhibitor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhibitor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor antagonist). The combined administration of sub-effective doses of creatine (0.01 mg/kg, po) and NMDAR antagonists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, ip) reduced immobility time in the TST. Creatine (10 mg/kg, po) increased cellular viability in hippocampal and cerebrocortical slices and enhanced hippocampal and cerebrocortical NO x levels, an effect potentiated by L-arginine or SNAP and abolished by 7-nitroindazole or L-NAME. In conclusion, the anti-immobility effect of creatine in the TST involves NMDAR inhibition and enhancement of NO levels accompanied by an increase in neural viability.

  4. Two Dimensional Polymer That Generates Nitric Oxide.

    DOEpatents

    McDonald, William F.; Koren, Amy B.

    2005-10-04

    A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.

  5. The expression of contextual fear conditioning involves activation of a NMDA receptor-nitric oxide-cGMP pathway in the dorsal hippocampus of rats.

    PubMed

    Fabri, Denise R S; Hott, Sara C; Reis, Daniel G; Biojone, Caroline; Corrêa, Fernando M A; Resstel, Leonardo B M

    2014-10-01

    The dorsal portion of the hippocampus is a limbic structure that is involved in fear conditioning modulation in rats. Moreover, evidence shows that the local dorsal hippocampus glutamatergic system, nitric oxide (NO) and cGMP modulate behavioral responses during aversive situations. Therefore, the present study investigated the involvement of dorsal hippocampus NMDA receptors and the NO/cGMP pathway in contextual fear conditioning expression. Male Wistar rats were submitted to an aversive contextual conditioning session and 48 h later they were re-exposed to the aversive context in which freezing, cardiovascular responses (increase of both arterial pressure and heart rate) and decrease of tail temperature were recorded. The intra-dorsal hippocampus administration of the NMDA receptor antagonist AP7, prior to the re-exposure to the aversive context, attenuated fear-conditioned responses. The re-exposure to the context evoked an increase in NO concentration in the dorsal hippocampus of conditioned animals. Similar to AP7 administration, we observed a reduction of contextual fear conditioning after dorsal hippocampus administration of either the neuronal NO synthase inhibitor N-propyl-L-arginine, the NO scavenger c-PTIO or the guanylate cyclase inhibitor ODQ. Therefore, the present findings suggest the possible existence of a dorsal hippocampus NMDA/NO/cGMP pathway modulating the expression of contextual fear conditioning in rats.

  6. Inhibition of the NMDA receptor/Nitric Oxide pathway in the dorsolateral periaqueductal gray causes anxiolytic-like effects in rats submitted to the Vogel conflict test

    PubMed Central

    Tonetto, Lucas LM; Terzian, Ana L; Del Bel, Elaine A; Guimarães, Francisco S; Resstel, Leonardo BM

    2009-01-01

    Background Several studies had demonstrated the involvement of the dorsolateral portion of periaqueductal grey matter (dlPAG) in defensive responses. This region contains a significant number of neurons containing the enzyme nitric oxide synthase (NOS) and previous studies showed that non-selective NOS inhibition or glutamate NMDA-receptor antagonism in the dlPAG caused anxiolytic-like effects in the elevated plus maze. Methods In the present study we verified if the NMDA/NO pathway in the dlPAG would also involve in the behavioral suppression observed in rats submitted to the Vogel conflict test. In addition, the involvement of this pathway was investigated by using a selective nNOS inhibitor, Nω-propyl-L-arginine (N-Propyl, 0.08 nmol/200 nL), a NO scavenger, carboxy-PTIO (c-PTIO, 2 nmol/200 nL) and a specific NMDA receptor antagonist, LY235959 (4 nmol/200 nL). Results Intra-dlPAG microinjection of these drugs increased the number of punished licks without changing the number of unpunished licks or nociceptive threshold, as measure by the tail flick test. Conclusion The results indicate that activation of NMDA receptors and increased production of NO in the dlPAG are involved in the anxiety behavior displayed by rats in the VCT. PMID:19775445

  7. Combined Cytological and Transcriptomic Analysis Reveals a Nitric Oxide Signaling Pathway Involved in Cold-Inhibited Camellia sinensis Pollen Tube Growth

    PubMed Central

    Wang, Weidong; Sheng, Xianyong; Shu, Zaifa; Li, Dongqin; Pan, Junting; Ye, Xiaoli; Chang, Pinpin; Li, Xinghui; Wang, Yuhua

    2016-01-01

    Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca2+ gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca2+, ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca2+, ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension. PMID:27148289

  8. Nitric oxide and mitochondria in metabolic syndrome

    PubMed Central

    Litvinova, Larisa; Atochin, Dmitriy N.; Fattakhov, Nikolai; Vasilenko, Mariia; Zatolokin, Pavel; Kirienkova, Elena

    2015-01-01

    Metabolic syndrome (MS) is a cluster of metabolic disorders that collectively increase the risk of cardiovascular disease. Nitric oxide (NO) plays a crucial role in the pathogeneses of MS components and is involved in different mitochondrial signaling pathways that control respiration and apoptosis. The present review summarizes the recent information regarding the interrelations of mitochondria and NO in MS. Changes in the activities of different NO synthase isoforms lead to the formation of metabolic disorders and therefore are highlighted here. Reduced endothelial NOS activity and NO bioavailability, as the main factors underlying the endothelial dysfunction that occurs in MS, are discussed in this review in relation to mitochondrial dysfunction. We also focus on potential therapeutic strategies involving NO signaling pathways that can be used to treat patients with metabolic disorders associated with mitochondrial dysfunction. The article may help researchers develop new approaches for the diagnosis, prevention and treatment of MS. PMID:25741283

  9. Analytical Chemistry of Nitric Oxide

    PubMed Central

    Hetrick, Evan M.

    2013-01-01

    Nitric oxide (NO) is the focus of intense research, owing primarily to its wide-ranging biological and physiological actions. A requirement for understanding its origin, activity, and regulation is the need for accurate and precise measurement techniques. Unfortunately, analytical assays for monitoring NO are challenged by NO’s unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span pM to µM in physiological milieu, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with special focus on the fundamentals behind each technique and approaches that have been coupled with modern analytical measurement tools or exploited to create novel NO sensors. PMID:20636069

  10. Nanocarriers for Nitric Oxide Delivery

    PubMed Central

    Saraiva, Juliana; Marotta-Oliveira, Samantha S.; Cicillini, Simone Aparecida; Eloy, Josimar de Oliveira; Marchetti, Juliana Maldonado

    2011-01-01

    Nitric oxide (NO) is a promising pharmaceutical agent that has vasodilative, antibacterial, and tumoricidal effects. To study the complex and wide-ranging roles of NO and to facilitate its therapeutic use, a great number of synthetic compounds (e.g., nitrosothiols, nitrosohydroxyamines, N-diazeniumdiolates, and nitrosyl metal complexes) have been developed to chemically stabilize and release NO in a controlled manner. Although NO is currently being exploited in many biomedical applications, its use is limited by several factors, including a short half-life, instability during storage, and potential toxicity. Additionally, efficient methods of both localized and systemic in vivo delivery and dose control are needed. One strategy for addressing these limitations and thus increasing the utility of NO donors is based on nanotechnology. PMID:21869934

  11. Analytical chemistry of nitric oxide.

    PubMed

    Hetrick, Evan M; Schoenfisch, Mark H

    2009-01-01

    Nitric oxide (NO) is the focus of intense research primarily because of its wide-ranging biological and physiological actions. To understand its origin, activity, and regulation, accurate and precise measurement techniques are needed. Unfortunately, analytical assays for monitoring NO are challenged by NO's unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span the picomolar-to-micromolar range in physiological milieus, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with a focus on the underlying mechanism of each technique and on approaches that have been coupled with modern analytical measurement tools to create novel NO sensors.

  12. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  13. Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland.

    PubMed

    Cabilla, Jimena P; Nudler, Silvana I; Ronchetti, Sonia A; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H

    2011-01-01

    17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway.

  14. Nitric Oxide-Sensitive Guanylyl Cyclase Is Differentially Regulated by Nuclear and Non-Nuclear Estrogen Pathways in Anterior Pituitary Gland

    PubMed Central

    Cabilla, Jimena P.; Nudler, Silvana I.; Ronchetti, Sonia A.; Quinteros, Fernanda A.; Lasaga, Mercedes; Duvilanski, Beatriz H.

    2011-01-01

    17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway. PMID:22216273

  15. Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways.

    PubMed

    Bettio, Luis E B; Cunha, Mauricio P; Budni, Josiane; Pazini, Francis L; Oliveira, Ágatha; Colla, André R; Rodrigues, Ana Lúcia S

    2012-10-01

    Guanosine is an extracellular signaling molecule implicated in the modulation of glutamatergic transmission and neuroprotection. The present study evaluated the antidepressant-like effect of guanosine in the forced swimming test (FST) and in the tail suspension test (TST) in mice. The contribution of NMDA receptors as well as l-arginine-NO-cGMP and PI3K-mTOR pathways to this effect was also investigated. Guanosine administered orally produced an antidepressant-like effect in the FST (0.5-5 mg/kg) and TST (0.05-0.5 mg/kg). The anti-immobility effect of guanosine in the TST was prevented by the treatment of mice with NMDA (0.1 pmol/site, i.c.v.), d-serine (30 μg/site, i.c.v., a co-agonist of NMDA receptors), l-arginine (750 mg/kg, i.p., a substrate for nitric oxide synthase), sildenafil (5 mg/kg, i.p., a phosphodiesterase 5 inhibitor), LY294002 (10 μg/site, i.c.v., a reversible PI3K inhibitor), wortmannin (0.1 μg/site, i.c.v., an irreversible PI3K inhibitor) or rapamycin (0.2 nmol/site, i.c.v., a selective mTOR inhibitor). In addition, the administration of ketamine (0.1 mg/kg, i.p., a NMDA receptor antagonist), MK-801 (0.001 mg/kg, i.p., another NMDA receptor antagonist), 7-nitroindazole (50 mg/kg, i.p., a neuronal nitric oxide synthase inhibitor) or ODQ (30 pmol/site i.c.v., a soluble guanylate cyclase inhibitor) in combination with a sub-effective dose of guanosine (0.01 mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. None of the treatments affected locomotor activity. Altogether, results firstly indicate that guanosine exerts an antidepressant-like effect that seems to be mediated through an interaction with NMDA receptors, l-arginine-NO-cGMP and PI3K-mTOR pathways.

  16. Participation of nitric oxide pathway in the relaxation response induced by E-cinnamaldehyde oxime in superior mesenteric artery isolated from rats.

    PubMed

    Veras, Robson C; Rodrigues, Karoline G; Alustau, Maria do C; Araújo, Islânia G A; de Barros, André Luis B; Alves, Ricardo J; Nakao, Lia S; Braga, Valdir A; Silva, Darizy F; de Medeiros, Isac A

    2013-07-01

    For many years, nitric oxide (NO) has been studied as an important mediator in the control of vascular tone. Endothelial deficiencies that diminish NO production can result in the development of several future cardiovascular diseases, such as hypertension and arteriosclerosis. In this context, new drugs with potential ability to donate NO have been studied. In this study, 3 aromatic oximes [benzophenone oxime, 4-Cl-benzophenone oxime, and E-cinnamaldehyde oxime (E-CAOx)] induced vasorelaxation in endothelium-denuded and intact superior mesenteric rings precontracted with phenylephrine. E-CAOx demonstrated the most potent effect, and its mechanism of action was evaluated. Vascular reactivity experiments demonstrated that the effect of E-CAOx was reduced by the presence of 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, 1H[1,2,4,]oxadiazolo[4,3-a]quinoxalin-1-one, and (Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate, suggesting the participation of NO/sGC/PKG pathway. NO donation seems to be mediated through nicatinamide adenine dinucleotide phosphate-dependent reductases because 7-ethoxyresorufin decreased the effect of E-CAOx on vascular reactivity and reduced NO formation as detected by flow cytometry using the NO indicator diaminofluorescein 4,5-diacetate. Further downstream of NO donation, K+ subtype channels were also shown to be involved in the E-CAOx vasorelaxant effect. The present study showed that E-CAOx acts like an NO donor, activating NO/sGC/PKG pathway and thus K+ channels.

  17. Additive effects of nicotine and high-fat diet on hepatocellular apoptosis in mice: Involvement of caspase 2 and inducible nitric oxide synthase-mediated intrinsic pathway signaling

    PubMed Central

    Ivey, R.; Desai, M.; Green, K.; Sinha-Hikim, I.; Friedman, T. C.; Sinha-Hikim, A. P.

    2015-01-01

    Smoking is a major risk factor for diabetes and cardiovascular disease and may contribute to non-alcoholic fatty liver disease (NAFLD). The health risk associated with smoking is exaggerated by obesity and is the leading causes of morbidity and mortality worldwide. We recently demonstrated that combined treatment with nicotine and a high-fat diet (HFD) triggers greater oxidative stress, activates hepatocellular apoptosis, and exacerbates HFD-induced hepatic steatosis. Given that hepatocellular apoptosis plays a pivotal role in the pathogenesis of NAFLD, using this model of exacerbated hepatic steatosis, we elucidated the signal transduction pathways involved in HFD plus nicotine-induced liver cell death. Adult C57BL6 male mice were fed a normal chow diet or HFD with 60% of calories derived from fat and received twice daily IP injections of 0.75 mg/kg BW of nicotine or saline for 10 weeks. High resolution light microscopy revealed markedly higher lipid accumulation in hepatocytes from mice received HFD plus nicotine, compared to mice on HFD alone. Addition of nicotine to HFD further resulted in an increase in the incidence of hepatocellular apoptosis and was associated with activation of caspase 2, induction of inducible nitric oxide synthase (iNOS), and perturbation of the BAX/BCL-2 ratio. Together, our data indicate the involvement of caspase 2 and iNOS –mediated apoptotic signaling in nicotine plus HFD-induced hepatocellular apoptosis. Targeting the caspase 2-mediated death pathway may have a protective role in development and progression of NAFLD. PMID:24830635

  18. Nitric oxide and virus infection

    PubMed Central

    Akaike, T; Maeda, H

    2000-01-01

    Nitric oxide (NO) has complex and diverse functions in physiological and pathophysiological phenomena. The mechanisms of many events induced by NO are now well defined, so that a fundamental understanding of NO biology is almost established. Accumulated evidence suggests that NO and oxygen radicals such as superoxide are key molecules in the pathogenesis of various infectious diseases. NO biosynthesis, particularly through expression of an inducible NO synthase (iNOS), occurs in a variety of microbial infections. Although antimicrobial activity of NO is appreciated for bacteria and protozoa, NO has opposing effects in virus infections such as influenza virus pneumonia and certain other neurotropic virus infections. iNOS produces an excessive amount of NO for long periods, which allows generation of a highly reactive nitrogen oxide species, peroxynitrite, via a radical coupling reaction of NO with superoxide. Thus, peroxynitrite causes oxidative tissue injury through potent oxidation and nitration reactions of various biomolecules. NO also appears to affect a host's immune response, with immunopathological consequences. For example, overproduction of NO in virus infections in mice is reported to suppress type 1 helper T-cell-dependent immune responses, leading to type 2 helper T-cell-biased immunological host responses. Thus, NO may be a host response modulator rather than a simple antiviral agent. The unique biological properties of NO are further illustrated by our recent data suggesting that viral mutation and evolution may be accelerated by NO-induced oxidative stress. Here, we discuss these multiple roles of NO in pathogenesis of virus infections as related to both non-specific inflammatory responses and immunological host reactions modulated by NO during infections in vivo. PMID:11106932

  19. Isotope Effects Associated with N2O Production By Fungal and Bacterial Nitric Oxide Reductases: Implications for Tracing Microbial Production Pathways

    NASA Astrophysics Data System (ADS)

    Ostrom, N. E.; Yang, H.; Gandhi, H.; Hegg, E. L.

    2014-12-01

    Site preference (SP), the difference in δ15N between the central (α) and outer (β) N atoms in N2O, has emerged as a conservative tracer of microbial N2O production. The key advantages of SP relative to bulk isotopes are (1) that it is independent of the isotope composition of the substrates of nitrification and denitrification and (2) has not been shown to exhibit fractionation during production. In pure microbial culture distinct SP values for N2O production from bacterial denitrification, including nitrifier-denitrification (-10 to 0 ‰), relative to hydroxylamine oxidation and fungal denitrification (33-37 ‰) provide a promising basis to resolve production pathways. In this study, we determined the δ15N, δ18O, δ15Nα, and δ15Nβ of N2O generated by purified fungal (P450nor) and bacterial nitric oxide reductases. The isotope values were used to calculate SP values, enrichment factors (e), and kinetic isotope effects (KIEs). Both O and Nα displayed normal isotope effects during enzymatic NO reduction by the P450nor with e values of -25.7‰ (KIE = 1.0264) and -12.6‰ (KIE = 1.0127), respectively. However, bulk nitrogen (average δ15N of Nα and Nβ) and Nβ exhibited inverse isotope effects with e values of 14.0‰ (KIE = 0.9862) and 36.1‰ (KIE = 0.9651), respectively. The observed inverse isotope effect in δ15Nβ is consistent with reversible binding of the first NO in the P450nor reaction mechanism. Experiments with bacterial nitric oxide reductase are ongoing, however, preliminary data indicates a inverse isotope effect in the α and β positions and a normal isotope effect in δ18O. In contrast to the constant SP observed during N2O production observed in microbial cultures, the SP measured for purified P450nor was not constant, increasing from ~15‰ to ~29‰ during the course of the reaction. Our results clearly indicate that fractionation of SP during N2O production by P450nor is not zero, and that SP values higher and lower than the

  20. Involvement of nitric oxide-cGMP pathway in the antidepressant-like effects of adenosine in the forced swimming test.

    PubMed

    Kaster, Manuella Pinto; Rosa, Angelo Oscar; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2005-12-01

    We have previously shown that an acute administration of adenosine produces an antidepressant-like effect in the forced swimming test (FST) and in the tail suspension test in mice. In this work we investigated the contribution of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway to adenosine's antidepressant-like effect in the FST since this signalling pathway is assumed to play an important role in depression. The effect of adenosine (10 mg/kg i.p.) was prevented by pre-treatment with L-arginine (750 mg/kg i.p.), S-nitroso-N-acetyl-penicillamine (SNAP, 25 microg/site i.c.v), or sildenafil (5 mg/kg i.p.), but not with D-arginine (750 mg/kg i.p.). Treatment of mice with N(G)-nitro-L-arginine ( L-NNA, 0.03 and 0.3 mg/kg i.p.), Methylene Blue (18 mg/kg i.p.), or ODQ (30 pmol/site i.c.v.) potentiated the effect of adenosine (1 mg/kg i.p.) in the FST. The reduction of immobility time elicited by adenosine (10 mg/kg i.p.) in the FST was prevented by pre-treatment with sildenafil (0.5 and 5 mg/kg i.p.). Together the results indicate that the effect of adenosine in the FST appears to be mediated through an interaction with the NO-cGMP pathway.

  1. The poly-γ-d-glutamic acid capsule surrogate of the Bacillus anthracis capsule induces nitric oxide production via the platelet activating factor receptor signaling pathway.

    PubMed

    Lee, Hae-Ri; Jeon, Jun Ho; Park, Ok-Kyu; Chun, Jeong-Hoon; Park, Jungchan; Rhie, Gi-Eun

    2015-12-01

    The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, confers protection of the bacillus from phagocytosis and allows its unimpeded growth in the host. PGA capsules released from B. anthracis are associated with lethal toxin in the blood of experimentally infected animals and enhance the cytotoxic effect of lethal toxin on macrophages. In addition, PGA capsule itself activates macrophages and dendritic cells to produce proinflammatory cytokine such as IL-1β, indicating multiple roles of PGA capsule in anthrax pathogenesis. Here we report that PGA capsule of Bacillus licheniformis, a surrogate of B. anthracis capsule, induces production of nitric oxide (NO) in RAW264.7 cells and bone marrow-derived macrophages. NO production was induced by PGA in a dose-dependent manner and was markedly reduced by inhibitors of inducible NO synthase (iNOS), suggesting iNOS-dependent production of NO. Induction of NO production by PGA was not observed in macrophages from TLR2-deficient mice and was also substantially inhibited in RAW264.7 cells by pretreatment of TLR2 blocking antibody. Subsequently, the downstream signaling events such as ERK, JNK and p38 of MAPK pathways as well as NF-κB activation were required for PGA-induced NO production. In addition, the induced NO production was significantly suppressed by treatment with antagonists of platelet activating factor receptor (PAFR) or PAFR siRNA, and mediated through PAFR/Jak2/STAT-1 signaling pathway. These findings suggest that PGA capsule induces NO production in macrophages by triggering both TLR2 and PAFR signaling pathways which lead to activation of NF-kB and STAT-1, respectively.

  2. Nitric oxide decreases subventricular zone stem cell proliferation by inhibition of epidermal growth factor receptor and phosphoinositide-3-kinase/Akt pathway.

    PubMed

    Torroglosa, Ana; Murillo-Carretero, Maribel; Romero-Grimaldi, Carmen; Matarredona, Esperanza R; Campos-Caro, Antonio; Estrada, Carmen

    2007-01-01

    Nitric oxide (NO) inhibits proliferation of subventricular zone (SVZ) neural precursor cells in adult mice in vivo under physiological conditions. The mechanisms underlying this NO effect have now been investigated using SVZ-derived neural stem cells, which generate neurospheres in vitro when stimulated by epidermal growth factor (EGF). In these cultures, NO donors decreased the number of newly formed neurospheres as well as their size, which indicates that NO was acting on the neurosphere-forming neural stem cells and the daughter neural progenitors. The effect of NO was cytostatic, not proapoptotic, and did not involve cGMP synthesis. Neurosphere cells expressed the neuronal and endothelial isoforms of NO synthase (NOS) and produced NO in culture. Inhibition of NOS activity by N(omega)-nitro-L-arginine methylester (L-NAME) promoted neurosphere formation and growth, thus revealing an autocrine/paracrine action of NO on the neural precursor cells. Both exogenous and endogenous NO impaired the EGF-induced activation of the EGF receptor (EGFR) tyrosine kinase and prevented the EGF-induced Akt phosphorylation in neurosphere cells. Inhibition of the phosphoinositide-3-kinase (PI3-K)/Akt pathway by LY294002 significantly reduced the number of newly formed neurospheres, which indicates that this is an essential pathway for neural stem cell self-renewal. Chronic administration of l-NAME to adult mice enhanced phospho-Akt staining in the SVZ and reduced nuclear p27(Kip1) in the SVZ and olfactory bulb. The inhibition of EGFR and PI3-K pathway by NO explains, at least in part, its antimitotic effect on neurosphere cells and may be a mechanism involved in the physiological role of NO as a negative regulator of SVZ neurogenesis in adult mice.

  3. Nitric oxide inhibits isoproterenol-stimulated adipocyte lipolysis through oxidative inactivation of the beta-agonist.

    PubMed Central

    Klatt, P; Cacho, J; Crespo, M D; Herrera, E; Ramos, P

    2000-01-01

    Nitric oxide has been implicated in the inhibition of catecholamine-stimulated lipolysis in adipose tissue by as yet unknown mechanisms. In the present study, it is shown that the nitric oxide donor, 2,2-diethyl-1-nitroso-oxyhydrazine, antagonized isoproterenol (isoprenaline)-induced lipolysis in rat adipocytes, freshly isolated from white adipose tissue, by decreasing the potency of the beta-agonist without affecting its efficacy. These data suggest that nitric oxide did not act downstream of the beta-adrenoceptor but reduced the effective concentration of isoproterenol. In support of the latter hypothesis, we found that pre-treatment of isoproterenol with nitric oxide abolished the lipolytic activity of the catecholamine. Spectroscopic data and HPLC analysis confirmed that the nitric oxide-mediated inactivation of isoproterenol was in fact because of the modification of the catecholamine through a sequence of oxidation reactions, which apparently involved the generation of an aminochrome. Similarly, aminochrome was found to be the primary product of isoproterenol oxidation by 3-morpholinosydnonimine and peroxynitrite. Finally, it was shown that nitric oxide released from cytokine-stimulated adipocytes attenuated the lipolytic effect of isoproterenol by inactivating the catecholamine. In contrast with very recent findings, which suggest that nitric oxide impairs the beta-adrenergic action of isoproterenol through intracellular mechanisms and not through a chemical reaction between NO and the catecholamine, we showed that nitric oxide was able to attenuate the pharmacological activity of isoproterenol in vitro as well as in a nitric oxide-generating cellular system through oxidation of the beta-agonist. These findings should be taken into account in both the design and interpretation of studies used to investigate the role of nitric oxide as a modulator of isoproterenol-stimulated signal transduction pathways. PMID:11023835

  4. Nitric oxide inhibits isoproterenol-stimulated adipocyte lipolysis through oxidative inactivation of the beta-agonist.

    PubMed

    Klatt, P; Cacho, J; Crespo, M D; Herrera, E; Ramos, P

    2000-10-15

    Nitric oxide has been implicated in the inhibition of catecholamine-stimulated lipolysis in adipose tissue by as yet unknown mechanisms. In the present study, it is shown that the nitric oxide donor, 2,2-diethyl-1-nitroso-oxyhydrazine, antagonized isoproterenol (isoprenaline)-induced lipolysis in rat adipocytes, freshly isolated from white adipose tissue, by decreasing the potency of the beta-agonist without affecting its efficacy. These data suggest that nitric oxide did not act downstream of the beta-adrenoceptor but reduced the effective concentration of isoproterenol. In support of the latter hypothesis, we found that pre-treatment of isoproterenol with nitric oxide abolished the lipolytic activity of the catecholamine. Spectroscopic data and HPLC analysis confirmed that the nitric oxide-mediated inactivation of isoproterenol was in fact because of the modification of the catecholamine through a sequence of oxidation reactions, which apparently involved the generation of an aminochrome. Similarly, aminochrome was found to be the primary product of isoproterenol oxidation by 3-morpholinosydnonimine and peroxynitrite. Finally, it was shown that nitric oxide released from cytokine-stimulated adipocytes attenuated the lipolytic effect of isoproterenol by inactivating the catecholamine. In contrast with very recent findings, which suggest that nitric oxide impairs the beta-adrenergic action of isoproterenol through intracellular mechanisms and not through a chemical reaction between NO and the catecholamine, we showed that nitric oxide was able to attenuate the pharmacological activity of isoproterenol in vitro as well as in a nitric oxide-generating cellular system through oxidation of the beta-agonist. These findings should be taken into account in both the design and interpretation of studies used to investigate the role of nitric oxide as a modulator of isoproterenol-stimulated signal transduction pathways.

  5. Distribution of nitric oxide in cardiovascular system.

    PubMed

    Mesáros, S; Grunfeld, S

    1997-01-01

    We report here the in vitro measurements of nitric oxide in the cardiovascular system using a porphyrinic sensor specific for NO. Nitric oxide concentrations were measured directly in different parts of the heart and also in different arteries and veins, ranging from 100 microm to 5 mm in diameter. Highest NO. concentrations were found in the heart and particularly in the areas of aortic and pulmonary valves. The NO. concentration in the arteries was higher than in the veins. A clearcut positive correlation was obtained by plotting the vessel diameter and production of nitric oxide.

  6. Sampling nitric oxide from combustion gases.

    NASA Technical Reports Server (NTRS)

    England, C.; Houseman, J.; Teixeira, D. P.

    1973-01-01

    Experimental study of several sampling tube and probe material compositions and designs aimed at preventing nitric oxide reduction when sampling nitric oxide from combustion gases. A 250,000 Btu/h furnace fired with technical grade methane was used for testing the sampling probes over a wide range of air-fuel mixtures. The results obtained include the finding that the use of stainless steel in probes creates inaccuracies in near-stoichiometric and fuel-rich sampling in hydrocarbon flames. For very fuel-rich flames, water cooling is needed even in quartz probes to prevent significant reduction of nitric oxide.-

  7. Nitric oxide signaling in yeast.

    PubMed

    Astuti, Rika Indri; Nasuno, Ryo; Takagi, Hiroshi

    2016-11-01

    As a cellular signaling molecule, nitric oxide (NO) is widely conserved from microorganisms, such as bacteria, yeasts, and fungi, to higher eukaryotes including plants and mammals. NO is mainly produced by NO synthase (NOS) or nitrite reductase (NIR) activity. There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis based on the balance between NO synthesis and degradation is important for the regulation of its physiological functions because an excess level of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but NO and its signaling have been poorly understood due to the lack of mammalian NOS orthologs in the genome. Even though the activities of NOS and NIR have been observed in yeast cells, the gene encoding NOS and the NO production mechanism catalyzed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain an intracellular redox balance following endogenous NO production, exogenous NO treatment, or environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed here. Such investigations into NO signaling are essential for understanding the NO-dependent genetic and physiological modulations. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signaling may be a potential target for the construction and engineering of industrial yeast strains.

  8. l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway.

    PubMed

    Kurauchi, Yuki; Mokudai, Koichi; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Morita, Masahiko; Kamimura, Ayako; Ishii, Kunio

    2017-02-17

    l-Citrulline is a potent precursor of l-arginine, and exerts beneficial effect on cardiovascular system via nitric oxide (NO) production. Migraine is one of the most popular neurovascular disorder, and imbalance of cerebral blood flow (CBF) observed in cortical spreading depression (CSD) contributes to the mechanism of migraine aura. Here, we investigated the effect of l-citrulline on cardiovascular changes to KCl-induced CSD. in rats. Intravenous injection of l-citrulline prevented the decrease in CBF, monitored by laser Doppler flowmetry, without affecting mean arterial pressure and heart rate during CSD. Moreover, l-citrulline attenuated propagation velocity of CSD induced by KCl. The effect of l-citrulline on CBF change was prevented by l-NAME, an inhibitor of NO synthase, but not by indomethacin, an inhibitor of cyclooxygenase. On the other hand, attenuation effect of l-citrulline on CSD propagation velocity was prevented not only by l-NAME but also by indomethacin. In addition, propagation velocity of CSD was attenuated by intravenous injection of NOR3, a NO donor, which was diminished by ODQ, an inhibitor of soluble guanylyl cyclase. These results suggest that NO/cyclic GMP- and prostanoids-mediated pathway differently contribute to the effect of l-citrulline on the maintenance of CBF.

  9. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula.

    PubMed

    Planchet, Elisabeth; Verdu, Isabelle; Delahaie, Julien; Cukier, Caroline; Girard, Clément; Morère-Le Paven, Marie-Christine; Limami, Anis M

    2014-05-01

    Nitric oxide (NO) production and amino acid metabolism modulation, in particular abscisic acid (ABA)-dependent proline accumulation, are stimulated in planta by most abiotic stresses. However, the relationship between NO production and proline accumulation under abiotic stress is still poorly understood, especially in the early phases of plant development. To unravel this question, this work investigated the tight relationship between NO production and proline metabolism under water-deficit stress during seedling establishment. Endogenous nitrate reductase-dependent NO production in Medicago truncatula seedlings increased in a time-dependent manner after short-term water-deficit stress. This water-deficit-induced endogenous NO accumulation was mediated through a ABA-dependent pathway and accompanied by an inhibition of seed germination, a loss of water content, and a decrease in elongation of embryo axes. Interestingly, a treatment with a specific NO scavenger (cPTIO) alleviated these water-deficit detrimental effects. However, the content of total amino acids, in particular glutamate and proline, as well as the expression of genes encoding enzymes of synthesis and degradation of proline were not affected by cPTIO treatment under water-deficit stress. Under normal conditions, exogenous NO donor stimulated neither the expression of P5CS2 nor the proline content, as observed after PEG treatment. These results strongly suggest that the modulation of proline metabolism is independent of NO production under short-term water-deficit stress during seedling establishment.

  10. Nitric oxide mediates coral bleaching through an apoptotic-like cell death pathway: evidence from a model sea anemone-dinoflagellate symbiosis.

    PubMed

    Hawkins, Thomas D; Bradley, Benjamin J; Davy, Simon K

    2013-12-01

    Coral bleaching (involving the loss of symbiotic algae from the cnidarian host) is a major threat to coral reefs and appears to be mediated at the cellular level by nitric oxide (NO). In this study, we examined the specific role of NO in bleaching using the sea anemone Aiptasia pulchella, a model system for the study of corals. Exposure of A. pulchella to high-temperature shock (26-33°C over <1 h) or an NO donor (S-nitrosoglutathione) resulted in significant increases in host caspase-like enzyme activity. These responses were reflected in the intensities of bleaching, which were significantly higher in heat- or NO-treated specimens than in controls maintained in seawater at 26°C. Notably, the inhibition of caspase-like activity prevented bleaching even in the presence of an NO donor or at elevated temperature. The additional use of an NO scavenger controlled for effects mediated by agents other than NO. We also exposed A. pulchella to a more ecologically relevant treatment (an increase from 26 to 33°C over 6-7 d). Again, host NO synthesis correlated with the activation of caspase-like enzyme activity. Therefore, we conclude that NO's involvement in cnidarian bleaching arises through the regulation of host apoptotic pathways.

  11. Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways

    PubMed Central

    El Hasasna, Hussain; Saleh, Alaaeldin; Samri, Halima Al; Athamneh, Khawlah; Attoub, Samir; Arafat, Kholoud; Benhalilou, Nehla; Alyan, Sofyan; Viallet, Jean; Dhaheri, Yusra Al; Eid, Ali; Iratni, Rabah

    2016-01-01

    Recently, we reported that Rhus coriaria exhibits anticancer activities by promoting cell cycle arrest and autophagic cell death of the metastatic triple negative MDA-MB-231 breast cancer cells. Here, we investigated the effect of Rhus coriaria on the migration, invasion, metastasis and tumor growth of TNBC cells. Our current study revealed that non-cytotoxic concentrations of Rhus coriaria significantly inhibited migration and invasion, blocked adhesion to fibronectin and downregulated MMP-9 and prostaglandin E2 (PgE2). Not only did Rhus coriaria decrease their adhesion to HUVECs and to lung microvascular endothelial (HMVEC-L) cells, but it also inhibited the transendothelial migration of MDA-MB-231 cells through TNF-α-activated HUVECs. Furthermore, we found that Rhus coriaria inhibited angiogenesis, reduced VEGF production in both MDA-MB-231 and HUVECs and downregulated the inflammatory cytokines TNF-α, IL-6 and IL-8. The underlying mechanism for Rhus coriaria effects appears to be through inhibiting NFκB, STAT3 and nitric oxide (NO) pathways. Most importantly, by using chick embryo tumor growth assay, we showed that Rhus coriaria suppressed tumor growth and metastasis in vivo. The results described in the present study identify Rhus coriaria as a promising chemopreventive and therapeutic candidate that modulate triple negative breast cancer growth and metastasis. PMID:26888313

  12. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K(+) channels pathway and serotoninergic system.

    PubMed

    de Los Monteros-Zuñiga, Antonio Espinosa; Izquierdo, Teresa; Quiñonez-Bastidas, Geovanna Nallely; Rocha-González, Héctor Isaac; Godínez-Chaparro, Beatriz

    The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K(+) channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K(+) channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats.

  13. The oral microbiome and nitric oxide homoeostasis.

    PubMed

    Hezel, M P; Weitzberg, E

    2015-01-01

    The tiny radical nitric oxide (NO) participates in a vast number of physiological functions including vasodilation, nerve transmission, host defence and cellular energetics. Classically produced by a family of specific enzymes, NO synthases (NOSs), NO signals via reactions with other radicals or transition metals. An alternative pathway for the generation of NO is the nitrate-nitrite-NO pathway in which the inorganic anions nitrate (NO(3)(-)) and nitrite (NO(2)(-)) are reduced to NO and other reactive nitrogen intermediates. Nitrate and nitrite are oxidation products from NOS-dependent NO generation but also constituents in our diet, mainly in leafy green vegetables. Irrespective of origin, active uptake of circulating nitrate in the salivary glands, excretion in saliva and subsequent reduction to nitrite by oral commensal bacteria are all necessary steps for further NO generation. This central role of the oral cavity in regulating NO generation from nitrate presents a new and intriguing aspect of the human microbiome in health and disease. In this review, we present recent advances in our understanding of the nitrate-nitrite-NO pathway and specifically highlight the importance of the oral cavity as a hub for its function.

  14. The Effects of Sub-Chronic Treatment with Pioglitazone on the Septic Mice Mortality in the Model of Cecal Ligation and Puncture: Involvement of Nitric Oxide Pathway.

    PubMed

    Shafaroodi, Hamed; Hassanipour, Mahsa; Mousavi, Zahra; Rahimi, Nastaran; Dehpour, Ahmad Reza

    2015-10-01

    Sepsis is a systemic inflammatory response syndrome caused by an infection and remains as a major challenge in health care. Many studies have reported that pioglitazone may display anti-inflammatory effects. This study was designed to evaluate the effect of subchronic treatment with pioglitazone on high-grade septic mice survival and nitrergic system involvement. Diffused sepsis was induced by cecal ligation and puncture (CLP) surgery in male NMRI mice (20-30 g). Pioglitazone (5,10 and 20 mg/kg) was administered by gavage daily for 5 days prior to surgery. Nitric oxide involvement was assessed by sub-chronic administration of a non-selective nitric oxide synthase inhibitor, L-NAME and a selective inducible nitric oxide synthase inhibitor, aminoguanidine. TNF-α  and IL-1β plasma levels were measured by ELISA. Pioglitazone (10 and 20 mg/kg) significantly improved survival rate in septic mice. The chronic intraperitoneally co-administration of L-NAME (0.5 mg/kg, daily) or aminoguanidine (1 mg/kg, daily) with a daily dose of pioglitazone, 5 mg/kg, significantly increased the survival rate. This survival improving effect was accompanied by a significant reduction in pro-inflammatory cytokines TNF-α and IL-1β plasma levels. In conclusion, sub-chronic pioglitazone treatment can improve survival in mouse sepsis model by CLP. Inhibition of nitric oxide release, probably through inducible nitric oxide synthase at least in part is responsible for this effect. Suppression of TNF-α and IL-1β could be another mechanism in pioglitazone-induced survival improving effect in septic mice.

  15. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitric oxide administration apparatus. 868.5165... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to...

  16. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitric oxide administration apparatus. 868.5165... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to...

  17. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer. (a) Identification. The nitric oxide analyzer is a device intended to measure the concentration of nitric oxide...

  18. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer. (a) Identification. The nitric oxide analyzer is a device intended to measure the concentration of nitric oxide...

  19. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer. (a) Identification. The nitric oxide analyzer is a device intended to measure the concentration of nitric oxide...

  20. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer. (a) Identification. The nitric oxide analyzer is a device intended to measure the concentration of nitric oxide...

  1. Involvement of nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tropisetron and ondansetron in mice forced swimming test and tail suspension test.

    PubMed

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Amiri, Shayan; Haj-Mirzaian, Arvin; Amini-Khoei, Hossien; Ostadhadi, Sattar; Dehpour, AhmadReza

    2016-06-05

    Antidepressant-like effects of 5-hydroxytryptamine subtype 3 (5-HT3) antagonists including tropisetron and ondansetron have been previously demonstrated in the literature. It was reported that stimulation of 5-HT3 receptors activate the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, which is involved in regulation of behavioral and emotional functions. In our study, treating animals with tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01 and 0.1µg/kg) significantly decreased the immobility time in forced swimming test (FST) and tail-suspension test (TST). Co-administration of subeffective doses of tropisetron (1mg/kg) and ondansetron (0.001µg/kg) with subeffective dose of l-NAME (10mg/kg, nonselective NO synthase (NOS) inhibitor) and 7-nitroindazole (25mg/kg, neural NOS inhibitor) exerted antidepressant-like effect in FST and TST, while aminoguanidine (50mg/kg, inducible NOS inhibitor) did not enhance the antidepressant-like effect of 5-HT3 antagonists. Besides, l-arginine (750mg/kg, NO precursor) and sildenafil (5mg/kg, phosphodiesterase inhibitor) suppressed the anti-immobility effect of 5-HT3 antagonists. None of the treatments altered the locomotor behavior of mice in open-field test. Also, hippocampal (but not cortical) nitrite level was significantly lower in tropisetron and ondansetron-treated mice compared with saline-injected mice. Also, co-administration of 7-nitroindazole with tropisetron or ondansetron caused a significant decrease in hippocampal nitrite levels. In conclusion, we suggest that antidepressant-like effect of tropisetron and ondansetron are partially mediated by modulation of NO-cGMP pathway.

  2. The nitric oxide-cyclic GMP-protein kinase G-K+ channel pathway participates in the antiallodynic effect of spinal gabapentin.

    PubMed

    Mixcoatl-Zecuatl, Teresa; Flores-Murrieta, Francisco J; Granados-Soto, Vinicio

    2006-02-15

    The possible participation of the nitric oxide (NO)-cyclic GMP-protein kinase G (PKG) pathway on gabapentin-induced spinal antiallodynic activity was assessed in spinal nerve injured rats. Intrathecal gabapentin, diazoxide or pinacidil reduced tactile allodynia in a dose-dependent manner. Pretreatment with NG-L-nitro-arginine methyl ester (L-NAME, non-specific inhibitor of NO synthase NOS), 7-nitroindazole (neuronal NO synthase inhibitor), 1H-[1,2,4] -oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, guanylyl cyclase inhibitor) or (9S, 10R, 12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo-[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester (KT-5823, specific PKG inhibitor), but not NG-D-nitro-arginine methyl ester (D-NAME) or okadaic acid (protein phosphatase 1 and 2 inhibitor) prevented gabapentin-induced antiallodynia. Pinacidil activity was not blocked by L-NAME, D-NAME, 7-nitroindazole, ODQ, KT-5823 or okadaic acid. Moreover, KT-5823, glibenclamide (ATP-sensitive K+ channel blocker), apamin and charybdotoxin (small- and large-conductance Ca2+-activated K+ channel blockers, respectively), but not margatoxin (voltage-gated K+ channel blocker), L-NAME, 7-nitroindazole, ODQ or okadaic acid, reduced diazoxide-induced antiallodynia. Data suggest that gabapentin-induced spinal antiallodynia could be due to activation of the NO-cyclic GMP-PKG-K+ channel pathway.

  3. The Akt-nitric oxide-cGMP pathway contributes to nerve growth factor-mediated neurite outgrowth in apolipoprotein E knockout mice.

    PubMed

    Hashikawa-Hobara, Narumi; Hashikawa, Naoya; Yutani, Chikao; Zamami, Yoshito; Jin, Xin; Takatori, Shingo; Mio, Mitsunobu; Kawasaki, Hiromu

    2011-08-01

    Apolipoprotein E (apo)-deficient [apoE(-/-)] mice have peripheral sensory nerve defects and a reduced and delayed response to noxious thermal stimuli. However, to date, no report has focused on the influence of apoE deficiency on calcitonin gene-related peptide (CGRP)-containing nerve fiber extensions. We have shown that the density of CGRP-containing nerve fibers decreases in mesenteric arteries of apoE(-/-) mice compared with wild-type mice. Here, we investigated whether apoE deficiency is involved in nerve growth factor (NGF)-induced CGRP-containing nerve regeneration using apoE(-/-) mice. NGF-mediated CGRP-like immunoreactivity (LI)-neurite outgrowth in apoE(-/-) cultured dorsal root ganglia (DRG) cells was significantly lower than that in wild-type cultures. However, the level of NGF receptor mRNA in apoE(-/-) DRG cells was similar to that in wild-type mice. To clarify the mechanism of the impaired ability of NGF-mediated neurite outgrowth, we focused on the Akt-nitric oxide (NO)-cGMP pathway. Expression of phosphorylated Akt was significantly reduced in apoE(-/-) DRG. The NO donor, sodium nitroprusside or S-nitroso-N-acetylpenicillamine, did not affect NGF-mediated neurite outgrowth in apoE(-/-) cultured DRG cells. However, 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt n-hydrate, a cGMP analog, induced NGF-mediated nerve facilitation similar to wild-type NGF-mediated neurite outgrowth levels. Furthermore, in apoE(-/-) DRG, soluble guanylate cyclase expression was significantly lower than that in wild-type DRG. These results suggest that in apoE(-/-) mice the Akt-NO-cGMP pathway is impaired, which may be caused by NGF-mediated CGRP-LI-neurite outgrowth defects.

  4. Adiponectin Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Remodeling through Nitric Oxide and the RhoA/ROCK Pathway

    PubMed Central

    Nour-Eldine, Wared; Ghantous, Crystal M.; Zibara, Kazem; Dib, Leila; Issaa, Hawraa; Itani, Hana A.; El-Zein, Nabil; Zeidan, Asad

    2016-01-01

    Introduction: Adiponectin (APN), an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II) induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II. Methods and Results: Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO), the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS) mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor S-nitroso-N-acetylpenicillamine (SNAP), or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 h Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22phox mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47phox expression. Conclusion: Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation. PMID:27092079

  5. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission

    PubMed Central

    Parra-Lobato, Maria C.; Gomez-Jimenez, Maria C.

    2011-01-01

    After fruit ripening, many fruit-tree species undergo massive natural fruit abscission. Olive (Olea europaea L.) is a stone-fruit with cultivars such as Picual (PIC) and Arbequina (ARB) which differ in mature fruit abscission potential. Ethylene (ET) is associated with abscission, but its role during mature fruit abscission remains largely uncharacterized. The present study investigates the possible roles of ET and polyamine (PA) during mature fruit abscission by modulating genes involved in the ET signalling and biosynthesis pathways in the abscission zone (AZ) of both cultivars. Five ET-related genes (OeACS2, OeACO2, OeCTR1, OeERS1, and OeEIL2) were isolated in the AZ and adjacent cells (AZ–AC), and their expression in various olive organs and during mature fruit abscission, in relation to interactions between ET and PA and the expression induction of these genes, was determined. OeACS2, OeACO2, and OeEIL2 were found to be the only genes that were up-regulated in association with mature fruit abscission. Using the inhibition of ET and PA biosynthesis, it is demonstrated that OeACS2 and OeEIL2 expression are under the negative control of PA while ET induces their expression in AZ–AC. Furthermore, mature fruit abscission depressed nitric oxide (NO) production present mainly in the epidermal cells and xylem of the AZ. Also, NO production was differentially responsive to ET, PA, and different inhibitors. Taken together, the results indicate that PA-dependent ET signalling and biosynthesis pathways participate, at least partially, during mature fruit abscission, and that endogenous NO and 1-aminocyclopropane-1-carboxylic acid maintain an inverse correlation, suggesting an antagonistic action of NO and ET in abscission signalling. PMID:21633085

  6. Nitric Oxide Synthases and Atrial Fibrillation

    PubMed Central

    Bonilla, Ingrid M.; Sridhar, Arun; Györke, Sandor; Cardounel, Arturo J.; Carnes, Cynthia A.

    2012-01-01

    Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases (NOS), which normally produce nitric oxide in the heart. Two NOS isoforms (1 and 3) are normally expressed in the heart. During pathologies such as heart failure, there is induction of NOS 2 in multiple cell types in the myocardium. In certain conditions, the NOS enzymes may become uncoupled, shifting from production of nitric oxide to superoxide anion, a potent free radical and oxidant. Multiple lines of evidence suggest a role for NOS in the pathogenesis of atrial fibrillation. Therapeutic approaches to reduce atrial fibrillation by modulation of NOS activity may be beneficial, although further investigation of this strategy is needed. PMID:22536189

  7. Nitric oxide production by Tunguska meteor

    NASA Technical Reports Server (NTRS)

    Park, C.

    1978-01-01

    The nonequilibrium chemical processes of nitric oxide formation are computed for the wake of the Tunguska meteor of 1908. The wake characteristics are derived by carrying out an optically-thick radiation field analysis for ablation of the meteoroid. The wake flow field is approximated by a one-dimensional, well-stirred reactor model. Known characteristics of the Tunguska event are imposed as constraints, and three controlling parameters - chemical composition, density, and velocity - are varied over a range around the values derived by Korobeinikov et al. (1976) and Petrov and Stulov (1975). The calculation shows that at least 19 million tons of nitric oxide is produced between the altitudes of 10 and 50 km. The anomalous atmospheric phenomena following the event are attributed to the reactions involving nitric oxide thus produced and atmospheric ozone. It is speculated that the nitric oxide produced by the event fertilized the area near the fall, causing the observed rapid plant growth.

  8. Nitric Oxide Signaling in the Microcirculation

    PubMed Central

    Buerk, Donald G.; Barbee, Kenneth A.; Jaron, Dov

    2013-01-01

    Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO. PMID:22196161

  9. Role of nitric oxide in thermotolerance

    PubMed Central

    Xuan, Yi; Zhou, Shuo; Wang, Lei; Jiang, Haijun

    2010-01-01

    A tCaM3 is a key factor in heat shock (HS) signal transduction. Nitric oxide (NO) is believed to mediate a variety of resistant reactions against environmental factors. Our experiments indicate that under heat stress NO induces thermotolerance. In order to do so, NO is signal molecule acting upstream of AtCaM3, stimulating the DNA-binding activity of HS transcription factors as well as the accumulation of heat shock proteins. As a novel HS signaling molecule, NO signal pathway is little known and several unexpected results are emerging. Herein we are discussing them and conclude that in order to obtain a more profound understanding of this new role of NO, detailed research will be needed in the future. PMID:21057186

  10. Influence of nanosecond pulsed plasma on the non-enzymatic pathway for the generation of nitric oxide from L-arginine and the modification of graphite oxide to increase the solar cell efficiency.

    PubMed

    Attri, Pankaj; Park, Ji Hoon; Gaur, Jitender; Kumar, Naresh; Park, Dae Hoon; Jeon, Su Nam; Park, Bong Sang; Chand, Suresh; Uhm, Han Sup; Choi, Eun Ha

    2014-09-14

    In this work, we demonstrated the action of nanosecond pulsed plasma (NPP) on the generation of nitric oxide (NO) from the non-enzymatic pathway and on the modification of graphite oxide (GO) sheets to increase polymer solar cells (PSCs) efficiency. NO is an important signal and an effector molecule in animals, which is generated from the enzyme-catalyzed oxidation of L-arginine to NO and L-citrulline. Hence, L-arginine is an important biological precursor for NO formation. Therefore, we developed a new non-enzymatic pathway for the formation of NO and L-citrulline using NPP and characterized the pathway using NO detection kit, NMR, liquid chromatography/capillary electrophoresis-mass spectrometry (LC/CE-MS) for both quantitative and qualitative bioanalysis. We then synthesized and modified the functional groups of GO using NPP, and it was characterised by X-ray photoelectron spectroscopy (XPS), confocal Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) imaging, cathodoluminescence (CL) and work function using γ-FIB. Further, we also tested the power conversion efficiency of the PSCs devices with modified GO that is similar to the one obtained with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as HTL. This work is perceived to have great implications for inexpensive and efficient methodology for NO generation and modification of GO, which are applicable in materials from nanomaterials to biomolecules.

  11. The stimulating effects of nitric oxide on intermediate conductance Ca²⁺-activated K⁺ channels in human dermal fibroblasts through PKG pathways but not the PKA pathways.

    PubMed

    Bae, Hyemi; Lee, Hong Jun; Kim, Kwangjun; Kim, Jung-Ha; Kim, Taeho; Ko, Jae-Hong; Bang, Hyoweon; Lim, Inja

    2014-06-30

    Nitric oxide (NO) is produced by nitric oxide synthase (NOS) in dermal fibroblasts and is important during wound healing. Intermediate conductance Ca²⁺-activated K+ (IK; IK1; KCa3.1; IKCa; SK4; KCNN4) channels contribute to NOS upregulation, NO production, and various NO-mediated essential functions in many kinds of cells. To determine if the action of NO is linked to IK channel regulation in human dermal fibroblasts, we investigated the expression of IK channels in the cells and the effects and mechanisms of NO on the channels using RT-PCR, western blot analysis, immunocytochemistry and whole-cell and single-channel patch-clamp techniques. The presence of functional IK channels at the RNA, protein and membrane levels was demonstrated and S-nitroso-N-acetylpenicillamine (SNAP) was shown to significantly increase IK currents. The effects of NO were abolished by pretreatment with KT5823 or 1H-[1,2,4]-oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) but not with KT5720. In addition, IK currents were increased by protein kinase G1α or 8-bromo-cGMP but not by forskolin, 8-bromo-cAMP, or catalytic subunits of protein kinase A (PKAcs). On the other hand, PKAcs with cGMP did not increase IK currents, and pretreatment with KT5720 did not block the stimulating effects of 8-Br-cGMP on the IK channels. These data suggest that NO activates IK channels through the PKG but not the PKA pathways, and it seems there is no cross activation between PKG and PKA pathways in human dermal fibroblasts.

  12. [Nitric oxide and lipid peroxidation].

    PubMed

    Cristol, J P; Maggi, M F; Guérin, M C; Torreilles, J; Descomps, B

    1995-01-01

    Nitric oxide (NO) is a free radical produced enzymatically in biological systems from the guanidino group of L-arginine. Its large spectrum of biological effects is achieved through chemical interactions with different targets including oxygen (O2), superoxide (O2o-) and other oxygen reactive species (ROS), transition metals and thiols. Superoxide anions and other ROS have been reported to react with NO to produce peroxynitrite anions that can decompose to form nitrogen dioxide (NO2) and hydroxyl radial (OHo). Thus, NO has been reported to have a dual effect on lipid peroxidation (prooxidant via the peroxynitrite or antioxydant via the chelation of ROS). In the present study we have investigated in different models the in vitro and in vivo action of NO on lipid peroxidation. Copper-induced LDL oxidation were used as an in vitro model. Human LDL (100 micrograms ApoB/ml) were incubated in oxygene-saturated PBS buffer in presence or absence of Cu2+ (2.5 microM) with increasing concentrations of NO donnors (sodium nitroprussiate or nitroso-glutathione). LDL oxidation was monitored continuously for conjugated diene formation (234 nm) and 4-hydroxynonenal (HNE) accumulation. Exogenous NO prevents in a dose dependent manner the progress of copper-induced oxidation. Ischaemia-reperfusion injury (I/R), characterized by an overproduction of ROS, is used as an in vivo model. Anaesthetized rats were submitted to 1 hour renal ischaemia following by 2 hours of reperfusion. Sham-operated rats (SOP) were used as control. Lipid peroxidation was evaluated by measuring the HNE accumulated in rats kidneys in presence or absence of L-arginine or D-arginine infusion. L-arginine, but not D-arginine, enhances HNE accumulation in I/R but not in SOP (< 0.050 pmol/g tissue in SOP versus 0.6 nmol/g tissue in I/R), showing that, in this experimental conditions, NO produced from L-arginine, enhances the toxicity of ROS. This study shows that the pro- or antioxydant effects of NO are different

  13. Oxidative stress, nitric oxide, and diabetes.

    PubMed

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the "final common pathway", through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients.

  14. Pharmacological Prevention and Reversion of Erectile Dysfunction After Radical Prostatectomy, by Modulation of Nitric Oxide/cGMP Pathways

    DTIC Science & Technology

    2009-03-01

    profibrotic factor. Results Body weights were reduced by STZ treatment . Glycemia, glucosuria, or proteinuria, were evident in most of the diabetic mice...Oxidative stress was exacerbated in 4 Principal Investigator: Gonzalez-Cadavid, Nestor F. diabetic animals and reduced by insulin treatment . iNOS ko...allopurinol or decorin compared to the untreated diabetic iNOSko. Glucosuria, ketonuria, and proteinuria, were not affected by any treatment . In

  15. The role of NMDA receptor and nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effect of dextromethorphan in mice forced swimming test and tail suspension test.

    PubMed

    Sakhaee, Ehsan; Ostadhadi, Sattar; Khan, Muhammad Imran; Yousefi, Farbod; Norouzi-Javidan, Abbas; Akbarian, Reyhaneh; Chamanara, Mohsen; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2017-01-01

    Depression is a devastating disorder which has a high impact on the wellbeing of overall society. As such, need for innovative therapeutic agents are always there. Most of the researchers focused on N-methyl-d-aspartate receptor to explore the antidepressant like activity of new therapeutic agents. Dextromethorphan is a cough suppressant agent with potential antidepressant activity reported in mouse force swimming test. Considering N-methyl-d-aspartate as a forefront in exploring antidepressant agents, here we focused to unpin the antidepressant mechanism of dextromethorphan targeting N-methyl-d-aspartate receptor induced nitric oxide-cyclic guanosine monophosphate signaling. Dextromethorphan administered at a dose of 10 and 30mg/kg i.p significantly reduced the immobility time. Interestingly, this effect of drug (30mg/kg) was inhibited when the animals were pretreated either with N-methyl-d-aspartate (75mg/kg), or l-arginine (750mg/kg) as a nitric oxide precursor and/or sildenafil (5mg/kg) as a phosphodiesterase 5 inhibitor. However, the antidepressant effect of Dextromethorphan subeffective dose (3mg/kg) was augmented when the animals were administered with either L-NG-Nitroarginine methyl ester (10mg/kg) non-specific nitric oxide synthase inhibitor, 7-Nitroindazole (30mg/kg) specific neural nitric oxide synthase inhibitor, MK-801 (0.05mg/kg) an N-methyl-d-aspartate receptor antagonist but not aminoguanidine (50mg/kg) which is specific inducible nitric oxide synthase inhibitor as compared to the drugs when administered alone. No remarkable effect on locomotor activity was observed during open field test when the drugs were administered at the above mentioned doses. Therefore, it is evident that the antidepressant like effect of Dextromethorphan is owed due to its inhibitory effect on N-methyl-d-aspartate receptor and NO- Cyclic guanosine monophosphate pathway.

  16. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health.

    PubMed

    Bondonno, Catherine P; Croft, Kevin D; Hodgson, Jonathan M

    2016-09-09

    Emerging evidence strongly suggests that dietary nitrate, derived in the diet primarily from vegetables, could contribute to cardiovascular health via effects on nitric oxide (NO) status. NO plays an essential role in cardiovascular health. It is produced via the classical L-arginine-NO-synthase pathway and the recently discovered enterosalivary nitrate-nitrite-NO pathway. The discovery of this alternate pathway has highlighted dietary nitrate as a candidate for the cardioprotective effect of a diet rich in fruit and vegetables. Clinical trials with dietary nitrate have observed improvements in blood pressure, endothelial function, ischemia-reperfusion injury, arterial stiffness, platelet function, and exercise performance with a concomitant augmentation of markers of NO status. While these results are indicative of cardiovascular benefits with dietary nitrate intake, there is still a lingering concern about nitrate in relation to methemoglobinemia, cancer, and cardiovascular disease. It is the purpose of this review to present an overview of NO and its critical role in cardiovascular health; to detail the observed vascular benefits of dietary nitrate intake through effects on NO status as well as to discuss the controversy surrounding the possible toxic effects of nitrate.

  17. [Retinal ischemia and nitric oxide].

    PubMed

    Neroev, V V; Arkhipova, M M

    2003-01-01

    Retinal ischemia is the main chain in the pathogenesis of vascular diseases of the eye. It was established that nitric oxide (NO) plays the key role in the development of ischemia. Recent understanding of the NO role, as a universal regulator of the cellular and tissue metabolism, is presented. The authors' and published data were used to design a scheme of pathogenesis of retinal ischemia with regard for the NO role. NO can produce both positive and negative effects depending on a stage of the process, NO concentration and on a number of other factors if they are present. Initial stages of hypoxia/ischemia are accompanied by an activation of all forms of NO-synthases (NOS) caused by the influence of biologically active substances (cytokines, prostaglandins, serotonin, bradykinin, glycolisis suboxide products etc.). The activation of inducible NOS, which synthesize a bigger quantity of NO possessing a direct cytotoxic action and contributing to the production of highly toxic radical of peroxinitrit, is in the focus of attention. The damage of cellular structures due to free-radical processes leads to the development of endothelial, macrophage and thrombocyte malfunctions, which manifest itself through a reduced activity of endothelial NOS and through disruption of NO-dependent processes (vasospasm, an increased aggregation of platelets and a reduced fibrinolytic activity). A sharp reduction of NO synthesis substrate (L-arginine) is observed in patients with retinal ischemia. The aggravation of ischemia causes a decrease of NO synthesis due to an exhaustion of L-arginine and its intensified consumption in the course of free-radical processes. The use of NO-inhibitors and of NO-donors at different stages of retinal ischemia prevents the development of neovascularization and proliferation.

  18. Nitric Oxide-cGMP-PKG Pathway Acts on Orai1 to Inhibit the Hypertrophy of Human Embryonic Stem Cell-Derived Cardiomyocytes.

    PubMed

    Wang, Y; Li, Z C; Zhang, P; Poon, E; Kong, C W; Boheler, K R; Huang, Y; Li, R A; Yao, X

    2015-10-01

    Cardiac hypertrophy is an abnormal enlargement of heart muscle. It frequently results in congestive heart failure, which is a leading cause of human death. Previous studies demonstrated that the nitric oxide (NO), cyclic GMP (cGMP), and protein kinase G (PKG) signaling pathway can inhibit cardiac hypertrophy and thus improve cardiac function. However, the underlying mechanisms are not fully understood. Here, based on the human embryonic stem cell-derived cardiomyocyte (hESC-CM) model system, we showed that Orai1, the pore-forming subunit of store-operated Ca(2+) entry (SOCE), is the downstream effector of PKG. Treatment of hESC-CMs with an α-adrenoceptor agonist phenylephrine (PE) caused a marked hypertrophy, which was accompanied by an upregulation of Orai1. Moreover, suppression of Orai1 expression/activity using Orai1-siRNAs or a dominant-negative construct Orai1(G98A) inhibited the hypertrophy, suggesting that Orai1-mediated SOCE is indispensable for the PE-induced hypertrophy of hESC-CMs. In addition, the hypertrophy was inhibited by NO and cGMP via activating PKG. Importantly, substitution of Ala for Ser(34) in Orai1 abolished the antihypertrophic effects of NO, cGMP, and PKG. Furthermore, PKG could directly phosphorylate Orai1 at Ser(34) and thus prevent Orai1-mediated SOCE. Together, we conclude that NO, cGMP, and PKG inhibit the hypertrophy of hESC-CMs via PKG-mediated phosphorylation on Orai1-Ser-34. These results provide novel mechanistic insights into the action of cGMP-PKG-related antihypertrophic agents, such as NO donors and sildenafil.

  19. Thalidomide attenuates the development and expression of antinociceptive tolerance to μ-opioid agonist morphine through l-arginine-iNOS and nitric oxide pathway.

    PubMed

    Khan, Muhammad Imran; Ostadhadi, Sattar; Mumtaz, Faiza; Momeny, Majid; Moghaddaskho, Farima; Hassanipour, Mahsa; Ejtemaei-Mehr, Shahram; Dehpour, Ahmad Reza

    2017-01-01

    Morphine is a μ-opioid analgesic drug which is used in the treatment and management of chronic pain. However, due to development of antinociceptive tolerance its clinical use is limited. Thalidomide is an old glutamic acid derivative which recently reemerged because of its potential to counteract a number of disorders including neurodegenerative disorders. The potential underlying mechanisms and effects of thalidomide on morphine-induced antinociceptive tolerance is still elusive. Hence, the present study was designed to explore the effect of thalidomide on the development and expression of morphine antinociceptive tolerance targeting l-arginine-nitric oxide (NO) pathway in mice and T98G human glioblastoma cell line. When thalidomide was administered in a dose of 17.5mg/kg before each dose of morphine chronically for 5days it prevented the development of antinociceptive tolerance. Also, a single dose of thalidomide 20mg/kg attenuated the expression phase of antinociceptive tolerance. The protective effect of thalidomide was augmented in development phase when co-administration with NOS inhibitors like L-NAME (non- selective NOS inhibitor; 2mg/kg) or aminoguanidine (selective inducible NOS inhibitor; 50mg/kg). Also, the reversal effect of thalidomide in expression phase was potentiated when concomitantly administrated with L-NAME (5mg/kg) or aminoguanidine (100mg/kg). Co-administration of ODQ (a guanylyl cyclase inhibitor) 10mg/kg in developmental phase or 20mg/kg in expression phase also progressively increased the pain threshold. In addition, thalidomide (20μM) also significantly inhibited the overexpression of iNOS gene induced by morphine (2.5μM) in T98G cell line. Hence, our findings suggest that thalidomide has protective effect both in the development and expression phases of morphine antinociceptive tolerance. It is also evident that this effect of thalidomide is induced by the inhibition of NOS enzyme predominantly iNOS.

  20. In anesthetized pigs human chorionic gonadotropin increases myocardial perfusion and function through a β-adrenergic-related pathway and nitric oxide.

    PubMed

    Grossini, Elena; Surico, Daniela; Mary, David A S G; Molinari, Claudio; Surico, Nicola; Vacca, Giovanni

    2013-08-15

    Human chorionic gonadotropin (hCG) is not only responsible for numerous pregnancy-related processes, but can affect the cardiovascular system as well. So far, however, information about any direct effect elicited by hCG on cardiac function, perfusion, and the mechanisms involved has remained scarce. Therefore, the present study aimed to determine the primary in vivo effect of hCG on cardiac contractility and coronary blood flow and the involvement of autonomic nervous system and nitric oxide (NO). Moreover, in coronary endothelial cells (CEC), the intracellular pathways involved in the effects of hCG on NO release were also examined. In 25 anesthetized pigs, intracoronary 500 mU/ml hCG infusion at constant heart rate and aortic blood pressure increased coronary blood flow, maximum rate of change of left ventricular systolic pressure, segmental shortening, cardiac output, and coronary NO release (P < 0.0001). These hemodynamic responses were graded in a further five pigs. Moreover, while blockade of muscarinic cholinoceptors (n = 5) and of α-adrenoceptors (n = 5) did not abolish the observed responses, β1-adrenoceptors blocker (n = 5) prevented the effects of hCG on cardiac function. In addition, β2-adrenoceptors (n = 5) and NO synthase inhibition (n = 5) abolished the coronary response and the effect of hCG on NO release. In CEC, hCG induced the phosphorylation of endothelial NO synthase through cAMP/PKA signaling and ERK1/2, Akt, p38 MAPK involvement, which were activated as downstream effectors of β2-adrenoceptor stimulation. In conclusion, in anesthetized pigs, hCG primarily increased cardiac function and perfusion through the involvement of β-adrenoceptors and NO release. Moreover, cAMP/PKA-dependent kinases phosphorylation was found to play a role in eliciting the observed NO production in CEC.

  1. Antidepressant-Like Effect of the Leaves of Pseudospondias microcarpa in Mice: Evidence for the Involvement of the Serotoninergic System, NMDA Receptor Complex, and Nitric Oxide Pathway

    PubMed Central

    Adongo, Donatus Wewura; Kukuia, Kennedy Kwami Edem; Mante, Priscilla Kolibea; Ameyaw, Elvis Ofori; Woode, Eric

    2015-01-01

    Depression continues to be a major global health problem. Although antidepressants are used for its treatment, efficacy is often inconsistent. Thus, the search for alternative therapeutic medicines for its treatment is still important. In this study, the antidepressant-like effect of Pseudospondias microcarpa extract (30–300 mg kg−1, p.o.) was investigated in two predictive models of depression—forced swimming test and tail suspension test in mice. Additionally, the mechanism(s) of action involved were assessed. Acute treatment with the extract dose dependently reduced immobility of mice in both models. The antidepressant-like effect of the extract (100 mg kg−1, p.o.) was blocked by p-chlorophenylalanine and cyproheptadine but not prazosin, propranolol, or yohimbine. Concomitant administration of d-cycloserine and the extract potentiated the anti-immobility effect. In contrast, d-serine, a full agonist of glycine/NMDA receptors, abolished the effects. Anti-immobility effects of PME were prevented by pretreatment of mice with L-arginine (750 mg kg−1, i.p.) and sildenafil (5 mg kg−1, i.p.). On the contrary, pretreatment of mice with L-NAME (30 mg kg−1, i.p.) or methylene blue (10 mg kg−1, i.p.) potentiated its effects. The extract produces an antidepressant-like effect in the FST and TST that is dependent on the serotoninergic system, NMDA receptor complex, and the nitric oxide pathway. PMID:26539489

  2. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    PubMed Central

    2012-01-01

    Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO

  3. Neural mechanisms in nitric-oxide-deficient hypertension

    NASA Technical Reports Server (NTRS)

    Sander, M.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.

  4. Antidepressant-like effect of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol, a putative trace amine receptor ligand involves l-arginine-nitric oxide-cyclic guanosine monophosphate pathway.

    PubMed

    Dhir, Ashish; Kulkarni, S K

    2011-10-03

    1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol is a novel putative trace amine receptor modulator hypothesized to be useful for treatment-resistant depression. In our previous study, we have demonstrated the antidepressant-like effect of this molecule in mouse forced swim and tail suspension tests and shown to act via modulating the levels of norepinephrine, serotonin and dopamine. The present study attempts to explore the involvement of l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol in the mouse forced swim test. The antidepressant-like action of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol (8 mg/kg, i.p) was reversed by pretreatment with L-arginine (750 mg/kg, i.p.), a nitric oxide precursor. In contrast, pretreatment with methylene blue (a soluble guanlyate cyclase inhibitor and nitric oxide synthase (NOS) inhibitor) or 7-nitroindazole (a specific neuronal NOS inhibitor) potentiated the antidepressant-like effect of sub-effective dose of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol (2mg/kg, i.p.) in this test model. Furthermore, the antidepressant-like effect of this molecule (8 mg/kg, i.p.) was reversed by sildenafil (5mg/kg, i.p.), a phosphodiesterase inhibitor. In conclusion, the antidepressant-like action of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol involved L-arginine-nitric oxide-cyclic guanosine monophospate signaling pathway.

  5. The dimethylarginine (ADMA)/nitric oxide pathway in the brain and periphery of rats with thioacetamide-induced acute liver failure: Modulation by histidine.

    PubMed

    Milewski, Krzysztof; Hilgier, Wojciech; Albrecht, Jan; Zielińska, Magdalena

    2015-09-01

    Hepatic encephalopathy (HE) is related to variations in the nitric oxide (NO) synthesis and oxidative/nitrosative stress (ONS), and asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases (NOSs). In the present study we compared the effects of acute liver failure (ALF) in the rat TAA model on ADMA concentration in plasma and cerebral cortex, and on the activity and expression of the ADMA degrading enzyme, dimethylarginine dimethylaminohydrolase (DDAH), in brain and liver. ALF increased blood and brain ADMA, and the increase was correlated with decreased DDAH activity in both brain and liver. An i.p. administration of histidine (His), an amino acid reported to alleviate oxidative stress associated with HE (100 mg/kg b.w.), reversed the increase of brain ADMA, which was accompanied by the recovery of brain DDAH activity (determined ex vivo), and with an increase of the total NOS activity. His also activated DDAH ex vivo in brain homogenates derived from control and TAA rats. ALF in this model was also accompanied by increases of blood cyclooxygenase activity and blood and brain TNF-α content, markers of the inflammatory response in the periphery, but these changes were not affected by His, except for the reduction of TNF-α mRNA transcript in the brain. His increased the total antioxidant capacity of the brain cortex, but not of the blood, further documenting its direct neuroprotective power.

  6. How the location of superoxide generation influences the β-cell response to nitric oxide.

    PubMed

    Broniowska, Katarzyna A; Oleson, Bryndon J; McGraw, Jennifer; Naatz, Aaron; Mathews, Clayton E; Corbett, John A

    2015-03-20

    Cytokines impair the function and decrease the viability of insulin-producing β-cells by a pathway that requires the expression of inducible nitric oxide synthase (iNOS) and generation of high levels of nitric oxide. In addition to nitric oxide, excessive formation of reactive oxygen species, such as superoxide and hydrogen peroxide, has been shown to cause β-cell damage. Although the reaction of nitric oxide with superoxide results in the formation of peroxynitrite, we have shown that β-cells do not have the capacity to produce this powerful oxidant in response to cytokines. When β-cells are forced to generate peroxynitrite using nitric oxide donors and superoxide-generating redox cycling agents, superoxide scavenges nitric oxide and prevents the inhibitory and destructive actions of nitric oxide on mitochondrial oxidative metabolism and β-cell viability. In this study, we show that the β-cell response to nitric oxide is regulated by the location of superoxide generation. Nitric oxide freely diffuses through cell membranes, and it reacts with superoxide produced within cells and in the extracellular space, generating peroxynitrite. However, only when it is produced within cells does superoxide attenuate nitric oxide-induced mitochondrial dysfunction, gene expression, and toxicity. These findings suggest that the location of radical generation and the site of radical reactions are key determinants in the functional response of β-cells to reactive oxygen species and reactive nitrogen species. Although nitric oxide is freely diffusible, its biological function can be controlled by the local generation of superoxide, such that when this reaction occurs within β-cells, superoxide protects β-cells by scavenging nitric oxide.

  7. The role of Bradyrhizobium japonicum nitric oxide reductase in nitric oxide detoxification in soya bean root nodules.

    PubMed

    Meakin, G E; Jepson, B J N; Richardson, D J; Bedmar, E J; Delgado, M J

    2006-02-01

    The identification of nitric oxide-bound leghaemoglobin within soya bean nodules has led to the question of how Bradyrhizobium japonicum bacteroids overcome the toxicity of this nitric oxide. It has previously been shown that one candidate for nitric oxide detoxification, the respiratory nitric oxide reductase, is expressed in soya bean nodules from plants supplied with nitrate. In this paper, the role of this enzyme in nitric oxide detoxification is assessed and discussion is provided on other possible B. japonicum nitric oxide detoxification systems.

  8. A Short-Term Incubation with High Glucose Impairs VASP Phosphorylation at Serine 239 in response to the Nitric Oxide/cGMP Pathway in Vascular Smooth Muscle Cells: Role of Oxidative Stress

    PubMed Central

    Russo, Isabella; Viretto, Michela; Doronzo, Gabriella; Barale, Cristina; Mattiello, Luigi; Anfossi, Giovanni; Trovati, Mariella

    2014-01-01

    A reduction of the nitric oxide (NO) action in vascular smooth muscle cells (VSMC) could play a role in the vascular damage induced by the glycaemic excursions occurring in diabetic patients; in this study, we aimed to clarify whether a short-term incubation of cultured VSMC with high glucose reduces the NO ability to increase cGMP and the cGMP ability to phosphorylate VASP at Ser-239. We observed that a 180 min incubation of rat VSMC with 25 mmol/L glucose does not impair the NO-induced cGMP increase but reduces VASP phosphorylation in response to both NO and cGMP with a mechanism blunted by antioxidants. We further demonstrated that high glucose increases radical oxygen species (ROS) production and that this phenomenon is prevented by the PKC inhibitor chelerythrine and the NADPH oxidase inhibitor apocynin. The following sequence of events is supported by these results: (i) in VSMC high glucose activates PKC; (ii) PKC activates NADPH oxidase; (iii) NADPH oxidase induces oxidative stress; (iv) ROS impair the signalling of cGMP, which is involved in the antiatherogenic actions of NO. Thus, high glucose, via oxidative stress, can reduce the cardiovascular protection conferred by the NO/cGMP pathway via phosphorylation of the cytoskeleton protein VASP in VSMC. PMID:24779009

  9. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease.

    PubMed Central

    Rachmilewitz, D; Stamler, J S; Bachwich, D; Karmeli, F; Ackerman, Z; Podolsky, D K

    1995-01-01

    Recent studies have suggested that nitric oxide (NO.), the product of nitric oxide synthase in inflammatory cells, may play a part in tissue injury and inflammation through its oxidative metabolism. In this study the colonic generation of oxides of nitrogen (NOx) and nitric oxide synthase activity was determined in ulcerative colitis and Crohn's disease. Colonic biopsy specimens were obtained from inflammatory bowel disease patients and from normal controls. Mucosal explants were cultured in vitro for 24 hours and NOx generation was determined. Nitric oxide synthase activity was monitored by the conversion of [3H]-L-arginine to citrulline. Median NOx generation by inflamed colonic mucosa of patients with active ulcerative colitis and Crohn's colitis was 4.2- and 8.1-fold respectively higher than that by normal human colonic mucosa. In ulcerative colitis and Crohn's colitis nitric oxide synthase activity was 10.0- and 3.8-fold respectively higher than in normal subjects. Colonic NOx generation is significantly decreased by methylprednisolone and ketotifen. The decrease in NOx generation by cultured colonic mucosa induced by methylprednisolone suggests that NO synthase activity is induced during the culture and the steroid effect may contribute to its therapeutic effect. Enhanced colonic NOx generation by stimulated nitric oxide synthase activity in ulcerative colitis and Crohn's disease may contribute to tissue injury. PMID:7541008

  10. Sub-proteome S-nitrosylation analysis in Brassica juncea hints at the regulation of Brassicaceae specific as well as other vital metabolic pathway(s) by nitric oxide and suggests post-translational modifications cross-talk.

    PubMed

    Sehrawat, Ankita; Deswal, Renu

    2014-12-01

    Abiotic stress affects the normal physiology of the plants and results in crop loss. Brassica juncea is an oil yielding crop affected by abiotic stress. In future, over 30% yield loss by abiotic stress is predicted in India. Understanding the mechanism of plant response to stress would help in developing stress tolerant crops. Nitric oxide (NO) is now viewed as a remarkably important signaling molecule, involved in regulating stress responses. S-Nitrosylation is a NO based post-translational modification (PTM), linked with the regulation of many physiologically relevant targets. In the last decade, over 700 functionally varied S-nitrosylated proteins were identified, which suggested broad-spectrum regulation. To understand the physiological significance of S-nitrosylation, it was analyzed in cold stress. Functional categorization and validation of some of the B. juncea S-nitrosylated targets, suggested that NO produced during stress regulates cellular detoxification by modulating enzymes of ascorbate glutathione cycle, superoxide dismutase, glutathione S-transferase and glyoxalase I by S-nitrosylation in crude, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) depleted and apoplastic fractions. Interestingly, S-nitrosylation of enzymes associated with glucosinolate hydrolysis pathway, suggests a novel regulation of this Brassicaceae specific pathway by NO. Moreover, identification of enzymes of Glycolysis and Calvin cycle in crude and RuBisCO depleted fractions showed the regulation of metabolic as well as photosynthetic pathways by S-nitrosylation. S-Nitrosylation of cell wall modifying and proteolytic enzymes in the apoplast suggested differential and spatial regulation by S-nitrosylation. To have an overview of physiological role(s) of NO, collective information on NO based signaling (mainly by S-nitrosylation) is presented in this review.

  11. Nitric oxide signalling: insect brains and photocytes.

    PubMed

    Trimmer, Barry A; Aprille, June; Modica-Napolitano, Josephine

    2004-01-01

    The success of insects arises partly from extraordinary biochemical and physiological specializations. For example, most species lack glutathione peroxidase, glutathione reductase and respiratory-gas transport proteins and thus allow oxygen to diffuse directly into cells. To counter the increased potential for oxidative damage, insect tissues rely on the indirect protection of the thioredoxin reductase pathway to maintain redox homoeostasis. Such specializations must impact on the control of reactive oxygen species and free radicals such as the signalling molecule NO. This chapter focuses on NO signalling in the insect central nervous system and in the light-producing lantern of the firefly. It is shown that neural NO production is coupled to both muscarinic and nicotinic acetylcholine receptors. The NO-mediated increase in cGMP evokes changes in spike activity of neurons controlling the gut and body wall musculature. In addition, maps of NO-producing and -responsive neurons make insects useful models for establishing the range and specificity of NO's actions in the central nervous system. The firefly lantern also provides insight into the interplay of tissue anatomy and cellular biochemistry in NO signalling. In the lantern, nitric oxide synthase is expressed in tracheal end cells that are interposed between neuron terminals and photocytes. Exogenous NO can activate light production and NO scavengers block evoked flashes. NO inhibits respiration in isolated lantern mitochondria and this can be reversed by bright light. It is proposed that NO controls flashes by transiently inhibiting oxygen consumption and permitting direct oxidation of activated luciferin. It is possible that light production itself contributes to the restoration of mitochondrial activity and consequent cessation of the flash.

  12. Role of exhaled nitric oxide in asthma.

    PubMed

    Yates, D H

    2001-04-01

    Nitric oxide (NO), an evanescent atmospheric gas, has recently been discovered to be an important biological mediator in animals and humans. Nitric oxide plays a key role within the lung in the modulation of a wide variety of functions including pulmonary vascular tone, nonadrenergic non-cholinergic (NANC) transmission and modification of the inflammatory response. Asthma is characterized by chronic airway inflammation and increased synthesis of NO and other highly reactive and toxic substances (reactive oxygen species). Pro- inflammatory cytokines such as TNFalpha and IL-1beta are secreted in asthma and result in inflammatory cell recruitment, but also induce calcium- and calmodulin-independent nitric oxide synthases (iNOS) and perpetuate the inflammatory response within the airways. Nitric oxide is released by several pulmonary cells including epithelial cells, eosinophils and macrophages, and NO has been shown to be increased in conditions associated with airway inflammation, such as asthma and viral infections. Nitric oxide can be measured in the expired air of several species, and exhaled NO can now be rapidly and easily measured by the use of chemiluminescence analysers in humans. Exhaled NO is increased in steroid-naive asthmatic subjects and during an asthma exacerbation, although it returns to baseline levels with appropriate anti-inflammatory treatment, and such measurements have been proposed as a simple non-invasive method of measuring airway inflammation in asthma. Here the chemical and biological properties of NO are briefly discussed, followed by a summary of the methodological considerations relevant to the measurement of exhaled NO and its role in lung diseases including asthma. The origin of exhaled NO is considered, and brief mention made of other potential markers of airway inflammation or oxidant stress in exhaled breath.

  13. Nitric oxide-releasing ruthenium nanoparticles.

    PubMed

    Ho, Chi-Ming; Liao, Kai-Jun; Lok, Chun-Nam; Che, Chi-Ming

    2011-10-14

    Nitric oxide-releasing ruthenium nanoparticles were synthesized by the reaction of alkanethiolate-protected ruthenium nanoparticles with tert-butyl nitrite ((t)BuONO), and their water-soluble derivatives are able to deliver NO to proteins such as reduced myoglobin upon light irradiation in aqueous media.

  14. BIOGENIC NITRIC OXIDE EMISSIONS FROM CROPLAND SOILS

    EPA Science Inventory

    Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates ...

  15. Nitric oxide. Novel biology with clinical relevance.

    PubMed Central

    Billiar, T R

    1995-01-01

    OBJECTIVE: The author provides the reader with a view of the regulation and function of nitric oxide (NO), based on the three distinct enzyme isoforms that synthesize NO. SUMMARY BACKGROUND DATA: Nitric oxide is a short-lived molecule exhibiting functions as diverse as neurotransmission and microbial killing. Recent advances in the characterization of the enzymes responsible for NO synthesis and in the understanding of how NO interacts with targets have led to new insights into the many facets of this diverse molecule. METHODS: Nitric oxide is produced by one of three enzyme isoforms of NO synthesis. These enzymes vary considerably in their distribution, regulation, and function. Accordingly, the NO synthesis or lack of NO production will have consequences unique to that isoform. Therefore, this review summarizes the regulation and function of NO generated by each of the three isoforms. RESULTS: Nitric oxide exhibits many unique characteristics that allow this molecule to perform so many functions. The amount, duration, and location of the NO synthesis will depend on the isoform of NO synthase expressed. For each isoform, there probably are disease processes in which deficiency states exist. For induced NO synthesis, states of overexpression exist. CONCLUSIONS: Understanding the regulation and function of the enzymes that produce NO and the unique characteristics of each enzyme isoform is likely to lead to therapeutic approaches to prevent or treat a number of diseases. PMID:7537035

  16. Nitric oxide modulates sensitivity to ABA

    PubMed Central

    Lozano-Juste, Jorge

    2010-01-01

    Nitric oxide (NO) is a gas with crucial signaling functions in plant defense and development. As demonstrated by generating a triple nia1nia2noa1-2 mutant with extremely low levels of NO (February 2010 issue of Plant Physiology), NO is synthesized in plants through mainly two different pathways involving nitrate reductase (NR/NIA) and NO Associated 1 (AtNOA1) proteins. Depletion of basal NO levels leads to a priming of ABA-triggered responses that causes hypersensitivity to this hormone and results in enhanced seed dormancy and decreased seed germination and seedling establishment in the triple mutant. NO produced under non-stressed conditions represses inhibition of seed developmental transitions by ABA. Moreover, NO plays a positive role in post-germinative vegetative development and also exerts a critical control of ABA-related functions on stomata closure. The triple nia1nia2noa1-2 mutant is hypersensitive to ABA in stomatal closure thus resulting in a extreme phenotype of resistance to drought. In the light of the recent discovery of PYR/PYL/RCAR as a family of potential ABA receptors, regulation of ABA sensitivity by NO may be exerted either directly on ABA receptors or on downstream signalling components; both two aspects that deserve our present and future attention. PMID:20168082

  17. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitric oxide administration apparatus. 868.5165... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5165 Nitric oxide administration apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add...

  18. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitric oxide administration apparatus. 868.5165... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5165 Nitric oxide administration apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add...

  19. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitric oxide administration apparatus. 868.5165... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5165 Nitric oxide administration apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add...

  20. Molecular Pathways: Inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target

    PubMed Central

    Grimm, Elizabeth A.; Sikora, Andrew G.; Ekmekcioglu, Suhendan

    2013-01-01

    It is widely accepted that many cancers express features of inflammation, driven by both microenvironmental cells and factors, and the intrinsic production of inflammation-associated mediators from malignant cells themselves. Inflammation results in intracellular oxidative stress, with the ultimate biochemical oxidants composed of reactive nitrogens and oxygens. Although the role of inflammation in carcinogensis is well accepted, we now present data that inflammatory processes are also active in the maintenance phase of many aggressive forms of cancer. The oxidative stress of inflammation is proposed to drive a continuous process of DNA adducts and crosslinks, as well as posttranslational modifications to lipids and proteins that we argue support growth and survival. In this Perspective we introduce data on the emerging science of inflammation-driven posttranslational modifications on proteins responsible for driving growth, angiogenesis, immunosuppression, and inhibition of apoptosis. Examples include data from human melanoma, breast, head and neck, lung, and colon cancers. Fortunately, numerous anti-oxidant agents are clinically available, and we further propose that the pharmacological attenuation of these inflammatory processes, particularly the reactive nitrogen species, will restore the cancer cells to an apoptosis-permissive and growth inhibitory state. Our mouse model data using an arginine antagonist that prevents enzymatic production of nitric oxide, directly supports this view. We contend that selected antioxidants be considered as part of the cancer treatment approach, as they are likely to provide a novel and mechanistically justified addition for therapeutic benefit. PMID:23868870

  1. Nitric oxide methods in seed biology.

    PubMed

    Bethke, Paul C; Libourel, Igor G L; Vitecek, Jan; Jones, Russell L

    2011-01-01

    The ubiquitous signaling molecule nitric oxide (NO) plays an important role in seed biology. Experiments with this biologically important gas require special provisions because NO in aerobic environments is readily converted into other oxides of nitrogen. In this chapter, we describe methods for the application of NO as a gas, and through the use of NO-donor compounds. We included information on the removal or reduction of NO with NO scavengers. Methods for detecting NO using NO-reactive fluorescent probes, and an apparatus incorporating an oxidizer column are also described.

  2. Methanolic Extract of Clinacanthus nutans Exerts Antinociceptive Activity via the Opioid/Nitric Oxide-Mediated, but cGMP-Independent, Pathways

    PubMed Central

    Abdul Rahim, Mohammad Hafiz; Zakaria, Zainul Amiruddin; Mohd Sani, Mohd Hijaz; Omar, Maizatul Hasyima; Yakob, Yusnita; Cheema, Manraj Singh; Ching, Siew Mooi; Ahmad, Zuraini; Abdul Kadir, Arifah

    2016-01-01

    The objectives of the present study were to determine the mechanisms of antinociceptive effect of methanol extract of Clinacanthus nutans (Acanthaceae) leaves (MECN) using various animal nociceptive models. The antinociceptive activity of orally administered 10% DMSO, 100 mg/kg acetylsalicylic acid (ASA), 5 mg/kg morphine, or MECN (100, 250, and 500 mg/kg) was determined using the acetic acid-induced abdominal constriction (ACT), formalin-induced paw licking (FT), and hot plate tests (HPT). The role of opioid and nitric oxide/cyclic guanosine monophosphate (NO/cGMP) systems was also investigated. The results showed that MECN produced a significant (p < 0.05) antinociceptive response in all nociceptive models with the recorded ED50 value of 279.3 mg/kg for the ACT, while, for the early and late phases of the FT, the value was >500 mg/kg or 227.7 mg/kg, respectively. This antinociceptive activity was fully antagonized by naloxone (a nonselective opioid antagonist) but was partially reversed by l-arginine (l-arg; a nitric oxide [NO] precursor), Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME; an NO synthase inhibitor), or their combinations thereof. In contrast, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ; a soluble guanylyl cyclase inhibitor) enhanced the extract's antinociception. UHPLC analysis revealed the presence of several flavonoid-based compounds with antinociceptive action. In conclusion, MECN exerted the peripherally and centrally mediated antinociceptive activity via the modulation of the opioid/NO-mediated, but cGMP-independent, systems. PMID:27190528

  3. Methanolic Extract of Clinacanthus nutans Exerts Antinociceptive Activity via the Opioid/Nitric Oxide-Mediated, but cGMP-Independent, Pathways.

    PubMed

    Abdul Rahim, Mohammad Hafiz; Zakaria, Zainul Amiruddin; Mohd Sani, Mohd Hijaz; Omar, Maizatul Hasyima; Yakob, Yusnita; Cheema, Manraj Singh; Ching, Siew Mooi; Ahmad, Zuraini; Abdul Kadir, Arifah

    2016-01-01

    The objectives of the present study were to determine the mechanisms of antinociceptive effect of methanol extract of Clinacanthus nutans (Acanthaceae) leaves (MECN) using various animal nociceptive models. The antinociceptive activity of orally administered 10% DMSO, 100 mg/kg acetylsalicylic acid (ASA), 5 mg/kg morphine, or MECN (100, 250, and 500 mg/kg) was determined using the acetic acid-induced abdominal constriction (ACT), formalin-induced paw licking (FT), and hot plate tests (HPT). The role of opioid and nitric oxide/cyclic guanosine monophosphate (NO/cGMP) systems was also investigated. The results showed that MECN produced a significant (p < 0.05) antinociceptive response in all nociceptive models with the recorded ED50 value of 279.3 mg/kg for the ACT, while, for the early and late phases of the FT, the value was >500 mg/kg or 227.7 mg/kg, respectively. This antinociceptive activity was fully antagonized by naloxone (a nonselective opioid antagonist) but was partially reversed by l-arginine (l-arg; a nitric oxide [NO] precursor), Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME; an NO synthase inhibitor), or their combinations thereof. In contrast, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ; a soluble guanylyl cyclase inhibitor) enhanced the extract's antinociception. UHPLC analysis revealed the presence of several flavonoid-based compounds with antinociceptive action. In conclusion, MECN exerted the peripherally and centrally mediated antinociceptive activity via the modulation of the opioid/NO-mediated, but cGMP-independent, systems.

  4. Nitric oxide synthetic pathway and cGMP levels are altered in red blood cells from end-stage renal disease patients.

    PubMed

    Di Pietro, Natalia; Giardinelli, Annalisa; Sirolli, Vittorio; Riganti, Chiara; Di Tomo, Pamela; Gazzano, Elena; Di Silvestre, Sara; Panknin, Christina; Cortese-Krott, Miriam M; Csonka, Csaba; Kelm, Malte; Ferdinandy, Péter; Bonomini, Mario; Pandolfi, Assunta

    2016-06-01

    Red blood cells (RBCs) enzymatically produce nitric oxide (NO) by a functional RBC-nitric oxide synthase (RBC-NOS). NO is a vascular key regulatory molecule. In RBCs its generation is complex and influenced by several factors, including insulin, acetylcholine, and calcium. NO availability is reduced in end-stage renal disease (ESRD) and associated with endothelial dysfunction. We previously demonstrated that, through increased phosphatidylserine membrane exposure, ESRD-RBCs augmented their adhesion to human cultured endothelium, in which NO bioavailability decreased. Since RBC-NOS-dependent NO production in ESRD is unknown, this study aimed to investigate RBC-NOS levels/activation, NO production/bioavailability in RBCs from healthy control subjects (C, N = 18) and ESRD patients (N = 27). Although RBC-NOS expression was lower in ESRD-RBCs, NO, cyclic guanosine monophosphate (cGMP), RBC-NOS Serine1177 phosphorylation level and eNOS/Calmodulin (CaM)/Heat Shock Protein-90 (HSP90) interaction levels were higher in ESRD-RBCs, indicating increased enzyme activation. Conversely, following RBCs stimulation with insulin or ionomycin, NO and cGMP levels were significantly lower in ESRD- than in C-RBCs, suggesting that uremia might reduce the RBC-NOS response to further stimuli. Additionally, the activity of multidrug-resistance-associated protein-4 (MRP4; cGMP-membrane transporter) was significantly lower in ESRD-RBCs, suggesting a possible compromised efflux of cGMP across the ESRD-RBCs membrane. This study for the first time showed highest basal RBC-NOS activation in ESRD-RBCs, possibly to reduce the negative impact of decreased NOS expression. It is further conceivable that high NO production only partially affects cell function of ESRD-RBCs maybe because in vivo they are unable to respond to physiologic stimuli, such as calcium and/or insulin.

  5. Plant mitochondria: source and target for nitric oxide.

    PubMed

    Igamberdiev, Abir U; Ratcliffe, R George; Gupta, Kapuganti J

    2014-11-01

    Plant mitochondria generate nitric oxide (NO) under anoxia through the action of cytochrome c oxidase and other electron transport chain components on nitrite. This reductive mechanism operates under aerobic conditions at high electron transport rates. Indirect evidence also indicates that the oxidative pathway of NO production may be associated with mitochondria. We review the consequences of mitochondrial NO production, including the inhibition of oxygen uptake by cytochrome c oxidase, the inhibition of aconitase and succinate dehydrogenase, the induction of alternative oxidase, and the nitrosylation of several proteins, including glycine decarboxylase. The importance of these events in adaptation to abiotic and biotic stresses is discussed.

  6. Hemorrhagic shock and nitric oxide release from erythrocytic nitric oxide synthase: A quantitative analysis

    PubMed Central

    Chen, Kejing; Pittman, Roland N.; Popel, Aleksander S.

    2009-01-01

    A large loss of blood during hemorrhage can result in profound shock, a state of hypotension associated with hemodynamic abnormalities. One of the hypotheses to account for this collapse of homeostasis is that the production of nitric oxide (NO), a gas molecule that dilates blood vessels, is significantly impaired during hemorrhage, resulting in a mismatch between O2 delivery and the metabolic activity in the tissues. NO can be released from multiple sources in the vasculature. Recent studies have shown that erythrocytes express functional endothelial nitric oxide synthase (NOS3), which potentially serves as an intraluminal NO source. NO delivery from this source is complex: Erythrocytes are not only NO producers but also act as potent sinks because of the high affinity of NO for hemoglobin. To test our hypothesis that the loss of erythrocytic NOS3 during hemorrhage contributes to NO deficiency-related shock, we have constructed a multicellular computational model that simulates NO production and transport to allow us to quantify the loss of NO under different hemorrhagic conditions. Our model shows that: (1) during mild hemorrhage and subsequent hemodilution (hematocrit >30%), NO from this intraluminal source is only slightly decreased in the vascular smooth muscle, but the NO level is significantly reduced under severe hemorrhagic conditions (hematocrit <30%); (2) whether a significant amount of NO from this source can be delivered to vascular smooth muscle is strongly dependent on the existence of a protective mechanism for NO delivery; (3) if the expression level of NOS3 on erythrocytes is similar to that on endothelial cells, we estimate ~13 pM NO at the vascular smooth muscle from this source when such a protective mechanism is involved. This study provides a basis for detailed studies to characterize the impairment of NO release pathways during hemorrhage and yield important insights for the development of resuscitation methods. PMID:19285090

  7. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    NASA Technical Reports Server (NTRS)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  8. Endothelial nitric oxide synthase in the microcirculation

    PubMed Central

    Shu, Xiaohong; Keller, T.C. Stevenson; Begandt, Daniela; Butcher, Joshua T.; Biwer, Lauren; Keller, Alexander S.; Columbus, Linda; Isakson, Brant E.

    2015-01-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO) - a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells. PMID:26390975

  9. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  10. Air contamination with nitric oxide: effect on exhaled nitric oxide response.

    PubMed

    Therminarias, A; Flore, P; Favre-Juvin, A; Oddou, M F; Delaire, M; Grimbert, F

    1998-03-01

    This study examines the response of exhaled nitric oxide (NO) concentration (ECNO) and quantity of exhaled NO over time (EVNO) in 10 healthy subjects breathing into five polyethylene bags, one in which synthetic air was free of NO and four in which NO was diluted to concentrations of 20 +/- 0.6, 49 +/- 0.8, 98 +/- 2, and 148 +/- 2 ppb, respectively. Each subject was connected to each bag for 10 min at random. Minute ventilation and ECNO were measured continuously, and EVNO was calculated continuously. ECNO and EVNO values were significantly higher for an inhaled NO concentration of 20 ppb than for NO-free air. Above 20 ppb, ECNO and EVNO increased linearly with inhaled NO concentration. It is reasonable to assume that a share of the quantity of inspired NO over time (InspVNO) because of air contamination by pollution is rejected by the ventilatory pathway. Insofar as InspVNO does not affect endogenous production or the metabolic fate of NO in the airway, this share may be estimated as being approximately one third of InspVNO, the remainder being taken by the endogenous pathway. Thus, air contamination by the NO resulting from pollution greatly increases the NO response in exhaled air.

  11. Killing of Plasmodium falciparum in vitro by nitric oxide derivatives.

    PubMed Central

    Rockett, K A; Awburn, M M; Cowden, W B; Clark, I A

    1991-01-01

    We have investigated the in vitro susceptibility of the human malaria parasite Plasmodium falciparum to killing by nitric oxide and related molecules. A saturated solution of nitric oxide did not inhibit parasite growth, but two oxidation products of nitric oxide (nitrite and nitrate ions) were toxic to the parasite in millimolar concentrations. Nitrosothiol derivatives of cysteine and glutathione were found to be about a thousand times more active (50% growth inhibitory concentration, approximately 40 microM) than nitrite. PMID:1879941

  12. Nitric oxide and thiol groups.

    PubMed

    Gaston, B

    1999-05-05

    S-Nitroso(sy)lation reactions have recently been appreciated to regulate protein function and mediate 'nitrosative' stress. S-Nitrosothiols (SNOs) have been identified in a variety of tissues, and represent a novel class of signaling molecules which may act independently of homolytic cleavage to NO - and, indeed, in a stereoselective fashion - or be metabolized to other bioactive nitrogen oxides. It is now appreciated that sulfur-NO interactions have critical physiological relevance to mammalian neurotransmission, ion channel function, intracellular signaling and antimicrobial defense. These reactions are promising targets for the development of new medical therapies.

  13. Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor.

    PubMed

    Schopfer, Francisco J; Baker, Paul R S; Giles, Gregory; Chumley, Phil; Batthyany, Carlos; Crawford, Jack; Patel, Rakesh P; Hogg, Neil; Branchaud, Bruce P; Lancaster, Jack R; Freeman, Bruce A

    2005-05-13

    The aqueous decay and concomitant release of nitric oxide (*NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of *NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and *NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of *NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of *NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.

  14. Nitric oxide-cyclic GMP signaling in stem cell differentiation

    PubMed Central

    Mujoo, Kalpana; Krumenacker, Joshua S.; Murad, Ferid

    2011-01-01

    The nitric oxide-cyclic GMP (NO-cGMP) pathway mediates important physiological functions associated with various integrative body systems including the cardiovascular and nervous systems. Furthermore, NO regulates cell growth, survival, apoptosis, proliferation and differentiation at the cellular level. To understand the significance of the NO-cGMP pathway in development and differentiation, studies have been conducted both in developing embryos and stem cells. Manipulation of the NO-cGMP pathway by employing activators and inhibitors as pharmacological probes and/or genetic manipulation of NO signaling components has implicated the involvement of this pathway in regulation of stem cell differentiation. This review will focus on some of the work pertaining to the role of NO-cGMP in differentiation of stem cells into cells of various lineages particularly into myocardial cells and stem cell based therapy. PMID:22019632

  15. The Role of Nitric Oxide Synthase Uncoupling in Tumor Progression

    PubMed Central

    Rabender, Christopher S.; Alam, Asim; Sundaresan, Gobalakrishnan; Cardnell, Robert J.; Yakovlev, Vasily A.; Mukhopadhyay, Nitai D.; Graves, Paul; Zweit, Jamal; Mikkelsen, Ross B.

    2015-01-01

    Here evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast to normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on HPLC analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin: dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid and head and neck tumors compared to normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling including increased cGMP-dependent protein kinase (PKG) activity, decreased β-catenin expression and TCF4 promoter activity, and reduced NF-κB promoter activity. Sepiapterin inhibited breast tumor cell growth in vitro and in vivo as measured by clonogenic assay, Ki67 staining and 18F-deoxyglucose positron emission tomography (FDG-PET). In summary, using diverse tumor types, it is demonstrated that the BH4:BH2 ratio is lower in tumor tissues and as a consequence nitric oxide synthase activity generates more peroxynitrite and superoxide anion than nitric oxide resulting in important tumor growth promoting and anti-apoptotic signaling properties. Implications The synthetic BH4, Kuvan®, is used to elevate BH4:BH2 in some phenylketonuria patients and to treat diseases associated with endothelial dysfunction suggesting a novel, testable approach for correcting an abnormality of tumor metabolism to control tumor growth. PMID:25724429

  16. Oxidative Stress, Nitric Oxide, and Diabetes

    PubMed Central

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435

  17. Updated role of nitric oxide in disorders of erythrocyte function.

    PubMed

    Kahn, Marc J; Maley, Jason H; Lasker, George F; Kadowitz, Philip J

    2013-03-01

    Nitric oxide is a potent vasodilator that plays a critical role in disorders of erythrocyte function. Sickle cell disease, paroxysmal nocturnal hemoglobinuria and banked blood preservation are three conditions where nitric oxide is intimately related to dysfunctional erythrocytes. These conditions are accompanied by hemolysis, thrombosis and vasoocclusion. Our understanding of the interaction between nitric oxide, hemoglobin, and the vasculature is constantly evolving, and by defining this role we can better direct trials aimed at improving the treatments of disorders of erythrocyte function. Here we briefly discuss nitric oxide's interaction with hemoglobin through the hypothesis regarding Snitrosohemoglobin, deoxyhemoglobin, and myoglobin as nitrite reductases. We then review the current understanding of the role of nitric oxide in sickle cell disease, paroxysmal nocturnal hemoglobinuria, and banked blood, and discuss therapeutics in development to target nitric oxide in the treatment of some of these disorders.

  18. Reduction of nitric oxide emissions from a combustor

    SciTech Connect

    Craig, R.A.; Pritchard, H.O.

    1980-05-27

    A turbojet combustor and method for controlling nitric oxide emissions is provided by employing successive combustion zones wherein after combustion of an initial portion of the fuel in a primary combustion zone, the combustion products of the primary zone are combined with the remaining portion of fuel and additional plenum air and burned in a secondary combustion zone under conditions that result in low nitric oxide emissions. Low nitric oxide emissions are achieved by a novel turbojet combustor arrangement which provides flame stability by allowing stable combustion, which usually result in large emissions of nitric oxide in a primary combustion zone, to be accompanied by low nitric oxide emissions resulting from controlled fuel-lean combustion, ignited by the emission products from the primary zone, in a secondary combustion zone at a lower combustion temperature resulting in low emissions of nitric oxide.

  19. Development of sensors for nitric oxide

    SciTech Connect

    Glazier, S.A.

    1994-12-31

    The importance of nitric oxide (NO) in mammalian systems has recently been recognized. Interest in NO stems from the discovery of its role in several processes. Firstly, NO is found to be an endothelium-derived relaxing factor. Release of NO by endothelial cells lining blood vessels causes the surrounding smooth muscle of the vessel walls to relax. Secondly, it is known to inhibit the aggregation and adhesion of platelets in blood vessels. Thirdly, NO is believed to be formed by activated macrophage cells to assist in killing foreign cells. Lastly, NO acts in the brain both as a feedback messenger from post- to presynaptic nerve cells and as a conventional neurotransmitter affecting cells other than presynaptic nerve cells. In addition to these roles, it is likely that NO is involved in other processes given its reactivity and potential presence in all mammalian cells. Measurement of NO flux within biological systems is a challenging problem as NO is generated in the nanomolar to micromolar range and is subject to rapid oxidation. The three most common assay techniques for NO in biological systems include: (a) electron paramagnetic resonance detection, (b) hemoglobin oxidation, and (c) chemiluminescence detection with ozone. The authors have initiated research on the construction of a hemoglobin-based, fiber-optic sensor for the detection of nitric oxide in biological systems and progress toward this goal will be presented.

  20. The protective effect of cilostazol on isolated rabbit femoral arteries under conditions of ischemia and reperfusion: the role of the nitric oxide pathway

    PubMed Central

    Santos, Mariana R.G.A.; Celotto, Andréa C; Capellini, Verena K; Evora, Paulo R B; Piccinato, Carlos E; Joviliano, Edwaldo E

    2012-01-01

    OBJECTIVES: The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/reperfusion conditions following cilostazol administration. METHODS: Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS: Acetylcholine- and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/Cilostazol/Reperfusion groups. CONCLUSION: Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions. PMID:22358243

  1. Enhanced gastric nitric oxide synthase activity in duodenal ulcer patients.

    PubMed Central

    Rachmilewitz, D; Karmeli, F; Eliakim, R; Stalnikowicz, R; Ackerman, Z; Amir, G; Stamler, J S

    1994-01-01

    Nitric oxide, the product of nitric oxide synthase in inflammatory cells, may have a role in tissue injury through its oxidative metabolism. Nitric oxide may have a role in the pathogenesis of duodenal ulcer and may be one of the mechanisms responsible for the association between gastric infection with Helicobacter pylori and peptic disease. In this study, calcium independent nitric oxide synthase activity was detected in human gastric mucosa suggesting expression of the inducible isoform. In 17 duodenal ulcer patients gastric antral and fundic nitric oxide synthase activity was found to be two and 1.5-fold respectively higher than its activity in the antrum and fundus of 14 normal subjects (p < 0.05). H pylori was detected in the antrum of 15 of 17 duodenal ulcer patients and only in 7 of 14 of the control subjects. Antral nitric oxide synthase activity in H pylori positive duodenal ulcer patients was twofold higher than in H pylori positive normal subjects (p < 0.05). In duodenal ulcer patients antral and fundic nitric oxide synthase activity resumed normal values after induction of ulcer healing with ranitidine. Eradication of H pylori did not further affect gastric nitric oxide synthase activity. These findings suggest that in duodenal ulcer patients stimulated gastric mucosal nitric oxide synthase activity, though independent of the H pylori state, may contribute to the pathogenesis of the disease. PMID:7525417

  2. Nitric oxide pathway-mediated relaxant effect of aqueous sesame leaves extract (Sesamum radiatum Schum. & Thonn.) in the guinea-pig isolated aorta smooth muscle

    PubMed Central

    Konan, André B; Datté, Jacques Y; Yapo, Paul A

    2008-01-01

    diclofenac and tetra-ethyl-ammonium (TEA) pretreatment of GPAPs induced a suppression of the relaxation caused by ESera, and produced a very significant rightward shifts of the CRC (16-fold) for diclofenac and increase the Emax. In contract, the relaxation caused by ACh was not significantly affected by diclofenac or by TEA. Conclusion Thus, the present results indicate clearly that the nitric oxide largely contribute to the relaxation effect of Esera and of ACh in GPAPs. In addition, their contractile effects are also mediated by cyclooxygenase activation, and probably the K+ channels involvement, that confirm the use of various preparations of Esera for the treatments of cardiovascular diseases. PMID:18505582

  3. Inhaled nitric oxide in chronic obstructive lung disease

    SciTech Connect

    Tiihonen, J.; Hakola, P.; Paanila, J.; Turtiainen . Dept. of Forensic Psychiatry)

    1993-01-30

    During an investigation of the effect of nitric oxide on the pulmonary circulation the authors had the opportunity to give nitric oxide to a patient with longstanding obstructive airway disease, with successful results. A 72-year-old man with chronic obstructive pulmonary disease was referred to the institution for assessment of pulmonary vascular reactivity to acetylcholine and nitric oxide. Acetylcholine was infused into the main pulmonary artery followed 15 min later by an inhalation of 80 parts per million (ppm) nitric oxide. Heart rate and systemic arterial and pulmonary arterial pressures were continuously monitored. Throughout the study the inspired oxygen concentration was kept constant at 98%. Nitrogen dioxide and nitric oxide concentrations were monitored while nitric oxide was delivered. The infusion of acetylcholine resulted in a small increase in pulmonary artery pressure and pulmonary vascular resistance. Nitric oxide produced a substantial fall in pulmonary artery pressure and pulmonary vascular resistance with a concomitant increase in systemic arterial oxygen tension. These results suggest that endothelium-dependent relaxation of the pulmonary vasculature was impaired in the patient and that exogenous nitric oxide was an effective pulmonary vasodilator. In-vitro investigation of explanted airways disease suggests not only that endothelium-dependent pulmonary artery relaxation is impaired but also that the dysfunction is related to pre-existing hypoxemia and hypercapnia. Nitric oxide inhibits proliferation of cultured vascular smooth muscle cells and might alter the pulmonary vascular remodeling characteristic of patients with chronic obstructive airways disease.

  4. [Nitric oxide is a major player in plant immune system].

    PubMed

    Koen, Emmanuel; Lamotte, Olivier; Besson-Bard, Angélique; Bourque, Stéphane; Nicolas-Francès, Valérie; Jeandroz, Sylvain; Wendehenne, David

    2013-03-01

    In animals, nitric oxide (NO) functions as a ubiquitous signaling molecule involved in diverse physiological processes such as immunity. Recent studies provided evidence that plants challenged by pathogenic microorganisms also produce NO. The emerging picture is that NO functions as a signal in plant immunity and executes part of its effects through posttranslational protein modifications. Notably, the characterization of S-nitrosylated proteins provided insights into the molecular mechanisms by which NO exerts its activities. Based on these findings, it appears that NO is involved in both the activation and the negative control of the signaling pathways related to plant immunity.

  5. New concepts in vascular nitric oxide signaling.

    PubMed

    Oeckler, R A; Wolin, M S

    2000-09-01

    Low levels of nitric oxide (NO) control the activities of guanylate cyclase and mitochondrial respiration. Increasing NO levels interact with multiple signaling systems through the formation of peroxynitrite and other oxidation products. Signaling mechanisms linked to NO participate in the prevention of acute responses such as vasoconstriction, thrombosis and the recruitment of inflammatory cells. In contrast, processes related to vascular remodeling, and responses to injury that are associated with the progression and adaptation to disease processes, are not as well understood. Many of the opposing processes involved in these adaptations may originate from the diverse signaling mechanisms that NO and its oxidized products can regulate in a cell-specific manner in the vessel wall.

  6. Regulatory effects of anesthetics on nitric oxide.

    PubMed

    Fan, Wenguo; Liu, Qin; Zhu, Xiao; Wu, Zhi; Li, Dongpei; Huang, Fang; He, Hongwen

    2016-04-15

    Nitric oxide (NO) is a free radical gas in the biological system, which is produced by nitric oxide synthase (NOS) family. NO acts as a biological mediator and plays important roles in different systems in humans. The NO/NOS system exerts a broad spectrum of signaling functions involved in vasodilation, inflammation, oxidative stress, cardioprotection and neuroprotection. It has been demonstrated that intravenous and volatile anesthetics (such as propofol, ketamine, midazolam, isoflurane, sevoflurane, and desflurane, etc.) modulate NO production through multiple mechanisms that may influence physiological and pathophysiological processes. This review focuses on the effects of different anesthetics on NO/NOS regulation in different disease conditions. Possible cellular mechanisms and intermediate role of NO/NOS in anesthetic-mediated organ protection are also discussed. It would be interesting to clarify the impact of anesthetics on NO/NOS regulation. This review gives an overview of the effects of different anesthetics on NO/NOS regulation and function in different physiologic and pathophysiologic states.

  7. Nitric oxide and plant iron homeostasis.

    PubMed

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes.

  8. Cancer Cell Metabolism and the Modulating Effects of Nitric Oxide

    PubMed Central

    Chang, Ching-Fang; Diers, Anne R.; Hogg, Neil

    2016-01-01

    Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. PMID:25464273

  9. Nitric oxide and oxidative stress in placental explant cultures.

    PubMed

    Goncalves, Juvic M; Casart, Ysabel C; Camejo, María I

    2016-01-01

    Placental explant culture, and cellular cytolysis and cellular differentiation have been previously studied. However, oxidative stress and nitric oxide profiles have not been evaluated in these systems. The aim of this study was to determine the release of lipid peroxidation and nitric oxide from placental explants cultured over a seven day period. Placental explants were maintained for seven days in culture and the medium was changed every 24 hours. The response was assessed in terms of syncytiotrophoblast differentiation (human chorionic gonadotropin, hCG), cellular cytolysis (lactate dehydrogenase, LDH), oxidative stress (thiobarbituric acid reactive substances, TBARS), and nitric oxide (NO). Levels of hCG increased progressively from day two to attain its highest level on days four and five after which it decreased gradually. In contrast, the levels of LDH, TBARS, and NO were elevated in the early days of placental culture when new syncytiotrophoblast from cytotrophoblast were forming and also in the last days of culture when tissue was declining. In conclusion, the levels of NO and lipid peroxidation follow a pattern similar to LDH and contrary to hCG. Future placental explant studies to evaluate oxidative stress and NO should consider the physiological changes inherent during the time of culture.

  10. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate‐nitrite‐nitric oxide pathway

    PubMed Central

    Lidder, Satnam; Webb, Andrew J.

    2013-01-01

    The discovery that dietary (inorganic) nitrate has important vascular effects came from the relatively recent realization of the ‘nitrate‐nitrite‐nitric oxide (NO) pathway’. Dietary nitrate has been demonstrated to have a range of beneficial vascular effects, including reducing blood pressure, inhibiting platelet aggregation, preserving or improving endothelial dysfunction, enhancing exercise performance in healthy individuals and patients with peripheral arterial disease. Pre‐clinical studies with nitrate or nitrite also show the potential to protect against ischaemia‐reperfusion injury and reduce arterial stiffness, inflammation and intimal thickness. However, there is a need for good evidence for hard endpoints beyond epidemiological studies. Whilst these suggest reduction in cardiovascular risk with diets high in nitrate‐rich vegetables (such as a Mediterranean diet), others have suggested possible small positive and negative associations with dietary nitrate and cancer, but these remain unproven. Interactions with other nutrients, such as vitamin C, polyphenols and fatty acids may enhance or inhibit these effects. In order to provide simple guidance on nitrate intake from different vegetables, we have developed the Nitrate ‘Veg‐Table’ with ‘Nitrate Units’ [each unit being 1 mmol of nitrate (62 mg)] to achieve a nitrate intake that is likely to be sufficient to derive benefit, but also to minimize the risk of potential side effects from excessive ingestion, given the current available evidence. The lack of data concerning the long term effects of dietary nitrate is a limitation, and this will need to be addressed in future trials. PMID:22882425

  11. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage.

    PubMed

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Komur, Baran; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  12. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  13. L-theanine, a Component of Green Tea Prevents 3-Nitropropionic Acid (3-NP)-Induced Striatal Toxicity by Modulating Nitric Oxide Pathway.

    PubMed

    Jamwal, Sumit; Kumar, Puneet

    2017-04-01

    L-theanine is unique amino acid which readily crosses blood brain barrier and possesses neuroprotective potential against neurodegenerative disorders including Huntington disease (HD). HD is characterized by selective loss of GABAergic medium spiny neurons. 3-nitropropionic acid (3-NP) induces a spectrum of HD-like neuropathology in rat striatum and widely used as experimental tool to study HD. Therefore, the present study was intended to investigate the effect of L-theanine against 3-NP-induced striatal toxicity and to explore its possible mechanism. Rats were administered with 3-NP for 21 days. L-theanine was given once a day, 1 h prior to 3-NP treatment for 21 days and L-NAME (10 mg/kg, i.p.), NO inhibitor and L-arginine (50 mg/kg; i.p.), NO precursor were administered 1 h prior to L-theanine treatment. Body weight and behavioral observation were made on weekly basis. On the 22nd day, animals were sacrificed, and the striatum was isolated for biochemical (LPO, GSH, and nitrite), pro-inflammatory cytokines and neurochemical analysis. 3-NP treatment significantly altered body weight, locomotor activity, motor coordination, mitochondrial complex-II activity, oxidative defense, pro-inflammatory mediators, and striatal neurotransmitters level. L-theanine pre-treatment (25 and 50 mg/kg/day, p.o.) significantly prevented these alterations. In addition, concurrent treatment of L-NAME with L-theanine (25 mg/kg/day, p.o.) significantly enhanced protective effect of L-theanine (25 mg/kg/day, p.o.) whereas concurrent treatment of L-arginine with L-theanine (50 mg/kg/day, p.o.) significantly ameliorated the protective effect of L-theanine (50 mg/kg/day, p.o.). The neuroprotective potential of L-theanine involves inhibition of detrimental nitric oxide production and prevention of neurotransmitters alteration in the striatum.

  14. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    SciTech Connect

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  15. Nitric oxide synthase in the pineal gland.

    PubMed

    López-Figueroa, M O; Møller, M

    1996-10-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased intracellular content of cGMP. The role of cGMP in pineal metabolism, however, is still enigmatic. Using enzyme histochemistry and immunohistochemistry, the presence of NOS has been confirmed in the pineal gland of some species. In the rat and especially in the sheep, NOS is located in nerve fibres innervating the gland. These nerve fibres also contain the neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI), and are probably of parasympathetic origin. In cell cultures and tissue sections NOS immunoreactivity has been shown to be present in pinealocytes of the rat and bovine but not in the sheep. Finally, NOS is also present in the endothelial cells of the blood vessels of the pineal gland. Accordingly, in the mammalian pineal gland, NO is synthesized in both presynaptic nerve fibers and pinealocytes, as well as in blood vessels. However, the anatomical location of NO synthesis varies considerably among species. NO released in the pineal gland, might influence both the pineal metabolism and the blood flow of the gland.

  16. Nitric oxide may mediate nipple erection.

    PubMed

    Tezer, Murat; Ozluk, Yasemin; Sanli, Oner; Asoglu, Oktar; Kadioglu, Ates

    2012-01-01

    The nipple is a specialized structure that can become erect by cold, sexual arousal, breast-feeding, or other tactile stimulations, which can induce the milk ejection reflex and sexual arousal because of intense sensory innervation. The studies that have been conducted thus far to identify the mechanism of nipple erection (NE) are not sufficient. It has been stated that NE occurs via activation of the sympathetic nervous system and smooth muscle contraction. The purposes of this study were to investigate the existence of nitric oxide synthase (NOS) in the nipple-areola complex (NAC) to explain the NE mechanism. Considering that smooth muscle relaxation might be effective in NE, endothelial and neuronal NOS expression and localization were investigated via immunohistochemical methods on sagittal sections from 17 human NACs. The results of this study indicate that eNOS is expressed in the vascular endothelium, ductal epithelium, and smooth muscles, whereas nNOS is expressed in the neural fibers, smooth muscles, ductal epithelium, and vascular endothelium in the NAC. Sinusoidal spaces with endothelial layers similar to those found in penile cavernosal tissue are not found in the NAC. Various mediators are known to affect the function of the NAC smooth muscles; however, this study demonstrates that enzymes (eNOS and nNOS) that synthesize nitric oxide are expressed in the NAC.

  17. Vascular nitric oxide: Beyond eNOS.

    PubMed

    Zhao, Yingzi; Vanhoutte, Paul M; Leung, Susan W S

    2015-10-01

    As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.

  18. Modulation of nitric oxide synthase activity in macrophages

    PubMed Central

    Jorens, P. G.; Matthys, K. E.

    1995-01-01

    L-Arginine is converted to the highly reactive and unstable nitric oxide (NO) and L-citrulline by an enzyme named nitric oxide synthase (NOS). NO decomposes into other nitrogen oxides such as nitrite (NO2-) and nitrate (NO2-), and in the presence of superoxide anion to the potent oxidizing agent peroxynitrite (ONOO−). Activated rodent macrophages are capable of expressing an inducible form of this enzyme (iNOS) in response to appropriate stimuli, i.e., lipopolysaccharide (LPS) and interferon-γ (IFNγ). Other cytokines can modulate the induction of NO biosynthesis in macrophages. NO is a major effector molecule of the anti-microbial and cytotoxic activity of rodent macrophages against certain micro-organisms and tumour cells, respectively. The NO synthesizing pathway has been demonstrated in human monocytes and other cells, but its role in host defence seems to be accessory. A delicate functional balance between microbial stimuli, host-derived cytokines and hormones in the microenvironment regulates iNOS expression. This review will focus mainly on the known and proposed mechanisms of the regulation of iNOS induction, and on agents that can modulate NO release once the active enzyme has been expressed in the macrophage. PMID:18475620

  19. Nitric oxide from a "green" perspective.

    PubMed

    Corpas, Francisco J; Barroso, Juan B

    2015-02-15

    The molecule nitric oxide (NO) which is involved in practically all biochemical and physiological plant processes has become a subject for plant research. However, there remain many unanswered questions concerning how, where and when this molecule is enzymatically generated in higher plants. This mini-review aims to provide an overview of NO in plants for those readers unfamiliar with this field of research. The review will therefore discuss the importance of NO in higher plants at the physiological and biochemical levels, its involvement in designated nitro-oxidative stresses in response to adverse abiotic and biotic environmental conditions, NO emission/uptake from plants, beneficial plant-microbial interactions, and its potential application in the biotechnological fields of agriculture and food nutrition.

  20. Melatonin and its precursors scavenge nitric oxide

    SciTech Connect

    Noda, Y.; Mori, A.; Liburdy, R.; Packer, L.

    1998-12-01

    Nitric oxide (NO) scavenging activity of melatonin, N-acetyl-5-hydroxytryptamine, serotonin, 5-hydroxytryptophan and L-tryptophan was examined by the Griess reaction using flow injection analysis. 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene(NOC-7) was used as NO generator. The Griess reagent stoichiometrically reacts with NO2-, which was converted by a cadmium-copper reduction column from the stable end products of NO oxidation. Except for tryptophan, all the compounds examined scavenged NO in a dose-dependent manner. Melatonin, which has a methoxy group in the 5-position and an acetyl side chain, exhibited the most potent scavenging activity among the compounds tested. Serotonin, N-acetyl-5-hydroxytryptamine, and 5-hydroxytryptophan, respectively, showed moderate scavenging activity compared to melatonin. Tryptophan, which has neither a methoxy nor a hydroxyl group in the 5-position, exhibited the least NO scavenging activity.

  1. Nitric oxide rescues thalidomide mediated teratogenicity

    PubMed Central

    Siamwala, Jamila H.; Veeriah, Vimal; Priya, M. Krishna; Rajendran, Saranya; Saran, Uttara; Sinha, Swaraj; Nagarajan, Shunmugam; T, Pradeep; Chatterjee, Suvro

    2012-01-01

    Thalidomide, a sedative drug given to pregnant women, unfortunately caused limb deformities in thousands of babies. Recently the drug was revived because of its therapeutic potential; however the search is still ongoing for an antidote against thalidomide induced limb deformities. In the current study we found that nitric oxide (NO) rescues thalidomide affected chick (Gallus gallus) and zebrafish (Danio rerio) embryos. This study confirms that NO reduced the number of thalidomide mediated limb deformities by 94% and 80% in chick and zebrafish embryos respectively. NO prevents limb deformities by promoting angiogenesis, reducing oxidative stress and inactivating caspase-3 dependent apoptosis. We conclude that NO secures angiogenesis in the thalidomide treated embryos to protect them from deformities. PMID:22997553

  2. 21 CFR 868.2380 - Nitric oxide analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitric oxide analyzer. 868.2380 Section 868.2380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2380 Nitric oxide analyzer....

  3. Nitric Oxide--Some Old and New Perspectives.

    ERIC Educational Resources Information Center

    Ainscough, Eric W.; Brodie, Andrew M.

    1995-01-01

    Because of the role it plays in physiology and neurobiology, there is a rebirth of interest in nitric oxide. It can affect enzyme and immune system regulation and cytotoxicity. Nitric oxide may represent a new class of signaling molecules--gases that pass through cells and vanish. Overactive neurons produce large amounts of NO which may be linked…

  4. Effects of nitric oxide on stem cell therapy.

    PubMed

    Wang, Wuchen; Lee, Yugyung; Lee, Chi H

    2015-12-01

    The use of stem cells as a research tool and a therapeutic vehicle has demonstrated their great potential in the treatment of various diseases. With unveiling of nitric oxide synthase (NOS) universally present at various levels in nearly all types of body tissues, the potential therapeutic implication of nitric oxide (NO) has been magnified, and thus scientists have explored new treatment strategies involved with stem cells and NO against various diseases. As the functionality of NO encompasses cardiovascular, neuronal and immune systems, NO is involved in stem cell differentiation, epigenetic regulation and immune suppression. Stem cells trigger cellular responses to external signals on the basis of both NO specific pathways and concerted action with endogenous compounds including stem cell regulators. As potency and interaction of NO with stem cells generally depend on the concentrations of NO and the presence of the cofactors at the active site, the suitable carriers for NO delivery is integral for exerting maximal efficacy of stem cells. The innovative utilization of NO functionality and involved mechanisms would invariably alter the paradigm of therapeutic application of stem cells. Future prospects in NO-involved stem cell research which promises to enhance drug discovery efforts by opening new era to improve drug efficacy, reduce drug toxicity and understand disease mechanisms and pathways, were also addressed.

  5. Calcium/calmodulin-dependent nitric oxide synthase activity in the CNS of Aplysia californica: biochemical characterization and link to cGMP pathways.

    PubMed

    Bodnárová, Michaela; Martásek, Pavel; Moroz, Leonid L

    2005-04-01

    We characterized enzymatic activity of nitric oxide synthase (NOS) in the central nervous system of Aplysia californica, a popular experimental model in cellular and system neuroscience, and provided biochemical evidence for NO-cGMP signaling in molluscs. Aplysia NOS (ApNOS) activity, determined as citrulline formation, revealed its calcium-/calmodulin-(Ca/CaM) and NADPH dependence and it was inhibited by 50% with 5mM of W7 hydrochloride (a potent Ca/CaM-dependent phosphodiesterase inhibitor). A representative set of inhibitors for mammalian NOS isoforms also suppressed NOS activity in Aplysia. Specifically, the ApNOS was inhibited by 65-92% with 500 microM of L-NAME (a competitive NOS inhibitor) whereas d-NAME at the same concentration had no effect. S-Ethylisothiourea hydrobromide (5mM), a selective inhibitor of all NOS isoforms, suppressed ApNOS by 85%, l-N6-(1-iminoethyl)lysine dihydrochloride (L-NIL, 5mM), an iNOS inhibitor, by 78% and L-thiocitrulline (5mM) (an inhibitor of nNOS and iNOS) by greater than 95%. Polyclonal antibodies raised against rat nNOS hybridized with a putative purified ApNOS (160 kDa protein) from partially purified central nervous system homogenates in Western blot studies. Consistent with other studies, the activity of soluble guanylyl cyclase was stimulated as a result of NO interaction with its heme prosthetic group. The basal levels of cGMP were estimated by radioimmunoassay to be 44.47 fmol/microg of protein. Incubation of Aplysia CNS with the NO donors DEA/NONOate (diethylammonium (Z)-1-(N,N-diethylamino) diazen-1-ium-1,2-diolate - 1mM) or S-nitroso-N-acetylpenicillamine (1mM) and simultaneous phosphodiesterase inhibition with 3-isobutyl-1-methylxanthine (1mM) prior to the assay showed a 26-80 fold increase in basal cGMP levels. Addition of ODQ (1H-[1,2,4]oxadiazolo[4,3-a] quinoxaline-1-one - 1mM), a selective inhibitor of soluble guanylyl cyclase, completely abolished this effect. This confirms that NO may indeed function as a

  6. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  7. Reduction of nitric oxide emissions from a combustor

    NASA Technical Reports Server (NTRS)

    Craig, R. A.; Pritchard, H. O. (Inventor)

    1980-01-01

    A turbojet combustor and method for controlling nitric oxide emissions by employing successive combustion zones is described. After combustion of an initial portion of the fuel in a primary combustion zone, the combustion products of the primary zone are combined with the remaining portion of fuel and additional plenum air and burned in a secondary combustion zone under conditions that result in low nitric oxide emissions. Low nitric oxide emissions are achieved by a novel turbojet combustor arrangement which provides flame stability by allowing stable combustion to be accompanied by low nitric oxide emissions resulting from controlled fuel-lean combustion (ignited by the emission products from the primary zone) in a secondary combustion zone at a lower combustion temperature resulting in low emission of nitric oxide.

  8. Nitric Oxide Modulators: An Emerging Class of Medicinal Agents

    PubMed Central

    Deshpande, S. R.; Satyanarayana, K.; Rao, M. N. A.; Pai, K. V.

    2012-01-01

    Nitric oxide, a unique messenger in biological system, is ubiquitously present virtually in all tissues revealing its versatile nature of being involved in diverse physiological functions such as vascular tone, inhibition of platelet aggregation, cell adhesion, neurotransmission and enzyme and immune regulation. The tremendous advancements made in the past few decades in this area suggests that the nitric oxide modulation either by its exogenous release through nitric oxide donors or inhibition of its synthesis by nitric oxide synthase inhibitors in physiological milieu may provide newer clinical strategies for the treatment of some diseases. In this review, an attempt is made to document and understand the biological chemistry of different classes of nitric oxide modulators that would prove to be a fruitful area in the years to come. PMID:23798773

  9. Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal.

    PubMed

    Ma, Yi; Zhao, Yichen; Walker, Robin K; Berkowitz, Gerald A

    2013-11-01

    Endogenous plant elicitor peptides (Peps) can act to facilitate immune signaling and pathogen defense responses. Binding of these peptides to the Arabidopsis (Arabidopsis thaliana) plasma membrane-localized Pep receptors (PEPRs) leads to cytosolic Ca(2+) elevation, an early event in a signaling cascade that activates immune responses. This immune response includes the amplification of signaling evoked by direct perception of pathogen-associated molecular patterns by plant cells under assault. Work included in this report further characterizes the Pep immune response and identifies new molecular steps in the signal transduction cascade. The PEPR coreceptor BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 contributes to generation of the Pep-activated Ca(2+) signal and leads to increased defense gene expression and resistance to a virulent bacterial pathogen. Ca(2+)-dependent protein kinases (CPKs) decode the Ca(2+) signal, also facilitating defense gene expression and enhanced resistance to the pathogen. Nitric oxide and reduced nicotinamide adenine dinucleotide phosphate oxidase-dependent reactive oxygen species generation (due to the function of Respiratory Burst Oxidase Homolog proteins D and F) are also involved downstream from the Ca(2+) signal in the Pep immune defense signal transduction cascade, as is the case with BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 and CPK5, CPK6, and CPK11. These steps of the pathogen defense response are required for maximal Pep immune activation that limits growth of a virulent bacterial pathogen in the plant. We find a synergism between function of the PEPR and Flagellin Sensing2 receptors in terms of both nitric oxide and reactive oxygen species generation. Presented results are also consistent with the involvement of the secondary messenger cyclic GMP and a cyclic GMP-activated Ca(2+)-conducting channel in the Pep immune signaling pathway.

  10. NITRIC OXIDE, MITOCHONDRIAL HYPERPOLARIZATION AND T-CELL ACTIVATION

    PubMed Central

    Nagy, Gyorgy; Koncz, Agnes; Fernandez, David; Perl, Andras

    2007-01-01

    T lymphocyte activation is associated with nitric oxide (NO) production that plays an essential role in multiple T cell functions. NO acts as a messenger, activating soluble guanyl cyclase and participating in the transduction signaling pathways involving cyclic GMP. NO modulates mitochondrial events that are involved in apoptosis and regulates mitochondrial membrane potential and mitochondrial biogenesis in many cell types, including lymphocytes. Mitochondrial hyperpolarization (MHP), an early and reversible event during both T lymphocyte activation and apoptosis, is regulated by NO. Here, we discuss recent evidence that NO-induced MHP represents a molecular switch in multiple T cell signaling pathways. Overproduction of NO in systemic lupus erythematosus (SLE) induces mitochondrial biogenesis and alters Ca2+ signaling. Thus, while NO plays a physiological role in lymphocyte cell signaling, its overproduction may disturb normal T cell function, contributing to the pathogenesis of autoimmunity. PMID:17462531

  11. Plant pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) is a potent intercellular signal for defense, development and metabolism in animals and plants. In mammals, highly regulated nitric oxide synthases (NOSs) generate NO. NOS homologs exist in some prokaryotes, but direct evidence for NO production by these proteins has been lacking...

  12. Role of IgE immune complexes in the regulation of HIV-1 replication and increased cell death of infected U1 monocytes: involvement of CD23/Fc epsilon RII-mediated nitric oxide and cyclic AMP pathways.

    PubMed Central

    Ouaaz, F.; Ruscetti, F. W.; Dugas, B.; Mikovits, J.; Agut, H.; Debré, P.; Mossalayi, M. D.

    1996-01-01

    BACKGROUND: IgE/anti-IgE immune complexes (IgE-IC) induce the release of multiple mediators from monocytes/macrophages and the monocytic cell line U937 following the ligation of the low-affinity Fc epsilon receptors (Fc epsilon RII/CD23). These effects are mediated through an accumulation of cAMP and the generation of L-arginine-dependent nitric oxide (NO). Since high IgE levels predict more rapid progression to acquired immunodeficiency syndrome, we attempted to define the effects of IgE-IC on human immunodeficiency virus (HIV) production in monocytes. MATERIALS AND METHODS: Two variants of HIV-1 chronically infected monocytic U1 cells were stimulated with IgE-IC and virus replication was quantified. NO and cAMP involvement was tested through the use of agonistic and antagonistic chemicals of these two pathways. RESULTS: IgE-IC induced p24 production by U1 cells with low-level constitutive expression of HIV-1 mRNAs and extracellular HIV capsid protein p24 levels (U1low), upon their pretreatment with interleukin 4 (IL-4) or IL-13. This effect was due to the crosslinking of CD23, as it was reversed by blocking the IgE binding site on CD23. The IgE-IC effect could also be mimicked by crosslinking of CD23 by a specific monoclonal antibody. p24 induction by IgE-IC was then shown to be due to CD23-mediated stimulation of cAMP, NO, and tumor necrosis factor alpha (TNF alpha) generation. In another variant of U1 cells with > 1 log higher constitutive production of p24 levels (U1high), IgE-IC addition dramatically decreased all cell functions tested and accelerated cell death. This phenomenon was reversed by blocking the nitric oxide generation. CONCLUSIONS: These data point out a regulatory role of IgE-IC on HIV-1 production in monocytic cells, through CD23-mediated stimulation of cAMP and NO pathways. IgE-IC can also stimulate increased cell death in high HIV producing cells through the NO pathway. Images FIG. 1 FIG. 2 FIG. 5 PMID:8900533

  13. Nitric Oxide Release Part I. Macromolecular Scaffolds

    PubMed Central

    Riccio, Daniel A.; Schoenfisch, Mark H.

    2012-01-01

    Summary The roles of nitric oxide (NO) in physiology and pathophysiology merit the use of NO as a therapeutic for certain biomedical applications. Unfortunately, limited NO payloads, too rapid NO release, and the lack of targeted NO delivery have hindered the clinical utility of NO gas and low molecular weight NO donor compounds. A wide-variety of NO-releasing macromolecular scaffolds has thus been developed to improve NO’s pharmacological potential. In this tutorial review, we provide an overview of the most promising NO release scaffolds including protein, organic, inorganic, and hybrid organic-inorganic systems. The NO release vehicles selected for discussion were chosen based on their enhanced NO storage, tunable NO release characteristics, and potential as therapeutics. PMID:22362355

  14. Recent developments in nitric oxide donor drugs

    PubMed Central

    Miller, M R; Megson, I L

    2007-01-01

    During the 1980s, the free radical, nitric oxide (NO), was discovered to be a crucial signalling molecule, with wide-ranging functions in the cardiovascular, nervous and immune systems. Aside from providing a credible explanation for the actions of organic nitrates and sodium nitroprusside that have long been used in the treatment of angina and hypertensive crises respectively, the discovery generated great hopes for new NO-based treatments for a wide variety of ailments. Decades later, however, we are still awaiting novel licensed agents in this arena, despite an enormous research effort to this end. This review explores some of the most promising recent advances in NO donor drug development and addresses the challenges associated with NO as a therapeutic agent. PMID:17401442

  15. Nitric oxide and hyperoxic acute lung injury

    PubMed Central

    Liu, Wen-wu; Han, Cui-hong; Zhang, Pei-xi; Zheng, Juan; Liu, Kan; Sun, Xue-jun

    2016-01-01

    Hyperoxic acute lung injury (HALI) refers to the damage to the lungs secondary to exposure to elevated oxygen partial pressure. HALI has been a concern in clinical practice with the development of deep diving and the use of normobaric as well as hyperbaric oxygen in clinical practice. Although the pathogenesis of HALI has been extensively studied, the findings are still controversial. Nitric oxide (NO) is an intercellular messenger and has been considered as a signaling molecule involved in many physiological and pathological processes. Although the role of NO in the occurrence and development of pulmonary diseases including HALI has been extensively studied, the findings on the role of NO in HALI are conflicting. Moreover, inhalation of NO has been approved as a therapeutic strategy for several diseases. In this paper, we briefly summarize the role of NO in the pathogenesis of HALI and the therapeutic potential of inhaled NO in HALI. PMID:27867474

  16. An intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.; Gregory, G. L.; Mcdougal, D. S.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.

    1985-01-01

    Results from an intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted at Wallops Island, VA, in July 1983. Instruments intercompared included a laser-induced fluorescence system and two chemiluminescence instruments. The intercomparisons were performed with ambient air at NO mixing ratios ranging from 10 to 60 pptv and NO-enriched ambient air at mixing ratios from 20 to 170 pptv. All instruments sampled from a common manifold. The techniques exhibited a high degree of correlation among themselves and with changes in the NO mixing ratio. Agreement among the three techniques was placed at approximately + or - 30 percent. Within this level of agreement, no artifacts or species interferences were identified.

  17. The emerging multifaceted roles of nitric oxide.

    PubMed Central

    Kuo, P C; Schroeder, R A

    1995-01-01

    Nitric oxide (NO) is a highly reactive free radical with a multitude of organ specific regulatory functions. Since 1985, NO has been the subject of numerous research efforts and as a result, has been found to play a major role in the cardiovascular, pulmonary, gastrointestinal, immune, and central nervous systems. In addition, deranged NO synthesis is the basis for a number of pathophysiologic states, such as atherosclerosis, pulmonary hypertension, pyloric stenosis, and the hypertension associated with renal failure. Traditional NO donors such as sodium nitroprusside and new pharmacologic NO adducts such as S-nitrosothiols may serve as exogenous sources of NO for the treatment of NO-deficient pathologic states. This review is an attempt to acquaint the surgical community with the fundamentals of NO biochemistry and physiology. Increased knowledge of its functions in normal homeostasis and pathologic states will enable physicians to better understand these disease processes and utilize new pharmacologic therapies. PMID:7717775

  18. Nitric oxide signalling via cytoskeleton in plants.

    PubMed

    Yemets, Alla I; Krasylenko, Yuliya A; Lytvyn, Dmytro I; Sheremet, Yarina A; Blume, Yaroslav B

    2011-11-01

    Nitric oxide (NO) in plant cell mediates processes of growth and development starting from seed germination to pollination, as well as biotic and abiotic stress tolerance. However, proper understanding of the molecular mechanisms of NO signalling in plants has just begun to emerge. Accumulated evidence suggests that in eukaryotic cells NO regulates functions of proteins by their post-translational modifications, namely tyrosine nitration and S-nitrosylation. Among the candidates for NO-downstream effectors are cytoskeletal proteins because of their involvement in many processes regulated by NO. This review discusses new insights in plant NO signalling focused mainly on the involvement of cytoskeleton components into NO-cascades. Herein, examples of NO-related post-translational modifications of cytoskeletal proteins, and also indirect NO impact, are discussed. Special attention is paid to plant α-tubulin tyrosine nitration as an emerging topic in plant NO research.

  19. Superhydrophobic nitric oxide-releasing xerogels.

    PubMed

    Storm, Wesley L; Youn, Jonghae; Reighard, Katelyn P; Worley, Brittany V; Lodaya, Hetali M; Shin, Jae Ho; Schoenfisch, Mark H

    2014-08-01

    Superhydrophobic nitric oxide (NO)-releasing xerogels were prepared by spray-coating a fluorinated silane/silica composite onto N-diazeniumdiolate NO donor-modified xerogels. The thickness of the superhydrophobic layer was used to extend NO release durations from 59 to 105h. The resulting xerogels were stable, maintaining superhydrophobicity for up to 1month (the longest duration tested) when immersed in solution, with no leaching of silica or undesirable fragmentation detected. The combination of superhydrophobicity and NO release reduced viable Pseudomonas aeruginosa adhesion by >2-logs. The killing effect of NO was demonstrated at longer bacterial contact times, with superhydrophobic NO-releasing xerogels resulting in 3.8-log reductions in adhered viable bacteria vs. controls. With no observed toxicity to L929 murine fibroblasts, NO-releasing superhydrophobic membranes may be valuable antibacterial coatings for implants as they both reduce adhesion and kill bacteria that do adhere.

  20. Nitric oxide-releasing porous silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J.; McInnes, Steven JP; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H.

    2014-07-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  1. Nitric oxide-releasing porous silicon nanoparticles

    PubMed Central

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment. PMID:25114633

  2. Nitric oxide generating/releasing materials

    PubMed Central

    Liang, Hongying; Nacharaju, Parimala; Friedman, Adam; Friedman, Joel M

    2015-01-01

    Harnessing the impressive therapeutic potential of Nitric oxide (NO) remains an ongoing challenge. This paper describes several of the current strategies both with respect to the underlying chemistry and physics and to the applications where they have shown promise. Included in this overview are molecular systems such as NONOates that release NO through chemical reactions and delivery vehicles such as nanoparticles that can generate, store, transport and deliver NO and related bioactive forms of NO such as nitrosothiols. Although there has been much positive movement, it is clear that we are only at the early stages of knowing how to precisely produce, transport and deliver to targeted sites therapeutic levels of NO and related molecules. PMID:26855790

  3. Nitric oxide synthesis and signalling in plants.

    PubMed

    Wilson, Ian D; Neill, Steven J; Hancock, John T

    2008-05-01

    As with all organisms, plants must respond to a plethora of external environmental cues. Individual plant cells must also perceive and respond to a wide range of internal signals. It is now well-accepted that nitric oxide (NO) is a component of the repertoire of signals that a plant uses to both thrive and survive. Recent experimental data have shown, or at least implicated, the involvement of NO in reproductive processes, control of development and in the regulation of physiological responses such as stomatal closure. However, although studies concerning NO synthesis and signalling in animals are well-advanced, in plants there are still fundamental questions concerning how NO is produced and used that need to be answered. For example, there is a range of potential NO-generating enzymes in plants, but no obvious plant nitric oxide synthase (NOS) homolog has yet been identified. Some studies have shown the importance of NOS-like enzymes in mediating NO responses in plants, while other studies suggest that the enzyme nitrate reductase (NR) is more important. Still, more published work suggests the involvement of completely different enzymes in plant NO synthesis. Similarly, it is not always clear how NO mediates its responses. Although it appears that in plants, as in animals, NO can lead to an increase in the signal cGMP which leads to altered ion channel activity and gene expression, it is not understood how this actually occurs. NO is a relatively reactive compound, and it is not always easy to study. Furthermore, its biological activity needs to be considered in conjunction with that of other compounds such as reactive oxygen species (ROS) which can have a profound effect on both its accumulation and function. In this paper, we will review the present understanding of how NO is produced in plants, how it is removed when its signal is no longer required and how it may be both perceived and acted upon.

  4. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    PubMed

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  5. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model

    PubMed Central

    Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie

    2015-01-01

    Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p < 0.01). The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p < 0.01). This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH. PMID:26539501

  6. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model.

    PubMed

    Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie

    2015-01-01

    Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p < 0.01). The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p < 0.01). This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH.

  7. Implications of glial nitric oxide in neurodegenerative diseases

    PubMed Central

    Yuste, Jose Enrique; Tarragon, Ernesto; Campuzano, Carmen María; Ros-Bernal, Francisco

    2015-01-01

    Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases. PMID:26347610

  8. Nitric oxide synthase in experimental autoimmune myocarditis dysfunction.

    PubMed

    Goren, N; Leiros, C P; Sterin-Borda, L; Borda, E

    1998-11-01

    This study reports the expression of inducible nitric oxide synthase (NOS) in heart from autoimmune myocarditis mice associated with an alteration in their contractile behavior. By mean of the production of [U-14C]citrulline from [U-14C]arginine and immunoblot assay, the expression of iNOS was demonstrated in autoimmune atria that was normally absent. The iNOS activity decreased with administration of dexamethasone and in mice treated with monoclonal anti-interferon-gamma antibody (anti-IFN-gamma mAb). The inhibitors of protein kinase C activity (staurosporine) but not calcium/calmodulin (trifluoperazine) attenuated the iNOS activity. Moreover, autoimmune atria presented contractile alterations (lower values of dF/dt than control). The in vivo treatment with inhibitors of NOS activity or anti-IFN-gamma mAb or dexamethasone improved the contractile activity of autoimmune atria with no change in the contractility of normal atria. The results suggest that the infiltrative cells in myocarditis heart have a potential role in cardiac dysfunction by production of IFN-gamma and subsequent expression of iNOS, that in turn alter the contractile behavior of the heart. The data indicate that cytokines induced activation of L-arginine nitric oxide pathway in myocarditis atria leading to contractile dysfunction.

  9. Tipping off endothelial tubes: nitric oxide drives tip cells.

    PubMed

    Priya, Mani Krishna; Sahu, Giriraj; Soto-Pantoja, David R; Goldy, Naga; Sundaresan, Abaya Meenakshi; Jadhav, Vivek; Barathkumar, T R; Saran, Uttara; Jaffar Ali, B M; Roberts, David D; Bera, Amal Kanti; Chatterjee, Suvro

    2015-04-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, is a complex process that warrants cell migration, proliferation, tip cell formation, ring formation, and finally tube formation. Angiogenesis is initiated by a single leader endothelial cell called "tip cell," followed by vessel elongation by "stalk cells." Tip cells are characterized by their long filopodial extensions and expression of vascular endothelial growth factor receptor-2 and endocan. Although nitric oxide (NO) is an important modulator of angiogenesis, its role in angiogenic sprouting and specifically in tip cell formation is poorly understood. The present study tested the role of endothelial nitric oxide synthase (eNOS)/NO/cyclic GMP (cGMP) signaling in tip cell formation. In primary endothelial cell culture, about 40% of the tip cells showed characteristic sub-cellular localization of eNOS toward the anterior progressive end of the tip cells, and eNOS became phosphorylated at serine 1177. Loss of eNOS suppressed tip cell formation. Live cell NO imaging demonstrated approximately 35% more NO in tip cells compared with stalk cells. Tip cells showed increased level of cGMP relative to stalk cells. Further, the dissection of NO downstream signaling using pharmacological inhibitors and inducers indicates that NO uses the sGC/cGMP pathway in tip cells to lead angiogenesis. Taken together, the present study confirms that eNOS/NO/cGMP signaling defines the direction of tip cell migration and thereby initiates new blood vessel formation.

  10. Endomorphin-suppressed nitric oxide release from mice peritoneal macrophages.

    PubMed

    Balog, Tihomir; Sarić, Ana; Sobocanec, Sandra; Kusić, Borka; Marotti, Tatjana

    2010-02-01

    Endomorphins are newly discovered mu-opioid receptor selective immunocompetent opioid peptides. Endomorphin 1 is predominantly distributed in brain, while endomorphin 2 is widely allocated in the spinal cord. Lately, endomorphins have been investigated as modulators of reactive oxygen and nitrogen species. Nitric oxide is short lived radical involved in various biological processes such as regulation of blood vessel contraction, inflammation, neurotransmission and apoptosis. The aim of this work was to investigate the in vivo effects of endomorphins on nitric oxide release and NOS 2 isoenzyme upregulation in mice peritoneal macrophages additionally challenged ex vivo with lipopolysaccharide. The results showed that endomorphin 1 or endomorphin 2 in vitro did not change NO release from peritoneal mouse macrophages during a 48 h incubation period. On the other hand in vivo endomorphins had suppressive effect on NO release as well as on NOS 2 and IL-1 protein concentration. The most of suppressive effect in vivo of both endomorphins was blocked with 30 min pretreatment with mu-receptor selective antagonist beta-FNA, which proved involvement of opioid receptor pathway in suppressive effects of endomorphins.

  11. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    PubMed

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins.

  12. Biomimetic and microbial reduction of nitric oxide

    SciTech Connect

    Potter, W.T.; Le, U.; Ronda, S.

    1995-12-31

    The biomimetic reduction of nitric oxide (NO) to nitrous oxide (N{sub 2}O) by dithiothreitol in the presence of cyanocobalamin and cobalt-centered porphyrins has been investigated. Reactions were monitored directly using Fourier Transform Infrared (FTIR) Spectroscopy vapor-phase spectra. Reaction rates were twofold faster for the corrin than for the cobalt-centered porphyrins. The stoichiometry showed the loss of two molecules of NO per molecule of N{sub 2}O produced. We have also demonstrated that the facultative anaerobe and chemoautotroph, Thiobacillus denitrificans, can be cultured anoxically in batch reactors using NO as a terminal electron acceptor with reduction to elemental nitrogen (N{sub 2}). We have proposed that the concentrated stream of NO{sub x}, as obtained from certain regenerable processes for the gas desulfurization and NO{sub x} removal, could be converted to N{sub 2} for disposal by contact with a culture of T. denitrificans. Four heterotrophic bacteria have also been identified that may be grown in batch cultures with succinate, yeast extract, or heat and alkali pretreated sewage sludge as carbon and energy sources and NO as a terminal electron acceptor. These are Paracoccus dentrificans, Pseudomonas denitrificans, Alcaligens denitrificans, and Thiophaera pantotropha.

  13. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  14. Monoclonal L-citrulline immunostaining reveals nitric oxide-producing vestibular neurons

    NASA Technical Reports Server (NTRS)

    Holstein, G. R.; Friedrich, V. L. Jr; Martinelli, G. P.

    2001-01-01

    Nitric oxide is an unstable free radical that serves as a novel messenger molecule in the central nervous system (CNS). In order to understand the interplay between classic and novel chemical communication systems in vestibular pathways, the staining obtained using a monoclonal antibody directed against L-citrulline was compared with the labeling observed using more traditional markers for the presence of nitric oxide. Brainstem tissue from adult rats was processed for immunocytochemistry employing a monoclonal antibody directed against L-citrulline, a polyclonal antiserum against neuronal nitric oxide synthase, and/or NADPH-diaphorase histochemistry. Our findings demonstrate that L-citrulline can be fixed in situ by vascular perfusion, and can be visualized in fixed CNS tissue sections by immunocytochemistry. Further, the same vestibular regions and cell types are labeled by NADPH-diaphorase histochemistry, by the neuronal nitric oxide synthase antiserum, and by our anti-L-citrulline antibody. Clusters of L-citrulline-immunoreactive neurons are present in subregions of the vestibular nuclei, including the caudal portion of the inferior vestibular nucleus, the magnocellular portion of the medial vestibular nucleus, and the large cells in the ventral tier of the lateral vestibular nucleus. NADPH-diaphorase histochemical staining of these neurons clearly demonstrated their multipolar, fusiform and globular somata and long varicose dendritic processes. These results provide support for the suggestion that nitric oxide serves key roles in both vestibulo-autonomic and vestibulo-spinal pathways.

  15. Nitric oxide synthase and nitric oxide alterations in chronically stressed rats: a model for nitric oxide in major depressive disorder.

    PubMed

    Gao, Shang-Feng; Lu, Yun-Rong; Shi, Li-Gen; Wu, Xue-Yan; Sun, Bo; Fu, Xin-Yan; Luo, Jian-Hong; Bao, Ai-Min

    2014-09-01

    Nitric oxide (NO) and NO synthase-1 (NOS1) are involved in the stress response and in depression. We compared NOS-NO alterations in rats exposed to chronic unpredictable stress (CUS) with alterations in major depressive disorder (MDD) in humans. In the hypothalamus of male CUS rats we determined NOS activity, and in the paraventricular nucleus (PVN) we determined NOS1-immunoreactive (ir) cell densities and co-localization of NOS1 with stress-related neuropeptides corticotropin-releasing hormone (CRH), vasopressin (AVP) or oxytocin (OXT). We measured plasma NO levels and cortisol in male medicine-naïve MDD patients and plasma NO and corticosterone (CORT) in CUS rats. In the CUS rat total NOS activity in the hypothalamus (P=0.018) and NOS1-ir cell density in the PVN were both significantly decreased (P=0.018), while NOS1 staining was mainly expressed in OXT-ir neurons in this nucleus. Interestingly, plasma NO levels were significantly increased both in male CUS rats (P=0.001) and in male MDD patients (P<0.001). Plasma CORT levels were increased in male CUS rats (P=0.001), while male MDD patients did not show a significant change in cortisol levels. In conclusion, the changes in plasma and hypothalamic NOS-NO of CUS rats and MDD were similar. The male CUS rat model may thus help us with our investigation of the mechanism underlying NOS-NO alterations in depression.

  16. Sargaquinoic acid isolated from Sargassum siliquastrum inhibits lipopolysaccharide-induced nitric oxide production in macrophages via modulation of nuclear factor-κB and c-Jun N-terminal kinase pathways.

    PubMed

    Kang, Gyeoung-Jin; Han, Sang-Chul; Yoon, Weon-Jong; Koh, Young-Sang; Hyun, Jin-Won; Kang, Hee-Kyoung; Youl Cho, Jae; Yoo, Eun-Sook

    2013-02-01

    Nitric oxide (NO) is a crucial molecule in inflammatory diseases and is synthesized from L-arginine by a specific enzyme, NO synthase (NOS). The expression of inducible NOS (iNOS) is activated in macrophages by various stimuli, such as lipopolysaccharide (LPS), a wall component of gram-negative bacteria. LPS binds to toll-like receptor 4 (TLR4) on the macrophage surface and activates several downstream signaling pathways, including mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB pathways. This study investigated whether sargaquinoic acid isolated from Sargassum siliquastrum might have anti-inflammatory activity and interfere with NO production in macrophages by disrupting LPS-induced signaling. This study was conducted in vitro using RAW264.7 murine macrophages. LPS-stimulated cells were treated with sargaquinoic acid, and the effects on NO production, iNOS expression, and involvement of the NF-κB signaling pathway were investigated by Griess assay, western blotting, and confocal microscopy. The results demonstrated that sargaquinoic acid inhibited the production of NO and the expression of the iNOS protein in LPS-stimulated RAW264.7 macrophages. Moreover, sargaquinoic acid inhibited the degradation of inhibitory-κB protein (IκB)-α and the nuclear translocation of NF-κB, a key transcription factor for the regulation of iNOS expression. Also, sargaquinoic acid influenced the phosphorylation of JNK1/2 MAPK, except ERK1/2 and p38 MAPKs, stimulated by LPS. These results suggest that sargaquinoic acid specifically prevents NO production in macrophages via the blockade of NF-κB activation and may thus have therapeutic applications in various inflammatory diseases.

  17. Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Kang, Chang-Hee; Dilshara, Matharage Gayani; Lee, Hak-Ju; Choi, Yung Hyun; Choi, Il-Whan; Kim, Gi-Young

    2014-12-01

    Microglia are important macrophages to defend against pathogens in the central nervous system (CNS); however, persistent or acute inflammation of microglia lead to CNS disorders via neuronal cell death. Therefore, we theorized that a good strategy for the treatment of CNS disorders would be to target inflammatory mediators from microglia in disease. Consequently, we investigated whether isobutyrylshikonin (IBS) attenuates the production of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Treatment with IBS inhibited the secretion of NO and prostaglandin E2 (as well as the expression of their key regulatory genes), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Isobutyrylshikonin also suppressed LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB), by inhibiting the nuclear translocation of p50 and p65 in addition to blocking the phosphorylation and degradation of IκBα. Pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, showed the down-regulation of LPS-induced iNOS and COX-2 messenger RNA by suppressing NF-κB activity. This indirectly suggests that IBS-mediated NF-κB inhibition is the main signaling pathway involved in the inhibition of iNOS and COX-2 expression. In addition, IBS attenuated LPS-induced phosphorylation of PI3K and Akt, which are upstream molecules of NF-κB, in LPS-stimulated BV2 microglial cells. The functional aspects of the PI3K/Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor that attenuated LPS-induced iNOS and COX-2 expression by suppressing NF-κB activity. These data suggest that an IBS-mediated anti-inflammatory effect may be involved in suppressing the PI3K/Akt-mediated NF-κB signaling pathway.

  18. Role of the nitric oxide synthase pathway in inhibition of growth of interferon-sensitive and interferon-resistant Rickettsia prowazekii strains in L929 cells treated with tumor necrosis factor alpha and gamma interferon.

    PubMed Central

    Turco, J; Winkler, H H

    1993-01-01

    The ability of tumor necrosis factor alpha (TNF-alpha) alone and in combination with gamma interferon (IFN-gamma) to inhibit the growth of interferon-sensitive and -resistant Rickettsia prowazekii strains in mouse L929 cells was examined, and the possible role of the nitric oxide synthase pathway in the suppression of rickettsial growth induced by TNF-alpha, IFN-gamma, or both cytokines was evaluated. TNF-alpha inhibited the growth of strains Madrid E (IFN-gamma sensitive and alpha/beta interferon [IFN-alpha/beta] sensitive) and Breinl (IFN-gamma sensitive and IFN-alpha/beta resistant), but not that of strain 83-2P (IFN-gamma resistant and IFN-alpha/beta resistant), in L929 cells. Inhibition of the growth of the Madrid E strain in L929 cells treated with TNF-alpha and IFN-gamma in combination was greater than that observed with either TNF-alpha or IFN-gamma alone. Similarly, inhibition of the growth of the Breinl strain in L929 cells treated with both cytokines was greater than that observed with TNF-alpha alone; however, it did not differ significantly from the inhibition observed with IFN-gamma alone. Although strain 83-2P was resistant to TNF-alpha or IFN-gamma alone, its growth was inhibited in L929 cells treated with TNF-alpha and IFN-gamma in combination. Nitrite production was measured in mock-infected and infected L929 cell cultures, and the nitric oxide synthase inhibitors NG-methyl-L-arginine (NGMA) and aminoguanidine were used to evaluate the role of the nitric oxide synthase pathway in cytokine-induced inhibition of rickettsial growth. Nitrite production was induced in mock-infected or R. prowazekii-infected L929 cell cultures treated with IFN-gamma plus TNF-alpha, but not in mock-infected cultures that were untreated or treated with IFN-gamma or TNF-alpha alone. Nitrite production was also not induced in untreated, R. prowazekii-infected cultures; however, in some instances, it was induced in infected cultures treated with IFN-gamma or TNF-alpha alone

  19. The Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-02

    Hydrazine nitrate-nitric acid solutions are used in the ion exchange process for separating Pu-238 and Np-237 and have been found to dissolve plutonium metal in a manner advantageous to SRP metal recovery operations. Laboratory tests on the stability of hydrazine in nitric acid solutions were performed to obtain accurate data, and the results of these tests are reported here. These tests provide sufficient information to specify temperature control for hydrazine-nitric acid solutions in plant processes.

  20. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells.

    PubMed

    de Pinto, Maria Concetta; Tommasi, Franca; De Gara, Laura

    2002-10-01

    Nitric oxide (NO) has been postulated to be required, together with reactive oxygen species (ROS), for the activation of the hypersensitive reaction, a defense response induced in the noncompatible plant-pathogen interaction. However, its involvement in activating programmed cell death (PCD) in plant cells has been questioned. In this paper, the involvement of the cellular antioxidant metabolism in the signal transduction triggered by these bioactive molecules has been investigated. NO and ROS levels were singularly or simultaneously increased in tobacco (Nicotiana tabacum cv Bright-Yellow 2) cells by the addition to the culture medium of NO and/or ROS generators. The individual increase in NO or ROS had different effects on the studied parameters than the simultaneous increase in the two reactive species. NO generation did not cause an increase in phenylalanine ammonia-lyase (PAL) activity or induction of cellular death. It only induced minor changes in ascorbate (ASC) and glutathione (GSH) metabolisms. An increase in ROS induced oxidative stress in the cells, causing an oxidation of the ASC and GSH redox pairs; however, it had no effect on PAL activity and did not induce cell death when it was generated at low concentrations. In contrast, the simultaneous increase of NO and ROS activated a process of death with the typical cytological and biochemical features of hypersensitive PCD and a remarkable rise in PAL activity. Under the simultaneous generation of NO and ROS, the cellular antioxidant capabilities were also suppressed. The involvement of ASC and GSH as part of the transduction pathway leading to PCD is discussed.

  1. Arginase II reduces arginine availability and nitric oxide production during endotoxemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginase is the main pathway for arginine (Arg) disposal and it has been reported that it regulates intracellular Arg availability for nitric oxide (NO) synthesis during endotoxemia. To test the hypothesis that arginase II not only regulates intracellular, but also whole body Arg availability, a mul...

  2. Calculated Effects of Nitric Oxide Flow Contamination on Scramjet Performance

    NASA Technical Reports Server (NTRS)

    Fischer, Karen E.; Rock, Kenneth E.

    1995-01-01

    The level of nitric oxide contamination in the test gas of the NASA Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. The study was conducted for standard facility conditions corresponding to Mach 6, 7, and 8 flight simulations. The analytically determined levels of nitric oxide produced in the facility are compared with experimentally measured levels. Results of the analysis indicate that nitric oxide levels range from one to three mole percent, which corroborates the measured levels. A three-stream combustor code with finite rate chemistry was used to investigate how nitric oxide affects scramjet performance in terms of combustor pressure rise, heat release, and thrust performance. Results indicate minimal effects on engine performance for the test conditions of this investigation.

  3. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  4. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  5. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  6. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  7. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  8. Transcriptomic Response to Nitric Oxide Treatment in Larix olgensis Henry

    PubMed Central

    Hu, Xiaoqing; Yang, Jingli; Li, Chenghao

    2015-01-01

    Larix olgensis Henry is an important coniferous species found in plantation forests in northeastern China, but it is vulnerable to pathogens. Nitric oxide (NO) is an important molecule involved in plant resistance to pathogens. To study the regulatory role of NO at the transcriptional level, we characterized the transcriptomic response of L. olgensis seedlings to sodium nitroprusside (SNP, NO donor) using Illumina sequencing and de novo transcriptome assembly. A significant number of putative metabolic pathways and functions associated with the unique sequences were identified. Genes related to plant pathogen infection (FLS2, WRKY33, MAPKKK, and PR1) were upregulated with SNP treatment. This report describes the potential contribution of NO to disease resistance in L. olgensis as induced by biotic stress. Our results provide a substantial contribution to the genomic and transcriptomic resources for L. olgensis, as well as expanding our understanding of the involvement of NO in defense responses at the transcriptional level. PMID:26633380

  9. Nitric oxide signaling in aluminum stress in plants.

    PubMed

    He, Huyi; Zhan, Jie; He, Longfei; Gu, Minghua

    2012-07-01

    Nitric oxide (NO) is a ubiquitous signal molecule involved in multiple plant responses to environmental stress. In the recent years, the regulating role of NO on heavy metal toxicity in plants is realized increasingly, but knowledge of NO in alleviating aluminum (Al) toxicity is quite limited. In this article, NO homeostasis between its biosynthesis and elimination in plants is presented. Some genes involved in NO/Al network and their expressions are also introduced. Furthermore, the role of NO in Al toxicity and the functions in Al tolerance are discussed. It is proposed that Al toxicity may disrupt NO homeostasis, leading to endogenous NO concentration being lower than required for root elongation in plants. There are many evidences that pointed out that the exogenous NO treatments improve Al tolerance in plants through activating antioxidative capacity to eliminate reactive oxygen species. Most of the work with respect to NO regulating pathways and functions still has to be done in the future.

  10. Role of nitric oxide in genotoxicity: implication for carcinogenesis.

    PubMed

    Felley-Bosco, E

    1998-03-01

    Reactive oxygen species can initiate carcinogenesis by virtue of their capacity to react with DNA and cause mutations. Recently, it has been suggested that nitric oxide (NO) and its derivatives produced in inflamed tissues could contribute to the carcinogenesis process. Genotoxicity of NO follows its reaction with oxygen and superoxide. It can be due either to direct DNA damage or indirect DNA damage. Direct damage includes DNA base deamination, peroxynitrite-induced adducts formation and single strand breaks in the DNA. Indirect damage is due to the interaction of NO reactive species with other molecules such as amines, thiols and lipids. The efficiency of one pathway or another might depend on the cellular antioxidant status or the presence of free metals.

  11. Nitric oxide counters ethylene effects on ripening fruits

    PubMed Central

    Manjunatha, Girigowda; Gupta, Kapuganti J.; Lokesh, Veeresh; Mur, Luis AJ; Neelwarne, Bhagyalakshmi

    2012-01-01

    Ethylene plays a key role in promoting fruit ripening, so altering its biosynthesis/signaling could be an important means to delay this process. Nitric oxide (NO)-generated signals are now being shown to regulate ethylene pathways. NO signals have been shown to transcriptionally repress the expression of genes involved in ethylene biosynthesis enzymes and post-translationally modify methionine adenosyl transferase (MAT) activity through S-nitrosylation to reduce the availably of methyl groups required to produce ethylene. Additionally, NO cross-talks with plant hormones and other signal molecules and act to orchestrate the suppression of ethylene effects by modulating enzymes/proteins that are generally triggered by ethylene signaling at post-climacteric stage. Thus, medication of endogenous NO production is suggested as a strategy to postpone the climacteric stage of many tropical fruits. PMID:22499176

  12. Measurements of nitric oxide after a nuclear burst

    NASA Technical Reports Server (NTRS)

    Mcghan, M.; Shaw, A.; Megill, L. R.; Sedlacek, W.; Guthals, P. R.; Fowler, M. M.

    1981-01-01

    Measurements of ozone and nitric oxide in a nuclear cloud 7 days after the explosion are reported. No measurable increase above ambient density of either ozone or nitric oxide was found. Results from a chemistry model of the cloud do not agree with the measurement unless 'nonstandard' assumptions are made with regard to the operating chemical processes. A number of possible explanations of the results are discussed.

  13. Nitric Oxide Inhibits Coxiella burnetii Replication and Parasitophorous Vacuole Maturation

    PubMed Central

    Howe, Dale; Barrows, Lorraine F.; Lindstrom, Nicole M.; Heinzen, Robert A.

    2002-01-01

    Nitric oxide is a recognized cytotoxic effector against facultative and obligate intracellular bacteria. This study examined the effect of nitric oxide produced by inducible nitric oxide synthase (iNOS) up-regulated in response to cytokine stimulation, or by a synthetic nitric oxide donor, on replication of obligately intracellular Coxiella burnetii in murine L-929 cells. Immunoblotting and nitrite assays revealed that C. burnetii infection of L-929 cells augments expression of iNOS up-regulated in response to gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Infection in the absence of cytokine stimulation did not result in demonstrable up-regulation of iNOS expression or in increased nitrite production. Nitrite production by cytokine-treated cells was significantly inhibited by the iNOS inhibitor S-methylisothiourea (SMT). Treatment of infected cells with IFN-γ and TNF-α or the synthetic nitric oxide donor 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (DETA/NONOate) had a bacteriostatic effect on C. burnetii replication. Inhibition of replication was reversed upon addition of SMT to the culture medium of cytokine-treated cells. Microscopic analysis of infected cells revealed that nitric oxide (either cytokine induced or donor derived) inhibited formation of the mature (large) parasitophorous vacuole that is characteristic of C. burnetii infection of host cells. Instead, exposure of infected cells to nitric oxide resulted in the formation of multiple small, acidic vacuoles usually containing one C. burnetii cell. Removal of nitrosative stress resulted in the coalescence of small vacuoles to form a large vacuole harboring multiple C. burnetii cells. These experiments demonstrate that nitric oxide reversibly inhibits replication of C. burnetii and formation of the parasitophorous vacuole. PMID:12183564

  14. Detection of nitric oxide by electron paramagnetic resonance spectroscopy.

    PubMed

    Hogg, Neil

    2010-07-15

    Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges of detecting this species by EPR are somewhat different from those of transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems.

  15. Nitric Oxide and Major Depressive Disorder: Pathophysiology and Treatment Implications.

    PubMed

    Kudlow, P; Cha, D S; Carvalho, A F; McIntyre, R S

    2016-01-01

    Major depressive disorder (MDD) is a multi-factorial and heterogeneous disease. Robust evidence suggests that inflammation is involved in the pathogenesis of MDD for a subpopulation of individuals. However, it remains unclear what traits and/or states precede the onset of inflammation in this subpopulation of individuals with MDD. Several recent studies have implicated nitric oxide (NO) as a critical regulator of neuroinflammation, thus suggesting a possible role in the pathophysiology of MDD. The aim of this review is to evaluate the evidentiary base supporting the hypothesis that the increased hazard for developing MDD in certain subpopulations may be mediated, in part, by inflammogenic trait and/or state variations in NO signaling pathways. We conducted a non-systematic literature search for English language studies via PubMed and Google Scholar, from 1985 to October 2014. Replicated evidence suggests that NO has contrasting effects in the central nervous system (CNS). Low concentrations of NO are neuroprotective and mediate physiological signaling whereas higher concentrations mediate neuroinflammatory actions and are neurotoxic. Certain polymorphisms in the neuronal nitric oxide synthase gene (NOS1) are associated MDD. Furthermore, state variations (e.g. decreased levels of essential co-factor, 5,6,7,8-tetrahydrobiopterin [BH4], enhanced microglial cell activity) in the NO signaling pathway are associated with an increased risk of developing MDD. Increased concentrations of NO enhance the production of reactive nitrogen species (RNS) and reactive oxygen species (ROS), which are associated with an increase in pro-inflammatory cytokines. Taken together, evidences suggest that abnormalities in NO signaling may constitute a trait-marker related to MDD pathophysiology, which could be explored for novel therapeutic targets.

  16. Nitric oxide and teratogenesis: an update.

    PubMed

    Tiboni, Gian Mario; Ponzano, Adalisa

    2014-01-01

    Nitric oxide (NO), generated by NO synthase (NOS) enzymes, is an important bioactive molecule involved in the regulation of several biological phenomena that are crucial for organogenesis, including gene expression, cell growth, matrix remolding, proliferation, differentiation and apoptosis. The expression of NOS isoforms in embryonic tissues is temporally and spatially regulated, and disruption of endogenous NO can lead to developmental defects. Maternal treatment with pan NOS inhibitors during early organogenesis caused severe malformations of the axial skeleton. In utero exposure during the fetal period induced limb reduction defects of vascular origin. Knock-out mice have been used to define the role of the various NOS isoforms on the origin of the abnormal development. Cardiovascular malformations, limb reduction defects, reduced growth and reduced survival have been observed in knock-out mice with targeted disruption of endothelial NOS (eNOS). Limited morphological changes were observed in mice lacking inducible NOS (iNOS) or neuronal NOS n(NOS). Results obtained with in vitro studies suggest that optimal levels of NO are required for neural tube closure. Disregulation of NO production was also recently proposed as a contributing mechanism in the origin of malformations associated with exposure to known environmental teratogens, such as valproic acid, thalidomide, copper deficiency, and diabetes.

  17. Hemoglobin: A Nitric-Oxide Dioxygenase

    PubMed Central

    Gardner, Paul R.

    2012-01-01

    Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry. PMID:24278729

  18. Modulation of nitric oxide bioavailability by erythrocytes

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Tse; Han, Tae H.; Hyduke, Daniel R.; Vaughn, Mark W.; van Herle, Helga; Hein, Travis W.; Zhang, Cuihua; Kuo, Lih; Liao, James C.

    2001-09-01

    Nitric oxide (NO) activates soluble guanylyl cyclase in smooth muscle cells to induce vasodilation in the vasculature. However, as hemoglobin (Hb) is an effective scavenger of NO and is present in high concentrations inside the red blood cell (RBC), the bioavailability of NO would be too low to elicit soluble guanylyl cyclase activation in the presence of blood. Therefore, NO bioactivity must be preserved. Here we present evidence suggesting that the RBC participates in the preservation of NO bioactivity by reducing NO influx. The NO uptake by RBCs was increased and decreased by altering the degree of band 3 binding to the cytoskeleton. Methemoglobin and denatured hemoglobin binding to the RBC membrane or cytoskeleton also were shown to contribute to reducing the NO uptake rate of the RBC. These alterations in NO uptake by the RBC, hence the NO bioavailability, were determined to correlate with the vasodilation of isolated blood vessels. Our observations suggest that RBC membrane and cytoskeleton associated NO-inert proteins provide a barrier for NO diffusion and thus account for the reduction in the NO uptake rate of RBCs.

  19. Inducible nitric oxide synthase in the myocard.

    PubMed

    Buchwalow, I B; Schulze, W; Karczewski, P; Kostic, M M; Wallukat, G; Morwinski, R; Krause, E G; Müller, J; Paul, M; Slezak, J; Luft, F C; Haller, H

    2001-01-01

    Recognition of significance of nitric oxide synthases (NOS) in cardiovascular regulations has led to intensive research and development of therapies focused on NOS as potential therapeutic targets. However, the NOS isoform profile of cardiac tissue and subcellular localization of NOS isoforms remain a matter of debate. The aim of this study was to investigate the localization of an inducible NOS isoform (NOS2) in cardiomyocytes. Employing a novel immunocytochemical technique of a catalyzed reporter deposition system with tyramide and electron microscopical immunocytochemistry complemented with Western blotting and RT-PCR, we detected NOS2 both in rat neonatal and adult cultured cardiomyocytes and in the normal myocard of adult rats as well as in the human myocard of patients with dilative cardiomyopathy. NOS2 was targeted predominantly to a particulate component of the cardiomyocyte--along contractile fibers, in the plasma membrane including T-tubules, as well as in the nuclear envelope, mitochondria and Golgi complex. Our results point to an involvement of NOS2 in maintaining cardiac homeostasis and contradict to the notion that NOS2 is expressed in cardiac tissue only in response to various physiological and pathogenic factors. NOS2 targeting to mitochondria and contractile fibers suggests a relationship of NO with contractile function and energy production in the cardiac muscle.

  20. Nasal nitric oxide in unilateral sinus disease

    PubMed Central

    Fu, Chia-Hsiang; Tseng, Hsiao-Jung; Huang, Chi-Che; Chang, Po-Hung; Chen, Yi-Wei; Lee, Ta-Jen

    2017-01-01

    Unilateral sinus disease (USD) can sometimes be difficult to accurately diagnose before surgery. The application of nasal nitric oxide (nNO) for USD diagnosis and its surgical outcome in USD has not been reported in the literature. We prospectively enrolled sixty-six USD patients who underwent endoscopic sinus surgery for fungal rhinosinusitis (n = 19), chronic rhinosinusitis (CRS) without nasal polyps (n = 13), CRS with nasal polyps (n = 12) and sinonasal mass lesions (n = 22). nNO levels were measured preoperatively and at three and six months postoperatively. Correlations between nNO levels and potential clinical parameters, type of disease, disease severity, and disease-related quality of life (QOL) were assessed. Unlike bilateral CRS, in USD, nNO levels did not correlate with disease severity or postoperative QOL improvements. Except for fungus group, there were no differences in nNO levels between lesion and non-lesion sides in all the other groups. nNO levels on both sides were significantly elevated six months postoperatively in all groups. Fungal rhinosinusitis patients had the lowest preoperative nNO levels, and a cutoff of 239.3 ppb had the best sensitivity (79.0%) and specificity (87.2%) for preoperative diagnosis. While preoperative nNO levels cannot serve as an alternative marker for disease severity of USD, they were lower in fungal rhinosinusitis patients than in other USD patients and may be useful for more accurate diagnosis prior to surgery. PMID:28199369

  1. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  2. Nitric oxide donors for cardiovascular implant applications.

    PubMed

    Naghavi, Noora; de Mel, Achala; Alavijeh, Omid Sadeghi; Cousins, Brian G; Seifalian, Alexander M

    2013-01-14

    In an era of increased cardiovascular disease burden in the ageing population, there is great demand for devices that come in to contact with the blood such as heart valves, stents, and bypass grafts that offer life saving treatments. Nitric oxide (NO) elution from healthy endothelial tissue that lines the vessels maintains haemostasis throughout the vasculature. Surgical devices that release NO are desirable treatment options and N-diazeniumdiolates and S-nitrosothiols are recognized as preferred donor molecules. There is a keen interest to investigate newer methods by which NO donors can be retained within biomaterials so that their release and kinetic profiles can be optimized. A range of polymeric scaffolds incorporating microparticles and nanomaterials are presenting solutions to current challenges, and have been investigated in a range of clinical applications. This review outlines the application of NO donors for cardiovascular therapy using biomaterials that release NO locally to prevent thrombosis and intimal hyperplasia (IH) and enhance endothelialization in the fabrication of next generation cardiovascular device technology.

  3. Structures of human constitutive nitric oxide synthases

    PubMed Central

    Li, Huiying; Jamal, Joumana; Plaza, Carla; Pineda, Stephanie Hai; Chreifi, Georges; Jing, Qing; Cinelli, Maris A.; Silverman, Richard B.; Poulos, Thomas L.

    2014-01-01

    Mammals produce three isoforms of nitric oxide synthase (NOS): neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The overproduction of NO by nNOS is associated with a number of neurodegenerative disorders; therefore, a desirable therapeutic goal is the design of drugs that target nNOS but not the other isoforms. Crystallography, coupled with computational approaches and medicinal chemistry, has played a critical role in developing highly selective nNOS inhibitors that exhibit exceptional neuroprotective properties. For historic reasons, crystallography has focused on rat nNOS and bovine eNOS because these were available in high quality; thus, their structures have been used in structure–activity–relationship studies. Although these constitutive NOSs share more than 90% sequence identity across mammalian species for each NOS isoform, inhibitor-binding studies revealed that subtle differences near the heme active site in the same NOS isoform across species still impact enzyme–inhibitor interactions. Therefore, structures of the human constitutive NOSs are indispensible. Here, the first structure of human neuronal NOS at 2.03 Å resolution is reported and a different crystal form of human endothelial NOS is reported at 1.73 Å resolution. PMID:25286850

  4. Nitric oxide transport in an axisymmetric stenosis.

    PubMed

    Liu, Xiao; Fan, Yubo; Xu, X Yun; Deng, Xiaoyan

    2012-10-07

    To test the hypothesis that disturbed flow can impede the transport of nitric oxide (NO) in the artery and hence induce atherogenesis, we used a lumen-wall model of an idealized arterial stenosis with NO produced at the blood vessel-wall interface to study the transport of NO in the stenosis. Blood flows in the lumen and through the arterial wall were simulated by Navier-Stokes equations and Darcy's Law, respectively. Meanwhile, the transport of NO in the lumen and the transport of NO within the arterial wall were modelled by advection-diffusion reaction equations. Coupling of fluid dynamics at the endothelium was achieved by the Kedem-Katchalsky equations. The results showed that both the hydraulic conductivity of the endothelium and the non-Newtonian viscous behaviour of blood had little effect on the distribution of NO. However, the blood flow rate, stenosis severity, red blood cells (RBCs), RBC-free layer and NO production rate at the blood vessel-wall interface could significantly affect the transport of NO. The theoretical study revealed that the transport of NO was significantly hindered in the disturbed flow region distal to the stenosis. The reduced NO concentration in the disturbed flow region might play an important role in the localized genesis and development of atherosclerosis.

  5. Hemoglobin-mediated nitric oxide signaling

    PubMed Central

    Helms, Christine; Kim-Shapiro, Daniel B.

    2013-01-01

    The rate that hemoglobin reacts with nitric oxide (NO) is limited by how fast NO can diffuse into the heme pocket. The reaction is as fast as any ligand/protein reaction can be and the result, when hemoglobin is in its oxygenated form, is formation of nitrate in what is known as the dioxygenation reaction. As nitrate, at the concentrations made through the dioxygenation reaction, is biologically inert, the only role hemoglobin was once thought to play in NO signaling was to inhibit it. However, there are now several mechanisms that have been discovered by which hemoglobin may preserve, control, and even create NO activity. These mechanisms involve compartmentalization of reacting species and conversion of NO from or into other species such as nitrosothiols or nitrite which could transport NO activity. Despite the tremendous amount of work devoted to this field, major questions concerning precise mechanisms of NO activity preservation as well as if and how Hb creates NO activity remain unanswered. PMID:23624304

  6. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  7. Nitric oxide in adaptation to altitude.

    PubMed

    Beall, Cynthia M; Laskowski, Daniel; Erzurum, Serpil C

    2012-04-01

    This review summarizes published information on the levels of nitric oxide gas (NO) in the lungs and NO-derived liquid-phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500 m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24-48 h with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma, and/or red blood cells fell within 2h, but then returned toward baseline or slightly higher by 48 h and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than those of their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma, and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell-associated nitrogen oxides were more than 200 times higher. Other highland populations had generally higher levels although not to the degree shown by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction, although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors' and the Tibetans' high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions, and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function under hypoxic

  8. Nitric oxide in adaptation to altitude

    PubMed Central

    Laskowski, Daniel; Erzurum, Serpil C.

    2012-01-01

    This review summarizes published information on levels of nitric oxide gas (NO) in the lungs and NO-derived liquid phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24–48 hours with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma and/or red blood cells fell within three hours, but then returned toward baseline or slightly higher by 48 hours, and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell associated nitrogen oxides were more than two hundred times higher. Other highland populations had generally higher levels although not to the degree showed by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors’ and the Tibetans’ high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function

  9. Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kappaB pathway in retinal pigment epithelial cells.

    PubMed

    Fang, I-Mo; Yang, Chang-Hao; Yang, Chung-May; Chen, Muh-Shy

    2007-11-01

    High linoleic acid (LA) intake is known to correlate with age-related macular degeneration (AMD), but the molecular mechanisms remain unclear. This study was conducted to investigate the effects of LA on expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) and their associated signaling pathways in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with different concentrations of LA. Expressions of iNOS and COX-2 were examined using semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Concentrations of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the culture medium were determined by enzyme-link immunosorbent assay (ELISA). Activation of p42/44, p38, JNK mitogen-activated protein kinase (MAPK) and nuclear factors (NF)-kappaB were evaluated by Western blot analysis and electrophoretic mobility shift assay (EMSA). We found that LA induced expression of iNOS and COX-2 in RPE cells at the mRNA and protein levels in a time-and dose-dependent manner. Upregulation of iNOS and COX-2 resulted in increased production of NO and PGE(2). Moreover, LA caused degradation of IkappaB and increased NF-kappaB DNA binding activity. Effects of LA-induced iNOS and COX-2 expression were inhibited by a NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). LA activated p42/44, but not p38 or JNK MAPK. Inhibition of p42/44 activity by PD98059 significantly reduced LA-induced activation of NF-kappaB. Linoleic acid-induced expression of iNOS and COX-2 as well as PGE(2) and NO release in RPE cells were sequentially mediated through activation of p42/p44, MAPK, then NF-kappaB. These results may provide new insights into both mechanisms of LA action on RPE cells and pathogenesis of age-related macular degeneration.

  10. BIOCHEMISTRY OF MOBILE ZINC AND NITRIC OXIDE REVEALED BY FLUORESCENT SENSORS

    PubMed Central

    Pluth, Michael D.; Tomat, Elisa; Lippard, Stephen J.

    2010-01-01

    Biologically mobile zinc and nitric oxide (NO) are two prominent examples of inorganic compounds involved in numerous signaling pathways in living systems. In the past decade, a synergy of regulation, signaling, and translocation of these two species has emerged in several areas of human physiology, providing additional incentive for developing adequate detection systems for Zn(II) ions and NO in biological specimens. Fluorescent probes for both of these bioinorganic analytes provide excellent tools for their detection, with high spatial and temporal resolution. We review the most widely used fluorescent sensors for biological zinc and nitric oxide, together with promising new developments and unmet needs of contemporary Zn(II) and NO biological imaging. The interplay between zinc and nitric oxide in the nervous, cardiovascular, and immune systems is highlighted to illustrate the contributions of selective fluorescent probes to the study of these two important bioinorganic analytes. PMID:21675918

  11. The emerging roles of nitric oxide (NO) in plant mitochondria.

    PubMed

    Gupta, Kapuganti J; Igamberdiev, Abir U; Manjunatha, Girigowda; Segu, Shruthi; Moran, Jose F; Neelawarne, Bagyalakshmi; Bauwe, Hermann; Kaiser, Werner M

    2011-11-01

    In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O(2), is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.

  12. Nitric oxide production and nitric oxide synthase immunoreactivity in Naegleria fowleri.

    PubMed

    Rojas-Hernández, Saúl; Rodríguez-Monroy, Marco A; Moreno-Fierros, Leticia; Jarillo-Luna, Adriana; Carrasco-Yepez, Marisela; Miliar-García, Angel; Campos-Rodríguez, Rafael

    2007-07-01

    Free-living ameba Naegleria fowleri produces an acute and fatal infectious disease called primary amebic meningoencephalitis (PAM), whose pathophysiological mechanism is largely unknown. The aim of this study was to investigate the role of nitric oxide (NO) in PAM. Although NO has a cytotoxic effect on various parasites, it is produced by others as part of the pathology, as is the case with Entamoeba histolytica. To test for the production of NO, we analyzed whether antibodies against mammalian NO synthase isoforms (neuronal, inducible, and endothelial) presented immunoreactivity to N. fowleri proteins. We found that the trophozoites produced NO in vitro. The Western blot results, which showed N. fowleri trophozoites, contained proteins that share epitopes with the three described mammalian NOS, but have relative molecular weights different than those described in the literature, suggesting that N. fowleri may contain undescribed NOS isoforms. Moreover, we found that trophozoites reacted to the NOS2 antibody, in amebic cultures as well as in the mouse brain infected with N. fowleri, suggesting that nitric oxide may participate in the pathogenesis of PAM. Further research aimed at determining whether N. fowleri contains active novel NOS isoforms could lead to the design of new therapies against this parasite.

  13. Direct chemiluminescence detection of nitric oxide in aqueous solutions using the natural nitric oxide target soluble guanylyl cyclase.

    PubMed

    Woldman, Yakov Y; Sun, Jian; Zweier, Jay L; Khramtsov, Valery V

    2009-11-15

    Nitric oxide (NO) is a free radical involved in many physiological processes including regulation of blood pressure, immune response, and neurotransmission. However, the measurement of extremely low, in some cases subnanomolar, physiological concentrations of nitric oxide presents an analytical challenge. The purpose of this methods article is to introduce a new highly sensitive chemiluminescence approach to direct NO detection in aqueous solutions using a natural nitric oxide target, soluble guanylyl cyclase (sGC), which catalyzes the conversion of guanosine triphosphate to guanosine 3',5'-cyclic monophosphate and inorganic pyrophosphate. The suggested enzymatic assay uses the fact that the rate of the reaction increases by about 200 times when NO binds with sGC and, in so doing, provides a sensor for nitric oxide. Luminescence detection of the above reaction is accomplished by converting inorganic pyrophosphate into ATP with the help of ATP sulfurylase followed by light emission from the ATP-dependent luciferin-luciferase reaction. Detailed protocols for NO quantification in aqueous samples are provided. The examples of applications include measurement of NO generated by a nitric oxide donor (PAPA-NONOate), nitric oxide synthase, and NO gas dissolved in buffer. The method allows for the measurement of NO concentrations in the nanomolar range and NO generation rates as low as 100 pM/min.

  14. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  15. Nitric oxide scavenging by red cell microparticles.

    PubMed

    Liu, Chen; Zhao, Weixin; Christ, George J; Gladwin, Mark T; Kim-Shapiro, Daniel B

    2013-12-01

    Red cell microparticles form during the storage of red blood cells and in diseases associated with red cell breakdown and asplenia, including hemolytic anemias such as sickle cell disease. These small phospholipid vesicles that are derived from red blood cells have been implicated in the pathogenesis of transfusion of aged stored blood and hemolytic diseases, via activation of the hemostatic system and effects on nitric oxide (NO) bioavailability. Red cell microparticles react with the important signaling molecule NO almost as fast as cell-free hemoglobin, about 1000 times faster than red-cell-encapsulated hemoglobin. The degree to which this fast reaction with NO by red cell microparticles influences NO bioavailability depends on several factors that are explored here. In the context of stored blood preserved in ADSOL, we find that both cell-free hemoglobin and red cell microparticles increase as a function of duration of storage, and the proportion of extra erythrocytic hemoglobin in the red cell microparticle fraction is about 20% throughout storage. Normalized by hemoglobin concentration, the NO-scavenging ability of cell-free hemoglobin is slightly higher than that of red cell microparticles as determined by a chemiluminescence NO-scavenging assay. Computational simulations show that the degree to which red cell microparticles scavenge NO will depend substantially on whether they enter the cell-free zone next to the endothelial cells. Single-microvessel myography experiments performed under laminar flow conditions demonstrate that microparticles significantly enter the cell-free zone and inhibit acetylcholine, endothelial-dependent, and NO-dependent vasodilation. Taken together, these data suggest that as little as 5 μM hemoglobin in red cell microparticles, an amount formed after the infusion of one unit of aged stored packed red blood cells, has the potential to reduce NO bioavailability and impair endothelial-dependent vasodilation.

  16. Nitric oxide/cyclic guanosine monophosphate signaling in the central complex of the grasshopper brain inhibits singing behavior.

    PubMed

    Wenzel, Beate; Kunst, Michael; Günther, Cornelia; Ganter, Geoffrey K; Lakes-Harlan, Reinhard; Elsner, Norbert; Heinrich, Ralf

    2005-07-25

    Grasshopper sound production, in the context of mate finding, courtship, and rivalry, is controlled by the central body complex in the protocerebrum. Stimulation of muscarinic acetylcholine receptors in the central complex has been demonstrated to stimulate specific singing in various grasshoppers including the species Chorthippus biguttulus. Sound production elicited by stimulation of muscarinic acetylcholine receptors in the central complex is inhibited by co-applications of various drugs activating the nitric oxide/cyclic guanosine monophosphate (cGMP) signaling pathway. The nitric oxide-donor sodium nitroprusside caused a reversible suppression of muscarine-stimulated sound production that could be blocked by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxaline-1-one (ODQ), which prevents the formation of cGMP by specifically inhibiting soluble guanylyl cyclase. Furthermore, injections of both the membrane-permeable cGMP analog 8-Br-cGMP and the specific inhibitor of the cGMP-degrading phosphodiesterase Zaprinast reversibly inhibited singing. To identify putative sources of nitric oxide, brains of Ch. biguttulus were subjected to both nitric oxide synthase immunocytochemistry and NADPH-diaphorase staining. Among other areas known to express nitric oxide synthase, both procedures consistently labeled peripheral layers in the upper division of the central body complex, suggesting that neurons supplying this neuropil contain nitric oxide synthase and may generate nitric oxide upon activation. Exposure of dissected brains to nitric oxide and 3-(5'hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) induced cGMP-associated immunoreactivity in both the upper and lower division. Therefore, both the morphological and pharmacological data presented in this study strongly suggest a contribution of the nitric oxide/cGMP signaling pathway to the central control of grasshopper sound production.

  17. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    PubMed

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  18. Nitric oxide-mediated modulation of the murine locomotor network.

    PubMed

    Foster, Joshua D; Dunford, Catherine; Sillar, Keith T; Miles, Gareth B

    2014-02-01

    Spinal motor control networks are regulated by neuromodulatory systems to allow adaptability of movements. The present study aimed to elucidate the role of nitric oxide (NO) in the modulation of mammalian spinal locomotor networks. This was investigated with isolated spinal cord preparations from neonatal mice in which rhythmic locomotor-related activity was induced pharmacologically. Bath application of the NO donor diethylamine NONOate (DEA/NO) decreased the frequency and modulated the amplitude of locomotor-related activity recorded from ventral roots. Removal of endogenous NO with coapplication of a NO scavenger (PTIO) and a nitric oxide synthase (NOS) blocker [nitro-l-arginine methyl ester (l-NAME)] increased the frequency and decreased the amplitude of locomotor-related activity. This demonstrates that endogenously derived NO can modulate both the timing and intensity of locomotor-related activity. The effects of DEA/NO were mimicked by the cGMP analog 8-bromo-cGMP. In addition, the soluble guanylyl cyclase (sGC) inhibitor ODQ blocked the effects of DEA/NO on burst amplitude and frequency, although the frequency effect was only blocked at low concentrations of DEA/NO. This suggests that NO-mediated modulation involves cGMP-dependent pathways. Sources of NO were studied within the lumbar spinal cord during postnatal development (postnatal days 1-12) with NADPH-diaphorase staining. NOS-positive cells in the ventral horn exhibited a rostrocaudal gradient, with more cells in rostral segments. The number of NOS-positive cells was also found to increase during postnatal development. In summary, we have shown that NO, derived from sources within the mammalian spinal cord, modulates the output of spinal motor networks and is therefore likely to contribute to the fine-tuning of locomotor behavior.

  19. Nitric oxide functions as a signal in plant disease resistance.

    PubMed

    Delledonne, M; Xia, Y; Dixon, R A; Lamb, C

    1998-08-06

    Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response. However, this burst is not enough to support a strong disease-resistance response. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.

  20. Multifaceted role of nitric oxide in an in vitro mouse neuronal injury model: transcriptomic profiling defines the temporal recruitment of death signalling cascades

    PubMed Central

    Peng, Zhao Feng; Chen, Minghui Jessica; Manikandan, Jayapal; Melendez, Alirio J; Shui, Guanghou; Russo-Marie, Françoise; Whiteman, Matthew; Beart, Philip M; Moore, Philip K; Cheung, Nam Sang

    2012-01-01

    Abstract Nitric oxide is implicated in the pathogenesis of various neuropathologies characterized by oxidative stress. Although nitric oxide has been reported to be involved in the exacerbation of oxidative stress observed in several neuropathologies, existent data fail to provide a holistic description of how nitrergic pathobiology elicits neuronal injury. Here we provide a comprehensive description of mechanisms contributing to nitric oxide induced neuronal injury by global transcriptomic profiling. Microarray analyses were undertaken on RNA from murine primary cortical neurons treated with the nitric oxide generator DETA-NONOate (NOC-18, 0.5 mM) for 8–24 hrs. Biological pathway analysis focused upon 3672 gene probes which demonstrated at least a ±1.5-fold expression in a minimum of one out of three time-points and passed statistical analysis (one-way anova, P < 0.05). Numerous enriched processes potentially determining nitric oxide mediated neuronal injury were identified from the transcriptomic profile: cell death, developmental growth and survival, cell cycle, calcium ion homeostasis, endoplasmic reticulum stress, oxidative stress, mitochondrial homeostasis, ubiquitin-mediated proteolysis, and GSH and nitric oxide metabolism. Our detailed time-course study of nitric oxide induced neuronal injury allowed us to provide the first time a holistic description of the temporal sequence of cellular events contributing to nitrergic injury. These data form a foundation for the development of screening platforms and define targets for intervention in nitric oxide neuropathologies where nitric oxide mediated injury is causative. PMID:21352476

  1. Regulation of cytochrome C peroxidase activity by nitric oxide and laser irradiation.

    PubMed

    Osipov, A N; Stepanov, G O; Vladimirov, Yu A; Kozlov, A V; Kagan, V E

    2006-10-01

    Apoptosis can be induced by activation of so-called "death receptors" (extrinsic pathway) or multiple apoptotic factors (intrinsic pathway), which leads to release of cytochrome c from mitochondria. This event is considered to be a point of no return in apoptosis. One of the most important events in the development of apoptosis is the enhancement of cytochrome c peroxidase activity upon its interaction with cardiolipin, which modifies the active center of cytochrome c. In the present work, we have investigated the effects of nitric oxide on the cytochrome c peroxidase activity when cytochrome c is bound to cardiolipin or sodium dodecyl sulfate. We have observed that cytochrome c peroxidase activity, distinctly increased due to the presence of anionic lipids, is completely suppressed by nitric oxide. At the same time, nitrosyl complexes of cytochrome c, produced in the interaction with nitric oxide, demonstrated sensitivity to laser irradiation (441 nm) and were photolyzed during irradiation. This decomposition led to partial restoration of cytochrome c peroxidase activity. Finally, we conclude that nitric oxide and laser irradiation may serve as effective instruments for regulating the peroxidase activity of cytochrome c, and, probably, apoptosis.

  2. Nitric-oxide synthase is a mechanical signal transducer that modulates talin and vinculin expression

    NASA Technical Reports Server (NTRS)

    Tidball, J. G.; Spencer, M. J.; Wehling, M.; Lavergne, E.

    1999-01-01

    Mechanical stimuli can cause changes in muscle mass and structure which indicate that mechanisms exist for transducing mechanical stimuli into signals that influence gene expression. Myotendinous junctions show adaptations to modified muscle loading which suggest that these are transcriptionally distinct domains in muscle fibers that may experience local regulation of expression of structural proteins that are concentrated at these sites. Vinculin and talin are cytoskeletal proteins that are highly enriched at myotendinous junctions that we hypothesize to be subject to local transcriptional regulation. Our findings show that mechanical stimulation of muscle cells in vivo and in vitro causes an increase in the expression of vinculin and talin that is mediated by nitric oxide. Furthermore, nitric oxide-stimulated increases in vinculin and talin expression occur through a protein kinase G-dependent pathway and therefore differ from other mechanisms through which nitric oxide has been shown previously to modulate transcription. Analysis of vinculin mRNA distribution in mechanically stimulated muscle fibers shows that the mRNA is highly concentrated at myotendinous junctions, which supports the hypothesis that myotendinous junctions are distinct domains in which the expression of cytoskeletal proteins is modulated by mechanical stimuli through a nitric oxide and protein kinase G-dependent pathway.

  3. Nitric oxide co-ordinates the activities of the capacitative and non-capacitative Ca2+-entry pathways regulated by vasopressin.

    PubMed Central

    Moneer, Zahid; Dyer, Jeanette L; Taylor, Colin W

    2003-01-01

    In A7r5 vascular smooth muscle cells vasopressin, via arachidonic acid, regulates two Ca(2+)-entry pathways. Capacitative Ca(2+) entry (CCE), activated by empty Ca(2+) stores, is inhibited by arachidonic acid, and non-capacitative Ca(2+) entry (NCCE) is stimulated by it. This reciprocal regulation ensures that all Ca(2+) entry is via NCCE in the presence of vasopressin, while CCE mediates a transient Ca(2+) entry only after removal of vasopressin. We demonstrate that type III NO synthase (NOS III) is expressed in A7r5 cells and that NO inhibits CCE. Inhibition of CCE by vasopressin requires NOS III and the requirement lies downstream of arachidonic acid. Activation of soluble guanylate cyclase by NO and subsequent activation of protein kinase G are required for inhibition of CCE. Stimulation of NCCE by vasopressin also requires NOS III, but the stimulation is neither mimicked by cGMP nor blocked by inhibitors of soluble guanylate cyclase or protein kinase G. We conclude that arachidonic acid formed in response to vasopressin stimulates NOS III. NO then directly stimulates Ca(2+) entry through NCCE and, via protein kinase G, it inhibits CCE. The additional amplification provided by the involvement of guanylate cyclase and protein kinase G ensures that CCE will always be inhibited when vasopressin activates NCCE. PMID:12459038

  4. Effect of cyclic AMP and prostaglandin E2 on the induction of nitric oxide- and prostanoid-forming pathways in cultured rat mesangial cells.

    PubMed Central

    Nüsing, R M; Klein, T; Pfeilschifter, J; Ullrich, V

    1996-01-01

    Cyclic AMP (cAMP) represents an important cellular signalling molecule. We analysed the effect of dibutyryl cAMP (db-cAMP), a cell-permeable and stable derivative of cAMP, on the regulation and expression of cyclo-oxygenase 2, inducible NO synthase and argininosuccinate synthetase. We observed different transcriptional regulation of these enzymes depending on the db-cAMP concentration used. Low concentrations of db-cAMP in the range 10-50 microM elevated levels of cyclo-oxygenase 2 mRNA, protein and activity, but not the respective mRNA and protein concentrations of the inducible NO synthase or argininosuccinate synthetase. At higher concentrations a massive induction of the latter two enzymes was also apparent. Expression of prostacyclin synthase and argininosuccinate lyase, secondary enzymes of NO- and prostanoid-forming pathways, was not stimulated by db-cAMP. Prostaglandin E2, known to be an intracellular physiological trigger of cAMP formation, stimulated only cyclooxygenase 2 expression and activity at a concentration of 10 microM, and not inducible NO synthase. The induction of the mRNA for the transcription factors JunB and p65, a component of the NF kappa B complex, by prostaglandin treatment of the cells might be a possible mechanistic explanation for this observation. PMID:8573101

  5. Light activated nitric oxide releasing materials

    NASA Astrophysics Data System (ADS)

    Muizzi Casanas, Dayana Andreina

    The ability to control the location and dosage of biologically active molecules inside the human body can be critical to maximizing effective treatment of cardiovascular diseases like angina. The current standard of treatment relies on the metabolism of organonitrate drugs into nitric oxide (NO), which are not specific, and also show problems with densitization with long-term use. There is a need then to create a treatment method that gives targeted release of NO. Metal-nitrosyl (M-NO) complexes can be used for delivery of NO since the release of NO can be controlled with light. However, the NO-releasing drug must be activated with red light to ensure maximum penetration of light through tissue. However, the release of NO from M-NO complexes with red-light activation is a significant challenge since the energy required to break the metal-NO bond is usually larger than the energy provided by red light. The goal of this project was to create red- sensitive, NO-releasing materials based on Ru-salen-nitrosyl compounds. Our approach was to first modify Ru salen complexes to sensitize the photochemistry for release of NO after red light irradiation. Next, we pursued polymerization of the Ru-salen complexes. We report the synthesis and quantitative photochemical characterization of a series of ruthenium salen nitrosyl complexes. These complexes were modified by incorporating electron donating groups in the salen ligand structure at key locations to increase electron density on the Ru. Complexes with either an --OH or --OCH3 substituent showed an improvement in the quantum yield of release of NO upon blue light irradiation compared to the unmodified salen. These --OH and --OCH3 complexes were also sensitized for NO release after red light activation, however the red-sensitive complexes were unstable and showed ligand substitution on the order of minutes. The substituted complexes remained sensitive for NO release, but only after blue light irradiation. The Ru

  6. Nitric Oxide in Astrocyte-Neuron Signaling

    SciTech Connect

    Li, Nianzhen

    2002-01-01

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca2+ elevations in response to neurotransmitters. A Ca2+ elevation can propagate to adjacent astrocytes as a Ca2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca2+ signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca2+-dependent NO production. To test the roles of NO in astrocytic Ca2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca2+, possibly through store-operated Ca2+ channels. The NO-induced Ca2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca2+ change. The consequence of this NO-induced Ca2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca2+ using fluorescent Ca2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca2+ elevation in the stimulated astrocyte and a subsequent Ca2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by

  7. Neurovascular protection by ischaemic tolerance: role of nitric oxide

    PubMed Central

    Iadecola, Costantino; Kahles, Timo; Gallo, Eduardo F; Anrather, Josef

    2011-01-01

    Abstract Nitric oxide (NO) has emerged as a key mediator in the mechanisms of ischaemic tolerance induced by a wide variety of preconditioning stimuli. NO is involved in the brain protection that develops either early (minutes–hours) or late (days–weeks) after the preconditioning stimulus. However, the sources of NO and the mechanisms underlying the protective effects differ substantially. While in early preconditioning NO is produced by the endothelial and neuronal isoform of NO synthase, in delayed preconditioning NO is synthesized by the inducible or ‘immunological’ isoform of NO synthase. Furthermore, in early preconditioning, NO acts through the canonical cGMP pathway, possibly through protein kinase G and opening of mitochondrial KATP channels. In late preconditioning, the protection is mediated by peroxynitrite formed by the reaction of NO with superoxide derived from the enzyme NADPH oxidase. The mechanisms by which peroxynitrite exerts its protective effect may include improvement of post-ischaemic cerebrovascular function, leading to enhancement of blood flow to the ischaemic territory, and expression of prosurvival genes resulting in cytoprotection. The evidence suggests that NO can engage highly effective and multifunctional prosurvival pathways, which could be exploited for the prevention and treatment of cerebrovascular pathologies. PMID:21746790

  8. Nitric Oxide-Induced Conformational Changes in Soluble Guanylate Cyclase

    PubMed Central

    Underbakke, Eric S.; Iavarone, Anthony T.; Chalmers, Michael J.; Pascal, Bruce D.; Novick, Scott; Griffin, Patrick R.; Marletta, Michael A.

    2014-01-01

    SUMMARY Soluble guanylate cyclase (sGC) is the primary mediator of nitric oxide (NO) signaling. NO binds the sGC heme cofactor stimulating synthesis of the second messenger cyclic-GMP (cGMP). As the central hub of NO/cGMP signaling pathways, sGC is important in diverse physiological processes such as vasodilation and neurotransmission. Nevertheless, the mechanisms underlying NO-induced cyclase activation in sGC remain unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was employed to probe the NO-induced conformational changes of sGC. HDX-MS revealed NO-induced effects in several discrete regions. NO binding to the heme-NO/O2-binding (H-NOX) domain perturbs a signaling surface implicated in Per/Arnt/Sim (PAS) domain interactions. Furthermore, NO elicits striking conformational changes in the junction between the PAS and helical domains that propagate as perturbations throughout the adjoining helices. Ultimately, NO-binding stimulates the catalytic domain by contracting the active site pocket. Together, these conformational changes delineate an allosteric pathway linking NO-binding to activation of the catalytic domain. PMID:24560804

  9. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    PubMed Central

    Cui, Ling; Murray, Erica P.

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  10. Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase.

    PubMed Central

    Wedel, B; Humbert, P; Harteneck, C; Foerster, J; Malkewitz, J; Böhme, E; Schultz, G; Koesling, D

    1994-01-01

    Soluble guanylyl cyclase [GTP pyrophosphate-lyase (cyclizing); EC 4.6.1.2] is a hemoprotein that exists as a heterodimer; the heme moiety has been proposed to bind nitric oxide, resulting in a dramatic activation of the enzyme. Mutation of six conserved His residues reduced but did not abolish nitric oxide stimulation whereas a change of His-105 to Phe in the beta 1 subunit yielded a heterodimer that retained basal cyclase activity but failed to respond to nitric oxide. Heme was not detected as a component of the mutant heterodimer and protophorphyrin IX failed to stimulate enzyme activity. The activity of the His mutant was almost identical to that of the wild-type enzyme in the presence of KCN, suggesting that disruption of heme binding is the principal effect of the mutation. Thus, the mutation provides a means to inhibit the nitric oxide-sensitive guanylyl cyclase signaling pathway. Images PMID:7908439

  11. Synthesis, nitric oxide release, and anti-leukemic activity of glutathione-activated nitric oxide prodrugs: Structural analogues of PABA/NO, an anti-cancer lead compound.

    PubMed

    Chakrapani, Harinath; Wilde, Thomas C; Citro, Michael L; Goodblatt, Michael M; Keefer, Larry K; Saavedra, Joseph E

    2008-03-01

    Diazeniumdiolate anions and their prodrug forms are reliable sources of nitric oxide (NO) that have generated interest as promising therapeutic agents. A number of structural analogues of O(2)-(2,4-dinitro-5-(4-(N-methylamino)benzoyloxy)phenyl) 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO), an anti-cancer lead compound that is designed to release NO upon activation by glutathione, were prepared. The nitric oxide release patterns of these O(2)-(2,4-dinitrophenyl) diazeniumdiolates in the presence of glutathione were tested and it was found that in the absence of competing pathways, these compounds release nearly quantitative amounts of NO. The ability of PABA/NO and its structural analogues to inhibit human leukemia cell proliferation was determined and it was found that compounds releasing elevated amounts of NO displayed superior cytotoxic effects.

  12. Structural and biological studies on bacterial nitric oxide synthase inhibitors

    PubMed Central

    Holden, Jeffrey K.; Li, Huiying; Jing, Qing; Kang, Soosung; Richo, Jerry; Silverman, Richard B.; Poulos, Thomas L.

    2013-01-01

    Nitric oxide (NO) produced by bacterial NOS functions as a cytoprotective agent against oxidative stress in Staphylococcus aureus, Bacillus anthracis, and Bacillus subtilis. The screening of several NOS-selective inhibitors uncovered two inhibitors with potential antimicrobial properties. These two compounds impede the growth of B. subtilis under oxidative stress, and crystal structures show that each compound exhibits a unique binding mode. Both compounds serve as excellent leads for the future development of antimicrobials against bacterial NOS-containing bacteria. PMID:24145412

  13. Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3',5'-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study.

    PubMed

    Lee, Nikki P Y; Cheng, C Yan

    2003-07-01

    Nitric oxide (NO) synthase (NOS) catalyzes the oxidation of L-arginine to NO. NO plays a crucial role in regulating various physiological functions, possibly including junction dynamics via its effects on cAMP and cGMP, which are known modulators of tight junction (TJ) dynamics. Although inducible NOS (iNOS) and endothelial NOS (eNOS) are found in the testis and have been implicated in the regulation of spermatogenesis, their role(s) in TJ dynamics, if any, is not known. When Sertoli cells were cultured at 0.5-1.2 x 10(6) cells/cm(2) on Matrigel-coated dishes or bicameral units, functional TJ barrier was formed when the barrier function was assessed by quantifying transepithelial electrical resistance across the cell epithelium. The assembly of the TJ barrier was shown to associate with a significant plummeting in the levels of iNOS and eNOS, seemingly suggesting that their presence by producing NO might perturb TJ assembly. To further confirm the role of NOS on the TJ barrier function in vitro, zinc (II) protoporphyrin-IX (ZnPP), an NOS inhibitor and a soluble guanylate cyclase inhibitor, was added to the Sertoli cell cultures during TJ assembly. Indeed, ZnPP was found to facilitate the assembly and maintenance of the Sertoli cell TJ barrier, possibly by inducing the production of TJ-associated proteins, such as occludin. Subsequent studies by immunoprecipitation and immunoblotting have shown that iNOS and eNOS are structurally linked to TJ-integral membrane proteins, such as occludin, and cytoskeletal proteins, such as actin, vimentin, and alpha-tubulin. When the cAMP and cGMP levels in these ZnPP-treated samples were quantified, a ZnPP-induced reduction of intracellular cGMP, but not cAMP, was indeed detected. Furthermore, 8-bromo-cGMP, a cell membrane-permeable analog of cGMP, could also perturb the TJ barrier dose dependently similar to the effects of 8-bromo-cAMP. KT-5823, a specific inhibitor of protein kinase G, was shown to facilitate the Sertoli cell TJ

  14. Nitric oxide emission from pulverized coal blend flames

    SciTech Connect

    Kopparthi, V.; Gollahalli, S.R.

    1995-09-01

    An experimental study of the nitric oxide emission from pulverized blended coal flames as a function of blending mass ratio is presented. Coals of three ranks (anthracite, bituminous, and lignite), and of the same rank (bituminous), but of different origin (Oklahoma and Wyoming mines), were used as fuels. Also, their blends (anthracite-bituminous, anthracite-lignite, lignite-bituminous, and Oklahoma-Wyoming coals) at mass ratios of 20:80, 40:60, 60:40, and 80:20 were studied. Correlations of nitric oxide emission index (mass/unit energy release) with blend mass ratio are presented.

  15. Use of inhaled nitric oxide in preterm infants.

    PubMed

    Kumar, Praveen

    2014-01-01

    Nitric oxide, an important signaling molecule with multiple regulatory effects throughout the body, is an important tool for the treatment of full-term and late-preterm infants with persistent pulmonary hypertension of the newborn and hypoxemic respiratory failure. Several randomized controlled trials have evaluated its role in the management of preterm infants ≤ 34 weeks' gestational age with varying results. The purpose of this clinical report is to summarize the existing evidence for the use of inhaled nitric oxide in preterm infants and provide guidance regarding its use in this population.

  16. [Nitric oxide and anti-protozoan chemotherapy].

    PubMed

    Gradoni, L; Ascenzi, P

    2004-06-01

    Constitutive nitric oxide (NO) is generated by constitutively expressed types of NO-synthase enzymes (NOS-I and -III), being involved in physiological processes such as nervous transmission and vasodilatation. Inducible NO, synthesized by the NO-synthase isoform NOS-II, is an anti-pathogen and tumoricidal agent. However, inducible NO production requires a tight control because of cytotoxic and immune-modulation activity. NO produced by human and canine macrophages has long been demonstrated to be involved in the intracellular killing of Leishmania. Mechanisms of parasite survival and persistence in the host have been throughly investigated, and include suppression of NOS-II and the parasite entry into NOS-II negative cells. Both intracellular and extracellular morphotypes of Trypanosoma cruzi are killed by NO in vitro and in vivo, although a role of NO in the pathogenesis of heart disease has been reported. Killing of extracellular protozoa such as Trichomonas vaginalis and Naegleria fowleri by activated macrophages is also mediated by NO. The main control of Plasmodium spp infection in human and murine hepatocytes, and in human monocytes is achieved by NO-mediated mechanisms. Protection from severe malaria in African children has been found associated with polymorphisms of the NOS-II promoter; however, a pathogenic role of endogenous NO has been documented in cerebral malaria. Although several macromolecules are putative NO targets, recent experimental work has shown that NO-releasing compounds inhibit cysteine proteases (CP) of P. falciparum, T. cruzi and L. infantum in a dose-dependent manner. CPs are present in a wide range of parasitic protozoa and appear to be relevant in several aspects of the life cycle and of the parasite-host relationships. Comparative analysis of 3-D amino acid sequence models of CPs from a broad range of living organisms, from viruses to mammals, suggests that the Sy atom of the Cys catalytic residue undergoes NO-dependent chemical

  17. Nitric oxide in plants: an assessment of the current state of knowledge

    PubMed Central

    Mur, Luis A. J.; Mandon, Julien; Persijn, Stefan; Cristescu, Simona M.; Moshkov, Igor E.; Novikova, Galina V.; Hall, Michael A.; Harren, Frans J. M.; Hebelstrup, Kim H.; Gupta, Kapuganti J.

    2012-01-01

    Background and aims After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant–microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention. Scope and conclusions The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP—as in animal systems—require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant

  18. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling

    PubMed Central

    Sasaki, Yasuyuki; Oguchi, Haruka; Kobayashi, Takuya; Kusama, Shinichiro; Sugiura, Ryo; Moriya, Kenta; Hirata, Takuya; Yukioka, Yuriya; Takaya, Naoki; Yajima, Shunsuke; Ito, Shinsaku; Okada, Kiyoshi; Ohsawa, Kanju; Ikeda, Haruo; Takano, Hideaki; Ueda, Kenji; Shoun, Hirofumi

    2016-01-01

    Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule. PMID:26912114

  19. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    PubMed

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  20. Nitric oxide inhibition sustains vasopressin-induced vasoconstriction.

    PubMed Central

    Dworkin, M. J.; Carnochan, P.; Allen-Mersh, T. G.

    1995-01-01

    Hepatic parenchymal vasoconstriction increases cytotoxic drug uptake into hepatic metastases by increasing the tumour to liver blood flow ratio. Prolonged infusion of the vasoconstrictor vasopressin does not result in sustained vasoconstriction, and this may limit the benefit of vasopressin in infusional chemotherapy. We have assessed whether loss of vasopressin-induced vasoconstriction is mediated by nitric oxide. Hepatic and tumour blood flow were continuously monitored, in an animal hepatic tumour model, by laser Doppler flowmetry. The response to regionally infused vasopressin and the nitric oxide inhibitor N-nitro-L-arginine methyl ester (L-NAME) were assessed over a 30 min infusion period. The vasopressin-induced vasoconstrictor effect diminished after 15 min despite continued infusion. Vasoconstriction was significantly prolonged when L-NAME was infused in addition to vasopressin. The increase in tumour to normal blood flow ratio was greater over the infusion period when L-NAME was co-administered with vasopressin. Our results suggest that the loss of vasopressin-induced vasoconstriction seen in liver parenchyma after regional infusion is prevented by the nitric oxide synthase inhibitor L-name and may be mediated by nitric oxide. PMID:7734317

  1. Substituted 2-aminopyridines as inhibitors of nitric oxide synthases.

    PubMed

    Hagmann, W K; Caldwell, C G; Chen, P; Durette, P L; Esser, C K; Lanza, T J; Kopka, I E; Guthikonda, R; Shah, S K; MacCoss, M; Chabin, R M; Fletcher, D; Grant, S K; Green, B G; Humes, J L; Kelly, T M; Luell, S; Meurer, R; Moore, V; Pacholok, S G; Pavia, T; Williams, H R; Wong, K K

    2000-09-04

    A series of substituted 2-aminopyridines was prepared and evaluated as inhibitors of human nitric oxide synthases (NOS). 4,6-Disubstitution enhanced both potency and specificity for the inducible NOS with the most potent compound having an IC50 of 28 nM.

  2. Estimates of nitric oxide production for lifting spacecraft reentry

    NASA Technical Reports Server (NTRS)

    Park, C.

    1971-01-01

    The amount of nitric oxide which may be produced by heating of air during an atmospheric reentry of a lifting spacecraft is estimated by three different methods. Two assume nitrogen fixation by the process of sudden freezing, and the third is a computer calculation using chemical rate equations.

  3. Nitric oxide as a potent fumigant for postharvest pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a great demand for safe and effective alternative fumigants to replace methyl bromide and other toxic fumigants for pest control. Nitric oxide, a common signal molecule in biological systems, was found to be effective and safe to control insects under ultralow oxygen conditions. Fumigatio...

  4. Nitric oxide emissions from a central California dairy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrations of nitric oxide (NO) were monitored downwind from a central California dairy facility during 2011 and 2012. NO concentrations at the dairy were significantly higher than the background levels during August 2011, but were indistinguishable from upwind concentrations during January, Apr...

  5. Nitric oxide determination by amperometric carbon fiber microelectrode.

    PubMed

    Katrlík, Jaroslav; Zálesáková, Pavlína

    2002-05-15

    Nitric oxide (NO) amperometric microsensor was prepared by the modification of bare carbon fiber electrode by Nafion and cellulose acetate (CA). Detection limit, response time, reproducibility and influence of some possible interferences (nitrite, nitrate, arginine) were tested and evaluated. This sensor was used for in vitro determination of NO release from fresh porcine aorta induced by calcium ionophore A23187 (CI).

  6. Apple fruit responses following exposure to nitric oxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exogenous nitric oxide (.NO) applied as gas or generated from .NO releasing compounds has physiological activity in cut apple fruit tissues. Studies were conducted to characterize .NO production by whole fruit as well as to assess responses of whole fruit to exogenous .NO. .NO and ethylene product...

  7. Nitric oxide synthase deficiency and the pathophysiology of muscular dystrophy

    PubMed Central

    Tidball, James G; Wehling-Henricks, Michelle

    2014-01-01

    The secondary loss of neuronal nitric oxide synthase (nNOS) that occurs in dystrophic muscle is the basis of numerous, complex and interacting features of the dystrophic pathology that affect not only muscle itself, but also influence the interaction of muscle with other tissues. Many mechanisms through which nNOS deficiency contributes to misregulation of muscle development, blood flow, fatigue, inflammation and fibrosis in dystrophic muscle have been identified, suggesting that normalization in NO production could greatly attenuate diverse aspects of the pathology of muscular dystrophy through multiple regulatory pathways. However, the relative importance of the loss of nNOS from the sarcolemma versus the importance of loss of total nNOS from dystrophic muscle remains unknown. Although most current evidence indicates that nNOS localization at the sarcolemma is not required to achieve NO-mediated reductions of pathology in muscular dystrophy, the question remains open concerning whether membrane localization would provide a more efficient rescue from features of the dystrophic phenotype. PMID:25194047

  8. The role of nitric oxide in neurovascular coupling.

    PubMed

    Dormanns, K; Brown, R G; David, T

    2016-04-07

    Nitric oxide (NO) is a neurotransmitter known to act as a potent cerebral vasodilator. Its role in neurovascular coupling (NVC) is discussed controversially and one of the main unanswered questions is which cell type provides the governing source of NO for the regulation of vasodynamics. Mathematical modelling can be an appropriate tool to investigate the contribution of NO towards the key components of NVC and analyse underlying mechanisms. The lumped parameter model of a neurovascular unit, including neurons (NE), astrocytes (AC), smooth muscle cells (SMC) and endothelial cells (EC), was extended to model the NO signalling pathway. Results show that NO leads to a general shift of the resting regional blood flow by dilating the arteriolar radius. Furthermore, dilation during neuronal activation is enhanced. Simulations show that potassium release is responsible for the fast onset of vascular response, whereas NO-modulated mechanisms maintain dilation. Wall shear stress-activated NO release from the EC leads to a delayed return to the basal state of the arteriolar radius. The governing source of vasodilating NO that diffuses into the SMC, which determine the arteriolar radius, depends on neuronal activation. In the resting state the EC provides the major contribution towards vasorelaxation, whereas during neuronal stimulation NO produced by the NE dominates.

  9. Nitric oxide modulates the frog heart ventricle morphodynamics.

    PubMed

    Acierno, Raffaele; Gattuso, Alfonsina; Guerrieri, Antonio; Mannarino, Cinzia; Amelio, Daniela; Tota, Bruno

    2008-09-01

    The aim of this work was to investigate in the avascular heart of the frog Rana esculenta the influence of nitric oxide (NO) on ventricular systolic and diastolic functions by using a novel image analysis technique. The external volume variations of the whole ventricle were monitored during the heart cycle by video acquisition(visible light) and analysed by an appropriately developed software with a specific formula for irregular convex solids. The system, which measures the rate of volume changes and the ejection fraction, directly determined the volumetric behaviour of the working frog heart after stimulation or inhibition of NOS-NOcGMP pathway. End-diastolic volume (EDVext), end-systolic volume (ESVext), contraction and relaxation velocities (dV/dtsys and dV/dtdia, respectively), stroke volume (SV) and ejection fraction (EF), were measured before and after perfusion with NOS substrate (L-arginine), NO donor (SIN-1), cGMP analogue (8-Br-cGMP),NOS inhibitors (NG-monomethyl-L-arginine, L-NMMA; L-N(5)-(1-iminoethyl)-ornithine, L-NIO; 7-Nitroindazole,7-NI) and guanylyl cyclase inhibitor (ODQ). The results showed that NO reduces ventricular systolicfunction improving diastolic filling, while NOS inhibition increases contractility impairing ventricular filling capacity. The presence of activated eNOS (p-eNOS) was morphologically documented, further supporting that the mechanical activity of the ventricular pump in frog is influenced by a tonic release of NOS-generated NO.

  10. Nitric oxide and ABA in the control of plant function.

    PubMed

    Hancock, J T; Neill, S J; Wilson, I D

    2011-11-01

    Abscisic acid (ABA) and nitric oxide (NO) are both extremely important signalling molecules employed by plants to control many aspects of physiology. ABA has been extensively studied in the mechanisms which control stomatal movement as well as in seed dormancy and germination and plant development. The addition of either ABA or NO to plant cells is known to instigate the actions of many signal transduction components. Both may have an influence on the phosphorylation of proteins in cells mediated by effects on protein kinases and phosphatases, as well as recruiting a wide range of other signal transduction molecules to mediate the final effects. Both ABA and NO may also lead to the regulation of gene expression. However, it is becoming more apparent that NO may be acting downstream of ABA, with such action being mediated by reactive oxygen species such as hydrogen peroxide in some cases. However not all ABA responses require the action of NO. Here, examples of where ABA and NO have been put together into the same signal transduction pathways are discussed.

  11. Nitric oxide: a multitasked signaling gas in plants.

    PubMed

    Domingos, Patricia; Prado, Ana Margarida; Wong, Aloysius; Gehring, Christoph; Feijo, Jose A

    2015-04-01

    Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.

  12. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii.

    PubMed

    Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Llamas, Angel; Galvan, Aurora; Fernandez, Emilio

    2013-08-01

    Nitrate and ammonium are major inorganic nitrogen sources for plants and algae. These compounds are assimilated by means of finely regulated processes at transcriptional and post-translational levels. In Chlamydomonas, the expression of several genes involved in high-affinity ammonium (AMT1.1, AMT1.2) and nitrate transport (NRT2.1) as well as nitrate reduction (NIA1) are downregulated by ammonium through a nitric oxide (NO)-dependent mechanism. At the post-translational level, nitrate/nitrite uptake and nitrate reductase (NR) are also inhibited by ammonium, but the mechanisms implicated in this regulation are scarcely known. In this work, the effect of NO on nitrate assimilation and the high-affinity ammonium uptake was addressed. NO inhibited the high-affinity uptake of ammonium and nitrate/nitrite, as well as the NR activity, in a reversible form. In contrast, nitrite reductase and glutamine synthetase activities were not affected. The in vivo and in vitro studies suggested that NR enzyme is inhibited by NO in a mediated process that requires the cell integrity. These data highlight a role of NO in inorganic nitrogen assimilation and suggest that this signalling molecule is an important regulator for the first steps of the pathway.

  13. Nitric oxide and its role in ischaemic brain injury.

    PubMed

    Keynes, Robert G; Garthwaite, John

    2004-03-01

    The role of the neural messenger nitric oxide (NO) in cerebral ischaemia has been investigated extensively in the past decade. NO may play either a protective or destructive role in ischaemia and the literature is plagued with contradictory findings. Working with NO presents many unique difficulties and here we review the potential artifacts that may have contributed to discrepancies and cause future problems for the unwary investigator. Recent evidence challenges the idea that NO from neurones builds up to levels (micromolar) sufficient to directly elicit cell death during the post-ischaemic period. Concomitantly, the case is strengthened for a role of NO in delayed death mediated post-ischaemia by the inducible NO synthase. Mechanistically it seems unlikely that NO is released in high enough quantities to inhibit respiration in vivo; the formation of reactive nitrogen species, such as peroxynitrite, represents the more likely pathway to cell death. The protective and restorative properties of NO have become of increasing interest. NO from endothelial cells may, via stimulating cGMP production, protect the ischaemic brain by acutely augmenting blood flow, and by helping to form new blood vessels in the longer term (angiogenesis). Elevated cGMP production may also stop cells dying by inhibiting apoptosis and help repair damage by stimulating neurogenesis. In addition NO may act as a direct antioxidant and participate in the triggering of protective gene expression programmes that underlie cerebral ischaemic preconditioning. Better understanding of the molecular mechanisms by which NO is protective may ultimately identify new potential therapeutic targets.

  14. Nitric oxide synthase is induced in sporulation of Physarum polycephalum

    PubMed Central

    Golderer, Georg; Werner, Ernst R.; Leitner, Stefan; Gröbner, Peter; Werner-Felmayer, Gabriele

    2001-01-01

    The myxomycete Physarum polycephalum expresses a calcium-independent nitric oxide (NO) synthase (NOS) resembling the inducible NOS isoenzyme in mammals. We have now cloned and sequenced this, the first nonanimal NOS to be identified, showing that it shares < 39% amino acid identity with known NOSs but contains conserved binding motifs for all NOS cofactors. It lacks the sequence insert responsible for calcium dependence in the calcium-dependent NOS isoenzymes. NOS expression was strongly up-regulated in Physarum macroplasmodia during the 5-day starvation period needed to induce sporulation competence. Induction of both NOS and sporulation competence were inhibited by glucose, a growth signal and known repressor of sporulation, and by l-N6–(1-iminoethyl)-lysine (NIL), an inhibitor of inducible NOS. Sporulation, which is triggered after the starvation period by light exposure, was also prevented by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-sensitive guanylate cyclase. In addition, also expression of lig1, a sporulation-specific gene, was strongly attenuated by NIL or ODQ. 8-Bromo-cGMP, added 2 h before the light exposure, restored the capacity of NIL-treated macroplasmodia to express lig1 and to sporulate. This indicates that the second messenger used for NO signaling in sporulation of Physarum is cGMP and links this signaling pathway to expression of lig1. PMID:11358872

  15. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    PubMed Central

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  16. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    NASA Astrophysics Data System (ADS)

    Na, Young Ho; Kumar, Naresh; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup

    2015-03-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development.

  17. Insulin Induces Relaxation and Decreases Hydrogen Peroxide-Induced Vasoconstriction in Human Placental Vascular Bed in a Mechanism Mediated by Calcium-Activated Potassium Channels and L-Arginine/Nitric Oxide Pathways

    PubMed Central

    Cabrera, Lissette; Saavedra, Andrea; Rojas, Susana; Cid, Marcela; Valenzuela, Cristina; Gallegos, David; Careaga, Pamela; Basualto, Emerita; Haensgen, Astrid; Peña, Eduardo; Rivas, Coralia; Vera, Juan Carlos; Gallardo, Victoria; Zúñiga, Leandro; Escudero, Carlos; Sobrevia, Luis; Wareing, Mark; González, Marcelo

    2016-01-01

    HIGHLIGHTS Short-term incubation with insulin increases the L-arginine transport in HUVECs.Short-term incubation with insulin increases the NO synthesis in HUVECs.Insulin induces relaxation in human placental vascular bed.Insulin attenuates the constriction induced by hydrogen peroxide in human placenta.The relaxation induced by insulin is dependent on BKCa channels activity in human placenta. Insulin induces relaxation in umbilical veins, increasing the expression of human amino acid transporter 1 (hCAT-1) and nitric oxide synthesis (NO) in human umbilical vein endothelial cells (HUVECs). Short-term effects of insulin on vasculature have been reported in healthy subjects and cell cultures; however, its mechanisms remain unknown. The aim of this study was to characterize the effect of acute incubation with insulin on the regulation of vascular tone of placental vasculature. HUVECs and chorionic vein rings were isolated from normal pregnancies. The effect of insulin on NO synthesis, L-arginine transport, and hCAT-1 abundance was measured in HUVECs. Isometric tension induced by U46619 (thromboxane A2 analog) or hydrogen peroxide (H2O2) were measured in vessels previously incubated 30 min with insulin and/or the following pharmacological inhibitors: tetraethylammonium (KCa channels), iberiotoxin (BKCa channels), genistein (tyrosine kinases), and wortmannin (phosphatidylinositol 3-kinase). Insulin increases L-arginine transport and NO synthesis in HUVECs. In the placenta, this hormone caused relaxation of the chorionic vein, and reduced perfusion pressure in placental cotyledons. In vessels pre-incubated with insulin, the constriction evoked by H2O2 and U46619 was attenuated and the effect on H2O2-induced constriction was blocked with tetraethylammonium and iberiotoxin, but not with genistein, or wortmannin. Insulin rapidly dilates the placental vasculature through a mechanism involving activity of BKCa channels and L-arginine/NO pathway in endothelial cells. This

  18. Role of p38 in nitric oxide synthase and cyclooxygenase expression, and nitric oxide and PGE2 synthesis in human gingival fibroblasts stimulated with lipopolysaccharides.

    PubMed

    Gutiérrez-Venegas, Gloria; Maldonado-Frías, Silvia; Ontiveros-Granados, Ana; Kawasaki-Cárdenas, Perla

    2005-05-20

    Periodontal disease, a gingival inflammatory disease caused by gram-negative bacteria, is the main cause of tooth loss. Lipopolysaccharides (LPS) present in bacterial cell walls induce human gingival fibroblasts' production of pro-inflammatory cytotoxins such as IL-1beta and TNFalpha. The goal of this study was to determine p38 role in the expression of inducible nitric oxide synthase enzyme (i-NOS) and cyclooxygenase (COX-2), as well as in PGE(2) and nitric oxide synthesis in human gingival fibroblasts challenged with LPS. We found that lipopolysaccharides induced a rapid and significant increase in p38 phosphorylation. After interruption of p38 transduction pathway by pre-treatment with inhibitor SB203580, no response to stimulation with LPS was observed; i-NOS expression and nitric oxide synthesis was completely blocked. However, p38 inhibition only partially blocked COX-2 expression and PGE2 synthesis. We conclude that p38 is critically involved in i-NOS induction, and that it participates in COX-2 expression and in PGE2 synthesis.

  19. Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide.

    PubMed

    Zhou, Shaofeng; Huang, Shaobin; He, Jiaxin; Li, Han; Zhang, Yongqing

    2016-10-01

    This study reports catalytic electro-chemical reduction of nitric oxide (NO) enhanced by Pseudomonas aeruginosa strain CP1. The current generated in the presence of bacteria was 4.36times that in the absence of the bacteria. The strain was able to catalyze electro-chemical reduction of NO via indirect electron transfer with an electrode, revealed by a series of cyclic voltammetry experiments. Soluble electron shuttles secreted into solution by live bacteria were responsible for the catalytic effects. The enhancement of NO reduction was also confirmed by detection of nitrous oxide; the level of this intermediate was 46.4% higher in the presence of bacteria than in controls, illustrated that the electron transfer pathway did not directly reduce nitric oxide to N2. The findings of this study may offer a new model for bioelectrochemical research in the field of NO removal by biocatalysts.

  20. Inhaled nitric oxide in premature infants: effect on tracheal aspirate and plasma nitric oxide metabolites

    PubMed Central

    Posencheg, M A; Gow, A J; Truog, W E; Ballard, R A; Cnaan, A; Golombek, S G; Ballard, P L

    2010-01-01

    Objective: Inhaled nitric oxide (iNO) is a potential new therapy for prevention of bronchopulmonary dysplasia and brain injury in premature infants. This study examined dose-related effects of iNO on NO metabolites as evidence of NO delivery. Study Design: A subset of 102 premature infants in the NO CLD trial, receiving 24 days of iNO (20 p.p.m. decreasing to 2 p.p.m.) or placebo, were analyzed. Tracheal aspirate (TA) and plasma samples collected at enrollment and at intervals during study gas were analyzed for NO metabolites. Result: iNO treatment increased NO metabolites in TA at 20 and 10 p.p.m. (1.7- to 2.3-fold vs control) and in plasma at 20, 10, and 5 p.p.m. (1.6- to 2.3-fold). In post hoc analysis, treated infants with lower metabolite levels at entry had an improved clinical outcome. Conclusion: iNO causes dose-related increases in NO metabolites in the circulation as well as lung fluid, as evidenced by TA analysis, showing NO delivery to these compartments. PMID:19812581

  1. Practical nitric oxide measurement employing a nitric oxide-selective electrode

    NASA Astrophysics Data System (ADS)

    Ichimori, K.; Ishida, H.; Fukahori, M.; Nakazawa, H.; Murakami, E.

    1994-08-01

    An NO-selective electrode was developed as an easily applicable tool for a real-time nitric oxide (NO) measurement. The working electrode (0.2 mm diam) was made from Pt/Ir alloy coated with a three-layered membrane. The counterelectrode was made from a carbon fiber. When a stable NO donor, S-nitroso-N-acetyl-dl-penicillamine, was applied, the electrode current increased in a dose-dependent fashion. The current and calculated NO concentration showed a linear relationship in the range from 0.2 nM (S/N=1) to 1 μM of NO. The response of the electrode was 1.14±0.09 s. The effects of temperature, pH, and chemicals other than NO on the electrode current were also evaluated. Electrodes which were placed in the luminal side of rat aortic rings exhibited 30 pA of current due to NO generation induced by the addition of 10-6 M of acetylcholine. The current was eliminated in the presence of 50 μM NG-monomethyl-L-arginine, an inhibitor of NO synthase. Thus, this NO-selective electrode is applicable to real-time NO assay in biological systems.

  2. Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component?

    PubMed Central

    Sears, Claire E; Ashley, Euan A; Casadei, Barbara

    2004-01-01

    Nitric oxide (NO) has been shown to regulate cardiac function, both in physiological conditions and in disease states. However, several aspects of NO signalling in the myocardium remain poorly understood. It is becoming increasingly apparent that the disparate functions ascribed to NO result from its generation by different isoforms of the NO synthase (NOS) enzyme, the varying subcellular localization and regulation of NOS isoforms and their effector proteins. Some apparently contrasting findings may have arisen from the use of non-isoform-specific inhibitors of NOS, and from the assumption that NO donors may be able to mimic the actions of endogenously produced NO. In recent years an at least partial explanation for some of the disagreements, although by no means all, may be found from studies that have focused on the role of the neuronal NOS (nNOS) isoform. These data have shown a key role for nNOS in the control of basal and adrenergically stimulated cardiac contractility and in the autonomic control of heart rate. Whether or not the role of nNOS carries implications for cardiovascular disease remains an intriguing possibility requiring future study. PMID:15306414

  3. Nitric oxide and pH modulation in gynaecological cancer.

    PubMed

    Sanhueza, Carlos; Araos, Joaquín; Naranjo, Luciano; Barros, Eric; Subiabre, Mario; Toledo, Fernando; Gutiérrez, Jaime; Chiarello, Delia I; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2016-12-01

    Nitric oxide plays several roles in cellular physiology, including control of the vascular tone and defence against pathogen infection. Neuronal, inducible and endothelial nitric oxide synthase (NOS) isoforms synthesize nitric oxide. Cells generate acid and base equivalents, whose physiological intracellular concentrations are kept due to membrane transport systems, including Na(+) /H(+) exchangers and Na(+) /HCO3(-) transporters, thus maintaining a physiological pH at the intracellular (~7.0) and extracellular (~7.4) medium. In several pathologies, including cancer, cells are exposed to an extracellular acidic microenvironment, and the role for these membrane transport mechanisms in this phenomenon is likely. As altered NOS expression and activity is seen in cancer cells and because this gas promotes a glycolytic phenotype leading to extracellular acidosis in gynaecological cancer cells, a pro-inflammatory microenvironment increasing inducible NOS expression in this cell type is feasible. However, whether abnormal control of intracellular and extracellular pH by cancer cells regards with their ability to synthesize or respond to nitric oxide is unknown. We, here, discuss a potential link between pH alterations, pH controlling membrane transport systems and NOS function. We propose a potential association between inducible NOS induction and Na(+) /H(+) exchanger expression and activity in human ovary cancer. A potentiation between nitric oxide generation and the maintenance of a low extracellular pH (i.e. acidic) is proposed to establish a sequence of events in ovarian cancer cells, thus preserving a pro-proliferative acidic tumour extracellular microenvironment. We suggest that pharmacological therapeutic targeting of Na(+) /H(+) exchangers and inducible NOS may have benefits in human epithelial ovarian cancer.

  4. Process for combined control of mercury and nitric oxide.

    SciTech Connect

    Livengood, C. D.; Mendelsohn, M. H.

    1999-11-03

    Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less than $5,000/ton removed, while for Hg{sup 0} oxidation it

  5. Arginase regulates red blood cell nitric oxide synthase and export of cardioprotective nitric oxide bioactivity.

    PubMed

    Yang, Jiangning; Gonon, Adrian T; Sjöquist, Per-Ove; Lundberg, Jon O; Pernow, John

    2013-09-10

    The theory that red blood cells (RBCs) generate and release nitric oxide (NO)-like bioactivity has gained considerable interest. However, it remains unclear whether it can be produced by endothelial NO synthase (eNOS), which is present in RBCs, and whether NO can escape scavenging by hemoglobin. The aim of this study was to test the hypothesis that arginase reciprocally controls NO formation in RBCs by competition with eNOS for their common substrate arginine and that RBC-derived NO is functionally active following arginase blockade. We show that rodent and human RBCs contain functional arginase 1 and that pharmacological inhibition of arginase increases export of eNOS-derived nitrogen oxides from RBCs under basal conditions. The functional importance was tested in an ex vivo model of myocardial ischemia-reperfusion injury. Inhibitors of arginase significantly improved postischemic functional recovery in rat hearts if administered in whole blood or with RBCs in plasma. By contrast, arginase inhibition did not improve postischemic recovery when administered with buffer solution or plasma alone. The protective effect of arginase inhibition was lost in the presence of a NOS inhibitor. Moreover, hearts from eNOS(-/-) mice were protected when the arginase inhibitor was given with blood from wild-type donors. In contrast, when hearts from wild-type mice were given blood from eNOS(-/-) mice, the arginase inhibitor failed to protect against ischemia-reperfusion. These results strongly support the notion that RBCs contain functional eNOS and release NO-like bioactivity. This process is under tight control by arginase 1 and is of functional importance during ischemia-reperfusion.

  6. Nitric oxide as a mediator of inflammation?—You had better believe it

    PubMed Central

    Grisham, Matthew B.

    1995-01-01

    Nitric oxide has enigmatic qualities in inflammation. In order to appreciate the precise contributions of nitric oxide to a pathophysiological process, one must account for enzyme source, coproduction of oxidants and antioxidant defences, time, rate of nitric oxide production, cellular source, peroxynitrite formation and effects on DNA (mutagenesis/apoptosis). We contend that there is ample evidence to consider nitric oxide as a molecular aggressor in inflammation, particularly chronic inflammation. Therapeutic benefit can be achieved by inhibition of inducible nitric oxide synthase and not the donation of additional nitric oxide. Furthermore, there is growing appreciation that nitric oxide and products derived thereof, are critical components linking the increased incidence of cancer in states of chronic inflammation. PMID:18475670

  7. Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat

    NASA Astrophysics Data System (ADS)

    Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.

    1994-08-01

    At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.

  8. Human blood platelets lack nitric oxide synthase activity.

    PubMed

    Böhmer, Anke; Gambaryan, Stepan; Tsikas, Dimitrios

    2015-01-01

    Reports on expression and functionality of nitric oxide synthase (NOS) activity in human blood platelets and erythrocytes are contradictory. We used a specific gas chromatography-mass spectrometry (GC-MS) method to detect NOS activity in human platelets. The method measures simultaneously [(15)N]nitrite and [(15)N]nitrate formed from oxidized (15)N-labeled nitric oxide ((15)NO) upon its NOS-catalyzed formation from the substrate l-[guanidino-(15)N2]-arginine. Using this GC-MS assay, we did not detect functional NOS in non-stimulated platelets and in intact platelets activated by various agonists (adenosine diphosphate, collagen, thrombin, or von Willebrand factor) or lysed platelets. l-[guanidino-nitro]-Arginine-inhibitable NOS activity was measured after addition of recombinant human endothelial NOS to lysed platelets. Previous and recent studies from our group challenge expression and functionality of NOS in human platelets and erythrocytes.

  9. Nitric oxide in prepubertal rat ovary contribution of the ganglionic nitric oxide synthase system via superior ovarian nerve.

    PubMed

    Casais, Marilina; Delgado, Silvia Marcela; Vallcaneras, Sandra; Sosa, Zulema; Rastrilla, Ana María

    2007-02-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. Considering the existence of the nitric oxide/ nitric oxide synthase system in the peripheral neural system and in the ovary, the aim of this work was to analyze if the liberation of NO in the ovarian compartment of prepubertal rats is of ovarian and/or ganglionic origin. The analysis is carried out from a physiological point of view using the experimental coeliac ganglion--Superior Ovarian Nerve--ovary model with and without ganglionic cholinergic stimulus Acetylcholine (Ach) 10(-6) M. Non selective and selective inhibitors of the synthase nitric oxide enzyme were added to the ovarian and ganglionic compartment, and the liberation of nitrites (soluble metabolite of the nitric oxide) in the ovarian incubation liquid was measured. We found that the non-selective inhibitor L-nitro-arginina methyl ester (L-NAME) in the ovarian compartment decreased the liberation of nitrites, and that Aminoguanidine (AG) in two concentrations in a non-dose dependent form provoked the same effect. The addition of Ach in ganglion magnified the effect of the inhibitors of the NOS enzyme. The most relevant results after the addition of inhibitors in ganglion were obtained with AG 400 and 800 microM. The inhibition was made evident with and without the joint action of Ach in ganglion. These data suggest that the greatest production of NO in the ovarian compartment comes from the ovary, mainly the iNOS isoform, though the coeliac ganglion also contributes through the superior ovarian nerve but with less quantity.

  10. Phenolic compounds from plants as nitric oxide production inhibitors.

    PubMed

    Conforti, F; Menichini, F

    2011-01-01

    Nitric oxide (NO) is a diatomic free radical produced from L-arginine by constitutive and inducible nitric oxide synthase (cNOS and iNOS) in numerous mammalian cells and tissues. Nitric oxide (NO), superoxide (O2-) and their reaction product peroxynitrite (ONOO-) may be generated in excess during the host response against viral and antibacterial infections and contribute to some pathogenesis by promoting oxidative stress, tissue injury and, even, cancer. Oxidative damage, caused by action of free radicals, may initiate and promote the progression of a number of chronic diseases, including cancer, cardiovascular diseases, Alzheimer's disease, diabetes and inflammation. The mechanism of inflammation injury is attributed, in part, to release of reactive oxygen species from activated neutrophils and macrophages. ROS propagate inflammation by stimulating release of mediators such as NO and cytokines. The interest of the research is motivated by the current need to find new substances of natural origin which have demonstrated effectiveness in the described fields of application and low degree of toxicity for humans. Natural products provide a vast pool of NO inhibitors that can possibly be developed into clinical products. This article reviews some plenolic secondary metabolites from plants with NO inhibitory properties and their structure-activity relationship studies that can be focused for drug development programs.

  11. Hypergravity upregulates renal inducible nitric oxide synthase expression and nitric oxide production

    PubMed Central

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-01-01

    Exposure to hypergravity severely decreases renal blood flow, potentially causing renal dysfunction. Nitric oxide (NO), which is endogenously synthesized by inducible NO synthase (iNOS), plays an important role in the regulation of renal function. The purpose of this study was to examine the effect of hypergravity exposure on the production of NO in kidneys. To determine whether hypergravity induces renal hypoxia and alters renal iNOS expression and NO production, mice were exposed to short-term hypergravity at +3Gz for 1 h. The time course of iNOS mRNA expression, hypoxia-inducible factor (HIF)-1α expression, and NO production was examined. Renal HIF-1α levels were significantly elevated immediately after centrifugation, and this increase was sustained for 3 h post-exposure. iNOS mRNA levels were also significantly increased immediately after exposure and were maintained during the reoxygenation period. Immunohistochemical staining for iNOS revealed that the cortical tubular epithelium exhibited moderate to strong cytoplasmic iNOS immunoreactivity immediately after hypergravity exposure and during the reoxygenation period. The time course of NO production was similar to that of iNOS expression. Our results suggest that both hypoxia and reoxygenation might be involved in the upregulation of HIF-1α in the kidneys of mice exposed to hypergravity. Significant increases in renocortical iNOS expression immediately after centrifugation and during the reoxygenation period suggest that iNOS expression induced by hypergravity exposure might play a protective role against hypoxia/reoxygenation injury in the renal cortex. Further investigations are necessary to clarify the role of iNOS and NO in kidneys exposed to hypergravity. PMID:27174912

  12. Endothelial nitric oxide synthase activation and nitric oxide function: new light through old windows.

    PubMed

    Bird, Ian M

    2011-09-01

    The principle mechanisms operating at the level of endothelial nitric oxide synthase (eNOS) itself to control its activity are phosphorylation, the auto-regulatory properties of the protein itself, and Ca(2)(+)/calmodulin binding. It is now clear that activation of eNOS is greatest when phosphorylation of certain serine and threonine residues is accompanied by elevation of cytosolic [Ca2+](i). While eNOS also contains an autoinhibitory loop, Rafikov et al. (2011) present the evidence for a newly identified 'flexible arm' that operates in response to redox state. Boeldt et al. (2011) also review the evidence that changes in the nature of endothelial Ca(2)(+) signaling itself in different physiologic states can extend both the amplitude and duration of NO output, and a failure to change these responses in pregnancy is associated with preeclampsia. The change in Ca(2)(+) signaling is mediated through altering capacitative entry mechanisms inherent in the cell, and so many agonist responses using this mechanism are altered. The term 'adaptive cell signaling' is also introduced for the first time to describe this phenomenon. Finally NO is classically regarded as a regulator of vascular function, but NO has other actions. One proposed role is regulation of steroid biosynthesis but the physiologic relevance was unclear. Ducsay & Myers (2011) now present new evidence that NO may provide the adrenal with a mechanism to regulate cortisol output according to exposure to hypoxia. One thing all three of these reviews show is that even after several decades of study into NO biosynthesis and function, there are clearly still many things left to discover.

  13. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  14. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  15. Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase.

    PubMed

    Shi, Fu-Mei; Li, Ying-Zhang

    2008-01-31

    The source of nitric oxide (NO) in plants is unclear and it has been reported NO can be produced by nitric oxide synthase (NOS) like enzymes and by nitrate reductase (NR). Here we used wild-type, Atnos1 mutant and nia1, nia2 NR-deficient mutant plants of Arabidopsis thaliana to investigate the potential source of NO production in response to Verticillium dahliae toxins (VD-toxins). The results revealed that NO production is much higher in wild-type and Atnos1 mutant than in nia1, nia2 NR-deficient mutants. The NR inhibitor had a significant effect on VD-toxins-induced NO production; whereas NOS inhibitor had a slight effect. NR activity was significantly implicated in NO production. The results indicated that as NO was induced in response to VD-toxins in Arabidopsis, the major source was the NR pathway. The production of NOS-system appeared to be secondary.

  16. Uncoupled Cardiac Nitric Oxide Synthase Mediates Diastolic Dysfunction

    PubMed Central

    Silberman, Gad A.; Fan, Tai-Hwang M.; Liu, Hong; Jiao, Zhe; Xiao, Hong D.; Lovelock, Joshua D.; Boulden, Beth M.; Widder, Julian; Fredd, Scott; Bernstein, Kenneth E.; Wolska, Beata M.; Dikalov, Sergey; Harrison, David G.; Dudley, Samuel C.

    2010-01-01

    Background Heart failure with preserved ejection fraction is one consequence of hypertension and caused by impaired cardiac diastolic relaxation. Nitric oxide (NO) is a known modulator of cardiac relaxation. Hypertension can lead to a reduction in vascular NO, in part because nitric oxide synthase (NOS) becomes uncoupled when oxidative depletion of its co-factor tetrahydrobiopterin (BH4) occurs.Similar events may occur in the heart leading to uncoupled NOS and diastolic dysfunction. Methods and Results In a hypertensive mouse model, diastolic dysfunction was accompanied by cardiac oxidation, a reduction in cardiac BH4, and uncoupled NOS. Compared to sham-operated animals, male mice with unilateral nephrectomy, with subcutaneous implantation of a controlled release deoxycorticosterone acetate (DOCA) pellet, and given 1% saline to drink were mildly hypertensive and had diastolic dysfunction in the absence of systolic dysfunction or cardiac hypertrophy. The hypertensive mouse hearts showed increased oxidized biopterins, NOS-dependent superoxide production, reduced NO production, and phosphorylated phospholamban. Feeding hypertensive mice BH4 (5 mg/day), but not treating with hydralazine or tetrahydroneopterin, improved cardiac BH4 stores, phosphorylated phospholamban levels, and diastolic dysfunction. Isolated cardiomyocyte experiments revealed impaired relaxation that was normalized with acute BH4 treatment. Targeted cardiac overexpression of angiotensin converting enzyme also resulted in cardiac oxidation, NOS uncoupling, and diastolic dysfunction in the absence of hypertension. Conclusions Cardiac oxidation, independent of vascular changes, can lead to uncoupled cardiac NOS and diastolic dysfunction. BH4 may represent a possible treatment for diastolic dysfunction. PMID:20083682

  17. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles

    PubMed Central

    Hetrick, Evan M.; Shin, Jae Ho; Stasko, Nathan A.; Johnson, C. Bryce; Wespe, Daniel A.; Holmuhamedov, Ekhson; Schoenfisch, Mark H.

    2013-01-01

    The utility of nitric oxide (NO)-releasing silica nanoparticles as a novel antibacterial is demonstrated against Pseudomonas aeruginosa. Nitric oxide-releasing nanoparticles were prepared via co-condensation of tetraalkoxysilane with aminoalkoxysilane modified with diazeniumdiolate NO donors, allowing for the storage of large NO payloads. Comparison of the bactericidal efficacy of the NO-releasing nanoparticles to 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (PROLI/NO), a small molecule NO donor, demonstrated enhanced bactericidal efficacy of nanoparticle-derived NO and reduced cytotoxicity to healthy cells (mammalian fibroblasts). Confocal microscopy revealed that fluorescently-labeled NO-releasing nanoparticles associated with the bacteria, providing rationale for the enhanced bactericidal efficacy of the nanoparticles. Intracellular NO concentrations were measurable when the NO was delivered from nanoparticles as opposed to PROLI/NO. Collectively, these results demonstrate the advantage of delivering NO via nanoparticles for antimicrobial applications. PMID:19206623

  18. Nitric oxide-donor SNAP induces Xenopus eggs activation.

    PubMed

    Jeseta, Michal; Marin, Matthieu; Tichovska, Hana; Melicharova, Petra; Cailliau-Maggio, Katia; Martoriati, Alain; Lescuyer-Rousseau, Arlette; Beaujois, Rémy; Petr, Jaroslav; Sedmikova, Marketa; Bodart, Jean-François

    2012-01-01

    Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions including meiotic maturation and parthenogenetic activation of mammalian oocytes. We observed that nitric oxide donor SNAP was potent to induce parthenogenetic activation in Xenopus eggs. NO-scavenger CPTIO impaired the effects of SNAP, providing evidence for the effects of the latter to be specific upon NO release. In Xenopus eggs, SNAP treatment induced pigment rearrangement, pronucleus formation and exocytosis of cortical granules. At a biochemical level, SNAP exposure lead to MAPK and Rsk inactivation within 30 minutes whereas MPF remained active, in contrast to calcium ionophore control where MPF activity dropped rapidly. MAPK inactivation could be correlated to pronuclear envelope reformation observed. In SNAP-treated eggs, a strong increase in intracellular calcium level was observed. NO effects were impaired in calcium-free or calcium limited medium, suggesting that that parthenogenetic activation of Xenopus oocytes with a NO donor was mainly calcium-dependent.

  19. Nitric oxide in the upper stratosphere - Measurements and geophysical interpretation

    NASA Technical Reports Server (NTRS)

    Harvath, J. J.; Frederick, J. E.; Orsini, N.; Douglass, A. R.

    1983-01-01

    A rocket-borne parachute-deployed chemiluminescence instrument has obtained seven new measurements of atmospheric nitric oxide for altitudes between 30 and 50 km at mid-latitudes. These results, when combined with profiles measured by an earlier version of the instrument, cover all four seasons and provide a more comprehensive picture of upper stratospheric nitric oxide than has been available previously. At the highest altitudes studied, the vertical gradient in mixing ratio displays positive and negative values during different observations, with the largest values tending to appear at the greatest heights in summer. Examination of the differences among the profiles, which exceed a factor of 3 near the stratopause, suggests that they arise from the action of transport processes which carry air into the mid-latitude upper stratosphere from regions of the atmosphere that contain widely different odd-nitrogen abundances.

  20. Nitric oxide synthase in plants: Where do we stand?

    PubMed

    Santolini, Jérôme; André, François; Jeandroz, Sylvain; Wendehenne, David

    2017-02-28

    Over the past twenty years, nitric oxide (NO) has emerged as an important player in various plant physiological processes. Although many advances in the understanding of NO functions have been made, the question of how NO is produced in plants is still challenging. It is now generally accepted that the endogenous production of NO is mainly accomplished through the reduction of nitrite via both enzymatic and non-enzymatic mechanisms which remain to be fully characterized. Furthermore, experimental arguments in favour of the existence of plant nitric oxide synthase (NOS)-like enzymes have been reported. However, recent investigations revealed that land plants do not possess animal NOS-like enzymes while few algal species do. Phylogenetic and structural analyses reveals interesting features specific to algal NOS-like proteins.

  1. Existence of nitric oxide synthase in rat hippocampal pyramidal cells.

    PubMed Central

    Wendland, B; Schweizer, F E; Ryan, T A; Nakane, M; Murad, F; Scheller, R H; Tsien, R W

    1994-01-01

    It has been proposed that nitric oxide (NO) serves as a key retrograde messenger during long-term potentiation at hippocampal synapses, linking induction of long-term potentiation in postsynaptic CA1 pyramidal cells to expression of long-term potentiation in presynaptic nerve terminals. However, nitric oxide synthase (NOS), the proposed NO-generating enzyme, has not yet been detected in the appropriate postsynaptic cells. We here demonstrate specific NOS immunoreactivity in the CA1 region of hippocampal sections by using an antibody specific for NOS type I and relatively gentle methods of fixation. NOS immunoreactivity was found in dendrites and cell bodies of CA1 pyramidal neurons. Cultured hippocampal pyramidal cells also displayed specific immunostaining. Control experiments showed no staining with preimmune serum or immune serum that was blocked with purified NOS. These results demonstrate that CA1 pyramidal cells contain NOS, as required were NO involved in retrograde signaling during hippocampal synaptic plasticity. Images PMID:7510887

  2. Application of a Nitric Oxide Sensor in Biomedicine

    PubMed Central

    Saldanha, Carlota; Lopes de Almeida, José Pedro; Silva-Herdade, Ana Santos

    2014-01-01

    In the present study, we describe the biochemical properties and effects of nitric oxide (NO) in intact and dysfunctional arterial and venous endothelium. Application of the NO electrochemical sensor in vivo and in vitro in erythrocytes of healthy subjects and patients with vascular disease are reviewed. The electrochemical NO sensor device applied to human umbilical venous endothelial cells (HUVECs) and the description of others NO types of sensors are also mentioned. PMID:25587407

  3. [Recommendations for inhaled nitric oxide treatment in the newborn diseases].

    PubMed

    2001-09-01

    The recommendations in this document highlight current indications for inhaled nitric oxide (iNO) treatment in the newborn by clearly differentiating between those that are supported by scientific evidence and those for which evidence is still lacking. However, the use of this treatment in preterm infants and in those with congenital heart disease has not yet been scientifically approved. We discuss the methodology, dosage and adverse effects of iNO administration, as well as the reasons for its ineffectiveness.

  4. [Recommendations for inhaled nitric oxide treatment in the newborn].

    PubMed

    Figueras Aloy, J; Castillo Salinas, F; Elorza Fernández, D; Sánchez-Luna, M; Pérez Rodríguez, J

    2006-03-01

    The recommendations in this document describe the current indications for inhaled nitric oxide (iNO) treatment in the newborn and clearly distinguish between those supported by scientific evidence and those for which evidence is still lacking, such as its use in preterm infants. The methodology for iNO administration, its dosage and the main secondary effects are discussed, and the reasons for lack of response to this treatment are analyzed.

  5. The role of nitric oxide in carotid chemoreception.

    PubMed

    Wang, Z Z; Dinger, B G; Stensaas, L J; Fidone, S J

    1995-01-01

    Immunocytochemical and histochemical studies of cat and rat carotid bodies have revealed a plexus of nitric oxide synthase (NOS)-positive nerve fibers associated with lobules of chemosensory type I cells as well as with the carotid body vasculature. NOS-positive fibers originate from (1) autonomic neurons located in the carotid body and distributed along the carotid sinus nerve (CNS) and IXth cranial nerve which terminate in the adventitial layer of carotid body blood vessels, and (2) from unipolar sensory neurons of the petrosal (IXth nerve) ganglion. Carotid bodies incubated with the NO precursor, 3H-arginine, yield 3H-citrulline, the detectable coproduct of NO synthesis. Furthermore, electrical stimulation of the CNS or exposure of carotid bodies to hypoxic incubation media elevates 3H-citrulline formation. Millimolar concentrations of L-arginine inhibit chemoreceptor activity evoked by hypoxia, an effect which is reversed by the specific NOS antagonist, L-NG-nitroarginine methylester (L-NAME, 0.1 mM). Electrical stimulation of CNS C fibers elevates cyclic GMP in the carotid body vasculature and lobules of type I cells. Cyclic GMP production is reduced during stimulation in the presence of L-NAME, a finding consistent with the known ability of NO to activate a soluble form of guanylate cyclase. Further studies showed that brief (< 1 min) stimulation of CNS C fibers inhibits basal chemoreceptor discharge in a perfused/superfused in vitro carotid body preparation, whereas prolonged (> 5 min) stimulation is required to inhibit the response to hypoxia. The inhibitory effect is reversed by L-NAME. Our combined anatomical, neuropharmacological and electrophysiological data suggest that NO plays a dual role in mediating CNS inhibition, one via its actions on the organ's vasculature and the other through direct effects on the chemosensory type I cells. The former pathway involves cholinergic/NOS presumptive parasympathetic autonomic neurons, while the latter may be

  6. Regulation of neuronal growth cone filopodia by nitric oxide.

    PubMed

    Van Wagenen, S; Rehder, V

    1999-05-01

    Nitric oxide (NO) has been proposed to play an important role during neuronal development. Since many of its effects occur during the time of growth cone pathfinding and target interaction, we here test the hypothesis that part of NO's effects might be exerted at the growth cone. We found that low concentrations of the NO-donors DEA/NO, SIN-1, and SNP caused a rapid and transient elongation of filopodia as well as a reduction in filopodial number. These effects resulted from distinct changes in filopodial extension and retraction rates. Our novel findings suggest that NO could play a physiological role by temporarily changing a growth cone's morphology and switching its behavior from a close-range to a long-range exploratory mode. We subsequently dissected the pathway by which NO acted on growth cones. The effect of NO donors on filopodial length could be blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase (sGC), indicating that NO acted via sGC. Supporting this idea, injection of cyclic GMP (cGMP) mimicked the effect of NO donors on growth cone filopodia. Moreover, application of NO-donors as well as injection of cGMP elicited a rapid and transient rise in intracellular calcium in growth cones, indicating that NO acted via cGMP to elevate calcium. This calcium rise, as well as the morphological effects of SIN-1 on filopodia, were blocked by preventing calcium entry. Given the role of filopodia in axonal guidance, our new data suggest that NO could function at the neuronal growth cone as an intracellular and/or intercellular signaling molecule by affecting steering decisions during neuronal pathfinding.

  7. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  8. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases.

    PubMed

    Forte, Maurizio; Conti, Valeria; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine; Carrizzo, Albino

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.

  9. Cytokine and nitric oxide production following severe envenomation.

    PubMed

    Petricevich, Vera L

    2004-09-01

    Venom is a complex mixture of many substances such as toxins, enzymes, growth factor activators, and inhibitors are particularly responsible for the deleterious effects of cells. These constituents interact in the body with a large number of proteins and receptors, and this interaction determines the eventual inflammatory effect of the compounds. Envenomation by bees, scorpions, snakes, spiders and wasps involves the activation of the inflammatory response with the release and activation of pro-inflammatory cytokines and other mediators, such as nitric oxide. Recently, a battery of cytokines produced by activated T cells or macrophages have been added to in envenomations. Cytokines are important for the interactions between cells in the immune and inflammatory responses. Although the pathophysiology of envenomation is not fully understood, venom and immune responses are known to trigger the release of cytokines and nitric oxide. The cytokines initiate a cascade of events that lead to illness behaviors such as fever, anorexia, and, as well as a host of physiologic events such as activation of vasodilation, hypotension and increased nitric oxide production. Accumulating evidence indicates that these cytokines play important roles in mediating cell recruitment and activation necessary for inflammation and the repair of tissue damage. A better understanding of the involvement of the inflammatory system in different envenoming syndromes may have future therapeutic benefits.

  10. Defective nitric oxide production by alveolar macrophages during Pneumocystis pneumonia.

    PubMed

    Lasbury, Mark E; Liao, Chung-Ping; Hage, Chadi A; Durant, Pamela J; Tschang, Dennis; Wang, Shao-Hung; Zhang, Chen; Lee, Chao-Hung

    2011-04-01

    The effect of nitric oxide (NO) on Pneumocystis (Pc) organisms, the role of NO in the defense against infection with Pc, and the production of NO by alveolar macrophages (AMs) during Pneumocystis pneumonia (PCP) were investigated. The results indicate that NO was toxic to Pc organisms and inhibited their proliferation in culture. When the production of NO was inhibited by intraperitoneal injection of rats with the nitric oxide synthase inhibitor L-N(5)-(1-iminoethyl) ornithine, progression of Pc infection in immunocompetent rats was enhanced. Concentrations of NO in bronchoalveolar lavage fluids from immunosuppressed, Pc-infected rats and mice were greatly reduced, compared with those from uninfected animals, and AMs from these animals were defective in NO production. However, inducible nitric oxide synthase (iNOS) mRNA and protein concentrations were high in AMs from Pc-infected rats and mice. Immunoblot analysis showed that iNOS in AMs from Pc-infected rats existed primarily as a monomer, but the homo-dimerization of iNOS monomers was required for the production of NO. When iNOS dimerization cofactors, including calmodulin, were added to macrophage lysates, iNOS dimerization increased, whereas incubation of the same lysates with all cofactors except calmodulin did not rescue iNOS dimer formation. These data suggest that NO is important in the defense against Pc infection, but that the production of NO in AMs during PCP is defective because of the reduced dimerization of iNOS.

  11. Tannin 1-alpha-O-galloylpunicalagin induces the calcium-dependent activation of endothelial nitric-oxide synthase via the phosphatidylinositol 3-kinase/Akt pathway in endothelial cells.

    PubMed

    Chen, Lih-Geeng; Liu, Yen-Chin; Hsieh, Chia-Wen; Liao, Being-Chyuan; Wung, Being-Sun

    2008-10-01

    Many polyphenols have been found to increase endothelial nitric oxide (NO) production. In our present study, we investigated the effects of 1-alpha-O-galloylpunicalagin upon endothelial nitric oxide synthase (eNOS) activity in endothelial cells (ECs). Both 1-alpha-O-galloylpunicalagin and punicalagin induced NO production in a dose-dependent manner in ECs. Despite having similar chemical structures, punicalagin induced lower levels of NO production than 1-alpha-O-galloylpunicalagin. After 1-alpha-O-galloylpunicalagin addition, a rise in the intracellular Ca(2+) concentration preceded NO production. The Ca(2+) ionophore A23187 stimulated eNOS phosphorylation and augmented NO production. Pretreatment with Ca(2+) chelators inhibited 1-alpha-O-galloylpunicalagin-induced eNOS phosphorylation and NO production. Treatment with 1-alpha-O-galloylpunicalagin did not alter the eNOS protein levels but, unlike punicalagin, induced a sustained activation of eNOS Ser(1179) phosphorylation. 1-alpha-O-galloylpunicalagin was also found to activate ERK1/2, JNK and Akt in ECs. Moreover, simultaneous treatment of these cells with specific phosphatidylinositol-3-kinase inhibitors significantly inhibited the observed increases in eNOS activity and phosphorylation levels. In contrast, the inhibition of (ERK)1/2, JNK and p38 had no influence on eNOS Ser(1179) phosphorylation. Our present results thus indicate that the 1-alpha-O-galloylpunicalagin-induced calcium-dependent activation of eNOS is primarily mediated via a phosphatidylinositol 3-kinase/Akt-dependent increase in eNOS activity, and occurs independently of the eNOS protein content.

  12. Cross-talk between nitric oxide and Ca (2+) in elevated CO 2-induced lateral root formation.

    PubMed

    Wang, Huan; Niu, Yaofang; Chai, Rushan; Liu, Miao; Zhang, Yongsong

    2013-02-01

    This study demonstrates a potential signaling pathway of CO 2-dependent stimulation in lateral root (LR) formation. Elevated CO 2 increases production of nitric oxide (NO), which subsequently stimulates the generation of cytosolic Ca (2+) concentration by activating plasma membrane and/or intracellular Ca (2+)-permeable channels. Meanwhile, nitric oxide synthase (NOS), as one of the main NO source, requires Ca (2+) and CaM as cofactors. This complex interaction involves transduction cascades of multiple signals that lead to the LR formation and development. Finally, this review highlights the the role of Ca (2+) in the process that elevated CO 2 enhances the development of LRs through increased NO level.

  13. Basal nitric oxide production is enhanced by hydraulic pressure in cultured human trabecular cells

    PubMed Central

    Matsuo, T.

    2000-01-01

    BACKGROUND/AIMS—Nitric oxide donors reduce intraocular pressure. Human trabecular cells in culture were examined for their nitric oxide production in response to hydraulic pressure.
METHODS—Human trabecular cells were cultured from trabeculum tissue fragments excised during trabeculectomy and exposed to hydraulic pressure change in a culture flask connected to a glass syringe. The pressure was exerted by automatic infusion of the piston of the syringe and monitored by a pressure gauge. The intracellular nitric oxide level was measured in real time with a nitric oxide binding fluorescent dye, diaminofluorescein-2.
RESULTS—Intracellular nitric oxide levels in cultured trabecular cells showed spontaneous fluctuation during 400 seconds of observation. Peak levels of intracellular nitric oxide were significantly higher at hydraulic pressure of 30, 40, and 50 mm Hg, compared with 0 and 25 mm Hg (p<0.0001, one way ANOVA, and p<0.05, Tukey-Kramer test). The fluctuation was completely abolished by the presence of N-methyl-L-arginine (L-NMMA), a nitric oxide synthase inhibitor. The cultured trabecular cells were shown by immunohistochemistry to express brain nitric oxide synthase (bNOS).
CONCLUSION—Higher levels of hydraulic pressure enhanced basal production of nitric oxide in human trabecular cells. Nitric oxide would be a physiological mediator in the regulation of intraocular pressure.

 PMID:10837391

  14. L-citrulline immunostaining identifies nitric oxide production sites within neurons

    NASA Technical Reports Server (NTRS)

    Martinelli, G. P. T.; Friedrich, V. L. Jr; Holstein, G. R.

    2002-01-01

    The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO.

  15. Analysis of Nitric Oxide Signaling Functions in Tobacco Cells Challenged by the Elicitor Cryptogein1

    PubMed Central

    Lamotte, Olivier; Gould, Kevin; Lecourieux, David; Sequeira-Legrand, Anabelle; Lebrun-Garcia, Angela; Durner, Jörg; Pugin, Alain; Wendehenne, David

    2004-01-01

    Nitric oxide (NO) has recently emerged as an important cellular mediator in plant defense responses. However, elucidation of the biochemical mechanisms by which NO participates in this signaling pathway is still in its infancy. We previously demonstrated that cryptogein, an elicitor of tobacco defense responses, triggers a NO burst within minutes in epidermal sections from tobacco leaves (Nicotiana tabacum cv Xanthi). Here, we investigate the signaling events that mediate NO production, and analyze NO signaling activities in the cryptogein transduction pathway. Using flow cytometry and spectrofluorometry, we observed that cryptogein-induced NO production in tobacco cell suspensions is sensitive to nitric oxide synthase inhibitors and may be catalyzed by variant P, a recently identified pathogen-inducible plant nitric oxide synthase. NO synthesis is tightly regulated by a signaling cascade involving Ca2+ influx and phosphorylation events. Using tobacco cells constitutively expressing the Ca2+ reporter apoaequorin in the cytosol, we have shown that NO participates in the cryptogein-mediated elevation of cytosolic free Ca2+ through the mobilization of Ca2+ from intracellular stores. The NO donor diethylamine NONOate promoted an increase in cytosolic free Ca2+ concentration, which was sensitive to intracellular Ca2+ channel inhibitors. Moreover, NO appears to be involved in the pathway(s) leading to the accumulation of transcripts encoding the heat shock protein TLHS-1, the ethylene-forming enzyme cEFE-26, and cell death. In contrast, NO does not act upstream of the elicitor-induced activation of mitogen-activated protein kinase, the opening of anion channels, nor expression of GST, LOX-1, PAL, and PR-3 genes. Collectively, our data indicate that NO is intimately involved in the signal transduction processes leading to cryptogein-induced defense responses. PMID:15122020

  16. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.

    PubMed

    Lamotte, Olivier; Gould, Kevin; Lecourieux, David; Sequeira-Legrand, Anabelle; Lebrun-Garcia, Angela; Durner, Jörg; Pugin, Alain; Wendehenne, David

    2004-05-01

    Nitric oxide (NO) has recently emerged as an important cellular mediator in plant defense responses. However, elucidation of the biochemical mechanisms by which NO participates in this signaling pathway is still in its infancy. We previously demonstrated that cryptogein, an elicitor of tobacco defense responses, triggers a NO burst within minutes in epidermal sections from tobacco leaves (Nicotiana tabacum cv Xanthi). Here, we investigate the signaling events that mediate NO production, and analyze NO signaling activities in the cryptogein transduction pathway. Using flow cytometry and spectrofluorometry, we observed that cryptogein-induced NO production in tobacco cell suspensions is sensitive to nitric oxide synthase inhibitors and may be catalyzed by variant P, a recently identified pathogen-inducible plant nitric oxide synthase. NO synthesis is tightly regulated by a signaling cascade involving Ca2+ influx and phosphorylation events. Using tobacco cells constitutively expressing the Ca2+ reporter apoaequorin in the cytosol, we have shown that NO participates in the cryptogein-mediated elevation of cytosolic free Ca2+ through the mobilization of Ca2+ from intracellular stores. The NO donor diethylamine NONOate promoted an increase in cytosolic free Ca2+ concentration, which was sensitive to intracellular Ca2+ channel inhibitors. Moreover, NO appears to be involved in the pathway(s) leading to the accumulation of transcripts encoding the heat shock protein TLHS-1, the ethylene-forming enzyme cEFE-26, and cell death. In contrast, NO does not act upstream of the elicitor-induced activation of mitogen-activated protein kinase, the opening of anion channels, nor expression of GST, LOX-1, PAL, and PR-3 genes. Collectively, our data indicate that NO is intimately involved in the signal transduction processes leading to cryptogein-induced defense responses.

  17. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    SciTech Connect

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi; Zhang, Qunye; Li, Guorong

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  18. Rho GTPases, Statins, and Nitric Oxide

    PubMed Central

    Rikitake, Yoshiyuki; Liao, James K.

    2009-01-01

    The lipid-lowering drugs, 3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins, are used in the prevention and treatment of cardiovascular diseases. Recent experimental and clinical studies suggest that statins may exert vascular protective effects beyond cholesterol reduction. For example, statins improve endothelial function by cholesterol-dependent and -independent mechanisms. The cholesterol-independent or “pleiotropic” effects of statins include the upregulation and activation of endothelial NO synthase (eNOS). Because statins inhibit an early step in the cholesterol biosynthetic pathway, they also inhibit the synthesis of isoprenoids such as farnesylpyrophosphate and geranylgeranylpyrophosphate, which are important posttranslational lipid attachments for intracellular signaling molecules such as the Rho GTPases. Indeed, decrease in Rho GTPase responses as a consequence of statin treatment increases the production and bioavailability of endothelium-derived NO. The mechanism involves, in part, Rho/Rho-kinase (ROCK)-mediated changes in the actin cytoskeleton, which leads to decreases in eNOS mRNA stability. The regulation of eNOS by Rho GTPases, therefore, may be an important mechanism underlying the cardiovascular protective effect of statins. PMID:16339495

  19. Nitric oxide interactions with cobalamins: biochemical and functional consequences.

    PubMed

    Brouwer, M; Chamulitrat, W; Ferruzzi, G; Sauls, D L; Weinberg, J B

    1996-09-01

    Nitric oxide (NO) is a paramagnetic gas that has been implicated in a wide range of biologic functions. The common pathway to evoke the functional response frequently involves the formation of an iron-nitrosyl complex in a target (heme) protein. In this study, we report on the interactions between NO and cobalt-containing vitamin B12 derivatives. Absorption spectroscopy showed that of the four Co(III) derivatives (cyanocobalamin [CN-Cbl], aquocobalamin [H2O-Cbl], adenosylcobalamin [Ado-Cbl], and methylcobalamin [MeCbl]), only the H2O-Cbl combined with NO. In addition, electron paramagnetic resonance spectroscopy of H2O-Cbl preparations showed the presence of a small amount of Cob-(II)alamin that was capable of combining with NO. The Co(III)-NO complex was very stable, but could transfer its NO moiety to hemoglobin (Hb). The transfer was accompanied by a reduction of the Co(III) to Co(II), indicating that NO+ (nitrosonium) was the leaving group. In accordance with this, the NO did not combine with the Hb Fe(II)-heme, but most likely with the Hb cysteine-thiolate. Similarly, the Co(III)-NO complex was capable of transferring its NO to glutathione. Ado-Cbl and Me-Cbl were susceptible to photolysis, but CN-Cbl and H2O-Cbl were not. The homolytic cleavage of the Co(III)-Ado or Co(III)-Me bond resulted in the reduction of the metal. When photolysis was performed in the presence of NO, formation of NO-Co(II) was observed. Co(II)-nitrosyl oxidized slowly to form Co(III)-nitrosyl. The capability of aquocobalamin to combine with NO had functional consequences. We found that nitrosylcobalamin had diminished ability to serve as a cofactor for the enzyme methionine synthase, and that aquocobalamin could quench NO-mediated inhibition of cell proliferation. Our in vitro studies therefore suggest that interactions between NO and cobalamins may have important consequences in vivo.

  20. Critical Role of Nitric Oxide-cGMP Cascade in the Formation of cAMP-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Aonuma, Hitoshi; Mizunami, Makoto; Matsumoto, Yukihisa; Unoki, Sae

    2006-01-01

    Cyclic AMP pathway plays an essential role in formation of long-term memory (LTM). In some species, the nitric oxide (NO)-cyclic GMP pathway has been found to act in parallel and complementary to the cAMP pathway for LTM formation. Here we describe a new role of the NO-cGMP pathway, namely, stimulation of the cAMP pathway to induce LTM. We have…

  1. What is next in nitric oxide research? From cardiovascular system to cancer biology.

    PubMed

    Bian, Ka; Murad, Ferid

    2014-12-01

    The broad role of nitric oxide (NO) and cyclic GMP in biochemistry and biology as important messenger molecules is evident from the numerous publications in this research field. NO and cGMP have been known as components of the key signaling pathway in regulating numerous processes such as vascular dilation, blood pressure, neurotransmission, cardiovascular function, and renal function. In spite of almost 150,000 publications with nitric oxide and cyclic GMP, there are few publications regarding the effects of these messenger molecules on gene regulation, cell differentiation and cell proliferation. Our research data with embryonic stem cells and several cancer cell lines suggest that nitric oxide, its receptor soluble guanylyl cyclase (sGC) and sGC's product cyclic GMP can regulate the processes of proliferation and differentiation. Furthermore, we have found that undifferentiated stem cells and some malignant tumors such as human glioma have decreased levels of sGC and translocation of the sGCβ1 subunit to the nucleus. We propose that sGC and cyclic GMP function as tumor suppressors. An understanding of the mechanisms of the translocation of the sGCβ1 subunit into the nucleus and the possible regulation of gene expression of NO and/or cyclic CMP could lead to novel and innovative approaches to cancer therapy and stem cell proliferation and differentiation.

  2. Grape seed proanthocyanidin extracts enhance endothelial nitric oxide synthase expression through 5'-AMP activated protein kinase/Surtuin 1-Krüpple like factor 2 pathway and modulate blood pressure in ouabain induced hypertensive rats.

    PubMed

    Cui, Xiaopei; Liu, Xiangju; Feng, Hua; Zhao, Shaohua; Gao, Haiqing

    2012-01-01

    Grape seed proanthocyanidin extracts (GSPE) belonging to polyphenols, possess various biological effects including anti-inflammation, anti-oxidant, anti-aging, anti-atherosclerosis, etc. GSPE is potential in regulating endothelial function. However, the underlying mechanism is not clear yet. In this study, by small interfering RNA (siRNA) knocking down, we proved that GSPE increase endothelial nitric oxide synthase (eNOS) expression in human umbilical vessel cells (HUVECs) in vitro, which was attributed to its transcription factor Krüpple like factor 2 (KLF2) induction. Furthermore, GSPE activate 5'-AMP activated protein kinase (AMPK) and increase surtuin 1 (SIRT1) protein level, critical for KLF2 induction. We also illuminated the role of GSPE in hypertension treatment. By chronic administration of GSPE in ouabain induced hypertensive rats model, we access the effect of GSPE on blood pressure regulation and the possible mechanisms involved. After 5 weeks feeding, GSPE significantly block the ouabain induced blood pressure increase. The aortic NO production impaired by ouabain was improved. In conclusion, GSPE increase eNOS expression and NO production in an AMPK/SIRT1 dependent manner through KLF2 induction, and attenuate ouabain induced hypertension.

  3. Expression of inducible nitric oxide synthase and nitric oxide production in the mud-dwelled air-breathing singhi catfish, Heteropneustes fossilis under condition of water shortage.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2012-12-01

    Nitric oxide (NO) is known to be an important regulator molecule for regulating the multiple signaling pathways and also to play diverse physiological functions in mammals including that of adaptation to various stresses. The present study reports on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) enzyme that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis) while dwelling inside the mud peat under semidry conditions. Desiccation stress, due to mud-dwelling for 2 weeks, led to significant increase of NO concentration in different tissues and in plasma of singhi catfish, and also the increase of NO efflux from the perfused liver with an accompanying increase of toxic ammonia level in different tissues. Mud-dwelling also resulted to induction of iNOS activity, expression of iNOS protein in different tissues after 7 days with further increase after 14 days, which otherwise was not detectable in control fish. Further, mud-dwelling also resulted to a significant expression of iNOS mRNA after 7 days with a more increase of mRNA level after 14 days, suggesting that the desiccation stress caused transcriptional regulation of iNOS gene. Immunocytochemical analysis indicated the zonal specific expression of iNOS protein in different tissues. Desiccation stress also led to activation and nuclear translocation of nuclear factor кB (NFкB) in hepatic cells. These results suggest that the activation of iNOS gene under desiccation-induced stresses such as high ammonia load was probably mediated through the activation of one of the major transcription factors, the NFкB. This is the first report of desiccation-induced induction of iNOS gene, iNOS protein expression leading to more generation of NO while living inside the mud peat under condition of water shortage in any air-breathing teleosts.

  4. Nitric oxide-releasing polymer incorporated ointment for cutaneous wound healing.

    PubMed

    Kang, Youngnam; Kim, Jihoon; Lee, Yeong Mi; Im, Sooseok; Park, Hansoo; Kim, Won Jong

    2015-12-28

    This work demonstrates the development of nitric oxide-releasing ointment and its potential on efficient wound healing. Nitric oxide-releasing polymer was successfully synthesized, which is composed of biocompatible Pluronic F127, branched polyethylenimine and 1-substituted diazen-1-ium-1,2-diolates. The synthesized nitric oxide-releasing polymer was incorporated into the PEG-based ointment which not only facilitated nitric oxide release in a slow manner, but also served as a moisturizer to enhance the wound healing. As compared to control groups, the nitric oxide-releasing ointment showed the accelerated wound closure with enhanced re-epithelialization, collagen deposition, and blood vessel formation in vivo. Therefore, this nitric oxide-based ointment presents the promising potential for the efficient strategy to heal the cutaneous wound.

  5. A Finite Rate Chemical Analysis of Nitric Oxide Flow Contamination Effects on Scramjet Performance

    NASA Technical Reports Server (NTRS)

    Cabell, Karen F.; Rock, Kenneth E.

    2003-01-01

    The level of nitric oxide contamination in the test gas of the Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. A finite rate chemical analysis was performed to determine the levels of nitric oxide produced in the facility at conditions corresponding to Mach 6 to 8 flight simulations. Results indicate that nitric oxide levels range from one to three mole percent, corroborating previously obtained measurements. A three-stream combustor code with finite rate chemistry was used to investigate the effects of nitric oxide on scramjet performance. Results indicate that nitric oxide in the test gas causes a small increase in heat release and thrust performance for the test conditions investigated. However, a rate constant uncertainty analysis suggests that the effect of nitric oxide ranges from no net effect, to an increase of about 10 percent in thrust performance.

  6. The nitric oxide response in plant-associated endosymbiotic bacteria.

    PubMed

    Cabrera, Juan J; Sánchez, Cristina; Gates, Andrew J; Bedmar, Eulogio J; Mesa, Socorro; Richardson, David J; Delgado, María J

    2011-12-01

    Nitric oxide (NO) is a gaseous signalling molecule which becomes very toxic due to its ability to react with multiple cellular targets in biological systems. Bacterial cells protect against NO through the expression of enzymes that detoxify this molecule by oxidizing it to nitrate or reducing it to nitrous oxide or ammonia. These enzymes are haemoglobins, c-type nitric oxide reductase, flavorubredoxins and the cytochrome c respiratory nitrite reductase. Expression of the genes encoding these enzymes is controlled by NO-sensitive regulatory proteins. The production of NO in rhizobia-legume symbiosis has been demonstrated recently. In functioning nodules, NO acts as a potent inhibitor of nitrogenase enzymes. These observations have led to the question of how rhizobia overcome the toxicity of NO. Several studies on the NO response have been undertaken in two non-dentrifying rhizobial species, Sinorhizobium meliloti and Rhizobium etli, and in a denitrifying species, Bradyrhizobium japonicum. In the present mini-review, current knowledge of the NO response in those legume-associated endosymbiotic bacteria is summarized.

  7. Immediate effects of spinal manipulation on nitric oxide, substance P and pain perception.

    PubMed

    Molina-Ortega, Francisco; Lomas-Vega, Rafael; Hita-Contreras, Fidel; Plaza Manzano, Gustavo; Achalandabaso, Alexander; Ramos-Morcillo, Antonio J; Martínez-Amat, Antonio

    2014-10-01

    Previous studies have analyzed the effects of spinal manipulation on pain sensitivity by using several sensory modalities, but to our knowledge, no studies have focused on serum biomarkers involved in the nociceptive pathway after spinal manipulation. Our objectives were to determine the immediate effect of cervical and dorsal manipulation over the production of nitric oxide and substance P, and establishing their relationship with changes in pressure pain thresholds in asymptomatic subjects. In this single-blind randomized controlled trial, 30 asymptomatic subjects (16 men) were randomly distributed into 3 groups (n = 10 per group): control, cervical and dorsal manipulation groups. Blood samples were extracted to obtain serum. ELISA assay for substance P and chemiluminescence analysis for nitric oxide determination were performed. Pressure pain thresholds were measured with a pressure algometer at the C5-C6 joint, the lateral epicondyle and the tibialis anterior muscle. Outcome measures were obtained before intervention, just after intervention and 2 h after intervention. Our results indicated an increase in substance P plasma level in the cervical manipulation group (70.55%) when compared with other groups (p < 0.05). This group also showed an elevation in the pressure pain threshold at C5-C6 (26.75%) and lateral epicondyle level (21.63%) immediately after the intervention (p < 0.05). No changes in nitric oxide production were observed. In conclusion, mechanical stimulus provided by cervical manipulation increases substance P levels and pressure pain threshold but does not change nitric oxide concentrations. Part of the hypoalgesic effect of spinal manipulation may be due to the action of substance P.

  8. Increased brain nitric oxide levels following ethanol administration.

    PubMed

    Finnerty, Niall; O'Riordan, Saidhbhe L; Klamer, Daniel; Lowry, John; Pålsson, Erik

    2015-05-01

    Nitric oxide is a ubiquitous messenger molecule, which at elevated concentrations has been implicated in the pathogenesis of several neurological disorders. Its role in oxidative stress, attributed in particular to the formation of peroxynitrite, proceeds through its high affinity for the superoxide radical. Alcoholism has recently been associated with the induction of oxidative stress, which is generally defined as a shift in equilibrium between pro-oxidant and anti-oxidant species in the direction of the former. Furthermore, its primary metabolite acetaldehyde, has been extensively associated with oxidative damage related toxic effects following alcohol ingestion. The principal objective of this study was the application of long term in vivo electrochemistry (LIVE) to investigate the effect of ethanol (0.125, 0.5 and 2.0 g kg(-1)) and acetaldehyde (12.5, 50 and 200 mg kg(-1)) on NO levels in the nucleus accumbens of freely moving rats. Systemic administrations of ethanol and acetaldehyde resulted in a dose-dependent increases in NO levels, albeit with very differing time courses. Subsequent to this the effect on accumbal NO levels, of subjecting the animal to different drug combinations, was also elucidated. The nitric oxide synthase inhibitor L-NAME (20 mg kg(-1)) and acetaldehyde sequestering agent D-penicillamine (50 mg kg(-1)) both attenuated the increase in NO levels following ethanol (1 g kg(-1)) administration. Conversely, the alcohol dehydrogenase inhibitor 4-methylpyrazole (25 mg kg(-1)) and catalase inhibitor sodium azide (10 mg kg(-1)) potentiated the increase in NO levels following ethanol administration. Finally, dual inhibition of aldehyde dehydrogenase and catalase by cyanamide (25 mg kg(-1)) caused an attenuation of ethanol effects on NO levels. Taken together these data highlight a robust increase in brain NO levels following systemic alcohol administration which is dependent on NO synthase activity and may involve both alcohol- and acetaldehyde

  9. Assessing the physiological concentration and targets of nitric oxide in brain tissue

    PubMed Central

    Hall, Catherine N; Attwell, David

    2008-01-01

    Low nanomolar concentrations of nitric oxide activate guanylyl cyclase to produce cGMP, which has diverse physiological effects. Higher concentrations inhibit mitochondrial respiration at cytochrome c oxidase and this has been proposed to be important physiologically, increasing oxygen permeation into tissue (by reducing the oxygen use of cells near blood vessels), activating AMP kinase, and regulating the relationship between cerebral blood flow and oxygen use. It is unclear, however, whether nitric oxide can accumulate physiologically to concentrations at which inhibition of respiration occurs. In rat cerebellar slices, we activated nitric oxide production from each isoform of nitric oxide synthase. Only activation of inducible nitric oxide synthase, which is expressed pathologically, caused any significant inhibition of respiration. Modelling oxygen and nitric oxide concentrations predicted that, in vivo, physiological nitric oxide levels are too low to affect respiration. Even pathologically, the nitric oxide concentration may only rise to 2.5 nm, producing a 1.5% inhibition of respiration. Thus, under physiological conditions, nitric oxide signals do not inhibit respiration but are well-tuned to the dynamic range of guanylyl cyclase activation. PMID:18535091

  10. Morphine-induced changes in cerebral and cerebellar nitric oxide synthase activity.

    PubMed

    Leza, J C; Lizasoain, I; San-Martín-Clark, O; Lorenzo, P

    1995-10-04

    The effect of acute and chronic morphine treatment on nitric oxide (NO) synthase activity (determined by the rate of conversion of [14C]arginine into [14C]citrulline) on mouse brain was studied. Acute morphine treatment induced an increased in Ca2+ -dependent NO synthase in cerebellum. This effect was blocked by coadministration with naloxone. Chronic morphine treatment (by s.c. pellet) also produced an increase in cerebellar NO synthase, with a maximum on the second day of implantation. No significant changes were found in frontal cortex and forebrain during acute or chronic morphine treatment. The relationship between opiate effects and the L-arginine: NO pathway is discussed.

  11. The diversity of nitric oxide function in plant responses to metal stress.

    PubMed

    He, Huyi; He, Longfei; Gu, Minghua

    2014-04-01

    Nitric oxide (NO) emerges as signalling molecule, which is involved in diverse physiological processes in plants. High mobility metal interferes with NO signaling. The exogenous NO alleviates metal stress, whereas endogenous NO contributes to metal toxicity in plants. Owing to different cellular localization and concentration, NO may act as multifunctional regulator in plant responses to metal stress. It not only plays a crucial role in the regulation of gene expression, but serves as a long-distance signal. Through tight modulation of redox signaling, the integration among NO, reactive oxygen species and stress-related hormones in plants determines whether plants stimulate death pathway or activate survival signaling.

  12. Dysfunctional nitric oxide signalling increases risk of myocardial infarction.

    PubMed

    Erdmann, Jeanette; Stark, Klaus; Esslinger, Ulrike B; Rumpf, Philipp Moritz; Koesling, Doris; de Wit, Cor; Kaiser, Frank J; Braunholz, Diana; Medack, Anja; Fischer, Marcus; Zimmermann, Martina E; Tennstedt, Stephanie; Graf, Elisabeth; Eck, Sebastian; Aherrahrou, Zouhair; Nahrstaedt, Janja; Willenborg, Christina; Bruse, Petra; Brænne, Ingrid; Nöthen, Markus M; Hofmann, Per; Braund, Peter S; Mergia, Evanthia; Reinhard, Wibke; Burgdorf, Christof; Schreiber, Stefan; Balmforth, Anthony J; Hall, Alistair S; Bertram, Lars; Steinhagen-Thiessen, Elisabeth; Li, Shu-Chen; März, Winfried; Reilly, Muredach; Kathiresan, Sekar; McPherson, Ruth; Walter, Ulrich; Ott, Jurg; Samani, Nilesh J; Strom, Tim M; Meitinger, Thomas; Hengstenberg, Christian; Schunkert, Heribert

    2013-12-19

    Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.

  13. Methods of nitric oxide detection in plants: a commentary.

    PubMed

    Mur, Luis A J; Mandon, Julien; Cristescu, Simona M; Harren, Frans J M; Prats, Elena

    2011-11-01

    Over the last decade nitric oxide (NO) has been shown to influence a range of processes in plants. However, when, where and even if NO production occurs is controversial in several physiological scenarios in plants. This arises from a series of causes: (a) doubts have arisen over the specificity of widely used 4,5-diaminofluorescein diacetate (DAF-2DA)/4-amino-5-methylamino-2,7-difluorofluorescein (DAF-FM) dyes for NO, (b) no plant nitric oxide synthase (NOS) has been cloned, so that the validity of using mammalian NOS inhibitors to demonstrate that NO is being measured is debatable, (c) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (cPTIO) needs to be used with caution, and (d) some discrepancies between assays for in planta measurements and another based on sampling NO from the gas phase have been reported. This review will outline some commonly used methods to determine NO, attempt to reconcile differing results obtained by different laboratories and suggest appropriate approaches to unequivocally demonstrate the production of NO.

  14. Elucidating nitric oxide synthase domain interactions by molecular dynamics.

    PubMed

    Hollingsworth, Scott A; Holden, Jeffrey K; Li, Huiying; Poulos, Thomas L

    2016-02-01

    Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing L-Arg to NO and L-citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH-derived electrons are transferred to the heme-containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN-to-heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme-FMN-calmodulin NOS complex based on the recent biophysical studies using a 105-ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis.

  15. Application of nitric oxide measurements in clinical conditions beyond asthma

    PubMed Central

    Malinovschi, Andrei; Ludviksdottir, Dora; Tufvesson, Ellen; Rolla, Giovanni; Bjermer, Leif; Alving, Kjell; Diamant, Zuzana

    2015-01-01

    Fractional exhaled nitric oxide (FeNO) is a convenient, non-invasive method for the assessment of active, mainly Th2-driven, airway inflammation, which is sensitive to treatment with standard anti-inflammatory therapy. Consequently, FeNO serves as a valued tool to aid diagnosis and monitoring in several asthma phenotypes. More recently, FeNO has been evaluated in several other respiratory, infectious, and/or immunological conditions. In this short review, we provide an overview of several clinical studies and discuss the status of potential applications of NO measurements in clinical conditions beyond asthma. PMID:26672962

  16. Nitric oxide donor-mediated killing of bioluminescent Escherichia coli.

    PubMed Central

    Virta, M; Karp, M; Vuorinen, P

    1994-01-01

    The antimicrobial activities of two nitric oxide-releasing compounds against Escherichia coli were investigated by using recombinant E. coli cloned with a luciferase gene from Pyrophorus plagiophthalamus. Since luciferase uses intracellular ATP to generate visible light which can be measured from living cells in real time, we wanted to compare the extent to which cell viability parallels light emission. Results from luminescence measurements and CFU counts were in good agreement, and the decrease in light emission was shown to provide a rapid and more sensitive indication of cytotoxicity. PMID:7695261

  17. Nitric oxide and reactive oxygen species in plant biotic interactions.

    PubMed

    Scheler, Claudia; Durner, Jörg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions.

  18. Electrochemical Detection of Nitric Oxide in Plant Cell Suspensions.

    PubMed

    Griveau, Sophie; Besson-Bard, Angélique; Bedioui, Fethi; Wendehenne, David

    2016-01-01

    Nitric oxide is a hydrophobic radical acting as a physiological mediator in plants. Because of its unique properties, the detection of NO in plant tissues and cell suspensions remains a challenge. For this purpose, several techniques are used, each having certain advantages and limitations such as interferences with other species, questionable sensitivity, and/or selectivity or ex situ measurement. Here we describe a very attractive approach for tracking NO in plant cell suspensions using a NO-sensitive homemade platinum/iridium-based electrochemical microsensor. This method constitutes the absolute real-time proof of the production of free NO in physiological conditions.

  19. Nitric oxide signaling in plant responses to abiotic stresses.

    PubMed

    Qiao, Weihua; Fan, Liu-Min

    2008-10-01

    Nitric oxide (NO) plays important roles in diverse physiological processes in plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  20. An appraisal of techniques for administration of gaseous nitric oxide.

    PubMed

    Tibballs, J; Hochmann, M; Carter, B; Osborne, A

    1993-12-01

    Gaseous nitric oxide (NO) is a potent selective pulmonary vasodilator. When mixed with O2 for more than 10-15 minutes it forms toxic amounts of nitrogen dioxide (NO2). We describe two techniques to administer 20 parts per million (ppm) during mechanical ventilation. A technique using flows of NO and O2 at low pressure to drive a Siemens Servo 900C ventilator provided a constant inspired concentration of NO. Another technique in which NO was added to the inspiratory limb of a Siemens Servo 900C ventilator driven by high pressure oxygen provided a highly variable concentration (9-53 ppm) of inspired NO.

  1. Multi-reference calculations of nitric oxide dimer

    NASA Astrophysics Data System (ADS)

    Taguchi, Naoki; Mochizuki, Yuji; Ishikawa, Takeshi; Tanaka, Kiyoshi

    2008-01-01

    The nitric oxide dimer, (NO) 2, has been known as an archetype with severe near-degeneracy because of the weak N-N bonding. We thus performed a series of multi-reference calculations of fourth-order coupled pair approximation (MRCPA4) and configuration interaction (MRCI). For the ground state, the molecular structure of cis form was optimized by these calculations. The MRCPA4 geometry was favorably compared with the recent experimental data, indicating the importance of higher excitations. Low-lying singlet excited states were also addressed. Through these calculations, the intrinsic MR character of this system was illustrated.

  2. Fractional exhaled nitric oxide-measuring devices: technology update

    PubMed Central

    Maniscalco, Mauro; Vitale, Carolina; Vatrella, Alessandro; Molino, Antonio; Bianco, Andrea; Mazzarella, Gennaro

    2016-01-01

    The measurement of exhaled nitric oxide (NO) has been employed in the diagnosis of specific types of airway inflammation, guiding treatment monitoring by predicting and assessing response to anti-inflammatory therapy and monitoring for compliance and detecting relapse. Various techniques are currently used to analyze exhaled NO concentrations under a range of conditions for both health and disease. These include chemiluminescence and electrochemical sensor devices. The cost effectiveness and ability to achieve adequate flexibility in sensitivity and selectivity of NO measurement for these methods are evaluated alongside the potential for use of laser-based technology. This review explores the technologies involved in the measurement of exhaled NO. PMID:27382340

  3. Nitric oxide-sensitive pulmonary hypertension in congenital rubella syndrome.

    PubMed

    Raimondi, Francesco; Migliaro, Fiorella; Di Pietro, Elisa; Borgia, Francesco; Rapacciuolo, Antonio; Capasso, Letizia

    2015-01-01

    Persistent pulmonary hypertension is a very rare presentation of congenital virus infection. We discuss the case of complete congenital rubella syndrome presenting at echocardiography with pulmonary hypertension that worsened after ductus ligation. Cardiac catheterization showed a normal pulmonary valve and vascular tree but a PAP = 40 mmHg. The infant promptly responded to inhaled nitric oxide while on mechanical ventilation and was later shifted to oral sildenafil. It is not clear whether our observation may be due to direct viral damage to the endothelium or to the rubella virus increasing the vascular tone via a metabolic derangement.

  4. H2S regulation of nitric oxide metabolism

    PubMed Central

    Kolluru, Gopi K.; Yuan, Shuai; Shen, Xinggui; Kevil, Christopher G.

    2015-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are two major gaseous signaling molecules that regulate diverse physiological functions. Recent publications indicate the regulatory role of H2S on NO metabolism. In this chapter, we discuss the latest findings on H2S-NO interactions through formation of novel chemical derivatives, and experimental approaches to study these adducts. This chapter also addresses potential H2S interference on various NO detection techniques, along with precautions for analyzing biological samples from various sources. This information will facilitate critical evaluation and clearer insight into H2S regulation of NO signaling and its influence on various physiological functions. PMID:25725527

  5. Role of nitric oxide in murine conventional outflow physiology

    PubMed Central

    Chang, Jason Y. H.; Stamer, W. Daniel; Bertrand, Jacques; Read, A. Thomas; Marando, Catherine M.; Ethier, C. Ross

    2015-01-01

    Elevated intraocular pressure (IOP) is the main risk factor for glaucoma. Exogenous nitric oxide (NO) decreases IOP by increasing outflow facility, but whether endogenous NO production contributes to the physiological regulation of outflow facility is unclear. Outflow facility was measured by pressure-controlled perfusion in ex vivo eyes from C57BL/6 wild-type (WT) or transgenic mice expressing human endothelial NO synthase (eNOS) fused to green fluorescent protein (GFP) superimposed on the endogenously expressed murine eNOS (eNOS-GFPtg). In WT mice, exogenous NO delivered by 100 μM S-nitroso-N-acetylpenicillamine (SNAP) increased outflow facility by 62 ± 28% (SD) relative to control eyes perfused with the inactive SNAP analog N-acetyl-d-penicillamine (NAP; n = 5, P = 0.016). In contrast, in eyes from eNOS-GFPtg mice, SNAP had no effect on outflow facility relative to NAP (−9 ± 4%, P = 0.40). In WT mice, the nonselective NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 10 μM) decreased outflow facility by 36 ± 13% (n = 5 each, P = 0.012), but 100 μM l-NAME had no detectable effect on outflow facility (−16 ± 5%, P = 0.22). An eNOS-selective inhibitor (cavtratin, 50 μM) decreased outflow facility by 19 ± 12% in WT (P = 0.011) and 39 ± 25% in eNOS-GFPtg (P = 0.014) mice. In the conventional outflow pathway of eNOS-GFPtg mice, eNOS-GFP expression was localized to endothelial cells lining Schlemm's canal and the downstream vessels, with no apparent expression in the trabecular meshwork. These results suggest that endogenous NO production by eNOS within endothelial cells of Schlemm's canal or downstream vessels contributes to the physiological regulation of aqueous humor outflow facility in mice, representing a viable strategy to more successfully lower IOP in glaucoma. PMID:26040898

  6. Nitric oxide (NO) signaling as a potential therapeutic modality against psychostimulants.

    PubMed

    Liddie, Shervin; Balda, Mara A; Itzhak, Yossef

    2013-01-01

    Abuse of psychostimulants presents a significant health and social problem worldwide. Traditionally, the dopaminergic system has received much attention for its role in the development and manifestation of addictive behavior. The identification of the close interaction between the dopaminergic and glutamatergic pathway and by extension the nitric oxide (NO) signaling pathway (the nitrergic system) have provided a broader scope on the mechanisms underlying the development of addictive behavior following exposure to cocaine and methamphetamine. NO signaling is associated with the acquisition and maintenance of several behavioral phenotypes induced by cocaine and methamphetamine (METH), as well as in METH-induced dopaminergic depletion. Because it appears that NO signaling influences response to reward, memory formation, and free radical-induced neurotoxicity, pharmacotherapies targeting NO signaling pathway may prove beneficial in the treatment of psychostimulants abuse.

  7. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B

    PubMed Central

    Rao, Minxi; Smith, Brian C.

    2015-01-01

    ABSTRACT Nitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis. PMID:25944856

  8. Nitric oxide mediates the anticonvulsant effects of thalidomide on pentylenetetrazole-induced clonic seizures in mice.

    PubMed

    Payandemehr, Borna; Rahimian, Reza; Gooshe, Maziar; Bahremand, Arash; Gholizadeh, Ramtin; Berijani, Sina; Ahmadi-Dastgerdi, Mohammad; Aminizade, Mehdi; Sarreshte-Dari, Ali; Dianati, Vahid; Amanlou, Massoud; Dehpour, Ahmad Reza

    2014-05-01

    Thalidomide is an old glutamic acid derivative which was initially used as a sedative medication but withdrawn from the market due to the high incidence of teratogenicity. Recently, it has reemerged because of its potential for counteracting number of diseases, including neurodegenerative disorders. Other than the antiemetic and hypnotic aspects, thalidomide exerts some anticonvulsant properties in experimental settings. However, the underlying mechanisms of thalidomide actions are not fully realized yet. Some investigations revealed that thalidomide could elicit immunomodulatory or neuromodulatory properties by affecting different targets, including cytokines (such as TNF α), neurotransmitters, and nitric oxide (NO). In this regard, we used a model of clonic seizure induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether the anticonvulsant effect of thalidomide is affected through modulation of the l-arginine-nitric oxide pathway or not. Injection of a single effective dose of thalidomide (10 mg/kg, i.p. or higher) significantly increased the seizure threshold (P<0.05). On the one hand, pretreatment with low and per se noneffective dose of l-arginine [NO precursor] (10, 30 and 60 mg/kg) prevented the anticonvulsant effect of thalidomide. On the other hand, NOS inhibitors [l-NAME and 7-NI] augmented the anticonvulsant effect of a subeffective dose of thalidomide (1 and 5 mg/kg, i.p.) at relatively low doses. Meanwhile, several doses of aminoguanidine [an inducible NOS inhibitor] (20, 50 and 100 mg/kg) failed to alter the anticonvulsant effect of thalidomide significantly. In summary, our findings demonstrated that the l-arginine-nitric oxide pathway can be involved in the anticonvulsant properties of thalidomide, and the role of constitutive nNOS is prominent in the reported neuroprotective feature.

  9. Nitric oxide is necessary for visual learning in Octopus vulgaris.

    PubMed

    Robertson, J D; Bonaventura, J; Kohm, A; Hiscat, M

    1996-12-22

    We recently reported that inhibition of nitric oxide synthase (NOS) in Octopus vulgaris by intramuscular injections of an analog of L-arginine, N-omega-nitro-L-arginine methyl ester (L-NAME), blocked touch learning in Octopus vulgaris. The inactive enantiomorph (D-NAME), which had no effect on learning, was used for control. We now report that essentially the same procedures block visual learning in this animal. We used a visual paradigm in which the octopus was trained to respond positively to a smooth black plastic ball 2.5 cm diameter and negatively to a similar white ball, or vice versa. One set of eight animals was trained to the black ball positive, and another set of six to the white ball positive. Each set was trained at different times by two different trainers. We found that a 1 h pretreatment with the nitric oxide synthase inhibitor L-NAME blocks visual learning in Octopus vulgaris in both sets of animals.

  10. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  11. Neuronal Nitric Oxide Synthase in Vascular Physiology and Diseases

    PubMed Central

    Costa, Eduardo D.; Rezende, Bruno A.; Cortes, Steyner F.; Lemos, Virginia S.

    2016-01-01

    The family of nitric oxide synthases (NOS) has significant importance in various physiological mechanisms and is also involved in many pathological processes. Three NOS isoforms have been identified: neuronal NOS (nNOS or NOS 1), endothelial NOS (eNOS or NOS 3), and an inducible NOS (iNOS or NOS 2). Both nNOS and eNOS are constitutively expressed. Classically, eNOS is considered the main isoform involved in the control of the vascular function. However, more recent studies have shown that nNOS is present in the vascular endothelium and importantly contributes to the maintenance of the homeostasis of the cardiovascular system. In physiological conditions, besides nitric oxide (NO), nNOS also produces hydrogen peroxide (H2O2) and superoxide (O2•-) considered as key mediators in non-neuronal cells signaling. This mini-review highlights recent scientific releases on the role of nNOS in vascular homeostasis and cardiovascular disorders such as hypertension and atherosclerosis. PMID:27313545

  12. Mitochondrial nitric oxide synthase regulates mitochondrial matrix pH.

    PubMed

    Ghafourifar, P; Richter, C

    1999-01-01

    Nitric oxide (nitrogen monoxide, NO) exerts a wide profile of its biological activities via regulation of respiration and respiration-dependent functions. The presence of nitric oxide synthase (NOS) in mitochondria (mtNOS) was recently reported by us (Ghafourifar and Richter, FEBS Lett. 418, 291-296, 1997) and others (Giulivi et al., J. Biol. Chem. 273, 11038-11043, 1998). Here we report that NO, provided by an NO donor as well as by mtNOS stimulation, regulates mitochondrial matrix pH, transmembrane potential and Ca2+ buffering capacity. Exogenously-added NO causes a dose-dependent matrix acidification. Also mtNOS stimulation, induced by loading mitochondria with Ca2+, causes mitochondrial matrix acidification and a drop in mitochondrial transmembrane potential. Inhibition of mtNOS's basal activity causes mitochondrial matrix alkalinization and provides a resistance to the sudden drop of mitochondrial transmembrane potential induced by mitochondrial Ca2+ uptake. We conclude that mtNOS plays a critical role in regulating mitochondrial delta(pH).

  13. Involvement of nitric oxide in learning & memory processes

    PubMed Central

    Paul, Vanaja; Ekambaram, Perumal

    2011-01-01

    Nitric oxide (NO), synthesized from the amino acid, L-arginine by nitric oxide synthase (NOS) has received attention as a neurotransmitter in the brain. NO has been found to induce cognitive behaviour in experimental animals. In order to show evidence for the involvement of NO in learning and memory processes, the reports indicating the effects of its precursor, donors, and inhibitors of its synthesis in mammals, birds, fishes and invertebrates have been reviewed. Further, learning and memory impairment occurring in man and animals due to defective NO activity in the brain due to pathological conditions such as epilepsy, stress, diabetes and side effects of therapeutic agents and reversal of this condition by L-arginine and NO donors have been included. In addition, the reports that indicate ageing-induced impairment of cognition that is known to occur in Alzheimer's disease due to deposition of the toxic protein, beta amyloid and the effect of L-arginine and NO donors in preventing dementia in these patients have been reviewed. PMID:21623030

  14. Diurnal variation of nitric oxide in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Aimedieu, P.; Pirre, M.; Ramaroson, R.; Matthews, W. A.

    1990-01-01

    Two recent measurements of the temporal variation of nitric oxide at constant altitude near 40 km are reported. The observations were made at float altitude with a balloon-borne chemiluminescence detector together with in situ ozone measurements. The first measurement was made at 44 N on September 17, 1987, at an altitude of 40 km from before sunrise until 1000 LT. The second observation was made at the same latitude on June 18, 1988, at 39 km from 0800 to 1230 LT. At an altitude of 40 km, nitric oxide was observed to start increasing very rapidly at sunrise when the solar zenith angle reached about 95 deg. After the rapid initial buildup, the rate of NO increase stabilized for 3 hours at about 1.2 ppbv/hour. Near 1100 LT at 39 km in summer, the NO mixing ratio was observed to become nearly constant. These features of the diurnal variation of NO are in accord with the temporal variation expected from a time-dependent zero-dimensional photochemical model.

  15. Nitric Oxide Is Protective in Listeric Meningoencephalitis of Rats

    PubMed Central

    Remer, K. A.; Jungi, T. W.; Fatzer, R.; Täuber, M. G.; Leib, S. L.

    2001-01-01

    The bacterium Listeria monocytogenes causes meningoencephalitis in humans. In rodents, listeriosis is associated with granulomatous lesions in the liver and the spleen, but not with meningoencephalitis. Here, infant rats were infected intracisternally to generate experimental listeric meningoencephalitis. Dose-dependent effects of intracisternal inoculation with L. monocytogenes on survival and activity were noted; 104 L. monocytogenes organisms induced a self-limiting brain infection. Bacteria invaded the basal meninges, chorioid plexus and ependyme, spread to subependymal tissue and hippocampus, and disappeared by day 7. This was paralleled by recruitment and subsequent disappearance of macrophages expressing inducible nitric oxide synthase (iNOS) and nitrotyrosine accumulation, an indication of nitric oxide (NO⋅) production. Treatment with the spin-trapping agent α-phenyl-tert-butyl nitrone (PBN) dramatically increased mortality and led to bacterial numbers in the brain 2 orders of magnitude higher than in control animals. Treatment with the selective iNOS inhibitor l-N6-(1-iminoethyl)-lysine (L-NIL) increased mortality to a similar extent and led to 1 order of magnitude higher bacterial counts in the brain, compared with controls. The numbers of bacteria that spread to the spleen and liver did not significantly differ among L-NIL-treated, PBN-treated, and control animals. Thus, the infant rat brain is able to mobilize powerful antilisterial mechanisms, and both reactive oxygen and NO⋅ contribute to Listeria growth control. PMID:11349080

  16. Nitric Oxide and Cancer Therapy: The Emperor has NO Clothes

    PubMed Central

    Hickok, Jason R.; Thomas, Douglas D.

    2013-01-01

    The role of nitric oxide (NO·) as a mediator of cancer phenotype has led researchers to investigate strategies for manipulating in vivo production and exogenous delivery of this molecule for therapeutic gain. Unfortunately, NO· serves multiple functions in cancer physiology. In some instances, NO· or nitric oxide synthase (NOS) levels correlate with tumor suppression and in other cases they are related to tumor progression and metastasis. Understanding this dichotomy has been a great challenge for researchers working in the field of NO· and cancer therapy. Due to the unique chemical and biochemical properties of NO·, it’s interactions with cellular targets and the subsequent downstream signaling events can be vastly different based upon tumor heterogeneity and microenvironment. Simple explanations for the vast range of NO-correlated behaviors will continue to produce conflicting information about the relevance of NO· and cancer. Paying considerable attention to the chemical properties of NO· and the methodologies being used will remove many of the discrepancies in the field and allow for in depth understanding of when NO-based chemotherapeutics will have beneficial outcomes. PMID:20236067

  17. Impaired Nitric Oxide Synthase Signaling Dissociates Social Investigation and Aggression

    PubMed Central

    Trainor, Brian C.; Workman, Joanna L.; Jessen, Ruth; Nelson, Randy J.

    2007-01-01

    A combination of social withdrawal and increased aggression is characteristic of several mental disorders. Most previous studies have investigated the neurochemical bases of social behavior and aggression independently, as opposed to how these behaviors are regulated in concert. Neuronal nitric oxide synthase (nNOS) produces gaseous nitric oxide, which functions as a neurotransmitter and is known to affect several types of behavior including mating and aggression. Compared with wild-type mice, we observed that nNOS knockout mice showed reduced behavioral responses to an intruder behind a wire barrier. Similar results were observed in mice treated with the selective nNOS inhibitor 3-bromo-7-nitroindazole (3BrN). In habituation–dishabituation tests, treatment with 3BrN did not block recognition of male urine but did attenuate investigation time compared with oil-treated animals. Finally, nNOS knockout mice and 3BrN treated mice were significantly more aggressive than wild-type and oil-treated males, respectively. In general, these behavioral effects are less pronounced in pair-housed males compared with singly-housed males. Thus, nNOS inhibition results in a phenotype that displays reduced social investigation and increased aggression. These data suggest that further study of nNOS signaling is warranted in mental disorders characterized by social withdrawal and increased aggression. PMID:17469926

  18. The role of nitric oxide in experimental cerulein induced pancreatitis.

    PubMed