Science.gov

Sample records for nitride dielectric thin

  1. Investigation on the dielectric behavior of aluminum nitride thin films at different temperatures applying a time-zero approach

    NASA Astrophysics Data System (ADS)

    Schneider, Michael; Bittner, Achim; Schmid, Ulrich

    2013-05-01

    In MEMS (micro electromechanical system) devices, piezoelectric aluminum nitride (AlN) thin films are commonly used as functional material for sensing and actuating purposes. Additionally, AlN features excellent dielectric properties as well as a high chemical and thermal stability, making it also a good choice for passivation purposes for microelectronic devices. With those aspects and current trends towards minimization in mind, the dielectric reliability of thin AlN films is of utmost importance for the realization of advanced device concepts. In this study, we present results on the transversal dielectric strength of 100 nm AlN thin films deposited by dc magnetron sputtering. The dielectric strength was measured using a time-zero approach, where the film is stressed using a fast voltage ramp up to the point of breakdown. The measurements were performed using different contact pad sizes, different voltage ramping speeds and device temperatures, respectively. In order to achieve statistical significance, at least 12 measurements were performed for each environment parameter set and the results analyzed using the Weibull approach. The results show, that the breakdown field in positive direction rises with the pad size, as expected. Furthermore, lower breakdown fields with increasing temperatures up to 300°C are observed with the mean field to failure following an exponential law typical for temperature activated processes. The activation energy was determined to 27 meV, allowing an estimation of the breakdown field towards even higher temperatures. In negative field direction no breakdown occurred, which is attributed to the metal-insulator-semiconductor configuration of the sample and hence, the larger depletion layer forming in the silicon dominates the observed current behavior.

  2. Infrared Dielectric Properties of Low-stress Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Beall, James A.; Cho, Hsiao-Mei; McAndrew, Brendan; Niemack, Michael D.; Wollack, Edward J.

    2012-01-01

    Silicon nitride thin films play an important role in the realization of sensors, filters, and high-performance circuits. Estimates of the dielectric function in the far- and mid-IR regime are derived from the observed transmittance spectra for a commonly employed low-stress silicon nitride formulation. The experimental, modeling, and numerical methods used to extract the dielectric parameters with an accuracy of approximately 4% are presented.

  3. Scattering from Thin Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Schneider, A.; Lang, R. H.; Carter, H. G.

    1984-01-01

    A solution was obtained for scattering from thin dielectric disks by approximating the currents induced inside the disk with the currents which would exist inside a dielectric slab of the same thickness, orientation and dielectric properties. This approximation reduces to an electrostatic approximation when the disk thickness, T, is small compared to the wavelength of the incident radiation and the approximation yields a conventional physical optics solution when the dimension, A, characteristic of the geometrical cross section of the disk (e.g., the diameter of a circular disk) is large compared to wavelength. When the ratio A/T is sufficiently large the disk will always be in one or the other of these regimes (T lambda or kA1. Consequently, when A/T is large this solution provides a conventional approximation for the scattered fields which can be applied at all frequencies. As a check on this conclusion, a comparison was made between the theoretical and measured radar cross section of thin dielectric disks. Agreement was found for thin disks with both large and small values of kA.

  4. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement.

    PubMed

    Karbassi, A; Ruf, D; Bettermann, A D; Paulson, C A; van der Weide, Daniel W; Tanbakuchi, H; Stancliff, R

    2008-09-01

    We combine a scanning near-field microwave microscope with an atomic force microscope for use in localized thin film dielectric constant measurement, and demonstrate the capabilities of our system through simultaneous surface topography and microwave reflection measurements on a variety of thin films grown on low resistivity silicon substrates. Reflection measurements clearly discriminate the interface between approximately 38 nm silicon nitride and dioxide thin films at 1.788 GHz. Finite element simulation was used to extract the dielectric constants showing the dielectric sensitivity to be Deltaepsilon(r)=0.1 at epsilon(r)=6.2, for the case of silicon nitride. These results illustrate the capability of our instrument for quantitative dielectric constant measurement at microwave frequencies.

  5. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement

    SciTech Connect

    Karbassi, A.; Ruf, D.; Bettermann, A. D.; Paulson, C. A.; Weide, Daniel W. van der; Tanbakuchi, H.; Stancliff, R.

    2008-09-15

    We combine a scanning near-field microwave microscope with an atomic force microscope for use in localized thin film dielectric constant measurement, and demonstrate the capabilities of our system through simultaneous surface topography and microwave reflection measurements on a variety of thin films grown on low resistivity silicon substrates. Reflection measurements clearly discriminate the interface between {approx}38 nm silicon nitride and dioxide thin films at 1.788 GHz. Finite element simulation was used to extract the dielectric constants showing the dielectric sensitivity to be {delta}{epsilon}{sub r}=0.1 at {epsilon}{sub r}=6.2, for the case of silicon nitride. These results illustrate the capability of our instrument for quantitative dielectric constant measurement at microwave frequencies.

  6. Thin dielectric technology and memory devices

    NASA Astrophysics Data System (ADS)

    King, Ya-Chin

    With advances in technology and scaling, silicon Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) based VLSI circuits have remained dominant in data processing and memory applications. Perpetuated by the demand for high-performance and low-cost integrated circuits, the lateral dimensions of the MOSFETs are being aggressively scaled. This in turn demands scaling of the gate oxide thickness as well. Thin gate oxides present both challenges to the modeling and design device of the classical MOSFET and opportunities to explore new device designs and applications. This study investigates the effect of inversion layer quantization on the capacitance and current characteristics of thin-gate-oxide MOS transistors. In addition, this study explores the possibility of employing thin tunnel oxide for new quasi-nonvolatile memory devices. The performance limitation of a thin dielectric floating gate memory device as well as its potential for dynamic memory applications are discussed. An alternative device structure (i.e. charge-trap based memory cells) is examined by the single charge tunneling model governed by Coulomb Blockade theory. Two methods of forming charge storage nodes embedded in the gate dielectric are investigated. The resulting devices are then characterized. The first proposed device contains a charge trapping layer of silicon rich oxide (SRO) for dynamic/non-volatile memory application. This device has a similar structure as a MONOS device with SRO instead of silicon nitride for charge trapping on top of a very thin tunneling oxide (<2nm). Since it uses charge trapped in the oxide to create threshold voltage shift, the SRO memory cell is a non-destructive-read device. A new process of depositing SRO and high temperature oxide (HTO) in a single furnace step is developed to better top the control oxide thickness and improve data retention. This device achieved write and erase speeds comparable to that of a DRAM cell and longer data retention time than

  7. Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets.

    PubMed

    Zhu, Jian; Kang, Joohoon; Kang, Junmo; Jariwala, Deep; Wood, Joshua D; Seo, Jung-Woo T; Chen, Kan-Sheng; Marks, Tobin J; Hersam, Mark C

    2015-10-14

    Gate dielectrics directly affect the mobility, hysteresis, power consumption, and other critical device metrics in high-performance nanoelectronics. With atomically flat and dangling bond-free surfaces, hexagonal boron nitride (h-BN) has emerged as an ideal dielectric for graphene and related two-dimensional semiconductors. While high-quality, atomically thin h-BN has been realized via micromechanical cleavage and chemical vapor deposition, existing liquid exfoliation methods lack sufficient control over h-BN thickness and large-area film quality, thus limiting its use in solution-processed electronics. Here, we employ isopycnic density gradient ultracentrifugation for the preparation of monodisperse, thickness-sorted h-BN inks, which are subsequently layer-by-layer assembled into ultrathin dielectrics with low leakage currents of 3 × 10(-9) A/cm(2) at 2 MV/cm and high capacitances of 245 nF/cm(2). The resulting solution-processed h-BN dielectric films enable the fabrication of graphene field-effect transistors with negligible hysteresis and high mobilities up to 7100 cm(2) V(-1) s(-1) at room temperature. These h-BN inks can also be used as coatings on conventional dielectrics to minimize the effects of underlying traps, resulting in improvements in overall device performance. Overall, this approach for producing and assembling h-BN dielectric inks holds significant promise for translating the superlative performance of two-dimensional heterostructure devices to large-area, solution-processed nanoelectronics. PMID:26348822

  8. Titanium nitride thin films for minimizing multipactoring

    DOEpatents

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  9. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  10. Anisotropic Dielectric Breakdown of Hexagonal Boron Nitride Film

    NASA Astrophysics Data System (ADS)

    Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke

    Hexagonal boron nitride (h-BN) is considered as ideal substrate for 2D material devises. However, the reliability of insulating properties of h-BN itself has not been clarified yet. In this study, the anisotropic dielectric breakdown of h-BN is studied. We have found that the dielectric breakdown in c axis direction using a conductive atomic force microscope proceeded in the layer-by-layer manner. The obtained dielectric field strength was ~12 MV/cm, which is comparable to the conventional SiO2. On the other hand, to estimate the dielectric field strength in a direction perpendicular to c axis, voltage is applied to a relatively thick h-BN (10-60 nm) through Cr/Au electrodes fabricated on the h-BN. We realized that the absorbed water on h-BN significantly affect the IV characters and the breakdown voltage. After the adsorbed water was removed by the heating in vacuum, the dielectric field strength was determined to be ~3 MV/cm, which is the same order as that in c axis direction. This value could be increased when we consider the effect of electric field concentration around the metal electrode. Although the large difference in dielectric filed strength for two directions was initially expected due to the highly-anisotropic layered structure with the van der Waals bonding, it was not the case because the sp2 bonding should be broken for dielectric breakdown regardless of its direction. This research was supported by Grants-in-Aid for Scientific Research on Innovative Areas and for Research Activity Start-up by MEXT, Japan.

  11. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    SciTech Connect

    Zhong, B.; Tang, X.H.; Huang, X.X.; Xia, L.; Zhang, X.D.; Wang, C.J.; Wen, G.W.

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  12. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-01

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc2(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  13. Low temperature aluminum nitride thin films for sensory applications

    NASA Astrophysics Data System (ADS)

    Yarar, E.; Hrkac, V.; Zamponi, C.; Piorra, A.; Kienle, L.; Quandt, E.

    2016-07-01

    A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d33,f) increased from 2.30 ± 0.32 pm/V up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ɛr) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e31,f|) of 1.39 ± 0.01 C/m2 was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.

  14. X-ray reflectivity studies of ultra-thin gate dielectrics

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Ji, Sung-Dae; Lee, Ki-Bong; Youn, Sang-Bae; Park, J.-C.; Choi, H. M.; Wang, Jun

    2000-03-01

    X-ray reflectivity curves were measured using synchrotron radiation to characterize nanometer-thick dielectric thin films such as silicon-oxynitrides and Ta2O5. Penetrating x-rays enabled us to probe oxide layers buried under poly-silicon electrodes. Changes in x-ray reflectivity curves of the dielectrics due to nitridation and annealing processes were clearly observed. Depth-profiles of densities in the ultra-thin dielectics were estimated from analysis on these curves, and the results will be presented.

  15. Thin film dielectric microstrip kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; Sank, Daniel; McHugh, Sean; Lucero, Erik A.; Merrill, Andrew; Gao, Jiansong; Pappas, David; Moore, David; Zmuidzinas, Jonas

    2010-03-01

    Microwave kinetic inductance detectors, or MKIDs, are a type of low temperature detector that exhibit intrinsic frequency domain multiplexing at microwave frequencies. We present the first theory and measurements on a MKID based on a microstrip transmission line resonator. A complete characterization of the dielectric loss and noise properties of these resonators is performed, and agrees well with the derived theory. A competitive noise equivalent power of 5×10-17 W Hz-1/2 at 10 Hz has been demonstrated. The resonators exhibit the highest quality factors known in a microstrip resonator with a deposited thin film dielectric.

  16. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-06-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

  17. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    PubMed Central

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-01-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator. PMID:27325155

  18. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric.

    PubMed

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-01-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator. PMID:27325155

  19. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  20. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  1. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    SciTech Connect

    Tay, Roland Yingjie; Tsang, Siu Hon; Loeblein, Manuela; Chow, Wai Leong; Loh, Guan Chee; Toh, Joo Wah; Ang, Soon Loong; Teo, Edwin Hang Tong

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  2. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride.

    PubMed

    Kischkat, Jan; Peters, Sven; Gruska, Bernd; Semtsiv, Mykhaylo; Chashnikova, Mikaela; Klinkmüller, Matthias; Fedosenko, Oliana; Machulik, Stephan; Aleksandrova, Anna; Monastyrskyi, Gregorii; Flores, Yuri; Masselink, W Ted

    2012-10-01

    The complex refractive index components, n and k, have been studied for thin films of several common dielectric materials with a low to medium refractive index as functions of wavelength and stoichiometry for mid-infrared (MIR) wavelengths within the range 1.54-14.29 μm (700-6500 cm(-1)). The materials silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, and titanium oxide are prepared using room temperature reactive sputter deposition and are characterized using MIR variable angle spectroscopic ellipsometry. The investigation shows how sensitive the refractive index functions are to the O2 and N2 flow rates, and for which growth conditions the materials deposit homogeneously. It also allows conclusions to be drawn on the degree of amorphousness and roughness. To facilitate comparison of the materials deposited in this work with others, the index of refraction was also determined and provided for the near-IR and visible ranges of the spectrum. The results presented here should serve as a useful information base for designing optical coatings for the MIR part of the electromagnetic spectrum. The results are parameterized to allow them to be easily used for coating design.

  3. Hydrogen ion diffusion coefficient of silicon nitride thin films

    NASA Astrophysics Data System (ADS)

    Yu, George T.; Yen, S. K.

    2002-12-01

    Hydrogen ion diffusion in silicon nitride thin film is of significant interest because of its importance in barrier, sensor and catalytic coating applications. In this study, a novel method based on potential-pH response measurement was used to determine hydrogen ion diffusion in silicon nitride thin films. Hydrogen ion diffusion coefficient in silicon nitride films obtained from this method was 1×10 -19 cm 2/s. A potential-pH response drift was observed and is believed to be due to the presence of a hydrated layer affecting the hydrogen ion diffusion onto the nitride film of the Si 3N 4-gate hydrogen ion-sensitive field effect transistors (ISFETs). The unique feature of the potential-pH response method is its relatively simple experimental procedure, which eliminates complications arising from surface-related effects and/or presence of hydrogen traps in membrane, such as those found in the conventional permeation method. The method also offers a considerable test time reduction, with the experiment being completed in 10 h as compared to the conventional electrochemical permeation method which takes as long as 5 days.

  4. Grafting titanium nitride surfaces with sodium styrene sulfonate thin films.

    PubMed

    Zorn, Gilad; Migonney, Véronique; Castner, David G

    2014-09-01

    The importance of titanium nitride lies in its high hardness and its remarkable resistance to wear and corrosion, which has led to its use as a coating for the heads of hip prostheses, dental implants and dental surgery tools. However, the usefulness of titanium nitride coatings for biomedical applications could be significantly enhanced by modifying their surface with a bioactive polymer film. The main focus of the present work was to graft a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film from titanium nitride surfaces via a two-step procedure: first modifying the surface with 3-methacryloxypropyltrimethoxysilane (MPS) and then grafting the pNaSS film from the MPS modified titanium through free radical polymerization. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used after each step to characterize success and completeness of each reaction. The surface region of the titanium nitride prior to MPS functionalization and NaSS grafting contained a mixture of titanium nitride, oxy-nitride, oxide species as well as adventitious surface contaminants. After MPS functionalization, Si was detected by XPS, and characteristic MPS fragments were detected by ToF-SIMS. After NaSS grafting, Na and S were detected by XPS and characteristic NaSS fragments were detected by ToF-SIMS. The XPS determined thicknesses of the MPS and NaSS overlayers were ∼1.5 and ∼1.7 nm, respectively. The pNaSS film density was estimated by the toluidine blue colorimetric assay to be 260 ± 70 ng/cm(2).

  5. Growth and characterization of laser ablated boron nitride thin films

    SciTech Connect

    Wu, Z.L.; Villanueva, S.; Padmanabhan, K.R.

    1995-12-31

    Recent work is reported on the growth and characterization of boron nitride thin films on 1 cm{sup 2} Si (100) substrates by a newly developed reactive laser ablation technique. The exact nature of the resulting films is highly process dependent and is analyzed by ion channeling and Fourier transform infrared spectroscopy (FTIR). The thermal properties of these films are studied by thermal wave analysis, and they are found to be highly dependent on the crystallographic structure. The hetroepitaxial cBN films show high thermal conductivity, and a value of 9.5 W/cm-K has been measured. This value is believed to be the best thermal conductivity measured for boron nitride films to date.

  6. Crystallographic texture in cubic boron nitride thin films

    SciTech Connect

    Medlin, D.L.; Friedmann, T.A.; Mirkarimi, P.B.; Cardinale, G.F.; McCarty, K.F.

    1996-04-01

    We examine the crystallographic texture exhibited by cubic boron nitride (cBN) in thin films grown by ion-assisted deposition. Our analysis indicates that the cBN is preferentially oriented such that individual crystallites have at least one [111] direction lying in the plane of the film but are otherwise randomly oriented about (1) the substrate normal and (2) the in-plane cBN [111] axis. This preferential orientation is consistent with an alignment between the cBN {l_brace}111{r_brace} planes and the basal planes of the layer of highly oriented graphitic boron nitride that forms in the initial stages of film growth. {copyright}{ital 1996 American Institute of Physics.}

  7. First-principles investigation of band offsets and dielectric properties of Silicon-Silicon Nitride interfaces

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Anh; Li, Tianshu; Gygi, Francois; Galli, Giulia

    2011-03-01

    Silicon Nitride (Si3N4) is a possible candidate material to replace or be alloyed with SiO2 to form high-K dielectric films on Si substrates, so as to help prevent leakage currents in modern CMOS transistors. Building on our previous work on dielectric properties of crystalline and amorphous Si3N4 slabs, we present an analysis of the band offsets and dielectric properties of crystalline-Si/amorphous Si3N4 interfaces based on first principles calculations. We discuss shortcomings of the conventional bulk-plus line up approach in band offset calculations for systems with an amorphous component, and we present the results of band offsets obtained from calculations of local density of states. Finally, we describe the role of bonding configurations in determining band edges and dielectric constants at the interface. We acknowledge financial support from Intel Corporation.

  8. Dynamic Properties of Dielectric Susceptibility in Ferroelectric Thin Films

    NASA Astrophysics Data System (ADS)

    Cui, Lian; Cui, Haiying; Wu, Chunmei; Yang, Guihua; He, Zelong; Wang, Yuling; Che, Jixin

    2016-02-01

    In this paper, frequency, temperature, film thickness, surface effects, and various parameters dependence of dielectric susceptibility is investigated theoretically for ferroelectric thin films by the modified Landau theory under an AC applied field. The dielectric susceptibility versus AC applied field shows butterfly-shaped behavior, and depends strongly on the frequency and amplitude of the field and temperature. Our study shows that the existence of the surface transition layer can depress the dielectric susceptibility of a ferroelectric thin film. These results are well consistent with the phenomena reported in experiments.

  9. Dielectric properties of KDP filled porous alumina nanocomposite thin films.

    PubMed

    Boni, O; Berger, S

    2001-12-01

    A new concept of a composite dielectric thin film fabrication is presented. The fabrication process consists of two stages. The first stage is anodizing a thin aluminum film to produce a porous alumina film that contains an array of nanometer sized parallel pores. The second stage is filling the pores with a saturated KDP (KH2PO4) liquid solution due to capillary forces. After drying KDP nanocrystals are formed inside the pores. This process results in a formation of a composite dielectric thin film composed of the alumina pores walls as one dielectric material and the KDP nanocrystals inside the pores as another dielectric material. The dielectric permittivity of this composite film is higher than that of the porous alumina film at all applied frequencies. The dielectric enhancement is more pronounced at low frequencies due to an interface polarization mechanism. This fabrication process enables controlling the size, composition, and microstructure of the composite dielectric film constituents and thus changing its dielectric properties over a wide range of values.

  10. Low-temperature silicon nitride for thin-film electronics on polyimide foil substrates

    NASA Astrophysics Data System (ADS)

    Gleskova, H.; Wagner, S.; Gašparík, V.; Kováč, P.

    2001-05-01

    We optimized silicon nitride (SiN x) layers, deposited by 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) at 150°C, to provide a high quality gate dielectric layer for the amorphous silicon thin film technology on polyimide foils. The layers were deposited from mixtures of silane, ammonia, and hydrogen. We varied the H 2 flow rate from 55 to 220 sccm and the rf power from 5 to 50 W, while the pressure was kept at 500 mTorr and the ratio of ammonia to silane flow at 10:1. The best film was obtained from the gas composition of SiH 4:NH 3:H 2=1:10:44 and the rf power of ˜20 W. This film grows at the rate of 1.5 Å/s, has a refractive index n=1.80, a dielectric constant ɛ=7.46, a dielectric breakdown field >3.4 MV/cm, a Si/N ratio of ˜0.67, and a hydrogen content of ˜2×10 22 cm -3, and etches in 10:1 buffered HF at a rate of 61 Å/s.

  11. Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tari, Alireza; Lee, Czang-Ho; Wong, William S.

    2015-07-01

    Bottom-gate thin-film transistors were fabricated by depositing a 50 nm InGaZnO (IGZO) channel layer at 150 °C on three separate gate dielectric films: (1) thermal SiO2, (2) plasma-enhanced chemical-vapor deposition (PECVD) SiNx, and (3) a PECVD SiOx/SiNx dual-dielectric. X-ray photoelectron and photoluminescence spectroscopy showed the Vo concentration was dependent on the hydrogen concentration of the underlying dielectric film. IGZO films on SiNx (high Vo) and SiO2 (low Vo) had the highest and lowest conductivity, respectively. A PECVD SiOx/SiNx dual-dielectric layer was effective in suppressing hydrogen diffusion from the nitride layer into the IGZO and resulted in higher resistivity films.

  12. Studies of silicon carbide and silicon carbide nitride thin films

    NASA Astrophysics Data System (ADS)

    Alizadeh, Zhila

    Silicon carbide semiconductor technology is continuing to advance rapidly. The excellent physical and electronic properties of silicon carbide recently take itself to be the main focused power device material for high temperature, high power, and high frequency electronic devices because of its large band gap, high thermal conductivity, and high electron saturation drift velocity. SiC is more stable than Si because of its high melting point and mechanical strength. Also the understanding of the structure and properties of semiconducting thin film alloys is one of the fundamental steps toward their successful application in technologies requiring materials with tunable energy gaps, such as solar cells, flat panel displays, optical memories and anti-reflecting coatings. Silicon carbide and silicon nitrides are promising materials for novel semiconductor applications because of their band gaps. In addition, they are "hard" materials in the sense of having high elastic constants and large cohesive energies and are generally resistant to harsh environment, including radiation. In this research, thin films of silicon carbide and silicon carbide nitride were deposited in a r.f magnetron sputtering system using a SiC target. A detailed analysis of the surface chemistry of the deposited films was performed using x-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy whereas structure and morphology was studied atomic force microscopy (AFM), and nonoindentation.

  13. Electron field emission from boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Encarnacion, Pedro Aron

    A systematic study of electron field emission from boron nitride thin films is presented, establishing nanostructured thin film cubic boron nitride (cBN) as a robust and chemically inert material with a low effective workfunction, able to sustain electron emission in a space plasma environment. RHEED data shows the films as polycrystalline, composed of partially oriented crystallites of cBN with predominantly (001) crystallographic texture relative to the Si substrate. FTIR data showed our films to be overwhelmingly cBN, with a volume fraction greater than 75%. AFM images show nanostructures relevant to field enhancement, with a mean feature height of 79 nm, mean RMS roughness of 19 nm, average grain size of 155 nm2 +/- 84 nm2, and a mean feature radius of ˜7 nm. The results are discussed in the light of current theoretical models for electron field emission, including particulars relevant to semiconductors and nanostructured surfaces. Electron emission thresholds were measured from under 1V/mum up to just under 20V/mum in vacuum. Voltage sweep measurements were made both in vacuo and in various gas environments relevant to space applications. Repeatability of emission results was demonstrated, albeit with indications of threshold shifts, possibly due to desorption of adsorbate impurities. Time dependence measurements at constant extraction field show stable field emission over periods of extended operation. An effective barrier height ow of approximately 9.3 meV for the as-grown cBN thin films is measured, based on the application of the generalised Fowler-Nordheim theory to the electron field emission measurements, and employing a model of the film surface as an ensemble of self-assembled protruberances in the shape of prolate half ellipsoids of revolution on a flat surface. To our knowledge, this is the first experimental determination of this important parameter for cBN films. It appears that the low value of o w measured for cBN is a direct consequence of the

  14. Electro-optic and magneto-dielectric properties of multifunctional nitride and oxide materials

    NASA Astrophysics Data System (ADS)

    Dixit, Ambesh

    Materials that simultaneously exhibit different physical properties provide a rich area of research leading to the development of new devices. For example, materials having a strong coupling between charge and spin degrees of freedom are essential to realizing a new class of devices referred to generally as spintronics. However, these multifunctional systems pose new scientific challenges in understanding the origin and mechanisms for cross-control of different functionalities. The core of this Ph.D. dissertation deals with multifunctional nitride and oxide compound semiconductors as well as multiferroic magnetic oxide systems by investigating structural, optical, electrical, magnetic, magnetodielectric and magnetoelectric properties. Thin films of InN nitride compound semiconductors and closely related alloys have been investigated to understand the effects of intrinsic defects on the materials properties while considering possible applications of highly degenerate InN thin films. As grown rf sputtered InN films on c-axis (0001) sapphire exhibit highly degenerate n-type behaviour due to oxygen defects introduced during growth. The effect of oxygen in InN matrix has been further investigated by intentionally adding oxygen into the films. These studies confirm that oxygen is one of the main sources of donor electrons in degenerate InN. Above some critical concentration of oxygen, secondary phases of In 2O3 and In-O-N complexes were formed. It was also possible to tune the carrier concentration to produce changes in the plasmon frequency, which varied from 0.45 eV to 0.8 eV. This characteristic energy scale suggests that these highly degenerate InN thin films could be used for thermophotovoltaic cells, optical filters, and other IR electro-optic applications. To probe the magnetism in transition metal doped InN system, In 0.98Cr0.02N and In0.95Cr0.05N thin films were fabricated. Our results suggest that these films develop ferromagnetic order above room temperature

  15. Tunable surface plasmon resonances in sputtered titanium nitride thin films

    NASA Astrophysics Data System (ADS)

    Shankernath, V.; Naidu, K. Lakshun; Krishna, M. Ghanashyam; Padmanabhan, K. A.

    2016-05-01

    Thin films of titanium nitride were deposited on alpha-brass and gold electroplated brass (GCB) substrates by DC reactive magnetron sputtering at different N2 partial pressures (10%, 50% and 100 %). The measured specular reflectance spectra of the films indicate the existence of surface plasmon resonance peaks whose positions are dependent on the substrate and nitrogen pressure during deposition. In the case of films on brass, the SPR (surface plasmon resonance) is centered around 600, 550 and 510 nm at 10,50 and 100% Nitrogen. In contrast, the SPR occurs at 510 nm for the films deposited at 10% and 50% nitrogen which red shifts to 570 nm for the film deposited in 100% nitrogen. The observed behavior is correlated with morphology, microstructure and structure of the films.

  16. Technique for measuring the dielectric constant of thin materials

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Ulaby, F. T.

    1988-01-01

    A practical technique for measuring the dielectric constant of vegetation leaves and similarly thin materials is presented. A rectangular section of the leaf is placed in the tranverse plane in a rectangular waveguide and the magnitude and phase of the reflection coefficient are measured over the desired frequency band using a vector network analyzer. By treating the leaf as an infinitesimally thin resistive sheet, an explicit expression for its dielectric constant is obtained in terms of the reflection coefficient. Because of the thin-sheet approximation, however, this approach is valid only at frequencies below 1.5 GHz. To extend the technique to higher frequencies, higher order approximations are derived and their accuracies are compared to the exact dielectric-slab solution. For a material whose thickness is 0.5 mm or less, the proposed technique was found to provide accurate values of its dielectric constant up to frequencies of 12 GHz or higher. The technique was used to measure the 8 to 12 GHz dielectric spectrum for vegetation leaves, teflon and rock samples.

  17. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  18. Spotting 2D atomic layers on aluminum nitride thin films.

    PubMed

    Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan

    2015-10-23

    Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

  19. Dielectric properties of inorganic fillers filled epoxy thin film

    SciTech Connect

    Norshamira, A. Mariatti, M.

    2015-07-22

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe{sub 2}O{sub 3}) and Titanium Dioxide (TiO{sub 2}) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.

  20. Spectroscopic studies of refractory and dielectric thin films

    SciTech Connect

    Truong, C.M.

    1993-01-01

    This work demonstrated the application of the techniques and methodology of surface science to investigate the mechanisms of thin film deposition processes on solid surfaces. The synthesis of boron nitride (BN) thin films was studied using X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). In this model system, diborane (B[sub 2]H[sub 6]), ammonia (NH[sub 3]) and hydrazine (N[sub 2]H[sub 4]) were used as precursors to deposit BN thin films on a clean Ru(0001) surface. The result showed that ammonia reaction with diborane yielded only boron-rich boron nitride overlayers. However, stoichiometric BN films in excess of one monolayer could be produced when hydrazine was substituted for ammonia. The effects of oxygen on boron-rich and stoichiometric boron-nitrogen films were also examined. In the second part of this work, high resolution electron energy loss spectroscopy (HREELS) was used to characterize defect centers in MgO and in lithium-doped MgO thin films. The HREELS results showed that MgO thin films grown on Mo(100) were nearly defect-free at temperatures up to 1100 K. HREELS measurements indicated that annealings to higher temperatures induced F-type defect centers in the MgO films. The formation of [Li[sup +]O[sup [minus

  1. Dielectric Engineering of a Boron Nitride/Hafnium Oxide Heterostructure for High-Performance 2D Field Effect Transistors.

    PubMed

    Zou, Xuming; Huang, Chun-Wei; Wang, Lifeng; Yin, Long-Jing; Li, Wenqing; Wang, Jingli; Wu, Bin; Liu, Yunqi; Yao, Qian; Jiang, Changzhong; Wu, Wen-Wei; He, Lin; Chen, Shanshan; Ho, Johnny C; Liao, Lei

    2016-03-01

    A unique design of a hexagonal boron nitride (h-BN)/HfO2 dielectric heterostructure stack is demonstrated, with few-layer h-BN to alleviate the surface optical phonon scattering, followed by high-κ HfO2 deposition to suppress Coulombic impurity scattering so that high-performance top-gated two-dimensional semiconductor transistors are achieved. Furthermore, this dielectric stack can also be extended to GaN-based transistors to enhance their performance.

  2. Electron transport and dielectric breakdown in silicon nitride using a charge transport model

    NASA Astrophysics Data System (ADS)

    Ogden, Sean P.; Lu, Toh-Ming; Plawsky, Joel L.

    2016-10-01

    Silicon nitride is an important material used in the electronics industry. As such, the electronic transport and reliability of these materials are important to study and understand. We report on a charge transport model to predict leakage current and failure trends based on previously published data for a stoichiometric silicon nitride dielectric. Failure occurs when the defect density increases to a critical value of approximately 6 × 1025 traps/m3. The model's parameters are determined using voltage ramp data only, and yet, the model is also able to predict constant voltage stress failure over a time scale ranging from minutes to months. The successful fit of the model to the experimental data validates our assumption that the dominant defect in the dielectric is the Si dangling bond, located approximately 2.2 eV below the conduction band. A comparison with previous SiCOH simulations shows SiN and SiCOH have similar defect-related material properties. It is also speculated that, based on the estimated parameter values of 2.75 eV for the defect formation activation energy, the materials' TDDB wear-out are caused by broken Si-H bonds, resulting in Si dangling bond defects.

  3. Residual ferroelectricity in barium strontium titanate thin film tunable dielectrics

    SciTech Connect

    Garten, L. M. Trolier-McKinstry, S.; Lam, P.; Harris, D.; Maria, J.-P.

    2014-07-28

    Loss reduction is critical to develop Ba{sub 1−x}Sr{sub x}TiO{sub 3} thin film tunable microwave dielectric components and dielectric energy storage devices. The presence of ferroelectricity, and hence the domain wall contributions to dielectric loss, will degrade the tunable performance in the microwave region. In this work, residual ferroelectricity—a persistent ferroelectric response above the global phase transition temperature—was characterized in tunable dielectrics using Rayleigh analysis. Chemical solution deposited Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films, with relative tunabilities of 86% over 250 kV/cm at 100 kHz, demonstrated residual ferroelectricity 65 °C above the ostensible paraelectric transition temperature. Frequency dispersion observed in the dielectric temperature response was consistent with the presence of nanopolar regions as one source of residual ferroelectricity. The application of AC electric field for the Rayleigh analysis of these samples led to a doubling of the dielectric loss for fields over 10 kV/cm at room temperature.

  4. Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films

    SciTech Connect

    Nguyen, P. D.; Sunding, M. F.; Vestland, L. O.; Finstad, T. G.; Olsen, A.; Kepaptsoglou, D. M.; Ramasse, Q. M.

    2012-10-01

    The atomic structure and optical properties of Si-rich silicon nitride thin films have been for decades the subject of intense research, both theoretically and experimentally. It has been established in particular that modifying the chemical composition of this material (e.g., the Si excess concentration) can lead to dramatic differences in its physical, optical, and electrical properties. The present paper reports on how the incorporation of oxygen into silicon nitride networks influences their chemical bonding and photoluminescence properties. Here, by using a combination of analytical scanning transmission electron microscopy and x-ray photoelectron spectroscopy it is demonstrated that the structure of Si-rich silicon nitride with low O content can be described by the co-existence of Si nanocrystals in a Si{sub 3}N{sub 4} matrix, with occasional localized nano-regions of a Si{sub 2}ON{sub 2} phase, depending on the amount of excess Si. Furthermore, it is shown that the structure of silicon nitride with high O content can be adequately described by a so-called random bonding model, according to which the material consists in bonded networks of randomly distributed tetrahedral SiO{sub x}N{sub 4-x} (where x = 0, 1, 2, 3, and 4). Photoluminescence measurements indicate that the effect of O is to introduce a gap state in the band gap of Si{sub 3}N{sub 4} matrix. When a large amount of O is introduced, on the other hand, the photoluminescence measurements are in agreement with a shifted conduction band minimum in the dielectric. For both cases (high and low O content), Si dangling bonds were found to give rise to the deep level in the band gap of the nitride matrix, causing the dominant emission band in the photoluminescence of the films.

  5. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Zambrano, G.; Aperador, W.; Escobar-Alarcon, L.; Camps, E.

    2011-10-01

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N 2 gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 °C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  6. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices.

    PubMed

    Kim, Ki Kang; Hsu, Allen; Jia, Xiaoting; Kim, Soo Min; Shi, Yumeng; Dresselhaus, Mildred; Palacios, Tomas; Kong, Jing

    2012-10-23

    Hexagonal boron nitride (h-BN) is a promising material as a dielectric layer or substrate for two-dimensional electronic devices. In this work, we report the synthesis of large-area h-BN film using atmospheric pressure chemical vapor deposition on a copper foil, followed by Cu etching and transfer to a target substrate. The growth rate of h-BN film at a constant temperature is strongly affected by the concentration of borazine as a precursor and the ambient gas condition such as the ratio of hydrogen and nitrogen. h-BN films with different thicknesses can be achieved by controlling the growth time or tuning the growth conditions. Transmission electron microscope characterization reveals that these h-BN films are polycrystalline, and the c-axis of the crystallites points to different directions. The stoichiometry ratio of boron and nitrogen is close to 1:1, obtained by electron energy loss spectroscopy. The dielectric constant of h-BN film obtained by parallel capacitance measurements (25 μm(2) large areas) is 2-4. These CVD-grown h-BN films were integrated as a dielectric layer in top-gated CVD graphene devices, and the mobility of the CVD graphene device (in the few thousands cm(2)/(V·s) range) remains the same before and after device integration. PMID:22970651

  7. Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.

    PubMed

    Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.

  8. Hysteresis free carbon nanotube thin film transistors comprising hydrophobic dielectrics

    NASA Astrophysics Data System (ADS)

    Lefebvre, J.; Ding, J.; Li, Z.; Cheng, F.; Du, N.; Malenfant, P. R. L.

    2015-12-01

    We present two examples of carbon nanotube network thin film transistors with strongly hydrophobic dielectrics comprising either Teflon-AF or a poly(vinylphenol)/poly(methyl silsesquioxane) (PVP/pMSSQ) blend. In the absence of encapsulation, bottom gated transistors in air ambient show no hysteresis between forward and reverse gate sweep direction. Device threshold gate voltage and On-current present excellent time dependent stability even under dielectric stress. Furthermore, threshold gate voltage for hole conduction is negative upon device encapsulation with PVP/pMSSQ enabling much improved current On/Off ratio at 0 V. This work addresses two major challenges impeding solution based fabrication of relevant thin film transistors with printable single-walled carbon nanotube channels.

  9. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites.

    PubMed

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m(-2) and 0.9±0.1 C m(-2), for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

  10. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites

    PubMed Central

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m-2 and 0.9±0.1 C m-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported. PMID:26193701

  11. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites.

    PubMed

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m(-2) and 0.9±0.1 C m(-2), for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported. PMID:26193701

  12. The effect of dielectric properties of sintering additives on microwave sintered silicon nitride ceramics.

    PubMed

    Chockalingam, Sreekumar; George, Jacob; Earl, David; Amarakoon, Vasantha R W

    2008-01-01

    Silicon nitride requires the use of susceptive additives for microwave liquid phase sintering due to the material's low dielectric loss. In this article, we report the effect of complex dielectric properties of two compositions of sintering aids on 2.45 GHz microwave sintered Si3N4 with respect to power absorption, temperature distribution and densification behavior. The temperature dependent dielectric properties were measured from 25 degrees C to 1400 degrees C using a conventional cavity perturbation technique. Finite Difference Time Domain (FDTD) electromagnetic simulations coupled with a thermal solver was used to predict the microwave power absorption and the corresponding temperature evolution inside the samples. The additive with higher dielectric loss (4 wt% MgO, 6 wt% Y2O3 and 2.5 wt% ZrO2) produces a greater sintered density than the lower loss additive (4 wt% MgO and 6 wt% Y2O3) or pure Si3N4. Although microwave loss at temperatures below 600 degrees C is insignificant with or without the additives, the loss begins to increase at higher temperatures when the additives are present and has a strong upward trend above 1000 degrees C. Above 1200 degrees C the sample containing ZrO2 exhibited the greatest loss. Numerical simulations at the peak sintering temperature show greater microwave power absorption and higher temperature in the sample with the highest loss additive. The simulation results correlate to the difference in densification behavior observed. The simulation was also useful because the material temperature was not accurately provided by optical pyrometer measurements of the crucible sample holder.

  13. The effect of dielectric properties of sintering additives on microwave sintered silicon nitride ceramics.

    PubMed

    Chockalingam, Sreekumar; George, Jacob; Earl, David; Amarakoon, Vasantha R W

    2008-01-01

    Silicon nitride requires the use of susceptive additives for microwave liquid phase sintering due to the material's low dielectric loss. In this article, we report the effect of complex dielectric properties of two compositions of sintering aids on 2.45 GHz microwave sintered Si3N4 with respect to power absorption, temperature distribution and densification behavior. The temperature dependent dielectric properties were measured from 25 degrees C to 1400 degrees C using a conventional cavity perturbation technique. Finite Difference Time Domain (FDTD) electromagnetic simulations coupled with a thermal solver was used to predict the microwave power absorption and the corresponding temperature evolution inside the samples. The additive with higher dielectric loss (4 wt% MgO, 6 wt% Y2O3 and 2.5 wt% ZrO2) produces a greater sintered density than the lower loss additive (4 wt% MgO and 6 wt% Y2O3) or pure Si3N4. Although microwave loss at temperatures below 600 degrees C is insignificant with or without the additives, the loss begins to increase at higher temperatures when the additives are present and has a strong upward trend above 1000 degrees C. Above 1200 degrees C the sample containing ZrO2 exhibited the greatest loss. Numerical simulations at the peak sintering temperature show greater microwave power absorption and higher temperature in the sample with the highest loss additive. The simulation results correlate to the difference in densification behavior observed. The simulation was also useful because the material temperature was not accurately provided by optical pyrometer measurements of the crucible sample holder. PMID:19227072

  14. Monolayer-level controlled incorporation of nitrogen in ultra-thin gate dielectrics using remote plasma processing

    NASA Astrophysics Data System (ADS)

    Niimi, Hiroaki

    A low thermal budget approach to monolayer-level controlled incorporation of nitrogen in ultra-thin gate dielectrics using remote plasma processing is discussed. Incorporation of nitrogen at the Si-SiO2 interface, 'N-O' structure, is achieved by 300°C O2/He remote plasma assisted oxidation of the Si surface followed by N2/He remote plasma nitridation at 0.3 Torr. Secondary ion mass spectroscopy (SIMS) showed that the interfacial nitrogen concentration was linearly proportional to the N2/He plasma exposure time. One monolayer of nitrogen, ˜ 7 x 1014 cm-2, at the Si-SiO 2 interface was achieved by the 90-second N2/He plasma nitridation. This monolayer of nitrogen at the interface reduced leakage currents in Fowler-Nordheim (F-N) and direct tunneling regimes. Core-level photoemission spectroscopy (PES) revealed that the post-oxidation nitridation reduced sub-oxide densities at the interface. This interfacial 'modification' contributed to the reduction of tunneling currents. Incorporation of nitrogen on the top surface of oxide, 'O-N' structure, is achieved by 300°C N2/He remote plasma nitridation of the bulk oxide at 0.1 Torr. SIMS data showed the nitrogen was confined only at the top surface of oxide. This top surface 'nitrided' layer suppressed boron diffusion from boron doped p+ poly-Si gate-electrodes. Thus, combining interfacial and top surface nitridation processes, ' N-O-N' structure, reduced leakage currents and prevented boron diffusion, so that this combination is applicable for advanced symmetric complementary metal-oxide-semiconductor (CMOS) technology.

  15. The influence of substrate temperature on the tribo- mechanical properties of chromium nitride thin films

    NASA Astrophysics Data System (ADS)

    Merie, V. V.; Negrea, G.; Modi, E.

    2016-08-01

    Different nitrides such as titanium nitride, chromium nitride and so on are used in a widespread range of applications such as cutting tools, medical implants, and microelectromechanical devices and all that due to their mechanical, physical and chemical properties. The aim of this study is to obtain chromium nitride thin films and to characterize them by atomic force microscopy investigations. The chromium nitride thin films were deposited by reactive magnetron sputtering on silicon substrates. During the deposition process, the discharge current, the argon and nitrogen flows, the pressure inside the chamber and the deposition time were kept constant. A chromium target with a purity of 99.95 % was used. Some of the films were deposited after a chromium buffer layer was previously deposited on the silicon substrate. The deposition was carried out when substrate temperature was at room temperature, at 300 and 500°C respectively. Once the films were deposited, atomic force microscopy investigations were performed in order to emphasize the influence of the substrate temperature on the topographical, mechanical and tribological characteristics. The results pointed out an important influence of the substrate temperature on topographical, mechanical and tribological properties of the investigated chromium nitride thin films.

  16. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric.

    PubMed

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-01-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm(2) V(-1) sec(-)1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 10(4)), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process. PMID:27184121

  17. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    PubMed Central

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-01-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V−1 sec−1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process. PMID:27184121

  18. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    NASA Astrophysics Data System (ADS)

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-05-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V‑1 sec‑1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process.

  19. Electron beam curing of thin film polymer dielectrics

    NASA Astrophysics Data System (ADS)

    Manepalli, Rahul Nagaraj

    2000-10-01

    Thin film polymer dielectrics are widely used in the microelectronics industry for a variety of applications. In order to be used for these applications, polymers are required to have excellent dielectric, chemical and mechanical properties with dimensional stability at high temperatures. Typically, these polymers are solvent cast onto the desired substrate and a cure process involving treatment at high temperatures for several hours is necessary to chemically cure the film. In this study, a novel cure technique involving electron beam exposure of polymer dielectrics is investigated. It is proposed to replace the long, conventional thermal cure cycle with a shorter, electron beam cure process. Five commercially available and commonly used polymer dielectrics are chosen for this study. The polymers chosen comprise a variety of different backbone chemistries, (polyimides, benzocyclobutene and polynorbornene) which encompass the classes of materials presently used in the microelectronics industry. The electrical, mechanical and optical properties in the film are characterized and correlated to the electron beam dose. Chemical changes in film are examined through FTIR and 13C solid state NMR spectroscopy. The effect of electron beam induced crosslinking on the multilayering behavior in certain polymer systems is also investigated.

  20. Chemical vapor deposition and atomic layer deposition of metal oxide and nitride thin films

    NASA Astrophysics Data System (ADS)

    Barton, Jeffrey Thomas

    Processes for depositing thin films with various electronic, optical, mechanical, and chemical properties are indispensable in many industries today. Of the many deposition methods available, chemical vapor deposition (CVD) has proved over time to be one of the most flexible, efficient, and cost-effective. Atomic layer deposition (ALD) is a newer process that is gaining favor as a method for depositing films with excellent properties and unparalleled precision. This work describes the development of novel CVD and ALD processes to deposit a variety of materials. Hafnium oxide and zirconium oxide show promise as replacements for SiO 2 as gate dielectrics in future-generation transistors. These high-k materials would provide sufficient capacitance with layers thick enough to avoid leakage from tunneling. An ALD method is presented here for depositing conformal hafnium oxide from tetrakis-(diethylamido)hafnium and oxygen gas. A CVD method for depositing zirconium oxide from tetrakis-(dialkylamido)zirconium and either oxygen gas or water vapor is also described. The use of copper for interconnects in integrated circuits requires improved diffusion barrier materials, given its high diffusivity compared to the previously-used aluminum and tungsten. Tungsten nitride has a low resistivity among barrier materials, and can be deposited in amorphous films that are effective diffusion barriers in layers as thin as a few nanometers. Here we demonstrate CVD and plasma-enhanced CVD methods to deposit tungsten nitride films from bis-(dialkylamido)bis-( tert-butylimido)tungsten precursors and ammonia gas. Recent findings had shown uniform copper growth on tantalum silicate films, without the dewetting that usually occurs on oxide surfaces. Tantalum and tungsten silicates were deposited by a CVD reaction from the reaction of either tris-(diethylamido)ethylimido tantalum or bis-(ethylmethylamido)-bis-( tert-butylimido)tungsten with tris-(tert-butoxy)silanol. The ability of evaporated

  1. Research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS applications

    NASA Astrophysics Data System (ADS)

    Merie, Violeta; Pustan, Marius; Negrea, Gavril; Bîrleanu, Corina

    2015-12-01

    Titanium nitride can be used among other materials as diffusion barrier for MEMS (microelectromechanical systems) applications. The aim of this study is to elaborate and to characterize at nanoscale titanium nitride thin films. The thin films were deposited by reactive magnetron sputtering on silicon substrates using a 99.99% purity titanium target. Different deposition parameters were employed. The deposition temperature, deposition time, substrate bias voltage and the presence/absence of a titanium buffer layer are the parameters that were modified. The so-obtained films were then investigated by atomic force microscopy. A significant impact of the deposition parameters on the determined mechanical and tribological characteristics was highlighted. The results showed that the titanium nitride thin films deposited for 20 min at room temperature without the presence of a titanium buffer layer when a negative bias of -90 V was applied to the substrate is characterized by the best tribological and mechanical behavior.

  2. Boosting the Transparency of Thin Layers by Coatings of Opposing Susceptibility: How Metals Help See Through Dielectrics

    PubMed Central

    Shakhs, Mohammed Al; Augusto, Lucian; Markley, Loïc; Chau, Kenneth J.

    2016-01-01

    We propose a hypothesis that a very thin layer can be made more transparent by adding a thin coating with susceptibility of opposing sign. Two experimental tests backed by a theoretical model support this hypothesis. First, we show that the visible and near-infrared transmission through a semi-transparent silver film can be enhanced by up to ~70% and spectrally tailored depending on the type and thickness of the dielectric coating. Material types explored as dielectric coating layers include conventional metal oxides (titanium dioxide) and lesser-explored elemental semiconductors (undoped silicon, p-type silicon, and germanium). Second, and more surprisingly, we show that coating a 50-nm-thick silicon nitride membrane with a 10-nm-thick silver layer can modestly enhance the transmission by up to 6 ± 1% in the blue part of the spectrum. Transmission enhancements are observed for three silver-coated membranes in different configurations. Thinner silver coatings are theoretically capable of enhancement factors greater than 10%, but implementation is restricted by challenges in making smooth and continuous silver films below 10 nm in thickness. This study is important because it is the first demonstration of reciprocity with respect to the transmission enhancements achieved by combining thin metallic and dielectric layers. PMID:26860979

  3. Boosting the Transparency of Thin Layers by Coatings of Opposing Susceptibility: How Metals Help See Through Dielectrics.

    PubMed

    Al Shakhs, Mohammed; Augusto, Lucian; Markley, Loïc; Chau, Kenneth J

    2016-02-10

    We propose a hypothesis that a very thin layer can be made more transparent by adding a thin coating with susceptibility of opposing sign. Two experimental tests backed by a theoretical model support this hypothesis. First, we show that the visible and near-infrared transmission through a semi-transparent silver film can be enhanced by up to ~70% and spectrally tailored depending on the type and thickness of the dielectric coating. Material types explored as dielectric coating layers include conventional metal oxides (titanium dioxide) and lesser-explored elemental semiconductors (undoped silicon, p-type silicon, and germanium). Second, and more surprisingly, we show that coating a 50-nm-thick silicon nitride membrane with a 10-nm-thick silver layer can modestly enhance the transmission by up to 6 ± 1% in the blue part of the spectrum. Transmission enhancements are observed for three silver-coated membranes in different configurations. Thinner silver coatings are theoretically capable of enhancement factors greater than 10%, but implementation is restricted by challenges in making smooth and continuous silver films below 10 nm in thickness. This study is important because it is the first demonstration of reciprocity with respect to the transmission enhancements achieved by combining thin metallic and dielectric layers.

  4. Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids

    NASA Astrophysics Data System (ADS)

    Fal, Jacek; Cholewa, Marian; Gizowska, Magdalena; Witek, Adam; ŻyŁa, GaweŁ

    2016-10-01

    This paper presents the results of experimental investigation of the dielectric properties of ethylene glycol (EG) with various load of boron nitride (BN) nanoparticles. The nanofuids were prepared by using a two-step method on the basis of commercially available BN nanoparticles. The measurements were carried out using the Concept 80 System (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from 10 Hz to 10 MHz and temperatures from 278.15 K to 328.15 K. The frequency-dependent real (ɛ ^' } ) and imaginary (ɛ ^' ' } ) parts of the complex permittivity (ɛ ^* ) and the alternating current (AC) conductivity are presented. Also, the effect of temperature and mass concentrations on the dielectric properties of BN-EG nanofluids are demonstrated. The results show that the most significant increase can be achieved for 20 wt.% of BN nanoparticles at 283.15 K and 288.15 K, that is eleven times larger than in the case of pure EG.

  5. Nanocharacterization of Titanium Nitride Thin Films Obtained by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Merie, Violeta Valentina; Pustan, Marius Sorin; Bîrleanu, Corina; Negrea, Gavril

    2015-05-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants, etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-micro-electromechanical systems, and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by the reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, when the substrates were at room temperature, and second, when the substrates were previously heated at 250°C. The temperature of 250°C was kept constant during the deposition of the films. The samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, Young's modulus, roughness, and friction force were some of the determined characteristics. The results demonstrated that the substrate which was previously heated at 250°C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature. The preheating of both substrates determined the decrease of thin films roughness. The friction force, nanohardness and Young's modulus of the tested samples increased when the substrates were preheated at 250°C.

  6. Dielectric breakdown in nano-porous thin films

    NASA Astrophysics Data System (ADS)

    Borja, Juan Pablo

    Unknown to most computer users and mobile device enthusiasts, we have finally entered into a critical age of chip manufacturing. January of 2014 marks the official start of the quest by the semiconductor industry to successfully integrate sub 14nm process technology nodes in accordance to the International Technology Roadmap for Semiconductors (ITRS). The manufacturing of nano-scale features represents a major bottleneck of its own. However, a bigger challenge lies in reliably isolating the massive chip interconnect network. The present work is aimed at generating a theoretical and experimental framework to predict dielectric breakdown for thin films used in computer chip components. Here, a set of experimental techniques are presented to assess and study dielectric failure in novel thin films. A theory of dielectric breakdown in thin nano-porous films is proposed to describe combined intrinsic and metal ion catalyzed failure. This theory draws on experimental evidence as well as fundamental concepts from mass and electronic charge transport. The drift of metal species was found to accelerate intrinsic dielectric failure. The solubility of metals species such as Cu was found to range from 7.0x1025 ions/m3 to 1.86x1026 ions/m3 in 7% porous SiCOH films. The diffusion coefficient for Cu species was found to span from 4.2x10-19 m2/s to 1.86x10-21 m2/s. Ramped voltage stress experiments were used to identify intrinsic failure from metal catalyzed failure. Intrinsic breakdown is defined when time to failure against applied field ramp rate results in ∂(ln(TTF))/∂(ln(R)) ≈ -1. Intrinsic failure was studied using Au. Here, ∂(ln(TTF))/∂(ln(R)) ≈ -0.95, which is an experimental best case scenario for intrinsic failure. Au is commonly reluctant to ionize which means that failure occurs in the absence of ionic species. Metal catalyzed failure was investigated using reactive electrodes such as Cu, and Ag. Here, trends for ∂(ln(TTF))/∂(ln(R)) significantly

  7. Nanocharacterization of titanium nitride thin films obtained by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Merie, V. V.; Pustan, M. S.; Bîrleanu, C.; Negrea, G.

    2014-08-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-microelectromechanical systems (Bio-MEMS) and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, the obtaining was realized when the substrates were at room temperature, and second, the obtaining was realized when the substrates were previously heated at 250 °C. The elaborated samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, roughness, friction force are some of the determined characteristics. The results marked out that the substrate which was previously heated at 250 °C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature.

  8. Improving dielectric properties of epitaxial Gd{sub 2}O{sub 3} thin films on silicon by nitrogen doping

    SciTech Connect

    Roy Chaudhuri, Ayan; Osten, H. J.; Fissel, A.; Archakam, V. R.

    2013-01-14

    We report about the effect of nitrogen doping on the electrical properties of epitaxial Gd{sub 2}O{sub 3} thin films. Epitaxial Gd{sub 2}O{sub 3}:N thin films were grown on Si (111) substrates by solid source molecular beam epitaxy using nitrous oxide as the nitridation agent. Substitutional nitrogen incorporation into the dielectric layer was confirmed by secondary ion mass spectroscopy and X-ray photoelectron spectroscopy analysis. Substantial reduction of the leakage current density and disappearance of hysteresis in capacitance-voltage characteristics observed in the Gd{sub 2}O{sub 3}:N layers indicate that nitrogen incorporation in Gd{sub 2}O{sub 3} effectively eliminates the adverse effects of the oxygen vacancy induced defects in the oxide layer.

  9. Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors

    SciTech Connect

    Tari, Alireza Lee, Czang-Ho; Wong, William S.

    2015-07-13

    Bottom-gate thin-film transistors were fabricated by depositing a 50 nm InGaZnO (IGZO) channel layer at 150 °C on three separate gate dielectric films: (1) thermal SiO{sub 2}, (2) plasma-enhanced chemical-vapor deposition (PECVD) SiN{sub x}, and (3) a PECVD SiO{sub x}/SiN{sub x} dual-dielectric. X-ray photoelectron and photoluminescence spectroscopy showed the V{sub o} concentration was dependent on the hydrogen concentration of the underlying dielectric film. IGZO films on SiN{sub x} (high V{sub o}) and SiO{sub 2} (low V{sub o}) had the highest and lowest conductivity, respectively. A PECVD SiO{sub x}/SiN{sub x} dual-dielectric layer was effective in suppressing hydrogen diffusion from the nitride layer into the IGZO and resulted in higher resistivity films.

  10. Epitaxial ternary nitride thin films prepared by a chemical solution method

    SciTech Connect

    Luo, Hongmei; Feldmann, David M; Wang, Haiyan; Bi, Zhenxing

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  11. Bandwidth Enhancement of Cylindrical Dielectric Resonator Antenna Using Thin Dielectric Layer Fed by Resonating Slot

    NASA Astrophysics Data System (ADS)

    Mishra, Nipun K.; Das, Soma; Vishwakarma, Dinesh K.

    2016-09-01

    In this paper Cylindrical Dielectric Resonator Antenna (CDRA) has been designed for X-band frequency range applications with slot feeding. Bandwidth of designed cylindrical dielectric resonator antenna has been enhanced by making the slot to be resonating and inserting very thin low permittivity dielectric layer between the slot and CDRA. Resonating slot excites the closely spaced HEM11δ and HEM21δ mode inside the antenna as well as provides the resonance at the upper side of desired X-band. Low profile low permittivity layer provides the excellent matching of these modes and shift the HEM21δ mode to higher frequency side at 11.25 GHz with better impedance matching. By combining all of three resonances, nearly 85 % increment in impedance Bandwidth has been obtained with reference to non resonating slot excited CDRA. Fractional impedance bandwidth for proposed design is 48 % and average Gain of 6 dB with more than 92 % radiation efficiency has been shown by the antenna throughout the desired band with broadside pattern.

  12. Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Yu; Chang, Chun-Chi; Duh, Jenq-Gong

    2016-09-01

    Silicon nitride coated silicon (N-Si) has been synthesized by two-step DC sputtering on Cu Micro-cone arrays (CMAs) at ambient temperature. The electrochemical properties of N-Si anodes with various thickness of nitride layer are investigated. From the potential window of 1.2 V-0.05 V, high rate charge-discharge and long cycle test have been executed to investigate the electrochemical performances of various N-Si coated Si-based lithium ion batteries anode materials. Higher specific capacity can be obtained after 200 cycles. The cycling stability is enhanced via thinner nitride layer coating as silicon nitride films are converted to Li3N with covered Si thin films. These N-Si anodes can be cycled under high rates up to 10 C due to low charge transfer resistance resulted from silicon nitride films. This indicates that the combination of silicon nitride and silicon can effectively endure high current and thus enhance the cycling stability. It is expected that N-Si is a potential candidate for batteries that can work effectively under high power.

  13. Characterization of Ultra Thin Oxynitride Formed by Radical Nitridation with Slot Plane Antenna Plasma

    NASA Astrophysics Data System (ADS)

    Sugawara, Takuya; Matsuyama, Seiji; Sasaki, Masaru; Nakanishi, Toshio; Murakawa, Shigemi; Katsuki, Jiro; Ozaki, Shigenori; Tada, Yoshihide; Ohta, Tomohiro; Yamamoto, Nobuhiko

    2005-03-01

    We investigated the plasma nitridation mechanisms for an ultra-thin gate oxynitride (SiON) formation to extend the downscaling limit of equivalent oxide thickness (EOT). Using the slot plane antenna (SPA) plasma nitridation system, excellent gate SiON properties were obtained with low gate leakage and good carrier mobility down to less than 12 Å. From electrical and physical analysis results, the nitridation mechanism was discussed, which suggested that a control of oxygen partial pressure is important to achieve EOT reduction. A low electron temperature (Te) process under high-pressure condition leads to improved Gm and NBTI performance, which indicates that the reduction of a plasma damage under nitridation processes improve the performance and reliability of ultra thin SiON film. With optimized nitridation processes, the mobility degradation of nMOSFET is only 8% at \\textit{EOT}=11 Å. The NBTI reliability of pMOSFET is improved by more than 1 order compared with a low-pressure, high Te condition.

  14. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications

    PubMed Central

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-01-01

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999

  15. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications.

    PubMed

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-09-08

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range.

  16. Growth and Characterization of Gallium Nitride (GaN) Thin Films by Pecvd

    NASA Astrophysics Data System (ADS)

    Mahmood, Hasan; Moore, S.; Zhang, D.; McIlroy, David N.

    2004-05-01

    Gallium nitride is a good candidate of nano-optical materials. Gallium nitride thin film was grown on Si (100) substrate by using plasma enhanced chemical vapor deposition (PECVD) technique in a UHV chamber with a base pressure of 9x10-10 torr. The temperature of precursor, Ga, was maintained at 800oC. The working pressure of nitrogen plasma was around 5x10-5 torr. The substrate temperature was in the range of 750-900oC. The chemical, morphological and crystal structural properties studied with XRD, XPS, SEM and ellipsometer will be presented.

  17. Nanometer scale electrical characterization of thin dielectric films

    NASA Astrophysics Data System (ADS)

    Lee, David Timothy

    This work is directed towards the use of electrical properties to characterize thin dielectric films on nm length scales. In particular, two technologically important systems have been studied: interface defects at the Si/SiO 2 interface and the use of scanning capacitance microscopy to investigate lubricant films, primarily composed of fully bonded perfluoropolyethers, that are used to lubricate hard disk drive platters and show promise for use in micro-electromechanical systems (MEMS). The first system is the charge trapping defect found at the interface between Si and thin silicon dioxide films grown on the Si. The goal of this work is to make both ballistic electron emission microscopy (BEEM) and charge pumping measurements on the same device. This combination of techniques will allow us to make nm-scale measurements of interface state formation and hot-carrier transport within working metal oxide semiconductor field effect transistors (MOSFET). We have shown that BEEM measurements can be made on metal-oxide-semiconductor (MOS) capacitors that have been subjected to standard semiconductor fabrication processes. While BEEM compatible MOSFETs have not yet been produced, an ongoing effort in collaboration with IMEC in Leuven, Belgium is progressing towards working, BEEM compatible MOSFETs. The second system under study is the use of capacitance measurements to resolve sub-nm variations in the thickness of thin dielectric films with nm-scale lateral resolution. Towards this goal, we have: developed direct, low-frequency scanning capacitance microscopy (SCM) instrumentation capable of measuring 10-18F (aF) changes in the capacitance between an atomic force microscope (AFM) tip and a sample with a noise level of 0.4 aF/ Hz ; for the first time, quantified and developed means of accounting for changes in parasitic capacitance that occur while scanning an AFM tip; for the first time, quantified the effective area of the meniscus that forms between the AFM tip and the

  18. Dielectric relaxation of thin films of polyamide random copolymers

    NASA Astrophysics Data System (ADS)

    Taniguchi, Natsumi; Fukao, Koji; Sotta, Paul; Long, Didier R.

    2015-05-01

    We investigate the relaxation behavior of thin films of a polyamide random copolymer, PA66/6I, with various film thicknesses using dielectric relaxation spectroscopy. Two dielectric signals are observed at high temperatures, the α process and the relaxation process due to electrode polarization (the EP process). The relaxation time of the EP process has a Vogel-Fulcher-Tammann type of temperature dependence, and the glass transition temperature, Tg, evaluated from the EP process agrees very well with the Tg determined from the thermal measurements. The fragility index derived from the EP process increases with decreasing film thickness. The relaxation time and the dielectric relaxation strength of the EP process are described by a linear function of the film thickness d for large values of d , which can be regarded as experimental evidence for the validity of attributing the observed signal to the EP process. Furthermore, there is distinct deviation from this linear law for thicknesses smaller than a critical value. This deviation observed in thinner films is associated with an increase in the mobility and/or diffusion constant of the charge carriers responsible for the EP process. The α process is located in a higher-frequency region than the EP process at high temperatures but merges with the EP process at lower temperatures near the glass transition region. The thickness dependence of the relaxation time of the α process is different from that of the EP process. This suggests that there is decoupling between the segmental motion of the polymers and the translational motion of the charge carriers in confinement.

  19. Nanoscale electrochemistry using dielectric thin films as solid electrolytes

    NASA Astrophysics Data System (ADS)

    Valov, Ilia; Lu, Wei D.

    2016-07-01

    It is now well known that at the nanoscale matters behave differently compared to bulk phases. Increased reactivity, deviations in structural, thermodynamic and kinetic properties make nanoscale materials and processes attractive for both fundamental research and applications. Here we show that nanometer thin films of materials with dielectric properties at the macroscopic level such as SiO2, Ta2O5 and HfO2 behave as solid electrolytes and exhibit evident ionic transport and electrochemical redox reactions. Experimental studies demonstrate that classical electrochemical potentiodynamic and steady state methods can be used to study the mass and charge transport at the nanoscale. We believe these reported properties of nanomatter open new opportunities for fundamental research and applications.

  20. Dielectric relaxation and defect analysis of Ta2O5 thin films

    NASA Astrophysics Data System (ADS)

    Ezhilvalavan, S.; Shiahn Tsai, Ming; Yuen Tseng, Tseung; Shiahn Tsai, Ming

    2000-05-01

    The presence of defects in thin-film dielectrics often leads to dielectric relaxation as a function of frequency, in which the dielectric constant decreases and the loss tangent increases with increasing frequency. Dielectric relaxation results in charge storage capacity reduction under dynamic random access memory operating conditions. In this work, the dielectric relaxation behaviour of dc reactive sputtered Ta2O5 thin film was investigated. Using dielectric dispersion measurements as a function of frequency (100 Hz≤f≤10 MHz) and temperature (27 °C≤T≤150 °C), we determined the dielectric relaxation and defect quantity of the films and propose an equivalent circuit on the basis of complex capacitance, admittance and impedance spectral studies.

  1. Transverse electric surface mode in atomically thin Boron-Nitride.

    PubMed

    Merano, Michele

    2016-06-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analyzed in terms of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic nonradiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric nonradiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 μm and an intensity-propagation distance greater than 2 cm.

  2. Thin films of pure vanadium nitride: Evidence for anomalous non-faradaic capacitance

    NASA Astrophysics Data System (ADS)

    Bondarchuk, Oleksandr; Morel, Alban; Bélanger, Daniel; Goikolea, Eider; Brousse, Thierry; Mysyk, Roman

    2016-08-01

    An impressive gravimetric capacitance of 1300 F g-1 (surface capacitance ∼3.3 mF cm-2) reported by Choi et al., 2006 for nanosized vanadium nitride has stimulated considerable interest in vanadium nitride as a potential electrode material for energy storing systems - supercapacitors. The postulated mechanism of charge storage in vanadium nitride materials involves redox reactions in the thin surface layer of vanadium oxide while the core vanadium nitride serves exclusively as a conducting platform. In this study we have synthesized pure oxygen-free vanadium nitride films and have found that they are capable of delivering a surface capacitance of up to ∼3 mF cm-2 at a potential scan rate of 3 mV s-1 and ∼2 mF cm-2 at a potential scan rate of 1 V s-1 in aqueous electrolytes. Combining electrochemical testing with X-ray photoelectron spectroscopy characterization has revealed that redox reactions play no or little role in the electrochemical response of pure VN, in contrast to the common wisdom stemming from the electrochemical response of oxygen-containing films. An alternative charge storage mechanism - space charge accumulation in a subsurface layer of ∼100 nm - was put forward to explain the experimentally observed capacitance of VN films in aqueous electrolytes.

  3. Thin films of pure vanadium nitride: Evidence for anomalous non-faradaic capacitance

    NASA Astrophysics Data System (ADS)

    Bondarchuk, Oleksandr; Morel, Alban; Bélanger, Daniel; Goikolea, Eider; Brousse, Thierry; Mysyk, Roman

    2016-08-01

    An impressive gravimetric capacitance of 1300 F g-1 (surface capacitance ∼3.3 mF cm-2) reported by Choi et al., 2006 for nanosized vanadium nitride has stimulated considerable interest in vanadium nitride as a potential electrode material for energy storing systems - supercapacitors. The postulated mechanism of charge storage in vanadium nitride materials involves redox reactions in the thin surface layer of vanadium oxide while the core vanadium nitride serves exclusively as a conducting platform. In this study we have synthesized pure oxygen-free vanadium nitride films and have found that they are capable of delivering a surface capacitance of up to ∼3 mF cm-2 at a potential scan rate of 3 mV s-1 and ∼2 mF cm-2 at a potential scan rate of 1 V s-1 in aqueous electrolytes. Combining electrochemical testing with X-ray photoelectron spectroscopy characterization has revealed that redox reactions play no or little role in the electrochemical response of pure VN, in contrast to the common wisdom stemming from the electrochemical response of oxygen-containing films. An alternative charge storage mechanism - space charge accumulation in a subsurface layer of ∼100 nm - was put forward to explain the experimentally observed capacitance of VN films in aqueous electrolytes.

  4. Boron Nitride Nanotube Mat as a Low- k Dielectric Material with Relative Dielectric Constant Ranging from 1.0 to 1.1

    NASA Astrophysics Data System (ADS)

    Hong, Xinghua; Wang, Daojun; Chung, D. D. L.

    2016-01-01

    This paper reports that a boron nitride nanotube (BNNT) mat containing air and 1.4 vol.% BNNTs is a low- k dielectric material for microelectronic packaging, exhibiting relative dielectric constant of 1.0 to 1.1 (50 Hz to 2 MHz) and elastic modulus of 10 MPa. The mat is prepared by compacting BNNTs at 5.8 kPa. This paper also presents measurements of the dielectric properties of BNNTs (mostly multiwalled). The relative dielectric constant of the BNNT solid in the mat decreases with increasing frequency, with attractively low values ranging from 3.0 to 6.2; the alternating-current (AC) electrical conductivity increases with increasing frequency, with attractively low values ranging from 10-10 S/m to 10-6 S/m and an approximately linear relationship between log conductivity and log frequency. The specific contact capacitance of the interface between BNNTs and the electrical contact decreases with increasing frequency, with attractively high values ranging from 1.6 μF/m2 to 2.3 μF/m2. The AC electrical resistivity of the BNNT-contact interface decreases with increasing frequency, with high values ranging from 0.14 MΩ cm2 to 440 MΩ cm2.

  5. Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Yang, Minhao; Zhao, Hang; He, Delong; Bai, Jinbo

    2016-08-01

    The ternary nanocomposites of boron nitride nanosheets (BNNSs)/carbon nanotubes (CNTs)/polyvinylidene fluoride (PVDF) are fabricated via a combination of solution casting and extrusion-injection processes. The effects of BNNSs on the electrical conductivity, dielectric behavior, and microstructure changes of CNTs/PVDF binary nanocomposites are systematically investigated. A low percolation value (fc) for the CNTs/PVDF binary system is obtained due to the integration of solution and melting blending procedures. Two kinds of CNTs/PVDF binary systems with various CNTs contents (fCNTs) as the matrix are discussed. The results reveal that compared with CNTs/PVDF binary systems at the same fCNTs, the ternary BNNSs/CNTs/PVDF nanocomposites exhibit largely enhanced dielectric properties due to the improvement of the CNTs dispersion state and the conductive network. The dielectric constant of CNTs/PVDF binary nanocomposite with 6 vol. % CNTs (fCNTs < fc) shows a 79.59% enhancement from 49 to 88 after the incorporation of 3 vol. % BNNSs. For the other CNTs/PVDF system with 8 vol. % CNTs (fCNTs > fc), it displays a 43.32% improvement from 1325 to 1899 after the addition of 3 vol. % BNNSs. The presence of BNNSs facilitates the formation of the denser conductive network. Meanwhile, the ternary BNNSs/CNTs/PVDF systems exhibit a low dielectric loss. The adjustable dielectric properties could be obtained by employing the ternary systems due to the microstructure changes of nanocomposites.

  6. Oxidized carbon nitrides: water-dispersible, atomically thin carbon nitride-based nanodots and their performances as bioimaging probes.

    PubMed

    Oh, Junghoon; Yoo, Ran Ji; Kim, Seung Yeon; Lee, Yong Jin; Kim, Dong Wook; Park, Sungjin

    2015-04-13

    Three-dimensional (3D) carbon nitride (C3 N4 )-based materials show excellent performance in a wide range of applications because of their suitable band structures. To realize the great promise of two-dimensional (2D) allotropes of various 3D materials, it is highly important to develop routes for the production of 2D C3 N4 materials, which are one-atom thick, in order to understand their intrinsic properties and identify their possible applications. In this work, water-dispersible, atomically thin, and small carbon nitride nanodots were produced using the chemical oxidation of graphitic C3 N4 . Various analyses, including X-ray diffraction, X-ray photoelectron, Fourier-transform infrared spectroscopy, and combustion-based elemental analysis, and thermogravimetric analysis, confirmed the production of 3D oxidized C3 N4 materials. The 2D C3 N4 nanodots were successfully exfoliated as individual single layers; their lateral dimension was several tens of nanometers. They showed strong photoluminescence in the visible region as well as excellent performances as cell-imaging probes in an in vitro study using confocal fluorescence microscopy.

  7. Transverse electric surface mode in atomically thin Boron-Nitride.

    PubMed

    Merano, Michele

    2016-06-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analyzed in terms of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic nonradiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric nonradiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 μm and an intensity-propagation distance greater than 2 cm. PMID:27244441

  8. Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Jonathan Huai-Tse

    A three-step solution-based process had been used synthesize powders of GaN, AlN and their alloys. The complete solid solubility and tunable nature of these nitride band gaps in the visible spectrum were the motivation of these studies due to their application in solid state lighting. Energy dispersive X-ray spectroscopy confirmed the reduction in oxygen content for the GaN powders to as low as 4 atom % with an 8 % oxygen to nitrogen ratio. Relative to commercial GaN powders, the bandedge of the powders synthesized by such approach also shifted to higher energy, which indicated fewer defects, as observed from reflectance measurements. Inspired by the use of rare-earth elements as color emitters in fluorescent lamp phosphors, these elements were also used as activators in our nitride material. Visible emission was demonstrated through photoluminescence measurements in AlN powders activated with rare-earth elements Eu3+, Tb3+, Tm3+. These ions showed emission in the red, green and blue regions of the visible spectrum, respectively. Eu3+ and Tb3+ co-activation was also observed in an AlN sample that indicated successful energy transfer from the host to sensitizer, and subsequently to another activator. Tb3+ emission was observed under cathodoluminescence in GaN powders synthesized by the same method, and a concentration study showed no effect of concentration quenching up to 8 atom %. Using the same source powder, a pulsed-laser deposited thin film was fabricated that showed both band gap emission and activator-related emission, suggesting a reduction of defects when the powders were deposited as thin films. Additionally, GaN:Tb3+ films were also fabricated using metallorganic vapor phase epitaxy using precursors with and without oxygen ligands. Tb3+ emission was only observed in the sample fabricated from the precursor with oxygen ligand, suggestion that oxygen may be required for effective rare earth luminescence. Finally, Ga1-xAl xN alloy powders (x=0.5) and Ga1-x

  9. Analysis on temperature effect on the mechanical and tribological properties of titanium nitride thin films

    NASA Astrophysics Data System (ADS)

    Merie, V. V.; Bȋrleanu, C.; Pustan, M. S.; Negrea, G.; Pintea, I. M.

    2016-08-01

    The main goal of this paper is to study the influence of the temperature on the mechanical and tribological characteristics of titanium nitride thin films. The titanium nitride thin films were deposited by reactive magnetron sputtering on silicon substrates using a titanium high purity target. The films were deposited in different conditions. Several films were deposited on silicon substrate at room temperature while the others were obtained after the substrate was preheated. The majority of the films were deposited on non-biased substrates while the rest were deposited on substrates to which a negative bias was applied. Once the films were deposited, the characterization was realized by atomic force microscopy investigations determining the topographical parameters as well as the mechanical properties such as the modulus of elasticity and the hardness. The mechanical properties mentioned before were determined at 20 °C, 40 °C, 60 °C, 80 °C and 100 °C in order to establish the effect of testing temperature on the mechanical characteristics. The results highlighted a significant influence of temperature on the mechanical and tribological properties of the investigated titanium nitride thin films.

  10. Bismuth pyrochlore-based thin films for dielectric energy storage

    NASA Astrophysics Data System (ADS)

    Michael, Elizabeth K.

    The drive towards the miniaturization of electronic devices has created a need for dielectric materials with large energy storage densities. These materials, which are used in capacitors, are a critical component in many electrical systems. Here, the development of dielectric energy storage materials for pulsed power applications, which require materials with the ability to accumulate a large amount of energy and then deliver it to the system rapidly, is explored. The amount of electrostatic energy that can be stored by a material is a function of the induced polarization and the dielectric breakdown strength of the material. An ideal energy storage dielectric would possess a high relative permittivity, high dielectric breakdown strength, and low loss tangent under high applied electric fields. The bismuth pyrochlores are a compositionally tunable family of materials that meet these requirements. Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate, were fabricated using a novel solution chemistry based upon the Pechini method. This solution preparation is advantageous because it avoids the use of teratogenic solvents, such as 2-methoxyethanol. Crystalline films fabricated using this solution chemistry had very small grains that were approximately 27 nm in lateral size and 35 nm through the film thickness. Impedance measurements found that the resistivity of the grain boundaries was two orders of magnitude higher than the resistivity of the grain interior. The presence of many resistive grain boundaries impeded conduction through the films, resulting in high breakdown strengths for these materials. In addition to high breakdown strengths, this family of materials exhibited moderate relative permittivities of between 55 +/- 2 and 145 +/- 5, for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 +/- 0.0001. Increases in the concentration of the tantalum

  11. Pulsed DC magnetron sputtered piezoelectric thin film aluminum nitride – Technology and piezoelectric properties

    SciTech Connect

    Stoeckel, C. Kaufmann, C.; Hahn, R.; Schulze, R.; Billep, D.; Gessner, T.

    2014-07-21

    Pulsed DC magnetron sputtered aluminum nitride (AlN) thin films are prepared on several seed layers and at different sputtering conditions. The piezoelectric c-axis (002) orientation of the AlN is analyzed with X-ray diffraction method. The transverse piezoelectric coefficient d{sub 31} is determined with a Laser-Doppler-Vibrometer at cantilevers and membranes by analytical calculations and finite element method. Additionally, thin film AlN on bulk silicon is used to characterize the longitudinal piezoelectric charge coefficient d{sub 33}.

  12. Pulsed DC magnetron sputtered piezoelectric thin film aluminum nitride - Technology and piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Stoeckel, C.; Kaufmann, C.; Hahn, R.; Schulze, R.; Billep, D.; Gessner, T.

    2014-07-01

    Pulsed DC magnetron sputtered aluminum nitride (AlN) thin films are prepared on several seed layers and at different sputtering conditions. The piezoelectric c-axis (002) orientation of the AlN is analyzed with X-ray diffraction method. The transverse piezoelectric coefficient d31 is determined with a Laser-Doppler-Vibrometer at cantilevers and membranes by analytical calculations and finite element method. Additionally, thin film AlN on bulk silicon is used to characterize the longitudinal piezoelectric charge coefficient d33.

  13. Giant Dielectric Permittivity in Ferroelectric Thin Films: Domain Wall Ping Pong

    PubMed Central

    Quan Jiang, An; Jian Meng, Xiang; Wei Zhang, David; Hyuk Park, Min; Yoo, Sijung; Jin Kim, Yu; Scott, James F.; Seong Hwang, Cheol

    2015-01-01

    The dielectric permittivity in ferroelectric thin films is generally orders of magnitude smaller than in their bulk. Here, we discover a way of increasing dielectric constants in ferroelectric thin films by ca. 500% by synchronizing the pulsed switching fields with the intrinsic switching time (nucleation of domain plus forward growth from cathode to anode). In a 170-nm lead zirconate titanate thin film with an average grain size of 850 nm this produces a dielectric constant of 8200 with the maximum nucleus density of 3.8 μm−2, which is one to three orders of magnitude higher than in other dielectric thin films. This permits smaller capacitors in memory devices and is a step forward in making ferroelectric domain-engineered nano-electronics. PMID:26440528

  14. Surface scattering mechanisms of tantalum nitride thin film resistor

    PubMed Central

    2014-01-01

    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current–voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms. PMID:24725295

  15. Surface scattering mechanisms of tantalum nitride thin film resistor

    NASA Astrophysics Data System (ADS)

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2014-04-01

    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current-voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms.

  16. (Ba,Sr)TiO{sub 3} dielectrics: Relationship between bulk and thin film properties

    SciTech Connect

    Kingon, A. I.; Streiffer, S. K.; Parker, C. B.; Stemmer, S.

    1999-12-22

    Thin films of complex perovskites have a number of potentially important applications. Of major scientific and practical concern is the scaling of properties as film dimensions are reduced. This paper describes a satisfactory relationship between bulk and thin film dielectric properties of (Ba,Sr)TiO{sub 3}. Relative contributions of strain, A:B cation stoichiometry, and interface are separated to explain temperature dependent dielectric behavior.

  17. Pulsed laser deposition of niobium nitride thin films

    SciTech Connect

    Farha, Ashraf Hassan Elsayed-Ali, Hani E.; Ufuktepe, Yüksel; Myneni, Ganapati

    2015-12-04

    Niobium nitride (NbN{sub x}) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbN{sub x} films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ∼40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbN{sub x} films from mixed β-Nb{sub 2}N and cubic δ-NbN phases to single hexagonal β-Nb{sub 2}N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbN{sub x} deposited on Si(100) were also investigated. The NbN{sub x} films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbN{sub x} film morphology and phase.

  18. Pulsed laser deposition of niobium nitride thin films

    NASA Astrophysics Data System (ADS)

    Farha, Ashraf Hassan; Ufuktepe, Yüksel; Myneni, Ganapati; Elsayed-Ali, Hani E.

    2015-12-01

    Niobium nitride (NbNx) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbNx films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ˜40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbNx films from mixed β-Nb2N and cubic δ-NbN phases to single hexagonal β-Nb2N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbNx deposited on Si(100) were also investigated. The NbNx films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbNx film morphology and phase.

  19. Thin-ribbon tapered coupler for dielectric waveguides

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Otoshi, T. Y.; Shimabukuro, F. I.

    1994-01-01

    A recent discovery shows that a high-dielectric constant, low-loss, solid material can be made into a ribbon-like waveguide structure to yield an attenuation constant of less than 0.02 dB/m for single-mode guidance of millimeter/submillimeter waves. One of the crucial components that must be invented in order to guarantee the low-loss utilization of this dielectric-waveguide guiding system is the excitation coupler. The traditional tapered-to-a-point coupler for a dielectric rod waveguide fails when the dielectric constant of the dielectric waveguide is large. This article presents a new way to design a low-loss coupler for a high- or low-dielectric constant dielectric waveguide for millimeter or submillimeter waves.

  20. Bismuth pyrochlore thin films for dielectric energy storage

    SciTech Connect

    Michael, Elizabeth K. Trolier-McKinstry, Susan

    2015-08-07

    Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate were fabricated using chemical solution deposition. This family of materials exhibited moderate relative permittivities between 55 ± 2 and 145 ± 5 for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 ± 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. For example, at 10 kHz, the room temperature breakdown strength of bismuth zinc niobate was 5.1 MV/cm, while that of bismuth zinc tantalate was 6.1 MV/cm. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 ± 2.0 J/cm{sup 3}, while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 ± 2.0 J/cm{sup 3}. Intermediate compositions of bismuth zinc niobate tantalate offered higher energy storage densities; at 10 mol. % tantalum, the maximum recoverable energy storage density was ∼66.9 ± 2.4 J/cm{sup 3}.

  1. Infrared absorption and electron spin resonance studies of nanocrystalline cubic boron nitride/amorphous hydrogenated boron nitride mixed phase thin films

    SciTech Connect

    Lin, S.H.; Brown, I.M.; Feldman, B.J.

    1996-11-01

    Both infrared absorption (IR) and electron spin resonance (ESR) spectroscopies have been used to investigate the complicated structure of nanocrystalline cubic boron nitride/amorphous hydrogenated boron nitride thin films. The ESR spectra from this material consist of a component with a four-line hyperfine structure and/or a component with a ten-line hyperfine structure superimposed upon a broad central line. The hyperfine structures are associated with defect centers located in the nanocrystalline phase, whereas the broad line is attributed to dangling bonds in the amorphous phase. The IR spectra consist of three lines around 1,400 cm{sup {minus}1}: the lines at 1,263 and 1,505 cm{sup {minus}1} originate in a boron-poor amorphous hydrogenated boron nitride region; the line at 1,371 cm{sup {minus}1}, in a boron-rich amorphous hydrogenated boron nitride region. These results, together with previously reported electron diffraction spectra, suggest the following picture: small (2.5 nm) nanocrystallites of cubic boron nitride (about 5% of the material) are imbedded in a mixed amorphous phase. The amorphous region can be approximated by a mixture of boron-rich and boron-poor amorphous hydrogenated boron nitride.

  2. Foreign Object Damage of Two Gas-Turbine Grade Silicon Nitrides in a Thin Disk Configuration

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Pereira, J. Michael; Janosik, Lesley A.; Bhatt, Ramakrishna T.

    2003-01-01

    Foreign object damage (FOD) behavior of two commercial gas-turbine grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through post-impact strength testing for thin disks impacted by steel-ball projectiles with a diameter of 1.59 mm in a velocity range from 115 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (K(sub IC)). The critical impact velocity in which the corresponding post-impact strength yielded the lowest value was V(sub c) approx. 440 and 300 m/s for AS800 and SN282, respectively. A unique lower-strength regime was typified for both silicon nitrides depending on impact velocity, attributed to significant radial cracking. The damages generated by projectile impact were typically in the forms of ring, radial, and cone cracks with their severity and combination being dependent on impact velocity. Unlike thick (3 mm) flexure bar specimens used in the previous studies, thin (2 mm) disk target specimens exhibited a unique backside radial cracking occurring on the reverse side just beneath the impact sites at and above impact velocity of 160 and 220 m/s for SN282 and AS800, respectively.

  3. Thin Dielectric Films Containing Tb{sup 3+} Ions For Application In Thin Film Solar Cells

    SciTech Connect

    Sendova-Vassileva, M.; Angelov, O.; Dimova-Malmovska, D.; Baumgartner, K.; Carius, R.; Hollaender, B.

    2010-01-21

    Thin transparent dielectric films containing Tb{sup 3+} are developed for application as spectral converters of the solar spectrum in thin film silicon solar cells. The results on the deposition and characterization of thin SiO{sub 2} and Al{sub 2}O{sub 3} films containing Tb{sup 3+} ions are presented. The films are prepared by RF magnetron co-sputtering, a well established technique for large area coatings. Photoluminescence (PL) is measured at room temperature, using the 488 nm line of an Ar laser and a nitrogen-cooled CCD camera attached to a monochromator. The dependence of the PL intensity on the concentration of Tb in the film is studied. It is found that the intensity exhibits a maximum at about 1 at.%. Annealing studies are performed on SiO{sub 2}:Tb with two different methods to improve the PL intensity. In both regimes of annealing, the best results for thin SiO{sub 2}:Tb films are obtained in the temperature range of 650-700 deg. C. After treatment at this temperature the Tb PL increases 2.5-3 times.

  4. Mechanisms of Low-Temperature Nitridation Technology on a TaN Thin Film Resistor for Temperature Sensor Applications

    NASA Astrophysics Data System (ADS)

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2016-06-01

    In this letter, we propose a novel low-temperature nitridation technology on a tantalum nitride (TaN) thin film resistor (TFR) through supercritical carbon dioxide (SCCO2) treatment for temperature sensor applications. We also found that the sensitivity of temperature of the TaN TFR was improved about 10.2 %, which can be demonstrated from measurement of temperature coefficient of resistance (TCR). In order to understand the mechanism of SCCO2 nitridation on the TaN TFR, the carrier conduction mechanism of the device was analyzed through current fitting. The current conduction mechanism of the TaN TFR changes from hopping to a Schottky emission after the low-temperature SCCO2 nitridation treatment. A model of vacancy passivation in TaN grains with nitrogen and by SCCO2 nitridation treatment is eventually proposed to increase the isolation ability in TaN TFR, which causes the transfer of current conduction mechanisms.

  5. Mechanisms of Low-Temperature Nitridation Technology on a TaN Thin Film Resistor for Temperature Sensor Applications.

    PubMed

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2016-12-01

    In this letter, we propose a novel low-temperature nitridation technology on a tantalum nitride (TaN) thin film resistor (TFR) through supercritical carbon dioxide (SCCO2) treatment for temperature sensor applications. We also found that the sensitivity of temperature of the TaN TFR was improved about 10.2 %, which can be demonstrated from measurement of temperature coefficient of resistance (TCR). In order to understand the mechanism of SCCO2 nitridation on the TaN TFR, the carrier conduction mechanism of the device was analyzed through current fitting. The current conduction mechanism of the TaN TFR changes from hopping to a Schottky emission after the low-temperature SCCO2 nitridation treatment. A model of vacancy passivation in TaN grains with nitrogen and by SCCO2 nitridation treatment is eventually proposed to increase the isolation ability in TaN TFR, which causes the transfer of current conduction mechanisms.

  6. Mechanisms of Low-Temperature Nitridation Technology on a TaN Thin Film Resistor for Temperature Sensor Applications.

    PubMed

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2016-12-01

    In this letter, we propose a novel low-temperature nitridation technology on a tantalum nitride (TaN) thin film resistor (TFR) through supercritical carbon dioxide (SCCO2) treatment for temperature sensor applications. We also found that the sensitivity of temperature of the TaN TFR was improved about 10.2 %, which can be demonstrated from measurement of temperature coefficient of resistance (TCR). In order to understand the mechanism of SCCO2 nitridation on the TaN TFR, the carrier conduction mechanism of the device was analyzed through current fitting. The current conduction mechanism of the TaN TFR changes from hopping to a Schottky emission after the low-temperature SCCO2 nitridation treatment. A model of vacancy passivation in TaN grains with nitrogen and by SCCO2 nitridation treatment is eventually proposed to increase the isolation ability in TaN TFR, which causes the transfer of current conduction mechanisms. PMID:27251325

  7. Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.

    2016-08-01

    The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.

  8. Harmonic surface acoustic waves on gallium nitride thin films.

    PubMed

    Justice, Joshua; Lee, Kyoungnae; Korakakis, D

    2012-08-01

    SAW devices operating at the fundamental frequency and the 5th, 7th, 9th, and 11th harmonics have been designed, fabricated, and measured. Devices were fabricated on GaN thin films on sapphire substrates, which were grown via metal organic vapor phase epitaxy (MOVPE). Operating frequencies of 230, 962, 1338, 1720, and 2100 MHz were achieved with devices that had a fundamental wavelength, lambda0 = 20 μm. Gigahertz operation is realized with relatively large interdigital transducers that do not require complicated submicrometer fabrication techniques. SAW devices fabricated on the GaN/sapphire bilayer have an anisotropic propagation when the wavelength is longer than the GaN film thickness. It is shown that for GaN thin films, where kh(GaN) > 10 (k = 2pi/lambda and h(GaN) = GaN film thickness), effects of the substrate on the SAW propagation are eliminated. Bulk mode suppression at harmonic operation is also demonstrated. PMID:22899127

  9. Harmonic surface acoustic waves on gallium nitride thin films.

    PubMed

    Justice, Joshua; Lee, Kyoungnae; Korakakis, D

    2012-08-01

    SAW devices operating at the fundamental frequency and the 5th, 7th, 9th, and 11th harmonics have been designed, fabricated, and measured. Devices were fabricated on GaN thin films on sapphire substrates, which were grown via metal organic vapor phase epitaxy (MOVPE). Operating frequencies of 230, 962, 1338, 1720, and 2100 MHz were achieved with devices that had a fundamental wavelength, lambda0 = 20 μm. Gigahertz operation is realized with relatively large interdigital transducers that do not require complicated submicrometer fabrication techniques. SAW devices fabricated on the GaN/sapphire bilayer have an anisotropic propagation when the wavelength is longer than the GaN film thickness. It is shown that for GaN thin films, where kh(GaN) > 10 (k = 2pi/lambda and h(GaN) = GaN film thickness), effects of the substrate on the SAW propagation are eliminated. Bulk mode suppression at harmonic operation is also demonstrated.

  10. Seed-layer mediated orientation evolution in dielectric Bi-Zn-Ti-Nb-O thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Noh, Jun Hong; Lee, Sangwook; Yoon, Sung-Hun; Cho, Chin Moo; Hong, Kug Sun; Jung, Hyun Suk; Lee, Jung-Kun

    2007-12-01

    Highly (hhh)-oriented pyrochlore Bi-Zn-Ti-Nb-O (BZTN) thin films were fabricated via metal-organic decomposition using orientation template layers. The preferred orientation was ascribed to the interfacial layer, the lattice parameter of which is similar to BZTN. High-resolution transmission electron microscopy supported that the interfacial layer consists of Bi and Pt. The (hhh)-oriented thin films exhibited a highly insulating nature enabling feasible applications in electronic devices, particularly voltage tunable application. The BZTN thin films did not show any apparent dielectric anisotropy and the slightly enhanced dielectric properties were discussed in connection to the internal stress and the grain boundary effect.

  11. σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors

    PubMed Central

    Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J.

    2005-01-01

    Very thin (2.3-5.5 nm) self-assembled organic dielectric multilayers have been integrated into organic thin-film transistor structures to achieve sub-1-V operating characteristics. These new dielectrics are fabricated by means of layer-by-layer solution phase deposition of molecular silicon precursors, resulting in smooth, nanostructurally well defined, strongly adherent, thermally stable, virtually pinhole-free, organosiloxane thin films having exceptionally large electrical capacitances (up to ≈2,500 nF·cm-2), excellent insulating properties (leakage current densities as low as 10-9 A·cm-2), and single-layer dielectric constant (k)of ≈16. These 3D self-assembled multilayers enable organic thin-film transistor function at very low source-drain, gate, and threshold voltages (<1 V) and are compatible with a broad variety of vapor- or solution-deposited p- and n-channel organic semiconductors. PMID:15781860

  12. Phase formation, thermal stability and magnetic moment of cobalt nitride thin films

    SciTech Connect

    Gupta, Rachana; Pandey, Nidhi; Tayal, Akhil; Gupta, Mukul E-mail: dr.mukul.gupta@gmail.com

    2015-09-15

    Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (R{sub N{sub 2}}) was varied. As R{sub N{sub 2}} increases, Co(N), Co{sub 4}N, Co{sub 3}N and CoN phases are formed. An incremental increase in R{sub N{sub 2}}, after emergence of Co{sub 4}N phase at R{sub N{sub 2}} = 10%, results in a linear increase of the lattice constant (a) of Co{sub 4}N. For R{sub N{sub 2}} = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co{sub 4}N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M{sub 4}N) have been theoretically predicted. Incorporation of N atoms in M{sub 4}N configuration results in an expansion of a (relative to pure metal) and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M{sub 4}N compounds. Though a higher (than pure Fe) magnetic moment for Fe{sub 4}N thin films has been evidenced experimentally, higher (than pure Co) magnetic moment is evidenced in this work.

  13. Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering

    SciTech Connect

    Iriarte, G. F.

    2010-03-15

    Aluminum nitride (AlN) thin films deposited on high-vacuum systems without substrate heating generally exhibit a poor degree of c-axis orientation. This is due to the nonequilibrium conditions existing between the energy of the sputtered particles and the energy at the substrate surface. The application of substrate bias or substrate temperature is known to improve the adatom mobility by delivering energy to the substrate; both are hence well-established crystal growth promoting factors. It is well known that low sputtering pressures can be used as a parameter improving the growth of highly c-axis oriented aluminum nitride films at room temperature even without applying bias voltage to the substrate. Generally, the use of high pressures implies thermalization of particles within the gas phase and is considered to increase the energy gap between these and the substrate surface. However, in later experiments we have learned that the use of high processing pressures does not necessarily implies a detriment of crystallographic orientation in the films. By measuring (for the first time to the author's knowledge) the full width at half maximum value of the rocking curve of the 0002-AlN peak at several positions along the 100 mm diameter (100)-silicon wafers on which aluminum nitride thin films were deposited by reactive sputtering, a new effect was observed. Under certain processing conditions, the growth of the AlN thin films is influenced by the target magnetron. More precisely, their degree of c-axis orientation varies at wafer areas locally coincident under the target magnetron. This effect should be considered, especially where large area substrates are employed such as in silicon wafer foundry manufacturing processes.

  14. Lorentz factor determination for local electric fields in semiconductor devices utilizing hyper-thin dielectrics

    SciTech Connect

    McPherson, J. W.

    2015-11-28

    The local electric field (the field that distorts, polarizes, and weakens polar molecular bonds in dielectrics) has been investigated for hyper-thin dielectrics. Hyper-thin dielectrics are currently required for advanced semiconductor devices. In the work presented, it is shown that the common practice of using a Lorentz factor of L = 1/3, to describe the local electric field in a dielectric layer, remains valid for hyper-thin dielectrics. However, at the very edge of device structures, a rise in the macroscopic/Maxwell electric field E{sub diel} occurs and this causes a sharp rise in the effective Lorentz factor L{sub eff}. At capacitor and transistor edges, L{sub eff} is found to increase to a value 2/3 < L{sub eff} < 1. The increase in L{sub eff} results in a local electric field, at device edge, that is 50%–100% greater than in the bulk of the dielectric. This increase in local electric field serves to weaken polar bonds thus making them more susceptible to breakage by standard Boltzmann and/or current-driven processes. This has important time-dependent dielectric breakdown (TDDB) implications for all electronic devices utilizing polar materials, including GaN devices that suffer from device-edge TDDB.

  15. Dielectric response of fully and partially depleted ferroelectric thin films and inversion of the thickness effect

    NASA Astrophysics Data System (ADS)

    Misirlioglu, I. B.; Yildiz, M.

    2013-03-01

    We study the effect of full and partial depletion on the dielectric response characteristics of ferroelectric thin films with impurities via a computational approach. Using a thermodynamic approach along with the fundamental equations for semiconductors, we show that films with partial depletion display unique features and an enhanced dielectric response compared with those fully depleted. We find that the capacitance peak at switching can be significantly suppressed in the case of high impurity densities (>1025 m-3) with relatively low ionization energy, of the order of 0.5 eV. For conserved number of species in films, electromigration of ionized impurities at room temperature is negligible and has nearly no effect on the dielectric response. In films with high impurity density, the dielectric response at zero bias is enhanced with respect to charge-free films or those with relatively low impurity density (<1024 m-3). We demonstrate that partially depleted films should be expected to exhibit peculiar capacitance-voltage characteristics at low and high bias and that the thickness effect probed in experiments in ferroelectric thin films could be entirely inverted in thin films with depletion charges where a higher dielectric response can be measured in thicker films. Therefore, depletion charge densities in ferroelectric thin films should be estimated before size-effect-related studies. Finally, we noted that these findings are in good qualitative agreement with dielectric measurements carried out on PbZrxTi1-xO3.

  16. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  17. Radio-frequency sputter deposition of boron nitride based thin films

    SciTech Connect

    Mitterer, C.; Rodhammer, P.; Stori, H.; Jeglitsch, F.

    1989-07-01

    Thin films (approx.2 ..mu..m) of boron nitride, titanium boron nitride, and titanium aluminum boron nitride have been grown on molybdenum, niobium, and cemented carbide substrates employing nonreactive as well as reactive rf magnetron sputter deposition from either a BN, a TiN-BN, or a TiN--AlN--BN target. Substrates have been rf biased, with dc potentials up to /minus/200 V. By means of /ital nonreactive/ sputtering mixed-phase structures with dominant phases B/sub 48/B/sub 2/N/sub 2/ (using a BN target), or B/sub 48/B/sub 2/N/sub 2/ and hexagonal Ti--B--N (using a TiN--BN or a TiN--AlN--BN target) are formed. /ital Reactive/ deposition leads to the existence of hexagonal BN in all deposition modes. In the cases of Ti--B--N and Ti--Al--B--N films this phase is accompanied by fcc Ti--B--N. SEM cross sections revealed very fine grained to fracture-amorphous film structures. Hardness measurements gave the following maximum HV 0.02 values: B--N films 2800, Ti--B--N films 2750, and Ti--Al--B--N films 1650.

  18. Dielectric and Ferroelectric Properties of Lead Lanthanum Zirconate Titanate Thin Films for Capacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Tong, Sheng

    As the increasing requirement of alternative energy with less pollution influence and higher energy efficient, new energy source and related storage methods are hot topic nowadays. Capacitors that supply high instant power are one of the keys in this application for both economic and functional design aspects. To lower the cost and increases the volumetric efficiency and reliability, relaxor thin films are considered as one of the candidates of the next generation capacitors. The research mainly focuses on dielectric and ferroelectric properties of lead lanthanum zirconate titanate or Pb1-xLax(ZryTi1-y)O3 (PLZT, x/y/1-y) relaxor thin films deposited on silicon (Si) and nickel (Ni) substrates in a range of thickness with different bottom electrodes, e.g. Platinum (Pt) and LaNiO3 (LNO). The final fabricated PLZT film capacitors will show strong potential for the energy storage application. The method adopted is the acetic acid assisted sol-gel deposition for the PLZT thin films. The wet chemical process is cost-effective and easily to scale up for plant/industrial products. We investigated the different bottom electrode/substrate influence in structure, microstructure, phases/defects, and heat-treatment conditions to achieve the optimized PLZT thin films. Issues of basic physical size effects in the PLZT thin films were also investigated, including thickness effects in the dielectric and ferroelectric properties of the films in a wide range of temperatures, the phase transition of the thin-film relaxors, lanthanum content effect, electrode-dielectric junction, misfit strain effect, etc. Based on the results and analysis, optimum PLZT film capacitors can be determined of proper substrate/electrode/dielectric that achieves the desired dielectric properties required for different applications, especially a more cost-effective method to develop volumetrically efficient capacitors with high charge density, energy density, dielectric breakdown strength, energy storage

  19. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy

    SciTech Connect

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J. Riechert, H.

    2015-05-25

    Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.

  20. Dielectric materials for use in thin-film capacitors

    NASA Technical Reports Server (NTRS)

    Carr, H. E.; Foster, W. D.; Fromhold, A. T., Jr.; Harbuck, T. A.

    1969-01-01

    Investigation report presents details of dielectric properties of various metals measured at 300 degrees K for thermally evaporated oxides from 300 to 6000 A in thickness. It is relevant to the medium of integrated circuitry.

  1. Influence of process parameters on properties of reactively sputtered tungsten nitride thin films

    SciTech Connect

    Addonizio, Maria L.; Castaldo, Anna; Antonaia, Alessandro; Gambale, Emilia; Iemmo, Laura

    2012-05-15

    Tungsten nitride (WN{sub x}) thin films were produced by reactive dc magnetron sputtering of tungsten in an Ar-N{sub 2} gas mixture. The influence of the deposition power on the properties of tungsten nitride has been analyzed and compared with that induced by nitrogen content variation in the sputtering gas. A combined analysis of structural, electrical and optical properties on thin WN{sub x} films obtained at different deposition conditions has been performed. It was found that at an N{sub 2} content of 14% a single phase structure of W{sub 2}N films was formed with the highest crystalline content. This sputtering gas composition was subsequently used for fabricating films at different deposition powers. Optical analysis showed that increasing the deposition power created tungsten nitride films with a more metallic character, which is confirmed with resistivity measurements. At low sputtering powers the resulting films were crystalline whereas, with an increase of power, an amorphous phase was also present. The incorporation of an excess of nitrogen atoms resulted in an expansion of the W{sub 2}N lattice and this effect was more pronounced at low deposition powers. Infrared analysis revealed that in WN{sub x} films deposited at low power, chemisorbed N{sub 2} molecules did not behave as ligands whereas at high deposition power they clearly appeared as ligands around metallic tungsten. In this study, the influence of the most meaningful deposition parameters on the phase transformation reaction path was established and deposition conditions suitable for producing thermally stable and highly crystalline W{sub 2}N films were found.

  2. Reactive DC magnetron sputtered zirconium nitride (ZrN) thin film and its characterization

    NASA Astrophysics Data System (ADS)

    Subramanian, B.; Ashok, K.; Sanjeeviraja, C.; Kuppusami, P.; Jayachandran, M.

    2008-05-01

    Zirconium nitride (ZrN) thin films were prepared by using reactive direct current (DC) magnetron sputtering onto different substrates. A good polycrystalline nature with face centered cubic structure was observed from X-ray Diffraction for ZrN thin films. The observed 'd' values from the X-ray Diffraction pattern were found to be in good agreement with the standard 'd' values (JCPDS-89-5269). An emission peak is observed at 587nm from Photoluminescence studies for the excitation at 430nm. The resistivity value (ρ) of 2.1798 (μΩ cm) was observed. ZrN has high wear resistance and low coefficient of friction. A less negative value of Ecorr and lower value of Icorr observed for ZrN / Mild Steel (MS) clearly confirm the better corrosion resistance than the bare substrate. Also the higher Rct value and lower Cdl value was observed for ZrN / MS from Nyquist - plot.

  3. Sol processing of conjugated carbon nitride powders for thin-film fabrication.

    PubMed

    Zhang, Jinshui; Zhang, Mingwen; Lin, Lihua; Wang, Xinchen

    2015-05-18

    The chemical protonation of graphitic carbon nitride (CN) solids with strong oxidizing acids, for example HNO3, is demonstrated as an efficient pathway for the sol processing of a stable CN colloidal suspension, which can be translated into thin films by dip/disperse-coating techniques. The unique features of CN colloids, such as the polymeric matrix and the reversible hydrogen bonding, result in the thin-film electrodes derived from the sol solution exhibiting a high mechanical stability with improved conductivity for charge transport, and thus show a remarkably enhanced photo-electrochemical performance. The polymer system can in principle be broadly tuned by hybridization with desired functionalities, thus paving the way for the application of CN for specific tasks, as exemplified here by coupling with carbon nanotubes. PMID:25833791

  4. Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films

    PubMed Central

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong-Wei; Cao, Linyou

    2015-01-01

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. The knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters. PMID:26598075

  5. Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films

    NASA Astrophysics Data System (ADS)

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong-Wei; Cao, Linyou

    2015-11-01

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5-7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5-7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. The knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.

  6. Exciton-dominated dielectric function of atomically thin MoS2 films

    SciTech Connect

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong -Wei; Cao, Linyou

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.

  7. Exciton-dominated dielectric function of atomically thin MoS2 films

    DOE PAGESBeta

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong -Wei; et al

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function maymore » dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less

  8. Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films.

    PubMed

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E; Van de Walle, Chris G; Nguyen, Nhan V; Zhang, Yong-Wei; Cao, Linyou

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5-7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5-7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. The knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.

  9. [FTIR spectroscopic studies of inner stress on boron carbon nitride thin films].

    PubMed

    Wang, Yu-Xin; Zheng, Ya-Ru; Song, Zhe; Feng, Ke-Cheng; Zhao, Yong-Nian

    2008-07-01

    Boron carbon nitride thin films were deposited by radio frequency (RF) magnetron sputtering technique using a 50 mm-diameter composite target consisting of h-BN and graphite in an Ar-N2 gas mixture. The composite target was composed of two semi disks: one of h-BN and the other one of graphite. The distance between the target and the substrate was kept at 50 mm. The chamber base pressure was below 5 x 10(-4) Pa. During the deposition, the mixture of Ar (80%) and N2 (20%) was injected into the vacuum chamber and the total pressure was 1.3 Pa. The films were grown on silicon substrates at different deposition parameters, including sputtering power of 80-130 W, deposition temperature of 300-500 degrees C and deposition time of 1-4 h. The chemical bonding state of the samples was characterized by Fourier transform infrared absorption spectroscopy (FTIR). The results suggested that all of the films deposited at these deposition parameters are atomic-level hybrids composed of B, C and N atoms. Besides BN and carbons bonds, the boron carbide and carbon nitride bonds were formed in the BCN thin films. And the deposition parameters have important influences on the growth and inner stress of BCN thin films. That is the higher the sputtering power, the larger the inner stress; the higher or lower the deposition temperature, the larger the inner stress; the longer the deposition time, the larger the inner stress. So changing deposition parameters properly is a feasible method to relax the inner stress between the films and substrate. In the conditions of changing one parameter each time, the optimum deposition parameters to prepare BCN thin films with lower inner stress were obtained: sputtering power of 80 W, deposition temperature of 400 degrees C and deposition time of 2 h.

  10. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    SciTech Connect

    Gillinger, M.; Schneider, M.; Bittner, A.; Schmid, U.; Nicolay, P.

    2015-02-14

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.

  11. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ˜5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density-voltage and frequency dependent (7 kHz-5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole-Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  12. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ∼5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density–voltage and frequency dependent (7 kHz–5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole–Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  13. Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films.

    PubMed

    Murai, Shunsuke; Fujita, Koji; Daido, Yohei; Yasuhara, Ryuichiro; Kamakura, Ryosuke; Tanaka, Katsuhisa

    2016-01-25

    We have fabricated two-dimensional periodic arrays of titanium nitride (TiN) nanoparticles from epitaxial thin films. The thin films of TiN, deposited on sapphire and single crystalline magnesium oxide substrates by a pulsed laser deposition, are metallic and show reasonably small optical loss in the visible and near infrared regions. The thin films prepared were structured to the arrays of nanoparticles with the pitch of 400 nm by the combination of nanoimprint lithography and reactive ion etching. Optical transmission indicates that the arrays support the collective plasmonic modes, where the localized surface plasmon polaritons in TiN nanoparticles are radiatively coupled through diffraction. Numerical simulation visualizes the intense fields accumulated both in the nanoparticles and in between the particles, confirming that the collective mode originates from the simultaneous excitation of localized surface plasmon polaritons and diffraction. This study experimentally verified that the processing of TiN thin films with the nanoimprint lithography and reactive ion etching is a powerful and versatile way of preparing plasmonic nanostructures. PMID:26832498

  14. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films.

    PubMed

    Hees, J; Heidrich, N; Pletschen, W; Sah, R E; Wolfer, M; Williams, O A; Lebedev, V; Nebel, C E; Ambacher, O

    2013-01-18

    Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (10(8) cm(-2)), in the case of hydrogen-treated ND seeding particles, to very high values of 10(11) cm(-2) for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young's moduli of more than 1000 GPa.

  15. Dielectric and Ferroelectric Performance of Pb(Zr(x)Ti(1-x))O3 Thin Films with Compositional Gradients.

    PubMed

    He, Gang; Zhou, Yongju; Peng, Chao; Zhang, Yao; Pan, Wei

    2015-09-01

    A series of PZT thin films with compositional gradients were fabricated at ease by a combinatorial chemical solution deposition process. Their dielectric and ferroelectric properties are significantly different from uniform composition PZT films, depending on the composition, the span, and the direction of the compositional gradient. Among samples with the same average Zr content, the down-gradient thin films exhibit better dielectric and ferroelectric properties. PZT thin films with a narrow compositional gradient span favour better dielectric and ferroelectric properties. The down-gradient thin film PZT654 with a Zr-rich layer closest to the Pt substrate, in which the average composition is close to the morphotropic phase boundary (MPB, x = 0.52), shows the best dielectric and ferroelectric performance. These distinct thin films with different dielectric and ferroelectric properties could be designed by adjusting factors such as content, span and direction of the compositional gradient.

  16. AlN and Al oxy-nitride gate dielectrics for reliable gate stacks on Ge and InGaAs channels

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Li, H.; Robertson, J.

    2016-05-01

    AlN and Al oxy-nitride dielectric layers are proposed instead of Al2O3 as a component of the gate dielectric stacks on higher mobility channels in metal oxide field effect transistors to improve their positive bias stress instability reliability. It is calculated that the gap states of nitrogen vacancies in AlN lie further away in energy from the semiconductor band gap than those of oxygen vacancies in Al2O3, and thus AlN might be less susceptible to charge trapping and have a better reliability performance. The unfavourable defect energy level distribution in amorphous Al2O3 is attributed to its larger coordination disorder compared to the more symmetrically bonded AlN. Al oxy-nitride is also predicted to have less tendency for charge trapping.

  17. Partially hollowed ultra-thin dielectric meta-surface for transmission manipulation.

    PubMed

    Liu, Guiqiang; Fu, Guolan; Liu, Zhengqi; Huang, Zhenping; Chen, Jian

    2016-09-01

    Impressive optical properties are numerically demonstrated in the partially hollowed dielectric meta-surface (p-HDMS), which consists of an air cavity array intercalated in an ultra-thin (~λ/6) high-index dielectric film. Multispectral transmission band-stop response with near-perfect spectral modulation depth is achieved. The spectral slop is up to 80%/nm, indicating the sharp and narrowband transmission behavior. Classical Malus law is confirmed by this sub-wavelength platform. Moreover, the multispectral light propagation manipulation can be perfectly reproduced by using the actual dielectric with absorption loss. In this all-dielectric meta-surface, conduction loss is avoided compared to its metallic plasmonic counterpart. Such configurations can therefore serve as excellent alternatives for plasmonic meta-surfaces and constitute an important step in nanophotonics. PMID:27607661

  18. Unintentional carbide formation evidenced during high-vacuum magnetron sputtering of transition metal nitride thin films

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M.

    2016-11-01

    Carbide signatures are ubiquitous in the surface analyses of industrially sputter-deposited transition metal nitride thin films grown with carbon-less source materials in typical high-vacuum systems. We use high-energy-resolution photoelectron spectroscopy to reveal details of carbon temporal chemical state evolution, from carbide formed during film growth to adventitious carbon adsorbed upon contact with air. Using in-situ grown Al capping layers that protect the as-deposited transition metal nitride surfaces from oxidation, it is shown that the carbide forms during film growth rather than as a result of post deposition atmosphere exposure. The XPS signature of carbides is masked by the presence of adventitious carbon contamination, appearing as soon as samples are exposed to atmosphere, and eventually disappears after one week-long storage in lab atmosphere. The concentration of carbon assigned to carbide species varies from 0.28 at% for ZrN sample, to 0.25 and 0.11 at% for TiN and HfN, respectively. These findings are relevant for numerous applications, as unintentionally formed impurity phases may dramatically alter catalytic activity, charge transport and mechanical properties by offsetting the onset of thermally-induced phase transitions. Therefore, the chemical state of C impurities in PVD-grown films should be carefully investigated.

  19. Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature

    SciTech Connect

    Belkerk, B. E.; Bensalem, S.; Soussou, A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.; Al Brithen, H.

    2014-12-01

    In this paper, we report on investigation concerning the substrate-dependent thermal conductivity (k) of Aluminum Nitride (AlN) thin-films processed at low temperature by reactive magnetron sputtering. The thermal conductivity of AlN films grown at low temperature (<200 °C) on single-crystal silicon (Si) and amorphous silicon nitride (SiN) with thicknesses ranging from 100 nm to 4000 nm was measured with the transient hot-strip technique. The k values for AlN films on SiN were found significantly lower than those on Silicon consistently with their microstructures revealed by X-ray diffraction, high resolution scanning electron microscopy, and transmission electron microscopy. The change in k was due to the thermal boundary resistance found to be equal to 10 × 10{sup −9} Km{sup 2}W{sup −1} on SiN against 3.5 × 10{sup −9} Km{sup 2}W{sup −1} on Si. However, the intrinsic thermal conductivity was determined with a value as high as 200 Wm{sup −1}K{sup −1} whatever the substrate.

  20. Transition-metal-nitride-based thin films as novel energy harvesting materials

    PubMed Central

    Kerdsongpanya, Sit; Alling, Björn

    2016-01-01

    The last few years have seen a rise in the interest in early transition-metal and rare-earth nitrides, primarily based on ScN and CrN, for energy harvesting by thermoelectricity and piezoelectricity. This is because of a number of important advances, among those the discoveries of exceptionally high piezoelectric coupling coefficient in (Sc,Al)N alloys and of high thermoelectric power factors of ScN-based and CrN-based thin films. These materials also constitute well-defined model systems for investigating thermodynamics of mixing for alloying and nanostructural design for optimization of phase stability and band structure. These features have implications for and can be used for tailoring of thermoelectric and piezoelectric properties. In this highlight article, we review the ScN- and CrN-based transition-metal nitrides for thermoelectrics, and drawing parallels with piezoelectricity. We further discuss these materials as a models systems for general strategies for tailoring of thermoelectric properties by integrated theoretical–experimental approaches. PMID:27358737

  1. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    PubMed

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-01

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  2. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-01

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  3. Early stages of growth and crystal structure evolution of boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Henry, Anne; Chubarov, Mikhail; Czigány, Zsolt; Garbrecht, Magnus; Högberg, Hans

    2016-05-01

    A study of the nucleation and crystal structure evolution at the early stages of the growth of sp2-BN thin films on 6H-SiC and α-Al2O3 substrates is presented. The growth is performed at low pressure and high temperature in a hot wall CVD reactor, using ammonia and triethylboron as precursors, and H2 as carrier gas. From high-resolution transmission electron microscopy and X-ray thin film diffraction measurements we observe that polytype pure rhombohedral BN (r-BN) is obtained on 6H-SiC substrates. On α-Al2O3 an AlN buffer obtained by nitridation is needed to promote the growth of hexagonal BN (h-BN) to a thickness of around 4 nm followed by a transition to r-BN growth. In addition, when r-BN is obtained, triangular features show up in plan-view scanning electron microscopy which are not seen on thin h-BN layers. The formation of BN after already one minute of growth is confirmed by X-ray photoelectron spectroscopy.

  4. High temperature performance of sputter-deposited piezoelectric aluminum nitride thin films

    NASA Astrophysics Data System (ADS)

    Gillinger, M.; Schneider, M.; Bittner, A.; Nicolay, P.; Schmid, U.

    2015-05-01

    Aluminum nitride (AlN) is a promising material for sensor applications in harsh environments such as turbine exhausts or thermal power plants due to its piezoelectric properties, good thermal match to silicon and high temperature stability. Typically, the usage of piezoelectric materials in high temperature is limited by the Curie-temperature, the increase of the leakage current as well as by enhanced diffusion effects in the materials. In order to exploit the high temperature potential of AlN thin films, post deposition annealing experiments up to 1000°C in both oxygen and nitrogen gas atmospheres for 2 h were performed. X-ray diffraction measurements indicate that the thin films are chemically stable in a pure oxygen atmosphere for 2 h at annealing temperatures of up to 900°C. After a 2 h annealing step at 1000°C in pure oxygen. However, a 100 nm thin AlN film is completely oxidized. In contrast, the layer is stable up to 1000°C in pure nitrogen atmosphere. The surface topology changes significantly at annealing temperatures above 800°C independent of annealing atmosphere. The surface roughness is increased by about one order of magnitude compared to the "as deposited" state. This is predominantly attributed to recrystallization processes occurring during high temperature loading. Up to an annealing temperature of 700°C, a Poole-Frenkel conduction mechanism dominates the leakage current characteristics. Above, a mixture of different leakage current mechanisms is observed.

  5. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films

    NASA Astrophysics Data System (ADS)

    Akiyama, Morito; Morofuji, Yukari; Kamohara, Toshihiro; Nishikubo, Keiko; Tsubai, Masayoshi; Fukuda, Osamu; Ueno, Naohiro

    2006-12-01

    We have investigated the high sensitive piezoelectric response of c-axis oriented aluminum nitride (AlN) thin films prepared on polyethylene terephthalate (PET) films. The AlN films were deposited using a radio frequency magnetron sputtering method at temperatures close to room temperature. The c axes of the AlN films were perpendicularly oriented to the PET film surfaces. The sensor consisting of the AlN and PET films is flexible like PET films and the electrical charge is linearly proportional to the stress within a wide range from 0to8.5MPa. The sensor can respond to the frequencies from 0.3 to over 100Hz and measures a clear human pulse wave form by holding the sensor between thumb and middle finger. The resolution of the pulse wave form is comparable to a sphygmomanometer at stress levels of 10kPa. We think that the origin of the high performance of the sensor is the deflection effect, the thin thickness and high elastic modulus of the AlN layer, and the thin thickness and low elastic modulus of the PET film.

  6. Two layer flow of thin leaky dielectric films between electrodes

    NASA Astrophysics Data System (ADS)

    Dubrovina, Elizaveta; Craster, Richard; Papageorgiou, Demetrios

    2014-11-01

    The flow of two viscous conducting fluids between two electrodes is investigated. The fluids are assumed to be leaky dielectrics and two nonlinear coupled evolution equations are derived for the moving interface and the interfacial charge. These are solved numerically for three different cases in which the magnitude of the ratios of electric conductivities and permittivities is varied. A linear stability analysis indicates that electrical forces destabilize the system. These predictions are confirmed by numerical results which show that increasing the ratios of conductivities and permittivities leads to traveling waves that grow in amplitude.

  7. Scattering from thin dielectric straps surrounding a perfectly conducting structure

    NASA Technical Reports Server (NTRS)

    Al-Hekail, Zeyad; Gupta, Inder J.

    1989-01-01

    A method to calculate the electromagnetic scattered fields from a dielectric strap wrapped around convex, conducting structure is presented. A moment method technique is used to find the current excited within the strap by the incident plane wave. Then, Uniform Geometrical Theory of Diffraction (UTD) is used to compute the fields scattered by the strap. Reasonable agreement was obtained between the computed and the measured results. The results found in this study are useful in evaluating straps as a target support structure for scattering measurements.

  8. Microwave Characterization of Low-k Dielectric Thin Films using a Coplanar Waveguide

    NASA Astrophysics Data System (ADS)

    Radican, Kevin P.; Koeck, Deborah C.; Geerts, Wilhelmus; Spencer, Gregory; Donnelly, David; Galloway, Heather C.

    2003-03-01

    As microelectronic logic devices increase in speed the RC time delay is becoming of greater concern. One remedy is the use of low-k dielectrics along with less resistive metals such as Cu in back end processing. We have demonstrated a method of forming coplanar waveguides on low-k dielectric materials deposited on SiC/Si wafers. These thin films are prepared by the usual semiconductor industry methods. Then, the dielectric properties of the low-k dielectric thin films on wafers were measured at microwave frequencies using coplanar waveguide test structures. Several OSG low k materials were investigated before and after chemical mechanical planarization processing which involves placing the dielectrics in a liquid abrasive slurry. We will report on the details of the fabrication of the waveguide structures using argon laser beam lithography, magnetron sputter deposition, and reactive plasma etching. We will also report on the electrical changes observed due to the chemical processing. Electrical measurements were taken using an Agilent network analyzer, and Cascade Microtech probe station.

  9. Parametric formulation of the dielectric function of palladium and palladium hydride thin films.

    PubMed

    Vargas, William E; Azofeifa, Daniel E; Clark, Neville; Solis, Hugo; Montealegre, Felipe; Cambronero, Michael

    2014-08-20

    A parametric description of the dielectric function of Pd thin films with thicknesses between 10 and 30 nm is reported. These films were grown at room temperature on amorphous quartz substrates by electron beam evaporation, with a base pressure of 7.0×10(-7)  mbar. By using nonpolarized normal incident light, transmission spectra were measured for wavelengths between 240 and 1050 nm. Inversion of the spectra by means of a projected gradient method enables us to obtain the mean dielectric function of the Pd grains in the films. We follow the Brendel-Bormann model to describe the frequency dependence of the dielectric function, with the plasma frequency, collision frequency, and screening factor as parameters in the free electron term. The contributions of bound electrons and their interband transitions, described in terms of Lorentz oscillators, involve the resonance frequencies, decay times, strengths, and Gaussian widths as parameters of the model. All these parameters have been optimized from the Pd grains' dielectric function, which fits the transmission spectra. A similar procedure was followed for Pd films exposed to a hydrogen atmosphere close to one bar. Thus, the dielectric functions of palladium and palladium hydride can easily be calculated through spectral ranges covering near-ultraviolet, visible, and near-infrared wavelengths. This can be used to model the behavior of nano-sized structures in which palladium particles or thin films are exposed to hydrogen pressures close to one bar.

  10. Electrical Properties of PVP-SiO2-TMSPM Hybrid Thin Films as OFET Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Bahari, A.; Shahbazi, M.

    2016-02-01

    Organic-inorganic polyvinylpyrrolidone-silicon dioxide-3-(trimethoxysilyl)propyl methacrylate (PVP-SiO2-TMSPM) hybrid solutions have been synthesized using the sol-gel process with different amounts of TMSPM as coupling agent and equivalent amounts of PVP and SiO2. Hybrid solutions were deposited on p-type Si(111) substrates using the spin coating technique, as a gate dielectric material for use in thin-film transistors. The structural properties of the samples were investigated using Fourier-transform infrared spectroscopy and x-ray diffraction analysis. Atomic force microscopy and scanning electron microscopy techniques were applied to study the topography and morphology of the hybrid thin-film samples. Current-voltage ( I- V) curves, capacitance-voltage ( C- V) measurements, and the electrical properties of the organic hybrid thin-film gate dielectrics were also studied in a metal-insulator/polymer-semiconductor structure. According to the results, the J GS curves in terms of V GS showed gate leakage current densities small enough for use as gate dielectric material at interface layers. At V DS = 30 V, in the saturation region, I DS curves in terms of V GS presented higher charge carrier mobility ( μ FET,S = 0.0584 cm2 s-1 V-1) due to lower dielectric constant ( k = 11.43) in the sample with 0.05 weight ratio of TMSPM compared with other samples with different weight ratios of TMSPM.

  11. Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Jang, Sung Kyu; Youn, Jiyoun; Song, Young Jae; Lee, Sungjoo

    2016-07-01

    Two different growth modes of large-area hexagonal boron nitride (h-BN) film, a conventional chemical vapor deposition (CVD) growth mode and a high-pressure CVD growth mode, were compared as a function of the precursor partial pressure. Conventional self-limited CVD growth was obtained below a critical partial pressure of the borazine precursor, whereas a thick h-BN layer (thicker than a critical thickness of 10 nm) was grown beyond a critical partial pressure. An interesting coincidence of a critical thickness of 10 nm was identified in both the CVD growth behavior and in the breakdown electric field strength and leakage current mechanism, indicating that the electrical properties of the CVD h-BN film depended significantly on the film growth mode and the resultant film quality.

  12. Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric.

    PubMed

    Jang, Sung Kyu; Youn, Jiyoun; Song, Young Jae; Lee, Sungjoo

    2016-01-01

    Two different growth modes of large-area hexagonal boron nitride (h-BN) film, a conventional chemical vapor deposition (CVD) growth mode and a high-pressure CVD growth mode, were compared as a function of the precursor partial pressure. Conventional self-limited CVD growth was obtained below a critical partial pressure of the borazine precursor, whereas a thick h-BN layer (thicker than a critical thickness of 10 nm) was grown beyond a critical partial pressure. An interesting coincidence of a critical thickness of 10 nm was identified in both the CVD growth behavior and in the breakdown electric field strength and leakage current mechanism, indicating that the electrical properties of the CVD h-BN film depended significantly on the film growth mode and the resultant film quality. PMID:27458024

  13. Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric

    PubMed Central

    Jang, Sung Kyu; Youn, Jiyoun; Song, Young Jae; Lee, Sungjoo

    2016-01-01

    Two different growth modes of large-area hexagonal boron nitride (h-BN) film, a conventional chemical vapor deposition (CVD) growth mode and a high-pressure CVD growth mode, were compared as a function of the precursor partial pressure. Conventional self-limited CVD growth was obtained below a critical partial pressure of the borazine precursor, whereas a thick h-BN layer (thicker than a critical thickness of 10 nm) was grown beyond a critical partial pressure. An interesting coincidence of a critical thickness of 10 nm was identified in both the CVD growth behavior and in the breakdown electric field strength and leakage current mechanism, indicating that the electrical properties of the CVD h-BN film depended significantly on the film growth mode and the resultant film quality. PMID:27458024

  14. Thermally driven sign switch of static dielectric constant of VO2 thin film

    NASA Astrophysics Data System (ADS)

    Kana Kana, J. B.; Vignaud, G.; Gibaud, A.; Maaza, M.

    2016-04-01

    Smart multifunctional materials exhibiting phase transition and tunable optical and/electrical properties provide a new direction towards engineering switchable devices. Specifically, the reversible, tunable and sign switch dielectric constants via external temperature stimuli observed in vanadium dioxide (VO2) make it a candidate of choice for tunable and switchable technologies devices. Here we report new aspect of the metal-insulator transition (MIT) through the sign switch of the static dielectric constant εS of pure VO2. As it is shown, the static dielectric constant showed an abrupt change from positive at T < 70 °C to negative at T > 70 °C. εS > 0 confirms the insulating phase where charges are localized while εS < 0 confirms the metallic phase of VO2 where charges are delocalized. We report for the first time the tunability of the dielectric constant from a negative sign for the static dielectric constant of VO2 thin film rarely found in real physical systems. We also demonstrate the tunability and switchability of the real and imaginary part of the dielectric constant (ε) via external temperature stimuli. More specifically, the real (ε) and Imaginary (ε) showed an abrupt thermal hysteresis which clearly confirms the phase transition.

  15. Graphene-based thin film supercapacitor with graphene oxide as dielectric spacer

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhang; Galpaya, Dilini; Notarianni, Marco; Yan, Cheng; Motta, Nunzio

    2013-08-01

    Thin film supercapacitors are produced by using electrochemically exfoliated graphene (G) and wet-chemically produced graphene oxide (GO). Either G/GO/G stacked film or sole GO film are sandwiched by two Au films to make devices, where GO is the dielectric spacer. The addition of graphene film can increase the capacitance about two times, compared to the simple Au electrode. It is found that the GO film has very high dielectric constant, accounting for the high capacitance. AC measurement reveals that the relative permittivity of GO is in the order of 104 within the frequency range of 0.1-70 Hz.

  16. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    DOE PAGESBeta

    Enriquez, Erik M.; Zhang, Yingying; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Harrell, Zachary John; Lu, Xujie; Dowden, Paul Charles; Wang, Haiyan; et al

    2016-08-26

    Epitaxial layered ternary metal-nitride FeMoN2, (Fe0.33 Mo0.67)MoN2, CoMoN2, and FeWN2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1–1 mΩ·cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has been used to analyze the grain boundary andmore » Coulomb blockade effect on the electrical properties. Furthermore, the growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN2 materials through A and B-site substitution.« less

  17. Near-infrared electroluminescence at room temperature from neodymium-doped gallium nitride thin films

    SciTech Connect

    Kim, Joo Han; Holloway, Paul H.

    2004-09-06

    Strong near-infrared (NIR) electroluminescence (EL) at room temperature from neodymium (Nd)-doped gallium nitride (GaN) thin films is reported. The Nd-doped GaN films were grown by radio-frequency planar magnetron cosputtering of separate GaN and metallic Nd targets in a pure nitrogen ambient. X-ray diffraction data did not identify the presence of any secondary phases and revealed that the Nd-doped GaN films had a highly textured wurtzite crystal structure with the c-axis normal to the surface of the film. The EL devices were fabricated with a thin-film multilayered structure of Al/Nd-doped GaN/Al{sub 2}O{sub 3}-TiO{sub 2}/indium-tin oxide and tested at room temperate. Three distinct NIR EL emission peaks were observed from the devices at 905, 1082, and 1364 nm, arising from the radiative relaxation of the {sup 4}F{sub 3sol2} excited-state energy level to the {sup 4}I{sub 9sol2}, {sup 4}I{sub 11sol2}, and {sup 4}I{sub 13sol2} levels of the Nd{sup 3+} ion, respectively. The threshold voltage for all the three emission peaks was {approx}150 V. The external power efficiency of the fabricated EL devices was {approx}1x10{sup -5} measured at 40 V above the threshold voltage.

  18. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    NASA Astrophysics Data System (ADS)

    Enriquez, Erik; Zhang, Yingying; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Harrell, Zachary; Lü, Xujie; Dowden, Paul; Wang, Haiyan; Chen, Chonglin; Jia, Quanxi

    2016-08-01

    Epitaxial layered ternary metal-nitride FeMoN2, (Fe0.33Mo0.67)MoN2, CoMoN2, and FeWN2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1-1 mΩ.cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has been used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. The growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN2 materials through A and B-site substitution.

  19. Resistive switching phenomena of tungsten nitride thin films with excellent CMOS compatibility

    SciTech Connect

    Hong, Seok Man; Kim, Hee-Dong; An, Ho-Myoung; Kim, Tae Geun

    2013-12-15

    Graphical abstract: - Highlights: • The resistive switching characteristics of WN{sub x} thin films. • Excellent CMOS compatibility WN{sub x} films as a resistive switching material. • Resistive switching mechanism revealed trap-controlled space charge limited conduction. • Good endurance and retention properties over 10{sup 5} cycles, and 10{sup 5} s, respectively - Abstract: We report the resistive switching (RS) characteristics of tungsten nitride (WN{sub x}) thin films with excellent complementary metal-oxide-semiconductor (CMOS) compatibility. A Ti/WN{sub x}/Pt memory cell clearly shows bipolar RS behaviors at a low voltage of approximately ±2.2 V. The dominant conduction mechanisms at low and high resistance states were verified by Ohmic behavior and trap-controlled space-charge-limited conduction, respectively. A conducting filament model by a redox reaction explains the RS behavior in WN{sub x} films. We also demonstrate the memory characteristics during pulse operation, including a high endurance over >10{sup 5} cycles and a long retention time of >10{sup 5} s.

  20. Atomic-Resolution Observations of Semi-Crystalline IntegranularThin Films in Silicon Nitride

    SciTech Connect

    Ziegler, Alexander; Idrobo, Juan C.; Cinibulk, Michael K.; Kisielowski, Christian; Browning, Nigel D.; Ritchie, Robert O.

    2005-08-01

    The thin intergranular phase in a silicon nitride (Si3N4)ceramic, which has been regarded for decades as having an entirely amorphous morphology, is shown to have a semi-crystalline structure. Using two different but complementary high-resolution electron microscopy methods, the intergranular atomic structure was directly imaged at the atomic level. These high-resolution images show that the atomic arrangement of the dopand element cerium takes very periodic positions not only along the interface between the intergranular phase and the Si3N4 matrix grains, but it arranges in a semi-crystalline structure that spans the entire width of the intergranular phase between two adjacent matrix grains, in principle connecting the two separate matrix grains. The result will have implications on the approach of understanding the materials properties of ceramics, most significantly on the mechanical properties and the associated computational modeling of the atomic structure of the thin intergranular phase in Si3N4 ceramics.

  1. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    SciTech Connect

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis

    2008-05-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  2. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    SciTech Connect

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

    2008-01-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  3. Investigation of high-k yttrium copper titanate thin films as alternative gate dielectrics

    NASA Astrophysics Data System (ADS)

    Grazia Monteduro, Anna; Ameer, Zoobia; Rizzato, Silvia; Martino, Maurizio; Caricato, Anna Paola; Tasco, Vittorianna; Chaitanya Lekshmi, Indira; Hazarika, Abhijit; Choudhury, Debraj; Sarma, D. D.; Maruccio, Giuseppe

    2016-10-01

    Nearly amorphous high-k yttrium copper titanate thin films deposited by laser ablation were investigated in both metal-oxide-semiconductor (MOS) and metal-insulator-metal (MIM) junctions in order to assess the potentialities of this material as a gate oxide. The trend of dielectric parameters with film deposition shows a wide tunability for the dielectric constant and AC conductivity, with a remarkably high dielectric constant value of up to 95 for the thick films and conductivity as low as 6  ×  10-10 S cm-1 for the thin films deposited at high oxygen pressure. The AC conductivity analysis points out a decrease in the conductivity, indicating the formation of a blocking interface layer, probably due to partial oxidation of the thin films during cool-down in an oxygen atmosphere. Topography and surface potential characterizations highlight differences in the thin film microstructure as a function of the deposition conditions; these differences seem to affect their electrical properties.

  4. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.

    PubMed

    van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert

    2015-08-12

    We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.

  5. Characterization of capture cross sections of interface states in dielectric/III-nitride heterojunction structures

    NASA Astrophysics Data System (ADS)

    Matys, M.; Stoklas, R.; Kuzmik, J.; Adamowicz, B.; Yatabe, Z.; Hashizume, T.

    2016-05-01

    We performed, for the first time, quantitative characterization of electron capture cross sections σ of the interface states at dielectric/III-N heterojunction interfaces. We developed a new method, which is based on the photo-assisted capacitance-voltage measurements using photon energies below the semiconductor band gap. The analysis was carried out for AlGaN/GaN metal-insulator-semiconductor heterojunction (MISH) structures with Al2O3, SiO2, or SiN films as insulator deposited on the AlGaN layers with Al content (x) varying over a wide range of values. Additionally, we also investigated an Al2O3/InAlN/GaN MISH structure. Prior to insulator deposition, the AlGaN and InAlN surfaces were subjected to different treatments. We found that σ for all these structures lies in the range between 5 × 10 - 19 and 10 - 16 cm2. Furthermore, we revealed that σ for dielectric/AlxGa1-xN interfaces increases with increasing x. We showed that both the multiphonon-emission and cascade processes can explain the obtained results.

  6. Free-Space Time-Domain Method for Measuring Thin Film Dielectric Properties

    DOEpatents

    Li, Ming; Zhang, Xi-Cheng; Cho, Gyu Cheon

    2000-05-02

    A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle. The dielectric constant for the thin film can be calculated as the index of refraction squared.

  7. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications

    NASA Astrophysics Data System (ADS)

    Li, Wei-Jin; Liu, Juan; Sun, Zhi-Hua; Liu, Tian-Fu; Lü, Jian; Gao, Shui-Ying; He, Chao; Cao, Rong; Luo, Jun-Hua

    2016-06-01

    The integration of porous metal-organic frameworks onto the surface of materials, for use as functional devices, is currently emerging as a promising approach for gas sensing and flexible displays. However, research focused on potential applications in electronic devices is in its infancy. Here we present a facile strategy by which interpenetrated, crystalline metal-organic framework films are deposited onto conductive metal-plate anodes via in situ temperature-controlled electrochemical assembly. The nanostructure of the surface as well as the thickness and uniformity of the film are well controlled. More importantly, the resulting films exhibit enhanced dielectric properties compared to traditional inorganic or organic gate dielectrics. This study demonstrates the successful implementation of the rational design of metal-organic framework thin films on conductive supports with high-performance dielectric properties.

  8. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications

    PubMed Central

    Li, Wei-Jin; Liu, Juan; Sun, Zhi-Hua; Liu, Tian-Fu; Lü, Jian; Gao, Shui-Ying; He, Chao; Cao, Rong; Luo, Jun-Hua

    2016-01-01

    The integration of porous metal-organic frameworks onto the surface of materials, for use as functional devices, is currently emerging as a promising approach for gas sensing and flexible displays. However, research focused on potential applications in electronic devices is in its infancy. Here we present a facile strategy by which interpenetrated, crystalline metal-organic framework films are deposited onto conductive metal-plate anodes via in situ temperature-controlled electrochemical assembly. The nanostructure of the surface as well as the thickness and uniformity of the film are well controlled. More importantly, the resulting films exhibit enhanced dielectric properties compared to traditional inorganic or organic gate dielectrics. This study demonstrates the successful implementation of the rational design of metal-organic framework thin films on conductive supports with high-performance dielectric properties. PMID:27282348

  9. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications.

    PubMed

    Li, Wei-Jin; Liu, Juan; Sun, Zhi-Hua; Liu, Tian-Fu; Lü, Jian; Gao, Shui-Ying; He, Chao; Cao, Rong; Luo, Jun-Hua

    2016-06-10

    The integration of porous metal-organic frameworks onto the surface of materials, for use as functional devices, is currently emerging as a promising approach for gas sensing and flexible displays. However, research focused on potential applications in electronic devices is in its infancy. Here we present a facile strategy by which interpenetrated, crystalline metal-organic framework films are deposited onto conductive metal-plate anodes via in situ temperature-controlled electrochemical assembly. The nanostructure of the surface as well as the thickness and uniformity of the film are well controlled. More importantly, the resulting films exhibit enhanced dielectric properties compared to traditional inorganic or organic gate dielectrics. This study demonstrates the successful implementation of the rational design of metal-organic framework thin films on conductive supports with high-performance dielectric properties.

  10. Morphology, Structural and Dielectric Properties of Vacuum Evaporated V2O5 Thin Films

    NASA Astrophysics Data System (ADS)

    Sengodan, R.; Shekar, B. Chandar; Sathish, S.

    Vanadium pentoxide (V2O5) thin films were deposited on well cleaned glass substrate using evaporation technique under the pressure of 10-5 Torr. The thickness of the films was measured by the multiple beam interferometry technique and cross checked by using capacitance method. Metal-Insulator-Metal (MIM) structure was fabricated by using suitable masks to study dielectric properties. The dielectric properties were studied by employing LCR meter in the frequency range 12 Hz to 100 kHz for various temperatures. The temperature co- efficient of permittivity (TCP), temperature co-efficient of capacitance (TCC) and dielectric constant (ɛ) were calculated. The activation energy was calculated and found to be very low. The activation energy was found to be increasing with increase in frequency. The obtained low value of activation energy suggested that the hopping conduction may be due to electrons rather than ions.

  11. A high-k ferroelectric relaxor terpolymer as a gate dielectric for orgnaic thin film transistors

    SciTech Connect

    Wu, Shan; Shao, Ming; Burlingame, Quinn; Chen, Xiangzhong; Lin, Minren; Xiao, Kai; Zhang, Qiming

    2013-01-01

    Poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) is a ferroelectric terpolymer relaxor with a static dielectric constant of 50, which was developed using defect modification to eliminate remnant polarization in the normal ferroelectric PVDF. In this work, this solution processable terpolymer was used as the gate insulator in bottom gated organic thin-film transistors with a pentacene semiconductor layer. Due to the high dielectric constant of P(VDF-TrFE- CFE), a large capacitive coupling between the gate and channel can be achieved which causes a high charge concentration at the interface of the semiconductor and dielectric layers. In this device, an on/ off ratio of 104 and a low minimum operation gate voltage (5-10 V) were attained

  12. Thin low-loss dielectric coatings for free-space cloaking.

    PubMed

    Urzhumov, Yaroslav; Landy, Nathan; Driscoll, Tom; Basov, Dimitri; Smith, David R

    2013-05-15

    We report stereolithographic polymer-based fabrication and experimental operation of a microwave X-band cloaking device. The device is a relatively thin (about one wavelength thick) shell of an air-dielectric composite, in which the dielectric component has negligible loss and dispersion. In a finite band (9.7-10.1 GHz), the shell eliminates the shadow and strongly suppresses scattering from a conducting cylinder of six-wavelength diameter for TE-polarized free-space plane waves. The device does not require an immersion liquid or conducting ground planes for its operation. The dielectric constant of the polymer is low enough (ε=2.45) to suggest that this cloaking technique would be suitable for higher frequency radiation, including visible light.

  13. Mechanism of Schottky barrier height modulation by thin dielectric insertion on n-type germanium

    NASA Astrophysics Data System (ADS)

    Tsui, Bing-Yue; Kao, Ming-Hong

    2013-07-01

    Although high channel electron mobility has been reported after some passivation techniques, the performance of n-channel Ge metal-oxide-semiconductor field-effect transistor is still limited by the high Schottky barrier height at the metal/n-Ge contact interface, which comes from the Fermi level pinning effect. Recent experiments demonstrated that the Schottky barrier height can be reduced by inserting a thin dielectric layer between metal and Ge. However, the mechanism has not been well clarified. In this paper, the metal induced gap state model, the dipole layer model, and the fixed charge model are verified by varying contact metals, dielectric thicknesses, as well as the annealing temperatures. The pinning factor is improved slightly by dielectric insertion but its value is independent of the dielectric thickness and is still much lower than the ideal value of the non-pinning case. This pinning effect is consistent with the Fermi level pinning at the metal/TiO2 interface. After thermal process, no interfacial layer forms at the TiO2/Ge interface and the TiO2 crystallizes gradually after annealing but the Schottky barrier height increases. Since the amount of fixed charges in the thin dielectric layer estimated from a metal-insulator-semiconductor structure is about 2 × 1011 cm-2 and is insufficient to produce the observed 0.5 eV Schottky barrier height reduction, it is thus recommended that the main mechanism comes from the change of interface dipoles and the annealing effect is attributed to the short-range ordering of the TiO2 layer. Furthermore, dielectric with low conduction band offset which has good thermal stability should be explored.

  14. Effect of hydrogen addition on the deposition of titanium nitride thin films in nitrogen added argon magnetron plasma

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Diaz-Droguett, D. E.; Guzman, F.; Mändl, S.; Saikia, B. K.; Favre, M.; Maze, J. R.; Wyndham, E.

    2016-06-01

    The properties and performance of thin films deposited by plasma assisted processes are closely related to their manufacturing techniques and processes. The objective of the current study is to investigate the modification of plasma parameters occurring during hydrogen addition in N2  +  Ar magnetron plasma used for titanium nitride thin film deposition, and to correlate the measured properties of the deposited thin film with the bulk plasma parameters of the magnetron discharge. From the Langmuir probe measurements, it was observed that the addition of hydrogen led to a decrease of electron density from 8.6 to 6.2  ×  (1014 m-3) and a corresponding increase of electron temperature from 6.30 to 6.74 eV. The optical emission spectroscopy study reveals that with addition of hydrogen, the density of argon ions decreases. The various positive ion species involving hydrogen are found to increase with increase of hydrogen partial pressure in the chamber. The thin films deposited were characterized using standard surface diagnostic tools such as x-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), x-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). Although it was possible to deposit thin films of titanium nitride with hydrogen addition in nitrogen added argon magnetron plasma, the quality of the thin films deteriorates with higher hydrogen partial pressures.

  15. Non-contact C-V measurements of ultra thin dielectrics

    NASA Astrophysics Data System (ADS)

    Edelman, P.; Savtchouk, A.; Wilson, M.; D'Amico, J.; Kochey, J. N.; Marinskiy, D.; Lagowski, J.

    2004-07-01

    In this paper, we present a non-contact C-V technique for ultra-thin dielectrics on silicon. The technique uses incremental corona charging of dielectric and a measurement of the surface potential with a vibrating capacitive electrode. A differential quasistatic C-V curve is generated using time-resolved measurements. The technique incorporates transconductance corrections that enable corresponding ultra-low electrical oxide thickness (EOT) determination down to the sub-nanometer range. It also provides a means for monitoring the flat band voltage, V{FB}, the interface trap spectrum, D{IT}, and the total dielectric charge, Q{TOT}. This technique is seen as a replacement for not only MOS C-V measurements but also for mercury-probe C-V. In addition, EOT measurement by the corona C-V has a major advantage over optical thickness methods because it is not affected by water adsorption and molecular airborne contamination, MAC. These effects have been a problem for optical metrology of ultra-thin dielectrics.

  16. The optical dielectric model of Cu2O thin film and its verification

    NASA Astrophysics Data System (ADS)

    Lai, Guo-Zhong; Liang, Xiong; Lv, Jing

    2016-11-01

    The transmittance and reflectance of cuprous oxide (Cu2O) thin film deposited on quartz substrate were measured by a spectrophotometer. Use the optical dielectric model combining the Forouhi-Bloomer model with modified Drude model (FBM+MDM), the optical constants, as well as the thickness of Cu2O film were attained from its measured transmittance data. Moreover, by means of the TFCalc software, the reflectance and transmittance were calculated conversely from the optical constants (n, k) and the thickness of the Cu2O film. It was found that the calculated reflectance and transmittance were in good agreement with the measured ones. So the optical dielectric model, namely FBM+MDM, is suitable for Cu2O thin film.

  17. Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.

    PubMed

    Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan

    2016-07-11

    The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest. PMID:27410799

  18. In situ atomic layer nitridation on the top and down regions of the amorphous and crystalline high-K gate dielectrics

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Chen; Lee, Min-Hung; Kuo, Chin-Lung; Lin, Hsin-Chih; Chen, Miin-Jang

    2016-11-01

    Amorphous and crystalline ZrO2 gate dielectrics treated with in situ atomic layer nitridation on the top and down regions (top and down nitridation, abbreviated as TN and DN) were investigated. In a comparison between the as-deposited amorphous DN and TN samples, the DN sample has a lower leakage current density (Jg) of ∼7 × 10-4 A/cm2 with a similar capacitance equivalent thickness (CET) of ∼1.53 nm, attributed to the formation of SiOxNy in the interfacial layer (IL). The post-metallization annealing (PMA) leads to the transformation of ZrO2 from the amorphous to the crystalline tetragonal/cubic phase, resulting in an increment of the dielectric constant. The PMA-treated TN sample exhibits a lower CET of 1.22 nm along with a similar Jg of ∼1.4 × 10-5 A/cm2 as compared with the PMA-treated DN sample, which can be ascribed to the suppression of IL regrowth. The result reveals that the nitrogen engineering in the top and down regions has a significant impact on the electrical characteristics of amorphous and crystalline ZrO2 gate dielectrics, and the nitrogen incorporation at the top of crystalline ZrO2 is an effective approach to scale the CET and Jg, as well as to improve the reliability.

  19. High frequency scattering from a thin lossless dielectric slab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Burgener, K. W.

    1979-01-01

    A solution for scattering from a thin dielectric slab is developed based on geometrical optics and the geometrical theory of diffraction with the intention of developing a model for a windshield of a small private aircraft for incorporation in an aircraft antenna code. Results of the theory are compared with experimental measurements and moment method calculations showing good agreement. Application of the solution is also addressed.

  20. Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration

    NASA Astrophysics Data System (ADS)

    Carta, Fabio; Gates, Stephen M.; Limanov, Alexander B.; Hlaing, Htay; Im, James S.; Edelstein, Daniel C.; Kymissis, Ioannis

    2014-12-01

    We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO2 and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO2 dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO2 sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm-1. From X-ray diffraction analysis, the material crystallized on SiO2 shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.

  1. Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films

    SciTech Connect

    Akiyama, Morito; Nagase, Toshimi; Umeda, Keiichi; Honda, Atsushi

    2013-01-14

    The authors have investigated the influence of scandium concentration on the power generation figure of merit (FOM) of scandium aluminum nitride (Sc{sub x}Al{sub 1-x}N) films prepared by cosputtering. The power generation FOM strongly depends on the scandium concentration. The FOM of Sc{sub 0.41}Al{sub 0.59}N film was 67 GPa, indicating that the FOM is five times larger than that of AlN. The FOM of Sc{sub 0.41}Al{sub 0.59}N film is higher than those of lead zirconate titanate and Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} films, which is the highest reported for any piezoelectric thin films. The high FOM of Sc{sub 0.41}Al{sub 0.59}N film is due to the high d{sub 31} and the low relative permittivity.

  2. Interpretation of x-ray photoelectron spectra of elastic amorphous carbon nitride thin films

    SciTech Connect

    Holloway, B.C.; Kraft, O.; Shuh, D.K.; Kelly, M.A.; Nix, W.D.; Pianetta, P.; Hagstroem, S.

    1999-05-01

    We report the synthesis and characterization of amorphous carbon nitride (CN{sub x}) thin films using a direct current magnetron reactive sputter system. Nanoindentation of the CN{sub x} films and amorphous carbon films deposited under similar conditions shows the CN{sub x} films are extremely elastic, that the addition of nitrogen fundamentally changes the mechanical properties of the films, and that traditional methods of calculating the hardness and Young{close_quote}s modulus may not be valid. X-ray photoelectron spectroscopy (XPS) of the N(1s) and C(1s) core levels show multiple bonding arrangements. In a new interpretation of the XPS data, the two predominant N(1s) spectral features have been identified, based on comparison to reference data in the literature, as those belonging to nitrogen in a four-bond arrangement and nitrogen in a three-bond arrangement, independent of hybridization. The formation of a fourth bond allows nitrogen to substitute for C atoms in a carbon-based graphitic system without the formation of dangling bonds or unfilled states. The relationship between nitrogen incorporation in a carbon-based ring structure and measured film properties is rationalized based on previously published models. {copyright} {ital 1999 American Institute of Physics.}

  3. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride

    NASA Astrophysics Data System (ADS)

    Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc

    2016-08-01

    We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89 K ≥Tc≥2.78 K . Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm-1 (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature Tc, the pairing energy Δ , and the superfluid stiffness J , and the superfluid density ns can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.

  4. Alternative process for thin layer etching: Application to nitride spacer etching stopping on silicon germanium

    SciTech Connect

    Posseme, N. Pollet, O.; Barnola, S.

    2014-08-04

    Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ions implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.

  5. Semiconducting properties of zinc-doped cubic boron nitride thin films

    SciTech Connect

    Nose, K.; Yoshida, T.

    2007-09-15

    We have examined the electronic properties of zinc-doped cubic boron nitride (cBN) thin films prepared by sputter deposition. The electric conductivity of films deposited in pure Ar increased as the concentration of zinc dopant increased, and hole conduction was identified by the measurement of thermoelectric currents. It was also found that the conductivity increment in such films was accompanied by a linear increase in the B/(B+N) ratio. At the same time, no modification of the composition and the conductivity by incorporated zinc was observed when film growth took place in presence of nitrogen gas. The effect of the excess boron on the conductivity emerged only when films show semi-insulating behavior. These results suggest that Zn substitution for nitrogen causes high electric conductivity of cBN. The electric contact between Ti electrode and semiconducting cBN was examined by the transfer length method, and Ohmic conduction was observed in the Ti/cBN contact. The specific contact resistance was affected by the specific resistance of cBN films, and it was reduced from 10{sup 5} to 100 {omega} cm{sup 2} by increasing the concentration of incorporated Zn.

  6. Correlation between bonding structure and microstructure in fullerenelike carbon nitride thin films

    SciTech Connect

    Gago, R.; Abendroth, B.; Moeller, W.; Jimenez, I.; Neidhardt, J.; Hultman, L.; Caretti, I.

    2005-03-15

    The bonding structure of highly ordered fullerenelike (FL) carbon nitride (CN{sub x}) thin films has been assessed by x-ray absorption near-edge spectroscopy (XANES). Samples with different degrees of FL character have been analyzed to discern spectral signatures related to the FL microstructure. The XANES spectra of FL-CN{sub x} films resemble that of graphitic CN{sub x}, evidencing the sp{sup 2} hybridization of both C and N atoms. The FL structure is achieved with the promotion of N in threefold positions over pyridinelike and cyanidelike bonding environments. In addition, the relative {pi}{sup *}/{sigma}* XANES intensity ratio at the C(1s) edge is independent of the FL character, while it decreases {approx}40% at the N(1s) edge with the formation of FL arrangements. This result indicates that there is no appreciable introduction of C-sp{sup 3} hybrids with the development of FL structures and, additionally, that a different spatial localization of {pi} electrons at C and N sites takes place in curved graphitic structures. The latter has implications for the elastic properties of graphene sheets and could, as such, explain the outstanding elastic properties of FL-CN{sub x}.

  7. Adhesion, friction, and wear of plasma-deposited thin silicon nitride films at temperatures to 700 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Pouch, J. J.; Alterovitz, S. A.; Pantic, D. M.; Johnson, G. A.

    1988-01-01

    The adhesion, friction, and wear behavior of silicon nitride films deposited by low- and high-frequency plasmas (30 kHz and 13.56 MHz) at various temperatures to 700 C in vacuum were examined. The results of the investigation indicated that the Si/N ratios were much greater for the films deposited at 13.56 MHz than for those deposited at 30 kHz. Amorphous silicon was present in both low- and high-frequency plasma-deposited silicon nitride films. However, more amorphous silicon occurred in the films deposited at 13.56 MHz than in those deposited at 30 kHz. Temperature significantly influenced adhesion, friction, and wear of the silicon nitride films. Wear occurred in the contact area at high temperature. The wear correlated with the increase in adhesion and friction for the low- and high-frequency plasma-deposited films above 600 and 500 C, respectively. The low- and high-frequency plasma-deposited thin silicon nitride films exhibited a capability for lubrication (low adhesion and friction) in vacuum at temperatures to 500 and 400 C, respectively.

  8. Adhesion, friction, and wear of plasma-deposited thin silicon nitride films at temperatures to 700 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Pouch, J. J.; Alterovitz, S. A.; Pantic, D. M.; Johnson, G. A.

    1989-01-01

    The adhesion, friction, and wear behavior of silicon nitride films deposited by low- and high-frequency plasmas (30 kHz and 13.56 MHz) at various temperatures to 700 C in vacuum were examined. The results of the investigation indicated that the Si/N ratios were much greater for the films deposited at 13.56 MHz than for those deposited at 30 kHz. Amorphous silicon was present in both low- and high-frequency plasma-deposited silicon nitride films. However, more amorphous silicon occurred in the films deposited at 13.56 MHz than in those deposited at 30 kHz. Temperature significantly influenced adhesion, friction, and wear of the silicon nitride films. Wear occurred in the contact area at high temperature. The wear correlated with the increase in adhesion and friction for the low- and high-frequency plasma-deposited films above 600 and 500 C, respectively. The low- and high-frequency plasma-deposited thin silicon nitride films exhibited a capability for lubrication (low adhesion and friction) in vacuum at temperatures to 500 and 400 C, respectively.

  9. Preparation of nitrogen doped zinc oxide nanoparticles and thin films by colloidal route and low temperature nitridation process

    NASA Astrophysics Data System (ADS)

    Valour, Arnaud; Cheviré, François; Tessier, Franck; Grasset, Fabien; Dierre, Benjamin; Jiang, Tengfei; Faulques, Eric; Cario, Laurent; Jobic, Stéphane

    2016-04-01

    Nitrogen doped zinc oxide (ZnO) nanoparticles have been synthesized using a colloidal route and low temperature nitridation process. Based on these results, 200 nm thick transparent ZnO thin films have been prepared by dip-coating on SiO2 substrate from a ZnO colloidal solution. Zinc peroxide (ZnO2) thin film was then obtained after the chemical conversion of a ZnO colloidal thin film by H2O2 solution. Finally, a nitrogen doped ZnO nanocrystalline thin film (ZnO:N) was obtained by ammonolysis at 250 °C. All the films have been characterized by scanning electron microscopy, X-ray diffraction, X-Ray photoelectron spectroscopy and UV-Visible transmittance spectroscopy.

  10. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate

    NASA Astrophysics Data System (ADS)

    Bhopal, Muhammad Fahad; Lee, Doo Won; Lee, Soo Hong

    2016-09-01

    Thin-film polycrystalline silicon ( pc-Si) on foreign (non-silicon) substrates has been researched by various research groups for the production of photovoltaic cells. High quality pc-Si deposition on foreign substrates with superior optical properties is considered to be the main hurdle in cell fabrication. Metal induced crystallization (MIC) is one of the renowned techniques used to produce this quality of material. In the current study, an aluminum induced crystallization (AIC) method was adopted to produce pc-Si thin-film on aluminum nitride (AlN) substrate by a seed layer approach. Aluminum and a-Si layer were deposited using an e-beam evaporator. Various annealing conditions were used in order to investigate the AIC grown pc-Si seed layers for process optimization. The effect of thermal annealing on grain size, defects preferentially crystallographic orientation of the grains were analyzed. Surface morphology was studied using an optical microscope. Poly-silicon film with a crystallinity fraction between 95-100% and an FWHM between 5-6 cm-1 is achievable at low temperatures and for short time intervals. A grain size of about 10 micron can be obtained at a low deposition rate on an AIN substrate. Similarly, Focused ion beam (FIB) also showed that at 425 °C sample B and at 400 °C sample A were fully crystallized. The crystalline quality of pc-Si was evaluated using μ-Raman spectroscopy as a function of annealed conditions and Grazing incidence X-ray diffraction (GIXRD) was used to determine the phase direction of the pc-Si layer. The current study implicates that a poly-silicon layer with good crystallographic orientation and crystallinity fraction is achievable on AIN substrate at low temperatures and short time frames.

  11. Fiber textures of titanium nitride and hafnium nitride thin films deposited by off-normal incidence magnetron sputtering

    SciTech Connect

    Deniz, D.; Harper, J. M. E.

    2008-09-15

    We studied the development of crystallographic texture in titanium nitride (TiN) and hafnium nitride (HfN) films deposited by off-normal incidence reactive magnetron sputtering at room temperature. Texture measurements were performed by x-ray pole figure analysis of the (111) and (200) diffraction peaks. For a deposition angle of 40 deg. from substrate normal, we obtained TiN biaxial textures for a range of deposition conditions using radio frequency (rf) sputtering. Typically, we find that the <111> orientation is close to the substrate normal and the <100> orientation is close to the direction of the deposition source, showing substantial in-plane alignment. We also introduced a 150 eV ion beam at 55 deg. with respect to substrate normal during rf sputtering of TiN. Ion beam enhancement caused TiN to align its out-of-plane texture along <100> orientation. In this case, (200) planes are slightly tilted with respect to the substrate normal away from the ion beam source, and (111) planes are tilted 50 deg. toward the ion beam source. For comparison, we found that HfN deposited at 40 deg. without ion bombardment has a strong <100> orientation parallel to the substrate normal. These results are consistent with momentum transfer among adatoms and ions followed by an increase in surface diffusion of the adatoms on (200) surfaces. The type of fiber texture results from a competition among texture mechanisms related to surface mobilities of adatoms, geometrical, and directional effects.

  12. Thin Dielectric Film Thickness Determination by Advanced Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Diebold, A. C.; Foran, B.; Kisielowski, C.; Muller, D. A.; Pennycook, S. J.; Principe, E.; Stemmer, S.

    2003-12-01

    High-resolution transmission electron microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by nonspecialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark-field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods has been steadily improved reaching now into the sub-Ångstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this article, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this article is the proposal of a reproducible method for film thickness determination.

  13. Thin dielectric film thickness determination by advanced transmission electron microscopy

    SciTech Connect

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  14. Deposition of magnesium nitride thin films on stainless steel-304 substrates by using a plasma focus device

    NASA Astrophysics Data System (ADS)

    Ramezani, Amir Hoshang; Habibi, Maryam; Ghoranneviss, Mahmood

    2014-08-01

    In this research, for the first time, we synthesize magnesium nitride thin films on 304-type stainless steel substrates using a Mather-type (2 kJ) plasma focus (PF) device. The films of magnesium nitride are coated with different number of focus shots (like 15, 25 and 35) at a distance of 8 cm from the anode tip and at 0° angular position with respect to the anode axis. For investigation of the structural properties and surface morphology of magnesium nitride films, we utilized the X-ray diffractometer (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis, respectively. Also, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. Furthermore, Vicker's microhardness is used to study the mechanical properties of the deposited films. The results show that the degree of crystallinity of deposited thin films (from XRD), the average size of particles and surface roughness (from AFM), crystalline growth of structures (from SEM) and the hardness values of the films depend on the number of focus shots. The EDX analysis demonstrates the existence of the elemental composition of magnesium in the deposited samples.

  15. The jump-into-contact effect in biased AFM probes on dielectric films and its application to quantify the dielectric permittivity of thin layers

    NASA Astrophysics Data System (ADS)

    Revilla, Reynier I.

    2016-07-01

    The jump-into-contact (JIC) phenomenon in biased atomic force microscopy (AFM) probes on dielectric films is studied. The influence of the film thickness on the position at which the AFM tip collapses irreversibly into the sample surface was theoretically analyzed using a widely accepted analytical expression of the probe-sample electrostatic interaction force. It was demonstrated that for relatively high values of voltage (V > 10-20 V) applied between the probe and the substrate the cantilever deflection at the JIC is independent of the dielectric film thickness for thin-ultrathin layers (h < 10-50 nm). Under the same conditions the z-piezo distance at the JIC follows approximately a linear behavior with the film thickness. Based on this effect an empirical model was formulated to estimate the dielectric permittivity of thin/ultrathin dielectric films using the jump-into-contact distance. The procedure was successfully applied on thin PVD-SiO2 films, obtaining good agreement with a dielectric constant value previously reported for the same material.

  16. The jump-into-contact effect in biased AFM probes on dielectric films and its application to quantify the dielectric permittivity of thin layers.

    PubMed

    Revilla, Reynier I

    2016-07-01

    The jump-into-contact (JIC) phenomenon in biased atomic force microscopy (AFM) probes on dielectric films is studied. The influence of the film thickness on the position at which the AFM tip collapses irreversibly into the sample surface was theoretically analyzed using a widely accepted analytical expression of the probe-sample electrostatic interaction force. It was demonstrated that for relatively high values of voltage (V > 10-20 V) applied between the probe and the substrate the cantilever deflection at the JIC is independent of the dielectric film thickness for thin-ultrathin layers (h < 10-50 nm). Under the same conditions the z-piezo distance at the JIC follows approximately a linear behavior with the film thickness. Based on this effect an empirical model was formulated to estimate the dielectric permittivity of thin/ultrathin dielectric films using the jump-into-contact distance. The procedure was successfully applied on thin PVD-SiO2 films, obtaining good agreement with a dielectric constant value previously reported for the same material.

  17. The jump-into-contact effect in biased AFM probes on dielectric films and its application to quantify the dielectric permittivity of thin layers.

    PubMed

    Revilla, Reynier I

    2016-07-01

    The jump-into-contact (JIC) phenomenon in biased atomic force microscopy (AFM) probes on dielectric films is studied. The influence of the film thickness on the position at which the AFM tip collapses irreversibly into the sample surface was theoretically analyzed using a widely accepted analytical expression of the probe-sample electrostatic interaction force. It was demonstrated that for relatively high values of voltage (V > 10-20 V) applied between the probe and the substrate the cantilever deflection at the JIC is independent of the dielectric film thickness for thin-ultrathin layers (h < 10-50 nm). Under the same conditions the z-piezo distance at the JIC follows approximately a linear behavior with the film thickness. Based on this effect an empirical model was formulated to estimate the dielectric permittivity of thin/ultrathin dielectric films using the jump-into-contact distance. The procedure was successfully applied on thin PVD-SiO2 films, obtaining good agreement with a dielectric constant value previously reported for the same material. PMID:27199351

  18. Visualization of dielectric constant-electric field-temperature phase maps for imprinted relaxor ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Frederick, J. C.; Kim, T. H.; Maeng, W.; Brewer, A. A.; Podkaminer, J. P.; Saenrang, W.; Vaithyanathan, V.; Li, F.; Chen, L.-Q.; Schlom, D. G.; Trolier-McKinstry, S.; Rzchowski, M. S.; Eom, C. B.

    2016-03-01

    The dielectric phase transition behavior of imprinted lead magnesium niobate-lead titanate relaxor ferroelectric thin films was mapped as a function of temperature and dc bias. To compensate for the presence of internal fields, an external electric bias was applied while measuring dielectric responses. The constructed three-dimensional dielectric maps provide insight into the dielectric behaviors of relaxor ferroelectric films as well as the temperature stability of the imprint. The transition temperature and diffuseness of the dielectric response correlate with crystallographic disorder resulting from strain and defects in the films grown on strontium titanate and silicon substrates; the latter was shown to induce a greater degree of disorder in the film as well as a dielectric response lower in magnitude and more diffuse in nature over the same temperature region. Strong and stable imprint was exhibited in both films and can be utilized to enhance the operational stability of piezoelectric devices through domain self-poling.

  19. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2012-01-03

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  20. Investigation of structural, optical, electrical and dielectric properties of catalytic sprayed hausmannite thin film

    SciTech Connect

    Larbi, T.; Ouni, B.; Boukhachem, A.; Boubaker, K. Amlouk, M.

    2014-12-15

    Hausmannite Mn{sub 3}O{sub 4} thin film have been synthesized using spray pyrolysis method. These films are characterized using X-ray diffraction (XRD), atomic force microscope AFM, UV–vis–NIR spectroscopy and impedance spectroscopy. XRD study confirms the tetragonal structure of the as-deposited films with lattice parameters, a = 5.1822 Å and c = 9.4563 Å and a grain size of about 56 nm. UV–vis–NIR spectroscopy was further used to estimate optical constants such as extinction coefficient, refractive index, band gap and Urbach energy. Moreover, impedance spectroscopy analysis was employed to estimate electrical and dielectrical properties of the sprayed thin films. The activation energy values deduced from DC conductivity and relaxation frequency were almost the same, revealing that the transport phenomena is thermally activated by hopping between localized states. The AC conductivity is found to be proportional to ω{sup s}. The temperature dependence of the AC conductivity and the frequency exponent, s was reasonably well interpreted in terms of the correlated barrier-hopping CBH model. The dielectric properties were sensitive to temperature and frequency. The study of the electrical modulus indicated that the charge carrier was localized. Experimental results concerning optical constants as Urbach energy, dielectric constant, electric modulus and AC and DC conductivity were discussed in terms of the hopping model as suggested by Elliott.

  1. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    SciTech Connect

    Broas, M. Mattila, T. T.; Paulasto-Kröckel, M.; Liu, X.; Ge, Y.

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  2. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Broas, M.; Liu, X.; Ge, Y.; Mattila, T. T.; Paulasto-Kröckel, M.

    2015-06-01

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiNx thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiNx part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiNx. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ˜100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  3. Transport mechanisms and charge trapping in thin dielectric/Si nano-crystals structures

    NASA Astrophysics Data System (ADS)

    De Salvo, B.; Ghibaudo, G.; Luthereau, P.; Baron, T.; Guillaumot, B.; Reimbold, G.

    2001-08-01

    In this work the transport mechanisms and charge trapping of novel dielectric systems based on semiconductor nano-crystals embedded in a dielectric matrix are studied. In particular, stacked films composed of a thin bottom dielectric (2-4 nm thick SiO2 or Si3N4), with an embedded two-dimensional (2-D) array of Si nano-crystals (obtained by low pressure chemical vapor deposition or by annealing of silicon rich oxide) and a thick top dielectric (8 nm-thick SiO2) are investigated. Gate leakage currents, at medium/high electric fields, are examined at temperatures varying between 77 and 473 K. Charge trapping phenomena, occurring at low electric fields, are studied as a function of the stressing gate voltage and the stressing time. Experimental results are explained by means of an elastic tunneling model, which takes into account the main structural characteristics of the Si-dots (size dispersion, density, spatial distribution) as well as the effect of trapped charges in the silicon nano-crystals.

  4. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Esro, M.; Mazzocco, R.; Vourlias, G.; Kolosov, O.; Krier, A.; Milne, W. I.; Adamopoulos, G.

    2015-05-01

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (LaxAl1-xOy) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the LaxAl1-xOy films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlOy dielectrics exhibit a wide band gap (˜6.18 eV), high dielectric constant (k ˜ 16), low roughness (˜1.9 nm), and very low leakage currents (<3 nA/cm2). TFTs employing solution processed LaAlOy gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (˜10 V), high on/off current modulation ratio of >106, subthreshold swing of ˜650 mV dec-1, and electron mobility of ˜12 cm2 V-1 s-1.

  5. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    SciTech Connect

    Esro, M.; Adamopoulos, G.; Mazzocco, R.; Kolosov, O.; Krier, A.; Vourlias, G.; Milne, W. I.

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currents (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.

  6. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films.

    PubMed

    Balling, P; Schou, J

    2013-03-01

    Laser ablation of dielectrics by ultrashort laser pulses is reviewed. The basic interaction between ultrashort light pulses and the dielectric material is described, and different approaches to the modeling of the femtosecond ablation dynamics are reviewed. Material excitation by ultrashort laser pulses is induced by a combination of strong-field excitation (multi-photon and tunnel excitation), collisional excitation (potentially leading to an avalanche process), and absorption in the plasma consisting of the electrons excited to the conduction band. It is discussed how these excitation processes can be described by various rate-equation models in combination with different descriptions of the excited electrons. The optical properties of the highly excited dielectric undergo a rapid change during the laser pulse, which must be included in a detailed modeling of the excitations. The material ejected from the dielectric following the femtosecond-laser excitation can potentially be used for thin-film deposition. The deposition rate is typically much smaller than that for nanosecond lasers, but film production by femtosecond lasers does possess several attractive features. First, the strong-field excitation makes it possible to produce films of materials that are transparent to the laser light. Second, the highly localized excitation reduces the emission of larger material particulates. Third, lasers with ultrashort pulses are shown to be particularly useful tools for the production of nanocluster films. The important question of the film stoichiometry relative to that of the target will be thoroughly discussed in relation to the films reported in the literature. PMID:23439493

  7. Polarity dependent thermochemical E-model for describing time dependent dielectric breakdown in metal-oxide-semiconductor devices with hyper-thin gate dielectrics

    NASA Astrophysics Data System (ADS)

    McPherson, J. W.

    2016-09-01

    The Lorentz factor L, which is used for describing the local electric fields in hyper-thin (<3.0 nm) gate dielectrics, is found to be polarity dependent for an inversion and accumulation-mode testing of Metal-Oxide-Semiconductor Field Effect Transistors. L is strongly impacted by the dipole layers that are induced in the depletion regions in the poly and silicon-substrate electrodes. While time dependent dielectric breakdown (TDDB) results are much improved with the inversion-mode testing, the reason for this is due to a smaller Lorentz factor (thus smaller Eloc). In fact, when compared at the same local electric field Eloc, there is no difference in TDDB between the inversion and accumulation mode testing. Thus, when properly corrected for the depletion effects in the MOS electrodes, the Thermochemical E-Model becomes polarity dependent and describes well both the inversion and accumulation-mode TDDB testing of the hyper-thin gate dielectrics.

  8. Black metal thin films by deposition on dielectric antireflective moth-eye nanostructures

    PubMed Central

    Christiansen, Alexander B.; Caringal, Gideon P.; Clausen, Jeppe S.; Grajower, Meir; Taha, Hesham; Levy, Uriel; Asger Mortensen, N.; Kristensen, Anders

    2015-01-01

    Although metals are commonly shiny and highly reflective, we here show that thin metal films appear black when deposited on a dielectric with antireflective moth-eye nanostructures. The nanostructures were tapered and close-packed, with heights in the range 300-600 nm, and a lateral, spatial frequency in the range 5–7 μm−1. A reflectance in the visible spectrum as low as 6%, and an absorbance of 90% was observed for an Al film of 100 nm thickness. Corresponding experiments on a planar film yielded 80% reflectance and 20% absorbance. The observed absorbance enhancement is attributed to a gradient effect causing the metal film to be antireflective, analogous to the mechanism in dielectrics and semiconductors. We find that the investigated nanostructures have too large spatial frequency to facilitate efficient coupling to the otherwise non-radiating surface plasmons. Applications for decoration and displays are discussed. PMID:26035526

  9. Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles.

    PubMed

    Nagel, James R; Scarpulla, Michael A

    2010-06-21

    We present a concept for improving the efficiency of thin-film solar cells via scattering from dielectric particles. The particles are embedded directly within the semiconductor absorber material with sizes on the order of one wavelength. Importantly, this geometry is fully compatible with the use of an anti-reflective coating (ARC) to maximize light capture. The concept is demonstrated through finite-difference time domain (FDTD) simulations of spherical SiO(2) particles embedded within a 1.0 microm layer of crystalline silicon (c-Si) utilizing a 75 nm ARC of Si(3)N(4). Several geometries are presented, with gains in absorbed photon flux occurring in the red end of the spectrum where silicon absorption is weak. The total integrated absorption of incident photon flux across the visible AM-1.5 spectrum is on the order of 5-10% greater than the same geometry without any dielectric scatterers.

  10. Electro-aerodynamic instability of a thin dielectric liquid sheet sprayed with an air stream.

    PubMed

    El-Sayed, M F

    1999-12-01

    The instability of a thin sheet of dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field is studied theoretically. It is found that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, the electric field, and the dielectric constant values. The electric field is found to have a stabilizing effect, and there exists a critical Weber number above which instability is suppressed by the surface tension effect. The condition for disintegrating the sheet is obtained in terms of the electric field values, and some limiting cases are recovered.

  11. Low temperature dielectric relaxation and charged defects in ferroelectric thin films

    SciTech Connect

    Artemenko, A.; Payan, S.; Rousseau, A.; Arveux, E.; Maglione, M.; Levasseur, D.; Guegan, G.

    2013-04-15

    We report a dielectric relaxation in BaTiO{sub 3}-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron) and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K) for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR) investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti{sup 3+}-V(O) charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.

  12. Chemical and Electronic Structure Studies of Refractory and Dielectric Thin Films.

    NASA Astrophysics Data System (ADS)

    Corneille, Jason Stephen

    1300 K yielded a stoichiometric film of rm SiO_2. The suboxides are believed to further react with oxygen forming rm SiO_2 at an elevated temperature. The growth of thin metallic iron films on Mo(100) was characterized as a preliminary study to the synthesis of iron oxides. By varying the substrate temperature during either the post or in-situ oxidation process, oxide films consisting of virtually pure phases of rm Fe_2O_3 and FeO can be successfully obtained as well as intermediate phases including rm Fe_3O_4. In addition, fairly discrete phase changes were found corresponding to the thermally induced reduction of the higher oxides. The adsorption of diborane on clean Ru(0001) and on surfaces precovered by ammonia was studied to lay the groundwork for the synthesis of boron nitride thin films. Boron -nitrogen adlayers were formed by exposing B/Ru(0001) surfaces to 5-10 Torr of ammonia or by coadsorbing ammonia and diborane at 90K with subsequent annealing to 600K. The adlayers formed were rich in boron and decomposed at temperatures well above 1100K. Finally, the adsorption and pyrolysis of tetrakis -(dimethylamido)-titanium (TDMAT) on several metal surfaces was studied as a precursor to the synthesis of titanium nitride thin films. TDMAT was found to decompose readily above {~}{480K} on metallic substrates, producing films with high carbon content. However, in the presence of ammonia, well below the threshold of gas-phase reaction ({< }{10^{-4}} Torr), the growth of low carbon-content titanium nitride films proceeds readily, via surface mediated reaction(s) of TDMAT and ammonia between 550-750K. The effects of surface temperature and reagent pressures are reported and discussed.

  13. New dielectric thin film coatings for silver and copper coated hollow infrared waveguides

    NASA Astrophysics Data System (ADS)

    George, Roshan J.

    Hollow waveguides have been developed for many years but their losses are still much greater than those for solid-core fiber optics. The primary emphasis in this work is the development of new metallic and dielectric coatings which may be used as coatings for lower loss hollow waveguides. Much of the work involves the use of polymer tubing coated with Ag and Cu films overcoated with new dielectric coatings. These new metal, metal halide, and chalcogenide thin film coatings were developed and optimized for the fabrication of improved waveguides. The optical properties of the hollow waveguides were modeled and compared to measurements of the waveguide's spectral and transmission characteristics in the IR range between 1 and 15 mum. The optical loss, 2alpha in a hollow waveguide is strongly dependent on its core size, 2a, i.e. alpha ∝ 1a . We have exploited this feature to produce large bore hollow waveguides with a very low transmission loss on the order of 10 dB/km. The current thin film processing technology, used for fabricating hollow glass waveguide (HGW), was extended and several new polymer based waveguides developed. In particular, the hollow polycarbonate waveguide (PC-HPW) has excellent optical properties rivaling those of the hollow silica waveguides. The lowest measured loss was 0.017 dB/m at 10.6 mum for the 2000 mum bore guide. In fact, this is the currently the lowest reported loss for any waveguide at this wavelength. The thin film coatings used in these guides namely, silver and silver iodide, were extensively characterized in terms of the deposition kinetics, roughness of the layers, optical constants, and crystal structure. In addition to the laser loss measurements, the spectral response, polarization maintenance, output divergence, and the modal distribution were all measured. An all-new waveguide was fabricated using copper and copper iodide thin film coatings. Both silica and polycarbonate substrates were used for forming these layers. This

  14. Processing of thick-film dielectrics compatible with thin-film superconductors for analog signal processing devices

    NASA Astrophysics Data System (ADS)

    Wong, S. C.; Anderson, A. C.; Rudman, D. A.

    1989-03-01

    The authors demonstrate the feasibility of integrating thick-film dielectrics with thin-film superconductors in the fabrication of signal processing devices. Thin films of Nb and NbN are deposited by RF sputtering and patterned photolithographically. Thick film dielectrics can be spun on to a controlled thickness of 10 to 25 microns, which is an optimum range for high-density, low-loss microwave delay lines. After an organic-binder burnout step at 450 C in air, the ceramic dielectrics are sintered onto the NbN thin films at 850 C in vacuum. The transition temperature of the NbN changes from 15 K as sputtered to 9 K after sintering, but superconductivity is preserved by the presence of thin-film MgO and SiO2 barrier layers. Lumped-element resonators, in which the inductor and the capacitor electrodes are made of NbN and the dielectric of thick-film ceramic, have been successfully fabricated for measuring the dielectric properties of the ceramics at 4.2 K and 10 MHz. Preliminary results indicate a dielectric constant of 6-8 and tan delta of 0.01.

  15. Surface-sensitive UHV dielectric studies of nanoscale organic thin films: Adsorption, crystallization, and sublimation

    NASA Astrophysics Data System (ADS)

    Underwood, Jason M.

    Nanoscale systems are small collections of atoms or molecules, which as a result of their limited extent, show measurable thermodynamic deviations from bulk samples of the same species. The deviations may result from purely finite-size effects, or may be due to an increased significance of the interaction between the nanoscale system and its container. Ultra-thin (<100 nm) films of organic molecules adsorbed on surfaces afford unique opportunities to study the interplay of forces relevant to nanoscale physics. This thesis describes the development of a novel ultra-high vacuum apparatus to study the behavior of adsorbed polar molecules via dielectric spectroscopy (UHV-DS). Ultra-thin films are grown and characterized in-situ. The use of interdigitated electrode capacitors and a ratio-transformer bridge technique yields resolutions of ˜1 aF and ˜10-5 ppm in the capacitance and loss tangent, respectively. Typical sensitivity is 10 aF per monolayer at 80 K. Results are given for studies on water, methanol, and Cp* (a synthetic molecular rotor). The desorption event in the dielectric spectra is correlated with thermal desorption spectroscopy. During growth of methanol films, we observe partial crystallization for temperatures above ≳ 100 K. Crystallization is also observed upon heating glassy films grown at 80 K. Finally, we discuss UHV-DS as a probe for solid thin-film vapor pressure measurements, and show that our data on methanol compare favorably with those in the literature.

  16. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect

    Cloud, Andrew N.; Abelson, John R.; Davis, Luke M.; Girolami, Gregory S.

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300 °C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M = Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200 °C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18 nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  17. Structural and optical characterization of pure Si-rich nitride thin films

    PubMed Central

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiNx>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiNx<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiNx>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiNx>0.9 could be then due to a size effect of Si-np but having an amorphous phase. PMID:23324447

  18. An electrode-free method of characterizing the microwave dielectric properties of high-permittivity thin films

    NASA Astrophysics Data System (ADS)

    Bovtun, V.; Pashkov, V.; Kempa, M.; Kamba, S.; Eremenko, A.; Molchanov, V.; Poplavko, Y.; Yakymenko, Y.; Lee, J. H.; Schlom, D. G.

    2011-01-01

    A thin dielectric resonator consisting of a dielectric substrate and the thin film deposited upon it is shown to suffice for microwave characterization and dielectric parameter measurement of high-permittivity thin films without electrodes. The TE01δ resonance mode was excited and measured in thin (down to 0.1 mm) rectangular- or disk-shaped low-loss dielectric substrates (D ˜10 mm) with permittivity ɛ'≥10 inserted into a cylindrical shielding cavity or rectangular waveguide. The in-plane dielectric permittivity and losses of alumina, DyScO3, SmScO3, and (LaAlO3)0.29(SrAl1/2Ta1/2O3)0.71 (LSAT) substrates were measured from 10 to 18 GHz. The substrate thickness optimal for characterization of the overlying thin film was determined as a function of the substrate permittivity. The high sensitivity and efficiency of the method, i.e., of a thin dielectric resonator to the dielectric parameters of an overlying film, was demonstrated by characterizing ultrathin strained EuTiO3 films. A 22 nm thick EuTiO3 film grown on a (100) LSAT substrate and strained in biaxial compression by 0.9% exhibited an increase in microwave permittivity at low temperatures consistent with it being an incipient ferroelectric; no strain-induced ferroelectric phase transition was seen. In contrast, a 100 nm thick EuTiO3 film grown on a (110) DyScO3 substrate and strained in biaxial tension by 1% showed two peaks as a function of temperature in microwave permittivity and loss. These peaks correspond to a strain-induced ferroelectric phase transition near 250 K and to domain wall motion.

  19. Improved piezoelectric constants of sputtered aluminium nitride thin films by pre-conditioning of the silicon surface

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Bittner, A.; Schmid, U.

    2015-10-01

    The group III-V material aluminium nitride (AlN) is frequently used in micro-electromechanical devices and systems (MEMS) due to its piezoelectric properties, its high thermal and electrical stability as well as its compatibility with CMOS technology. But, the trend towards miniaturization of MEMS devices requests a continuous decrease in geometrical dimensions of the active AlN thin film, thus demanding at least the same piezoelectric properties at lower film thickness. In this work, two different approaches are applied to measure the piezoelectric coefficients, using the direct as well as the converse piezoelectric effect. The first approach utilizes laser doppler vibrometry measurements in combination with finite element analysis, allowing the determination of d 33 and d 31. For the second method, an oscillating force is applied to the thin film and the generated charge is measured. A surface-near substrate conditioning step applying sputter etching is used in order to improve the piezoelectric coefficients over a wide thickness range (i.e. 40 nm to 400 nm) by about 20% compared to samples without pre-treatment. Basically, the coefficients remain constant for a film thickness of 100 nm and above, thus allowing the application of thin active layers of aluminium nitride without any reduction in the sensing and actuation potential.

  20. The jump-into-contact effect in biased AFM probes on dielectric films and its application to quantify the dielectric permittivity of thin layers

    NASA Astrophysics Data System (ADS)

    Revilla, Reynier I.

    2016-07-01

    The jump-into-contact (JIC) phenomenon in biased atomic force microscopy (AFM) probes on dielectric films is studied. The influence of the film thickness on the position at which the AFM tip collapses irreversibly into the sample surface was theoretically analyzed using a widely accepted analytical expression of the probe–sample electrostatic interaction force. It was demonstrated that for relatively high values of voltage (V > 10–20 V) applied between the probe and the substrate the cantilever deflection at the JIC is independent of the dielectric film thickness for thin–ultrathin layers (h < 10–50 nm). Under the same conditions the z–piezo distance at the JIC follows approximately a linear behavior with the film thickness. Based on this effect an empirical model was formulated to estimate the dielectric permittivity of thin/ultrathin dielectric films using the jump-into-contact distance. The procedure was successfully applied on thin PVD–SiO2 films, obtaining good agreement with a dielectric constant value previously reported for the same material.

  1. Temperature-dependent dielectric functions in atomically thin graphene, silicene, and arsenene

    SciTech Connect

    Yang, J. Y.; Liu, L. H.

    2015-08-31

    The dielectric functions of atomically thin graphene, silicene, and arsenene have been investigated as a function of temperature. With zero energy gap, more carriers in graphene and silicene are thermally excited as temperature increases and intraband transition strengthens, resulting in the strengthened absorption peak. Yet with large energy gap, interband transition dominates optical absorption of arsenene but it reduces as lattice vibration enhances, inducing the redshift and decreased absorption peak. To validate the theoretical method, the calculated optical constants of isolated graphene are compared with ellipsometry results and demonstrate good agreement.

  2. Sequential lateral solidification of silicon thin films on low-k dielectrics for low temperature integration

    SciTech Connect

    Carta, Fabio Hlaing, Htay; Kymissis, Ioannis; Gates, Stephen M.; Edelstein, Daniel C.; Limanov, Alexander B.; Im, James S.

    2014-12-15

    We present the excimer laser crystallization of amorphous silicon on a low dielectric constant (low-k) insulator for very large scale integration monolithic 3D integration and demonstrate that low dielectric constant materials are suitable substrates for 3D integration through laser crystallization of silicon thin films. We crystallized 100 nm amorphous silicon on top of SiO{sub 2} and SiCOH (low-k) dielectrics, at different material thicknesses (1 μm, 0.75 μm, and 0.5 μm). The amorphous silicon crystallization on low-k dielectric requires 35% less laser energy than on an SiO{sub 2} dielectric. This difference is related to the thermal conductivity of the two materials, in agreement with one dimensional simulations of the crystallization process. We analyzed the morphology of the material through defect-enhanced microscopy, Raman spectroscopy, and X-ray diffraction analysis. SEM micrographs show that polycrystalline silicon is characterized by micron-long grains with an average width of 543 nm for the SiO{sub 2} sample and 570 nm for the low-k samples. Comparison of the Raman spectra does not show any major difference in film quality for the two different dielectrics, and polycrystalline silicon peaks are closely placed around 517 cm{sup −1}. From X-ray diffraction analysis, the material crystallized on SiO{sub 2} shows a preferential (111) crystal orientation. In the SiCOH case, the 111 peak strength decreases dramatically and samples do not show preferential crystal orientation. A 1D finite element method simulation of the crystallization process on a back end of line structure shows that copper (Cu) damascene interconnects reach a temperature of 70 °C or lower with a 0.5 μm dielectric layer between the Cu and the molten Si layer, a favorable condition for monolithic 3D integration.

  3. Low-voltage and hysteresis-free organic thin-film transistors employing solution-processed hybrid bilayer gate dielectrics

    SciTech Connect

    Ha, Tae-Jun

    2014-07-28

    This study presents a promising approach to realize low-voltage (<3 V) organic thin-film transistors (OTFTs) exhibiting improved electrical and optical stability. Such device performance results from the use of solution-processed hybrid bilayer gate dielectrics consisting of zirconium dioxide (high-k dielectric) and amorphous fluoropolymer, CYTOP{sup ®} (low-k dielectric). Employing a very thin amorphous fluoropolymer film reduces interfacial defect-states by repelling water molecules and other aqueous chemicals from an organic semiconductor active layer due to the hydrophobic surface-property. The chemically clean interface, stemming from decrease in density of trap states improves all the key device properties such as field-effect mobility, threshold voltage, and sub-threshold swing. Furthermore, degradation by electrical bias-stress and photo-induced hysteresis were suppressed in OTFTs employing hybrid bilayer gate dielectrics.

  4. Dielectric constant at x-band microwave frequencies for multiferroic BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Abdul Ahad, Faris B.; Hung, D. S.; Yao, Y. D.; Lee, S. F.; Tu, C. S.; Wang, T. H.; Chen, Y. Y.; Fu, Y. P.

    2009-04-01

    The magnetic-induced dielectric responses of BiFeO3 (BFO) thin films were measured at the X-band microwave frequency ranged from 7 to 12.5 GHz. The measurement was given initially by a high-precision cavity microwave resonator without magnetic field. Both the real and imaginary parts of the permittivity showed its dielectric property as a function of the measuring frequency. The X-band dielectric responses of the BFO thin film were then measured by a controlled magnetic field at room temperature. The data demonstrated up to 2.2% dielectric tunability by using only 3.46 kOe magnetic field at TE107 mode (9.97705 GHz).

  5. Mechanical properties measurement of silicon nitride thin films using the bulge test

    NASA Astrophysics Data System (ADS)

    Lee, Hun Kee; Ko, Seong Hyun; Han, Jun Soo; Park, HyunChul

    2007-12-01

    The mechanical properties of silicon nitride films are investigated. Freestanding films of silicon nitride are fabricated using the MEMS technique. The films were deposited onto (100) silicon wafers by LPCVD (Low Pressure Chemical Vapor Deposition). Square and rectangular membranes are made by anisotropic etching of the silicon substrates. Then the bulge test for silicon nitride film was carried out. The thickness of specimens was 0.5, 0.75 and 1μm respectively. By testing both square and rectangular membranes, the reliability and valiant-ness of bulge test with regard to the shape of specimens was investigated. Also considering residual stress in the films, one can evaluate the Young's modulus from experimental load-deflection curves. Young's modulus of the silicon nitride films was about 232GPa. The residual stress is below 100MPa.

  6. Low-temperature chemical vapor depostion of ruthenium and manganese nitride thin films

    NASA Astrophysics Data System (ADS)

    Lazarz, Teresa S.

    Materials and thin film processing development has been and remains key to continuing to make ever smaller, or miniaturized, microelectronic devices. In order to continue miniaturization, conformal, low-temperature deposition of new electronic materials is needed. Two techniques capable of conformality have emerged: chemical vapor deposition (CVD) and atomic layer deposition (ALD). Here, two processes for deposition of materials which could be useful in microelectronics, but for which no low-temperature, conformal process has been established as commercializable, are presented. One is ruthenium, intended for use in interconnects and in dynamic random access memory electrodes, a known material for use in microelectronics but for which a more conformal, yet fast process than previously demonstrated is required. The other is manganese nitride, which could be used as active magnetic layers in devices or as a dopant in materials for spintronics, which is not yet established as a desired material in part due to the lack of any previously known CVD or ALD process for deposition. A unique challenge arises in trying to grow impurity-free films of a catalyst. Ruthenium metal activates C-H and C-C bonds, which aids C-H and C-C bond scission. This creates a potential catalytic decomposition path for all metal-organic CVD precursors that is likely to lead to significant carbon incorporation. Metallic ruthenium films can be grown by chemical vapor deposition from the organometallic precursor tricarbonyl(1,3-cyclohexadiene)ruthenium(0). This precursor is a highly volatile liquid, easy to synthesize and handle, and capable of delivering at least 0.26 Torr partial pressure at room temperature without the use of a carrier gas. Because the precursor is a liquid, the vaporization rate is not subject to the problem of diminishing surface area that occurs with solid precursors. CVD proceeds readily for substrate temperatures ≥ 200°C. The growth rates are high, up to 24 nm/min, which

  7. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hirama, Kazuyuki; Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-01

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp3-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N2+ and Ar+ ions is a key to selectively discriminate non-sp3 BN phases. At low acceleration voltage values, the sp2-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  8. RF Micro-Electro-Mechanical Systems Capacitive Switches Using Ultra Thin Hafnium Oxide Dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Onodera, Kazumasa; Maeda, Ryutaro

    2006-01-01

    A π-type RF capacitive switch using about 45-nm-thick HfO2 dielectric layer was fabricated. High isolation performance was obtained in wide-band range when the switch was down-state. The isolation was better than -40 dB at the frequency range of 4-35 GHz. Particularly, the isolation was better than -50 dB in the frequency range of 8-12 GHz, i.e., X band. HfO2 showed excellent process compatibility with conventional microfabrication procedure. The 45-nm-thick HfO2 film was prepared using sputtering at room temperature so that it was feasible to be integrated into RF switch and other microwave circuits. The results of constant bias stressing showed that the ultra thin HfO2 had excellent reliability. The electric breakdown of HfO2 was observed, which had no apparent negative effects on the reliability of the dielectric. HfO2 dielectrics were attractive in the application of RF micro-electro-mechanical systems (MEMS) switch for new generation of low-loss high-linearity microwave circuits.

  9. Yttrium scandate thin film as alternative high-permittivity dielectric for germanium gate stack formation

    SciTech Connect

    Lu, Cimang Lee, Choong Hyun; Nishimura, Tomonori; Toriumi, Akira

    2015-08-17

    We investigated yttrium scandate (YScO{sub 3}) as an alternative high-permittivity (k) dielectric thin film for Ge gate stack formation. Significant enhancement of k-value is reported in YScO{sub 3} comparing to both of its binary compounds, Y{sub 2}O{sub 3} and Sc{sub 2}O{sub 3}, without any cost of interface properties. It suggests a feasible approach to a design of promising high-k dielectrics for Ge gate stack, namely, the formation of high-k ternary oxide out of two medium-k binary oxides. Aggressive scaling of equivalent oxide thickness (EOT) with promising interface properties is presented by using YScO{sub 3} as high-k dielectric and yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) as interfacial layer, for a demonstration of high-k gate stack on Ge. In addition, we demonstrate Ge n-MOSFET performance showing the peak electron mobility over 1000 cm{sup 2}/V s in sub-nm EOT region by YScO{sub 3}/Y-GeO{sub 2}/Ge gate stack.

  10. Thickness dependence of the dielectric properties of thermally evaporated Sb2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Ulutas, K.; Deger, D.; Yakut, S.

    2013-03-01

    Sb2Te3 thin films of different thickness (23 - 350 nm) were prepared by thermal evaporation technique. The thickness dependence of the ac conductivity and dielectric properties of the Sb2Te3 films have been investigated in the frequency range 10 Hz- 100 kHz and within the temperature range 293-373K. Both the dielectric constant epsilon1 and dielectric loss factor epsilon2 were found to depend on frequency, temperature and film thickness. The frequency and temperature dependence of ac conductivity (σac(ω)) has also been determined. The ac conductivity of our samples satisfies the well known ac power law; i.e., σac(ω) propto ωs where s<1 and independent of the film thickness. The temperature dependence of ac conductivity and parameter s is reasonably well interpreted by the correlated barrier hopping (CBH) model. The activation energies were evaluated for various thicknesses. The temperature coefficient of the capacitance (TCC) and permitivity (TCP) were determined as a function of the film thickness. The microstructure of the samples were analyzed using X-ray diffraction (XRD). This results are discussed on the base of the differences in their morphologies and thicknesses. The tendency for amorphization of the crystalline phases becomes evident as the film thickness increases.

  11. UV protection filters by dielectric multilayer thin films on Glass BK-7 and Infrasil 301

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, M. M.; Azim, Osama A.; Abdel-Wahab, L. A.; Seddik, Mohamed M.

    2006-10-01

    The increasing use of Ultraviolet (UV) light in medicine, industrial environments, for cosmetic use, and even in consumer products necessitates that greater attention be paid to the potential hazards of this type of electromagnetic radiation. To avoid any adverse effects of exposure to this type of radiation, four suitable protection filters were produced to block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters was done by optical thin film technology using the absorbing property of UV radiation for the substrates and dielectric materials. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Titanium dioxide (Ti 2O 3), Hafnium dioxide (HfO 2), and Lima (mixture of oxides SiO 2/Al 2O 3); deposition being achieved using an electron beam gun. The output results of the theoretical and experimental transmittance values for spectral band from 200 nm to 800 nm were discussed in four processes. To analyze the suitability for use in 'real world' applications, the test pieces were subjected to the durability tests (adhesion, abrasion resistance, and humidity) according to Military Standard MIL-C-675C and MIL-C-48497A.

  12. Experimental and computational study of plasma bullet reignition behind a thin dielectric slab

    NASA Astrophysics Data System (ADS)

    Ranieri, Pietro; Babaeva, Natalia; Foster, John

    2013-09-01

    Ionization waves (IWs) propagating through plasma jets and helium channels are often observed as luminous fronts of the IWs and conventionally termed as plasma bullets. The preliminary experiments show that if a thin dielectric slab is placed in the helium channel as an obstacle for the bullet propagation, the discharge may reignite below the slab. This process is perceived as though the bullets propagate through the obstacle. The goal of this work is to find conditions under which the bullet can reignite behind the dielectric. The experimental setup consists of a corona discharge, with a single metal electrode, within a quartz tube. We study the influence of the dielectric constant, thickness and the length of the mica slab on the plasma jet behavior. We show that after the impact on the mica surface, the bullet partially reflects from the surface and plasma spreads along the surface. Depending on the location of the mica relative to the tube exit, its capacitance and opacity to photoionizing radiation, a second bullet can emerge below the slab. The computational model used in this work, nonPDPSIM, is a plasma hydrodynamics model in which continuity, momentum and energy equations are solved for charged and neutral species with solution of Poisson's equation for the electric potential.

  13. Thickness dependent electronic structure and morphology of rubrene thin films on metal, semiconductor, and dielectric substrates

    NASA Astrophysics Data System (ADS)

    Sinha, Sumona; Mukherjee, M.

    2013-08-01

    The evolution of the electronic structure and morphology of rubrene thin films on noble-metal, semiconductor and dielectric substrates have been investigated as a function of thickness of deposited films by using photoelectron spectroscopy and atomic force microscopy. The clean polycrystalline Au and Ag were used as noble-metals, whereas, H passivated and SiO2 coated Si (100) were used as semiconductors and dielectric substrates. Discussion and comparison on interface dipole, energy level alignment, and surface morphology for the four cases are presented. The formation of dipole at metallic interfaces is found to occur due to push back effect. S parameter obtained from the variation of barrier height with the change of work function of the contacting metal indicates moderately weak interaction between rubrene and the metal substrates. The thickness dependent energy level alignment of the physisorbed rubrene films on different substrates is explained by a dielectric model in terms of electrostatic screening of photo-holes or photoemission final state relaxation energy. Films on all the substrates are found to grow following Stranski-Krastnov type growth mode and are more ordered at higher coverage.

  14. Crystallographic texture, morphology, optical, and microwave dielectric properties of dc magnetron sputtered nanostructured zirconia thin films

    SciTech Connect

    Pamu, D.; Sudheendran, K.; Ghanashyam Krishna, M.; James Raju, K. C.

    2008-03-15

    Nanocrystalline zirconia thin films have been deposited at ambient temperature by dc magnetron sputtering on glass and quartz substrates. The crystallite size as calculated from the x-ray diffraction patterns in the films varies between 10 and 25 nm and is dependent on oxygen percentage in the sputtering gas. Interestingly, the presence of monoclinic and cubic phase is observed for the films deposited on glass at 40%, 60%, and 80% of oxygen in the sputtering gas, while those deposited on quartz showed only the monoclinic phase. Refractive index decreased with increase in percentage of oxygen in the sputter gas. Significantly, even at 100% oxygen in the sputtering gas, films of thickness of the order of 500 nm have been grown starting from the metallic Zr target. The dielectric constants were measured using the extended cavity perturbation technique at X-band frequency (8-12 GHz). The dielectric constant and loss tangent showed a very small decrease with increase in frequency but exhibited a stronger dependence on processing parameters. The dielectric constants of the films at microwave frequencies ranged between 12.16 and 22.3.

  15. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  16. Spreading of Thin Droplets of Perfect and Leaky Dielectric Liquids on Inclined Surfaces.

    PubMed

    Corbett, Andrew; Kumar, Satish

    2016-07-01

    The spreading of droplets may be influenced by electric fields, a situation that is relevant to applications such as coating, printing, and microfluidics. In this work we study the effects of an electric field on the gravity-driven spreading of two-dimensional droplets down an inclined plane. We consider both perfect and leaky dielectric liquids, as well as perfectly and partially wetting systems. In addition to the effects of electric fields, we examine the use of thermocapillary forces to suppress the growth of the capillary ridge near the droplet front. Lubrication theory is applied to generate a set of coupled partial differential equations for interfacial height and charge, which are then solved numerically with a finite-difference method. Electric fields increase the height of the capillary ridge in both perfect and leaky dielectric droplets due to electrostatic pressure gradients that drive liquid into the ridge. In leaky dielectrics, large interfacial charge gradients in the contact-line region create shear stresses that also enhance ridge growth and the formation of trailing minor ridges. The coalescence of these ridges can significantly affect the long-time thinning rate of leaky dielectric droplets. In partially wetting liquids, electric fields promote the splitting of smaller droplets from the primary droplet near the receding contact line due to the interplay between electrostatic forces and disjoining pressure. Cooling from below and heating from above generates thermocapillary forces that counteract the effects of electric fields and suppress the growth of the capillary ridge. The results of this work have important implications for manipulating the spreading of droplets down inclined surfaces. PMID:27247998

  17. Spreading of Thin Droplets of Perfect and Leaky Dielectric Liquids on Inclined Surfaces.

    PubMed

    Corbett, Andrew; Kumar, Satish

    2016-07-01

    The spreading of droplets may be influenced by electric fields, a situation that is relevant to applications such as coating, printing, and microfluidics. In this work we study the effects of an electric field on the gravity-driven spreading of two-dimensional droplets down an inclined plane. We consider both perfect and leaky dielectric liquids, as well as perfectly and partially wetting systems. In addition to the effects of electric fields, we examine the use of thermocapillary forces to suppress the growth of the capillary ridge near the droplet front. Lubrication theory is applied to generate a set of coupled partial differential equations for interfacial height and charge, which are then solved numerically with a finite-difference method. Electric fields increase the height of the capillary ridge in both perfect and leaky dielectric droplets due to electrostatic pressure gradients that drive liquid into the ridge. In leaky dielectrics, large interfacial charge gradients in the contact-line region create shear stresses that also enhance ridge growth and the formation of trailing minor ridges. The coalescence of these ridges can significantly affect the long-time thinning rate of leaky dielectric droplets. In partially wetting liquids, electric fields promote the splitting of smaller droplets from the primary droplet near the receding contact line due to the interplay between electrostatic forces and disjoining pressure. Cooling from below and heating from above generates thermocapillary forces that counteract the effects of electric fields and suppress the growth of the capillary ridge. The results of this work have important implications for manipulating the spreading of droplets down inclined surfaces.

  18. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    PubMed

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

  19. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    SciTech Connect

    Volpi, F. Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-07-28

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, −2.8 to 1.5 GPa, and 2.0 to 2.8 g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen + porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms

  20. Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth

    NASA Astrophysics Data System (ADS)

    Nita, F.; Mastail, C.; Abadias, G.

    2016-02-01

    A three-dimensional kinetic Monte Carlo (KMC) model has been developed and used to simulate the microstructure and growth morphology of cubic transition metal nitride (TMN) thin films deposited by reactive magnetron sputtering. Results are presented for the case of stoichiometric TiN, chosen as a representative TMN prototype. The model is based on a NaCl-type rigid lattice and includes deposition and diffusion events for both N and Ti species. It is capable of reproducing voids and overhangs, as well as surface faceting. Simulations were carried out assuming a uniform flux of incoming particles approaching the surface at normal incidence. The ballistic deposition model is parametrized with an interaction parameter r0 that mimics the capture distance at which incoming particles may stick on the surface, equivalently to a surface trapping mechanism. Two diffusion models are implemented, based on the different ways to compute the site-dependent activation energy for hopping atoms. The influence of temperature (300-500 K), deposition flux (0.1-100 monolayers/s), and interaction parameter r0 (1.5-6.0 Å) on the obtained growth morphology are presented. Microstructures ranging from highly porous, [001]-oriented straight columns with smooth top surface to rough columns emerging with different crystallographic facets are reproduced, depending on kinetic restrictions, deposited energy (seemingly captured by r0), and shadowing effect. The development of facets is a direct consequence of the diffusion model which includes an intrinsic (minimum energy-based) diffusion anisotropy, although no crystallographic diffusion anisotropy was explicitly taken into account at this stage. The time-dependent morphological evolution is analyzed quantitatively to extract the growth exponent β and roughness exponent α , as indicators of kinetic roughening behavior. For dense TiN films, values of α ≈0.7 and β =0.24 are obtained in good agreement with existing experimental data. At this

  1. Scanning proximal microscopy study of the thin layers of silicon carbide-aluminum nitride solid solution manufactured by fast sublimation epitaxy

    NASA Astrophysics Data System (ADS)

    Dallaeva, D.; Korostylev, E.; Bilalov, B.; Tománek, P.

    2013-04-01

    The objective of the study is a growth of SiC/(SiC)1-x(AlN)x structures by fast sublimation epitaxy of the polycrystalline source of (SiC)1-x(AlN)x and their characterisation by proximal scanning electron microscopy and atomic force microscopy. For that purpose optimal conditions of sublimation process have been defined. Manufactured structures could be used as substrates for wide-band-gap semiconductor devices on the basis of nitrides, including gallium nitride, aluminum nitride and their alloys, as well as for the production of transistors with high mobility of electrons and also for creation of blue and ultraviolet light emitters (light-emitted diodes and laser diodes). The result of analysis shows that increasing of the growth temperature up to 2300 K allows carry out sublimation epitaxy of thin layers of aluminum nitride and its solid solution.

  2. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    PubMed

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  3. Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses

    SciTech Connect

    Rublack, Tino; Muchow, Markus; Schade, Martin; Leipner, Hartmut S.; Seifert, Gerhard

    2012-07-15

    The microstructural impact of selective femtosecond laser ablation of thin dielectric layers from monocrystalline silicon wafers was investigated. Various spots opened by 280 fs laser pulses at {lambda} = 1.03 {mu}m wavelength and 50 fs pulses at 800 nm, respectively, were analyzed in detail using Raman and transmission electron microscopy. The results show clearly that the thin dielectric films can be removed without any detectable modification of the Si crystal structure in the opened area. In contrast, in adjacent regions corresponding to laser fluence slightly below the breaking threshold, a thin layer of amorphous silicon with a maximum thickness of about 50 nm is found at the Si/SiO{sub 2} interface after laser irradiation. More than one pulse on the same position, however, causes structural modification of the silicon after thin film ablation in any case.

  4. Deposition and characterization of titanium dioxide and hafnium dioxide thin films for high dielectric applications

    NASA Astrophysics Data System (ADS)

    Yoon, Meeyoung

    The industry's demand for higher integrated circuit density and performance has forced the gate dielectric layer thickness to decrease rapidly. The use of conventional SiO2 films as gate oxide is reaching its limit due to the rapid increase in tunneling current. Therefore, a need for a high dielectric material to produce large oxide capacitance and low leakage current has emerged. Metal-oxides such as titanium dioxide (TiO2) and hafnium dioxide (HfO2) are attractive candidates for gate dielectrics due to their electrical and physical properties suitable for high dielectric applications. MOCVD of TiO2 using titanium isopropoxide (TTIP) precursor on p-type Si(100) has been studied. Insertion of a TiO x buffer layer, formed by depositing metallic Ti followed by oxidation, at the TiO2/Si interface has reduced the carbon contamination in the TiO2 film. Elemental Ti films, analyzed by in-situ AES, were found to grow according to Stranski-Krastanov mode on Si(100). Carbon-free, stoichiometric TiO2 films were successfully produced on Si(100) without any parasitic SiO2 layers at the TiO 2/Si interface. Electron-beam deposition of HfO2 films on Si(100) has also been investigated in this work. HfO2 films are formed by depositing elemental Hf on Si(100) and then oxidizing it either in O2 or O 3. XPS results reveal that with oxidation Hf(4f) peak shifts +3.45eV with 02 and +3.65eV with O3 oxidation. LEED and AFM studies show that the initially ordered crystalline Hf becomes disordered after oxidation. The thermodynamic stability of HfO2 films on Si has been studied using a unique test-bed structure of Hf/O3/Si. Post-Oxidation of Layer Deposition (POLD) has been employed to produce HfO2 films with a desired thickness. XPS results indicate that stoichiometric HfO 2 films were successfully produced using the POLD process. The investigation of the growth and thin film properties of TiO 2 and HfO2 using oxygen and ozone has laid a foundation for the application of these metal

  5. Terahertz dielectric response of ferroelectric Ba(x)Sr(1-x)TiO3 thin films.

    PubMed

    Kang, Seung Beom; Kwak, Min Hwan; Choi, Muhan; Kim, Sungil; Kim, Taeyong; Cha, Eun Jong; Kang, Kwang Yong

    2011-11-01

    Terahertz time-domain spectroscopy has been used to investigate the dielectric and optical properties of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films for nominal x-values of 0.4, 0.6, and 0.8 in the frequency range of 0.3 to 2.5 THz. The ferroelectric thin films were deposited at approximately 700 nm thickness on [001] MgO substrate by pulsed laser deposition. The measured complex dielectric and optical constants were compared with the Cole-Cole relaxation model. The results show that the Cole-Cole relaxation model fits well with the data throughout the frequency range and the dielectric relaxation behavior of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films varies with the films compositions. Among the compositions of Ba(x)Sr(1-x)TiO(3) films with different Ba/Sr ratios, Ba(0.6)Sr(0.4)TiO(3) has the highest dielectric constants and the shortest dielectric relaxation time.

  6. Architecture for the semi-automatic fabrication and assembly of thin-film based dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Randazzo, M.; Buzio, R.; Metta, G.; Sandini, G.; Valbusa, U.

    2008-03-01

    One problem related to the actuation principle of macroscopic dielectric elastomer actuators is the high voltage required, typically in the Kilovolt range, that imposes particular care in the insulation of the whole actuator from the surrounding environment. This high actuation voltage, however, can be drastically reduced if a thin film of dielectric elastomer is used. Despite this, the manufacture of a macroscopic stack-like actuator, starting from thin films of dielectric elastomer can present many manufacture difficulties, like the handling and the assembly of the films, the power distribution to hundreds or thousands of layers, the presence of defects in one single layer that can cause the complete failure of the whole actuator. In this paper, a fast, semi-automatic process is proposed for the manufacture of modular units of dielectric elastomer, each of them consisting of many layers of rolled thin dielectric film. All the manufactured units are independent and take their power from a lateral, compliant supply rail that contacts the sides the electroded layers. This design is very suitable for industrial production: each module can be independently tested and then assembled in a complete macroscopic actuator composed by an unlimited number of these modules. The simple assembly methodology and the semi-automatic manufacture process described in this paper allows the fabrication of multilayer stacked devices, that can be used both as contractile or expanding actuators.

  7. Fabrication of water-stable organic transistors using crystalline rubrene thin-film and polymer-treated dielectric (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kim, Jaejoon; Lee, Hyoek Moo; Cho, Sung Oh

    2015-10-01

    For the real application of organic electronics, stable operation of electronic devices in humid or aqueous condition is essential and desirable. However, most of organic semiconductors were very weak to the oxygen or water and especially, cannot be operated well in aqueous condition without an encapsulation. Here, we present water-stable organic thin-film transistors with highly crystallized rubrene and polymer-treated dielectrics. These high water-stability could be achieved by two factors. First, rubrene, a well-known p-type semiconducting material, showed high air and water stability after the crystallization of `abrupt heating'. By the fabrication and aqueous operation of rubrene thin film transistor, we could show the water stability of crystallized thin-film rubrene. Such high environmental stability is attributed to the fact that rubrene has comparatively low HOMO level of -5.4 eV and large bandgap energy of 3.2 eV and that the rubrene thin-film is composed of well-interconnected orthorhombic rubrene crystals. Second, the polymer-treatment of dielectrics can enhance long-term water stability of fabricated rubrene thin-film transistor. By the complete immersion test of transistors, we could characterize the increase of water-stability after the treatment of dielectrics with cross-linked polymer. For this purpose, polystyrene is cross-linked by electron irradiation and the water penetration into semiconductor/dielectric interface was decreased due to the decreased surface energy of polymer dielectric compared to the SiO₂. The fabricated rubrene thin-film transistors showed a field-effect mobility of ~0.5 cm2V-1s-1 and long-term stability under ambient and aqueous conditions. Also, we investigated their potential applications in chemical or bio sensors.

  8. Electrical properties of nanoscale metallic thin films on dielectric elastomer at various strain rates

    NASA Astrophysics Data System (ADS)

    Faisal, Md. Shahnewaz Sabit; Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan

    2015-04-01

    Dielectric elastomers (DEs) have significant applications in artificial muscle and other biomedical equipment and device fabrications. Metallic thin films by thin film transfer and sputter coating techniques can provide conductive surfaces on the DE samples, and can be used as electrodes for the actuators and other biomedical sensing devices. In the present study, 3M VHB 4910 tape was used as a DE for the coating and electrical characterization tests. A 150 nm thickness of gold was coated on the DE surfaces by sputter coating under vacuum with different pre-strains, ranging from 0 to 100%. Some of the thin films were transferred to the surface of the DEs. Sputter coating, and direct transferring gold leaf coating methods were studied and the results were analyzed in detail in terms of the strain rates and electrical resistivity changes. Initial studies indicated that the metallic surfaces remain conductive even though the DE films were considerably elongated. The coated DEs can be used as artificial muscle by applying electrical stimulation through the conductive surfaces. This study may provide great benefits to the readers, researchers, as well as companies involved in manufacturing of artificial muscles and actuators using smart materials.

  9. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  10. Reactive low-voltage ion plating of hard silicon nitride optical thin films and their characterization

    NASA Astrophysics Data System (ADS)

    Ramm, Juergen; Hora, Ralf; Bovard, Bertrand G.

    1990-08-01

    Silicon nitride films were synthesized in a Balzers BAP 800 coating plant by an plasma enhanced evaporation process. Transparent, stoichiometric films free of hydrogen, oxygen, argon, and heavy metals were obtained. The optical properties, the chemical composition, the microhardness, the structure, and the morphology of the films were investigated.

  11. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  12. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  13. Use of cermet thin film resistors with nitride passivated metal insulator field effect transistor

    NASA Technical Reports Server (NTRS)

    Brown, G. A.; Harrap, V.

    1971-01-01

    Film deposition of cermet resistors on same chip with metal nitride oxide silicon field effect transistors permits protection of contamination sensitive active devices from contaminants produced in cermet deposition and definition processes. Additional advantages include lower cost, greater reliability, and space savings.

  14. Cross-linking effect on dielectric properties of polypropylene thin films and applications in electric energy storage

    NASA Astrophysics Data System (ADS)

    Yuan, Xuepei; Chung, T. C. Mike

    2011-02-01

    A family of cross-linked polypropylene (x-PP) thin film dielectrics is systematically studied to understand the cross-linking effect on the dielectric properties. Evidently, the butylstyrene (BSt) cross-linkers increase both the dielectric constant (ɛ) and breakdown strength (E), without increasing energy loss. An x-PP dielectric, with 3.65 mol % BSt cross-linkers, exhibits a ɛ ˜3, which is independent of a wide range of temperatures and frequencies, slim D-E hysteresis loops, high breakdown strength (E=650 MV/m), narrow breakdown distribution, and reliable energy storage capacity >5 J/cm3 (double that of state-of-the-art biaxially oriented polypropylene capacitors), without showing any increase in energy loss.

  15. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    PubMed

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (<5 V) pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  16. Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition

    SciTech Connect

    Majumdar, Abhijit; Hippler, Rainer

    2007-07-15

    Cost effective and a very simple dielectric barrier discharge plasma processing apparatus for thin film deposition and mass spectroscopic analysis of organic gas mixture has been described. The interesting features of the apparatus are the construction of the dielectric electrodes made of aluminum oxide or alumina (Al{sub 2}O{sub 3}) and glass and the generation of high ignition voltage from the spark plug transformer taken from car. Metal capacitor is introduced in between ground and oscilloscope to measure the executing power during the discharge and the average electron density in the plasma region. The organic polymer films have been deposited on Si (100) substrate using several organic gas compositions. The experimental setup provides a unique drainage system from the reaction chamber controlled by a membrane pump to suck out and remove the poisonous gases or residuals (cyanogens, H-CN, CH{sub x}NH{sub 2}, etc.) which have been produced during the discharge of CH{sub 4}/N{sub 2} mixture.

  17. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach.

    PubMed

    Guerfi, Y; Doucet, J B; Larrieu, G

    2015-10-23

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  18. Dielectric response of epitaxially strained CoFe2O4 spinel thin films

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Diego; Foerster, Michael; Fina, Ignasi; Fontcuberta, Josep; Fritsch, Daniel; Ederer, Claude

    2012-09-01

    Aiming to explore strain effects on the dielectric permittivity of ultrathin films of oxides with spinel structure, we report here on the thickness (4-160 nm) dependence of the dielectric response of CoFe2O4 (CFO) epitaxial films grown on La2/3Sr1/3MnO3 buffered SrTiO3(001) substrates. It is found that films thicker than ˜30 nm display bulklike permittivity values (ɛr≈14); however, a pronounced and gradual ɛr reduction is observed for thinner films when the in-plane compressive strain induced by the substrate increases. First-principle calculations are used to simulate the variation of the permittivity of CFO spinel thin films under epitaxial strain; in agreement with simple bond-length considerations, the out-of-plane permittivity is predicted to increase under in-plane compressive strain due to the resulting out-of-plane lattice expansion, but this enhancement can be overcompensated if this expansion is suppressed, resulting in an effective reduction of permittivity. However, the predicted reduction is substantially smaller than observed experimentally. We discuss possible mechanisms to account for this observation.

  19. Structures and dielectric properties of thin polyimide films with nano-foam morphology

    NASA Astrophysics Data System (ADS)

    Cha, H. J.; Hedrick, J.; DiPietro, R. A.; Blume, T.; Beyers, R.; Yoon, D. Y.

    1996-04-01

    Thin polyimide films with dispersed nano-foam morphology have been prepared for the purpose of obtaining low dielectric polymer insulators for microelectronic applications. They were obtained by utilizing micro phase-separated triblock copolymers where the thermally stable polyimide matrix component was derived from pyromellitic dianhydride (PMDA) with 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (3F) and a thermally labile poly(propylene oxide)(PO) component comprised the outside block of the ABA triblock architecture. TEM studies show that the initial irregular nanoscale phase-separated morphology of polyimide triblock copolymers are mostly maintained in the final nano-foam films upon thermal decomposition of the dispersed PO component. The nano-foam polyimide films exhibit significantly lower dielectric constants ɛ' (e.g., 2.3 at 19% porosity) as compared with ɛ'≊2.9 for the homopolymer, as predicted by Maxwell-Garnett theory, with the nano-pore structures remaining stable at 350 °C.

  20. Current saturation in submicrometer graphene transistors with thin gate dielectric: experiment, simulation, and theory.

    PubMed

    Han, Shu-Jen; Reddy, Dharmendar; Carpenter, Gary D; Franklin, Aaron D; Jenkins, Keith A

    2012-06-26

    Recently, graphene field-effect transistors (FET) with cutoff frequencies (f(T)) between 100 and 300 GHz have been reported; however, the devices showed very weak drain current saturation, leading to an undesirably high output conductance (g(ds)= dI(ds)/dV(ds)). A crucial figure-of-merit for analog/RF transistors is the intrinsic voltage gain (g(m)/g(ds)) which requires both high g(m) (primary component of f(T)) and low g(ds). Obtaining current saturation has become one of the key challenges in graphene device design. In this work, we study theoretically the influence of the dielectric thickness on the output characteristics of graphene FETs by using a surface-potential-based device model. We also experimentally demonstrate that by employing a very thin gate dielectric (equivalent oxide thickness less than 2 nm), full drain current saturation can be obtained for large-scale chemical vapor deposition graphene FETs with short channels. In addition to showing intrinsic voltage gain (as high as 34) that is comparable to commercial semiconductor FETs with bandgaps, we also demonstrate high frequency AC voltage gain and S21 power gain from s-parameter measurements.

  1. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach.

    PubMed

    Guerfi, Y; Doucet, J B; Larrieu, G

    2015-10-23

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness. PMID:26422697

  2. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach

    NASA Astrophysics Data System (ADS)

    Guerfi, Y.; Doucet, J. B.; Larrieu, G.

    2015-10-01

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  3. Measurement and modeling of dielectric properties of Pb(Zr,Ti)O3 ferroelectric thin films.

    PubMed

    Renoud, Raphaël; Borderon, Caroline; Gundel, Hartmut W

    2011-09-01

    In this study, the real and imaginary parts of the complex permittivity of lead zirconate titanate ferroelectric thin films are studied in the frequency range of 100 Hz to 100 MHz. The permittivity is well fitted by the Cole-Cole model. The variation of the relaxation time with the temperature is described by the Arrhenius law and an activation energy of 0.38 eV is found. Because of its nonlinear character, the dielectric response of the ferroelectric sample depends on the amplitude of the applied ac electric field. The permittivity is composed of three different contributions: the first is due to intrinsic lattice, the second is due to domain wall vibrations, and the third is due to domain wall jumps between pinning centers. This last contribution depends on the electric field, so it is important to control the field amplitude to obtain the desired values of permittivity and tunability.

  4. Optical properties of VO2 thin films in their dielectric and metallic states

    NASA Astrophysics Data System (ADS)

    Petit, Christophe; Frigerio, Jean M.

    1999-09-01

    Thermochromic VO2 thin films have been deposited by reactive RF cathodic sputtering, using a V2O4 target. They were characterized by XRD, AFM and optical measurements. We show that the microstructure influences the optical response of the material, i.e. its hysteresis cycle as well as the values of the optical constants n and k. We performed ellipsometric measurements from the UV to the far IR, combing two kinds of ellipsometers, in both the dielectric and the metallic states. The n and k constants are described by a dispersion law based on Lorentz oscillators, and an additional Drude contribution for the metallic state. The results are confirmed by XPS analysis. Contrary to the semiconductor phase, the metallic phase appears to be strongly dependent of the microstructure, as far as the optical response is concerned.

  5. Investigation of Ultraviolet Light Curable Polysilsesquioxane Gate Dielectric Layers for Pentacene Thin Film Transistors.

    PubMed

    Shibao, Hideto; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2016-04-01

    Polysilsesquioxane (PSQ) comprising 3-methacryloxypropyl groups was investigated as an ultraviolet (UV)-light curable gate dielectric-material for pentacene thin film transistors (TFTs). The surface of UV-light cured PSQ films was smoother than that of thermally cured ones, and the pentacene layers deposited on the UV-Iight cured PSQ films consisted of larger grains. However, carrier mobility of the TFTs using the UV-light cured PSQ films was lower than that of the TFTs using the thermally cured ones. It was shown that the cross-linker molecules, which were only added to the UV-light cured PSQ films, worked as a major mobility-limiting factor for the TFTs.

  6. Dielectric Barrier Discharge Ionization in Characterization of Organic Compounds Separated on Thin-Layer Chromatography Plates

    PubMed Central

    Cegłowski, Michał; Smoluch, Marek; Babij, Michał; Gotszalk, Teodor; Silberring, Jerzy; Schroeder, Grzegorz

    2014-01-01

    A new method for on-spot detection and characterization of organic compounds resolved on thin layer chromatography (TLC) plates has been proposed. This method combines TLC with dielectric barrier discharge ionization (DBDI), which produces stable low-temperature plasma. At first, the compounds were separated on TLC plates and then their mass spectra were directly obtained with no additional sample preparation. To obtain good quality spectra the center of a particular TLC spot was heated from the bottom to increase volatility of the compound. MS/MS analyses were also performed to additionally characterize all analytes. The detection limit of proposed method was estimated to be 100 ng/spot of compound. PMID:25170762

  7. Measurement and modeling of dielectric properties of Pb(Zr,Ti)O3 ferroelectric thin films.

    PubMed

    Renoud, Raphaël; Borderon, Caroline; Gundel, Hartmut W

    2011-09-01

    In this study, the real and imaginary parts of the complex permittivity of lead zirconate titanate ferroelectric thin films are studied in the frequency range of 100 Hz to 100 MHz. The permittivity is well fitted by the Cole-Cole model. The variation of the relaxation time with the temperature is described by the Arrhenius law and an activation energy of 0.38 eV is found. Because of its nonlinear character, the dielectric response of the ferroelectric sample depends on the amplitude of the applied ac electric field. The permittivity is composed of three different contributions: the first is due to intrinsic lattice, the second is due to domain wall vibrations, and the third is due to domain wall jumps between pinning centers. This last contribution depends on the electric field, so it is important to control the field amplitude to obtain the desired values of permittivity and tunability. PMID:21937334

  8. Measurement of thermo-optic properties of thin film dielectric coatings

    NASA Astrophysics Data System (ADS)

    Ogin, Gregory H.

    We have carried out an experiment to test the theory of the thermo-optic response of a dielectric stack mirror coating and to measure parameters of interest in calculating thermo-optic noise. Specifically, we measured the coefficient of thermal expansion and the change of index of refraction with temperature (dn/dT ) for thin film silica (SiO2) and tantala (Ta2O5) in mirror coatings. These measurements were achieved by driving thermal fluctuations in such mirrors in one arm of a small Michelson interferometer. We report on the results of that experiment along with its potential implications for future gravitational wave detectors, and suggest next steps for this important line of investigation.

  9. Investigation of Ultraviolet Light Curable Polysilsesquioxane Gate Dielectric Layers for Pentacene Thin Film Transistors.

    PubMed

    Shibao, Hideto; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2016-04-01

    Polysilsesquioxane (PSQ) comprising 3-methacryloxypropyl groups was investigated as an ultraviolet (UV)-light curable gate dielectric-material for pentacene thin film transistors (TFTs). The surface of UV-light cured PSQ films was smoother than that of thermally cured ones, and the pentacene layers deposited on the UV-Iight cured PSQ films consisted of larger grains. However, carrier mobility of the TFTs using the UV-light cured PSQ films was lower than that of the TFTs using the thermally cured ones. It was shown that the cross-linker molecules, which were only added to the UV-light cured PSQ films, worked as a major mobility-limiting factor for the TFTs. PMID:27451626

  10. Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics

    DOEpatents

    Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.

    1999-03-23

    A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.

  11. Recent advances in the growth, doping and characterization of III V nitride thin films

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Ailey, K. S.; Bremser, M. D.; Carlson, E.; Kern, R. S.; Kester, D. J.; Perry, W. G.; Tanaka, S.; Weeks, T. W.

    Boron nitride thin films have been grown on the (100) surfaces of Si and diamond via ion beam assisted deposition (IBAD) using electron beam evaporation of B in tandem with N and Ar ion bombardment within the ranges of substrate temperature and ion flux of 200-700°C and 0.20-0.30 mA/cm2, respectively. Fourier-transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) revealed a growth sequence of amorphous (a-BN), hexagonal (h-BN) and cubic (c-BN) layers under most conditions. This sequence is attributed primarily to increasing biaxial compressive stress with film thickness due to ion bombardment and some interstitial Ar incorporation. A minimum substrate temperature of 200-300° C is required for nucleation and growth of single phase c-BN by this technique. The initial stage of AlN film growth on α(6H)-SiC(0001) substrates by plasma-assisted, gas source molecular beam epitaxy has been investigated in terms of growth mode and interface defects. Essentially atomically flat AlN surfaces, indicative of two-dimensional growth, were obtained using on-axis substrates. Island-like features were observed on the vicinal surfaces. The coalescence of latter features gave rise to double positioning boundaries as a result of the misalignment of the Si/C bilayer steps with the Al/N bilayers in the growing films. The quality of the thicker AlN films was strongly influenced by the concentration of these boundaries. Monocrystalline GaN and AlxGa1-x N(0001) (0≤x≤1) films, void of oriented domain structures and associated low-angle grain boundaries and with smooth surface morphologies, have been grown via OMVPE on high-temperature monocrystalline AlN(0001) buffer layers, previously deposited on vicinal α(6H)-SiC(0001) wafers, using TEG, TEA and ammonia in a cold-wall, vertical, pancake-style reactor. Abrupt heterojunctions were demonstrated. The PL spectrum of the pure GaN showed strong near band-edge emissions with a FWHM value of 4 me

  12. Novel organic semiconductors and dielectric materials for high performance and low-voltage organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Myung-Han

    Two novel classes of organic semiconductors based on perfluoroarene/arene-modified oligothiophenes and perfluoroacyl/acyl-derivatized quaterthiophens are developed. The frontier molecular orbital energies of these compounds are studied by optical spectroscopy and electrochemistry while solid-state/film properties are investigated by thermal analysis, x-ray diffraction, and scanning electron microscopy. Organic thin film transistors (OTFTs) performance parameters are discussed in terms of the interplay between semiconductor molecular energetics and film morphologies/microstructures. For perfluoroarene-thiophene oligomer systems, majority charge carrier type and mobility exhibit a strong correlation with the regiochemistry of perfluoroarene incorporation. In quaterthiophene-based semiconductors, carbonyl-functionalization allows tuning of the majority carrier type from p-type to ambipolar and to n-type. In situ conversion of a p-type semiconducting film to n-type film is also demonstrated. Very thin self-assembled or spin-on organic dielectric films have been integrated into OTFTs to achieve 1 - 2 V operating voltages. These new dielectrics are deposited either by layer-by-layer solution phase deposition of molecular precursors or by spin-coating a mixture of polymer and crosslinker, resulting in smooth and virtually pinhole-free thin films having exceptionally large capacitances (300--700 nF/cm2) and low leakage currents (10 -9 - 10-7 A/cm2). These organic dielectrics are compatible with various vapor- or solution-deposited p- and n-channel organic semiconductors. Furthermore, it is demonstrated that spin-on crosslinked-polymer-blend dielectrics can be employed for large-area/patterned electronics, and complementary inverters. A general approach for probing semiconductor-dielectric interface effects on OTFT performance parameters using bilayer gate dielectrics is presented. Organic semiconductors having p-, n-type, or ambipolar majority charge carriers are grown on

  13. High-Permittivity Thin Dielectric Padding Improves Fresh Blood Imaging of Femoral Arteries at 3T

    PubMed Central

    Lindley, Marc D; Kim, Daniel; Morrell, Glen; Heilbrun, Marta E; Storey, Pippa; Hanrahan, Christopher J; Lee, Vivian S

    2014-01-01

    Objectives Fresh blood imaging (FBI) is a useful non-contrast magnetic resonance angiography (NC-MRA) method for assessment of peripheral arterial disease (PAD), particularly in patients with poor renal function. Compared with 1.5T, 3T enables higher signal to noise ratio (SNR) and/or spatio-temporal resolution in FBI, as demonstrated successfully for the calf station. However, FBI of the thigh station at 3T has been reported to suffer from signal void in the common femoral artery of one thigh only due to the radial symmetry in transmit radio-frequency field (B1+) variation. We sought to increase the femoral arterial signal attenuated by B1+ variation in FBI at 3T using high permittivity dielectric padding. Materials and Methods We performed FBI of the thigh station in 13 human subjects at 3T to compare the following 3 settings: no padding, commercially available thick (~ 5 cm) dielectric padding, and high-permittivity thin (~2 cm) dielectric padding. B1+ mapping was also performed in the common femoral arteries to characterize the radial symmetry in B1+ variation and quantify the improvement in B1+ excitation. We characterized the impact of radial symmetry in B1+ variation on the FBI signal and FBI MRA of the right common femoral artery using quantitative (i.e., contrast-to-noise ratio (CNR)) and qualitative (i.e., conspicuity) analyses. Results The radial symmetry in B1+ variation attenuates signal in the right common femoral artery, which can be partially improved with commercial padding and improved further with high permittivity padding. Averaging the results over 13 subjects, the B1+, CNR and conspicuity scores in the right common femoral artery were significantly better with high-permittivity padding than with commercial padding and baseline (p<0.001). Conclusions Our study shows that high-permittivity dielectric padding can be used to increase the femoral arterial signal attenuated by B1+ variation in FBI at 3T. PMID:25329606

  14. Measurement of the dielectric, conductance, and pyroelectric properties of MWCNT:PVDF nanocomposite thin films for application in infrared technologies

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Guggilla, Padmaja; Corda, John; Egarievwe, Stephen

    2013-09-01

    In this work, we have determined the dielectric and conductance properties of multi-wall carbon nano-tubes (MWCNT) in polyvinylidene fluoride (PVDF) nanocomposite thin films as a function of temperature and frequency. Samples, ranging from 15 - 280 microns in thickness, were measured in the temperature range from 21 to 90°C and in frequencies from 50Hz to 110MHz. The samples were prepared by the solution casting technique. Measures indicate that at constant temperatures, the real dielectric constant decreases at lower frequencies, stays steady at low frequencies but rise at higher frequencies over towards the strong resonance. The dielectric loss, a particular concern as it is inversely related to the conductance, decreases also at lower frequencies but rise at higher frequencies with a steeper slope in each case. Additionally, we have measured the pyroelectric coefficient in the same temperature range, compared the pyroelectric coefficient results with previous measures made on silver nanoparticle in PVDF thin films and provided preliminary evidence of the causative microscopic response mechanism. Our MWCNT:PVDF thin films yield higher figures of merit than that indicated by pure PVDF thin films and results indicate a usage of MWCNT:PVDF thin films in infrared uncooled sensors and vidicon technology.

  15. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  16. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  17. Effect of Pentacene-dielectric Affinity on Pentacene Thin Film Growth Morphology in Organic Field-effect Transistors

    SciTech Connect

    S Kim; M Jang; H Yang; C Park

    2011-12-31

    Organic field-effect transistors (OFETs) are fabricated by depositing a thin film of semiconductor on the functionalized surface of a SiO{sub 2} dielectric. The chemical and morphological structures of the interface between the semiconductor and the functionalized dielectric are critical for OFET performance. We have characterized the effect of the affinity between semiconductor and functionalized dielectric on the properties of the semiconductor-dielectric interface. The crystalline microstructure/nanostructure of the pentacene semiconductor layers, grown on a dielectric substrate that had been functionalized with either poly(4-vinyl pyridine) or polystyrene (to control hydrophobicity), and grown under a series of substrate temperatures and deposition rates, were characterized by X-ray diffraction, photoemission spectroscopy, and atomic force microscopy. By comparing the morphological features of the semiconductor thin films with the device characteristics (field-effect mobility, threshold voltage, and hysteresis) of the OFET devices, the effect of affinity-driven properties on charge modulation, charge trapping, and charge carrier transport could be described.

  18. Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films

    NASA Astrophysics Data System (ADS)

    H, M. Zeyada; F, M. El-Taweel; M, M. El-Nahass; M, M. El-Shabaan

    2016-07-01

    The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile (Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile (Ch-HPQ) thin films were determined in the frequency range of 0.5 kHz–5 MHz and the temperature range of 290–443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping (CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.

  19. Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films

    NASA Astrophysics Data System (ADS)

    H, M. Zeyada; F, M. El-Taweel; M, M. El-Nahass; M, M. El-Shabaan

    2016-07-01

    The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile (Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile (Ch-HPQ) thin films were determined in the frequency range of 0.5 kHz-5 MHz and the temperature range of 290-443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping (CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.

  20. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    PubMed Central

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-01-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430

  1. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance.

    PubMed

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-01-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm(2)/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 10(5), and a subthreshold slope of 0.10 V/dec. PMID:27641430

  2. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    NASA Astrophysics Data System (ADS)

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-09-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec.

  3. Influences of process parameters of low frequency PECVD technology on intrinsic stress of silicon nitride thin film

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Kang, Zhe; Ye, Yun; Jiang, Yadong

    2010-10-01

    Silicon nitride (SiNx) thin films were deposited by low frequency (LF) plasma enhanced chemical vapor deposition (PECVD) technology. By systematic variation of the process parameters, e.g. reactive gas flow rate, LF power, chamber gas pressure and substrate temperature. Influences of above parameters on the intrinsic stress of SiNx films were studied and analyzed by combining with the measured refractive index (RI), density, infrared spectra results of deposited SiNx films. The results showed that intrinsic stress of SiNx film was roughly proportional to film density, which was inversely proportional to hydrogen content in the SiNx film. Substrate temperature during deposition was the most important factor affecting hydrogen content in deposited film and, accordingly, the density and intrinsic stress of SiNx film.

  4. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    SciTech Connect

    Hirama, Kazuyuki Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-03

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp{sup 3}-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N{sub 2}{sup +} and Ar{sup +} ions is a key to selectively discriminate non-sp{sup 3} BN phases. At low acceleration voltage values, the sp{sup 2}-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  5. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    SciTech Connect

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe; Blasco, Nicolas

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  6. Morphological observation of Y and T junctions in nanostructured boron nitride thin films.

    PubMed

    Kumar, Sushil; Parashar, A; Rauthan, C M S; Singhal, S K; Dixit, P N; Singh, B P; Bhattacharyya, R

    2008-07-01

    Formations of Y and T nano junctions have been observed in boron nitride films deposited on silicon substrates by plasma chemical reaction of diborane (B2H6 diluted in hydrogen) and ammonia (NH3) gases using dual frequency (microwave/radio) plasma enhanced chemical vapor deposition technique without any intentional heating of the substrates. It has been observed that these nano junctions form at a critical feed gas ratio of ammonia and diborane. We have investigated the effect of gas feed ratio R (=NH3/B2H6) in the plasma reaction chamber, keeping all other deposition parameters constant, on the morphology of boron nitride films. The deposited films are characterized by SEM, AFM, TEM and Laser Raman. For gas feed ratio, R < 100, octahedron and cubic morphologies have been observed in BN films and on increasing R to >100, size of the crystallites reduces to nanometer level. In some of our BN samples deposited at a critical value of gas ratio (R = 400), uniform Y and T junctions having bamboo like morphologies, in nanometer level, have been observed, which we wish to emphasis here as an interesting and newer observation in boron nitride films deposited by the dual frequency PECVD technique. This change in morphology exhibited by varying gas feed ratio is mainly due to excess nitrogen ions in the plasma. PMID:19051906

  7. Synthesis, characterization and dielectric properties of SnO2 thin films.

    PubMed

    Yıldırım, M Ali; Yıldırım, Sümeyra Tuna; Sakar, Emine Fedakar; Ateş, Aytunç

    2014-12-10

    SnO2 thin films have been grown on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature and ambient pressure. The annealing temperature effect on the structural, morphological, optical and electrical properties of SnO2 thin films has been investigated. The X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies have showed that all the films have exhibited polycrystalline nature with tetragonal structure and have been covered well on glass substrates. The crystalline and surface properties of the films have improved with increasing annealing temperature. The band gap values have been changed from 3.73 to 3.66eV depending on the annealing temperature. The refractive index (n), optical static and high frequency dielectric constants (εo, ε∞) values have been calculated as a function of the annealing temperature. The resistivity values of the films have changed between 10(-1) - 10(-3)Ωcm with annealing temperature and light at room temperature. PMID:24929316

  8. Spurious phenomena occurring during current measurement on ultra-thin dielectric layers: From electro-thermal effects to surface damage

    SciTech Connect

    Grandfond, A.; Gautier, B.; Militaru, L.; Albertini, D.; Descamps-Mandine, A.

    2014-04-07

    In this paper, the conduction properties of dielectric ultra-thin layers are studied using atomic force microscopy. Especially, the conductive-atomic force microscope allows to measure the leakage current at the nanoscale and to study the degradation mechanisms locally. Nonetheless, the dielectric layer seems to be damaged by a technique's specific phenomenon: hillocks appear when a positive tip bias is applied on different dielectrics. In this paper, the formation of these hillocks is studied. Contrary to what is observed during the dielectric breakdown, the conductivity is reduced after hillocks formation which occurs after the dielectric breakdown. Moreover, we have observed the formation of cavities in the silicon substrate linked to the formation of hillocks, which is not compatible with a swelling process (as dielectric breakdown induced epitaxy). We propose that these results may be explained by an electro-thermal effect due to the large dissipated energy, maybe combined with the oxidation of the substrate. Finally, the interdependence of measurements is demonstrated during serial acquisition.

  9. A uniform GTD analysis of the EM diffraction by a thin dielectric/ferrite half-plane and related configurations

    NASA Technical Reports Server (NTRS)

    Rojas, Roberto G.

    1985-01-01

    A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.

  10. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Subramanian, N. Sankara; Loganathan, S.; Kannan, R.

    2014-04-01

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  11. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    SciTech Connect

    Kavitha, A.; Kannan, R.; Subramanian, N. Sankara; Loganathan, S.

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  12. Assembly of a high-dielectric constant thin TiOx layer directly on H-terminated semiconductor diamond

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Liu, Jiangwei; Sang, Liwen; Liao, Meiyong; Coathup, David; Imura, Masataka; Shi, Baogui; Gu, Changzhi; Koide, Yasuo; Ye, Haitao

    2016-01-01

    A high-dielectric constant (high-k) TiOx thin layer was fabricated on hydrogen-terminated diamond (H-diamond) surface by low temperature oxidation of a thin titanium layer in ambient air. The metallic titanium layer was deposited by sputter deposition. The dielectric constant of the resultant TiOx was calculated to be around 12. The capacitance density of the metal-oxide-semiconductor (MOS) based on the TiOx/H-diamond was as high as 0.75 μF/cm2 contributed from the high-k value and the very thin thickness of the TiOx layer. The leakage current was lower than 10-13 A at reverse biases and 10-7A at the forward bias of -2 V. The MOS field-effect transistor based on the high-k TiOx/H-diamond was demonstrated. The utilization of the high-k TiOx with a very thin thickness brought forward the features of an ideally low subthreshold swing slope of 65 mV per decade and improved drain current at low gate voltages. The advantages of the utilization high-k dielectric for diamond metal-oxide semiconductor field effect transistors are anticipated.

  13. Dielectric and piezoelectric properties of (110) oriented Pb(Zr1-x Ti x )O3 thin films

    NASA Astrophysics Data System (ADS)

    Jian-Hua, Qiu; Zhi-Hui, Chen; Xiu-Qin, Wang; Ning-Yi, Yuan; Jian-Ning, Ding

    2016-05-01

    A phenomenological Landau-Devonshire theory is developed to investigate the ferroelectric, dielectric, and piezoelectric properties of (110) oriented Pb(Zr1-x Ti x )O3 (x = 0.4, 0.5, 0.6, and 0.7) thin films. At room temperature, the tetragonal a 1 phase, the orthorhombic a 2 c phase, the triclinic γ 1 phase, and the triclinic γ 2 phase are stable. The appearance of the negative polarization component P 2 in the a 2 c phase and the γ 1 phase is attributed to the nonlinear coupling terms in the thermodynamic potential. The γ phase of the Pb(Zr1-x Ti x )O3 thin films has better dielectric and piezoelectric properties than the a 2 c phase and the a 1 phase. The largest dielectric and piezoelectric coefficients are obtained in the Pb(Zr0.5Ti0.5)O3 thin film. The piezoelectric coefficient of 110-150 pm/V is obtained in the (110) oriented Pb(Zr0.5Ti0.5)O3 thin film, and the Pb(Zr0.3Ti0.7)O3 thin film has the remnant polarization and relative dielectric constant of 50 μC/cm2 and 100, respectively, which are in agreement with the experimental measurements reported in the literature. Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Research Fund of Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, China, Major Projects of Natural Science Research in Jiangsu Province, China (Grant No. 15KJA43002), and Qing Lan Project of Education Department of Jiangsu Province, China.

  14. Mn-Doped BaTiO3 Thin Film Sintered Using Nanocrystals and Its Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Takezawa, Yoko; Kobayashi, Keisuke; Nakasone, Fumi; Suzuki, Toshimasa; Mizuno, Youichi; Imai, Hiroaki

    2009-11-01

    BaTiO3 thin films homogeneously doped with Mn were prepared by a novel powder-sintering thin-film process. Mn-doped BaTiO3 nanocrystals 5-7 nm in diameter were synthesized by a sol-gel method and sintered to form a highly densified microstructure containing columnar grains epitaxially grown on a (111)-oriented Pt/TiO2/Al2O3 substrate at a low temperature of 800 °C. On the basis of the results of various structural analyses, Mn was suggested to act as an acceptor in the perovskite structure of BaTiO3, which was also supported by the experimental finding indicating that the leakage current density was significantly improved compared with that of a nondoped BaTiO3 thin film. Moreover, the dielectric constant of the Mn-doped BaTiO3 thin film, 728 at 10 kHz with a loss tangent of 1.3%, was higher than that of the nondoped BaTiO3 thin film, probably owing to the electrostrictive effect induced by in-plane tensile stress. These results clearly indicate the feasibility of using doped BaTiO3 nanocrystals in the powder-sintering thin-film process for improving dielectric properties.

  15. Uniform Non-stoichiometric Titanium Nitride Thin Films for Improved Kinetic Inductance Detector Arrays

    NASA Astrophysics Data System (ADS)

    Coiffard, G.; Schuster, K.-F.; Driessen, E. F. C.; Pignard, S.; Calvo, M.; Catalano, A.; Goupy, J.; Monfardini, A.

    2016-08-01

    We describe the fabrication of homogeneous sub-stoichiometric titanium nitride films for microwave kinetic inductance detector (KID) arrays. Using a 6'' sputtering target and a homogeneous nitrogen inlet, the variation of the critical temperature over a 2'' wafer was reduced to {<}25 %. Measurements of a 132-pixel KID arrays from these films reveal a sensitivity of 16 kHz/pW in the 100 GHz band, comparable to the best aluminum KIDs. We measured a noise equivalent power of NEP = 3.6× 10^{-15} W/Hz^{1/2}. Finally, we describe possible routes to further improve the performance of these TiN KID arrays.

  16. Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics

    NASA Astrophysics Data System (ADS)

    Lim, Sang Chul; Kim, Seong Hyun; Koo, Jae Bon; Lee, Jung Hun; Ku, Chan Hoe; Yang, Yong Suk; Zyung, Taehyoung

    2007-04-01

    The authors report the effects of hydroxyl groups (OH bonds) on the electrical reliabilities of pentacene organic thin-film transistors (OTFTs) with poly-4-vinylphenol (PVP) gate dielectrics. PVP gate dielectric films mixed with different concentrations of methylated poly(melamine-co-formaldehyde) (MMF) were fabricated, and experiments on the hysteresis behavior of the OTFT device were conducted. Pentacene TFTs with the PVP (MMF 0wt.%) exhibited a large hysteresis, while in the PVP (MMF 125wt.%), nearly no hysteresis was observed. Large hysteresis observed in OTFT devices was confirmed to be strongly related to the hydroxyl groups existing inside of the polymeric dielectrics and could reduced by the decrease of OH group.

  17. Effects of high energy x ray and proton irradiation on lead zirconate titanate thin films' dielectric and piezoelectric response

    SciTech Connect

    Bastani, Y.; Cortes-Pena, A. Y.; Wilson, A. D.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Bassiri-Gharb, N.

    2013-05-13

    The effects of irradiation by X rays and protons on the dielectric and piezoelectric response of highly (100)-textured polycrystalline Pb(Zr{sub x}Ti{sub 1-x})O{sub 3} (PZT) thin films have been studied. Low-field dielectric permittivity, remanent polarization, and piezoelectric d{sub 33,f} response all degraded with exposure to radiation, for doses higher than 300 krad. At first approximation, the degradation increased at higher radiation doses, and was stronger in samples exposed to X rays, compared to the proton-irradiated ones. Nonlinear and high-field dielectric characterization suggest a radiation-induced reduction of the extrinsic contributions to the response, attributed to increased pinning of the domain walls by the radiation-induced point defects.

  18. Stable dielectric response of low-loss aromatic polythiourea thin films on Pt/SiO2 substrate

    NASA Astrophysics Data System (ADS)

    Eršte, A.; Fulanović, L.; Čoga, L.; Lin, M.; Thakur, Y.; Zhang, Q. M.; Bobnar, V.

    2016-03-01

    We have investigated dielectric properties of aromatic polythiourea (ArPTU, a polar polymer containing high dipolar moments with very low defect levels) thin films that were developed on Pt/SiO2 substrate. The detected response is compared to the response of commercially available polymers, such as high density polyethylene (HDPE) and polypropylene (PP), which are at present used in foil capacitors. Stable values of the dielectric constant ɛ‧≈5 (being twice higher than in HDPE and PP) over broad temperature and frequency ranges and dielectric losses as low as in commercial systems suggest ArPTU as a promising candidate for future use in a variety of applications.

  19. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics

    PubMed Central

    Hutchins, Daniel O.; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E.; Castner, David G.; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10−8 A cm−2 and capacitance density of 0.62 µF cm−2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V−1 s−1. PMID:24288423

  20. Atomic layer deposited tungsten nitride thin films as a new lithium-ion battery anode.

    PubMed

    Nandi, Dip K; Sen, Uttam K; Sinha, Soumyadeep; Dhara, Arpan; Mitra, Sagar; Sarkar, Shaibal K

    2015-07-14

    This article demonstrates the atomic layer deposition (ALD) of tungsten nitride using tungsten hexacarbonyl [W(CO)6] and ammonia [NH3] and its use as a lithium-ion battery anode. In situ quartz crystal microbalance (QCM), ellipsometry and X-ray reflectivity (XRR) measurements are carried out to confirm the self-limiting behaviour of the deposition. A saturated growth rate of ca. 0.35 Å per ALD cycle is found within a narrow temperature window of 180-195 °C. In situ Fourier transform infrared (FTIR) vibrational spectroscopy is used to determine the reaction pathways of the surface bound species after each ALD half cycle. The elemental presence and chemical composition is determined by XPS. The as-deposited material is found to be amorphous and crystallized to h-W2N upon annealing at an elevated temperature under an ammonia atmosphere. The as-deposited materials are found to be n-type, conducting with an average carrier concentration of ca. 10(20) at room temperature. Electrochemical studies of the as-deposited films open up the possibility of this material to be used as an anode material in Li-ion batteries. The incorporation of MWCNTs as a scaffold layer further enhances the electrochemical storage capacity of the ALD grown tungsten nitride (WNx). Ex situ XRD analysis confirms the conversion based reaction mechanism of the as-grown material with Li under operation. PMID:26076771

  1. Recombination and thin film properties of silicon nitride and amorphous silicon passivated c-Si following ammonia plasma exposure

    SciTech Connect

    Wan, Yimao; Thomson, Andrew F.; Cuevas, Andres; McIntosh, Keith R.

    2015-01-26

    Recombination at silicon nitride (SiN{sub x}) and amorphous silicon (a-Si) passivated crystalline silicon (c-Si) surfaces is shown to increase significantly following an ammonia (NH{sub 3}) plasma exposure at room temperature. The effect of plasma exposure on chemical structure, refractive index, permittivity, and electronic properties of the thin films is also investigated. It is found that the NH{sub 3} plasma exposure causes (i) an increase in the density of Si≡N{sub 3} groups in both SiN{sub x} and a-Si films, (ii) a reduction in refractive index and permittivity, (iii) an increase in the density of defects at the SiN{sub x}/c-Si interface, and (iv) a reduction in the density of positive charge in SiN{sub x}. The changes in recombination and thin film properties are likely due to an insertion of N–H radicals into the bulk of SiN{sub x} or a-Si. It is therefore important for device performance to minimize NH{sub 3} plasma exposure of SiN{sub x} or a-Si passivating films during subsequent fabrication steps.

  2. The local structure, infrared phonon modes and the origin of the dielectric constant in La2Hf2O7 thin film

    NASA Astrophysics Data System (ADS)

    Qi, Zeming; Cheng, Xuerui; Zhang, Guobin; Li, Tingting; Wang, Yuyin; Shao, Tao; Li, Chengxiang; He, Bo

    2012-03-01

    The local structure and dielectric properties of crystalline and amorphous La2Hf2O7 (LHO) thin film were studied by X-ray absorption spectroscopy and infrared spectroscopy. The basic infrared phonon modes with most contributions to the static dielectric constant of crystal LHO are preserved, which causes the considerable value of the static dielectric constant in the amorphous thin film. The preservation of the main infrared phonon modes in the amorphous thin film is because it has similar the nearest local structures around Hf and La atoms as the crystal LHO. This inheritance of the local structural and vibrational features of the crystal phase is the origin of the dielectric constant of the LHO thin film.

  3. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic

    NASA Astrophysics Data System (ADS)

    Cho, Jeong Ho; Lee, Jiyoul; Xia, Yu; Kim, Bongsoo; He, Yiyong; Renn, Michael J.; Lodge, Timothy P.; Daniel Frisbie, C.

    2008-11-01

    An important strategy for realizing flexible electronics is to use solution-processable materials that can be directly printed and integrated into high-performance electronic components on plastic. Although examples of functional inks based on metallic, semiconducting and insulating materials have been developed, enhanced printability and performance is still a challenge. Printable high-capacitance dielectrics that serve as gate insulators in organic thin-film transistors are a particular priority. Solid polymer electrolytes (a salt dissolved in a polymer matrix) have been investigated for this purpose, but they suffer from slow polarization response, limiting transistor speed to less than 100Hz. Here, we demonstrate that an emerging class of polymer electrolytes known as ion gels can serve as printable, high-capacitance gate insulators in organic thin-film transistors. The specific capacitance exceeds that of conventional ceramic or polymeric gate dielectrics, enabling transistor operation at low voltages with kilohertz switching frequencies.

  4. Investigations on laser printing of microcapacitors using poly (methyl methacrylate) dielectric thin films for organic electronics applications

    NASA Astrophysics Data System (ADS)

    Constantinescu, Catalin; Rapp, Ludovic; Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-06-01

    Thin solid pixels made of Ag/PMMA stacks have been fabricated by laser-induced forward transfer (LIFT), to be tested as thin film microcapacitors in organic electronics applications. The square-shaped laser-printed pixels have a lateral size of ∼350 μm, and the thickness of the dielectric film was varied between 100 and 1500 nm. The pixels were deposited on electrode structures made by LIFT printing of silver nanoparticles ink and paste. Optimal printing conditions led to the fabrication of microcapacitors with typical capacitance in the pF range, tuned by changing the properties of the multilayered structure (e.g. pixel size and/or thickness of the dielectric). Their stability was also investigated over time. We discuss on the morphological and electrical properties of such laser-printed structures, with respect to the impact resistance of the polymer and its suitability for the LIFT process.

  5. Effects of annealing conditions on the dielectric properties of solution-processed Al2O3 layers for indium-zinc-tin-oxide thin-film transistors.

    PubMed

    Kim, Yong-Hoon; Kim, Kwang-Ho; Park, Sung Kyu

    2013-11-01

    In this paper, the effects of annealing conditions on the dielectric properties of solution-processed aluminum oxide (Al2O3) layers for indium-zinc-tin-oxide (IZTO) thin-film transistors (TFTs) have been investigated. The dielectric properties of Al2O3 layers such as leakage current density and dielectric strength were largely affected by their annealing conditions. In particular, oxygen partial pressure in rapid thermal annealing, and the temperature profile of hot plate annealing had profound effects on the dielectric properties. From a refractive index analysis, the enhanced dielectric properties of Al2O3 gate dielectrics can be attributed to higher film density depending on the annealing conditions. With the low-temperature-annealed Al2O3 gate dielectric at 350 degrees C, solution-processed IZTO TFTs with a field-effect mobility of approximately 2.2 cm2/Vs were successfully fabricated. PMID:24245333

  6. Surface enhanced Raman scattering activity of TiN thin film prepared via nitridation of sol-gel derived TiO2 film

    NASA Astrophysics Data System (ADS)

    Dong, Zhanliang; Wei, Hengyong; Chen, Ying; Wang, Ruisheng; Zhao, Junhong; Lin, Jian; Bu, Jinglong; Wei, Yingna; Cui, Yi; Yu, Yun

    2015-10-01

    Surface-enhanced Raman scattering (SERS) is a powerful and non-destructive analytical technique tool for chemical and biological sensing applications. Metal-free SERS substrates have recently been developed by using semiconductor nanostructures. The optical property of TiN film is similar to that of gold. Besides that, its good chemical inertness and thermodynamic stability make TiN thin film an excellent candidate for SERS. In order to investigate its SERS activity, the TiN thin film was successfully prepared via direct nitridation of the sol-gel derived TiO2 thin film on the quartz substrate using ammonia gas as reducing agent. The crystallite structures and morphology of TiN thin film were determined by XRD, RAMAN and FE-SEM. The results show that the thin film obtained is cubic titanium nitride with a lattice parameter of 4.2349 Å. The surface of TiN thin film is rough and with the particles of 50 nm in average sizes. The thickness of TiN thin film is about 130 nm. The TiN thin film displays a surface Plasmon resonance absorption peak at around 476 nm, which can lead to a strong enhancement of the EM field on the interface. The Raman signal of the probe molecule R6G was greatly enhanced through TiN thin film substrates. The enhancement factor is about 4.1×103 and the detection limit achieves 10-6 M for R6G. The TiN thin film substrate also shows a good reproducibility of SERS performance. The results indicate that TiN thin film is an attractive material with potential application in SERS substrates.

  7. Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films

    SciTech Connect

    Glavin, Nicholas R. E-mail: andrey.voevodin@us.af.mil; Muratore, Christopher; Jespersen, Michael L.; Hu, Jianjun; Fisher, Timothy S.; Voevodin, Andrey A. E-mail: andrey.voevodin@us.af.mil

    2015-04-28

    Physical vapor deposition (PVD) has recently been investigated as a viable, alternative growth technique for two-dimensional materials with multiple benefits over other vapor deposition synthesis methods. The high kinetic energies and chemical reactivities of the condensing species formed from PVD processes can facilitate growth over large areas and at reduced substrate temperatures. In this study, chemistry, kinetic energies, time of flight data, and spatial distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated. Time resolved spectroscopy and wavelength specific imaging were used to identify and track atomic neutral and ionized species including B{sup +}, B*, N{sup +}, N*, and molecular species including N{sub 2}*, N{sub 2}{sup +}, and BN. Formation and decay of these species formed both from ablation of the target and from interactions with the background gas were investigated and provided insights into fundamental growth mechanisms of continuous, amorphous boron nitride thin films. The correlation of the plasma diagnostic results with film chemical composition and thickness uniformity studies helped to identify that a predominant mechanism for BN film formation is condensation surface recombination of boron ions and neutral atomic nitrogen species. These species arrive nearly simultaneously to the substrate location, and BN formation occurs microseconds before arrival of majority of N{sup +} ions generated by plume collisions with background molecular nitrogen. The energetic nature and extended dwelling time of incident N{sup +} ions at the substrate location was found to negatively impact resulting BN film stoichiometry and thickness. Growth of stoichiometric films was optimized at enriched concentrations of ionized boron and neutral atomic nitrogen in plasma near the condensation surface, providing few nanometer thick films with 1:1 BN stoichiometry and good

  8. Green processing of metal oxide core-shell nanoparticles as low-temperature dielectrics in organic thin-film transistors.

    PubMed

    Portilla, Luis; Etschel, Sebastian H; Tykwinski, Rik R; Halik, Marcus

    2015-10-21

    TiO2 , Fe3 O4, AlOx , ITO (indium tin oxide), and CeO2 nanoparticles are tailored to exhibit excellent dispersability in deionized water and alcohols. The latter provides an ecofriendly solution for processing metal oxide nanoparticles at a neutral pH. Water-processed dielectrics from the metal oxide nanoparticles are incorporated into organic thin-film transistors fabricated on rigid and flexible substrates. PMID:26308740

  9. Green processing of metal oxide core-shell nanoparticles as low-temperature dielectrics in organic thin-film transistors.

    PubMed

    Portilla, Luis; Etschel, Sebastian H; Tykwinski, Rik R; Halik, Marcus

    2015-10-21

    TiO2 , Fe3 O4, AlOx , ITO (indium tin oxide), and CeO2 nanoparticles are tailored to exhibit excellent dispersability in deionized water and alcohols. The latter provides an ecofriendly solution for processing metal oxide nanoparticles at a neutral pH. Water-processed dielectrics from the metal oxide nanoparticles are incorporated into organic thin-film transistors fabricated on rigid and flexible substrates.

  10. Study of Organic Thin Film Transistors on Ultraviolet-Curable Dielectrics with Periodic Patterns Fabricated by Nano Imprint Technology

    NASA Astrophysics Data System (ADS)

    Chen, Henry J. H.; Chen, Jun-Yu

    2013-06-01

    In this work, the organic thin film transistors (OTFTs) on UV-curable dielectrics with periodic patterns fabricated by nano imprint technology were investigated. The surface morphologies of pentacene and device performances with respect to line/space ratio of periodic patterns were studied. The anisotropic electrical characteristics of OTFTs were also investigated. This technique will be suitable for the future low-cost and flexible electronics applications.

  11. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    PubMed

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications. PMID:26039187

  12. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Xu, Runshen

    Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors

  13. Electrodeposition of titania and barium titanate thin films for high dielectric applications

    NASA Astrophysics Data System (ADS)

    Roy, Biplab Kumar

    In order to address the requirement of a low-temperature low-cost cost processing for depositing high dielectric constant ceramic films for applications in embedded capacitor and flexible electronics technology, two different chemical bath processes, namely, thermohydrolytic deposition (TD) and cathodic electrodeposition (ED) have been exploited to generate titania thin films. In thermohydrolytic deposition technique, titania films were generated from acidic aqueous solution of titanium chloride on F: SnO2 coated glass and Si substrates by temperature assisted hydrolysis mechanism. On the other hand, in cathodic electrodeposition, in-situ electro-generation of hydroxyl ions triggered a fast deposition of titania on conductive substrates such as copper and F: SnO2 coated glass from peroxotitanium solution at low temperatures (˜0°C). In both techniques, solution compositions affected the morphology and crystallinity of the films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques have been employed to perform such characterization. As both processes utilized water as solvent, the as-deposited films contained hydroxyl ligand or physically adsorbed water molecules in the titania layer. Besides that, electrodeposited films contained peroxotitanium bonds which were characterized by FTIR studies. Although as-electrodeposited titania films were X-ray amorphous, considerable crystallinity could be generated by heat treatment. The films obtained from both the processes showed v moderately high dielectric constant (ranging from 9-30 at 100 kHz) and high breakdown voltage (0.09-0.15 MV/cm) in electrical measurements. To further improve the dielectric constant, electrodeposited titania films were converted to barium titanate films in high pH barium ion containing solution at 80-90°C. The resultant film contained cubic crystalline barium titanate verified by XRD analysis. Simple low-temperature hydrothermal technique of conversion worked

  14. Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs.

    PubMed

    Branquinho, Rita; Salgueiro, Daniela; Santos, Lídia; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2014-11-26

    Solution processing has been recently considered as an option when trying to reduce the costs associated with deposition under vacuum. In this context, most of the research efforts have been centered in the development of the semiconductors processes nevertheless the development of the most suitable dielectrics for oxide based transistors is as relevant as the semiconductor layer itself. In this work we explore the solution combustion synthesis and report on a completely new and green route for the preparation of amorphous aluminum oxide thin films; introducing water as solvent. Optimized dielectric layers were obtained for a water based precursor solution with 0.1 M concentration and demonstrated high capacitance, 625 nF cm(-2) at 10 kHz, and a permittivity of 7.1. These thin films were successfully applied as gate dielectric in solution processed gallium-zinc-tin oxide (GZTO) thin film transistors (TFTs) yielding good electrical performance such as subthreshold slope of about 0.3 V dec(-1) and mobility above 1.3 cm2 V(-1) s(-1). PMID:25354332

  15. Factors affecting an efficient sealing of porous low-k dielectrics by physical vapor deposition Ta(N) thin films

    NASA Astrophysics Data System (ADS)

    Iacopi, F.; Tokei, Zs.; Le, Q. T.; Shamiryan, D.; Conard, T.; Brijs, B.; Kreissig, U.; Van Hove, M.; Maex, K.

    2002-08-01

    The deposition of homogeneous thin films on porous substrates has been investigated. The thin film deposition of Ta(N) by physical vapor deposition on porous films with different average pore sizes and material compositions has been studied. The continuity of Ta(N) films on top of porous low-k dielectrics is evaluated by means of ellipsometric porosimetry combined with sheet resistance and atomic force microscopy measurements. Interface reactions are analyzed by x-ray photoelectron spectroscopy profiling. It has been observed that the minimal Ta(N) thickness required to obtain a continuous metal layer on top of the porous film depends, on the one hand, on the porosity and pore size and, on the other hand, on the chemical interaction of the thin film with the porous substrate. The sealing of pores is favored by the presence of carbon in the dielectric matrix. This is explained through a mechanism of local enhancement of the degree of crosslinking in the dielectric matrix, catalyzed by Ta.

  16. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric

    NASA Astrophysics Data System (ADS)

    Liu, Ao; Liu, Guoxia; Zhu, Huihui; Shin, Byoungchul; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2016-06-01

    Solution-processed p-type oxide semiconductors have recently attracted increasing interests for the applications in low-cost optoelectronic devices and low-power consumption complementary metal-oxide-semiconductor circuits. In this work, p-type nickel oxide (NiOx) thin films were prepared using low-temperature solution process and integrated as the channel layer in thin-film transistors (TFTs). The electrical properties of NiOx TFTs, together with the characteristics of NiOx thin films, were systematically investigated as a function of annealing temperature. By introducing aqueous high-k aluminum oxide (Al2O3) gate dielectric, the electrical performance of NiOx TFT was improved significantly compared with those based on SiO2 dielectric. Particularly, the hole mobility was found to be 60 times enhancement, quantitatively from 0.07 to 4.4 cm2/V s, which is mainly beneficial from the high areal capacitance of the Al2O3 dielectric and high-quality NiOx/Al2O3 interface. This simple solution-based method for producing p-type oxide TFTs is promising for next-generation oxide-based electronic applications.

  17. Ordered growth of topological insulator Bi2Se3 thin films on dielectric amorphous SiO2 by MBE.

    PubMed

    Jerng, Sahng-Kyoon; Joo, Kisu; Kim, Youngwook; Yoon, Sang-Moon; Lee, Jae Hong; Kim, Miyoung; Kim, Jun Sung; Yoon, Euijoon; Chun, Seung-Hyun; Kim, Yong Seung

    2013-11-01

    Topological insulators (TIs) are exotic materials which have topologically protected states on the surface due to strong spin-orbit coupling. However, a lack of ordered growth of TI thin films on amorphous dielectrics and/or insulators presents a challenge for applications of TI-junctions. We report the growth of topological insulator Bi2Se3 thin films on amorphous SiO2 by molecular beam epitaxy (MBE). To achieve the ordered growth of Bi2Se3 on an amorphous surface, the formation of other phases at the interface is suppressed by Se passivation. Structural characterizations reveal that Bi2Se3 films are grown along the [001] direction with a good periodicity by the van der Waals epitaxy mechanism. A weak anti-localization effect of Bi2Se3 films grown on amorphous SiO2 shows a modulated electrical property by the gating response. Our approach for ordered growth of Bi2Se3 on an amorphous dielectric surface presents considerable advantages for TI-junctions with amorphous insulator or dielectric thin films.

  18. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  19. Dielectric dispersion of BaSrTiO3 thin film from centimeter to submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Houzet, Gregory; Blary, Karine; Lepilliet, Sylvie; Lippens, Didier; Burgnies, Ludovic; Vélu, Gabriel; Carru, Jean-Claude; Nguéma, Edwin; Mounaix, Patrick

    2011-01-01

    The dielectric dispersion of ferroelectric BaxSr1-xTiO3 (BST) thin film in a paraelectric phase was characterized from centimeter to submillimeter wavelengths. To this aim, interdigitated capacitors were patterned on a micrometer scale onto a BST layer with a barium concentration of 0.5 and were subsequently integrated by using a coplanar waveguide technology. The retrieval of the complex permittivity of BST was performed by vectorial scattering parameter measurements up to 190 GHz for various controlling dc field up to 300 kV/cm. At higher frequency, submillimeter wavelength measurements were performed by time domain spectroscopy under free space condition. On this basis, the dispersion of the real part of the permittivity along with the loss tangent are retrieved in agreement with a distributed interaction of ac-field with soft phonons vibration modes, and overlapping between dipole polarization and ionic polarization is observed, around 700 GHz. It is also shown that dipole polarization can be attributed to the presence of small polar nanoregions in the BST film which act as in ferroelectric material with diffuse phase transition.

  20. Cancer cells (MCF-7, Colo-357, and LNCaP) viability on amorphous hydrogenated carbon nitride film deposited by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Majumdar, Abhijit; Ummanni, Ramesh; Schröder, Karsten; Walther, Reinhard; Hippler, Rainer

    2009-08-01

    Atmospheric pressure dielectric barrier discharge plasma in CH4/N2 (1:1) gas mixture has been employed to deposit amorphous hydrogenated carbon nitride (aH-CNx) film. In vitro studies with three different cancer cell lines were carried out on the coated surfaces. Preliminary biocompatibility and effect of CH4/N2 films have been investigated by measuring cell proliferation. Three different cancer cell (MCF-7, Colo-357, and LNCaP) suspensions have been exposed on the surface of aH-CNx film to investigate the effect of deposited films on viability of cells. Results from the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium, inner salt) proliferation assays indicated that the deposited aH-CNx film is cytotoxic to cancer cell lines. Time course cell viability assay indicated maximum cell death at 24 h after seeding the cells. This effect is dependant on physicochemical and mechanical properties of the deposited films. The deposited film has been characterized by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results confirm the presence of C-N, C≡N, C-Hx, C-O, N-O, overlapping NH, and OH bonds in the film.

  1. Mechanical property changes in porous low-k dielectric thin films during processing

    NASA Astrophysics Data System (ADS)

    Stan, G.; Gates, R. S.; Kavuri, P.; Torres, J.; Michalak, D.; Ege, C.; Bielefeld, J.; King, S. W.

    2014-10-01

    The design of future generations of Cu-low-k dielectric interconnects with reduced electronic crosstalk often requires engineering materials with an optimal trade off between their dielectric constant and elastic modulus. This is because the benefits associated with the reduction of the dielectric constant by increasing the porosity of materials, for example, can adversely affect their mechanical integrity during processing. By using load-dependent contact-resonance atomic force microscopy, the changes in the elastic modulus of low-k dielectric materials due to processing were accurately measured. These changes were linked to alterations sustained by the structure of low-k dielectric films during processing. A two-phase model was used for quantitative assessments of the elastic modulus changes undergone by the organosilicate skeleton of the structure of porous and pore-filled dielectrics.

  2. Mechanical property changes in porous low-k dielectric thin films during processing

    SciTech Connect

    Stan, G. Gates, R. S.; Kavuri, P.; Torres, J.; Michalak, D.; Ege, C.; Bielefeld, J.; King, S. W.

    2014-10-13

    The design of future generations of Cu-low-k dielectric interconnects with reduced electronic crosstalk often requires engineering materials with an optimal trade off between their dielectric constant and elastic modulus. This is because the benefits associated with the reduction of the dielectric constant by increasing the porosity of materials, for example, can adversely affect their mechanical integrity during processing. By using load-dependent contact-resonance atomic force microscopy, the changes in the elastic modulus of low-k dielectric materials due to processing were accurately measured. These changes were linked to alterations sustained by the structure of low-k dielectric films during processing. A two-phase model was used for quantitative assessments of the elastic modulus changes undergone by the organosilicate skeleton of the structure of porous and pore-filled dielectrics.

  3. Maximizing the dielectric response of molecular thin films via quantum chemical design.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2014-12-23

    Developing high-capacitance organic gate dielectrics is critical for advances in electronic circuitry based on unconventional semiconductors. While high-dielectric constant molecular substances are known, the mechanism of dielectric response and the fundamental chemical design principles are not well understood. Using a plane-wave density functional theory formalism, we show that it is possible to map the atomic-scale dielectric profiles of molecule-based materials while capturing important bulk characteristics. For molecular films, this approach reveals how basic materials properties such as surface coverage density, molecular tilt angle, and π-system planarity can dramatically influence dielectric response. Additionally, relatively modest molecular backbone and substituent variations can be employed to substantially enhance film dielectric response. For dense surface coverages and proper molecular alignment, conjugated hydrocarbon chains can achieve dielectric constants of >8.0, more than 3 times that of analogous saturated chains, ∼2.5. However, this conjugation-related dielectric enhancement depends on proper molecular orientation and planarization, with enhancements up to 60% for proper molecular alignment with the applied field and an additional 30% for conformations such as coplanarity in extended π-systems. Conjugation length is not the only determinant of dielectric response, and appended polarizable high-Z substituents can increase molecular film response more than 2-fold, affording estimated capacitances of >9.0 μF/cm2. However, in large π-systems, polar substituent effects are substantially attenuated.

  4. Room-temperature magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films

    NASA Astrophysics Data System (ADS)

    Garg, T.; Kulkarni, A. R.; Venkataramani, N.

    2016-08-01

    The magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films prepared on a glass substrate using RF magnetron sputtering has been investigated in this work. PMN-PT thin films (i.e. PMN-PT/LCMO/Pt/Ti/glass) deposited on glass were used as a substrate for deposition of ZnFe2O4 thin films. ZnFe2O4 thin films were annealed ex situ at different temperatures. Structural, magnetic, ferroelectric, dielectric and magneto-dielectric studies were carried out on these multiferroic bilayer thin films. Structural studies revealed the presence of each layer in its respective single phase. Magnetic and ferroelectric studies revealed the ferromagnetic and ferroelectric behaviors of these bilayers. To quantify the magnetoelectric coupling, the dielectric constant of the bilayer was measured at room temperature as a function of frequency with and without the applied magnetic field. The magneto-dielectric response MD(%) was calculated by finding the relative change in dielectric constant at 1 kHz as a percentage. The observed MD response was correlated with magnetization of the ferrite layer. An MD response of 2.60% was found for a bilayer film annealed at 350 °C. At this particular annealing temperature, the ZnFe2O4 layer also has the highest saturation magnetization of 1900 G.

  5. Sub-picowatt resolution calorimetry with niobium nitride thin-film thermometer

    SciTech Connect

    Dechaumphai, Edward; Chen, Renkun

    2014-09-15

    High-resolution calorimetry has many important applications such as probing nanoscale thermal transport and studying the thermodynamics of biological and chemical systems. In this work, we demonstrated a calorimeter with an unprecedentedly high resolution at room temperature using a high-performance resistive thermometry material, niobium nitride (NbN{sub x}). Based on a theoretical analysis, we first showed that the heat flux resolution of a resistive-thermometry based calorimeter depends on the parasitic thermal conductance of the device and the temperature coefficient of resistance (TCR) of the thermometer, when the noise is limited by the Johnson noise. Based on this analysis, we then developed a calorimeter using NbN{sub x} as the thermometry material because it possesses both high TCR (∼0.67%/K) and a low thermal conductivity (k ∼ 1.1 W/m K). This calorimeter, when used with the modulated heating scheme, demonstrated an unprecedentedly high power resolution of 0.26 pW at room temperature. In addition, NbN{sub x} based resistive thermometry can also be extended to cryogenic temperature, where the TCR is shown to be significantly higher.

  6. Ultra-thin superconducting film coated silicon nitride nanowire resonators for low-temperature applications

    NASA Astrophysics Data System (ADS)

    Sebastian, Abhilash; Zhelev, Nikolay; de Alba, Roberto; Parpia, Jeevak

    We demonstrate fabrication of high stress silicon nitride nanowire resonators with a thickness and width of less than 50 nm intended to be used as probes for the study of superfluid 3He. The resonators are fabricated as doubly-clamped wires/beams using a combination of electron-beam lithography and wet/dry etching techniques. We demonstrate the ability to suspend (over a trench of depth ~8 µm) wires with a cross section as small as 30 nm, covered with a 20 nm superconducting film, and having lengths up to 50 µm. Room temperature resonance measurements were carried out by driving the devices using a piezo stage and detecting the motion using an optical interferometer. The results show that metalizing nano-mechanical resonators not only affects their resonant frequencies but significantly reduce their quality factor (Q). The devices are parametrically pumped by modulating the system at twice its fundamental resonant frequency, which results in observed amplification of the signal. The wires show self-oscillation with increasing modulation strength. The fabricated nanowire resonators are intended to be immersed in the superfluid 3He. By tracking the resonant frequency and the Q of the various modes of the wire versus temperature, we aim to probe the superfluid gap structure.

  7. Electron-irradiation damage in chromium nitrides and chromium oxynitride thin films.

    PubMed

    Mitterbauer, Christoph; Grogger, Werner; Wilhartitz, Peter; Hofer, Ferdinand

    2006-01-01

    The aim of this work is to monitor changes of the N-K electron energy-loss near-edge structure (ELNES) of chromium nitride layers (CrN) introduced by electron irradiation in a transmission electron microscope (TEM). These changes are different for each sample material and seem to give an indication for a particular composition. The CrN samples (CrN and Cr(0.47)N(0.53)) were prepared on silicon wafers by reactive magnetron sputtering of a metallic chromium target in nitrogen plasma. In addition, a CrON sample (Cr(0.5)O(0.2)N(0.3)) was also investigated. This sample was prepared by the addition of oxygen to the plasma during film deposition. The ELNES of the N-K ionization edge of stoichiometric CrN shows a typical fine structure (peaks at 399.0 and 401.1 eV) and remains nearly unaffected even after high-current-density irradiation. On the other hand the N-K fine structures of Cr(0.47)N(0.53) and Cr(0.5)O(0.2)N(0.3) show a change of the ELNES with irradiation dose. This presumably arises from a 1s-pi*-transition of molecular nitrogen located at interstitial positions in these samples. PMID:16554164

  8. Thin film deposition at atmospheric pressure using dielectric barrier discharges: Advances on three-dimensional porous substrates and functional coatings

    NASA Astrophysics Data System (ADS)

    Fanelli, Fiorenza; Bosso, Piera; Mastrangelo, Anna Maria; Fracassi, Francesco

    2016-07-01

    Surface processing of materials by atmospheric pressure dielectric barrier discharges (DBDs) has experienced significant growth in recent years. Considerable research efforts have been directed for instance to develop a large variety of processes which exploit different DBD electrode geometries for the direct and remote deposition of thin films from precursors in gas, vapor and aerosol form. This article briefly reviews our recent progress in thin film deposition by DBDs with particular focus on process optimization. The following examples are provided: (i) the plasma-enhanced chemical vapor deposition of thin films on an open-cell foam accomplished by igniting the DBD throughout the entire three-dimensional (3D) porous structure of the substrate, (ii) the preparation of hybrid organic/inorganic nanocomposite coatings using an aerosol-assisted process, (iii) the DBD jet deposition of coatings containing carboxylic acid groups and the improvement of their chemical and morphological stability upon immersion in water.

  9. Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate

    NASA Astrophysics Data System (ADS)

    Kurniawan, Robi; Sutjahja, Inge M.; Winata, Toto; Rusydi, Andrivo; Darma, Yudi

    2015-09-01

    A set of sample consist of pure ZnO and Cu-doped ZnO film were grown on fused-quartz substrates using pulsed laser deposition (PLD) technique. Here, we report room temperature spectroscopic ellipsometry analysis (covering energy range of 0.5 to 6.3 eV) of pure ZnO film and Cu doped ZnO film at 8 in at. %. The thickness of pure ZnO and Cu-doped ZnO film using in this study is about 350 nm. To extract the dielectric function of ZnO thin film, multilayer modeling is performed which takes into account reflections at each interface through Fresnel coefficients. This method based on Drude-Lorentz models that connect with Kramers-Kronig relations. The best fitting of Ψ (amplitude ratio) and Δ (phase difference) taken by SE measurement are obtained reasonably well by mean the universal fitting of three different photon incident angles. The imaginary part of dielectric function (ɛ2) show the broad peak at around 3.3 eV assigned as combination of optical band energy edge with excitonic states. The exitonic states could not be observed clearly in this stage. The evolution of extracted dielectric function is observable by introducing 8% Cu as indicated by decreasing of excitonic intensity. This result indicates the screening of excitonic state. This study will bring us to have a good undestanding for the role of Cu impurities for ZnO thin films.

  10. In-situ monitoring of the dielectric and electrostrictive properties of anodised thin films for biochip applications.

    PubMed

    Vanhumbeeck, J-F; Proost, J

    2007-04-15

    Further improving the performance of capacitance-based DNA microsensors will depend on the ability to synthesize simply, at a low cost, thin films of high dielectric permittivity with a well-controlled growth morphology. Anodisation of the valve metals Ti, Zr and Ta is a promising route for preparing such films. In this paper, we propose a new method for following the evolution of the dielectric properties of such anodised metallic oxide thin films in-situ during their growth. The technique relies on measuring the evolution of the electrostatic stress developing in the film. Measurements have been carried out on anodic TiO(2) films grown galvanostatically in HNO(3) at 1 and 3 mA/cm(2) and in H(3)PO(4) at 0.5 mA/cm(2). The dielectric permittivity of the films was observed to decrease during the initial stage of anodisation, characterised by a steady increase of the cell voltage with time. The permittivity then reached a constant value when the oxide entered a second growth regime, characterised by a stabilisation of the cell voltage. The origin of the observed permittivity evolution is interpreted in terms of the evolution of the growth morphology of the films during anodisation. PMID:17142021

  11. 7-Octenyltrichrolosilane/trimethyaluminum hybrid dielectrics fabricated by molecular-atomic layer deposition on ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lee, Mingun; Lucero, Antonio T.; Cheng, Lanxia; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    We demonstrate the fabrication of 7-octenytrichlorosilane (7-OTS)/trimethylaluminum (TMA) organic-inorganic hybrid films using molecular-atomic layer deposition (MALD). The properties of 7-OTS/TMA hybrid films are extensively investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and electrical measurements. Our results suggest that uniform and smooth amorphous hybrid thin films with excellent insulating properties are obtained using the MALD process. Films have a relatively high dielectric constant of approximately 5.0 and low leakage current density. We fabricate zinc oxide (ZnO) based thin film transistors (TFTs) using 7-OTS/TMA hybrid material as a back gate dielectric with the top ZnO channel layer deposited in-situ via MALD. The ZnO TFTs exhibit a field effect mobility of approximately 0.43 cm2 V-1 s-1, a threshold voltage of approximately 1 V, and an on/off ratio of approximately 103 under low voltage operation (from -3 to 9 V). This work demonstrates an organic-inorganic hybrid gate dielectric material potentially useful in flexible electronics application.

  12. Optical, Dielectric Characterization and Impedance Spectroscopy of Ni-Substituted MgTiO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Gogoi, Pallabi; Srinivas, P.; Sharma, Pramod; Pamu, D.

    2016-02-01

    We report the effects of oxygen mixing percentage (OMP) and annealing temperature on surface morphology, optical, dielectric and electrical properties of (Mg0.95Ni0.05)TiO3 (MNT) thin films deposited onto amorphous SiO2 and platinized silicon (Pt/TiO2/SiO2/Si) substrates by radio frequency (RF) magnetron sputtering. The annealed films exhibited the highest refractive index, 2.05, at 600 nm with an optical bandgap value of 4.33 eV. The metal-insulator-metal (MIM) capacitors of the MNT thin films were fabricated under different OMPs and the dielectric properties were analyzed by using Maxwell-Wagner two-layer theory and Koop's phenomenological theory. MNT films prepared under 50% OMP displayed the highest dielectric constant (11.21) and minimum loss tangent (0.0114) at 1 MHz. The impedance spectroscopy of the films deposited under 50% OMP has been studied. The Nyquist plots of MNT films revealed two semi-circular arcs and is explained on the basis of an equivalent circuit model. The frequency-dependent alternative current (AC) conductivity followed the Jonscher's power law. The activation energies are calculated using the Arrhenius relationship. The hopping frequency of the charged species was calculated, and the correlation between AC and direct current (DC) conduction mechanisms established in accordance with the Barton-Nakajima-Namikawa (BNN) relationship.

  13. Effect of thin gate dielectrics and gate materials on simulated device characteristics of 3D double gate JNT

    NASA Astrophysics Data System (ADS)

    Baidya, A.; Krishnan, V.; Baishya, S.; Lenka, T. R.

    2015-01-01

    In this paper a novel Silicon based three dimensional (3D) double-gate Junctionless Nanowire Transistor (JNT) of 20 nm gate length is proposed. The device characteristics such as gate characteristics and drain characteristics are studied with the help of Sentaurus TCAD by using different gate materials such as Al, Ti, n+ Polysilicon, Au and using different ultra thin gate dielectrics such as SiO2, Si3N4 and HfO2. The effect of various work functions and dielectrics on the threshold voltage of the JNT is also analysed. From the TCAD simulation results it is observed that high-K material (HfO2) as gate dielectric shows better drain characteristics with respect to others. The JNT with Al as gate material gives better current characteristics with respect to others. It is also analysed that under flat-band condition the driving of drain current does not directly depend on the gate-oxide capacitance but depends upon the channel doping concentrations. Thus by choosing the proper gate material and gate dielectric combinations, the desired device characteristics could be obtained for JNT.

  14. Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics

    NASA Astrophysics Data System (ADS)

    Frigerio, Jacopo; Ballabio, Andrea; Isella, Giovanni; Sakat, Emilie; Pellegrini, Giovanni; Biagioni, Paolo; Bollani, Monica; Napolitani, Enrico; Manganelli, Costanza; Virgilio, Michele; Grupp, Alexander; Fischer, Marco P.; Brida, Daniele; Gallacher, Kevin; Paul, Douglas J.; Baldassarre, Leonetta; Calvani, Paolo; Giliberti, Valeria; Nucara, Alessandro; Ortolani, Michele

    2016-08-01

    Heavily doped semiconductor thin films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in the 5 to 50 μ m wavelength range at least. In this work, we investigate the electrodynamics of heavily n -type-doped germanium epilayers at infrared frequencies beyond the assumptions of the Drude model. The films are grown on silicon and germanium substrates, are in situ doped with phosphorous in the 1017 to 1019 cm-3 range, then screened plasma frequencies in the 100 to 1200 cm-1 range were observed. We employ infrared spectroscopy, pump-probe spectroscopy, and dc transport measurements to determine the tunability of the plasma frequency. Although no plasmonic structures have been realized in this work, we derive estimates of the decay time of mid-infrared plasmons and of their figures of merit for field confinement and for surface plasmon propagation. The average electron scattering rate increases almost linearly with excitation frequency, in agreement with quantum calculations based on a model of the ellipsoidal Fermi surface at the conduction band minimum of germanium accounting for electron scattering with optical phonons and charged impurities. Instead, we found weak dependence of plasmon losses on neutral impurity density. In films where a transient plasma was generated by optical pumping, we found significant dependence of the energy relaxation times in the few-picosecond range on the static doping level of the film, confirming the key but indirect role played by charged impurities in energy relaxation. Our results indicate that underdamped mid-infrared plasma oscillations are attained in n -type-doped germanium at room temperature.

  15. Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Non-brittle dielectric films are formed by blending a cyanoresin such as cyanoethyl, hydroxyethyl cellulose (CRE) with a compatible, more crystalline resin such as cellulose triacetate. The electrical breakdown strength of the blend is increased by orienting the films by uniaxial or biaxial stretching. Blends of high molecular weight CRE with high molecular weight cyanoethyl cellulose (CRC) provide films with high dielectric constants.

  16. Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Lewis, Carol R. (Inventor); Cygan, Peter J. (Inventor); Jow, T. Richard (Inventor)

    1996-01-01

    Non brittle dielectric films are formed by blending a cyanoresin such as cyanoethyl, hydroxyethyl cellulose (CRE) with a compatible, more crystalline resin such as cellulose triacetate. The electrical breakdown strength of the blend is increased by orienting the films by uniaxial or biaxial stretching. Blends of high molecular weight CRE with high molecular weight cyanoethyl cellulose (CRC) provide films with high dielectric constants.

  17. Manipulation of Surface Plasmon Resonance in Metal and Alloy Thin Films Using Dielectric Media

    NASA Astrophysics Data System (ADS)

    Hall, Benjamin DuBray

    Surface plasmon polaritons are coherent electron oscillations that propagate along an interface between a Drude metal and a dielectric medium. The excitation of polaritons is highly dependent on the dielectric properties of the metal, the thickness of the metal, and the optical properties of the dielectric material. First, plasmonic activity is assessed for several thicknesses of silver and nickel chromium under He-Ne incidence. Relationships between film thickness and metal dielectric function are explored in both cases. To manipulate the plasmonic activity at the silver surfaces, two methods are explored. Silver oxide was grown on the surface of the silver films, and the resulting reflection curves are compared to the curves of the metal silver film alone. Next, a polymer was added to the top of the silver films, and the reflection curves were compared. Poling of the polymer is also discussed and attempted as a means of dynamically modulating the reflection curves. A weak relationship between the dielectric function of silver and the plasmonic activity was found. No definite relationship between the dielectric function of nickel chromium and plasmonic activity was found. Both dielectric media studied were found to alter the plasmonic activity at the metal-dielectric interface.

  18. Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics.

    PubMed

    Alshammari, Fwzah H; Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-01

    We report ZnO TFTs using Al2O3/Ta2O5 bilayer gate dielectrics grown by atomic layer deposition. The saturation mobility of single layer Ta2O5 dielectric TFT was 0.1 cm(2) V(-1) s(-1), but increased to 13.3 cm(2) V(-1) s(-1) using Al2O3/Ta2O5 bilayer dielectric with significantly lower leakage current and hysteresis. We show that point defects present in ZnO film, particularly VZn, are the main reason for the poor TFT performance with single layer dielectric, although interfacial roughness scattering effects cannot be ruled out. Our approach combines the high dielectric constant of Ta2O5 and the excellent Al2O3/ZnO interface quality, resulting in improved device performance.

  19. Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics.

    PubMed

    Alshammari, Fwzah H; Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-01

    We report ZnO TFTs using Al2O3/Ta2O5 bilayer gate dielectrics grown by atomic layer deposition. The saturation mobility of single layer Ta2O5 dielectric TFT was 0.1 cm(2) V(-1) s(-1), but increased to 13.3 cm(2) V(-1) s(-1) using Al2O3/Ta2O5 bilayer dielectric with significantly lower leakage current and hysteresis. We show that point defects present in ZnO film, particularly VZn, are the main reason for the poor TFT performance with single layer dielectric, although interfacial roughness scattering effects cannot be ruled out. Our approach combines the high dielectric constant of Ta2O5 and the excellent Al2O3/ZnO interface quality, resulting in improved device performance. PMID:27553091

  20. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  1. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    PubMed

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices. PMID:26677773

  2. In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    NASA Technical Reports Server (NTRS)

    Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.

    1991-01-01

    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectrics having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writing capability, complex device structures like three terminal hybrid semiconductor/superconductor transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray deffraction, electron microscopy, and energy dispersive x-ray analysis are discussed.

  3. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    PubMed Central

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773

  4. Measurement of the sheet resistance of resistive films on thin substrates from 120 to 175 GHz using dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Collier, R. J.; Hasko, D. G.

    2002-02-01

    A method is reported for the measurement of the sheet resistance, at microwave frequencies, of conducting films supported on thin dielectric substrates. The sheet resistance is found from measurements of the millimeter-wave power transmission through the film using a millimeter-wave source and power meter coupled through dielectric waveguides. The accuracy of this technique does not depend on the precise placement of the waveguide terminations with respect to the substrate, in contrast to methods using metallic waveguides or coils. This method is used to characterize the sheet resistance of semiconductor samples in the frequency range 120-175 GHz and the results are compared to the dc values obtained by conventional techniques. Sheet resistance values can be easily measured by this method in the range from 1 to 1000 Ω.

  5. Dielectric properties of lead lanthanum zirconate titanate thin films with and without ZrO2 insertion layers

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan; Ma, Beihai; Narayanan, Manoj; Tong, Sheng; Koritala, Rachel E.; Hu, Zhongqiang; Balachandran, Uthamalingam

    2013-05-01

    The dielectric properties of lead lanthanum zirconate titanate (PLZT) thin films on platinized silicon (Pt/Si) with and without ZrO2 insertion layers were investigated in the temperature range from 20 °C to 300 °C. Permittivity, dielectric loss tangent, and tunability were reduced for the samples with ZrO2 insertion layers compared to those without the layers. Additionally, the permittivity was less dependent on frequency over the broad temperature range studied (20-300 °C). The leakage current behavior of the PLZT films with and without ZrO2 insertion layers was also investigated, and on the basis of those results, a probable conduction mechanism has been suggested. The improved electrical properties in the PLZT with ZrO2 layers are attributed to the ZrO2 layer blocking the mobile ionic defects and reducing free charge carriers to transport.

  6. Dielectric, optical and electric studies on nanocrystalline Ba5Nb4O15 thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anil Kumar, C.; Pamu, D.

    2015-06-01

    We report the fabrication of nanocrystalline Ag/BNO/Pt/Ti/SiO2/Si thin film capacitors by RF magnetron sputtering with different film thicknesses. The effect of Ba5Nb4O15 (BNO) thickness on structural, microstructural, electrical, optical and dielectric properties is investigated for the first time. BNO sputtering target prepared is by mechanochemical synthesis method to eliminate the subordinate phases. As deposited thin films were X-ray amorphous and crystallinity is induced after annealing at 700 °C. Upon annealing, refractive indices of the films enhanced whereas the bandgap is decreased and are in the range of 1.89-2.16 and 4.07-4.24, respectively. With an increase in thickness, the dielectric properties improved substantially, which is described by the representation of a dead layer connected in series with a bulk region of the BNO film. The extracted values of thickness and dielectric constant for the dead layer found to be 15.21 nm and 37.03, correspondingly. The activation energy of the mobile charge carriers obtained using the Arrhenius relation are found to be 0.254, 0.036 and 0.027 eV, for the films with 150, 250 and 450 nm, respectively. The leakage current density found to decrease with thickness and found to be 2.5 × 10-6 A/cm2 at applied voltage of 50 kV/cm. The J-E characteristics of the BNO films show a combined response of grain, grain boundaries and film-electrode interfaces. It is interesting to note that in the negative electric field region, conduction is ohmic in nature whereas in the positive field region BNO films exhibit both ohmic and the space charge-limited current mechanisms. The achieved dielectric, electrical and optical properties make these films suitable for MIC, CMOS and optoelectronic applications.

  7. Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

    SciTech Connect

    Liu, SY; Zhang, HN; Sviridov, L; Huang, LM; Liu, XH; Samson, J; Akins, D; Li, J; O'Brien, S

    2012-11-07

    We present a novel approach to preparing bismuth acceptor doped barium titanate nanocrystal formulations that can be deposited in conjunction with polymers in order to prepare a thin film nanocomposite dielectric that exhibits desirable capacitor characteristics. Exploring the limits of dielectric function in nanocomposites is an important avenue of materials research, while paying strict attention to the overall device quality, namely permittivity, loss and equivalent series resistance (ESR). Pushing capacitor function to higher frequencies, a desirable goal from an electrical engineering point of view, presents a new set of challenges in terms of minimizing interfacial, space charge and polarization effects within the dielectric. We show the ability to synthesize BaTi0.96Bi0.04O3 or BaTi0.97Bi0.03O3 depending on nominal molar concentrations of bismuth at the onset. The low temperature solvothermal route allows for substitution at the titanium site (strongly supported by Rietveld and Raman analysis). Characterization is performed by XRD with Rietveld refinement, Raman Spectroscopy, SEM and HRTEM. A mechanism is proposed for bismuth acceptor substitution, based on the chemical reaction of the alkoxy-metal precursors involving nucleophilic addition. Dielectric analysis of the nanocrystal thin films is performed by preparing nanocrystal/PVP 2-2 nanocomposites (no annealing) and comparing BaTi0.96Bi0.04O3 and BaTi0.97Bi0.03O3 with undoped BaTiO3. Improvements of up to 25% in capacitance (permittivity) are observed, with lower loss and dramatically improved ESR, all to very high frequency ranges (>10 MHz).

  8. A K-band Frequency Agile Microstrip Bandpass Filter using a Thin Film HTS/Ferroelectric/dielectric Multilayer Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.

    1998-01-01

    We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.

  9. Study of Hf-Ti-O Thin Film as High- k Gate Dielectric and Application for ETSOI MOSFETs

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoqiang; Zhao, Hongbin; Xiong, Yuhua; Wei, Feng; Du, Jun; Tang, Zhaoyun; Tang, Bo; Yan, Jiang

    2016-08-01

    This work focused on the metal-oxide-semiconductor (MOS) capacitor and extremely thin silicon-on-insulator (ETSOI) p-type MOS field-effect transistor ( pMOSFET) with laminated hafnium and titanium oxide (Hf-Ti-O) thin films as gate dielectric. The electrical behavior of the MOS capacitor shows that the capacitor with Hf-Ti-O gate dielectric has high performance with low equivalent oxide thickness (EOT, ~0.77 nm), small hysteresis (Δ V fb, ~4 mV), and gate current density of 0.33 A/cm2 at V g = V fb - 1 V. The dominant conduction mechanism of the Hf-Ti-O thin film (25°C to 125°C) was Schottky emission at lower gate voltage (-0.8 V to -0.2 V) and Fowler-Nordheim (F-N) tunneling at higher gate voltage (<-0.8 V). An ETSOI pMOSFET with 25 nm gate length ( L g) also exhibited good electrical properties with switch ratio of 3.2 × 104, appropriate threshold voltage of -0.16 V, maximum transconductance ( G max) of 2.63 mS, drain-induced barrier lowering of 53 mV/V, and subthreshold swing of 65 mV/dec.

  10. Structural and dielectric studies of Co doped MgTiO3 thin films fabricated by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, T. Santhosh; Gogoi, P.; Thota, S.; Pamu, D.

    2014-06-01

    We report the structural, dielectric and leakage current properties of Co doped MgTiO3 thin films deposited on platinized silicon (Pt/TiO2/SiO2/Si) substrates by RF magnetron sputtering. The role of oxygen mixing percentage (OMP) on the growth, morphology, electrical and dielectric properties of the thin films has been investigated. A preferred orientation of grains along (110) direction has been observed with increasing the OMP. Such evolution of the textured growth is explained on the basis of the orientation factor analysis followed the Lotgering model. (Mg1-xCox)TiO3 (x = 0.05) thin films exhibits a maximum relative dielectric permittivity of ɛr = 12.20 and low loss (tan δ ˜ 1.2 × 10-3) over a wide range of frequencies for 75% OMP. The role of electric field frequency (f) and OMP on the ac-conductivity of (Mg0.95Co0.05)TiO3 have been studied. A progressive increase in the activation energy (Ea) and relative permittivity ɛr values have been noticed up to 75% of OMP, beyond which the properties starts deteriorate. The I-V characteristics reveals that the leakage current density decreases from 9.93 × 10-9 to 1.14 × 10-9 A/cm2 for OMP 0% to 75%, respectively for an electric field strength of 250 kV/cm. Our experimental results reveal up to that OMP ≥ 50% the leakage current mechanism is driven by the ohmic conduction, below which it is dominated by the schottky emission.

  11. Deposition, stabilization and characterization of zirconium oxide and hafnium oxide thin films for high k gate dielectrics

    NASA Astrophysics Data System (ADS)

    Gao, Yong

    As the MOS devices continue to scale down in feature size, the gate oxide thickness is approaching the nanometer node. High leakage current densities caused by tunneling is becoming a serious problem. Replacing silicon oxide with a high kappa material as the gate dielectrics is becoming very critical. In recent years, research has been focused on a few promising candidates, such as ZrO2, HfO2, Al2O3, Ta 2O5, and some silicates. However, unary metal oxides tend to crystallize at relatively low temperatures (less than 700°C). Crystallized films usually have a very small grain size and high leakage current due to the grain boundaries. The alternatives are high kappa oxides which are single crystal or amorphous. Silicates remain amorphous at high temperatures, but have some problems such as phase separation, interface reaction, and lower kappa value. In this work, we addressed the crystallization problems of zirconium oxide and hafnium oxide thin films. Both of these two thin films were deposited by DC reactive magnetron sputtering so that very dense films were deposited with little damage. A specially designed system was set up in order to have good control of the deposition process. The crystallization behavior of as-deposited amorphous ZrO2 and HfO2 films was studied. It was found that the films tended to have higher crystallization temperature when the films were thinner than a critical thickness of approximately 5 nm. However, it was still well below 900°C. The crystallization temperature was significantly increased by sandwiching the high kappa oxide layer between two silica layers. Ultra thin HfO2 films of 5nm thickness remained amorphous up to 900°C. This is the highest crystallization temperature which has been reported. The mechanisms for this effect are proposed. Electrical properties of these high kappa dielectric films were also studied. It was found that ultra thin amorphous HfO2 and ZrO 2 films had superior electrical properties to crystalline films

  12. A Novel K-Band Tunable Microstrip Bandpass Filter Using a Thin Film HTS/Ferroelectric/ Dielectric Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; VanKeuls, F.; Miranda, F. A.

    1998-01-01

    We report on YBCO/strontium titanate (STO) thin film K-band tunable bandpass filters on lanthanum aluminate substrates. The 2 pole filters were designed for a center frequency of 19 GHz and 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO (epsilon-rSTO). Center frequency shifts greater than 2 GHz were obtained at a 400V bipolar dc bias at temperatures below 77K, with minimum degradation in the insertion loss of the filters.

  13. Improved Dielectric Properties of Heterostructured Ba2.5Sr0.5TiO3 Thin Film Composites for Microwave Dielectric Devices

    NASA Technical Reports Server (NTRS)

    Jain, M.; Majumder, S. B.; Katiyar, R. S.; Bhalla, A. S.; Agrawal, D. C.; Kulkarni, V. N.; VanKeuls, F. W.; Miranda, F. A.; Romanofsky, R. R.; Mueller, C. H.; Fernandez, F.

    2002-01-01

    In the present work we have deposited MgO and Ba(sub 0.5)Sr(sub 0.5)TiO(sub 3)(BST50) thin layers in different sequences to make MgO:BST50 hetero-structured thin films. These films were characterized by X-ray diffraction and Rutherford backscattering technique and found to be highly (100) textured. The figure of merit {(C(sub0)-C(sub v)/(C(sub0-tandelta)} of the hetero-structured films was found to be higher as compared to pure BST50 films measured at 1 MHz frequency with electric field of 25.3 kV/cm. These films were used to make eight element coupled micro-strip phase shifter and characterized in a frequency range of 13-15 GHz. The high frequency figure of merit (kappa factor, defined as the ratio of degree of phase shift per dB loss) measured at around 14 GHz with electric field of 333 kV/cm has been markedly improved (around 64.28 deg/dB for hetero-structured film as compared to 24.65 deg /dB for pure film). Improvement in dielectric properties in a wide frequency range in the MgO:BST are believed to be due to the higher densification of the hetero-structured films.

  14. Aluminum nitride thin film based acoustic wave sensors for biosensing applications

    NASA Astrophysics Data System (ADS)

    Xu, Jianzeng

    In recent years, SAW devices have drawn enormous interest from the analytical assay and sensing business, especially in the biosensing area where highly sensitive, cost efficient and miniaturized sensors are in urgent needs. This dissertation focuses on the development of AIN thin film based SAW devices suitable for biosensing applications. AIN thin films have been synthesized on different orientations of sapphire substrates by a plasma source molecular beam epitaxy system. Surface and structural characterization techniques have been applied to investigate the film quality and the results show that high quality c-plane AIN was epitaxially grown on both c-plane and a-plane sapphire substrates. Complete process flows have been developed for the fabrication of SAW delay line and resonator devices. Important electrical parameters such as the insertion loss, bandwidth, and impedance have been measured to assist the design optimization and derivation the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency. On both c-plane and a-plane sapphire substrates, the SAW phase velocities (˜5700 m/s) and electromechanical coupling coefficients (˜0.3%) have been thoroughly mapped out with respect to the propagation direction and film thickness to wavelength ratio. The data are of practical importance for designing AIN-based SAW devices. A higher velocity (>6000 m/s) shear horizontal SAW mode has been discovered only at isolated propagating directions. This mode is especially suitable for aqueous biosensing due to its weak energy coupling to liquid. Much stronger response of the SH-SAW mode has been detected on the c-plane AIN on a-plane sapphire structure than on the c-plane AIN on c-plane sapphire structure, which could be attributed to large anisotropy in a-plane sapphire substrate. Linear frequency-temperature relationship has also been observed for both modes. We further quantify the mass sensitivity of the SAW and SH-SAW by

  15. Correlation between iron self-diffusion and thermal stability in doped iron nitride thin films

    SciTech Connect

    Tayal, Akhil; Gupta, Mukul E-mail: dr.mukul.gupta@gmail.com; Kumar, D.; Reddy, V. R.; Gupta, Ajay; Amir, S. M.; Korelis, Panagiotis; Stahn, Jochen

    2014-12-14

    Nanocrystalline Fe-X-N thin films (with doping X = 0, 3.1 at. % Al, 1.6 at. % Zr), were deposited using reactive ion beam sputtering. Magnetization study reveals that the deposited films exhibit a perpendicular magnetic anisotropy. Thermal stability of the films was investigated systematically and it was observed that the structural and the magnetic stability gets significantly enhanced with Al doping, whereas Zr doping has only a marginal effect. Fe self-diffusion, obtained using polarized neutron reflectivity, shows a suppression with both additives. A correlation between the thermal stability and the diffusion process gives a direct evidence that the enhancement in the thermal stability is primarily diffusion controlled. A combined picture of diffusion, structural, and magnetic stability has been drawn to understand the obtained results.

  16. Growth kinetics and characterizations of gallium nitride thin films by remote PECVD

    NASA Technical Reports Server (NTRS)

    Choi, S. W.; Bachmann, K. J.; Lucovsky, G.

    1993-01-01

    Thin films of GaN have been deposited at relatively low growth temperatures by remote plasma-enhanced chemical-vapor deposition (RPECVD), using a plasma excited NH3, and trimethylgallium (TMG), injected downstream from the plasma. The activation energy for GaN growth has been tentatively assigned to the dissociation of NH groups as the primary N-atom precursors in the surface reaction with adsorbed TMG, or TMG fragments. At high He flow rates, an abrupt increase in the growth rate is observed and corresponds to a change in the reaction mechanism attributed to the formation of atomic N. XRD reveals an increased tendency to ordered growth in the (0001) direction with increasing growth temperature, He flow rate, and RF plasma power. IR spectra show the fundamental lattice mode of GaN at 530 cm without evidence for vibrational modes of hydrocarbon groups.

  17. Correlation between iron self-diffusion and thermal stability in doped iron nitride thin films

    NASA Astrophysics Data System (ADS)

    Tayal, Akhil; Gupta, Mukul; Kumar, D.; Reddy, V. R.; Gupta, Ajay; Amir, S. M.; Korelis, Panagiotis; Stahn, Jochen

    2014-12-01

    Nanocrystalline Fe-X-N thin films (with doping X = 0, 3.1 at. % Al, 1.6 at. % Zr), were deposited using reactive ion beam sputtering. Magnetization study reveals that the deposited films exhibit a perpendicular magnetic anisotropy. Thermal stability of the films was investigated systematically and it was observed that the structural and the magnetic stability gets significantly enhanced with Al doping, whereas Zr doping has only a marginal effect. Fe self-diffusion, obtained using polarized neutron reflectivity, shows a suppression with both additives. A correlation between the thermal stability and the diffusion process gives a direct evidence that the enhancement in the thermal stability is primarily diffusion controlled. A combined picture of diffusion, structural, and magnetic stability has been drawn to understand the obtained results.

  18. Low-temperature ({<=}200 Degree-Sign C) plasma enhanced atomic layer deposition of dense titanium nitride thin films

    SciTech Connect

    Samal, Nigamananda; Du Hui; Luberoff, Russell; Chetry, Krishna; Bubber, Randhir; Hayes, Alan; Devasahayam, Adrian

    2013-01-15

    Titanium nitride (TiN) has been widely used in the semiconductor industry for its diffusion barrier and seed layer properties. However, it has seen limited adoption in other industries in which low temperature (<200 Degree-Sign C) deposition is a requirement. Examples of applications which require low temperature deposition are seed layers for magnetic materials in the data storage (DS) industry and seed and diffusion barrier layers for through-silicon-vias (TSV) in the MEMS industry. This paper describes a low temperature TiN process with appropriate electrical, chemical, and structural properties based on plasma enhanced atomic layer deposition method that is suitable for the DS and MEMS industries. It uses tetrakis-(dimethylamino)-titanium as an organometallic precursor and hydrogen (H{sub 2}) as co-reactant. This process was developed in a Veeco NEXUS Trade-Mark-Sign chemical vapor deposition tool. The tool uses a substrate rf-biased configuration with a grounded gas shower head. In this paper, the complimentary and self-limiting character of this process is demonstrated. The effects of key processing parameters including temperature, pulse time, and plasma power are investigated in terms of growth rate, stress, crystal morphology, chemical, electrical, and optical properties. Stoichiometric thin films with growth rates of 0.4-0.5 A/cycle were achieved. Low electrical resistivity (<300 {mu}{Omega} cm), high mass density (>4 g/cm{sup 3}), low stress (<250 MPa), and >85% step coverage for aspect ratio of 10:1 were realized. Wet chemical etch data show robust chemical stability of the film. The properties of the film have been optimized to satisfy industrial viability as a Ruthenium (Ru) preseed liner in potential data storage and TSV applications.

  19. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

    SciTech Connect

    Abadias, G.; Koutsokeras, L. E.; Dub, S. N.; Tolmachova, G. N.; Debelle, A.; Sauvage, T.; Villechaise, P.

    2010-07-15

    Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by either Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.

  20. Development and evaluation of gallium nitride-based thin films for x-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Hofstetter, Markus; Howgate, John; Sharp, Ian D.; Stutzmann, Martin; Thalhammer, Stefan

    2011-06-01

    X-ray radiation plays an important role in medical procedures ranging from diagnostics to therapeutics. Due to the harm such ionizing radiation can cause, it has become common practice to closely monitor the dosages received by patients. To this end, precise online dosimeters have been developed with the dual objectives of monitoring radiation in the region of interest and improving therapeutic methods. In this work, we evaluate GaN thin film high electron mobility heterostructures with sub-mm2 detection areas as x-ray radiation detectors. Devices were tested using 40-300 kV Bremsstrahlung x-ray sources. We find that the photoconductive device response exhibits a large gain, is almost independent of the angle of irradiation, and is constant to within 2% of the signal throughout this medical diagnostic x-ray range, indicating that these sensors do not require recalibration for geometry or energy. Furthermore, the devices show a high sensitivity to x-ray intensity and can measure in the air kerma rate (free-in-air) range of 1 µGy s-1 to 10 mGy s-1 with a signal stability of ±1% and a linear total dose response over time. Medical conditions were simulated by measurements of device responses to irradiation through human torso phantoms. Direct x-ray imaging is demonstrated using the index finger and wrist sections of a human phantom. The results presented here indicate that GaN-based thin film devices exhibit a wide range of properties, which make them promising candidates for dosimetry applications. In addition, with potential detection volumes smaller than 10-6 cm3, they are well suited for high-resolution x-ray imaging. Moreover, with additional engineering steps, these devices can be adapted to potentially provide both in vivo biosensing and x-ray dosimetry.

  1. Modeling the electrode geometry of co-planar capacitors for the microwave dielectric characterization of ceramic thin films

    SciTech Connect

    Veber, A. Fabijan, D.; Kunej, S.

    2013-12-14

    This paper describes the influence of co-planar electrode geometry on the measurement accuracy of microwave dielectric properties of sol-gel-derived Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}-NaTaO{sub 3} thin films. The interdigital, co-planar capacitor configurations were prepared with E-beam lithography. A combination of analytical and numerical modelling was used for the optimization of co-planar, interdigital electrode structures for the thin-film characterization. We observed that the number of fingers, their length, as well as the gap between the fingers of the interdigital electrode structure of the co-planar capacitor have a pronounced influence on the accuracy of measurements.

  2. Effect of Ce-DOPING on Structural and Electrical Properties of Dielectric Bi2Ti2O7 Thin Films

    NASA Astrophysics Data System (ADS)

    Jing, Xiangyang; Huang, Baibiao; Yao, Shushan; Zhang, Qi; Wang, Zeyan; Wang, Peng; Zheng, Liren

    Ce-doped Bi2Ti2O7 thin films have been successfully prepared on P-type Si substrates by a chemical solution deposition method. The structural properties of the films were studied by X-ray diffraction. The phase of Ce-doped Bi2Ti2O7 was more stable than that of Bi2Ti2O7 without Ce substitution. The films exhibited good insulating properties at room temperature. The dielectric constant of the films annealed at 700°C at 100 kHz was 168 and the dissipation factor was 0.038. All these results showed that Ce-doped Bi2Ti2O7 thin films could be used as storage capacitors in DRAM and MOS.

  3. Mechanical properties of low- and high-k dielectric thin films: A surface Brillouin light scattering study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A. G.; Sooryakumar, R.

    2016-04-01

    Surface Brillouin light scattering measurements are used to determine the elastic constants of nano-porous low-k SiOC:H (165 nm) and high-k HfO2 (25 nm) as well as BN:H (100 nm) films grown on Si substrates. In addition, the study investigates the mechanical properties of ultra-thin (25 nm) blanket TiN cap layers often used as hard masks for patterning, and their effects on the underlying low-k dielectrics that support a high level of interconnected porosity. Depending on the relative material properties of individual component layers, the acoustic modes manifest as confined, propagating, or damped resonances in the light scattering spectra, thereby enabling the mechanical properties of the ultra-thin films to be determined.

  4. Tb{sub 2}O{sub 3} thin films: An alternative candidate for high-k dielectric applications

    SciTech Connect

    Gray, Nathan W.; Prestgard, Megan C.; Tiwari, Ashutosh

    2014-12-01

    We are reporting the growth and structural, optical, and dielectric properties of Tb{sub 2}O{sub 3}, a relatively unexplored high-k dielectric material. A pulsed-laser deposition technique was used to grow Tb{sub 2}O{sub 3} thin-films on four different substrates: Si(100), SrTiO{sub 3}(100), LaAlO{sub 3}(100), and MgO(100). High-resolution X-ray diffraction and transmission electron microscopy results confirmed that film growth in an oxygen-rich (10{sup −1 }Torr) environment yields nearly single-crystal C-phase films, while a low-oxygen (10{sup −6 }Torr) environment growth results in the formation of monoclinic polycrystalline B-phase films. Optical transmission measurements showed that the bandgap of Tb{sub 2}O{sub 3} is direct in nature with a value of 2.8 eV and 3.4 eV for the cubic and monoclinic phases, respectively. By measuring the capacitance of test devices, quite high dielectric constants of 13.5 and 24.9 were obtained for the B- and C-phase Tb{sub 2}O{sub 3} films, respectively.

  5. Temperature dependence of reliability characteristics for magnetic tunnel junctions with a thin MgO dielectric film

    NASA Astrophysics Data System (ADS)

    Choi, Chul-Min; Oh, Young-Taek; Kim, Kyung-Jun; Park, Jin-Suk; Sukegawa, Hiroaki; Mitani, Seiji; Kim, Sung-Kyu; Lee, Jeong-Yong; Song, Yun-Heub

    2016-07-01

    Temperature dependence of the reliability characteristics of magnetic tunnel junctions (MTJs) with a thin (∼1 nm thick) MgO dielectric film were investigated by numerical analyses based on the E-model, 1/E-model, and power-law voltage V-model, as well as by measuring time-dependent dielectric breakdown (TDDB) degradation. Although the tunneling process giving rise to TDDB is still under debate, the temperature dependence of TDDB was much weaker using the 1/E model than the E-model or power-law model. The TDDB data measured experimentally in CoFeB/MgO/CoFeB MTJ devices also showed rather weak temperature dependence, in good agreement with the numerical results obtained from the 1/E-model considering the self-heating effect in MTJ devices. Moreover, we confirmed by interval voltage stress tests that some degradation in the MgO dielectric layer occurred. Based on our findings, we suggest that to characterize the reliability of MTJs, combined temperature measurements of TDDB and 1/E-model analyses taking the self-heating effect into account should be performed.

  6. Modified approach for high frequency dielectric characterization of thinly metallized soft polymer film using grounded coplanar waveguide

    NASA Astrophysics Data System (ADS)

    Baron, Samuel; Nadaud, Kevin; Guiffard, Benoit; Sharaiha, Ala; Seveyrat, Laurence

    2015-08-01

    In this paper, we introduce the dielectric characterization of soft polymer, polyurethane (PU), between 1 and 31 GHz frequency band using Grounded CoPlanar Waveguide (GCPW) lines with a modified analytical method. The unavoidable thin metallization (1 μm) of GCPW lines on polyurethane yields high conductor losses, which contribute to the extracted global losses up to 58% at 4 GHz. In order to get more precisely the dielectric losses, a modification of an already existing analytical model by coupling it with 3D electromagnetic simulations is proposed, which allows to estimate and subtract quickly the conductor losses. The measurements indicated that polyurethane relative permittivity ranges from 3.49 to 2.65 and the loss tangent was about 0.08, which is in agreement with the state of the art on this grade of PU as well as the Metal-Insulator-Metal capacitors characterizations (from 10-1 to 107 Hz and from 2 × 108 to 5 × 109 Hz). The proposed approach may open a fast and simple way for precisely determining the microwave dielectric properties of (ultra) soft polymers in a large bandwidth.

  7. Polaron and ion diffusion in a poly(3-hexylthiophene) thin-film transistor gated with polymer electrolyte dielectric

    NASA Astrophysics Data System (ADS)

    Mills, T.; Kaake, L. G.; Zhu, X.-Y.

    2009-04-01

    Electrolytes are finding applications as dielectric materials in low-voltage organic thin-film transistors (OTFT). The presence of mobile ions in these materials (polymer electrolytes or ion gels) gives rise to very high capacitance (>10 μF/cm2) and thus low transistor turn-on voltage. In order to establish fundamental limits in switching speeds of electrolyte gated OFETs, we carry out in situ optical spectroscopy measurement of a poly(3-hexylthiophene) (P3HT) OTFT gated with a LiClO4:poly(ethyleneoxide) (PEO) dielectric. Based on spectroscopic signatures of molecular vibrations and polaron transitions, we quantitatively determine charge carrier concentration and diffusion constants. We find two distinctively different regions: at V G≥-1.5 V, drift-diffusion (parallel to the semiconductor/dielectric interface) of hole-polarons in P3HT controls charging of the device; at V G<-1.5 V, electrochemical doping of the entire P3HT film occurs and charging is controlled by drift/diffusion (perpendicular to the interface) of ClO4 - counter ions into the polymer semiconductor.

  8. Al capping layers for nondestructive x-ray photoelectron spectroscopy analyses of transition-metal nitride thin films

    SciTech Connect

    Greczynski, Grzegorz Hultman, Lars; Petrov, Ivan; Greene, J. E.

    2015-09-15

    X-ray photoelectron spectroscopy (XPS) compositional analyses of materials that have been air exposed typically require ion etching in order to remove contaminated surface layers. However, the etching step can lead to changes in sample surface and near-surface compositions due to preferential elemental sputter ejection and forward recoil implantation; this is a particular problem for metal/gas compounds and alloys such as nitrides and oxides. Here, the authors use TiN as a model system and compare XPS analysis results from three sets of polycrystalline TiN/Si(001) films deposited by reactive magnetron sputtering in a separate vacuum chamber. The films are either (1) air-exposed for ≤10 min prior to insertion into the ultrahigh-vacuum (UHV) XPS system; (2) air-exposed and subject to ion etching, using different ion energies and beam incidence angles, in the XPS chamber prior to analysis; or (3) Al-capped in-situ in the deposition system prior to air-exposure and loading into the XPS instrument. The authors show that thin, 1.5–6.0 nm, Al capping layers provide effective barriers to oxidation and contamination of TiN surfaces, thus allowing nondestructive acquisition of high-resolution core-level spectra representative of clean samples, and, hence, correct bonding assignments. The Ti 2p and N 1s satellite features, which are sensitive to ion bombardment, exhibit high intensities comparable to those obtained from single-crystal TiN/MgO(001) films grown and analyzed in-situ in a UHV XPS system and there is no indication of Al/TiN interfacial reactions. XPS-determined N/Ti concentrations acquired from Al/TiN samples agree very well with Rutherford backscattering and elastic recoil analysis results while ion-etched air-exposed samples exhibit strong N loss due to preferential resputtering. The intensities and shapes of the Ti 2p and N 1s core level signals from Al/TiN/Si(001) samples do not change following long-term (up to 70 days) exposure to ambient conditions

  9. Room-temperature preparation and dielectric properties of amorphous Bi3.95Er0.05Ti3O12 thin films on flexible polyimide substrates via pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Mo, Zhong; Wu, Guangheng; Bao, Dinghua

    2012-05-01

    Bi3.95Er0.05Ti3O12 (BErT) thin films were prepared on flexible polyimide (PI) substrates at room temperature by pulsed laser deposition. These BErT thin films deposited under low oxygen pressures are dense, uniform, and crack-free with an amorphous structure. The highly flexible thin film with a thickness of about 160 nm deposited under 3 Pa oxygen pressure shows excellent dielectric characteristics, such as a dielectric constant of 51 and a dielectric loss of 0.025, and a maximum capacitance density of 237 nF/cm2 at 1 kHz. When it is curved at different curvature radii (by applying external deformation), the thin film still remains superior dielectric performance. In addition, the thin film also shows good dielectric aging characteristic (or thermal stability) and high optical transparency. BErT thin films can find applications in flexible optoelectronic devices and embedded capacitors.

  10. Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films.

    PubMed

    Zhang, Feifei; Krishnaswamy, Sridhar; Lilley, Carmen M

    2006-12-01

    The development of devices made of micro- and nano-structured thin film materials has resulted in the need for advanced measurement techniques to characterize their mechanical properties. Photoacoustic techniques, which use pulsed laser irradiation to nondestructively induce very high frequency ultrasound in a test object via rapid thermal expansion, are suitable for nondestructive and non-contact evaluation of thin films. In this paper, we compare two photoacoustic techniques to characterize the mechanical parameters of edge-supported aluminum and silicon nitride double-layer thin films. The elastic properties and residual stresses in such films affect their mechanical performance. In a first set of experiments, a femtosecond transient pump-probe technique is used to investigate the Young's moduli of the aluminum and silicon nitride layers by launching ultra-high frequency bulk acoustic waves in the films. The measured transient signals are compared with simulated transient thermoelastic signals in multi-layer structures, and the elastic moduli are determined. Independent pump-probe tests on silicon substrate-supported region and unsupported region are in good agreement. In a second set of experiments, dispersion curves of the A(0) mode of the Lamb waves that propagate along the unsupported films are measured using a broadband photoacoustic guided-wave method. The residual stresses and flexural rigidities for the same set of double-layer membranes are determined from these dispersion curves. Comparisons of the results obtained by the two photoacoustic techniques are made and discussed.

  11. Extreme strain rate and temperature dependence of the mechanical properties of nano silicon nitride thin layers in a basal plane under tension: a molecular dynamics study.

    PubMed

    Lu, Xuefeng; Wang, Hongjie; Wei, Yin; Wen, Jiangbo; Niu, Min; Jia, Shuhai

    2014-08-01

    Molecular dynamics simulations are performed to clarify the extreme strain rate and temperature dependence of the mechanical behaviors of nano silicon nitride thin layers in a basal plane under tension. It is found that fracture stresses show almost no change with increasing strain rate. However, fracture strains decrease gradually due to the appearance of additional N(2c)-Si bond breaking defects in the deformation process. With increasing loading temperature, there is a noticeable drop in fracture stress and fracture strain. In the low temperature range, roughness phases can be observed owing to a combination of factors such as configuration evolution and energy change.

  12. Flexible low-voltage polymer thin-film transistors using supercritical CO2-deposited ZrO2 dielectrics.

    PubMed

    Wei, Qingshuo; You, Eunyoung; Hendricks, Nicholas R; Briseno, Alejandro L; Watkins, James J

    2012-05-01

    The fabrication of low-voltage flexible organic thin film transistors using zirconia (ZrO(2)) dielectric layers prepared via supercritical fluid deposition was studied. Continuous, single-phase films of approximately 30 nm thick ZrO(2) were grown on polyimide (PI)/aluminum (Al) substrates at 250 °C via hydrolysis of tetrakis(2,2,6,6-tetramethyl-3,5-heptane-dionato) zirconium in supercritical carbon dioxide. This dielectric layer showed a high areal capacitance of 317 nF cm(-2) at 1 kHz and a low leakage current of 1.8 × 10(-6) A cm(-2) at an applied voltage of -3 V. By using poly(3-hexylthiophene) (P3HT) as a semiconductor, we have fabricated flexible thin film transistors operating at V(DS) = -0.5 V and V(G) in a range from 0.5 V to -4 V, with on/off ratios on the order of 1 × 10(3) and mobility values higher than 0.1 cm(2)/(V s).

  13. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  14. Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric interface control and very thin single crystal

    NASA Astrophysics Data System (ADS)

    Dong, Ji; Yu, Peng; Atika Arabi, Syeda; Wang, Jiawei; He, Jun; Jiang, Chao

    2016-07-01

    A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a ‘seed-controlled’ pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm2 V‑1 s‑1—more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices.

  15. Low-temperature, high-performance solution-processed thin-film transistors with peroxo-zirconium oxide dielectric.

    PubMed

    Park, Jee Ho; Yoo, Young Bum; Lee, Keun Ho; Jang, Woo Soon; Oh, Jin Young; Chae, Soo Sang; Baik, Hong Koo

    2013-01-23

    We demonstrated solution-processed thin film transistors on a peroxo-zirconium oxide (ZrO(2)) dielectric with a maximum temperature of 350 °C. The formation of ZrO(2) films was investigated by TG-DTA, FT-IR, and XPS analyses at various temperatures. We synthesized a zirconium oxide solution by adding hydrogen peroxide (H(2)O(2)). The H(2)O(2) forms peroxo groups in the ZrO(2) film producing a dense-amorphous phase and a smooth surface film. Because of these characteristics, the ZrO(2) film successfully blocked leakage current even in annealing at 300 °C. Finally, to demonstrate that the ZrO(2) film is dielectric, we fabricated thin-film transistors (TFTs) with a solution-processed channel layer of indium zinc oxide (IZO) on ZrO(2) films at 350 °C. These TFTs had a mobility of 7.21 cm(2)/(V s), a threshold voltage (V(th)) of 3.22 V, and a V(th) shift of 1.6 V under positive gate bias stress.

  16. Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate

    SciTech Connect

    Kurniawan, Robi; Sutjahja, Inge M.; Winata, Toto; Rusydi, Andrivo; Darma, Yudi

    2015-09-30

    A set of sample consist of pure ZnO and Cu-doped ZnO film were grown on fused-quartz substrates using pulsed laser deposition (PLD) technique. Here, we report room temperature spectroscopic ellipsometry analysis (covering energy range of 0.5 to 6.3 eV) of pure ZnO film and Cu doped ZnO film at 8 in at. %. The thickness of pure ZnO and Cu-doped ZnO film using in this study is about 350 nm. To extract the dielectric function of ZnO thin film, multilayer modeling is performed which takes into account reflections at each interface through Fresnel coefficients. This method based on Drude-Lorentz models that connect with Kramers-Kronig relations. The best fitting of Ψ (amplitude ratio) and Δ (phase difference) taken by SE measurement are obtained reasonably well by mean the universal fitting of three different photon incident angles. The imaginary part of dielectric function (ε{sub 2}) show the broad peak at around 3.3 eV assigned as combination of optical band energy edge with excitonic states. The exitonic states could not be observed clearly in this stage. The evolution of extracted dielectric function is observable by introducing 8% Cu as indicated by decreasing of excitonic intensity. This result indicates the screening of excitonic state. This study will bring us to have a good undestanding for the role of Cu impurities for ZnO thin films.

  17. Nanoindentation study of niobium nitride thin films on niobium fabricated by reactive pulsed laser deposition

    SciTech Connect

    Mamun, Md Abdullah Al; Farha, Ashraf Hassan; Ufuktepe, Yüksel; Elsayed-Ali, Hani E.; Elmustafa, Abdelmageed A.

    2015-03-01

    Nanomechanical and structural properties of NbNx films deposited on single crystal Nb using pulsed laser deposition for different substrate temperature were previously investigated as a function of film/substrate crystal structure (Mamun et al. (2012) [30]). In this study we focus on the effect of laser fluences and background nitrogen pressure on the nanomechanical and structural properties of NbNx films. The crystal structure and surface morphology of the thin films were tested by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Using nanoindentation, the investigation of the nanomechanical properties revealed that the hardness of the NbNx films was directly influenced by the laser fluence for low background nitrogen pressure, whereas the nanomechanical hardness showed no apparent correlation with laser fluence at high background nitrogen pressure. The NbNx film hardness measured at 30% film thickness increased from 14.0 ± 1.3 to 18.9 ± 2.4 GPa when the laser fluence was increased from 15 to 25 J/cm2 at 10.7 Pa N2 pressure. X-ray diffraction showed NbNx films with peaks that correspond to δ-NbN cubic and β-Nb2N hexagonal phases in addition to the δ'-NbN hexagonal phase. Finally, increasing the laser fluence resulted in NbNx films with larger grain sizes.

  18. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    NASA Astrophysics Data System (ADS)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  19. SHG spectroscopy of gallium nitride thin films on sapphire with ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Angerer, William Edward

    We present results of ultrafast second-harmonic generation spectroscopy of GaN/Alsb2Osb3 samples. We develop a formalism to calculate the nonlinear response of thin nonlinear films excited by an ultrashort laser source (Ti:Alsb2Osb3), and we use this formalism to extract chisbsp{zxx}{(2)}(omega=2omegasb{o}) and chisbsp{xzx}{(2)}(omega=2omegasb{o}) from our SHG measurements over a two photon energy range of 2.6-3.4 eV. By comparing spectra from several samples, we find a weak sub-band gap enhancement of chisbsp{zxx}{(2)}(omega=2omegasb{o}) at a two photon energy of 2.80 eV that is not present in chisbsp{xzx}{(2)}(omega=2omegasb{o}). This enhancement is independent of the carrier concentration, intentional doping, and presence of the "yellow luminescence band" defects. This feature may result from a three photon process involving a midgap defect state. We analyze three photon processes that include a defect state with group theory and demonstrate that several processes contribute to chisbsp{zxx}{(2)}(omega=2omegasb{o}) but not to chisbsp{xzx}{(2)}(omega=2omegasb{o}). In addition, we determined sample orientational miscuts by rotational SHG, and we found that these miscuts do not generate strain induced interface states. We determined a Sellmeier dispersion relationship for the index of refraction of GaN by a novel light transmission method, and we report on photoluminescence of our GaN/Alsb2Osb3 samples. In a second project we have designed and built a nonlinear optical microscope. We have used the new tool to perform preliminary investigations of the nonlinear optical properties of carbon nanoropes. We suggest that nonlinear optical microscopy is a potentially useful technique for analyzing carbon nanotube symmetry, as well as in studies of other heterogeneities. Finally, we place an upper limit on the dominant second order hyperpolarizability, alphasbsp{zzz}{(2)}, of carbon nanotubes based on our nonlinear optical microscopy measurements.

  20. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    SciTech Connect

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.; Mohapatra, Y. N.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.

  1. Broadband dielectric/electric properties of epoxy thin films filled with multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Macutkevic, Jan; Kuzhir, Polina P.; Paddubskaya, Alesia G.; Banys, Juras; Maksimenko, Sergey A.; Stefanutti, Eleonora; Micciulla, Federico; Bellucci, Stefano

    2013-01-01

    Many attempts have been made to fully explore flexibility, resistance to corrosion, and processing advantage of epoxy resin filled with carbon nanotubes (CNTs) as conductive filler, although sometimes with a certain degradation of polymers' intrinsic properties. It is important to move the percolation threshold into the region of smaller CNTs' concentration. The results of a broadband dielectric investigation of multiwalled CNT (MWCNT)/epoxy resin composites in wide temperature range from room temperature to 450 K were analyzed for percolation. Far below the percolation threshold (0.25 wt. % MWCNT) the dielectric properties of the composite are mostly determined by alpha relaxation in pure polymer matrix and the freezing temperature decreases due to the extra free volume at the polymer-filler interface. Close to the percolation threshold, the composite shows the negative temperature coefficient effect in the temperature region, where the pure polymer matrix becomes conductive. The activation energy of DC conductivity increases with the MWCNT concentration far below the percolation threshold and decreases close to it (1.5 wt. % MWCNT). The dielectric analysis of the MWCNT/epoxy resin reveals a significant influence of the polymer matrix on the temperature dependence of composite dielectric properties.

  2. Structural, electrical, and dielectric properties of Cr doped ZnO thin films: Role of Cr concentration

    NASA Astrophysics Data System (ADS)

    Gürbüz, Osman; Okutan, Mustafa

    2016-11-01

    An undoped zinc oxide (ZnO) and different concentrations of chromium (Cr) doped ZnO CrxZnO1-x (x = 3.74, 5.67, 8.10, 11.88, and 15.96) thin films were prepared using a magnetron sputtering technique at room temperature. These films were characterized by X-ray diffraction (XRD), High resolution scanning electron microscope (HR-SEM), and Energy dispersive X-ray spectrometry (EDS). XRD patterns of all the films showed that the films possess crystalline structure with preferred orientation along the (100) crystal plane. The average crystallite size obtained was found to be between 95 and 83 nm which was beneficial in high intensity recording peak. Both crystal quality and crystallite sizes decrease with increasing Cr concentration. The crystal and grain sizes of the all film were investigated using SEM analysis. The surface morphology that is grain size changes with increase Cr concentration and small grains coalesce together to form larger grains for the Cr11.88ZnO and Cr15.96ZnO samples. Impedance spectroscopy studies were carried out in the frequencies ranging from 5 Hz to 13 MHz at room temperature. The undoped ZnO film had the highest dielectric value, while dielectric values of other films decreased as doping concentrations increased. Besides, the dielectric constants decreased whereas the loss tangents increased with increasing Cr content. This was considered to be related to the reduction of grain size as Cr content in ZnO host material increased. Furthermore, by increasing the Cr concentration, the improved electrical performance was observed. The electrical resistivity of samples decreased from 3.98 × 10-2 Ω cm to 4.03 × 10-4 Ω cm with the increase in Cr content. For these reasons, Cr doped ZnO (Cr:ZnO) thin films may be used in microwave devices as the electrical conductivity increases while dielectric constant decreases with the Cr content.

  3. Study on Preparation of High-k Organic-Inorganic Thin Film for Organic-Inorganic Thin Film Transistor Gate Dielectric Application

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Hsi; Liu, Chao-Te; Lee, Ying-Chieh

    2012-06-01

    A simple solution-based deposition technique combined with spin-coating is a plausible way to prepare ultra-thin organic-inorganic nanocomposite films. In this study, we describe the spin-coating deposition of a colloidal nanoparticle suspension to obtain an ultra-thin organic-inorganic composite film as a gate insulator for organic thin film transistor (O-TFT) application. To obtain a homogenous organic-inorganic composite film, well-dispersed TiO2 nanoparticles in γ-butyrolactone and polyimide are important; therefore, several dispersants were assessed on the basis of the measurement of the rheological behavior of slurries. The thickness of the organic-inorganic composite film is mainly determined by the speed of spin-coating and viscosity of slurries. An approximately 4000-Å-thick nanocomposite film with homogeneous distribution of TiO2 nanoparticles in polyimide and low roughness was obtained after curing at 200 °C, resulting in a low leakage current density of the nano-composite film, when less than 2 vol % TiO2 nanoparticles were well dispersed in polyimide slurry. The dielectric constant of the organic-inorganic nanocomposite increases with increasing TiO2 content in polyimide, being situated in the range between 4 and 5.

  4. High-performance fully amorphous bilayer metal-oxide thin film transistors using ultra-thin solution-processed ZrOx dielectric

    NASA Astrophysics Data System (ADS)

    Liu, G. X.; Liu, A.; Shan, F. K.; Meng, Y.; Shin, B. C.; Fortunato, E.; Martins, R.

    2014-09-01

    In this study, we report high-performance amorphous In2O3/InZnO bilayer metal-oxide (BMO) thin-film transistor (TFT) using an ultra-thin solution-processed amorphous ZrOx dielectric. A thin layer of In2O3 offers a higher carrier concentration, thereby maximizing the charge accumulation and yielding high carrier mobility. A thick amorphous layer of InZnO controls the charge conductance resulting in low off-state current and suitable threshold voltage. As a consequence, the BMO TFT showed higher filed-effect mobility (37.9 cm2/V s) than single-layer InZnO TFT (7.6 cm2/V s). Apart from that we obtain an on/off current ratio of 109, a subthreshold swing voltage of 120 mV/decade, and a voltage shift ≤ 0.4 V under positive bias stress for 2.5 h, for a gate voltage of 3 V and drain voltage of 1 V. These data demonstrate that the BMO TFT has great potential for a broad range of applications as switching low-power transistors.

  5. Molecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi2Se3 thin films on hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Park, Joon Young; Lee, Gil-Ho; Jo, Janghyun; Cheng, Austin K.; Yoon, Hosang; Watanabe, Kenji; Taniguchi, Takashi; Kim, Miyoung; Kim, Philip; Yi, Gyu-Chul

    2016-09-01

    We report the molecular beam epitaxial growth and characterization of high quality topological insulator Bi2Se3 thin films on hexagonal boron nitride (h-BN). A two-step growth was developed, enhancing both the surface coverage and crystallinity of the films on h-BN. High-resolution transmission electron microscopy study showed an atomically abrupt and epitaxial interface formation between the h-BN substrate and Bi2Se3. We performed gate tuned magnetotransport characterizations of the device fabricated on the thin film and confirmed a high mobility surface state at the Bi2Se3/h-BN interface. The Berry phase obtained from Shubnikov-de Haas oscillations suggested this interfacial electronic state is a topologically protected Dirac state.

  6. Effect of Poly(4-vinylphenol) Concentration Increase on Deposition Rate of Dielectric Thin Film Fabrication by Using Electrohydrodynamic Atomization

    NASA Astrophysics Data System (ADS)

    Ali, Adnan; Lee, Yun Woo; Choi, Kyung Hyun; Jo, Jeongdai

    2013-12-01

    In this work, the effect of poly(4-vinylphenol) (PVP) concentration increase on electrohydrodynamic atomization and its deposition rate has been studied. The aim of this study is to further increase the deposition rate of uniform dielectric thin films by the nonvacuum electrohydrodynamic atomization process. The operating envelope has been explored by subjecting ink to controlled flow through a metallic capillary exposed to an electric field at ambient temperature. It has been observed that greater applied voltage is required to develop a stable cone jet from a highly concentrated PVP meniscus, in comparison with lower concentration. A combination of optimized parameters has been used from the developed operating envelope to generate an electrohydrodynamic jet, which subsequently disintegrated into droplets, thus depositing a uniform PVP thin film on indium tin oxide-coated polyethylene terephthalate substrates with average thickness of ~40 nm at constant substrate speed of 3 mm/s. The PVP thin film has been characterized by using scanning electron microscopy, x-ray photoelectron spectroscopy, and ultraviolet (UV)-visible spectroscopy.

  7. Titanium dioxide thin films deposited by pulsed laser deposition and integration in radio frequency devices: Study of structure, optical and dielectric properties

    NASA Astrophysics Data System (ADS)

    Orlianges, Jean-Christophe; Crunteanu, Aurelian; Pothier, Arnaud; Merle-Mejean, Therese; Blondy, Pierre; Champeaux, Corinne

    2012-12-01

    Titanium dioxide presents a wide range of technological application possibilities due to its dielectric, electrochemical, photocatalytic and optical properties. The three TiO2 allotropic forms: anatase, rutile and brookite are also interesting, since they exhibit different properties, stabilities and growth modes. For instance, rutile has a high dielectric permittivity, of particular interest for the integration as dielectric in components such as microelectromechanical systems (MEMS) for radio frequency (RF) devices. In this study, titanium dioxide thin films are deposited by pulsed laser deposition. Characterizations by Raman spectroscopy and X-ray diffraction show the evolution of the structural properties. Thin films optical properties are investigated using spectroscopic ellipsometry and transmission measurements from UV to IR range. Co-planar waveguide (CPW) devices are fabricated based on these films. Their performances are measured in the RF domain and compared to simulation, leading to relative permittivity values in the range 30-120, showing the potentialities of the deposited material for capacitive switches applications.

  8. Dielectric dispersion of BaxSr1-xTiO3 thin film with parallel-plate and coplanar interdigital electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yu; Song, Qing; Xu, Feng; Sheng, Su; Wang, Peng; Ong, C. K.

    2009-03-01

    Ferroelectric BaxSr1-xTiO3 (BST) thin films with x = 0.25 and 0.5 were grown by pulsed laser deposition on single crystal LaAlO3 and Pt/Ti/SiO2/Si substrates, respectively. Capacitors were then fabricated from the BST thin films based on coplanar interdigital electrodes (CIEs) and parallel-plate electrodes (PPEs). The dielectric properties of the BST film with CIE and PPE were investigated and compared over a wide frequency range from 100 Hz to 10 GHz. The dielectric dispersion in PPE configuration, caused by the interfacial polarization in film/electrode interfaces, exhibited a strong dependence on frequency. However, the permittivity ɛCIE in CIE configuration shows a gentle variation with the frequency indicating interfacial polarization substantially suppressed. The influence upon the dielectric properties of the columnar BST grains due to the use of different forms of electrodes was discussed.

  9. Investigation of tow-step electrical degradation behavior in a-InGaZnO thin-film transistors with Sm2O3 gate dielectrics

    NASA Astrophysics Data System (ADS)

    Chen, Fa-Hsyang; Her, Jim-Long; Hung, Meng-Ning; Pan, Tung-Ming

    2013-07-01

    We investigate the electrical stress-induced instability in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with Sm2O3 gate dielectrics. Tow-step electrical degradation behavior in Sm2O3 a-IGZO TFT devices was found under high gate and drain voltage stress during 1000 s. A typical small positive shift followed by an unusual negative shift of threshold voltage is characterized in our TFT devices. We believe that the positive shift of the threshold voltage is due to charge trapping in the gate dielectric and/or at the channel/dielectric interfaces, while the negative shift of threshold voltage can be attributed to the generation of extra electrons from oxygen vacancies in the a-IGZO channel. We suggested that the amount of oxygen vacancies and the quality of the high-κ gate dielectric probably affect the degradation behavior of a-IGZO TFT devices.

  10. Synthesis and frequency-dependent dielectric properties of epitaxial La1.875Sr0.125NiO4 thin films

    SciTech Connect

    Podpirka, Adrian; Tselev, Alexander; Ramanathan, Shriram

    2012-01-01

    Epitaxial thin films of La{sub 1.875}Sr{sub 0.125}NiO{sub 4} (lanthanum strontium nickelate, LSNO) have been synthesized by sputtering onto single crystal oxide substrates and their structural and dielectric properties are reported. High dielectric constants on the order of 10{sup 7} have been measured up to 1 MHz in interdigitated capacitors with a frequency dependence that correlates with substrate imposed strain and texture. The observation of a high dielectric constant albeit with moderate loss tangent at high frequencies motivates further explorations of charge ordering phenomena in such complex oxides and serves to examine size effects on dielectric response by comparison with studies on bulk single crystal LSNO.

  11. Low-voltage Organic Thin Film Transistors (OTFTs) with Solution-processed High-k Dielectric cum Interface Engineering

    NASA Astrophysics Data System (ADS)

    Su, Yaorong

    Although impressive progress has been made in improving the performance of organic thin film transistors (OTFTs), the high operation voltage resulting from the low gate areal capacitance of traditional SiO 2 remains a severe limitation that hinders OTFTs' development in practical applications. In this regard, developing new materials with high- k characteristics at low cost is of great scientific and technological importance in the area of both academia and industry. In this thesis, we first describe a simple solution-based method to fabricate a high-k bilayer Al2Oy/TiOx (ATO) dielectric system at low temperature. Then the dielectric properties of the ATO are characterized and discussed in detail. Furthermore, by employing the high-k ATO as gate dielectric, low-voltage copper phthalocyanine (CuPc) based OTFTs are successfully developed. Interestingly, the obtained low-voltage CuPc TFT exhibits outstanding electrical performance, which is even higher than the device fabricated on traditional low-k SiO2. The above results seem to be contradictory to the reported results due to the fact that high-k usually shows adverse effect on the device performance. This abnormal phenomenon is then studied in detail. Characterization on the initial growth shows that the CuPc molecules assemble in a "rod-like" nano crystal with interconnected network on ATO, which probably promotes the charge carrier transport, whereas, they form isolated small islands with amorphous structure on SiO2. In addition, a better metal/organic contact is observed on ATO, which benefits the charge carrier injection. Our studies suggest that the low-temperature, solution-processed high-k ATO is a promising candidate for fabrication of high-performance, low-voltage OTFTs. Furthermore, it is well known that the properties of the dielectric/semiconductor and electrode/semiconductor interfaces are crucial in controlling the electrical properties of OTFTs. Hence, investigation the effects of interfaces

  12. Collaboration of the NASA Glenn Research Center and Rolls-Royce Developed Thin Film Multilayered Dielectrics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Busfield, A. Rachel; Thomas, Valarie D.; Blaha, Charles A.

    2003-01-01

    The use of thin films to electrically insulate thin film sensors on engine components minimizes the intrusiveness of the sensors and allows a more accurate measurement of the environment. A variety of insulating films were investigated for preventing electrical shorting caused by insulator failure between the sensor and the component. By alternating layers of sputtered high-temperature ceramics, a sequence of insulating layers was devised that (1) prevents pinholes from forming completely through the insulator and (2) maintains high electrical resistivity at high temperatures. The total thickness is only a fraction of that needed for conventional insulating techniques. The Sensors and Electronics Technology Branch of the NASA Glenn Research Center has an in-house effort to develop thin film sensors for surface measurement in propulsion system research. Thin film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner (less than 10 mm thick) than wire or foil sensors. The thin film sensors are thus much less disturbing to the operating environment and have a minimal impact on the physical characteristics of the supporting component. To further this research, NASA Glenn and Rolls-Royce (Derby, UK), with assistance from the Ohio Aerospace Institute (OAI) and the Akima Corporation, pursued a joint investigation using multilayered thin film dielectrics as a reliable insulator in harsh environments. The use of a multilayered scheme is thought to be promising for the fabrication of electrically insulating thin films. A major cause of conduction in thin film dielectrics is the presence of defects, such as pinholes, that propagate through the film to the underlying substrate surface. By alternating the insulating material, each new growth pattern would deviate from the previous one, eliminating direct pathways for conduction to the substrate. The film depositions and testing were conducted in the Instrument

  13. In situ synthesis of Ni(OH)2 nanobelt modified electroactive poly(vinylidene fluoride) thin films: remarkable improvement in dielectric properties.

    PubMed

    Thakur, Pradip; Kool, Arpan; Bagchi, Biswajoy; Hoque, Nur Amin; Das, Sukhen; Nandy, Papiya

    2015-05-21

    A facile and low cost synthesis of Ni(OH)2 nanobelt (NB) modified electroactive poly(vinylidene fluoride) (PVDF) thin films with excellent dielectric properties has been reported via in situ formation of Ni(OH)2 NBs in the PVDF matrix. The formation and morphology of the NBs are confirmed by UV-visible spectroscopy and field emission scanning electron microscopy respectively. A remarkable improvement in electroactive β phase nucleation (∼82%) and the dielectric constant (ε ∼ 3.1 × 10(6) at 20 Hz) has been observed in the nanocomposites (NCs). The interface between the NBs and the polymer matrix plays a crucial role in the enhancement of the electroactive β phase and the dielectric properties of thin films. Strong interaction via hydrogen bonds between Ni(OH)2 NBs and the PVDF matrix is the main reason for enhancement in β phase crystallization and improved dielectric properties. The NC thin films can be utilized for potential applications as high energy storage devices like supercapacitors, solid electrolyte batteries, self-charging power cells, piezoelectric nanogenerators, and thin film transistors and sensors. PMID:25915166

  14. Reduction of scattering using thin all-dielectric shells designed by stochastic optimizer

    SciTech Connect

    Ladutenko, Konstantin; Peña-Rodríguez, Ovidio; Melchakova, Irina; Yagupov, Ilya; Belov, Pavel

    2014-11-14

    Adaptive differential evolution method has been used for optimization of all-dielectric multilayer coatings in order to reduce total scattering from spherical targets. The optimal refractive index profiles have been found for various sizes of targets and thicknesses of coatings. Few profile types that appear to be optimal for various geometrical parameters have been identified. Scattering of the target with diameter of 0.75 λ has been reduced by 85% using 0.16 λ thick coating formed by isotropic dielectric materials. For larger targets, scattering reduction becomes smaller, but it still reaches 50% for targets with the diameter of 1.5 λ. The obtained designs provide a route to implement cloaking without the use of magnetic and anisotropic metamaterials.

  15. Development of New Electrode System for High Field Dielectric Properties Measurement Using Evaporated Polypropylene Thin Guard Film

    NASA Astrophysics Data System (ADS)

    Fujii, Masayuki; Tohyama, Kazuyuki; Tokoro, Tetsuro; Mizuno, Yukio; Nagao, Masayuki; Kosaki, Masamitsu

    Non-polar polymers such as polyethylene (PE) and polypropylene (PP) are widely used as very important electrical insulating and dielectric materials. They are used in the increasingly high AC electric field strength region approaching to the limit of electrical breakdown strength of the materials. Therefore the study of high-field dielectric property is very important in terms of understanding the AC breakdown mechanism of materials. A three-terminals electrode system with a guard film (new type electrode system) was developed in our laboratory for the precise measurement of high-field tanδ, where the guard film was used to reduce the disturbance of electric field around the edge of a main electrode. However, minute air sometimes steals between a sample film and the guard film. The air sometimes generates partial discharge in the high electric field region. Therefore, when the sample had minute air, the new type electrode system was limited under 100kVrms/mm application that didn't reach to an intrinsic breakdown strength of the 30μm-thick sample. We tried to improve the new electrode system without minute air between a sample film and the guard film. We also tried to make very thin guard film to reduce the field disturbance at the edge of main electrode. In this paper a PP-guard film on a biaxially oriented polypropylene (BOPP) film was made by evaporation. This improvement of the electrode system using the evaporated PP-guard film was in success so that high-field dielectric properties of BOPP film could be measured up to near the intrinsic breakdown field of the sample.

  16. Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.

    2016-04-01

    We report for the first time the microwave characterization of 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 (BNT-BT0.08) ferroelectric thin films fabricated by the sol-gel method and integrated in both planar and out-of-plane tunable capacitors for agile high-frequency applications and particularly on the WiFi frequency band from 2.4 GHz to 2.49 GHz. The permittivity and loss tangent of the realized BNT-BT0.08 layers have been first measured by a resonant cavity method working at 12.5 GHz. Then, we integrated the ferroelectric material in planar inter-digitated capacitors (IDC) and in out-of-plane metal-insulator-metal (MIM) devices and investigated their specific properties (dielectric tunability and losses) on the whole 100 MHz-15 GHz frequency domain. The 3D finite-elements electromagnetic simulations of the IDC capacitances are fitting very well with their measured responses and confirm the dielectric properties determined with the cavity method. While IDCs are not exhibiting an optimal tunability, the MIM capacitor devices with optimized Ir/MgO(100) bottom electrodes demonstrate a high dielectric tunability, of 30% at 2.45 GHz under applied voltages as low as 10 V, and it is reaching 50% under 20 V voltage bias at the same frequency. These high-frequency properties of the MIM devices integrating the BNT-BT0.08 films, combining a high tunability under low applied voltages indicate a wide integration potential for tunable devices in the microwave domain and particularly at 2.45 GHz, corresponding to the widely used industrial, scientific, and medical frequency band.

  17. Layered CU-based electrode for high-dielectric constant oxide thin film-based devices

    DOEpatents

    Auciello, Orlando

    2010-05-11

    A layered device including a substrate; an adhering layer thereon. An electrical conducting layer such as copper is deposited on the adhering layer and then a barrier layer of an amorphous oxide of TiAl followed by a high dielectric layer are deposited to form one or more of an electrical device such as a capacitor or a transistor or MEMS and/or a magnetic device.

  18. Chemical Treatment of Low-k Dielectric Surfaces for Patterning of Thin Solid Films in Microelectronic Applications.

    PubMed

    Guo, Lei; Qin, Xiangdong; Zaera, Francisco

    2016-03-01

    A protocol has been developed to selectively process low-k SiCOH dielectric substrates in order to activate or deactivate them toward the deposition of thin solid films by chemical (CVD or ALD) means. The original SiCOH surfaces are hydrophobic, an indication that they are alkyl- rather than silanol-terminated and that, consequently, they are fairly unreactive. However, the chemical-mechanical polishing (CMP) sometimes done during microelectronics fabrication renders them hydrophilic and reactive. It was shown here that silylation of the CMP-treated surfaces with any of a number of well-known silylation agents such as HMDS, ODTS, or OTS caps the reactive silanol surface groups and turns them back to being hydrophilic and unreactive. Further exposure of any of the passivated surfaces to a combination of ozone and UV radiation reinstates their hydrophilicity and chemical activity. Importantly, it was also demonstrated that all these changes could be induced without altering the original mechanical, optical, or electrical properties of the samples: atomic force microscopy (AFM) images show no increase in roughness, ellipsometry measurements yield the same values for the index of refraction and dielectric constant, and infrared absorption spectroscopy attests to the preservation of the organic fragments present in the original SiCOH samples. The chemical selectivity of the resulting surfaces was tested for the atomic layer deposition (ALD) of HfO2 films, which could be grown only on the UV/O3 treated substrates. PMID:26956428

  19. Dielectric relaxation and conduction mechanisms in sprayed TiO2 thin films as a function of the annealing temperature

    NASA Astrophysics Data System (ADS)

    Juma, Albert; Acik, Ilona Oja; Mere, Arvo; Krunks, Malle

    2016-04-01

    The electrical properties of TiO2 thin films deposited by chemical spray pyrolysis onto Si substrates were investigated in the metal-oxide-semiconductor (MOS) configuration using current-voltage characteristics and impedance spectroscopy. The electrical properties were analyzed in relation to the changes in microstructure induced during annealing in air up to a temperature of 950 °C. Anatase to rutile transformation started after annealing at 800 °C, and at 950 °C, only the rutile phase was present. The dielectric relaxation strongly depended upon the microstructure of TiO2 with the dielectric constant for the anatase phase between 45 and 50 and that for the rutile phase 123. Leakage current was reduced by three orders of magnitude after annealing at 700 °C due to the densification of the TiO2 film. A double-logarithmic plot of the current-voltage characteristics showed a linear relationship below 0.12 V consistent with Ohmic conduction, while space-charge-limited conduction mechanism as described by Child's law dominated for bias voltages above 0.12 V.

  20. Impact of reductive N2/H2 plasma on porous low-dielectric constant SiCOH thin films

    NASA Astrophysics Data System (ADS)

    Cui, Hao; Carter, Richard J.; Moore, Darren L.; Peng, Hua-Gen; Gidley, David W.; Burke, Peter A.

    2005-06-01

    Porous low-dielectric constant (low-κ) SiCOH thin films deposited using a plasma-enhanced chemical-vapor deposition have been comprehensively characterized before and after exposure to a reactive-ion-etch-type plasma of N2 and H2 chemistry. The low-κ film studied in this work is a carbon-doped silicon oxide film with a dielectric constant (κ) of 2.5. Studies show that a top dense layer is formed as a result of significant surface film densification after exposure to N2/H2 plasma while the underlying bulk layer remains largely unchanged. The top dense layer is found to seal the porous bulk SiCOH film. SiCOH films experienced significant thickness reduction, κ increase, and leakage current degradation after plasma exposure, accompanied by density increase, pore collapse, carbon depletion, and moisture content increase in the top dense layer. Both film densification and removal processes during N2/H2 plasma treatment were found to play important roles in the thickness reduction and κ increase of this porous low-κ SiCOH film. A model based upon mutually limiting film densification and removal processes is proposed for the continuous thickness reduction during plasma exposure. A combination of surface film densification, thickness ratio increase of top dense layer to bulk layer, and moisture content increase results in the increase in κ value of this SiCOH film.

  1. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates

    PubMed Central

    Sercombe, D.; Schwarz, S.; Pozo-Zamudio, O. Del; Liu, F.; Robinson, B. J.; Chekhovich, E. A.; Tartakovskii, I. I.; Kolosov, O.; Tartakovskii, A. I.

    2013-01-01

    Two-dimensional (2D) compounds provide unique building blocks for novel layered devices and hybrid photonic structures. However, large surface-to-volume ratio in thin films enhances the significance of surface interactions and charging effects requiring new understanding. Here we use micro-photoluminescence (PL) and ultrasonic force microscopy to explore the influence of the dielectric environment on optical properties of a few monolayer MoS2 films. PL spectra for MoS2 films deposited on SiO2 substrates are found to vary widely. This film-to-film variation is suppressed by additional capping of MoS2 with SiO2 and SixNy, improving mechanical coupling of MoS2 with surrounding dielectrics. We show that the observed PL non-uniformities are related to strong variation in the local electron charging of MoS2 films. In completely encapsulated films, negative charging is enhanced leading to uniform optical properties. Observed great sensitivity of optical characteristics of 2D films to surface interactions has important implications for optoelectronics applications of layered materials. PMID:24336152

  2. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates.

    PubMed

    Sercombe, D; Schwarz, S; Del Pozo-Zamudio, O; Liu, F; Robinson, B J; Chekhovich, E A; Tartakovskii, I I; Kolosov, O; Tartakovskii, A I

    2013-12-12

    Two-dimensional (2D) compounds provide unique building blocks for novel layered devices and hybrid photonic structures. However, large surface-to-volume ratio in thin films enhances the significance of surface interactions and charging effects requiring new understanding. Here we use micro-photoluminescence (PL) and ultrasonic force microscopy to explore the influence of the dielectric environment on optical properties of a few monolayer MoS2 films. PL spectra for MoS2 films deposited on SiO2 substrates are found to vary widely. This film-to-film variation is suppressed by additional capping of MoS2 with SiO2 and Si(x)N(y), improving mechanical coupling of MoS2 with surrounding dielectrics. We show that the observed PL non-uniformities are related to strong variation in the local electron charging of MoS2 films. In completely encapsulated films, negative charging is enhanced leading to uniform optical properties. Observed great sensitivity of optical characteristics of 2D films to surface interactions has important implications for optoelectronics applications of layered materials.

  3. Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1-xN thin films

    SciTech Connect

    Zukauskaite, Agne; Wingqvist, Gunilla; Palisaitis, Justinas; Jensen, Jens; Persson, Per; Matloub, Ramin; Muralt, Paul; Kim, Yunseok; Birch, Jens; Hultman, Lars

    2012-01-01

    Piezoelectric wurtzite ScxAl1 xN (x = 0, 0.1, 0.2, 0.3) thin films were epitaxially grown by reactive magnetron co-sputtering from elemental Sc and Al targets. Al2O3(0001) wafers with TiN(111) seed and electrode layers were used as substrates. X-ray diffraction shows that an increase in the Sc content results in the degradation of the crystalline quality. Samples grown at 400 C possess true dielectric behavior with quite low dielectric losses and the leakage current is negligible. For ScAlN samples grown at 800 C, the crystal structure is poor and leakage current is high. Transmission electron microscopy with energy dispersive x-ray spectroscopy mapping shows a mass separation into ScN-rich and AlN-rich domains for x 0.2 when substrate temperature is increased from 400 to 800 C. The piezoelectric response of epitaxial ScxAl1 xN films measured by piezoresponse force microscopy and double beam interferometry shows up to 180% increase by the addition of Sc up to x = 0.2 independent of substrate temperature, in good agreement with previous theoretical predictions based on density-functional theory.

  4. Tip-to-Sample Distance Dependence of dC/dZ Imaging in Thin Dielectric Film Measurement

    NASA Astrophysics Data System (ADS)

    Naitou, Yuichi; Ando, Atsushi; Ogiso, Hisato; Kamohara, Siro; Yano, Fumiko; Nishida, Akio

    2008-02-01

    We have developed scanning capacitance microscopy (SCM) with a self-sensing conductive probe that can be used to obtain static capacitance (dC/dZ) images by virtue of the vertical vibration of the probe tip. This technique for dC/dZ imaging can delineate features, such as thickness variations or fixed charge distributions, within a dielectric film and provide a lateral resolution comparable to that of simultaneously obtained topography images. In this work, we have experimentally revealed that the lateral resolution of a dC/dZ image is insensitive to the probe tip amplitude, and the sensitivity of dC/dZ images strongly depends on the distance of the gap between the probe tip and the sample surface. These results and the force-distance characteristics of the self-sensing conductive probe indicate that the dC/dZ signal is mostly determined by the probe tip-sample capacitance and also that the spatial resolution of dC/dZ imaging is not affected by the surface-adsorbed meniscus layer under a vacuum environment measurement. Finally, we have demonstrated sub-10-nm spatial resoluton in dC/dZ imaging for thin dielectric film measurement.

  5. Chemical Treatment of Low-k Dielectric Surfaces for Patterning of Thin Solid Films in Microelectronic Applications.

    PubMed

    Guo, Lei; Qin, Xiangdong; Zaera, Francisco

    2016-03-01

    A protocol has been developed to selectively process low-k SiCOH dielectric substrates in order to activate or deactivate them toward the deposition of thin solid films by chemical (CVD or ALD) means. The original SiCOH surfaces are hydrophobic, an indication that they are alkyl- rather than silanol-terminated and that, consequently, they are fairly unreactive. However, the chemical-mechanical polishing (CMP) sometimes done during microelectronics fabrication renders them hydrophilic and reactive. It was shown here that silylation of the CMP-treated surfaces with any of a number of well-known silylation agents such as HMDS, ODTS, or OTS caps the reactive silanol surface groups and turns them back to being hydrophilic and unreactive. Further exposure of any of the passivated surfaces to a combination of ozone and UV radiation reinstates their hydrophilicity and chemical activity. Importantly, it was also demonstrated that all these changes could be induced without altering the original mechanical, optical, or electrical properties of the samples: atomic force microscopy (AFM) images show no increase in roughness, ellipsometry measurements yield the same values for the index of refraction and dielectric constant, and infrared absorption spectroscopy attests to the preservation of the organic fragments present in the original SiCOH samples. The chemical selectivity of the resulting surfaces was tested for the atomic layer deposition (ALD) of HfO2 films, which could be grown only on the UV/O3 treated substrates.

  6. Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres.

    PubMed

    Yang, Zhenhai; Shang, Aixue; Qin, Linling; Zhan, Yaohui; Zhang, Cheng; Gao, Pingqi; Ye, Jichun; Li, Xiaofeng

    2016-04-01

    We propose a design of crystalline silicon thin-film solar cells (c-Si TFSCs, 2 μm-thick) configured with partially embedded dielectric spheres on the light-injecting side. The intrinsic light trapping and photoconversion are simulated by the complete optoelectronic simulation. It shows that the embedding depth of the spheres provides an effective way to modulate and significantly enhance the optical absorption. Compared to the conventional planar and front sphere systems, the optimized partially embedded sphere design enables a broadband, wide-angle, and strong optical absorption and efficient carrier transportation. Optoelectronic simulation predicts that a 2 μm-thick c-Si TFSC with half-embedded spheres shows an increment of more than 10  mA/cm2 in short-circuit current density and an enhancement ratio of more than 56% in light-conversion efficiency, compared to the conventional planar counterparts.

  7. Mechanical and dielectric characterization of lead zirconate titanate(PZT)/polyurethane(PU) thin film composite for energy harvesting

    NASA Astrophysics Data System (ADS)

    Aboubakr, S.; Rguiti, M.; Hajjaji, A.; Eddiai, A.; Courtois, C.; d'Astorg, S.

    2014-04-01

    The Lead Zirconate titanate (PZT) ceramic is known by its piezoelectric feature, but also by its stiffness, the use of a composite based on a polyurethane (PU) matrix charged by a piezoelectric material, enable to generate a large deformation of the material, therefore harvesting more energy. This new material will provide a competitive alternative and low cost manufacturing technology of autonomous systems (smart clothes, car seat, boat sail, flag ...). A thin film of the PZT/PU composite was prepared using up to 80 vol. % of ceramic. Due to the dielectric nature of the PZT, inclusions of this one in a PU matrix raises the permittivity of the composite, on other hand this latter seems to decline at high frequencies.

  8. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays.

    PubMed

    Yan, Yinzhou; Zeng, Yong; Wu, Yan; Zhao, Yan; Ji, Lingfei; Jiang, Yijian; Li, Lin

    2014-09-22

    Here we report strong enhancement in ultraviolet-photoluminescence (UV-PL) of ZnO thin films (grown on a SiC substrate) covered by monolayer dielectric fused silica or polystyrene microspheres with diameters ranging from 0.5 to 7.5 μm. The excited light scatted in the film is collected by the microspheres to stimulate whispering gallery modes, by which the internal quantum efficiency of spontaneous emission is enhanced. Meanwhile, the microsphere monolayer efficiently couples emitted light energy from the luminescent film to the far-field for PL detection. A UV-PL enhancement up to 10-fold via a 5-µm-diameter microsphere monolayer is experimentally demonstrated in this work. The unique optical property of microsphere in photoluminescence (PL) enhancement makes them promising for high-sensitivity PL measurements as well as design of photoelectric devices with low loss and high efficiency. PMID:25321823

  9. Comment on: "Characterization of Microroughness Parameters in Titanium Nitride Thin Films Grown by DC Magnetron Sputtering" [J Fusion Energ DOI 10.1007/s10894-012-9510-z

    NASA Astrophysics Data System (ADS)

    Solaymani, Shahram; Ghaderi, Atefeh; Nezafat, Negin Beryani

    2012-12-01

    In recent article [Ali Gelali. Azin Ahmadpourian. Reza Bavadi. M. R. Hantehzadeh. Arman Ahmadpourian. J Fusion Energ DOI 10.1007/s10894-012-9510-z], Ali Geleli et al. studied the PSD and RMS Roughness parameters in Titanium Nitride thin films by AFM data and used the computed fractal dimension value of micrographs to describe the surface morphology of thin films. Here, the correct form of equations and relationship between PSD and RMS will be discussed.

  10. Origin of mobility enhancement by chemical treatment of gate-dielectric surface in organic thin-film transistors: Quantitative analyses of various limiting factors in pentacene thin films

    NASA Astrophysics Data System (ADS)

    Matsubara, R.; Sakai, Y.; Nomura, T.; Sakai, M.; Kudo, K.; Majima, Y.; Knipp, D.; Nakamura, M.

    2015-11-01

    For the better performance of organic thin-film transistors (TFTs), gate-insulator surface treatments are often applied. However, the origin of mobility increase has not been well understood because mobility-limiting factors have not been compared quantitatively. In this work, we clarify the influence of gate-insulator surface treatments in pentacene thin-film transistors on the limiting factors of mobility, i.e., size of crystal-growth domain, crystallite size, HOMO-band-edge fluctuation, and carrier transport barrier at domain boundary. We quantitatively investigated these factors for pentacene TFTs with bare, hexamethyldisilazane-treated, and polyimide-coated SiO2 layers as gate dielectrics. By applying these surface treatments, size of crystal-growth domain increases but both crystallite size and HOMO-band-edge fluctuation remain unchanged. Analyzing the experimental results, we also show that the barrier height at the boundary between crystal-growth domains is not sensitive to the treatments. The results imply that the essential increase in mobility by these surface treatments is only due to the increase in size of crystal-growth domain or the decrease in the number of energy barriers at domain boundaries in the TFT channel.

  11. Piezoelectric and Dielectric Properties of Multilayered BaTiO3/(Ba,Ca)TiO3/CaTiO3 Thin Films.

    PubMed

    Zhu, Xiao Na; Gao, Ting Ting; Xu, Xing; Liang, Wei Zheng; Lin, Yuan; Chen, Chonglin; Chen, Xiang Ming

    2016-08-31

    Highly oriented multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films were fabricated on Nb-doped (001) SrTiO3 (Nb:STO) substrates by pulsed laser deposition. The configurations of multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films are designed with the thickness ratio of 1:1:1 and 2:1:1 and total thickness ∼300 nm. Microstructural characterization by X-ray diffraction indicates that the as-deposited thin films are highly c-axis oriented and large in-plane strain is determined in BaTiO3 and CaTiO3 layers. Piezoresponse force microscopy (PFM) studies reveal an intense in-plane polarization component, whereas the out-of-plane shows inferior phase contrast. The optimized combination is found to be the BaTiO3-(Ba0.85Ca0.15)TiO3-CaTiO3 structure with combination ratio 2:1:1, which displays the largest domain switching amplitude under DC electric field, the largest room-temperature dielectric constant ∼646, a small dielectric loss of 0.03, and the largest dielectric tunability of ∼50% at 400 kV/cm. These results suggest that the enhanced dielectric and tunability performance are greatly associated with the large in-plane polarization component and domain switching.

  12. Piezoelectric and Dielectric Properties of Multilayered BaTiO3/(Ba,Ca)TiO3/CaTiO3 Thin Films.

    PubMed

    Zhu, Xiao Na; Gao, Ting Ting; Xu, Xing; Liang, Wei Zheng; Lin, Yuan; Chen, Chonglin; Chen, Xiang Ming

    2016-08-31

    Highly oriented multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films were fabricated on Nb-doped (001) SrTiO3 (Nb:STO) substrates by pulsed laser deposition. The configurations of multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films are designed with the thickness ratio of 1:1:1 and 2:1:1 and total thickness ∼300 nm. Microstructural characterization by X-ray diffraction indicates that the as-deposited thin films are highly c-axis oriented and large in-plane strain is determined in BaTiO3 and CaTiO3 layers. Piezoresponse force microscopy (PFM) studies reveal an intense in-plane polarization component, whereas the out-of-plane shows inferior phase contrast. The optimized combination is found to be the BaTiO3-(Ba0.85Ca0.15)TiO3-CaTiO3 structure with combination ratio 2:1:1, which displays the largest domain switching amplitude under DC electric field, the largest room-temperature dielectric constant ∼646, a small dielectric loss of 0.03, and the largest dielectric tunability of ∼50% at 400 kV/cm. These results suggest that the enhanced dielectric and tunability performance are greatly associated with the large in-plane polarization component and domain switching. PMID:27514235

  13. A tunneling current density model for ultra thin HfO2 high-k dielectric material based MOS devices

    NASA Astrophysics Data System (ADS)

    Maity, Niladri Pratap; Maity, Reshmi; Thapa, R. K.; Baishya, Srimanta

    2016-07-01

    In this paper, an analytical model for evaluation of tunneling current density of ultra thin MOS devices is presented. The impacts of the promising high-k dielectric material, HfO2 on the current density model have been carried out. In this work, improvement in the results is brought in by taking into account the barrier height lowering due to the image force effect. The considered voltage range is from 0 to ψ1/e i.e., 0 < V < ψ1/e, where ψ1 is the barrier height at the interface of metal and the oxide. Initially we are neglecting the image force effect for a MOS device consisting asymmetric barrier. Later, image force effect of ultra thin oxide layer has been introduced for practical potential barrier by superimposing the potential barrier on the trapezoidal barrier. Theoretical predictions are compared with the results obtained by the 2-D numerical device simulator ATLAS and published experimental results. Excellent agreements among the three are observed.

  14. Infra-red spectral microscopy of standing-wave resonances in single metal-dielectric-metal thin-film cavity

    NASA Astrophysics Data System (ADS)

    Nath, Janardan; Panjwani, Deep; Khalilzadeh-Rezaie, Farnood; Yesiltas, Mehmet; Smith, Evan M.; Ginn, James C.; Shelton, David J.; Hirschmugl, Carol; Cleary, Justin W.; Peale, Robert E.

    2015-09-01

    Resonantly absorbing thin films comprising periodically sub-wavelength structured metal surface, dielectric spacer, and metal ground plane are a topic of current interest with important applications. These structures are frequently described as "metamaterials", where effective permittivity and permeability with dispersion near electric and magnetic resonances allow impedance matching to free space for maximum absorption. In this paper, we compare synchrotron-based infrared spectral microscopy of a single isolated unit cell and a periodic array, and we show that the resonances have little to do with periodicity. Instead, the observed absorption spectra of usual periodically structured thin films are best described as due to standing-wave resonances within each independent unit cell, rather than as due to effective optical constants of a metamaterial. The effect of having arrays of unit cells is mainly to strengthen the absorption by increasing the fill factor, and such arrays need not be periodic. Initial work toward applying the subject absorbers to room-temperature bolometer arrays is presented.

  15. Effect of phase transformation on optical and dielectric properties of pulsed laser deposited ZnTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.; Salim, Mohammad; Kaur, Davinder

    2016-04-01

    Zinc titanate (ZnTiO3) ceramics were prepared by conventional solid state reaction method using ZnO and TiO2 in a molar ratio of 1:1 with optimized parameters. It was found that the sample sintered at 800 °C for 12 h exhibit single hexagonal phase of ZnTiO3. ZnTiO3 thin film have been deposited on ITO coated glass substrate using pulsed laser deposition (PLD) technique employing a KrF laser source (λ = 248 nm). In present work, the effect of substrate temperature, which leads to transformation of hexagonal phase to cubic phase, has been studied. The XRD pattern revealed that pure hexagonal phase of ZnTiO3 appear upto 400 °C and more increment in substrate temperature leads to transformation of hexagonal phase to cubic phase. We have observed the blue shift in absorption edge at lower temperature. When the substrate temperature increases from 300 to 400 °C the band gap decreases due to strong hexagonal phase, but more increment in substrate temperature increases the band gap causes by change of phase from hexagonal to cubic. The dielectric constant of ZnTiO3 thin film increases as the substrate temperature increases due to the enhancement in crystallinity and improved morphology.

  16. Dielectric thin-films by ion-beam sputtering deposition for III-V based infrared optoelectronic imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean

    The growing technological industry is demanding the development of powerful and smaller devices. Dielectric thin-films can play an important role to help push towards achieving these goals. However, their advantage of high-quality material and low material costs compared to bulk can only be achieved with consideration of the technique, conditions, and parameters. The sensitivity makes every step in the process extremely important, beginning from substrate preparation to the first initial layers of growth and ending with the testing/modeling of the devices. Further, not all applications want bulk-like properties, so the ability to adjust and fine tune the material characteristics opens up a wide range of opportunities with the advancements and can drive the power of the devices to an ultimate level. This work provides the motivation, theoretical basis, and experimental results for performance enhancement of optoelectronic devices through the use of high-quality dielectric thin-films by ion-beam sputtering deposition (IBSD). The advantages and disadvantages to this technique are demonstrated and compared to others. The optimization processes, relationships, and motivation of using seven different thin-film materials have been detailed and provided. Using IBSD, the performance improvements were demonstrated on infrared lasers and detectors. For lasers, a 170% increase in maximum output power was achieved using near-0% percent anti-reflection coatings (AR) and near-100% high-reflection (HR) coatings. Following, wide tunability was achieved by using the structures in an external cavity laser system, showing nearly a three-fold improvement in tuning range. Also, structurally robust lasers were achieved with a custom-tailored HR structure designed for damage resistance to high output power density operation, showing over 14W of peak output power for MOCVD lasers. For infrared photodetectors, over a 4 orders of magnitude decrease in current density and zero-bias resistance

  17. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Zhefeng, Li; Xianye, Luo

    2014-10-01

    This study explores a strategy of using the phosphonic acid derivative (11-((12-(anthracen-2-yl)dodecyl)oxy)-11-oxoundecyl) phosphonic acid (ADO-phosphonic acid) as self-assembled monolayers (SAMs) on a Si/SiO2 surface to induce the crystallization of rubrene in vacuum deposited thin film transistors, which showed a field-effect mobility as high as 0.18 cm2/(V·s). It is found that ADO-phosphonic acid SAMs play a unique role in modulating the morphology of rubrene to form a crystalline film in the thin-film transistors.

  18. The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Khan, Asif Islam; Yu, Pu; Trassin, Morgan; Lee, Michelle J.; You, Long; Salahuddin, Sayeef

    2014-07-01

    We study the effects of strain relaxation on the dielectric properties of epitaxial 40 nm Pb(Zr0.2Ti0.8)TiO3 (PZT) films. A significant increase in the defect and dislocation density due to strain relaxation is observed in PZT films with tetragonality c/a < 1.07 grown on SrTiO3 (001) substrates, which results in significant frequency dispersion of the dielectric constant and strong Rayleigh type behavior in those samples. This combined structural-electrical study provides a framework for investigating strain relaxation in thin films and can provide useful insights into the mechanisms of fatigue in ferroelectric materials.

  19. Fabrication and characterization of micromachined dielectric thin films and temperature sensors using thermoluminescence

    NASA Astrophysics Data System (ADS)

    Kim, Sangho Sam

    High-power laser technology has a number of applications, whether for the military (i.e., anti-missile weaponry) or for material processing, medical surgery, laser-induced nuclear fusion, and high-density data storage. However, external obstacles could cause a laser to problematically change its direction. Optical components such as mirrors already address this problem by deflecting a laser beam, but can be damaged easily due to the intensity of the laser. Therefore, this dissertation examines how to improve reliability of high power laser application systems by three significant standards. First, we demonstrate that an atomic layer deposition (ALD) of Al2O3 can stabilize novel dielectric optical mirrors composed of SiO2 nanorods, whose porosity makes it attractive for use as a low refractive index material. Such a deposition can stabilize material properties in dry versus humid atmospheres, where both the refractive index and coefficient of thermal expansion (CTE) vary dramatically. This encapsulation ability is demonstrated in dielectric multilayers as a Distributed Bragg Reflector (DBR). Second, we show that the difference in hydroxyl signatures of micromachined dielectric membranes can make detection of optical materials' laser damage more accurate. This signature difference, appearing as the decrease in post-laser absorption peaks associated with hydroxyl groups (OH), is measured by Fourier transform infrared spectroscopy and corresponds to regions of high fluence from a Nd:YAG laser. This detection technique will be useful to determine the lifespan of the optical components used in a high power laser. Third, we find that heterogeneous thermoluminescent (TL) multilayers composed of LiF:Mg,Ti and CaF2:Dy with Kapton as an interlayer can enhance reconstruction of laser heating events through thermal gradients that penetrate deep into a material, thereby preserving memory of the temperature history of the surface. Using the finite-difference time-domain method

  20. Dielectric studies of boron sub phthalocyanine chloride thin films by admittance spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Kalia, Sameer; Mahajan, Aman; Neerja, Sharma, Anshul Kumar; Kumar, Sanjeev; Bedi, R. K.

    2016-05-01

    The dielectric properties of Boron Sub Phthalocyanine Chloride (Cl-SubPc) thermally deposited on ITO substrate have been studied using admittance spectroscopic techniques. The I-V and capacitance -frequency (C-F) studies at various bias voltages reveal that the mobility of charge carriers decrease with bias voltage, however the conduction phenomenon still remain hopping in nature. From the differential susceptance curve, the contribution of the Schottky barrier contact in the charge carrier concentration was found to be absent. The mobility of charge carriers have been determined using differential susceptance variation and from the phase of admittance curve. The values obtained in two cases have been found to be in agreement with each other.

  1. Dielectric particle and void resonators for thin film solar cell textures.

    PubMed

    Mann, Sander A; Grote, Richard R; Osgood, Richard M; Schuller, Jon A

    2011-12-01

    Using Mie theory and Rigorous Coupled Wave Analysis (RCWA) we compare the properties of dielectric particle and void resonators. We show that void resonators-low refractive index inclusions within a high index embedding medium-exhibit larger bandwidth resonances, reduced peak scattering intensity, different polarization anisotropies, and enhanced forward scattering when compared to their particle (high index inclusions in a low index medium) counterparts. We evaluate amorphous silicon solar cell textures comprising either arrays of voids or particles. Both designs support substantial absorption enhancements (up to 45%) relative to a flat cell with anti-reflection coating, over a large range of cell thicknesses. By leveraging void-based textures 90% of above-bandgap photons are absorbed in cells with maximal vertical dimension of 100 nm. PMID:22273965

  2. Interference effects in the UV(VUV)-excited luminescence spectroscopy of thin dielectric films.

    PubMed

    Buntov, Evgeny; Zatsepin, Anatoly

    2013-05-01

    The problem of exciting UV and VUV light interference affecting experimental photoluminescence excitation spectra is analysed for the case of thin transparent films containing arbitrarily distributed emission centres. A numerical technique and supplied software aimed at modelling the phenomenon and correcting the distorted spectra are proposed. Successful restoration results of the experimental synchrotron data for ion-implanted silica films show that the suggested method has high potential.

  3. Measurement of the thermal conductivity of dielectric thin solid films with a thermal comparator

    SciTech Connect

    Amsden, C.A.; Gilman, S.E.; Jacobs, S.D.; Torok, J.S.

    1988-04-01

    Low thermal conductivity has important implications for electric and optical applications, where heat deposited in a thin layer must be dissipated to prevent damage. Models which account for thermal transport in thin film structures may have no predictive value if they employ bulk conductivity data. Most techniques utilized to measure the thermal conductivity of thin solid films are difficult and time consuming. The method we have developed is relatively rapid, nondestructive, and is capable of evaluating the samples in a conventional film on substrate geometry. Our thermal conductivity apparatus consists of a control and readout module, signal processing equipment, and an environmentally isolated sample chamber enclosing a sample stage. The commercial unit was converted into a high precision device by temperature controlling both the samples and the sample stage, and by performing averaging of the output signal. The thermal conductivity values obtained are below those of bulk solids. In addition, the conductivities seem to increase with increasing film thickness. Titania seems to have a higher thermal conductivity when deposited by ion-beam sputtering rather than electron-beam evaporation. Some of the electron-beam films were crazed, indicating high levels of stress. The effect of stress and crazing on thermal conductivity is not readily apparent. 11 refs., 1 fig., 1 tab.

  4. Ferroelectric/Dielectric Double Gate Insulator Spin-Coated Using Barium Titanate Nanocrystals for an Indium Oxide Nanocrystal-Based Thin-Film Transistor.

    PubMed

    Pham, Hien Thu; Yang, Jin Ho; Lee, Don-Sung; Lee, Byoung Hun; Jeong, Hyun-Dam

    2016-03-23

    Barium titanate nanocrystals (BT NCs) were prepared under solvothermal conditions at 200 °C for 24 h. The shape of the BT NCs was tuned from nanodot to nanocube upon changing the polarity of the alcohol solvent, varying the nanosize in the range of 14-22 nm. Oleic acid-passivated NCs showed good solubility in a nonpolar solvent. The effect of size and shape of the BT NCs on the ferroelectric properties was also studied. The maximum polarization value of 7.2 μC/cm(2) was obtained for the BT-5 NC thin film. Dielectric measurements of the films showed comparable dielectric constant values of BT NCs over 1-100 kHz without significant loss. Furthermore, the bottom gate In2O3 NC thin film transistors exhibited outstanding device performance with a field-effect mobility of 11.1 cm(2) V(-1) s(-1) at a low applied gate voltage with BT-5 NC/SiO2 as the gate dielectric. The low-density trapped state was observed at the interface between the In2O3 NC semiconductor and the BT-5 NCs/SiO2 dielectric film. Furthermore, compensation of the applied gate field by an electric dipole-induced dipole field within the BT-5 NC film was also observed.

  5. Optical properties and dielectric relaxation of polyvinylidene fluoride thin films doped with gadolinium chloride

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia

    2014-12-01

    In this study, the properties of pure and GdCl3-doped polyvinylidene fluoride (PVDF) films were investigated. X-ray diffraction revealed that the PVDF was composed of mixed α and β phases. Adding GdCl3 to PVDF decreased the crystallinity of the polymer matrix. At room temperature, in the ultraviolet-visible range both the absorbance (a) and extinction coefficient (k) of PVDF decreased with GdCl3 content, demonstrating that the optical response of the doped films improved because of increasing optical energy gap (Eg). We also measured the dielectric loss (ɛ″), electric modulus (M″), and ac conductivity (σac) at 300-450 K and 0.1-3000 kHz. The pure and doped PVDF exhibited different relaxation processes. The activation energy (Ea) of the αc relaxation decreased with increasing GdCl3 content, following an Arrhenius relationship. The behavior of the ac conductivity revealed that the conduction mechanism for studied films followed correlated barrier hopping model. The hopping distance (R) was calculated at different temperatures for all investigated samples.

  6. Hybrid dielectric light trapping designs for thin-film CdZnTe/Si tandem cells.

    PubMed

    Chung, H; Zhou, C; Tee, X T; Jung, K-Y; Bermel, P

    2016-07-11

    Tandem solar cells consisting of high bandgap cadmium telluride alloys atop crystalline silicon have potential for high efficiencies exceeding the Shockley-Queisser limit. However, experimental results have fallen well below this goal significantly because of non-ideal current matching and light trapping. In this work, we simulate cadmium zinc telluride (CZT) and crystalline silicon (c-Si) tandems as an exemplary system to show the role that a hybrid light trapping and bandgap engineering approach can play in improving performance and lowering materials costs for tandem solar cells incorporating crystalline silicon. This work consists of two steps. First, we optimize absorption in the crystalline silicon layer with front pyramidal texturing and asymmetric dielectric back gratings, which results in 121% absorption enhancement from a planar structure. Then, using this pre-optimized light trapping scheme, we model the dispersion of the CdxZn1-xTe alloys, and then adjust the bandgap to realize the best current matching for a range of CZT thicknesses. Using experimental parameters, the corresponding maximum efficiency is predicted to be 16.08 % for a total tandem cell thickness of only 2.2 μm. PMID:27410890

  7. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics

    NASA Astrophysics Data System (ADS)

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-10-01

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors.Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed

  8. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films

    SciTech Connect

    Akiyama, Morito; Kano, Kazuhiko; Teshigahara, Akihiko

    2009-10-19

    The authors have investigated the influence of growth temperature and scandium concentration on the piezoelectric response of scandium aluminum nitride (Sc{sub x}Al{sub 1-x}N) films prepared by dual reactive cosputtering. The piezoelectric response strongly depends on the growth temperature and scandium concentration. The piezoelectric response of the films prepared at 400 deg. C gradually increases with increasing scandium concentration. On the other hand, the piezoelectric response of the films prepared at 580 deg. C drastically decreases and increases in the scandium concentration from 30% to 40%. We think that the drastic change of the piezoelectric response is due to the disordered grain growth.

  9. I. Plasma Enhanced Chemical Vapor Deposition of Main Group Nitride Thin Films, and II. Synthesis of Niobium Amido Complexes.

    NASA Astrophysics Data System (ADS)

    Rangarajan, Sri Prakash

    I. Main group nitride films were deposited at low substrate temperatures (<400 ^circC) by using plasma activated ammonia and the amido complexes, M(NMe_2)_4 (M = Si, Ge and Sn) and rm M_2(NMe _2)_6(M = Al, Ga) as precursors. In addition, tin, aluminum and gallium nitride films were thermally deposited from the amides and ammonia for comparison with the plasma deposited materials. The films were nearly stoichiometric with low carbon and oxygen contamination as determined by backscattering spectrometry. The growth rates of the group 14 nitrides increased going down the column, consistent with an associative mechanism involving the plasma-activated NH_3 and the amido complex. Elastic recoil detection measurements indicated that the films had hydrogen contents comparable to those reported for films deposited by other deposition techniques. Transmittance measurements indicated that all the films are highly transparent in the visible and near infrared regions. The silicon, germanium and aluminum nitride films displayed promising barrier properties in Au/MN_{x}/Si metallization schemes. II. The syntheses and characterization of several niobium(IV) amido complexes and their derivatives are reported. Reactions of rm NbX_4(thf)_2(X = Cl, Br) with LiN(SiMe_3)_2 gave Nb(N(SiMe_3)_2)_2Cl _2 and Nb(N(SiMe_3) _2)_2Br_2 in moderate yields. Nb(NPh _2)_4 was synthesized in 63% yield by the reaction of NbCl_4(thf) _2 with four equiv of LiNPh_2. . The reaction of one equivalent of ZnPh _2 with Nb(N(SiMe_3) _2)_2Cl_2 gave Nb(N(SiMe _3)_2)_2PhCl and in one case a mixture of Nb(N(SiMe_3)_2)_2 PhCl and Nb(N(SiMe_3)_2) _2Ph_2. Cp_2NbN(SiMe_3)SiMe _2CH_2, a metallacycle with a four membered planar ring, was prepared by reacting Nb(N(SiMe _3)_2)_2Cl_2 with two equiv of ZnCp_2.. X-ray crystallographic studies were carried out for Nb(NPh_2)_4, Nb(N(SiMe _3)_2)_2Br_2, Nb(N(SiMe _3)_2)_2PhCl and Nb(N(SiMe _3)_2)_2Ph_2. All have highly distorted tetrahedral geometries. The distortions usually are

  10. Dielectric characterization of multiferroic magnetoelectric double-perovskite Y(Ni0.5Mn0.5)O3 thin films

    NASA Astrophysics Data System (ADS)

    Coy, L. E.; Fina, I.; Ventura, J.; Yate, L.; Langenberg, E.; Polo, M. C.; Ferrater, C.; Varela, M.

    2016-10-01

    We report on the functional properties of the Y(Ni0.5Mn0.5)O3 epitaxial thin films, growth by pulsed laser deposition, observing the clear features of their ferroelectric and ferromagnetic nature at cryogenic temperature. The characterization of temperature-dependent complex impedance spectroscopy has shown a dielectric anomaly around the ferromagnetic Curie temperature (≈100 K) indicative of coupling between magnetic and electric orders.

  11. Investigation on the dielectric response of NdMnO3/LSAT thin films: Effect of 200 MeV Ag+15 ion irradiation

    NASA Astrophysics Data System (ADS)

    Udeshi, Malay; Vyas, Brinda; Trivedi, Priyanka; Katba, Savan; Ravalia, Ashish; Solanki, P. S.; Shah, N. A.; Asokan, K.; Ojha, S.; Kuberkar, D. G.

    2015-12-01

    We report the results of the modifications in structural and dielectric behaviour of pulsed laser deposited NdMnO3 manganite thin films grown on (1 0 0) single crystalline (LaAlO3)0.3 (Sr2AlTaO6)0.7 substrate irradiated with the 200 MeV Ag+15 ion irradiation having different fluences, ∼5 × 1010, ∼5 × 1011, ∼5 × 1012 ions/cm2. Structural strain was quantified using analysis of X-ray Diffraction data while Rutherford Backscattering measurements were performed on pristine NdMnO3 film to confirm the elemental composition, thickness and oxygen content. Dielectric measurements performed on all the irradiated films show that, the dielectric constant decreases with increase in ion fluence which has been correlated with the irradiation induced increase in strain at the film-substrate interface. The dielectric relaxation behaviour of pristine and irradiated NdMnO3 films have been understood by fitting the dielectric data using the Cole-Cole plots.

  12. Initial nitride formation during plasma-nitridation of cobalt surfaces

    NASA Astrophysics Data System (ADS)

    Mattson, E. C.; Michalak, D. J.; Cabrera, W.; Veyan, J. F.; Chabal, Y. J.

    2016-08-01

    Nitridation of metal surfaces is of central importance in microelectronics and spintronics due to the excellent mechanical, thermal, and electrical properties of refractory nitrides. Here, we examine the chemical and structural modification of cobalt surfaces upon nitrogen plasma treatment, using in situ spectroscopic methods, as a method for synthesis of cobalt nitride thin films. We find that nitrogen is incorporated below the surface and forms an ultrathin film of CoN at temperatures as low as 50 °C. In addition, we observe the incorporation of oxygen and NO+ within the surface region. The nitrided cobalt surfaces are fully passivated by N, O, and NO+. These results provide a route for incorporation of cobalt nitride into a wide range applications.

  13. The structural and in-plane dielectric/ferroelectric properties of the epitaxial (Ba, Sr)(Zr, Ti)O{sub 3} thin films

    SciTech Connect

    Chan, N. Y. Wang, Y.; Chan, H. L. W.; Wang, D. Y.; Dai, J. Y.

    2014-06-21

    Epitaxial (Ba{sub 1-x}Sr{sub x})(Zr{sub 0.1}Ti{sub 0.9})O{sub 3} (BSZT, x = 0 – 0.45) thin films were deposited on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.35} (LSAT) substrates by pulsed laser deposition. The experimental results demonstrate that the structural, dielectric, and ferroelectric properties of the BSZT thin films were greatly dependent on the strontium content. The BSZT thin films transformed from tetragonal to cubic phase when x ≥ 0.35 at room temperature. The Curie temperature and room-temperature remnant polarization decrease with increasing strontium concentration. The optimal dielectric properties were found in (Ba{sub 0.55}Sr{sub 0.45})(Zr{sub 0.1}Ti{sub 0.9})O{sub 3} thin films which is in paraelectric state, having tunability of 47% and loss tangent of 0.0338 under an electric field of 20 MV/m at 1 MHz. This suggests that BSZT thin film is a promising candidate for tunable microwave device applications.

  14. Electro-spraying and ultra-violet light curing of polydimethylsiloxane to fabricate thin films for low-voltage dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Kovacs, Gabor; Töpper, Tino; Osmani, Bekim; Leung, Vanessa Y. F.; Müller, Bert

    2016-04-01

    Currently, dielectric elastomer actuators (DEA) are mainly based on micrometer-thin polymer films and require operating voltages of several hundred volts. In medical applications, however, voltages as low as a few tens of volts are required. To this end, we prepared nanometer-thin dielectric elastomer layers. It is demonstrated that alternating current, electro-spray deposition allows for the fabrication of homogenous, flat, nanometer-thin polydimethylsiloxane (PDMS) films. The growth of the PDMS with average number molecular weights ranging from 800 to 62,700 g/mol, at a constant flow rate of 267 nL/s, was in situ monitored by means of spectroscopic ellipsometry. The Cauchy layer model used for data interpretation may only be applied to flat PDMS layers. Thus, in the present study the droplet morphology was also determined by atomic force microscopy. Spectroscopic ellipsometry does allow for the qualitative determination of the thin film morphology. However, for high molecular weight polymers the precise measurement during deposition is challenging. Independent of the molecular weight, the roughness of the deposited PDMS films considerably smoothens during the ultra-violet radiation treatment. After curing, the electro-sprayed nanometer-thin PDMS films are homogeneous enough to qualify for the fabrication of low-voltage DEA.

  15. Electrical characteristics of Au/n-GaAs structures with thin and thick SiO{sub 2} dielectric layer

    SciTech Connect

    Altuntas, H.; Altindal, S.; Corekci, S.; Ozturk, M. K.; Ozcelik, S.

    2011-10-15

    The aim of this study, to explain effects of the SiO{sub 2} insulator layer thickness on the electrical properties of Au/n-GaAs Shottky barrier diodes (SBDs). Thin (60 A) and thick (250 A) SiO{sub 2} insulator layers were deposited on n-type GaAs substrates using the plasma enganced chemical vapour deposition technique. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics have been carried out at room temperature. The main electrical parameters, such as ideality factor (n), zero-bias barrier height ({phi}{sub Bo}), series resistance (R{sub s}), leakage current, and interface states (N{sub ss}) for Au/SiO{sub 2}/n-GaAs SBDs have been investigated. Surface morphologies of the SiO{sub 2} dielectric layer was analyzed using atomic force microscopy. The results show that SiO{sub 2} insulator layer thickness very affects the main electrical parameters. Au/n-GaAs SBDs with thick SiO{sub 2} insulator layer have low leakage current level, small ideality factor, and low interface states. Thus, Au/n-GaAs SBDs with thick SiO{sub 2} insulator layer shows better diode characteristics than other.

  16. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

    PubMed Central

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-01-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm2, which is 48.76% higher than that of flat system. PMID:27455911

  17. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.

    PubMed

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-01-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm(2), which is 48.76% higher than that of flat system. PMID:27455911

  18. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm2, which is 48.76% higher than that of flat system.

  19. Mesostructured HfxAlyO2 Thin Films as Reliable and Robust Gate Dielectrics with Tunable Dielectric Constants for High-Performance Graphene-Based Transistors.

    PubMed

    Lee, Yunseong; Jeon, Woojin; Cho, Yeonchoo; Lee, Min-Hyun; Jeong, Seong-Jun; Park, Jongsun; Park, Seongjun

    2016-07-26

    We introduce a reliable and robust gate dielectric material with tunable dielectric constants based on a mesostructured HfxAlyO2 film. The ultrathin mesostructured HfxAlyO2 film is deposited on graphene via a physisorbed-precursor-assisted atomic layer deposition process and consists of an intermediate state with small crystallized parts in an amorphous matrix. Crystal phase engineering using Al dopant is employed to achieve HfO2 phase transitions, which produce the crystallized part of the mesostructured HfxAlyO2 film. The effects of various Al doping concentrations are examined, and an enhanced dielectric constant of ∼25 is obtained. Further, the leakage current is suppressed (∼10(-8) A/cm(2)) and the dielectric breakdown properties are enhanced (breakdown field: ∼7 MV/cm) by the partially remaining amorphous matrix. We believe that this contribution is theoretically and practically relevant because excellent gate dielectric performance is obtained. In addition, an array of top-gated metal-insulator-graphene field-effect transistors is fabricated on a 6 in. wafer, yielding a capacitance equivalent oxide thickness of less than 1 nm (0.78 nm). This low capacitance equivalent oxide thickness has important implications for the incorporation of graphene into high-performance silicon-based nanoelectronics. PMID:27355098

  20. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    NASA Astrophysics Data System (ADS)

    Zeng, F. W.; Gates, S. M.; Lane, M. W.

    2014-05-01

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the "strength" of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, GTH, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.

  1. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    SciTech Connect

    Zeng, F. W.; Lane, M. W.; Gates, S. M.

    2014-05-15

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.

  2. Optical response in nanostructured thin metal films with dielectric over-layers

    NASA Astrophysics Data System (ADS)

    Smith, G. B.; Maaroof, A. I.

    2004-12-01

    Thin metal films which contain nano-size pores yield higher than expected transmittance and larger than expected times for transmission of near infra red radiation. An optically equivalent layer with complex refractive index (n*, k*) can model measured specular transmittance and reflectance, when scattering is weak. The way surface plasmon effects impact on these measured indices is considered. A strongly elevated n* is linked to trad the time for a surface plasmon to re-radiate and hence delay transmission times, and reduced imaginary part k*, to resonant channelling via voids. Measurement of n* thus allows an estimate of trad. The sensitivity of (n*, k*) to surface effects is illustrated using an insulating overlayer to modify the surface states. Resultant measured changes in n*, k* are substantial. Results are for two nanostructured metal systems characterised with 400,000× scanning electron microscopy.

  3. Quantitative Determination of Dielectric Thin-Film Properties Using Infrared Emission Spectroscopy

    SciTech Connect

    Franke, J.E.; Haaland, D.M.; Niemczyk, T.M.; Zhang, S.

    1998-10-14

    We have completed an experimental study to investigate the use of infrared emission spectroscopy (IRES) for the quantitative analysis of borophosphosilicate glass (BPSG) thin films on silicon monitor wafers. Experimental parameters investigated included temperatures within the range used in the microelectronics industry to produce these films; hence the potential for using the IRES technique for real-time monitoring of the film deposition process has been evaluated. The film properties that were investigated included boron content, phosphorus content, film thickness, and film temperature. The studies were conducted over two temperature ranges, 125 to 225 *C and 300 to 400 *C. The later temperature range includes realistic processing temperatures for the chemical vapor deposition (CVD) of the BPSG films. Partial least squares (PLS) multivariate calibration methods were applied to spectral and film property calibration data. The cross-validated standard errors of prediction (CVSEP) fi-om the PLS analysis of the IRES spectraof21 calibration samples each measured at 6 temperatures in the 300 to 400 "C range were found to be 0.09 wt. `?40 for B, 0.08 wt. `%0 for P, 3.6 ~m for film thickness, and 1.9 *C for temperature. By lowering the spectral resolution fi-om 4 to 32 cm-l and decreasing the number of spectral scans fi-om 128 to 1, we were able to determine that all the film properties could be measured in less than one second to the precision required for the manufacture and quality control of integrated circuits. Thus, real-time in-situ monitoring of BPSG thin films formed by CVD deposition on Si monitor wafers is possible with the methods reported here.

  4. Effects of postanneal conditions on the dielectric properties of CaCu3Ti4O12 thin films prepared on Pt/Ti/SiO2/Si substrates

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shen, Mingrong; Cao, Wenwu

    2004-06-01

    High-dielectric-constant CaCu3Ti4O12 (CCTO) thin films were prepared on Pt/Ti/SiO2/Si(100) substrates by pulsed-laser deposition (PLD). The 480 nm thick polycrystalline films have preferred orientation and show obvious crystallization on the surface. The temperature dependence of dielectric constant and loss of the Pt/CCTO/Pt capacitors is comparable with that obtained in the epitaxial CCTO films grown on oxides substrates. We found that the dielectric properties are very sensitive to the postannealing atmosphere and temperature. Postannealing in nitrogen atmosphere produces larger low-frequency dielectric relaxation as the annealing temperature increases, while annealing in oxygen atmosphere at high temperature suppresses the relaxation and decreases the dielectric constant of the thin films. Such results are attributed to the presence of insulating grain-boundary barrier layers.

  5. MoS{sub 2} functionalization for ultra-thin atomic layer deposited dielectrics

    SciTech Connect

    Azcatl, Angelica; McDonnell, Stephen; Santosh, K.C.; Peng, Xin; Dong, Hong; Qin, Xiaoye; Addou, Rafik; Lu, Ning; Kim, Moon J.; Cho, Kyeongjae; Wallace, Robert M.; Mordi, Greg I.; Kim, Jiyoung

    2014-03-17

    The effect of room temperature ultraviolet-ozone (UV-O{sub 3}) exposure of MoS{sub 2} on the uniformity of subsequent atomic layer deposition of Al{sub 2}O{sub 3} is investigated. It is found that a UV-O{sub 3} pre-treatment removes adsorbed carbon contamination from the MoS{sub 2} surface and also functionalizes the MoS{sub 2} surface through the formation of a weak sulfur-oxygen bond without any evidence of molybdenum-sulfur bond disruption. This is supported by first principles density functional theory calculations which show that oxygen bonded to a surface sulfur atom while the sulfur is simultaneously back-bonded to three molybdenum atoms is a thermodynamically favorable configuration. The adsorbed oxygen increases the reactivity of MoS{sub 2} surface and provides nucleation sites for atomic layer deposition of Al{sub 2}O{sub 3}. The enhanced nucleation is found to be dependent on the thin film deposition temperature.

  6. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost.

  7. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. PMID:26699450

  8. Synthesis, Properties, and Applications Of Boron Nitride

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.

    1993-01-01

    Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.

  9. Study of surface-modified PVP gate dielectric in organic thin film transistors with the nano-particle silver ink source/drain electrode.

    PubMed

    Yun, Ho-Jin; Ham, Yong-Hyun; Shin, Hong-Sik; Jeong, Kwang-Seok; Park, Jeong-Gyu; Choi, Deuk-Sung; Lee, Ga-Won

    2011-07-01

    We have fabricated the flexible pentacene based organic thin film transistors (OTFTs) with formulated poly[4-vinylphenol] (PVP) gate dielectrics treated by CF4/O2 plasma on poly[ethersulfones] (PES) substrate. The solution of gate dielectrics is made by adding methylated poly[melamine-co-formaldehyde] (MMF) to PVP. The PVP gate dielectric layer was cross linked at 90 degrees under UV ozone exposure. Source/drain electrodes are formed by micro contact printing (MCP) method using nano particle silver ink for the purposes of low cost and high throughput. The optimized OTFT shows the device performance with field effect mobility of the 0.88 cm2/V s, subthreshold slope of 2.2 V/decade, and on/off current ratios of 1.8 x 10(-6) at -40 V gate bias. We found that hydrophobic PVP gate dielectric surface can influence on the initial film morphologies of pentacene making dense, which is more important for high performance OTFTs than large grain size. Moreover, hydrophobic gate dielelctric surface reduces voids and -OH groups that interrupt the carrier transport in OTFTs.

  10. Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride

    NASA Astrophysics Data System (ADS)

    Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.

    2014-09-01

    The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH4OH treatment and an in-situ elevated temperature NH3 plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ˜1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO2, Al2O3, and SiO2) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N2 ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO2, Al2O3, and SiO2 with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.

  11. Air stable n-doping of WSe{sub 2} by silicon nitride thin films with tunable fixed charge density

    SciTech Connect

    Chen, Kevin; Kiriya, Daisuke; Hettick, Mark; Tosun, Mahmut; Ha, Tae-Jun; Madhvapathy, Surabhi Rao; Desai, Sujay; Sachid, Angada; Javey, Ali

    2014-09-01

    Stable n-doping of WSe{sub 2} using thin films of SiN{sub x} deposited on the surface via plasma-enhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiN{sub x} act to dope WSe{sub 2} thin flakes n-type via field-induced effect. The electron concentration in WSe{sub 2} can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiN{sub x} through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe{sub 2} junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe{sub 2} n-MOSFETs with a mobility of ∼70 cm{sup 2}/V s.

  12. Structural, morphological and mechanical properties of niobium nitride thin films grown by ion and electron beams emanated from plasma

    NASA Astrophysics Data System (ADS)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair

    2016-05-01

    The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.

  13. Boron nitride phosphide thin films grown on quartz substrate by hot-filament and plasma-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Xu, S. Y.; Han, G. R.

    2004-10-01

    Boron nitride phosphide films are, for the first time, grown on transparent quartz substrate by hot filament and radio-frequency plasma co-assisted chemical vapor deposition technique. XPS, XRD, SEM, and UV measurements are performed to study the chemical composition, crystallization, microstructure, and optical absorption, respectively. A centipede-like microstructure and undulating ground morphology on the film surface are observed, and their growth mechanism is speculated upon. The chemical composition is determined as BN1-xPx, whose characteristic XRD peak is preliminarily identified. The optical band gap can be modulated between 5.52 eV and 3.74 eV, simply by adjusting the phosphorus content in BN1-xPx through modifying the PH3 flux during the film-deposition process. The merits of the BN1-xPx film, such as high ultraviolet photoelectric sensitivity with negligible sensitivity in the visible region, modifiable wide optical band gap, and good adhesion on transparent substrate, suggest potential applications for ultraviolet photo-electronics.

  14. Improved oxygen diffusion barrier properties of ruthenium-titanium nitride thin films prepared by plasma-enhanced atomic layer deposition.

    PubMed

    Jeong, Seong-Jun; Kim, Doo-In; Kim, Sang Ouk; Han, Tae Hee; Kwon, Jung-Dae; Park, Jin-Seong; Kwon, Se-Hun

    2011-01-01

    Ru-TiN thin films were prepared from bis(ethylcyclopentadienyl)ruthenium and tetrakis(dimethylamino)titanium using plasma-enhanced atomic layer deposition (PEALD). The Ru and TiN were deposited sequentially to intermix TiN with Ru. The composition of Ru-TiN films was controlled precisely by changing the number of deposition cycles allocated to Ru, while fixing the number of deposition cycles allocated to TiN. Although both Ru and TiN thin films have a polycrystalline structure, the microstructure of the Ru-TiN films changed from a TiN-like polycrystalline structure to a nanocrystalline on increasing the Ru intermixing ratio. Moreover, the electrical resistivity of the Ru0.67-TiN0.33 thin films is sufficiently low at 190 microomega x cm and was maintained even after O2 annealing at 750 degrees C. Therefore, Ru-TiN thin films can be utilized as a oxygen diffusion barrier material for future dynamic (DRAM) and ferroelectric (FeRAM) random access memory capacitors.

  15. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: In situ infrared spectroscopic study of cubic boron nitride thin film delamination

    NASA Astrophysics Data System (ADS)

    Yang, Hang-Sheng; Zhang, Jian-Ying; Nie, An-Min; Zhang, Xiao-Bin

    2008-09-01

    This paper investigates the procedure of cubic boron nitride (cBN) thin film delamination by Fourier-transform infrared (IR) spectroscopy. It finds that the apparent IR absorption peak area near 1380 cm-1 and 1073 cm-1 attributed to the B—N stretching vibration of sp2-bonded BN and the transverse optical phonon of cBN, respectively, increased up to 195% and 175% of the original peak area after film delamination induced compressive stress relaxation. The increase of IR absorption of sp2-bonded BN is found to be non-linear and hysteretic to film delamination, which suggests that the relaxation of the turbostratic BN (tBN) layer from the compressed condition is also hysteretic to film delamination. Moreover, cross-sectional transmission electron microscopic observations revealed that cBN film delamination is possible from near the aBN(amorphous BN)/tBN interface at least for films prepared by plasma-enhanced chemical vapour deposition.

  16. Silicon nitride anti-reflection coating on the glass and transparent conductive oxide interface for thin film solar cells and modules

    NASA Astrophysics Data System (ADS)

    Iwahashi, T.; Morishima, M.; Fujibayashi, T.; Yang, R.; Lin, J.; Matsunaga, D.

    2015-10-01

    Anti-reflection coating (ARC) is well known as an important technique to enhance solar cell performance. Typical ARC has been applied on the glass surface to reduce light reflection loss at the air/glass interface. However, reflection loss occurs not only at glass surface but also at other interfaces such as glass/transparent conductive oxide (TCO) interface. The refractive index of SiNx is tunable from 1.6 to 2.7, and the range from 1.7 to 2.0 is suitable for ARC at glass/TCO interface. In this study, we examined the AR effect of silicon nitride (SiNx) deposited by plasma enhanced chemical vapor deposition at the glass/TCO interface with thin film silicon solar cell and module. Reflectivity reduction of 1.6% for glass/ZnO substrate has been obtained with optimal SiNx layer, which contribute 2.0% gain in cell efficiency. Besides, we also confirmed the relative efficiency gain of around 2% for large-sized solar module, leading to a world-record large area stabilized module conversion efficiency of 12.34%.

  17. Remote quantitative temperature and thickness measurements of plasma-deposited titanium nitride thin coatings on steel using a laser interferometric thermoreflectance optical thermometer

    SciTech Connect

    Liu Yue; Mandelis, Andreas; Choy, Mervyn; Wang, Chinhua; Segal, Lee

    2005-08-15

    An optical thermometer based on the principle of laser thermoreflectance has been introduced to monitor the surface temperature of thin coatings on steel parts undergoing an industrial titanium nitride (TiN) alloy deposition process. To study the feasibility of the optical thermometer, various thermo-optical parameters of TiN affected by the deposition process have been investigated; namely, the reflectance-temperature relation, the thermoreflectance coefficient, and the coating thickness dependence of thermoreflectance and of total reflectance. A theory of interferometric thermoreflectance has been introduced to model the total reflectance variations during the coating process. An inverse reflectance-temperature relation for the TiN-D2 steel substrate system has been found and a first-order Taylor series expansion used to model thermoreflectance has been shown to yield a thermoreflectance coefficient which is independent of temperature. Both results are in quantitative agreement with the Drude-Zener theory of conductors and semi-conductors. An empirical formula has been derived to effectively model the experimental thermoreflectance coefficient dependence of the TiN-D2 steel system on TiN coating thickness, in qualitative agreement with scattering mechanisms of the Boltzmann transport theory in conductors and semiconductors. The good agreement of theoretical interferometric thermoreflectance simulations with in situ measurements during a specific industrial TiN sputter-coating growth process and the independence of the thermoreflectance and thin-coating-thickness reflectance coefficients from temperature show the potential of using this nonintrusive noncontacting technique as an optical thermometer to determine surface temperatures of physically inaccessible samples undergoing industrial coating deposition processes.

  18. Deposition and thermal characterization of nano-structured aluminum nitride thin film on Cu-W substrate for high power light emitting diode package.

    PubMed

    Cho, Hyun Min; Kim, Min-Sun

    2014-08-01

    In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate. PMID:25936009

  19. Deposition and thermal characterization of nano-structured aluminum nitride thin film on Cu-W substrate for high power light emitting diode package.

    PubMed

    Cho, Hyun Min; Kim, Min-Sun

    2014-08-01

    In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.

  20. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor.

    PubMed

    Park, Jee Ho; Yoo, Young Bum; Lee, Keun Ho; Jang, Woo Soon; Oh, Jin Young; Chae, Soo Sang; Lee, Hyun Woo; Han, Sun Woong; Baik, Hong Koo

    2013-08-28

    We developed a solution-processed indium oxide (In2O3) thin-film transistor (TFT) with a boron-doped peroxo-zirconium (ZrO2:B) dielectric on silicon as well as polyimide substrate at 200 °C, using water as the solvent for the In2O3 precursor. The formation of In2O3 and ZrO2:B films were intensively studied by thermogravimetric differential thermal analysis (TG-DTA), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT IR), high-resolution X-ray diffraction (HR-XRD), and X-ray photoelectron spectroscopy (XPS). Boron was selected as a dopant to make a denser ZrO2 film. The ZrO2:B film effectively blocked the leakage current at 200 °C with high breakdown strength. To evaluate the ZrO2:B film as a gate dielectric, we fabricated In2O3 TFTs on the ZrO2:B dielectrics with silicon substrates and annealed the resulting samples at 200 and 250 °C. The resulting mobilities were 1.25 and 39.3 cm(2)/(V s), respectively. Finally, we realized a flexible In2O3 TFT with the ZrO2:B dielectric on a polyimide substrate at 200 °C, and it successfully operated a switching device with a mobility of 4.01 cm(2)/(V s). Our results suggest that aqueous solution-processed In2O3 TFTs on ZrO2:B dielectrics could potentially be used for low-cost, low-temperature, and high-performance flexible devices.

  1. Local dielectric and strain measurements in YBa2Cu3O7-δ thin films by evanescent microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kleismit, Richard A.; El Ashry, Mostafa; Kozlowski, Gregory; Amer, Maher S.; Kazimierczuk, Marian K.; Biggers, Rand R.

    2005-09-01

    The near-field evanescent microwave microscope is based on a coaxial transmission line resonator with a silver-plated tungsten tip protruding through an end-wall aperture. The sensor is used to measure local dielectric properties of thin-film YBa2Cu3O7-δ deposited on three different SrTiO3 bi-crystal substrates having mismatch grain boundary angles of 3°, 6°, and 12°. The measurements in the superconducting state are below critical temperature at T = 79.4 K. The dielectric property of the superconductor within the near field of the tip frustrates the electric field and measurably changes the transmission line's resonant frequency. The shift of the resonator's frequency is measured as a function of tip-sample separation and associated changes in quality factor (ΔQ) image scans of the thin film are presented. A quantitative relationship between the real and imaginary parts of the local dielectric constant and the frequency shift using the method of images is established. The comparison between experimental data and theory based on this method is given and discussed. Raman measurements of the intergranular strain within the YBa2Cu3O7-δ thin film deposited on each SrTiO3 substrate in the region of the bi-crystal junction showed excellent correlation between grain boundary mismatch and induced grain boundary strain. Compressive strains normal to the a axis (i.e. tensile strains normal to the b axis) were detected across the grain boundary. The magnitude of induced strain as well as its spread away from the grain boundary increased as the mismatch angle increased.

  2. A study of the microstructure and optical properties of thin lead-dielectric cermet films. Ph.D. Thesis - Va. Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Owen, R. B.

    1972-01-01

    A transmission electron microscopy study involving direct and replicating techniques is directed to a definition of the microstructure of radio frequency-sputtered, thin lead-dielectric cermet films. Once defined, this microstructure is used to obtain theoretical film refractive indices. The Maxwell Garnett theory provides a basis for the theoretical results. Measurements of film transmission and reflectivity are used to obtain rough experimental values for film refractive indices by the Tekucheva method. More exact values are obtained via ellipsometry. The rough Tekucheva values are used to determine the range over which computer calculations interpreting the ellipsometric results must be made. This technique yields accurate values for the film refractive indices.

  3. Polar and Nonpolar Gallium Nitride and Zinc Oxide based thin film heterostructures Integrated with Sapphire and Silicon

    NASA Astrophysics Data System (ADS)

    Gupta, Pranav

    This dissertation work explores the understanding of the relaxation and integration of polar and non-polar of GaN and ZnO thin films with Sapphire and silicon substrates. Strain management and epitaxial analysis has been performed on wurtzitic GaN(0001) thin films grown on c-Sapphire and wurtzitic non-polar a-plane GaN(11-20) thin films grown on r-plane Sapphire (10-12) by remote plasma atomic nitrogen source assisted UHV Pulsed Laser Deposition process. It has been established that high-quality 2-dimensional c-axis GaN(0001) nucleation layers can be grown on c-Sapphire by PLD process at growth temperatures as low as ˜650°C. Whereas the c-axis GaN on c-sapphire has biaxially negative misfit, the crystalline anisotropy of the a-plane GaN films on r-Sapphire results in compressive and tensile misfits in the two major orthogonal directions. The measured strains have been analyzed in detail by X-ray, Raman spectroscopy and TEM. Strain relaxation in GaN(0001)/Sapphire thin film heterostructure has been explained by the principle of domain matched epitaxial growth in large planar misfit system and has been demonstrated by TEM study. An attempt has been made to qualitatively understand the minimization of free energy of the system from the strain perspective. Analysis has been presented to quantify the strain components responsible for the compressive strain observed in the GaN(0001) thin films on c-axis Sapphire substrates. It was also observed that gallium rich deposition conditions in PLD process lead to smoother nucleation layers because of higher ad-atom mobility of gallium. We demonstrate near strain relaxed epitaxial (0001) GaN thin films grown on (111) Si substrates using TiN as intermediate buffer layer by remote nitrogen plasma assisted UHV pulsed laser deposition (PLD). Because of large misfits between the TiN/GaN and TiN/Si systems the TIN buffer layer growth occurs via nucleation of interfacial dislocations under domain matching epitaxy paradigm. X-ray and

  4. Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor

    NASA Astrophysics Data System (ADS)

    Besleaga, C.; Stan, G. E.; Pintilie, I.; Barquinha, P.; Fortunato, E.; Martins, R.

    2016-08-01

    The degradation of thin-film transistors (TFTs) caused by the self-heating effect constitutes a problem to be solved for the next generation of displays. Aluminum nitride (AlN) is a viable alternative for gate dielectric of TFTs due to its good thermal conductivity, matching coefficient of thermal expansion to indium-gallium-zinc-oxide, and excellent stability at high temperatures. Here, AlN thin films of different thicknesses were fabricated by a low temperature reactive radio-frequency magnetron sputtering process, using a low cost, metallic Al target. Their electrical properties have been thoroughly assessed. Furthermore, the 200 nm and 500 nm thick AlN layers have been integrated as gate-dielectric in transparent TFTs with indium-gallium-zinc-oxide as channel semiconductor. Our study emphasizes the potential of AlN thin films for transparent electronics, whilst the functionality of the fabricated field-effect transistors is explored and discussed.

  5. Enhanced Dielectric Properties of [Pb(Mg1/3Nb2/3)O3]0.9-PbTiO3]0.1 Thin Films Grown on BaPbO3 Perovskite Electrode

    NASA Astrophysics Data System (ADS)

    Ho, Sut Kam; Hau, Fei Fei; Wong, Kin Hung

    2004-11-01

    Polycrystalline and epitaxial [Pb(Mg1/3Nb2/3)O3]0.9-[PbTiO3]0.1 (PMN-PT) thin films were prepared by pulsed laser deposition on BaPbO3 (BPO) and La0.7Sr0.3MnO3 (LSMO) oxide electrodes. In comparison, the epitaxial films show higher dielectric constant and the polycrystalline films exhibit lower dielectric loss and smaller leakage current. It is also found that the use of lead based BPO electrodes helps to raise the dielectric constant of the PMN-PT layer by 30%, and to reduce the dielectric leakage by as much as three orders of magnitude. Our results have clearly demonstrated the superiority of using lead based electrodes for growing lead based dielectrics.

  6. Sputtered (barium(x), strontium(1-x))titanate, BST, thin films on flexible copper foils for use as a non-linear dielectric

    NASA Astrophysics Data System (ADS)

    Laughlin, Brian James

    Ferroelectric thin film dielectrics have a non-linear DC bias dependent permittivity and can be used as the dielectric between metal electrodes to make tunable Metal-Insulator-Metal (MIM) capacitors. Varactors can be used to change the resonance frequency of a circuit allowing high speed frequency switching intra- and inter-band. 2-D geometric arrays of circuitry, where resonant frequency is independently controlled by tunable elements in each section of the array, allow electromagnetic radiation to be focused and the wave front spatial trajectory controlled. BST thin films varactors allow large DC fields to be applied with modest voltages providing large tunabilities. If ferroelectric thin film based devices are to complement or supplant semiconductor varactors as tunable elements then devices must be synthesized using a low cost processing techniques. The Film on Foil process methodology for depositing BST thin films on copper foil substrates was used to create BST/Cu specimens. Sputtering conditions were determined via BST deposition on platinized silicon. Sputtered BST thin films were synthesized on Cu foil substrates and densified using high T, controlled pO2 anneals. XRD showed the absence of Cu2O in as-deposited, post crystallization annealed, and post "re-ox" annealed state. Data showed a polycrystalline BST microstructure with a 55--80 nm grain size and no copper oxidation. HRTEM imaging qualitatively showed evidence of an abrupt BST/Cu interface free from oxide formation. Dielectric properties of Cu/BST/Pt MIM devices were measured as a function of DC bias, frequency, and temperature. A permittivity of 725 was observed with tunability >3:1 while zero bias tan delta of 0.02 saturating to tan delta < 0.003 at high DC bias. No significant frequency dispersion was observed over five decades of frequency. Temperature dependent measurements revealed a broad ferroelectric transition with a maximum at -32°C which sustains a large tunability over -150°C to 150

  7. Optically bifacial thin-film wire-grid polarizers with nano-patterns of a graded metal-dielectric composite layer.

    PubMed

    Lee, Jong Hyuk; Song, Young-Woo; Hwang, Kyu H; Lee, Joon-Gu; Ha, Jaeheung; Zang, Dong-Sik

    2008-10-13

    We report on the concept of a thin film wire-grid polarizer (WGP) with optically dual characteristics by introducing a nano-patterned graded metal-dielectric composite-material layer. The Ti-SiO(2) composite layer with a depth profile of a gradually-varied composition ratio shows an absorptive feature due to the elimination of an optical interface between a metal and a glass substrate, while the metal side of the WGP gives a reflective character. The unprecedented optically-bifacial thin-film WGP with the 144 nm-period straight-line patterns of a 100 nm-thick Ti-SiO(2) composite layer and a 185 nm-thick Al layer shows the exceptionally low reflectance below 15 % from the absorptive side and the high polarization extinction ratio (PER) of over 500 at 550 nm, which is acceptable for use as various display applications such as AMOLEDs and LCDs.

  8. Effects of Ta incorporation in La{sub 2}O{sub 3} gate dielectric of InGaZnO thin-film transistor

    SciTech Connect

    Qian, L. X.; Lai, P. T.; Tang, W. M.

    2014-03-24

    The effects of Ta incorporation in La{sub 2}O{sub 3} gate dielectric of amorphous InGaZnO thin-film transistor are investigated. Since the Ta incorporation is found to effectively enhance the moisture resistance of the La{sub 2}O{sub 3} film and thus suppress the formation of La(OH){sub 3}, both the dielectric roughness and trap density at/near the InGaZnO/dielectric interface can be reduced, resulting in a significant improvement in the electrical characteristics of transistor. Among the samples with different Ta contents, the one with a Ta/(Ta + La) atomic ratio of 21.7% exhibits the best performance, including high saturation carrier mobility of 23.4 cm{sup 2}/V·s, small subthreshold swing of 0.177 V/dec, and negligible hysteresis. Nevertheless, excessive incorporation of Ta can degrade the device characteristics due to newly generated Ta-related traps.

  9. Effectiveness of BaTiO3 dielectric patches on YBa2Cu3O7 thin films for MEM switches

    NASA Astrophysics Data System (ADS)

    Vargas, J.; Hijazi, Y.; Noel, J.; Vlasov, Y.; Larkins, G.

    2014-05-01

    A micro-electro-mechanical (MEM) switch built on a superconducting microstrip filter will be utilized to investigate BaTiO3 dielectric patches for functional switching points of contact. Actuation voltage resulting from the MEM switch provokes static friction between the bridge membrane and BaTiO3 insulation layer. The dielectric patch crystal structure and roughness affect the ability of repetitively switching cycles and lifetime. A series of experiments have been performed using different deposition methods and RF magnetron sputtering was found to be the best deposition process for the BaTiO3 layer. The effect examination of surface morphology will be presented using characterization techniques as x-ray diffraction, SEM and AFM for an optimum switching device. The thin film is made of YBa2Cu3O7 deposited on LaAlO3 substrate by pulsed laser deposition. For this work, the dielectric material sputtering pressure is set at 9.5×10-6 Torr. The argon gas is released through a mass-flow controller to purge the system prior to deposition. RF power is 85 W at a distance of 9 cm. The behavior of Au membranes built on ultimate BaTiO3 patches will be shown as part of the results. These novel surface patterns will in turn be used in modelling other RF MEM switch devices such as distributed-satellite communication system operating at cryogenic temperatures.

  10. Tunability, dielectric, and piezoelectric properties of Ba(1-x)CaxTi(1-y)ZryO3 ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Daumont, C. J. M.; Simon, Q.; Le Mouellic, E.; Payan, S.; Gardes, P.; Poveda, P.; Negulescu, B.; Maglione, M.; Wolfman, J.

    2016-03-01

    Tunable ferroelectric capacitors, which exhibit a decrease of the dielectric permittivity (ɛ) under electric field, are widely used in electronics for RF tunable applications (e.g., antenna impedance matching). Current devices use barium strontium titanate as the tunable dielectric, and the need for performance enhancement of the tunable element is the key for device improvement. We report here on libraries of Ba0.97Ca0.03Ti1-xZrxO3 thin films (0 ≤ x ≤ 27%) with a thickness of about 130 nm deposited on IrO2/SiO2/Si substrates using combinatorial pulsed laser deposition allowing for gradients of composition on one sample. A total of 600 capacitors on a single sample were characterized in order to statistically investigate the dielectric properties. We show that the tunabilty is maximum at intermediate compositions, reaching values up to 60% for an electric field of about 400 kV cm-1. We attribute the high tunability in the intermediate compositions to the paraelectric-ferroelectric phase transition, which is brought down to room temperature by the addition of Zr. In addition, the piezoelectric coefficient is found to be decreasing with increasing Zr content.

  11. Dielectric properties of Ca(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films prepared by chemical solution deposition

    SciTech Connect

    Cavalcante, L.S. . E-mail: laeciosc@bol.com.br; Simoes, A.Z.; Santos, M.R.M.C.; Longo, E.

    2006-12-15

    Ca(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} (CZT) thin films were grown on Pt(111)/Ti/SiO{sub 2}/Si(100) substrates by the soft chemical method. The films were deposited from spin-coating technique and annealed at 928K for 4h under oxygen atmosphere. CZT films present orthorhombic structure with a crack free and granular microstructure. Atomic force microscopy and field-emission scanning electron microscopy showed that CZT present grains with about 47nm and thickness about 450nm. Dielectric constant and dielectric loss of the films was approximately 210 at 100kHz and 0.032 at 1MHz. The Au/CZT/Pt capacitor shows a hysteresis loop with remnant polarization of 2.5{mu}C/cm{sup 2}, and coercive field of 18kV/cm, at an applied voltage of 6V. The leakage current density was about 4.6x10{sup -8}A/cm{sup 2} at 3V. Dielectric constant-voltage curve is located at zero bias field suggesting the abseof internal electric fields.

  12. Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric iInterface control and very thin single crystal.

    PubMed

    Dong, Ji; Yu, Peng; Arabi, Syeda Atika; Wang, Jiawei; He, Jun; Jiang, Chao

    2016-07-01

    A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a 'seed-controlled' pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm(2) V(-1) s(-1)-more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices. PMID:27211506

  13. Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric iInterface control and very thin single crystal.

    PubMed

    Dong, Ji; Yu, Peng; Arabi, Syeda Atika; Wang, Jiawei; He, Jun; Jiang, Chao

    2016-07-01

    A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a 'seed-controlled' pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm(2) V(-1) s(-1)-more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices.

  14. Radiation-induced charge trapping in thin Al2O3/SiOxNy/Si(100) gate dielectric stacks.

    SciTech Connect

    D'Emic, Chris; Gusev, Evgeni P.; Schrimpf, Ronald D.; Fleetwood, Daniel M.; Schwank, James Ralph; Felix, James Andrew; Shaneyfelt, Marty Ray; Dodd, Paul Emerson; Meisenheimer, Timothy Lee

    2003-07-01

    We examine the total-dose radiation response of capacitors and transistors with stacked Al{sub 2}O{sub 3} on oxynitride gate dielectrics with Al and poly-Si gates after irradiation with 10 keV X-rays. The midgap voltage shift increases monotonically with dose and depends strongly on both Al{sub 2}O{sub 3} and SiO{sub x}N{sub y} thickness. The thinnest dielectrics, of most interest to industry, are extremely hard to ionizing irradiation, exhibiting only {approx}50 mV of shift at a total dose of 10 Mrad(SiO{sub 2}) for the worst case bias condition. Oxygen anneals are found to improve the total dose radiation response by {approx}50% and induce a small amount of capacitance-voltage hysteresis. Al{sub 2}O{sub 3}/SiO{sub x}N{sub y} dielectrics which receive a {approx}1000 C dopant activation anneal trap {approx}12% more of the initial charge than films annealed at 550 C. Charge pumping measurements show that the interface trap density decreases with dose up to 500 krad(SiO{sub 2}). This surprising result is discussed with respect to hydrogen effects in alternative dielectric materials, and may be the result of radiation-induced hydrogen passivation of some of the near-interfacial defects in these gate dielectrics.

  15. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process.

    PubMed

    Villeneuve-Faure, C; Makasheva, K; Boudou, L; Teyssedre, G

    2016-06-17

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms. PMID:27158768

  16. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.

    2016-06-01

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  17. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process.

    PubMed

    Villeneuve-Faure, C; Makasheva, K; Boudou, L; Teyssedre, G

    2016-06-17

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  18. Growth of fullerene-like carbon nitride thin solid films consisting of cross-linked nano-onions

    NASA Astrophysics Data System (ADS)

    Czigány, Zs.; Brunell, I. F.; Neidhardt, J.; Hultman, L.; Suenaga, K.

    2001-10-01

    Fullerene-like CNx (x≈0.12) thin solid films were deposited by reactive magnetron sputtering of graphite in a nitrogen and argon discharge on cleaved NaCl and Si(001) substrates at 450 °C. As-deposited films consist of 5 nm diam CNx nano-onions with shell sizes corresponding to Goldberg polyhedra determined by high-resolution transmission electron microscopy. Electron energy loss spectroscopy revealed that N incorporation is higher in the core of the onions than at the perimeter. N incorporation promotes pentagon formation and provides reactive sites for interlinks between shells of the onions. A model is proposed for the formation of CNx nano-onions by continuous surface nucleation and growth of hemispherical shells.

  19. Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.; Teo, Kenneth B. K.; Yurgens, August

    2011-06-01

    Large-area uniform carbon films with graphene-like properties are synthesized by chemical vapor deposition directly on Si3N4/Si at 1000 °C without metal catalysts. The as deposited films are atomically thin and wrinkle- and pinhole-free. The film thickness can be controlled by modifying the growth conditions. Raman spectroscopy confirms the sp2 graphitic structures. The films show ohmic behavior with a sheet resistance of ˜2.3-10.5 kΩ/◻ at room temperature. An electric field effect of ˜2-10% (VG=-20 V) is observed. The growth is explained by the self-assembly of carbon clusters from hydrocarbon pyrolysis. The scalable and transfer-free technique favors the application of graphene as transparent electrodes.

  20. Thin film growth of boron nitride on {alpha}-Al{sub 2}O{sub 3} (0 0 1) substrates by reactive sputtering

    SciTech Connect

    Anzai, Atsushi; Nishiyama, Fumitaka; Yamanaka, Shoji; Inumaru, Kei

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer A BN film grown on {alpha}-Al{sub 2}O{sub 3} (0 0 1) had a structure in which h-BN sheet stacking continued through almost the whole film thickness. Black-Right-Pointing-Pointer The structure was characterized by X-ray diffraction, ATR-IR, and XPS. Black-Right-Pointing-Pointer Tauc plots suggested the film had direct band gap and the optical band gap was close to that of bulk h-BN. -- Abstract: Boron nitride thin films were grown on {alpha}-Al{sub 2}O{sub 3} (0 0 1) substrates by reactive magnetron sputtering. Infrared attenuated total reflection (ATR) spectra of the films gave an intense signal associated with in-plane B-N stretching TO mode of short range ordered structure of BN hexagonal sheets. X-ray diffraction for the film prepared at a low working pressure (ca. 1 Multiplication-Sign 10{sup -3} Torr) gave a diffraction peak at slightly lower angle than that corresponding to crystal plane h-BN (0 0 2). It is notable that crystal thickness calculated from X-ray peak linewidth (45 nm) was close to film thickness (53 nm), revealing well developed sheet stacking along the direction perpendicular to the substrate surface. When the substrates of MgO (0 0 1) and Si (0 0 1) were used, the short-range ordered structure of h-BN sheet was formed but the films gave no X-ray diffraction. The film showed optical band gap of 5.9 eV, being close to that for bulk crystalline h-BN.

  1. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    PubMed

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-01

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

  2. Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe.

    PubMed

    Kulchin, Y N; Vitrik, O B; Kuchmizhak, A A; Nepomnyashchii, A V; Savchuk, A G; Ionin, A A; Kudryashov, S I; Makarov, S V

    2013-05-01

    Separate nanoholes with the minimum size down to 35 nm (~λ/15) and nanohole arrays with the hole size about 100 nm (~λ/5) were fabricated in a 50 nm optically "thick" Au/Pd film, using single 532 nm pump nanosecond laser pulses focused to diffraction-limited spots by a specially designed apertureless dielectric fiber probe. Nanohole fabrication in the metallic film was found to result from lateral heat diffusion and center-symmetrical lateral expulsion of the melt by its vapor recoil pressure. The optimized apertureless dielectric microprobe was demonstrated to enable laser fabrication of deep through nanoholes.

  3. Ta{sub 2}O{sub 5}-based high-K dielectric thin films from solution processed at low temperatures

    SciTech Connect

    Frunză, Raluca C.; Kmet, Brigita; Jankovec, Marko; Topič, Marko; Malič, Barbara

    2014-02-01

    Highlights: • Ta{sub 2}O{sub 5}–Al{sub 2}O{sub 3}–SiO{sub 2} (Ta:Al:Si = 8:1:1 atomic ratio) and Ta{sub 2}O{sub 5} films were processed from solutions. • The XRD-amorphous films, heated at or below 400 °C, are smooth (RMS < 0.5 nm). • The dielectric permittivity of the single- and mixed-oxide films heated at 400 °C is 27 and 22, respectively. • The current–voltage characteristics of the mixed-oxide films reveal the Poole–Frenkel behaviour. - Abstract: Ta{sub 2}O{sub 5}-based thin films were prepared by chemical solution deposition at temperatures not exceeding 400 °C. The aim of the work was to investigate the properties of high-K dielectric films of the ternary composition Ta{sub 2}O{sub 5}–Al{sub 2}O{sub 3}–SiO{sub 2} with the Ta:Al:Si = 8:1:1 atomic ratio. Pure Ta{sub 2}O{sub 5} samples were also prepared. All thin films were amorphous, and had smooth and flat surfaces with the average roughness of below 0.5 nm. The mixed oxide samples heated between 300 °C and 400 °C showed little difference in the dielectric permittivity with the values ranging from about 19 to 22. The Ta{sub 2}O{sub 5} film heated at 400 °C exhibited the highest permittivity of about 27. The current–voltage measurements revealed considerably improved characteristics of the Ta{sub 2}O{sub 5}–Al{sub 2}O{sub 3}–SiO{sub 2} samples within the investigated heating temperature range, with a significant overall decrease of the leakage currents in contrast to that of the pure Ta{sub 2}O{sub 5} thin films.

  4. Deposition and characterization of organic polymer thin films using a dielectric barrier discharge with different C2Hm/N2 (m = 2, 4, 6) gas mixtures

    NASA Astrophysics Data System (ADS)

    Chandrashekaraiah, Thejaswini Halethimmanahally; Bogdanowicz, Robert; Danilov, Vladimir; Schäfer, Jan; Meichsner, Jürgen; Hippler, Rainer

    2015-06-01

    Organic polymer thin films have been deposited on Si(100) and aluminum coated glass substrates by a dielectric barrier discharge (DBD) operated at medium pressure using different C2H m /N2 ( m = 2, 4, 6) gas mixtures. The deposited films were characterized by various spectroscopic techniques. Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) revealed the chemical functional groups present in the films. The surface chemical compositions have been derived from X-ray photo electron spectroscopy (XPS). FT-IRRAS and XPS show the presence of sp, s p 2 and s p 3 bonds of carbon and nitrogen. Various functional groups such as NH containing, saturated and unsaturated alkyl groups have been identified. Thin films obtained from C2H2/N2 and C2H4/N2 gas mixtures revealed a higher N/C ratio when compared to thin films obtained from C2H6/N2. Thickness, refractive index and extinction coefficient were evaluated by spectroscopic ellipsometry (SE). Significant differences between the films obtained with different gas mixtures are observed.

  5. Deposition and characterization of organic polymer thin films using a dielectric barrier discharge with different C2Hm/N2 (m = 2, 4, 6) gas mixtures

    NASA Astrophysics Data System (ADS)

    Halethimmanahally Chandrashekaraiah, Thejaswini; Bogdanowicz, Robert; Danilov, Vladimir; Schäfer, Jan; Meichsner, Jürgen; Hippler, Rainer

    2015-06-01

    Organic polymer thin films have been deposited on Si(100) and aluminum coated glass substrates by a dielectric barrier discharge (DBD) operated at medium pressure using different C2Hm/N2 (m = 2, 4, 6) gas mixtures. The deposited films were characterized by various spectroscopic techniques. Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) revealed the chemical functional groups present in the films. The surface chemical compositions have been derived from X-ray photo electron spectroscopy (XPS). FT-IRRAS and XPS show the presence of sp, sp2 and sp3 bonds of carbon and nitrogen. Various functional groups such as NH containing, saturated and unsaturated alkyl groups have been identified. Thin films obtained from C2H2/N2 and C2H4/N2 gas mixtures revealed a higher N/C ratio when compared to thin films obtained from C2H6/N2. Thickness, refractive index and extinction coefficient were evaluated by spectroscopic ellipsometry (SE). Significant differences between the films obtained with different gas mixtures are observed.

  6. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  7. Thermal conductivities of thin, sputtered optical films

    SciTech Connect

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO{sub 2}/Si{sub 3}N{sub 4}){sup n} and Al(Al{sub 2}O{sub 3}/AIN){sup n}. Sputtered films of more conventional materials like SiO{sub 2}, Al{sub 2}O{sub 3}, Ta{sub 2}O{sub 5}, Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented.

  8. Spectroscopic ellipsometry-based study of optical properties of amorphous and crystalline ZnSnO alloys and Zn2SnO4 thin films grown using sputtering deposition: Dielectric function and subgap states

    NASA Astrophysics Data System (ADS)

    Ko, Kun Hee; So, Hyeon Seob; Jung, Dae Ho; Park, Jun Woo; Lee, Hosun

    2016-04-01

    We investigated the optical properties of amorphous and crystalline zinc tin oxide (ZTO) thin films grown on SiO2/Si substrates with varying compositions via a co-sputtering deposition method at room temperature. The co-sputtering targets consist of SnO2 and ZnO. By varying the relative power ratio of the two targets, we demonstrate the ability to control the Sn and Zn composition of the resulting ZTO thin films. The ratio of [Sn]/([Sn] + [Zn]) atomic compositions was estimated at 11%, 29%, 42%, 54%, and 60%. Using a 600 °C annealing process, the as-grown amorphous ZTO films were transformed into crystalline ZTO films. The dielectric functions were obtained based on the measured ellipsometric angles, ψ and Δ. We determined the dielectric functions, absorption coefficients, and optical gap energies of ZTO thin films with varying compositions. The dielectric functions, absorption coefficients, and optical gap energies of amorphous and crystalline Zn2SnO4 thin films were obtained at 29 at. % of Sn. Subgap states at 1.6 eV (A) and 2.8 eV (B) of ZnSnO alloys and Zn2SnO4 films were found in the imaginary part of the dielectric function spectra. The subgap state intensities were reduced via a nitrogen gas annealing. Possible origins of the observed subgap states will be discussed.

  9. Microstructure and dielectric properties of pulsed-laser-deposited CaCu3Ti4O12 thin films on LaNiO3 buffered Pt/Ti/SiO2/Si substrates

    NASA Astrophysics Data System (ADS)

    Fang, L.; Shen, M.; Yao, D.

    2005-05-01

    CaCu3Ti4O12 (CCTO) thin films have been prepared by a pulsed-laser-deposition method on LaNiO3 buffered Pt/Ti/SiO2/Si substrates, and their microstructure and dielectric properties have been compared with those of the films deposited directly on Pt/Ti/SiO2/Si substrates. The crystalline structure and the surface morphology of the CCTO thin films were markedly affected by the bottom electrodes. Both the films show temperature-independent dielectric properties in a wide temperature range, which is similar to those properties obtained in single-crystal or epitaxial thin films, while the room-temperature dielectric constant of the 350-nm-thick CCTO films on LaNiO3/Pt/Ti/SiO2/Si substrates at 100 kHz was found to be 2300, which was increased significantly compared with that obtained in the films on Pt/Ti/SiO2/Si substrates. Using the impedance spectroscopy technique, it has been suggested that the high dielectric constant response of the CCTO thin films originates from the grain boundary layer mechanism as found in internal barrier layer capacitors.

  10. Simultaneous Modification of Bottom-Contact Electrode and Dielectric Surfaces for Organic Thin-Film Transistors Through Single-Component Spin-Cast Monolayers

    SciTech Connect

    O Acton; M Dubey; t Weidner; K OMalley; T Kim; G Ting; D Hutchins; J Baio; T Lovejoy; et al.

    2011-12-31

    An efficient process is developed by spin-coating a single-component, self-assembled monolayer (SAM) to simultaneously modify the bottom-contact electrode and dielectric surfaces of organic thin-film transistors (OTFTs). This efficient interface modification is achieved using n-alkyl phosphonic acid based SAMs to prime silver bottom-contacts and hafnium oxide (HfO{sub 2}) dielectrics in low-voltage OTFTs. Surface characterization using near edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), and spectroscopic ellipsometry suggest this process yields structurally well-defined phosphonate SAMs on both metal and oxide surfaces. Rational selection of the alkyl length of the SAM leads to greatly enhanced performance for both n-channel (C60) and p-channel (pentacene) based OTFTs. Specifically, SAMs of n-octylphos-phonic acid (OPA) provide both low-contact resistance at the bottom-contact electrodes and excellent interfacial properties for compact semiconductor grain growth with high carrier mobilities. OTFTs based on OPA modifi ed silver electrode/HfO{sub 2} dielectric bottom-contact structures can be operated using < 3V with low contact resistance (down to 700 Ohm-cm), low subthreshold swing (as low as 75 mV dec{sup -1}), high on/off current ratios of 107, and charge carrier mobilities as high as 4.6 and 0.8 cm{sup 2} V{sup -1} s{sup -1}, for C60 and pentacene, respectively. These results demonstrate that this is a simple and efficient process for improving the performance of bottom-contact OTFTs.

  11. Structural, electrical, and low-temperature dielectric properties of sol-gel derived SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Thomas, Reji; Dube, D. C.; Kamalasanan, M. N.; Chandra, Subhas; Bhalla, A. S.

    1997-11-01

    Strontium titanate sol was prepared using strontium ethyl haxanoate and titanium isopropoxide. The sol was then spin coated on fused silica, p-type single-crystal silicon wafers (100) and stainless-steel substrates and annealed to give polycrystalline, transparent, and crack-free films. The surface morphology and structural properties of the films were studied using scanning electron microscopy and x-ray diffraction, respectively, and differential thermal analysis was used to observe structural transition. The dielectric measurements were conducted on films with metal-insulator-metal and metal-insulator-semiconductor configurations. Capacitance-voltage (C-V) measurements were carried out and the effect of the annealing temperature was studied. The dielectric constant and loss tangent at 1 MHz at room temperature were found to be 105 and 0.02, respectively, for 1.1 μm thick films. These measurements were also carried out at low temperatures down to 20 K. There are indications for a phase transition from a cubic perovskite to tetragonal perovskite structure at about 100 K where the tan δ shows some fluctuation, a characteristic of such transitions. The absence of a peak in the dielectric constant and the absence of hysteresis below the transition temperature have been explained on the basis of the low value of the tetragonal distortion (c/a=1.003) reported on bulk material.

  12. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric.

    PubMed

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-01-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm(2)V(-1)s(-1) coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering. PMID:27222074

  13. Microstructure and dielectric properties of piezoelectric magnetron sputtered w-Sc{sub x}Al{sub 1-x}N thin films

    SciTech Connect

    Zukauskaite, Agne; Wingqvist, Gunilla; Palisaitis, Justinas; Jensen, Jens; Persson, Per O. A.; Birch, Jens; Hultman, Lars; Matloub, Ramin; Muralt, Paul; Kim, Yunseok

    2012-05-01

    Piezoelectric wurtzite Sc{sub x}Al{sub 1-x}N (x = 0, 0.1, 0.2, 0.3) thin films were epitaxially grown by reactive magnetron co-sputtering from elemental Sc and Al targets. Al{sub 2}O{sub 3}(0001) wafers with TiN(111) seed and electrode layers were used as substrates. X-ray diffraction shows that an increase in the Sc content results in the degradation of the crystalline quality. Samples grown at 400 deg. C possess true dielectric behavior with quite low dielectric losses and the leakage current is negligible. For ScAlN samples grown at 800 deg. C, the crystal structure is poor and leakage current is high. Transmission electron microscopy with energy dispersive x-ray spectroscopy mapping shows a mass separation into ScN-rich and AlN-rich domains for x {>=} 0.2 when substrate temperature is increased from 400 to 800 deg. C. The piezoelectric response of epitaxial Sc{sub x}Al{sub 1-x}N films measured by piezoresponse force microscopy and double beam interferometry shows up to 180% increase by the addition of Sc up to x = 0.2 independent of substrate temperature, in good agreement with previous theoretical predictions based on density-functional theory.

  14. Magnetic and dielectric properties of layered perovskite Gd2Ti2O7 thin film epitaxially stabilized on a perovskite single crystal

    NASA Astrophysics Data System (ADS)

    Ukita, Takashi; Hirose, Yasushi; Ohno, Sawako; Hatabayashi, Kunitada; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2012-04-01

    Layered perovskite (LP) titanates, Ln2Ti2O7 (Ln = lanthanoids), are ferroelectric materials containing magnetic Ln3+ ions at A-site. Metastable LP-Gd2Ti2O7 was fabricated in epitaxial thin film form on lattice-matched perovskite substrates and its dielectric and magnetic properties were investigated. The (100)-oriented LP-Gd2Ti2O7 films were epitaxially grown on (110) plane of (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) and Nb-doped SrTiO3 by using a pulsed laser deposition method. Piezoresponse force microscope measurements revealed that LP-Gd2Ti2O7 has spontaneous polarization along the b-axis at room temperature, strongly suggesting room temperature ferroelectricity. Magnetization measurements showed paramagnetic behavior with weak antiferromagnetic interaction around 2 K. Small positive magneto-dielectric effect (Δɛ/ɛ ˜ 10-5 order) was also confirmed at 10 K.

  15. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric

    PubMed Central

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-01-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm2V−1s−1 coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering. PMID:27222074

  16. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-05-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm2V‑1s‑1 coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering.

  17. Temperature dependent dielectric function in the near-infrared to vacuum-ultraviolet ultraviolet spectral range of alumina and yttria stabilized zirconia thin films

    SciTech Connect

    Schmidt-Grund, R. Lühmann, T.; Böntgen, T.; Franke, H.; Lorenz, M.; Grundmann, M.; Opper, D.

    2013-12-14

    The dielectric function of nano-/polycrystalline alumina and yttria stabilised zirconia thin films has been investigated in a wide spectral range from 1.0 eV to 7.5 eV and temperatures between 10 K and room temperature. In the near band-edge spectral range, we found a broad distribution of optical transitions within the band gap, the so-called Urbach absorption tail which is typical for amorphous or polycrystalline materials due to the lack of long range order in the crystal structure. The coupling properties of the electronic system to the optical phonon bath and thermal lattice vibrations strongly depend on the ratio of the spectral extent of these disorder states to the main phonon energy, which we correlate with the different crystalline structure of our samples. The films have been grown at room temperature and 650 °C by pulsed laser deposition.

  18. Series resistance effect on time zero dielectrics breakdown characteristics of MOSCAP with ultra-thin EOT high-k/metal gate stacks

    NASA Astrophysics Data System (ADS)

    Hao, Xu; Hong, Yang; Yanrong, Wang; Wenwu, Wang; Guangxing, Wan; Shangqing, Ren; Weichun, Luo; Luwei, Qi; Chao, Zhao; Dapeng, Chen; Xinyu, Liu; Tianchun, Ye

    2016-05-01

    The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series resistance components extracted from the Fowler–Nordheim tunneling relation are attributed to the spreading resistance due to the asymmetry electrodes. Based on a series model to eliminate the series resistance effect, an area acceleration dependence is obtained by correcting the TZDB results. The area dependence follows Poisson area scaling rules, which indicates that the mechanism of TZDB is the same as TDDB and could be considered as a trap generation process. Project supported by the National High Technology Research and Development Program (863 Program) of China (No. SS2015AA010601), the National Natural Science Foundation of China (Nos. 61176091, 61306129), and the Opening Project of the Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.

  19. Ultrafast dynamics of the dielectric functions of ZnO and BaTiO{sub 3} thin films after intense femtosecond laser excitation

    SciTech Connect

    Acharya, S.; Seifert, G.; Chouthe, S.; Graener, H.; Böntgen, T.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M.

    2014-02-07

    The ultrafast carrier dynamics of epitaxial ZnO and BaTiO{sub 3} thin films after intense excitation at 3.10 eV and 4.66 eV photon energy has been studied by femtosecond absorption spectroscopy. Modelling the transient transmission changes on the basis of spectroscopic ellipsometry data and pertinent equilibrium model dielectric functions extended by additional terms for the effects at high carrier density (P-band luminescence and stimulated emission from electron-hole-plasma), a self-consistent parameterized description was obtained for both materials. Excited carrier lifetimes in the range of ≈2 to ≈60 ps and long-lived thermal effects after several hundred ps have been identified in both materials. These findings form a reliable basis to quantitatively describe future femtosecond studies on ZnO/BaTiO{sub 3} heterolayer systems.

  20. Structural and dielectric properties of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown by PLD

    SciTech Connect

    James, K. K.; Satish, B.; Jayaraj, M. K.

    2014-01-28

    Ferroelectric thin films of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) were deposited on Si/SiO{sub 2}/TiO{sub 2}/Pt (PtSi) substrate by pulsed laser deposition (PLD). Crystalline films with perovskite structure were obtained without post-deposition annealing. Phase purity of the deposited films was confirmed by x-ray diffraction. The lowest value of FWHM obtained for the film deposited at oxygen pressure 5.4×10{sup −4} mbar and substrate temperature 600°C, indicates the high crystallinity of the film. The room temperature dielectric constant at 100 kHz was 85. Butterfly loop, which is the characteristic of ferroelectric materials, was obtained in the regime of −4 to +4V. The leakage current density was nearly 9×10{sup −13} Acm{sup −2}.