Science.gov

Sample records for nitrique concentre application

  1. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    NASA Technical Reports Server (NTRS)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  2. Refractive Secondary Concentrators for Solar Thermal Applications

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Macosko, Robert P.

    1999-01-01

    The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.

  3. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications

    PubMed Central

    Kim, Sung Jae; Song, Yong-Ak; Han, Jongyoon

    2010-01-01

    Recently, a new type of electrokinetic concentration devices has been developed in a microfluidic chip format, which allows efficient trapping and concentration of biomolecules by utilizing ion concentration polarization near nanofluidic structures. These devices have drawn much attention not only due to their potential application in biomolecule sensing, but also due to the rich scientific content related to ion concentration polarization, the underlying physical phenomenon for the operation of these electrokinetic concentration devices. This tutorial review provides an introduction to the scientific and engineering advances achieved, in-depth discussion about several interesting applications of these unique concentration devices, and their current limitations and challenges. PMID:20179814

  4. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    PubMed

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  5. Concentrating Solar Power Commercial Application Study

    SciTech Connect

    none,

    2009-10-01

    This report has been prepared in response to section 603(b) of the Energy Independence and Security Act of 2007, (Pub. L. No. 110-140), which states that “…the Secretary of Energy shall transmit to Congress a report on the results of a study on methods to reduce the amount of water consumed by concentrating solar power systems.”

  6. Applications of nonimaging optics for very high solar concentrations

    SciTech Connect

    O`Gallagher, J.; Winston, R.

    1997-12-31

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy.

  7. High concentration low wattage solar arrays and their applications

    NASA Astrophysics Data System (ADS)

    Hoffmann, Robert; O'Gallagher, Joseph; Winston, Roland

    1997-02-01

    Midway Labs currently produces a 335x concentrator module that has reached as high as 19% active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency (>30%) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales.

  8. Effect of fertilizer application on soil heavy metal concentration.

    PubMed

    Atafar, Zahra; Mesdaghinia, Alireza; Nouri, Jafar; Homaee, Mehdi; Yunesian, Masoud; Ahmadimoghaddam, Mehdi; Mahvi, Amir Hossein

    2010-01-01

    A large amount of chemicals is annually applied at the agricultural soils as fertilizers and pesticides. Such applications may result in the increase of heavy metals particularly Cd, Pb, and As. The objective of this study was to investigate the variability of chemical applications on Cd, Pb, and As concentrations of wheat-cultivated soils. Consequently, a study area was designed and was divided into four subareas (A, B, C, and D). The soil sampling was carried out in 40 points of cultivated durum wheat during the 2006-2007 periods. The samples were taken to the laboratory to measure their heavy metal concentration, soil texture, pH, electrical conductivity, cationic exchange capacity, organic matter, and carbonate contents. The result indicated that Cd, Pb, and As concentrations were increased in the cultivated soils due to fertilizer application. Although the statistical analysis indicates that these heavy metals increased significantly (P value<0.05), the lead and arsenic concentrations were increased dramatically compared to Cd concentration. This can be related to overapplication of fertilizers as well as the pesticides that are used to replant plant pests, herbs, and rats.

  9. Ocular concentrations of mitomycin C after extraocular application in rabbits.

    PubMed

    Mietz, H; Rump, A F; Theisohn, M; Klaus, W; Diestelhorst, M; Krieglstein, G K

    1995-01-01

    To determine the intraocular concentrations of Mitomycin C (MMC) after extraocular application, we used pigmented rabbits and placed sponges soaked with MMC under the conjunctiva on top of the intact episclera. First, we soaked the sponges with volumes ranging from 0.025 ml to 0.3 ml of the solution containing MMC and sampled aqueous humour after 30 minutes. The concentrations, as determined by high performance liquid chromatography, did not correlate to the amount of MMC given. Then, we soaked the sponges with different concentrations of MMC with a volume of 0.1 ml and sampled aqueous humour, vitreous humour and sclera after 60 minutes. The concentrations of MMC were higher in the vitreous than in the aqueous, and, relative to these values, very high in the sclera. These results indicate that the amount of MMC reaching the interior of the eye after standard extraocular application may be highly variable, and that the concentrations of MMC in the sclera and formed vitreous can be considerably higher than in the aqueous humour.

  10. Benefits of metal reflective surfaces for concentrating solar applications

    NASA Astrophysics Data System (ADS)

    Braendle, Stefan

    2010-08-01

    Concentrating photovoltaic (CPV) companies are constantly making gains in efficiency and a lower levelized cost of energy, but continue to face questions of reliability and efficiency at scale remain. New technologies such as highly efficient aluminum mirrors help CPV companies fulfill both of these demands by allowing for performance and reliability gains, while also enabling high volume production for scaled deployment. In testing, metal mirrors have shown to be good matches for concentrating applications while performing at the same level as glass mirrors in accelerated weather tests. When combined with the inherent lighter weight and formability of aluminum, these new mirrors provide CPV solutions with a compelling advantage in the field.

  11. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Oneill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  12. Development of a Fresnel lens concentrator for space application

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Piszczor, Michael F.

    1987-01-01

    The selected conceptual design of the dome lens photovoltaic concentrator for space applications uses a 3.7 cm square aperture dome lens to focus onto a 0.4 cm active diameter gallium arsenide cell. The selected configuration will provide 91.5 percent lens optical efficiency and 21.4 percent cell efficiency at 100 suns irradiance and 100 C cell temperature, for an overall cell efficiency of 19.6 percent. The selected configuration will tolerate 1 degree tracking errors with negligible loss of performance. The selected panel weight is 2.5 kg/sq.m.

  13. Solar concentrator technology development for space based applications, volume 2

    NASA Astrophysics Data System (ADS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-12-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the

  14. Solar concentrator technology development for space based applications, volume 1

    NASA Technical Reports Server (NTRS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.

  15. Solar concentrator technology development for space based applications, volume 2

    NASA Technical Reports Server (NTRS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the

  16. Solar concentrator technology development for space based applications, volume 1

    NASA Astrophysics Data System (ADS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-12-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.

  17. Systems and applications analysis for concentrating photovoltaic-thermal systems

    NASA Astrophysics Data System (ADS)

    Schwinkendorf, W. E.

    Numerical simulations were carried out of the performance, costs, and land use requirements of five commercial and six residential applications of combined photovoltaic-thermal (PVT) power plants. Line focus Fresnel concentrators (LFF) systems were selected after a simulated comparison of different PVT systems. Load profiles were configured from industrial data and ASHRAE and building codes. Assumptions included costs of $1/Wp, 0.15 efficiency, and a cost of $275/sq m, as well as a 25 percent solar tax credit. The calculations showed that a significant low temperature thermal load must be available, but no heat recovery system. Industrial situations were identified which favor solar thermal energy alone rather than a combined system. The thermal energy displacement was determined to be the critical factor in assessing the economics of the PVT systems.

  18. Predicting indoor pollutant concentrations, and applications to air quality management

    SciTech Connect

    Lorenzetti, David M.

    2002-10-01

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptoms such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.

  19. Tailored edge-ray concentrators for solar energy applications: approaching the thermodynamic limit to concentration

    NASA Astrophysics Data System (ADS)

    Gordon, Jeffrey M.; Ries, Harald

    1993-08-01

    We present a new type of ideal non-imaging secondary concentrator, the tailored edge-ray concentrator (TERC), that can closely approach the thermodynamic limit of concentration, and illustrate it for both linear and point-focus Fresnel reflectors. For large rim-angle heliostat fields, practical-sized secondaries with shapes that should be relatively easy to fabricate can achieve concentrations substantially above those of compound parabolic concentrators (CPCs). This superiority stems from designing so as to accommodate the particular flux from the heliostat field. The edge-ray principle used for generating the new secondary dictates a heliostat tracking strategy different from the conventional one, but equally easy to implement.

  20. Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system.

    PubMed

    Tan, Ming-Hui; Chong, Kok-Keong; Wong, Chee-Woon

    2014-01-20

    Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120 m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.

  1. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  2. Ultrasonic analyte concentration and application in flow cytometry

    DOEpatents

    Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven

    2008-03-11

    The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.

  3. Ultrasonic analyte concentration and application in flow cytometry

    DOEpatents

    Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven

    2015-07-07

    The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.

  4. Ultrasonic analyte concentration and application in flow cytometry

    SciTech Connect

    Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven

    2014-07-22

    The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.

  5. Domed Fresnel lens concentrator technology for space application

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Oneill, Mark J.

    1989-01-01

    Over the past three years, NASA Lewis and Entech, Inc. have been investigating the use of high efficiency refractive photovoltaic concentrators for use in space. The design currently under investigation uses a square domed Fresnel lens to focus light on a GaAs concentrator cell. A prismatic cell cover, which directs light away from the front contacts and thus eliminates metalization losses, is applied to the top of the GaAs cell to further enhance array efficiency. The latest experimental results based on testing the GaAs cell/prism cover assembly at standard and operating conditions are presented.

  6. Metal concentrations in edible mushrooms following municipal sludge application on forest land.

    PubMed

    Benbrahim, Mohammed; Denaix, Laurence; Thomas, Anne-Laure; Balet, Julie; Carnus, Jean-Michel

    2006-12-01

    In the context of biosolids utilisation in forestry, effects of sludge application on mushroom metal concentration were studied in six sites of maritime pine forests in the South-West of France. Municipal sludge were applied at a rate of 6 T dry matter per hectare. Edible mushrooms were collected two years after sludge application. As, Cd, Cu, Hg, Pb, Se and Zn concentrations were determined. Results showed a high variability for trace element concentrations in mushrooms collected from control areas. No significant correlation was found between soil parameters (pH and trace elements concentrations) and mushroom trace element concentrations. Even if the concentration of trace metals increased in the soils, sludge application did not affect As, Cu, Se and Zn concentrations in carpophores but slightly increased Cd, Pb and Hg concentrations on some sites. This effect is dependent on sludge type and sites.

  7. Validation and Application of Concentrated Cesium Eluate Physical Property Models

    SciTech Connect

    Choi, A.S.

    2004-03-18

    This work contained two objectives. To verify the mathematical equations developed for the physical properties of concentrated cesium eluate solutions against experimental test results obtained with simulated feeds. To estimate the physical properties of the radioactive AW-101 cesium eluate at saturation using the validated models. The Hanford River Protection Project (RPP) Hanford Waste Treatment and Immobilization Plant (WTP) is currently being built to extract radioisotopes from the vast inventory of Hanford tank wastes and immobilize them in a silicate glass matrix for eventual disposal at a geological repository. The baseline flowsheet for the pretreatment of supernatant liquid wastes includes removal of cesium using regenerative ion-exchange resins. The loaded cesium ion-exchange columns will be eluted with nitric acid nominally at 0.5 molar, and the resulting eluate solution will be concentrated in a forced-convection evaporator to reduce the storage volume and to recover the acid for reuse. The reboiler pot is initially charged with a concentrated nitric acid solution and kept under a controlled vacuum during feeding so the pot contents would boil at 50 degrees Celsius. The liquid level in the pot is maintained constant by controlling both the feed and boilup rates. The feeding will continue with no bottom removal until the solution in the pot reaches the target endpoint of 80 per cent saturation with respect to any one of the major salt species present.

  8. Methamphetamine blood concentrations in human abusers: application to pharmacokinetic modeling.

    PubMed

    Melega, William P; Cho, Arthur K; Harvey, Dennis; Laćan, Goran

    2007-04-01

    Characterization of methamphetamine's (METH) dose-dependent effects on brain neurochemistry may represent a critical component for better understanding the range of resultant behavioral pathologies. Most human studies, however, have assessed only the effects of long term, high dose METH abuse (e.g., greater than 1000 mg/day) in individuals meeting DSM-IV criteria for METH dependence. Yet, for the majority of METH abusers, their patterns of METH exposure that consist of lower doses remain less well-characterized. In this study, blood samples were obtained from 105 individuals detained by police for possible criminal activity and testing positive for stimulants by EMIT assay. METH blood concentrations were subsequently quantified by GC-MS and were predominantly in the low micromolar range (0.1-11.1 microM), with median and mean values of 1.3 microM (0.19 mg/l) and 2 microM (0.3 mg/l), respectively. Pharmacokinetic calculations based on these measured values were used to estimate initial METH body burdens, the median value being 52 mg. Modeling a 52 mg dose for a 4 day-METH maintenance exposure pattern of 4 doses/day at 4 h intervals showed that blood concentrations remained between 1 and 4 microM during this period. Collectively, these data present evidence for a METH exposure pattern distinct from high dose-METH abuse and provide the rationale for assessing potential brain pathology associated with such lower dose-METH exposure.

  9. Tracking-integrated optics: applications in solar concentration

    NASA Astrophysics Data System (ADS)

    Wheelwright, Brian M.; Angel, Roger; Coughenour, Blake

    2014-12-01

    Conventional concentrating photovoltaic (CPV) systems track the sun with high precision dual-axis trackers. The emergent field of tracking-integrated optics has the potential to simplify the mechanics of CPV systems by loosening or eliminating the need for dual-axis tracking. In a tracking-integrated scheme, external module tracking is complemented or entirely replaced by miniature tracking within the module. This internal tracking-integration may take the form of active small-motion translation, rotation of arrayed optics, or by passive material property changes induced by the concentrated light. These methods are briefly reviewed. An insolation weighting model is presented which will aid in the design of tracking-integrated optics by quantifying the tradeoff between angular operation range and annual sunlight collection. We demonstrate that when tracking-integrated optics are used to complement external module tracking about a horizontal, North-South oriented axis, truncating the operational range may be advantageous. At Tucson AZ latitude (32.2°N), 15.6% of the angular range may be truncated while only sacrificing 3.6% of the annual insolation. We show that modules tracked about a polar-aligned axis are poorly-suited for truncation.

  10. Tracking heat flux sensors for concentrating solar applications

    DOEpatents

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  11. A novel application of concentrated solar thermal energy in foundries.

    PubMed

    Selvaraj, J; Harikesavan, V; Eshwanth, A

    2016-05-01

    Scrap preheating in foundries is a technology that saves melting energy, leading to economic and environmental benefits. The proposed method in this paper utilizes solar thermal energy for preheating scrap, effected through a parabolic trough concentrator that focuses sunlight onto a receiver which carries the metallic scrap. Scraps of various thicknesses were placed on the receiver to study the heat absorption by them. Experimental results revealed the pattern with which heat is gained by the scrap, the efficiency of the process and how it is affected as the scrap gains heat. The inferences from them gave practical guidelines on handling scraps for best possible energy savings. Based on the experiments conducted, preheat of up to 160 °C and a maximum efficiency of 70 % and a minimum efficiency of 40 % could be achieved across the time elapsed and heat gained by the scrap. Calculations show that this technology has the potential to save around 8 % of the energy consumption in foundries. Cumulative benefits are very encouraging: 180.45 million kWh of energy savings and 203,905 t of carbon emissions cut per year across the globe. This research reveals immense scope for this technology to be adopted by foundries throughout the world.

  12. Applications of ultraviolet light in the preparation of platelet concentrates

    SciTech Connect

    Pamphilon, D.H.; Corbin, S.A.; Saunders, J.; Tandy, N.P.

    1989-06-01

    Passenger lymphocytes in platelet concentrates (PCs) may induce the formation of lymphocytotoxic antibodies (LCTAbs) and subsequent refractoriness to platelet transfusions. Ultraviolet (UV) irradiation can prevent lymphocytes' acting as stimulator or responder cells in mixed-lymphocyte reactions (MLRs) and could theoretically prevent LCTAb formation in vivo. A system has been devised for the delivery of UV irradiation to PCs; platelet storage characteristics and MLRs were evaluated in UV-irradiated PCs harvested from healthy donors with the Haemonetics V50 and PCS cell separators. MLR and response to phytohemagglutinin stimulation were abolished by a dose of 3000 joules per m2 at a mean wavelength of 310 nm. Platelet aggregatory responses to adenosine diphosphate (ADP), ristocetin, collagen and epinephrine, hypotonic shock response, and pH showed no important differences when control PCs and PCs irradiated as above were compared during 5 days of storage in Fenwal PL-1240 packs. Lactate production during storage was significantly higher in UV-treated PCs (p less than 0.001), but values did not exceed 20 mmol per L. UV transmission at 310 nm in standard blood product containers, including the Fenwal PL-146, PL-1240, and PL-732, was low (less than 30%), but it was acceptable in the Delmed Cryostorage and DuPont SteriCell packs (greater than 50%). UV irradiation may provide a simple and inexpensive means of producing nonimmunogenic PCs.

  13. Fasting breath hydrogen concentration: normal values and clinical application.

    PubMed

    Perman, J A; Modler, S; Barr, R G; Rosenthal, P

    1984-12-01

    Excretion of hydrogen in breath commonly persists despite an overnight fast. Although elevation of hydrogen concentration above the fasting value after administration of a test sugar is evidence of malabsorption, the significance of the fasting value itself is unknown. We determined the normal limits of fasting breath hydrogen in healthy children and adults, and in patients with chronic diarrhea or recurrent abdominal pain. Fasting breath hydrogen in 221 healthy children and 9 healthy adults averaged 7.1 +/- 5.0 parts per million (mean +/- SD), exceeding 30 parts per million in less than 1%. No value exceed 42 parts per million. In 73 patients with recurrent abdominal pain and 76 patients with chronic diarrhea, fasting breath hydrogen was less than 42 parts per million in 97% and 83%, respectively. History and laboratory data were reviewed in the 15 patients where fasting breath hydrogen exceeded 42 parts per million. Seven had documented small bowel bacterial overgrowth and an additional 3 patients had radiographic evidence of intestinal stasis. Using test dinner meals, we prospectively evaluated the effect of previously ingested foods containing complex carbohydrates on fasting breath hydrogen. Dinner meals consisting of rice, wheat, or beans influenced fasting breath hydrogen values, but did not result in elevated fasting breath hydrogen in healthy individuals. Rice bread resulted in uniformly low fasting breath hydrogen values in healthy subjects (2.0 +/- 2.5 parts per million), but fasting breath hydrogen remained elevated in patients with bacterial overgrowth. Our studies indicate that conditions for measurement of the fasting breath hydrogen value may be standardized to improve discrimination between normal and abnormal values.

  14. Optoelectronic sensor device for monitoring ethanol concentration in winemaking applications

    NASA Astrophysics Data System (ADS)

    Jiménez-Márquez, F.; Vázquez, J.; Úbeda, J.; Rodríguez-Rey, J.; Sánchez-Rojas, J. L.

    2015-05-01

    The supervision of key variables such as sugar, alcohol, released CO2 and microbiological evolution in fermenting grape must is of great importance in the winemaking industry. However, the fermentation kinetics is assessed by monitoring the evolution of the density as it varies during a fermentation, since density is an indicator of the total amount of sugars, ethanol and glycerol. Even so, supervising the fermentation process is an awkward and non-comprehensive task, especially in wine cellars where production rates are massive, and enologists usually measure the density of the extracted samples from each fermentation tank manually twice a day. This work aims at the design of a fast, low-cost, portable and reliable optoelectronic sensor for measuring ethanol concentration in fermenting grape must samples. Different sets of model solutions, which contain ethanol, fructose, glucose, glycerol dissolved in water and emulate the grape must composition at different stages of the fermentation, were prepared both for calibration and validation. The absorption characteristics of these model solutions were analyzed by a commercial spectrophotometer in the NIR region, in order to identify key wavelengths from which valuable information regarding the sample composition can be extracted. Finally, a customized optoelectronic prototype based on absorbance measurements at two wavelengths belonging to the NIR region was designed, fabricated and successfully tested. The system, whose optoelectronics is reduced after a thorough analysis to only two LED lamps and their corresponding paired photodiodes operating at 1.2 and 1.3 μm respectively, calculates the ethanol content by a multiple linear regression.

  15. Concentration, characterization and application of lipases from Sporidiobolus pararoseus strain

    PubMed Central

    Smaniotto, Alessandra; Skovronski, Aline; Rigo, Elisandra; Tsai, Siu Mui; Durrer, Ademir; Foltran, Lillian Liva; Paroul, Natália; Di Luccio, Marco; Oliveira, J. Vladimir; de Oliveira, Débora; Treichel, Helen

    2014-01-01

    Lipases produced by a newly isolated Sporidiobolus pararoseus strain have potential catalytic ability for esterification reactions. After production, the enzymatic extracts (conventional crude and precipitated, ‘CC’ and ‘CP’, and industrial crude and precipitated, ‘IC’ e ‘IP’) were partially characterized. The enzymes presented, in general, higher specificity for short chain alcohols and fatty acids. The precipitated extract showed a good thermal stability, higher than that for crude enzymatic extracts. The ‘CC’ and ‘CP’ enzymes presented high activities after exposure to pH 6.5 and 40 °C. On the other hand, the ‘IC’ and ‘IP’ extracts kept their activities in a wide range of pH memory but presented preference for higher reaction temperatures. Preliminary studies of application of the crude lipase extract in the enzymatic production of geranyl propionate using geraniol and propionic acid as substrates in solvent-free system led to a reaction conversion of 42 ± 1.5%. PMID:24948948

  16. [Dynamic observation, simulation and application of soil CO2 concentration: a review].

    PubMed

    Sheng, Hao; Luo, Sha; Zhou, Ping; Li, Teng-Yi; Wang, Juan; Li, Jie

    2012-10-01

    Soil CO2 concentration is the consequences of biological activities in above- and below-ground, and its fluctuation may significantly affect the future atmospheric CO2 concentration and the projected climate change. This paper reviewed the methodologies for measuring the soil CO2 concentration in situ as well as their advantages and disadvantages, analyzed the variation patterns and controlling factors of soil CO2 concentration across the temporal (diurnal, several days, seasonal and inter-annual) and spatial (soil profile, site and landscape) scales, introduced the primary empirical and mechanical models for estimating and predicting soil CO2 concentration, and summarized the applications and constraints of soil CO2 concentration gradient in determining soil respiration. Four research priorities were proposed, i. e., to develop new techniques for collecting and determining the soil CO2 in severe soil conditions (e. g., flooding, lithoso and others), to approach the responses of soil CO2 concentration to weather change and related regulation mechanisms, to strengthen the researches on the spatial heterogeneity of soil CO2 concentration, and to expand the applications of soil CO2 concentration gradient in the measurement of tropical-subtropical soil respiration.

  17. Design, Fabrication and Test of a High Efficiency Refractive Secondary Concentrator for Solar Applications

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Geng, Steven M.; Castle, Charles H.; Macosko, Robert P.

    2000-01-01

    Common to many of the space applications that utilize solar thermal energy such as electric power conversion, thermal propulsion, and furnaces, is a need for highly efficient, solar concentration systems. An effort is underway to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the effort at the NASA Glenn Research Center to evaluate the performance of a prototype single crystal sapphire refractive secondary concentrator and to compare the performance with analytical models. The effort involves the design and fabrication of a secondary concentrator, design and fabrication of a calorimeter and its support hardware, calibration of the calorimeter, testing of the secondary concentrator in NASA Glenn's Tank 6 solar thermal vacuum facility, and comparing the test results with predictions. Test results indicate an average throughput efficiency of 87%. It is anticipated that reduction of a known reflection loss with an anti-reflective coating would result in a secondary concentrator throughput efficiency of approximately 93%.

  18. Ocular tissue concentrations of mitomycin C with variable dose and duration of application time in rabbits.

    PubMed

    Hara, T; Shirato, S; Suzuki, Y

    1998-01-01

    We measured mitomycin C (MMC) concentrations in ocular tissues in rabbits with variable dose (0.1, 0.2, or 0.4 mg) and duration of application time (1, 3, or 5 minutes) of MMC using high-performance liquid chromatography. Mitomycin C concentrations at the administered site after single subconjunctival application of MMC and after irrigation showed significant correlation with dose and duration of time of application. By multiple regression analysis, MMC concentrations (microg/g) at the conjunctiva were described as -6.73 + 67.4 x Dose (mg) + 1.66 x Time (minutes) (R2 0.65); at the sclera, -1.85 + 38.2 x Dose + 0.927 x Time (R2 0.63); at the cornea, -0.727 + 8.44 x Dose (R2 0.46). With a 0.2-mg MMC dose, in all three application times (1, 3, or 5 minutes), MMC concentrations in the conjunctiva at the administered quadrant were three times higher than in the neighboring quadrants and 6 to 7 times higher than in the opposite quadrant. In the sclera, MMC concentrations were 3.5 times higher than in the neighboring sites and over 8 to 9 times higher than in the opposite site. In the cornea, MMC concentrations were 2 to 3 times higher than in the neighboring sites and opposite site. In the iris-ciliary body, MMC concentrations were 0.61 microg/g at the administered site with 0.2 mg for 3-minute application, 2 times higher than in neighboring sites, and 2 times higher than in opposite sites.

  19. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  20. Low-concentration CPC's for low-temperature solar energy applications

    SciTech Connect

    Gordon, J.M.

    1986-02-01

    The authors consider the feasiblity of low-concentration CPC's for low-temperature applications. A quantitative assessment of optical gains versus thermal losses, and of savings in reflector area, leads to the conclusion that low-concentration CPC's of relatively small acceptance angle may be competitive with, or superior to, flat plates. Calculations of yearly collected energy and material requirements are presented, and comparisons are made with corresponding flat plate collectors.

  1. Dexamethasone concentration gradients along scala tympani after application to the round window membrane

    PubMed Central

    Salt, Alec N

    2008-01-01

    Hypothesis Local application of dexamethasone-21-dihydrogene-phosphate (Dex-P) to the round window membrane (RWM) of guinea pigs produces a substantial basal-apical concentration gradient in scala tympani (ST) perilymph. Background In recent years, intratympanically-applied glucocorticoids are increasingly being used for the treatment of inner ear disease. Although measurements of intracochlear concentrations after round window (RW) application exist, there is limited information on the distribution of these drugs in the inner ear fluids. It has been predicted from computer simulations that substantial concentration gradients will occur with lower concentrations expected in apical turns after RW application. Concentration gradients of other substances along the cochlea have recently been confirmed using a sequential apical sampling method to obtain perilymph. Methods Dex-P (10mg/ml) was administered to the RWM of guinea pigs (n=9) in vivo for 2 to 3 hours. Perilymph was then collected using a protocol in which ten samples, each of approximately 1μl, were taken sequentially from the cochlear apex into capillary tubes. Dex-P concentration of the samples was determined by HPLC. Interpretation of sample data using a finite element model allowed the longitudinal gradients of Dex-P in scala tympani to be quantified. Results The Dex-P content of the first sample in each experiment (dominated by perilymph from apical regions) was substantially lower than that of the third and fourth sample (dominated by basal turn perilymph). These findings qualitatively demonstrated the existence of a concentration gradient along scala tympani (ST). After detailed analysis of the measured sample concentrations using an established finite element computer model, the mean basal-apical concentration gradient was estimated to be 17•103. Both absolute concentrations of Dex-P in ST and the basal-apical gradients were found to vary substantially. Conclusion The existence of substantial basal

  2. A new optical concentrator design and analysis for rooftop solar applications

    NASA Astrophysics Data System (ADS)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A.

    2015-08-01

    In this paper, a new type of linear focus, linear-tracking, catadioptric concentrator system is proposed and analysed for roof-integrated solar thermal applications. The optical concentrator designs have a focal distance of less than 10cm and are analysed using optical simulation software (Zemax). The results show that a relatively high concentration ratio (4.5 ~ 5.9 times) can be obtained and that the concentrators are capable of achieving an average optical efficiency around 66 - 69% during the middle 6 hours of a sunny day (i.e. a day with ~1000W/m2 global irradiance). Optical efficiency is analysed for perfect and non-ideal optical components to predict the collector performance under different `practical' circumstances. Overall, we intend for this paper to catalyse the development of rooftop solar thermal concentrators with compact form factors, similar to PV panels.

  3. Convection-diffusion driven concentration gradients in nanolitre droplets for microfluidic screening applications

    NASA Astrophysics Data System (ADS)

    Thakur, Raviraj; Amin, Ahmed; Wereley, Steven

    2014-11-01

    Ability to generate a concentration gradients in emulsified aqueous droplets is a highly desired feature for several lab-on-chip applications. Numerous schemes exists for generating concentration gradients in continuous flow devices such as Y junctions, split-and-recombine techniques, etc. However, varying the sample concentration in emulsified droplets is quite challenging. In this work, we have developed a scheme for generating and controlling concentration gradients in programmable multi-layer PDMS microfluidic chips. Briefly, a high concentration sample is injected into a steady stream of buffer. The buffer with the sample pulse and an immiscible oil phase are flowed through a T-junction in an alternate manner. As the sample pulse advances, the combined effect of diffusion and convection produced dispersion of sample pulse in streamwise direction. This continuous gradient stream is split into discrete droplets at the T-junction. Pulsatile flow condition are maintained using on-chip diaphragm peristaltic pumps. The problem can be thought of an extension of Taylor-Aris dispersion with laminar pulsatile flow in rectangular channels. The concentration profile is found to be dependent upon the frequency of pulsatile flow and thus can be fine-tuned according to application needs. Theoretical framework is established for pump regimes that correlates the diffusion coefficients of the input samples with the resultant concentration profiles.

  4. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment

    SciTech Connect

    Huang Jiquan; Cao Yongge; Deng Zhonghua; Tong Hao

    2011-03-15

    The effects of the concentration of NaOH on the formation and transformation of various titanate nanostructures were studied. With increasing NaOH concentration, three different formation mechanisms were proposed. Nanotubes can only be obtained under moderate NaOH conditions, and should transform into nanowires with prolonged hydrothermal treatment, and their formation rate is accelerated by increasing NaOH concentration. Low concentration of NaOH results in the direct formation of nanowires, while extra high concentration of NaOH leads to the formation of amorphous nanoparticles. Adsorption and photocatalysis studies show that titanate nanowires and nanotubes might be potential adsorbents for the removal of both heavy metal ions and dyes and photocatalysts for the removal of dyes from wastewater. -- Graphical abstract: The morphologies of the titanates depend deeply on the concentration of NaOH. With increasing NaOH concentration, three different formation mechanisms were proposed. The application of these titanate nanostructures in the wastewater treatment was studied. Display Omitted Research highlights: {yields} Effect of NaOH concentration on the structures of various titanates was reported. {yields} Three different formation mechanisms were presented with increasing NaOH concentration. {yields} Various titanates were used as adsorbents/photocatalysts in wastewater treatment.

  5. Abscisic acid form, concentration, and application timing influence phenology and bud cold hardiness in Merlot grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of abscisic acid (ABA) form, concentration and application timing on bud cold hardiness, phenology and fruiting performance on ‘Merlot’ grapevines (Vitis vinifera) were evaluated in a three year field trial with site locations in British Columbia Canada, Ontario Canada, Washington U.S. ...

  6. Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport of sediment and nutrients from land application areas is an environmental concern. New methods are needed for estimating soil and nutrient concentrations of runoff from cropland areas on which manure is applied. Artificial Neural Networks (ANN) trained with a Backpropagation (BP) algor...

  7. 40 CFR 417.40 - Applicability; description of the glycerine concentration subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the glycerine concentration subcategory. 417.40 Section 417.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  8. 40 CFR 417.40 - Applicability; description of the glycerine concentration subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the glycerine concentration subcategory. 417.40 Section 417.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  9. 40 CFR 417.40 - Applicability; description of the glycerine concentration subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the glycerine concentration subcategory. 417.40 Section 417.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  10. 40 CFR 417.40 - Applicability; description of the glycerine concentration subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the glycerine concentration subcategory. 417.40 Section 417.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  11. 40 CFR 417.40 - Applicability; description of the glycerine concentration subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the glycerine concentration subcategory. 417.40 Section 417.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  12. Concentration gradient along scala tympani following the local application of gentamicin to the round window membrane

    PubMed Central

    Plontke, Stefan K.; Mynatt, Robert; Gill, Ruth M.; Borgmann, Stefan; Salt, Alec N.

    2008-01-01

    Objectives The distribution of gentamicin along the fluid spaces of the cochlea following local applications has never previously been demonstrated. Computer simulations have predicted that significant basal-apical concentration gradients might be expected and histological studies indicate that hair cell damage is greater at the base than at the apex following local gentamicin application. In the present study, gradients of gentamicin along the cochlea were measured. Methods A recently-developed method of sampling perilymph from the cochlear apex of guinea pigs was used, in which the samples represent fluid originating from different regions along scala tympani. Gentamicin concentration was determined in sequential apical samples which were taken following up to three hours of local application to the round window niche. Results Substantial gradients of gentamicin along the length of scala tympani were demonstrated and quantified, averaging more than 4000 times greater concentration at the base compared to the apex at the time of sampling. Peak concentrations and gradients for gentamicin varied considerably between animals, likely resulting from variations in round window membrane permeability and rates of perilymph flow. Conclusions The large gradients for gentamicin demonstrated here in guinea pigs account for how it is possible to suppress vestibular function in some patients with a local application of gentamicin without damaging auditory function. Variations in round window membrane permeability and in perilymph flow could account for why hearing losses are observed in some patients. PMID:17603318

  13. Electrical characterization of electrophoretically coated aluminum samples for photovoltaic concentrator application

    SciTech Connect

    Sugimura, R.S.; Mon, G.R.; Ross, R.G. Jr.

    1992-10-01

    The practicality of using a thin-film styrene/acrylate copolymer electrophoretic coating to isolate concentrator cells electrically from their surroundings in a photovoltaic concentrator module is assessed. Only the electrical isolation problem was investigated. The approach was to subject various types of EP-coated aluminum specimens to electrical stress testing and to aging tests while monitoring coating electrical resistivity properties. It was determined that, in general, longer processing times--i.e., thicker electrophoretic layers--resulted in better voltage-withstand properties. In particular, a two-minute processing time seemed sufficient to provide the electrical isolation required in photovoltaic concentrator application applications. Even though electrophoretic coatings did not seem to fill voids in porous-anodized aluminum substrates, breakdown voltages generally exceeded hi-pot pass-fail voltage levels with a comfortable margin. 6 refs, 11 figs, 5 tabs.

  14. 64 kW concentrator Photovoltaics Application Test Center. Volume. Final report

    SciTech Connect

    Jardine, D.M.; Jones, D.W.

    1980-06-01

    Kaman Sciences Corporation has designed a 64 kW Concentrating Photovoltaic Applications Test Center (APTEC). The APTEC employs a combined concentrating photovoltaic array in a total energy system application for load sharing the electric and thermal demands of a large computer center with the interfaced electric and natural gas utility. The photovoltaic array is composed of two-axis tracking heliostats of Fresnel lens concentrating, silicon solar cell modules. The modules are cooled with a fluid which transfers heat to a ground coupled heat sink/storage unit for subsequent use in meeting the computer center's thermal load demand. The combined photovoltaic power system shares basic components - a power conditioning unit, batteries and thermal conditioning equipment - with the electric and natural gas utility service, improving the computer center's operating availability time and displacing a portion of the fossil fuel required to power the computer center with solar energy. The detailed system design is reported.

  15. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application.

    PubMed

    Zhang, Yueqiang; Shi, Rongli; Rezaul, Karim Md; Zhang, Fusuo; Zou, Chunqin

    2010-12-08

    Human deficiencies of iron (Fe) and zinc (Zn) are worldwide problems. Biofortification of wheat could reduce Fe and Zn deficiencies in societies that depend on wheat consumption. This study investigated the effects of foliar application of Fe with or without Zn on the concentrations of Fe and Zn in grain and especially in flour of three wheat cultivars. On average, grain Fe concentration was increased significantly from 29.5 mg kg(-1) in the control to 37.8, 35.9, or 34.9 mg kg(-1) by application of FeSO4, ferric citrate plus ZnSO4, or ferric citrate, respectively. As expected, grain Zn concentration was increased from 29.0 mg kg(-1) in the control to 45.7 or 39.6 mg kg(-1) by application of ferric citrate plus ZnSO4 or a complex of micronutrients. Although the Fe and Zn concentrations in flour were inherently lower than in bran and shorts made by experimental mill, the concentrations in flour were simultaneously increased from 10.4 to 12.4 mg kg(-1) for Fe and from 11.8 to 17.4 mg kg(-1) for Zn by application of ferric citrate plus ZnSO4. Importantly, Fe was peripherally localized within grain fractions and strictly limited to transport to endosperm, making it more difficult to increase the quantity of Fe in flour products by foliar Fe application, but the situation with Zn is promising because Zn is more readily transported to the endosperm than Fe. The current study increases the understanding of agronomic biofortification.

  16. A High-Efficiency Refractive Secondary Solar Concentrator for High Temperature Solar Thermal Applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Macosko, Robert P.

    2000-01-01

    A refractive secondary solar concentrator is a non-imaging optical device that accepts focused solar energy from a primary concentrator and redirects that light, by means of refraction and total internal reflection (TIR) into a cavity where the solar energy is used for power and/or propulsion applications. This concept offers a variety of advantages compared to typical reflective secondary concentrators (or the use of no secondary at all): higher optical efficiency, minimal secondary cooling requirements, a smaller cavity aperture, a reduction of outgassing from the cavity and flux tailoring of the solar energy within the heat receiver. During the past 2 years, NASA Lewis has been aggressively developing this concept in support of the NASA Marshall Shooting Star Flight Experiment. This paper provides a brief overview of the advantages and technical challenges associated with the development of a refractive secondary concentrator and the fabrication of a working unit in support of the flight demonstration program.

  17. A 30kWp concentrating photovoltaic/thermal hybrid system application

    NASA Astrophysics Data System (ADS)

    Nakata, Y.; Kobe, T.; Shibuya, N.; Machida, T.; Takemoto, T.; Tsuji, T.

    The objectives of this program are to construct a 30 kWp concentrating PV/TH hybrid system and to demonstrate the availability of the system. The 30 kWp (5 kWp electric and 25 kWp thermal energies) system is being constructed in Hiroshima and is expected to be operational by March of 1983. The concentrator consists of a turntable and three arrays on it. A circular Fresnel lens is specifically designed to obtain a uniform light distribution on the cell. The concentrator solar cell is a 50 mm diameter silicon cell. The hybrid collector consists of six cells and a copper tube for water flow. The power from the arrays is used for lighting, showering, washing and air conditioning. This is the first concentrating PV/TH hybrid system for practical application in Japan.

  18. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L.

    PubMed

    Kapoor, Rupam; Chaudhary, Vidhi; Bhatnagar, A K

    2007-10-01

    Annual wormwood (Artemisia annua L.) produces an array of complex terpenoids including artemisinin, a compound of current interest in the treatment of drug-resistant malaria. However, this promising antimalarial compound remains expensive and is hardly available on the global scale. Synthesis of artemisinin has not been proved to be feasible commercially. Therefore, increase in yield of naturally occurring artemisinin is an important area of investigation. The effects of inoculation by two arbuscular mycorrhizal (AM) fungi, Glomus macrocarpum and Glomus fasciculatum, either alone or supplemented with P-fertilizer, on artemisinin concentration in A. annua were studied. The concentration of artemisinin was determined by reverse-phase high-performance liquid chromatography with UV detection. The two fungi significantly increased concentration of artemisinin in the herb. Although there was significant increase in concentration of artemisinin in nonmycorrhizal P-fertilized plants as compared to control, the extent of the increase was less compared to mycorrhizal plants grown with or without P-fertilization. This suggests that the increase in artemisinin concentration may not be entirely attributed to enhanced P-nutrition and improved growth. A strong positive linear correlation was observed between glandular trichome density on leaves and artemisinin concentration. Mycorrhizal plants possessed higher foliar glandular trichome (site for artemisinin biosynthesis and sequestration) density compared to nonmycorrhizal plants. Glandular trichome density was not influenced by P-fertilizer application. The study suggests a potential role of AM fungi in improving the concentration of artemisinin in A. annua.

  19. Impact of Mitomycin-C application time on the scleral Mitomycin-C concentration.

    PubMed

    Vass, C; Georgopoulos, M; El Menyawi, I; Radda, S; Nimmerrichter, P

    2001-04-01

    The aim of this study was to determine the effect of varying the application time of Mitomycin-C (MMC) on the scleral concentration of MMC. The sclerae of 14 human donor eyes were used for this study. The episcleral sides of the 4 scleral quadrants of each donor eye were exposed for 0.5, 1, 3 and 5 min to round, 8 mm-diameter sponges soaked with 50 microl of 0.2 mg/ml MMC. After 40-ml irrigation with saline, a central 8-mm diameter scleral disk was punched out, homogenized and analyzed with high performance liquid chromatography (HPLC). The scleral MMC concentrations (microg/g) after 0.5, 1, 3 and 5 min application times were 6.40 (+/-3.38), 9.02 (+/-2.40), 12.31 (+/-3.37), and 13.97 (+/-3.83). The differences of scleral MMC concentration in paired t-tests were statistically significant comparing 0.5 with 1 and 1 with 5 min application. However the effect was relatively small within the range of usual application times (1 to 5 min), and 64% of the MMC was delivered to the sclera within the first min.

  20. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  1. Potential Applications of Concentrated Solar Thermal Technologies in the Australian Minerals Processing and Extractive Metallurgical Industry

    NASA Astrophysics Data System (ADS)

    Eglinton, Thomas; Hinkley, Jim; Beath, Andrew; Dell'Amico, Mark

    2013-12-01

    The Australian minerals processing and extractive metallurgy industries are responsible for about 20% of Australia's total greenhouse gas (GHG) emissions. This article reviews the potential applications of concentrated solar thermal (CST) energy in the Australian minerals processing industry to reduce this impact. Integrating CST energy into these industries would reduce their reliance upon conventional fossil fuels and reduce GHG emissions. As CST technologies become more widely deployed and cheaper, and as fuel prices rise, CST energy will progressively become more competitive with conventional energy sources. Some of the applications identified in this article are expected to become commercially competitive provided the costs for pollution abatement and GHG mitigation are internalized. The areas of potential for CST integration identified in this study can be classed as either medium/low-temperature or high-temperature applications. The most promising medium/low-grade applications are electricity generation and low grade heating of liquids. Electricity generation with CST energy—also known as concentrated solar power—has the greatest potential to reduce GHG emissions out of all the potential applications identified because of the 24/7 dispatchability when integrated with thermal storage. High-temperature applications identified include the thermal decomposition of alumina and the calcination of limestone to lime in solar kilns, as well as the production of syngas from natural gas and carbonaceous materials for various metallurgical processes including nickel and direct reduced iron production. Hybridization and integration with thermal storage could enable CST to sustain these energy-intensive metallurgical processes continuously. High-temperature applications are the focus of this paper.

  2. Mathematical model to predict skin concentration after topical application of drugs.

    PubMed

    Todo, Hiroaki; Oshizaka, Takeshi; Kadhum, Wesam R; Sugibayashi, Kenji

    2013-12-16

    Skin permeation experiments have been broadly done since 1970s to 1980s as an evaluation method for transdermal drug delivery systems. In topically applied drug and cosmetic formulations, skin concentration of chemical compounds is more important than their skin permeations, because primary target site of the chemical compounds is skin surface or skin tissues. Furthermore, the direct pharmacological reaction of a metabolically stable drug that binds with specific receptors of known expression levels in an organ can be determined by Hill's equation. Nevertheless, little investigation was carried out on the test method of skin concentration after topically application of chemical compounds. Recently we investigated an estimating method of skin concentration of the chemical compounds from their skin permeation profiles. In the study, we took care of "3Rs" issues for animal experiments. We have proposed an equation which was capable to estimate animal skin concentration from permeation profile through the artificial membrane (silicone membrane) and animal skin. This new approach may allow the skin concentration of a drug to be predicted using Fick's second law of diffusion. The silicone membrane was found to be useful as an alternative membrane to animal skin for predicting skin concentration of chemical compounds, because an extremely excellent extrapolation to animal skin concentration was attained by calculation using the silicone membrane permeation data. In this chapter, we aimed to establish an accurate and convenient method for predicting the concentration profiles of drugs in the skin based on the skin permeation parameters of topically active drugs derived from steady-state skin permeation experiments.

  3. Generalized Haber's law for exponential concentration decline, with application to riparian-aquatic pesticide ecotoxicity.

    PubMed

    Bogen, Kenneth T; Reiss, Richard

    2012-02-01

    A simple analytic solution to the dynamic version of Haber's law was derived, conditional on a specified toxic load exponent (n) and on exponential decline in environmental toxicant concentration. Such conditions are particularly relevant to assessing ecotoxicity risk posed (e.g., to juvenile salmonids) by agricultural organophosphate (OP) pesticides that are subject to degradation and/or dissipation. A dynamic Haber's law model was fit to previously published detailed data on lethality for two aquatic species induced by six agricultural OP pesticides, and more crude fits were obtained to less detailed data on five other OP and on two non-OP pesticides, indicating that for lethality, a range of 0.5 ≤ n ≤ 1.5 may be typical for OP pesticides. The AgDRIFT(®) stream deposition model was next used to establish that first-order or exponential loss, with dilution half-times on the order of ≤0.01 days, pertains approximately to pesticide residues in streams that arise after aerial application of agricultural pesticides 100 feet upwind. The analytic model was then applied to demonstrate that pesticide concentrations deposited in downwind streams following an aerial application are effectively diluted by about 50- to 300-fold from their initial concentration. Riparian ecotoxicity risk assessment models that ignore this effective dilution, and base pesticide-specific estimates of reduced survival on the initial concentrations, are therefore unrealistically conservative.

  4. Phosphorus concentration and loading reductions following changes in fertilizer application and formulation on managed turf.

    PubMed

    King, K W; Balogh, J C; Agrawal, S G; Tritabaugh, C J; Ryan, J A

    2012-11-01

    Excess phosphorus, particularly in surface waters can lead to severe eutrophication. Identifying source areas, quantifying contributions, and evaluating management practices are required to address current and future water quality concerns. A before-after study was conducted from 2003-2010 on a sub-watershed of Northland Country Club Golf Course in Duluth, MN to demonstrate the impacts of two different phosphorus management approaches (Period 1: traditional application and timing using commercially available synthetic blends; Period 2: reduced rate, low dose applications, and organic formulations). Outflow median dissolved reactive phosphorus (DRP) and total phosphorus (TP) stream concentrations were significantly less in Period 2 compared to Period 1. There was no statistical difference in the mean TP loading in Period 1 (0.25 kg ha(-1) year(-1)) compared to Period 2 (0.20 kg ha(-1) year(-1)) or between the DRP loading in Period 1 (0.15 kg ha(-1) year(-1)) compared to Period 2 (0.09 kg ha(-1) year(-1)). However, by switching to organic phosphorus formulations and reducing application rates by greater than 75%, substantial reduction in DRP and TP concentrations was achieved. Based on these findings it is recommended that turf managers (parks and recreation to golf courses) explore the feasibility of altering their fertility management related to phosphorus by including organic formulations, low dose applications, and overall rate reductions. Additionally, it is recommended that the fertilizer industry develop and make more readily available commercial blends with lesser to zero amounts of phosphorus.

  5. Contaminants of emerging concern in reverse osmosis brine concentrate from indirect/direct water reuse applications.

    PubMed

    Romeyn, Travis R; Harijanto, Wesley; Sandoval, Sofia; Delagah, Saied; Sharbatmaleki, Mohamadali

    2016-01-01

    Water shortage is becoming more common due to droughts and global population increases resulting in the increasing popularity of water reuse to create new water sources. Reverse osmosis (RO) membrane systems are popular in these applications since they can produce drinking water quality effluent. Unfortunately, RO systems have the drawback of generating concentrate streams that contain contaminants rejected by the membrane including chemicals of emerging concern (CECs). CECs are chemicals such as hormones, steroids, pesticides, pharmaceuticals, and personal care products that are used for their intended purpose and then released into wastewater. CECs are believed to be detrimental to aquatic wildlife health and pose an unknown human health risk. This research gathered the existing knowledge on CEC presence in concentrate, available proven concentrate treatment methods, their CEC removal abilities, and current CEC regulations. It was found that 127 CECs have been measured in RO concentrate with 100 being detected at least once. The most potent treatment process available is UV/H2O2 as it offers the highest removal rates for the widest range of chemicals. The less expensive process of ozone/biologically activated carbon offers slightly lower removal abilities. This comprehensive report will provide the groundwork for better understanding, regulating and treating concentrate stream CECs.

  6. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123.25). 122.24 Section 122.24 Protection of... § 122.24 Concentrated aquatic animal production facilities (applicable to State NPDES programs,...

  7. Low cost, high concentration ratio solar cell array for space applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Rauschenbach, H. S.; Cannady, M. D.; Whang, U. S.; Crabtree, W. L.

    1981-01-01

    A miniaturized Cassegrainian-type concentrator solar array concept for space applications is described. In-orbit cell operating temperatures near 80 C are achieved with purely passive cell cooling and a net concentration ratio of 100. A multiplicity of miniaturized, rigid solar cell concentrator subassemblies are electrically interconnected in conventional fashion and mounted into rigid frames to form concentrator solar panel assemblies approximately 14-mm thick. A plurality of such interconnected panels forms a stowable and deployable solar cell blanket. It is projected that for 20% efficient silicon cells an array of 500 kW beginning-of-life output capability, including orbiter cradle structures, can be transported by a single shuttle orbiter flight into low earth orbit. In-orbit array specific performance is calculated to be approximately 100 W/sq m and 20 W/kg, including all stowage, deployment and array figure control equipment designed for a 30-year orbital life. Higher efficiency gallium arsenide and multiple band gap solar cells will improve these performance factors correspondingly.

  8. Mechanical design of a low concentration ratio solar array for a space station application

    NASA Technical Reports Server (NTRS)

    Biss, M. S.; Hsu, L.

    1983-01-01

    This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.

  9. Validation of a method for prediction of isotopic concentrations in burnup credit applications

    SciTech Connect

    DeHart, M.D.; Hermann, O.W.; Parks, C.V.

    1995-09-01

    Unlike fresh fuel assumptions typically employed in the criticality safety analysis of spent fuel configurations, burnup credit applications rely on depletion and decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in subsequent criticality calculations to assess the reduced worth of the spent fuel. To validate the codes and data used in depletion approaches, experimental measurements are compared with numerical predictions for relevant spent fuel samples. This paper describes a set of experimentally characterized pressurized-water-reactor (PWR) fuel samples and provides a comparison to results of SCALE-4 depletion calculations. An approach to determine biases and uncertainties between calculated and measured isotopic concentrations is discussed, together with a method to statistically combine these terms to obtain a conservative estimate of spent fuel isotopic concentrations.

  10. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    PubMed Central

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    Background Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Methods Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Results Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown

  11. Effect of fertilizer application on Urtica dioica and its element concentrations in a cut grassland

    NASA Astrophysics Data System (ADS)

    Müllerová, Vladimíra; Hejcman, Michal; Hejcmanová, Pavla; Pavlů, Vilém

    2014-08-01

    Little is known about the effects of nutrient availability in cut grasslands on growth characteristics of Urtica dioica and its aboveground chemical composition (N, P, K, Ca, Mg, Cu, Fe, Mn and Zn). The effects of N, P and K application on the growth of U. dioica were studied over five years in a Dactylis glomerata grassland cut twice per year under unfertilized control, P, N, NP and NPK treatments (300, 80 and 200 kg of N, P and K ha-1 per year). Nitrogen application in the form of NH4NO3 over five years decreased the soil pH, while P and K application increased P and K availability in the soil. Over five years, cover of U. dioica increased from 1% initially to 7, 9, 58, 83 and 99% in the control, P, N, NP and NPK treatments, respectively. Concentrations of N, P and Ca in the aboveground biomass of U. dioica were very high in comparison to other species and concentrations of Cu, Fe, Mn and Zn were comparable with other grassland species. N and P limitation of U. dioica growth was expected if concentrations of N and P in the aboveground biomass were lower than 25 g N kg-1 and 4 g P kg-1 in the phenological stage of flowering. We concluded that two cuts per year are not sufficient to suppress expansion of U. dioica under high N, P and K availability. This probably explains why U. dioica survive also in frequently cut intensive grasslands under adequately high nutrient supply.

  12. A Technique for Rapidly Deploying a Concentration Gradient with Applications to Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2000-01-01

    The latter half of the last century has seen rapid advancements in semiconductor crystal growth powered by the demand for high performance electronics in myriad applications. The reduced gravity environment of space has also been used for crystal growth tests, especially in instances where terrestrial growth has largely been unsuccessful. While reduced gravity crystal growth affords some control of the gravity parameter, many crystals grown in space, to date, have structural flaws believed to result from convective motions during the growth phase. The character of these instabilities is not well understood but is associated with thermal and solutal density variations near the solidification interface in the presence of residual gravity and g-jitter. In order to study these instabilities in a separate, controlled space experiment, a concentration gradient would first have to be artificially established in a timely manner as an initial condition. This is generally difficult to accomplish in a microgravity environment because the momentum of the fluid injected into a test cell tends to swirl around and mix in the absence of a restoring force. The use of magnetic fields to control the motion and position of liquids has received growing interest in recent times. The possibility of using the force exerted by a non-uniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for space applications. This paper describes a technique for quickly establishing a linear or exponential fluid concentration gradient using a magnetic field in place of gravity to stabilize the deployment. Also discussed is a photometric technique for measuring the concentration profile using light attenuation. Results of the ground-based experiments indicate that the concentration distribution is within 3% of the predicted value. Although any range of concentations can be realized, photometric constraints are

  13. Electrophysical Properties of GaAs P-I-N Structures for Concentrator Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Kósa, Arpád; Mikolášek, Miroslav; Stuchlíková, Ľubica; Harmatha, Ladislav; Dawidowski, Wojciech; Ściana, Beata; Tłaczała, Marek

    2016-09-01

    This paper is dedicated to electro-physical characterisation of a GaAs p-i-n structure grown for solar cell applications, which was carried out by light and dark current-voltage (I-V) and Deep Level Transient Fourier Spectroscopy (DLTFS) methods. The conversion efficiency and open-circuit voltage were determined from I-V measurement at 1 and 20× sun light concentrations. Three electron like defects TAn1, TAn2, TDn and one hole like defect TBp obtained by DLTFS measurements were confirmed. The origin of these defect states was stated as native GaAs impurities.

  14. Ge doped GaN with controllable high carrier concentration for plasmonic applications

    SciTech Connect

    Kirste, Ronny; Hoffmann, Marc P.; Sachet, Edward; Bobea, Milena; Bryan, Zachary; Bryan, Isaac; Maria, Jon-Paul; Collazo, Ramón; Sitar, Zlatko; Nenstiel, Christian; Hoffmann, Axel

    2013-12-09

    Controllable Ge doping in GaN is demonstrated for carrier concentrations of up to 2.4 × 10{sup 20} cm{sup −3}. Low temperature luminescence spectra from the highly doped samples reveal band gap renormalization and band filling (Burstein-Moss shift) in addition to a sharp transition. Infrared ellipsometry spectra demonstrate the existence of electron plasma with an energy around 3500 cm{sup −1} and a surface plasma with an energy around 2000 cm{sup −1}. These findings open possibilities for the application of highly doped GaN for plasmonic devices.

  15. Stabilization of ion concentration polarization layer using micro fin structure for high-throughput applications.

    PubMed

    Kim, Kihong; Kim, Wonseok; Lee, Hyekyung; Kim, Sung Jae

    2017-03-09

    Ion concentration polarization (ICP) has been extensively researched concerning new fundamentals in nanoscale electrokinetics and novel engineering applications. While biomedical and environmental ICP applications have a number of advantages compared to conventional methods, the technique has suffered from the critical limitation of low processing capacity because it has been usually presented in a micro/nanofluidic platform. In this paper, we devised micro fin structures inside a macroscale high-throughput ICP device and successfully demonstrated a stable formation of ICP layer and its performance. Since the fin structures created surface conductive fluidic circumstances and assisted in physically suppressing undesirable electrokinetic vortices generated in this fluidic regime, ICP was stably generated even in this macroscale system. Finally, batch-type droplet ICP preconcentrator and continuous-type ICP separator were introduced as examples for high-throughput millimeter-scale ICP devices using the implanted fin structures.

  16. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus

    2014-11-01

    A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore.

  17. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    SciTech Connect

    Wu Di; Li Yuhua; Wong, Molly D.; Liu Hong

    2013-05-15

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signal radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.

  18. Influences mass concentration of P3HT and PCBM to application of organic solar cells

    NASA Astrophysics Data System (ADS)

    Supriyanto, A.; Maya; Rosa, E. S.; Iriani, Y.; Ramelan, A. H.; Nurosyid, F.

    2016-11-01

    Poly (3-hexylthiophene) (P3HT) and [6, 6] -phenyl-C61-butyric acid methyl ester (PCBM) are used for the organic solar cell applications. P3HT and PCBM act as donors and acceptors, respectively. In this study the efficiency of the P3HT: PCBM organic solar cells as function of the mass concentration of the blend P3HT: PCBM with 1, 2, 8, 16 mg/ml. Deposition P3HT:PCBM film using spin coating with a rotary speed of 2500 rpm for 10 seconds. Optical properties of absorption spectra characteristic using a UV-Visible Spectrometer Lambda 25 and electrical properties of I-V characteristic using Keithley 2602 instrument. The results of absoption spectra for P3HT:PCBM within different mass concentration obtained 500-600 nm wavelengths. The Energy-gap obtained about 1.9eV. The organic solar cells device performance were investigated using I-V cahractyeristic. For mass concentration of 1, 2, 8 and 16 mg/ml P3HT:PCBM were obtained 0.5×10-3%, 2.2×10-3%, 5.9×10-3%, and 6.1×10-3% efficiency of organics solar cells respectively.

  19. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration.

    PubMed

    Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  20. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration

    PubMed Central

    Xue, Cheng; auf’m Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems. PMID:27313585

  1. Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Keegan, Elizabeth; Millet, Sylvain

    2009-10-15

    Lead and strontium isotope ratios were used for the origin assessment of uranium ore concentrates (yellow cakes) for nuclear forensic purposes. A simple and low-background sample preparation method was developed for the simultaneous separation of the analytes followed by the measurement of the isotope ratios by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The lead isotopic composition of the ore concentrates suggests applicability for the verification of the source of the nuclear material and by the use of the radiogenic (207)Pb/(206)Pb ratio the age of the raw ore material can be calculated. However, during data interpretation, the relatively high variation of the lead isotopic composition within the mine site and the generally high contribution of natural lead as technological contamination have to be carefully taken into account. The (87)Sr/(86)Sr isotope ratio is less prone to the variation within one mine site and less affected by the production process, thus it was found to be a more purposeful indicator for the origin assessment and source verification than the lead. The lead and strontium isotope ratios measured and the methodology developed provide information on the initial raw uranium ore used, and thus they can be used for source attribution of the uranium ore concentrates.

  2. Design principle and calculations of a Scheffler fixed focus concentrator for medium temperature applications

    SciTech Connect

    Munir, A.; Hensel, O.; Scheffler, W.

    2010-08-15

    Scheffler fixed focus concentrators are successfully used for medium temperature applications in different parts of the world. These concentrators are taken as lateral sections of paraboloids and provide fixed focus away from the path of incident beam radiations throughout the year. The paper presents a complete description about the design principle and construction details of an 8 m{sup 2} surface area Scheffler concentrator. The first part of the paper presents the mathematical calculations to design the reflector parabola curve and reflector elliptical frame with respect to equinox (solar declination = 0) by selecting a specific lateral part of a paraboloid. Crossbar equations and their ellipses, arc lengths and their radii are also calculated to form the required lateral section of the paraboloid. Thereafter, the seasonal parabola equations are calculated for two extreme positions of summer and winter in the northern hemisphere (standing reflectors). The slopes of the parabola equations for equinox (solar declination = 0), summer (solar declination = +23.5) and winter (solar declination = -23.5) for the Scheffler reflector (8 m{sup 2} surface area) are calculated to be 0.17, 0.28, and 0.13 respectively. The y-intercepts of the parabola equations for equinox, summer and winter are calculated as 0, 0.54, and -0.53 respectively. By comparing with the equinox parabola curve, the summer parabola is found to be smaller in size and uses the top part of the parabola curve while the winter parabola is bigger in size and uses the lower part of the parabola curve to give the fixed focus. For this purpose, the reflector assembly is composed of flexible crossbars and a frame to induce the required change of the parabola curves with the changing solar declination. The paper also presents the calculation procedure of seasonal parabola equations for standing reflectors in the southern hemisphere as well as for laying reflectors in the northern and southern hemispheres. Highly

  3. The Rengen Grassland experiment: bryophytes biomass and element concentrations after 65 years of fertilizer application.

    PubMed

    Hejcman, Michal; Száková, Jirina; Schellberg, Jürgen; Srek, Petr; Tlustos, Pavel; Balík, Jirí

    2010-07-01

    The Rengen Grassland Experiment in Germany, established in 1941, consists of the following fertilizer treatments applied under a two cut management: control, Ca, CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4). The aim of this study was (1) to identify effects of fertilizer application on biomass and species composition of bryophytes and (2) to investigate the impact of fertilizer application on macro- (N, P, K, Ca, Mg), micro- (Cu, Fe, Mn, Zn), and toxic (As, Cd, Cr, Pb, Ni) element concentrations in bryophyte biomass. In June 2006, Rhytidiadelphus squarrosus was the only bryophyte species recorded in the control. In treatment Ca, R. squarrosus was the dominant bryophyte species whereas Brachythecium rutabulum occurred sporadically only in a single plot of that treatment. The latter was the only bryophyte species collected in CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4) treatments. Dry matter accumulation of bryophytes was highest in the control (180 g m(-2)) followed by Ca (46 g m(-2)), CaNP (25 g m(-2)), CaNP-KCl (15 g m(-2)), CaNP-K(2)SO(4) (9 g m(-2)), and CaN (2 g m(-2)) treatments. A negative correlation between biomass production of bryophytes and dry matter production of vascular plants was revealed up to a threshold value of 400 g m(-2). Above this limit, biomass production of bryophytes remained obviously unaffected by further increase in biomass production of vascular plants. A significant effect of treatment on As, Cd, Cr, Fe, Mn, Ni, Pb, P, Ca, Mg, K, and N concentrations was revealed. Concentrations of these elements were a function of amount of elements supplied with fertilizers. Bryophytes seem to be promising bio-indicators not only for airborne deposition of toxic element but also for fertilizer introduced as well.

  4. Modelling of catchment nitrogen concentrations response to observed varying fertilizer application intensities

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    Eutrophication is a serious environmental problem. Despite numerous experimental and modelling efforts, understanding of the effect of land use and agriculture practices on in-stream nitrogen fluxes is still not fully achieved. This study combined intensive field monitoring and numerical modelling using 30 years of surface water quality data of a drinking water reservoir catchment in central Germany. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% of agricultural land use with significant changes in agricultural practices within the investigation period. The geology of the Weida catchment is characterized by clay schists and eruptive rocks, where rocks have low permeability. The semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was used to reproduce the measured data. First, the model was calibrated for discharge and nitrate-N concentrations (NO3-N) during the period 1997-2000. Then, the HYPE model was validated successfully for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates (with lowest discharge prediction performance of NSE = 0.78 and PBIAS = 3.74%, considering calibration and validation periods). Results showed that the measured as well as simulated in-stream nitrate-N concentration respond quickly to fertilizer application changes (increase/decrease). This rapid response can be explained with short residence times of interflow and baseflow runoff components due to the hardrock geological properties of the catchment. Results revealed that the surface runoff and interflow are the most dominant runoff components. HYPE model could reproduce reasonably well the NO3-N daily loads for varying fertilizer application, when detailed input data in terms of crop management (field-specific survey) are considered.

  5. Applications of real-time PCR in the screening of platelet concentrates for bacterial contamination.

    PubMed

    Mohammadi, Tamimount; Savelkoul, Paul H M; Pietersz, Ruby N I; Reesink, Henk W

    2006-11-01

    Although there have been major improvements over the past few decades in detection methods for blood-borne infectious agents, platelet concentrates are still responsible for most cases of transfusion-transmitted bacterial infections. To date, real-time PCR is an indispensable tool in diagnostic laboratories to detect pathogens in a variety of biological samples. In this article, the applications of this powerful technique in the screening of platelet concentrates for bacterial contamination are discussed. Next to pathogen-specific (real-time) PCR assays, particular attention is directed to the recently developed 16S rDNA real-time PCR. This assay has been proven as a convenient way to detect bacterial contamination of platelet concentrates. The assay is sensitive and enables rapid detection of low initial numbers of bacteria in platelet concentrates. The short turnaround time of this assay allows high-throughput screening and reduction of the risk of transfusion of bacterially contaminated units. As with every method, real-time PCR has its advantages and disadvantages. These and especially limitations inherent to generation of false-positive or -negative results are emphasized. The universal nature of detection of the assay may be suitable for generalized bacterial screening of other blood components, such as red blood cells and plasma. Therefore, it is necessary to adapt and optimize detection in red blood cells and plasma with real-time PCR. Further sophistication, miniaturization and standardization of extraction and amplification methods should improve the total performance and robustness of the assay. Hence, real-time PCR is an attractive method in development as a more rapid screening test than currently used culture methods to detect bacterial contamination in blood components.

  6. Post-operative pain behavior in rats is reduced after single high-concentration capsaicin application.

    PubMed

    Pospisilova, Eva; Palecek, Jiri

    2006-12-05

    Surgical procedures associated with tissue injury are often followed by increased sensitivity to innocuous and noxious stimuli in the vicinity of the surgical wound. The aim of this study was to evaluate the role of transient receptor potential vanilloid 1 receptor (TRPV1) containing nociceptors in this process, by their functional inactivation using a high-concentration intradermal injection of capsaicin in a rat plantar incision model. Paw withdrawal responses to mechanical stimuli (von Frey filaments 10-367mN) and to radiant heat applied on plantar skin were tested in animals treated with capsaicin or the vehicle 6 days and 24h before or 2h after the incision was made. In the vehicle-treated animals, mechanical and thermal sensitivity increased significantly 1-96h following the incision. Capsaicin applied 24h before the surgery was most effective and significantly diminished the development of post-incisional mechanical allodynia and hyperalgesia. Thermal hypoalgesia was present in the incised paw after the capsaicin treatment. Capsaicin application 6 days before the incision induced thermal hypoalgesia before the incision but did not prevent completely the thermal hyperalgesia after the incision, while there was also a reduction of mechanical hypersensitivity. Application of the capsaicin injection after the incision showed its first effect at 2h after the injection and at 24h the effect was comparable with the 6 days pretreatment. Our results show an important role of TRPV1-containing nociceptors in the development of post-surgical hypersensitivity and suggest that local, high-concentration capsaicin treatment could be used to reduce it.

  7. High-efficiency GaAs solar concentrator cells for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Hamaker, H. C.; Werthen, J. G.; Ford, C. W.; Virshup, G. F.; Kaminar, N. R.

    1986-01-01

    High-efficiency Al(x)Ga(1-x)As/GaAs heteroface solar concentrator cells have been developed for both space and terrestrial applications. The cells, which were grown using metalorganic chemical vapor deposition, have been fabricated in both the p-n and n-p configurations. Magnesium and zinc are used as p-type dopants, and Se is used as the n-type dopant. The space cells, which are designed for use in a Cassegrainian concentrator operating at 100 suns, AMO, have a circular illuminated area 4 mm in diameter on a 5 mm x 5 mm cell. These cells have exhibited flash-tested efficiencies as high as 23.6 percent at 28 C and 21.6 percent at 80 C. The terrestrial cells have a circular illuminated area 0.2 inches in diameter and are intended for use in a module which operates at 940 suns, AM1.5. These cells have shown a peak efficiency of 26 percent at 753 suns and over 25 percent at greater than 1000 suns.

  8. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  9. Studies of Antarctic Sea Ice Concentrations from Satellite Data and Their Applications

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Steffen, Konrad; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Large changes in the sea ice cover have been observed recently. Because of the relevance of such changes to climate change studies it is important that key ice concentration data sets used for evaluating such changes are interpreted properly. High and medium resolution visible and infrared satellite data are used in conjunction with passive microwave data to study the true characteristics of the Antarctic sea ice cover, assess errors in currently available ice concentration products, and evaluate the applications and limitations of the latter in polar process studies. Cloud-free high resolution data provide valuable information about the natural distribution, stage of formation, and composition of the ice cover that enables interpretation of the large spatial and temporal variability of the microwave emissivity of Antarctic sea ice. Comparative analyses of co-registered visible, infrared and microwave data were used to evaluate ice concentrations derived from standard ice algorithms (i.e., Bootstrap and Team) and investigate the 10 to 35% difference in derived values from large areas within the ice pack, especially in the Weddell Sea, Amundsen Sea, and Ross Sea regions. Landsat and OLS data show a predominance of thick consolidated ice in these areas and show good agreement with the Bootstrap Algorithm. While direct measurements were not possible, the lower values from the Team Algorithm results are likely due to layering within the ice and snow and/or surface flooding, which are known to affect the polarization ratio. In predominantly new ice regions, the derived ice concentration from passive microwave data is usually lower than the true percentage because the emissivity of new ice changes with age and thickness and is lower than that of thick ice. However, the product provides a more realistic characterization of the sea ice cover, and are more useful in polar process studies since it allows for the identification of areas of significant divergence and polynya

  10. Update of Ireland's national average indoor radon concentration - Application of a new survey protocol.

    PubMed

    Dowdall, A; Murphy, P; Pollard, D; Fenton, D

    2017-04-01

    In 2002, a National Radon Survey (NRS) in Ireland established that the geographically weighted national average indoor radon concentration was 89 Bq m(-3). Since then a number of developments have taken place which are likely to have impacted on the national average radon level. Key among these was the introduction of amending Building Regulations in 1998 requiring radon preventive measures in new buildings in High Radon Areas (HRAs). In 2014, the Irish Government adopted the National Radon Control Strategy (NRCS) for Ireland. A knowledge gap identified in the NRCS was to update the national average for Ireland given the developments since 2002. The updated national average would also be used as a baseline metric to assess the effectiveness of the NRCS over time. A new national survey protocol was required that would measure radon in a sample of homes representative of radon risk and geographical location. The design of the survey protocol took into account that it is not feasible to repeat the 11,319 measurements carried out for the 2002 NRS due to time and resource constraints. However, the existence of that comprehensive survey allowed for a new protocol to be developed, involving measurements carried out in unbiased randomly selected volunteer homes. This paper sets out the development and application of that survey protocol. The results of the 2015 survey showed that the current national average indoor radon concentration for homes in Ireland is 77 Bq m(-3), a decrease from the 89 Bq m(-3) reported in the 2002 NRS. Analysis of the results by build date demonstrate that the introduction of the amending Building Regulations in 1998 have led to a reduction in the average indoor radon level in Ireland.

  11. Effect of calcium silicate slag application on radium-226 concentrations in plant tissues

    SciTech Connect

    Mortvedt, J.J.

    1986-01-01

    A greenhouse pot experiment was conducted to determine if plants absorb Ra from slag applied to soil. Slag at rates equivalent to 0 and 22 mt/ha was mixed with Mountview silt loam (Typic Paleudults) limed to pH 5.8 and 7.2. Three clippings each of fescue (Festuca arundiancea Schreb.), and Swiss chard (Beta vulgaris L.), and one harvest of wheat (Triticum aestivum L.) for grain and straw were grown on separate series of treated soil, and plant samples were analyzed for radioactivity due to /sup 226/Ra uptake. Samples of sugarcane (Saccharum officinarum L.) forage and extracted juice from field experiments in Florida testing this slage as a Si source also were analyzed for radioactivity. Dry forage yields of fescue and wheat were not affected by slag applications, but those of Swiss chard were somewhat higher on slag-treated soil at pH 5.8. Wheat grain and straw yields were higher on soil at pH 7.2 than at pH 5.8 regardless of slag treatment. Uptake of /sup 226/Ra by fescue forage and wheat grain and straw was not affected by slag application. Concentrations of /sup 226/Ra were similar in forage and extracted juice from untreated sugarcane or that treated with slag at rates up to 5.6 mt/ha. These results suggest that plant uptake of radionuclides is negligible from calcium silicate slag applied at the recommended rates for liming acid soils or as a source of Si for sugarcane.

  12. Simultaneous retrieval of greenhouse gas concentrations and atmospheric scattering properties: first application to GOSAT observations

    NASA Astrophysics Data System (ADS)

    Butz, André; Hasekamp, Otto P.; Frankenberg, Christian; Aben, Ilse

    2010-05-01

    The Netherlands Institute for Space Research (SRON) has developed a method for the simultaneous retrieval of greenhouse gas concentrations and atmospheric scattering properties from space-based measurements of backscattered shortwave-infrared (SWIR) sunlight [Butz et al., 2009]. The method is dedicated to current and future satellite missions such as the Japanese Greenhouse gases Observing SATellite (GOSAT) and the American Orbiting Carbon Observatory (OCO). Observations by GOSAT orbiting the Earth since January 2009 provide a promising first application for our approach. Here, we present preliminary retrieval exercises and first results for deducing the atmospheric CO2 concentration from GOSAT's spectra in the SWIR spectral range. The SRON-approach is based on a vector radiative transfer model (RTM) that models the backscattered sunlight in a plane parallel, multi-layered, inhomogeneous atmosphere. The RTM takes into account absorption and scattering by molecules as well as particles such as aerosols and cirrus clouds. Thereby, the RTM is capable of treating multiple scattering and polarization effects at the expense of high computational cost. We consider scattering properties of the atmosphere through 3 effective parameters that account for the amount, the size, and the height distribution of scatterers. Retrieval simulations have shown, that GOSAT's observations in the O2 A-band, in the weakly absorbing CO2 bands around 1.6 micron, and in the strongly absorbing CO2 bands around 2.06 micron contain enough information to simultaneously retrieve these 3 scattering parameters and the column-average CO2 concentration. Retrieval performance for a synthetic ensemble of aerosol and cirrus contaminated scenes is convincing since our method reduces the aerosol and cirrus induced retrieval errors for CO2 to mostly below 1% up to scattering optical thickness 0.5. We further demonstrated that the strongly absorbing CO2 band around 2.06 micron alone might carry sufficient

  13. Intramammary administration of platelet concentrate as an unconventional therapy in bovine mastitis: first clinical application.

    PubMed

    Lange-Consiglio, A; Spelta, C; Garlappi, R; Luini, M; Cremonesi, F

    2014-10-01

    Bovine udder infections induce a variety of changes in gene expression of different growth factors that may suggest their possible role in glandular tissue protection or repair processes. Growth factors and also chemokines and cytokines may act synergistically to increase the infiltration of neutrophils and macrophages to promote angiogenesis, fibroplasia, matrix deposition, and, ultimately, re-epithelialization. Considering the vast applications, typically in human medicine, of platelet concentrate (PC) and its ease of preparation, the aim of our study was to evaluate an alternative therapy to stimulate the regeneration of glandular tissue, administering a concentration in excess of the growth factors contained in the PC. In each one of the 3 farms examined in the trial, PC was prepared from donor cows in good health, free from infections, and with no records of medications administered during the previous 2 mo. The platelet produced in one farm was used only for treating the cows of the same farm in a heterologous way. A total of 229 mastitic quarters were divided in 3 groups: antibiotic group (treated with intramammary antibiotic), antibiotic and PC group (treated intramammarily with antibiotics in association with PC), and PC group (treated with intramammary PC alone). The diagnosis of mastitis was based on somatic cell count and bacteriological evaluation of the milk from the affected quarter. Platelet concentrate, alone or in association with antibiotic, was used for 3 consecutive days as an unconventional therapy in bovine acute and chronic mastitis. Our data show that the associated action of antibiotic and PC performed significantly better than the antibiotic alone, either for the recovery of the affected mammary quarters or for somatic cell count reduction. In the same way, the association antibiotic plus PC showed significantly fewer relapses compared with the antibiotic alone, either for acute or chronic mastitis. The treatment with only PC did not show

  14. Whey protein phospholipid concentrate and delactosed permeate: Applications in caramel, ice cream, and cake.

    PubMed

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underutilized. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to a single WPPC supplier. The variability of the composition and functionality of WPPC was previously studied. The objective of this research was to expand on the previous study and examine the potential applications of WPPC and DLP blends in foods. In ice cream, WPPC was added as a natural emulsifier to replace synthetic emulsifiers. The WPPC decreased the amount of partially coalesced fat and increased the drip-through rate. In caramel, DLP and WPPC replaced sweetened condensed skim milk and lecithin. Cold flow increased significantly, and hardness and stickiness decreased. In cake, DLP and WPPC were added as a total replacement of eggs, with no change in yield, color, or texture. Overall, WPPC and DLP can be utilized as functional dairy ingredients at a lower cost in ice cream and cake but not in chewy caramel.

  15. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  16. Effect of concentrated epoxidised natural rubber and silica masterbatch for tyre application

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Verasamy, D.; Kamal, M. M.

    2016-07-01

    The availability of concentrated epoxidised natural rubber (ENR-LC) has provided a better opportunity for using epoxidised natural rubber (ENR) with silica to reinforce natural rubber for tyre application. ENR-LC mixed directly with silica to rubber by high speed stirrer without using any coupling agent. Some rubber compounds were prepared by mixing a large amount of precipitated amorphous white silica with natural rubber. The silica was prepared in aqueous dispersion and the filler was perfectly dispersed in the ENR-LC. The performance of the composites was evaluated in this work for the viability of ENR-LC/Si in tyre compounding. Compounding was carried out on a two roll mill, where the additives and curing agents was later mixed. Characterization of these composites was performed by Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) for dispersion as well as mechanical testing. C-ENR/Si showed efficient as primary reinforcing filler in ENR with regard to modulus and tensile strength, resulting on an increase in the stiffness of the rubbers compared to ENR latex. Overall improvement in the mechanical properties for the ENR-LC over the control crosslinked rubber sample was probably due to synergisms of silica reinforcement and crosslinking of the polymeric matrix phase.

  17. Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery.

    PubMed

    Jin, Zhengyu; Gong, Hui; Wang, Kaijun

    2015-01-01

    The idea of sewage concentration is gradually being accepted as a promising and sustainable way of wastewater resource recovery. In this study, Hybrid coagulation microfiltration (HCM) with air backflushing (AB) was investigated to effectively concentrate organic matter. Compared to direct sewage microfiltration, the addition of coagulation process improved the filtration performance with less fouling trends and better concentration efficiency. The use of AB exhibited even better performance within the same 7-h preliminary concentration period by reducing to one tenth of the resistance and collecting around four times as much organic matter into the product concentrate as in direct sewage microfiltration. During 93-h lab-scale continuous concentration by HCM with AB, a product concentrate with the COD concentration over 15,000 mg/L was achieved and around 70% of total influent organic matter could be recovered. Compared to Direct Membrane Filtration (DMF) with Chemically Enhanced Backwash (CEB), HCM with AB achieved better concentration efficiency with higher concentration extent and concentration velocity along with less organic matter mineralization and the more concentrated product despite with lower organic matter retention. HCM with AB could be a promising effective sewage organic matter concentration for resource recovery under optimization.

  18. Development and Application of Watershed Regressions for Pesticides (WARP) for Estimating Atrazine Concentration Distributions in Streams

    USGS Publications Warehouse

    Larson, Steven J.; Crawford, Charles G.; Gilliom, Robert J.

    2004-01-01

    Regression models were developed for predicting atrazine concentration distributions in rivers and streams, using the Watershed Regressions for Pesticides (WARP) methodology. Separate regression equations were derived for each of nine percentiles of the annual distribution of atrazine concentrations and for the annual time-weighted mean atrazine concentration. In addition, seasonal models were developed for two specific periods of the year--the high season, when the highest atrazine concentrations are expected in streams, and the low season, when concentrations are expected to be low or undetectable. Various nationally available watershed parameters were used as explanatory variables, including atrazine use intensity, soil characteristics, hydrologic parameters, climate and weather variables, land use, and agricultural management practices. Concentration data from 112 river and stream stations sampled as part of the U.S. Geological Survey's National Water-Quality Assessment and National Stream Quality Accounting Network Programs were used for computing the concentration percentiles and mean concentrations used as the response variables in regression models. Tobit regression methods, using maximum likelihood estimation, were used for developing the models because some of the concentration values used for the response variables were censored (reported as less than a detection threshold). Data from 26 stations not used for model development were used for model validation. The annual models accounted for 62 to 77 percent of the variability in concentrations among the 112 model development stations. Atrazine use intensity (the amount of atrazine used in the watershed divided by watershed area) was the most important explanatory variable in all models, but additional watershed parameters significantly increased the amount of variability explained by the models. Predicted concentrations from all 10 models were within a factor of 10 of the observed concentrations at most

  19. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  20. Estimation of the dominant degrees of freedom for air pollutant concentration data: Applications to ozone measurements

    NASA Astrophysics Data System (ADS)

    Li, I.-Fen; Biswas, Pratim; Islam, Shafiqul

    A nonlinear dynamic analysis of air quality data has been performed and applied to a time series of ozone concentration data from the Cincinnati air shed. The analysis helped to identify the nature of the dynamics of the ozone concentrations and determine the number of degrees of freedom or dimensionality of the system. Results indicated that the dimensionality of the system was 3, indicating that there are three dominant variables affecting ozone concentration levels in the Cincinnati air shed. Statistical analysis was performed to infer that NO was correlated to ozone concentration levels.

  1. Effects of dairy slurry application and bale moisture concentration on voluntary intake and digestibility of alfalfa silage by sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy slurry is used commonly as a fertilizer in agriculture. However, residual effects of slurry application on intake and digestibility of alfalfa silage from subsequent harvests are not well known. The objective of this study was to determine if moisture concentration of alfalfa silage and timing...

  2. BUBBLE STRIPPING TO DETERMINE HYDROGEN CONCENTRATIONS IN GROUND WATER: A PRACTICAL APPLICATION OF HENRY'S LAW

    EPA Science Inventory

    The Bubble Stripping Method is a chemical testing method that operates on the principle of Henry's Law. It is useful for determining concentrations of hydrogen in well water, and it is capable of detecting concentrations on the order of nanomoles per liter. The method provides ...

  3. Control oriented concentrating solar power (CSP) plant model and its applications

    NASA Astrophysics Data System (ADS)

    Luo, Qi

    Solar receivers in concentrating solar thermal power plants (CSP) undergo over 10,000 start-ups and shutdowns, and over 25,000 rapid rate of change in temperature on receivers due to cloud transients resulting in performance degradation and material fatigue in their expected lifetime of over 30 years. The research proposes to develop a three-level controller that uses multi-input-multi-output (MIMO) control technology to minimize the effect of these disturbances, improve plant performance, and extend plant life. The controller can be readily installed on any vendor supplied state-of-the-art control hardware. We propose a three-level controller architecture using multi-input-multi-output (MIMO) control for CSP plants that can be implemented on existing plants to improve performance, reliability, and extend the life of the plant. This architecture optimizes the performance on multiple time scalesreactive level (regulation to temperature set points), tactical level (adaptation of temperature set points), and strategic level (trading off fatigue life due to thermal cycling and current production). This controller unique to CSP plants operating at temperatures greater than 550 °C, will make CSPs competitive with conventional power plants and contribute significantly towards the Sunshot goal of 0.06/kWh(e), while responding with agility to both market dynamics and changes in solar irradiance such as due to passing clouds. Moreover, our development of control software with performance guarantees will avoid early stage failures and permit smooth grid integration of the CSP power plants. The proposed controller can be implemented with existing control hardware infrastructure with little or no additional equipment. In the thesis, we demonstrate a dynamics model of CSP, of which different components are modelled with different time scales. We also show a real time control strategy of CSP control oriented model in steady state. Furthermore, we shown different controllers

  4. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Concentrated Windings

    SciTech Connect

    Lawler, J.S.

    2005-12-21

    It is well known that the ability of the permanent magnet synchronous machine (PMSM) to operate over a wide constant power speed range (CPSR) is dependent upon the machine inductance [1,2,3,4,5]. Early approaches for extending CPSR operation included adding supplementary inductance in series with the motor [1] and the use of anti-parallel thyristor pairs in series with the motor-phase windings [5]. The increased inductance method is compatible with a voltage-source inverter (VSI) controlled by pulse-width modulation (PWM) which is called the conventional phase advance (CPA) method. The thyristor method has been called the dual mode inverter control (DMIC). Neither of these techniques has met with wide acceptance since they both add cost to the drive system and have not been shown to have an attractive cost/benefit ratio. Recently a method has been developed to use fractional-slot concentrated windings to significantly increase the machine inductance [6]. This latest approach has the potential to make the PMSM compatible with CPA without supplemental external inductance. If the performance of such drive is acceptable, then the method may make the PMSM an attractive option for traction applications requiring a wide CPSR. A 30 pole, 6 kW, 6000 maximum revolutions per minute (rpm) prototype of the fractional-slot PMSM design has been developed [7]. This machine has significantly more inductance than is typical of regular PMSMs. The prototype is to be delivered in late 2005 to the Oak Ridge National Laboratory (ORNL) for testing and development of a suitable controller. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study the steady-state performance of high-inductance PMSM machines with a view towards control issues. The detailed steady-state model developed includes all motor and inverter-loss mechanisms and will be useful in assessing the performance of the dynamic controller to be

  5. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Huang, Jiquan; Cao, Yongge; Deng, Zhonghua; Tong, Hao

    2011-03-01

    The effects of the concentration of NaOH on the formation and transformation of various titanate nanostructures were studied. With increasing NaOH concentration, three different formation mechanisms were proposed. Nanotubes can only be obtained under moderate NaOH conditions, and should transform into nanowires with prolonged hydrothermal treatment, and their formation rate is accelerated by increasing NaOH concentration. Low concentration of NaOH results in the direct formation of nanowires, while extra high concentration of NaOH leads to the formation of amorphous nanoparticles. Adsorption and photocatalysis studies show that titanate nanowires and nanotubes might be potential adsorbents for the removal of both heavy metal ions and dyes and photocatalysts for the removal of dyes from wastewater.

  6. [Study the restoration technology of concentrated application-natural diffusion about amendments of acidified soil of hilly woodland].

    PubMed

    Fang, Xiong; Liu, Ju-Xiu; Yin, Guang-Cai; Zhao, Liang; Liu, Shi-Zhong; Chu, Guo-Wei; Li, Yi-Yong

    2013-01-01

    Through concentrated application of lime, sewage sludge and lime + sewage sludge on the sloping top of the hilly woodlands, the restoration effects of the three soil amendments on the acidified soil of hilly woodland were studied. The results showed that: (1) Joint application of sewage sludge + lime can significantly (P < 0.05) decrease soil acidity, promote the rapid increase in soil organic matter and nitrogen content, increase soil cation exchange capacity, and effectively improve acidified soil. (2) Through natural diffusion mechanisms of surface and subsurface runoff, a large area of acidified soil of hilly woodlands can be restored by concentrated application of soil amendments on the sloping top of the hilly woodlands. (3) It is conducive to solve the pollution problems of the urban sewage sludge by using municipal sewage sludge to restore acidified soil, but only for the restoration of acidified soil of timber forest.

  7. Application of artificial neural networks to modeling and prediction of ambient ozone concentrations.

    PubMed

    Hadjiiski, L; Hopke, P

    2000-05-01

    The deterministic modeling of ambient O3 concentrations is difficult because of the complexity of the atmospheric system in terms of the number of chemical species; the availability of accurate, time-resolved emissions data; and the required rate constants. However, other complex systems have been successfully approximated using artificial neural networks (ANNs). In this paper, ANNs are used to model and predict ambient O3 concentrations based on a limited number of measured hydrocarbon species, NOx compounds, temperature, and radiant energy. In order to examine the utility of these approaches, data from the Coastal Oxidant Assessment for Southeast Texas (COAST) program in Houston, TX, have been used. In this study, 53 hydrocarbon compounds, along with O3, nitrogen oxides, and meteorological data were continuously measured during summer 1993. Steady-state ANN models were developed to examine the ability of these models to predict current O3 concentrations from measured VOC and NOx concentrations. To predict the future concentrations of O3, dynamic models were also explored and were used for extraction of chemical information such as reactivity estimations for the VOC species. The steady-state model produced an approximation of O3 data and demonstrated the functional relationship between O3 and VOC-NOx concentrations. The dynamic models were able to the adequately predict the O3 concentration and behavior of VOC-NOx-O3 system a number of hourly intervals into the future. For 3 hr into the future, O3 concentration could be predicted with a root-mean squared error (RMSE) of 8.21 ppb. Extending the models further in time led to an RMSE of 11.46 ppb for 5-hr-ahead values. This prediction capability could be useful in determining when control actions are needed to maintain measured concentrations within acceptable value ranges.

  8. Increasing Selenium and Yellow Pigment Concentrations in Foxtail Millet (Setaria italica L.) Grain with Foliar Application of Selenite.

    PubMed

    Ning, Na; Yuan, Xiang-Yang; Dong, Shu-Qi; Wen, Yin-Yuan; Gao, Zhen-Pan; Guo, Mei-Jun; Guo, Ping-Yi

    2016-03-01

    Although addition of selenium (Se) is known to increase Se in crops, it is unclear whether exogenous Se is linked to nutritional and functional components in foxtail millet (Setaria italica L.). In this study, we examined the potential of increasing Se and yellow pigment (YP) in foxtail millet grain by foliar application of Se. Field experiments were conducted during the growing season of foxtail millet in 2013 and 2014 to assess the effects of foliar spray of sodium selenite (10-210 g Se ha(-1)) on the yield, Se uptake and accumulation, total YP, and microminerals in the grain. Average grain yields with Se application were 5.60 and 4.53 t ha(-1) in the 2 years, showing no significant differences from the unfertilized control. However, grain Se concentration increased linearly with Se application rate, by 8.92 and 6.09 μg kg(-1) in the 2 years with application of 1 g Se ha(-1) (maximum grain recovery rates of Se fertilizer, 52 and 28 %). Likewise, total grain YP concentration markedly increased by 0.038 and 0.031 mg kg(-1) in the 2 years with application of 1 g Se ha(-1). Grain Mn, Cu, Fe, and Zn concentrations were not significantly affected by Se application. This study indicated that foliar application of Se effectively and reliably increased the concentrations of Se and YP in foxtail millet grain without affecting the yield or mineral micronutrient concentrations. Thus, foliar-applied selenite has a significant potential to increase the concentrations of selenium and YP (putative lutein (Shen, J Cereal Sci 61:86-93, 2015; Abdel-Aal, Cereal Chem 79:455-457, 2002; Abdel-Aal, J Agric Food Chem 55:787-794, 2007)) of foxtail millet and, thus, the health benefits of this crop.

  9. Fibre concentrate from artichoke (Cynara scolymus L.) stem by-products: Characterization and application as a bakery product ingredient.

    PubMed

    Boubaker, Maroua; Omri, Abdelfatteh El; Blecker, Christophe; Bouzouita, Nabiha

    2016-12-01

    The potential of fibre concentrate from artichoke stem by-product in bakery application was investigated. The elaboration of fibre concentrate was characterized by an extraction yield of 48.5%. The chemical composition showed high total dietary fibre (85 g/100 g d.m) and low lipid contents (0.5 g/100 g d.m). The fibre concentrate showed good water holding capacity (8.17 g/g) and high oil holding capacity (16.17 g/g). The effect of fibre concentrate incorporation to wheat dough, at level of 2%, on the rheological properties and physical characteristics of bread was also evaluated. The results showed that the addition of fibre concentrate in wheat flour significantly improved (P < 0.05) dough properties inducing an increase of water absorption, stability and tenacity, and a reduction of extensibility and softening in comparison to the dough without fibre. The colour values of the crust and crumb were significantly (P < 0.05) altered by the addition of fibre concentrate. It was also found that incorporation of fibre concentrate to bread produced a comparable specific volume and enhanced the shelf life, as textural studies revealed.

  10. Six-man, self-contained carbon dioxide concentrator subsystem for Space Station Prototype (SSP) application

    NASA Technical Reports Server (NTRS)

    Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.

    1974-01-01

    A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.

  11. Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry

    EPA Pesticide Factsheets

    EPA's methodology for estimation of inhalation reference concentrations (RfCs) as benchmark estimates of the quantitative dose-response assessment of chronic noncancer toxicity for individual inhaled chemicals.

  12. Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2006-01-01

    Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.

  13. Estimation of indocyanine green concentration in blood from fluorescence emission: application to hemodynamic assessment during hemodialysis

    NASA Astrophysics Data System (ADS)

    Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2009-09-01

    There is considerable interest in assessing cardiovascular function noninvasively in patients receiving hemodialysis. A possible approach is to measure the blood concentration of bolus-injected indocyanine green dye and to apply the dye-dilution method for estimating cardiac output and blood volume. Blood ICG concentration can be derived from a measurement of the ICG fluorescence through the dialysis tubing if a simple and unique calibration relationship can be established between transmural fluorescence intensity and blood ICG concentration. We investigated this relationship using Monte Carlo simulations of light transport in blood with varying hematocrit and ICG concentrations and performed empiric measurements of optical absorption and ICG fluorescence emission to confirm our findings. The ICG fluorescence intensity measured at the blood surface, as well as the light intensity remitted by the blood, varied as hematocrit changes modified the absorption and scattering characteristics of the blood. Calibration relationships were developed between fluorescence intensity and ICG concentration that accounted for hematocrit changes. Combining the backreflected fluorescence and the reflected light measured near the point of illumination provided optimal signal intensity, linearity, and robustness to hematocrit changes. These results provide a basis for developing a noninvasive approach to derive optically circulating blood ICG concentration in hemodialysis circuits.

  14. Application of a regional procedure to assess the risk to fish from high sediment concentrations.

    PubMed

    Watts, Carol D; Naden, Pamela S; Cooper, David M; Gannon, Beate

    2003-10-01

    Periods of high suspended sediment concentration in rivers can affect the behaviour, health and habitat of freshwater fish. A simple regional model relating daily mean suspended sediment concentration in rivers to flow and percentage of cropped and urban land has been applied to the Lower Swale, UK. The model uses a GIS catchment coverage of hydrological response units (HRUs) of area 5-8 km2, each of which is assumed hydrologically independent and drains to an identified river reach. The sediment delivery properties of each HRU are a function of its land use characteristics determined from existing databases, and hydrological conditions determined from effective rainfall measurements. Daily mean suspended sediment concentrations for each river reach were derived by cumulating simulated HRU flows and sediment loads down successive reaches. A map of the modelled 10% quantile sediment concentrations is presented for both HRUs and river reaches. The map is substantially different from existing erosion risk maps because the delivery model is driven by flow in addition to land use, rather than by soil type. Frequency curves showing the exceedance probability of mean simulated sediment concentrations over 1-6-day durations have been derived using peaks-over-threshold techniques. Maps of the risk of harm to fish, based on the probability of 1- and 4-day sediment concentrations exceeding 80 mg l(-1), are presented. Such maps can be used to assess the impact of sediment on fish and for setting appropriate river water quality objectives.

  15. Influence of concentration, time and method of application of citric acid and sodium citrate in root conditioning

    PubMed Central

    CAVASSIM, Rodrigo; LEITE, Fábio Renato Manzolli; ZANDIM, Daniela Leal; DANTAS, Andrea Abi Rached; RACHED, Ricardo Samih Georges Abi; SAMPAIO, José Eduardo Cezar

    2012-01-01

    Objective The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. Material and Methods A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Results Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Conclusion Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning. PMID:22858707

  16. Feasibility of Topical Applications of Natural High-Concentration Capsaicinoid Solutions in Patients with Peripheral Neuropathic Pain: A Retrospective Analysis

    PubMed Central

    Mouraux, Andre; Deumens, Ronald; Leerink, Marjolein; le Polain de Waroux, Bernard; Joëlle, Quetin-Leclercq

    2016-01-01

    Background. Capsaicin, one of several capsaicinoid compounds, is a potent TRPV1 agonist. Topical application at high concentration (high concentration, >1%) induces a reversible disappearance of epidermal free nerve endings and is used to treat peripheral neuropathic pain (PNP). While the benefit of low-concentration capsaicin remains controversial, the 8%-capsaicin patch (Qutenza®, 2010, Astellas, Netherlands) has shown its effectiveness. This patch is, however, costly and natural high-concentration capsaicinoid solutions may represent a cheaper alternative to pure capsaicin. Methods. In this retrospective study, 149 patients were screened, 132 were included with a diagnosis of neuropathic pain, and eighty-four were retained in the final analyses (median age: 57.5 years [IQR25–75: 44.7–67.1], male/female: 30/54) with PNP who were treated with topical applications of natural high-concentration capsaicinoid solutions (total number of applications: 137). Indications were postsurgical PNP (85.7%) and nonsurgical PNP (14.3%) (posttraumatic, HIV-related, postherpetic, and radicular PNP). Objectives. To assess the feasibility of topical applications of natural high-concentration capsaicinoid solutions for the treatment of PNP. Results. The median treated area was 250 cm2 [IQR25–75: 144–531]. The median amount of capsaicinoids was 55.1 mg [IQR25–75: 28.7–76.5] per plaster and the median concentration was 172.3 μg/cm2 [IQR25–75: 127.6–255.2]. Most patients had local adverse effects on the day of treatment, such as mild to moderate burning pain and erythema. 13.6–19.4% of the patients experienced severe pain or erythema. Following treatment, 62.5% of patients reported a lower pain intensity or a smaller pain surface, and 35% reported a sustained pain relief lasting for at least 4 weeks. Conclusion. Analgesic topical treatment with natural high-concentration capsaicinoid is feasible and may represent a low cost alternative to alleviate PNP in

  17. Application of IR remote sensing technology for monitoring of intersection CO concentrations in Albuquerque, New Mexico

    SciTech Connect

    Morrow, W.H.

    1997-12-31

    This paper reports the preliminary testing of an infrared (IR) remote sensor (GASCOFIL) for the detection of carbon monoxide (CO) concentrations near the intersection of San Mateo Drive and Menaul Drive in Albuquerque, New Mexico on May 11, 1993. The goal of this test was to demonstrate the effectiveness of GASCOFIL as an in-situ monitor for studying the time dependent distribution of CO at intersections. In order to measure the concentration of CO, the sensor viewed a crossroad path seven feet above Menaul Drive three hundred and fifty feet from the center of San Mateo Drive. The sensor was positioned ten feet from a gas and aerosol-monitoring station equipped with an EPA approved point CO monitor. GASCOFIL produced real time data that showed variations in CO levels that correlated with traffic light cycles. Variations in the CO concentration due to individual vehicles were also recorded. A two hour average of the GASCOFIL CO concentration data taken through rush hour was six percent lower than CO data taken from an EPA point sensor adjacent to the intersection. The small percentage variance between the two averages might be due to the separation and size difference of the sample volumes. GASCOFIL measured variations and peaks in the CO concentration not seen by the EPA sensor because it had a faster time response and its sample volume was closer to the vehicular sources.

  18. Application research of computational mass-transfer differential equation in MBR concentration field simulation.

    PubMed

    Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan

    2016-01-01

    After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.

  19. Inverse identification of intensity distributions from multiple flux maps in concentrating solar applications

    NASA Astrophysics Data System (ADS)

    Erickson, Ben; Petrasch, Jörg

    2012-06-01

    Radiative flux measurements at the focal plane of solar concentrators are typically performed using digital cameras in conjunction with Lambertian targets. To accurately predict flux distributions on arbitrary receiver geometries directional information about the radiation is required. Currently, the directional characteristics of solar concentrating systems are predicted via ray tracing simulations. No direct experimental technique to determine intensities of concentrating solar systems is available. In the current paper, multiple parallel flux measurements at varying distances from the focal plane together with a linear inverse method and Tikhonov regularization are used to identify the directional and spatial intensity distribution at the solution plane. The directional binning feature of an in-house Monte Carlo ray tracing program is used to provide a reference solution. The method has been successfully applied to two-dimensional concentrators, namely parabolic troughs and elliptical troughs using forward Monte Carlo ray tracing simulations that provide the flux maps as well as consistent, associated intensity distribution for validation. In the two-dimensional case, intensity distributions obtained from the inverse method approach the Monte Carlo forward solution. In contrast, the method has not been successful for three dimensional and circular symmetric concentrator geometries.

  20. Sedimentology models from activity concentration measurements: application to the "Bay of Cadiz" Natural Park (SW Spain).

    PubMed

    Ligero, R A; Vidal, J; Meléndez, M J; Hamani, M; Casas-Ruiz, M

    2009-03-01

    A previous study on seabed sediments of the Bay of Cadiz (SW of Spain) enabled us to identify several relations between sedimentological variables and activity concentrations of environmental radionuclides such as (137)Cs, (226)Ra, (232)Th and (40)K. In this paper the study has been extended to a large neighbouring inter-tidal area in order to establish if the above mentioned models can be generalized. As a result we have determined that the measured activity concentrations are closely to the values predicted by the theoretical models (correlation coefficient range=0.85-0.93). Furthermore, the proposal model for granulometric facies as a function of activity concentrations of the abovementioned radionuclides provides for the sediments distribution a representation which agrees with the values of the tidal energy distribution obtained using numeric models calibrated with experimental data from current meters and water level recorders.

  1. Application of laser Raman spectroscopy in concentration measurements of multiple analytes in human body fluids

    NASA Astrophysics Data System (ADS)

    Qu, Jianan Y.; Suria, David; Wilson, Brian C.

    1998-05-01

    The primary goal of these studies was to demonstrate that NIR Raman spectroscopy is feasible as a rapid and reagentless analytic method for clinical diagnostics. Raman spectra were collected on human serum and urine samples using a 785 nm excitation laser and a single-stage holographic spectrometer. A partial east squares method was used to predict the analyte concentrations of interest. The actual concentrations were determined by a standard clinical chemistry. The prediction accuracy of total protein, albumin, triglyceride and glucose in human sera ranged from 1.5 percent to 5 percent which is greatly acceptable for clinical diagnostics. The concentration measurements of acetaminophen, ethanol and codeine inhuman urine have demonstrated the potential of NIR Raman technology in screening of therapeutic drugs and substances of abuse.

  2. Application of transcutaneous diffuse reflectance spectroscopy in the measurement of blood glucose concentration

    NASA Astrophysics Data System (ADS)

    Chen, Wenliang; Liu, Rong; Cui, Houxin; Xu, Kexin; Lv, Lina

    2004-07-01

    In this paper, the propagation characteristics of near-infrared (NIR) light in the palm tissue are analyzed, and the principle and feasibility of using transcutaneous diffuse reflectance spectroscopy for non-invasive blood glucose detection are presented. An optical probe suitable for measuring the diffuse reflectance spectrum of human palm and a non-invasive blood glucose detection system using NIR spectroscopy are designed. Based on this system, oral glucose tolerance tests are performed to measure the blood glucose concentrations of two young healthy volunteers. The partial least square calibration model is then constructed by all individual experimental data. The final result shows that correlation coefficients of the two experiments between the predicted blood glucose concentrations and the reference blood glucose concentrations are 0.9870 and 0.9854, respectively. The root mean square errors of prediction of full cross validation are 0.54 and 0.52 mmol/l, respectively.

  3. Application of the Urban Airshed Model to forecasting next-day peak ozone concentrations in Atlanta, Georgia.

    PubMed

    Chang, M E; Cardelino, C

    2000-11-01

    Twenty-four to forty-eight-hour ozone air quality forecasts are increasingly being used in metropolitan areas to inform the public about potentially harmful air quality conditions. The forecasts are also behind "ozone action day" programs in which the public and private sectors are encouraged or mandated to alter activities that contribute to the formation of ground-level ozone. Presented here is a low-cost application of the Urban Airshed Model (UAM), an Eulerian 3-dimensional photochemical-transport grid model for generating next-day peak ozone concentration forecasts. During the summer of 1997, next-day peak ozone concentrations in Atlanta, GA, were predicted both by a team of eight forecasters and by the Urban Airshed Model in Forecast Mode (UAM-FM). Results are presented that compare the accuracy of the team and the UAM-FM. The results for the summer of 1997 indicate that the UAM-FM may be a better predictor of peak ozone concentrations when concentrations are high (> 0.095 ppmv), and the team may be a better predictor of ozone concentrations when concentrations are low (< or = 0.095 ppmv). The UAM-FM is also discussed in the context of other forecasting tools, primarily linear regression models and a no-skill, persistence-based technique.

  4. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    NASA Technical Reports Server (NTRS)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  5. Rheology melts and magmatic suspensions. I - Design and calibration of concentric cylinder viscometer with application to rhyolitic magma

    NASA Technical Reports Server (NTRS)

    Spera, Frank J.; Borgia, Andrea; Strimple, James; Feigenson, Mark

    1988-01-01

    The design and calibration of concentric cylinder viscometer for rhyolitic magma applications are described together with the methods of data reduction and error analysis. Experimental data are presented on two rhyolitic magmas (melt plus a small fraction of vapor) under conditions of varying temperature (1100-1350 C) and shear rate (0.05-13.0/sec) at 100 kPa total pressure. Data obtained include a first reported measurement of a normal stress coefficient for magma.

  6. Shielding of longitudinal magnetic fields with thin, closely, spaced concentric cylindrical shells with applications to atomic clocks

    NASA Technical Reports Server (NTRS)

    Wolf, S. A.; Gubser, D. U.; Cox, J. E.

    1978-01-01

    A general formula is given for the longitudinal shielding effectiveness of N closed concentric cylinders. The use of these equations is demonstrated by application to the design of magnetic shields for hydrogen maser atomic clocks. Examples of design tradeoffs such as size, weight, and material thickness are discussed. Experimental results on three sets of shields fabricated by three manufacturers are presented. Two of the sets were designed employing the techniques described. Agreement between the experimental results and the design calculations is then demonstrated.

  7. MRI profiles over very wide concentration ranges: Application to swelling of a bentonite clay

    NASA Astrophysics Data System (ADS)

    Dvinskikh, S. V.; Szutkowski, K.; Furó, I.

    2009-06-01

    In MRI investigation of soils, clays, and rocks, mainly mobile water is detected, similarly to that in biological and medical samples. However, the spin relaxation properties of water in these materials and/or low water concentration may make it difficult to use standard MRI approaches. Despite these limitations, one can combine MRI techniques developed for solid and liquid states and use independent information on relaxation properties of water, interacting with the material of interest, to obtain true images of both water and material content. We present procedures for obtaining such true density maps and demonstrate their use for studying the swelling of bentonite clay by water. A constant time imaging protocol provides 1D mapping of the clay distribution in regions with clay concentration above 10 vol%. T1 relaxation time imaging is employed to monitor the clay content down to 10 -3 vol%. Data provided by those two approaches are in good agreement in the overlapping range of concentrations. Covering five orders of magnitude of clay concentration, swelling of sodium-exchanged bentonite clays from pre-compacted pellets into a gel phase is followed in detail.

  8. MRI profiles over very wide concentration ranges: application to swelling of a bentonite clay.

    PubMed

    Dvinskikh, S V; Szutkowski, K; Furó, I

    2009-06-01

    In MRI investigation of soils, clays, and rocks, mainly mobile water is detected, similarly to that in biological and medical samples. However, the spin relaxation properties of water in these materials and/or low water concentration may make it difficult to use standard MRI approaches. Despite these limitations, one can combine MRI techniques developed for solid and liquid states and use independent information on relaxation properties of water, interacting with the material of interest, to obtain true images of both water and material content. We present procedures for obtaining such true density maps and demonstrate their use for studying the swelling of bentonite clay by water. A constant time imaging protocol provides 1D mapping of the clay distribution in regions with clay concentration above 10 vol%. T(1) relaxation time imaging is employed to monitor the clay content down to 10(-3) vol%. Data provided by those two approaches are in good agreement in the overlapping range of concentrations. Covering five orders of magnitude of clay concentration, swelling of sodium-exchanged bentonite clays from pre-compacted pellets into a gel phase is followed in detail.

  9. Quantifying Gold Nanoparticle Concentration in a Dietary Supplement Using Smartphone Colorimetry and Google Applications

    ERIC Educational Resources Information Center

    Campos, Antonio R.; Knutson, Cassandra M.; Knutson, Theodore R.; Mozzetti, Abbie R.; Haynes, Christy L.; Penn, R. Lee

    2016-01-01

    Spectrophotometry and colorimetry experiments are common in high school and college chemistry courses, and nanotechnology is increasingly common in every day products and new devices. Previous work has demonstrated that handheld camera devices can be used to quantify the concentration of a colored analyte in solution in place of traditional…

  10. Method and apparatus for uniformly concentrating solar flux for photovoltaic applications

    DOEpatents

    Jorgensen, Gary J.; Carasso, Meir; Wendelin, Timothy J.; Lewandowski, Allan A.

    1992-01-01

    A dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.

  11. Low concentration ratio solar array for low Earth orbit multi-100 kW application

    NASA Technical Reports Server (NTRS)

    Nalbandian, S. J.

    1982-01-01

    An ongoing preliminary design effort directed toward a low-concentration-ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 80 kW to 172 kW using silicon solar cells or gallium arsenide solar cells respectively. The array module deployed area is 1320 square meters and consists of 4356 pryamidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. The structural analysis and design trades leading to the baseline design are discussed. The configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.

  12. Validation and application of an assay for deoxyribonucleic acid to estimate concentrations of bull sperm.

    PubMed

    Fenton, S E; Ax, R L; Cowan, C M; Coyle, T; Gilbert, G R; Lenz, R W

    1990-11-01

    Spectrophotometers are used for estimating sperm concentrations from raw ejaculates in semen processing laboratories. Unfortunately, these instruments have a limited detection spectrum and do not permit accurate quantification of sperm numbers in highly diluted or concentrated samples. The objectives of this study were to validate a DNA assay for quantification of sperm numbers in extended or undiluted semen samples and to determine precision of the assay. The principle of the assay is based upon a fluorescent dye that binds to adenine-thymine base pairs in double-stranded DNA. Semen samples and calf thymus DNA standards were sonicated in 2 M NaCl buffer with 1 mM EDTA. The DNA content of samples was compared to standards of calf thymus DNA using fluorometry. Sensitivity of the assay was determined to be 1.4 x 10(5) sperm cells. Concentrations of sperm estimated from DNA assay values did not differ from flow cytometric cell counts. Assays were performed in three different laboratories, using different equipment, to assess the assay's repeatability. Estimates of sperm concentrations determined by the DNA assay were similar, regardless of location and source of equipment used to perform the assays. This assay fulfills statistical criteria for being sensitive, accurate, and repeatable, and it can be employed in laboratories processing semen for artificial insemination as a tool for spectrophotometer calibration, a check for straw filling accuracy, or to quantify sperm numbers in extended, packaged semen.

  13. A simple model for predicting solute concentration in agricultural tile lines shortly after application

    NASA Astrophysics Data System (ADS)

    Steenhuis, T. S.; Bodnar, M.; Geohring, L. D.; Aburime, S.-A.; Wallach, R.

    Agricultural tile drainage lines have been implicated as a source of pesticide contamination of surface waters. Field experiments were conducted and a simple model was developed to examine preferential transport of applied chemicals to agricultural tile lines. The conceptual model consists of two linear reservoirs, one near the soil surface and one near the tile drain. The connection between the two reservoirs is via preferential flow paths with very little interaction with the soil matrix. The model assumes that only part of the field contributes solutes to the tile drain. The model was evaluated with data from the field experiments in which chloride, 2,4-D, and atrazine concentrations were measured on eight tile-drained plots that were irrigated twice. Atrazine was applied two months prior to the experiment, 2,4-D was sprayed just before the first irrigation, and chloride before the second irrigation. All three chemicals were found in the tile effluent shortly after the rainfall began. Generally, the concentration increased with increased flow rates and decreased exponentially after the rainfall ceased. Although the simple model could simulate the observed chloride concentration patterns in the tile outflow for six of the eight plots, strict validation was not possible because of the difficulty with independent measurement of the data needed for a preferential flow model applied to field conditions. The results show that, to simulate pesticide concentration in tile lines, methods that can measure field averaged preferential flow characteristics need to be developed.

  14. Application of the conservation of etendue theorem for 2-D subdomains of the phase space in nonimaging concentrators

    SciTech Connect

    Minano, J.C.

    1984-06-15

    The conservation of etendue for general 2-D bundles of rays (not necessarily coplanar) is examined (a 2-D bundle of rays is that whose rays are distinguishable by giving each one two parameters). This is one of the integral invariants of Poincare and it is directly related to the Lagrange invariant. The application of this theorem to selected 2-D bundles of rays crossing an arbitrary cylindrical concentrator gives us a relationship between the maximum geometrical concentration of a cylindrical and the angular field of view which is more restrictive than the general one (i.e., the relationship is valid for an arbitrary concentrator) when the collector is surrounded by a refractive medium.

  15. Accelerated Stress Testing of Hydrocarbon-Based Encapsulants for Medium-Concentration CPV Applications

    SciTech Connect

    Kempe, M. D.; Moricone, T. J.; Kilkenny, M.; Zhang, J. Z.

    2011-02-01

    Concentrating photovoltaic (CPV) systems have great potential to reduce photovoltaic (PV) electricity costs because of the relatively low cost of optical components as compared to PV cells. A transparent polymeric material is used to optically couple the PV cell to optical components and is thus exposed to the concentrated light source at elevated temperatures. In this work polymeric encapsulant materials are positioned close to a Xenon arc lamp to expose them to ultraviolet radiation (UV) that is about 42 times as intense as sunlight. Furthermore, different glass types are used as filters to modify the spectral distribution of light in the UV range. A strong sensitivity of non-silicone-based encapsulants to light below ~350 nm is demonstrated. Of all the materials examined in this study, the polydimethyl silicone samples performed the best. The next best material was an ionomer which maintained optical transmission but became photo-oxidized where exposed to the atmosphere.

  16. Applications of Kalman filtering to real-time trace gas concentration measurements

    NASA Technical Reports Server (NTRS)

    Leleux, D. P.; Claps, R.; Chen, W.; Tittel, F. K.; Harman, T. L.

    2002-01-01

    A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.

  17. Simultaneous detection of pH value and glucose concentrations for wound monitoring applications.

    PubMed

    Jankowska, D A; Bannwarth, M B; Schulenburg, C; Faccio, G; Maniura-Weber, K; Rossi, R M; Scherer, L; Richter, M; Boesel, L F

    2017-01-15

    Aging population and longer life expectancy are the main reasons for an increasing number of patients with wound problems. Although the interest in wound care increases continuously, wound management still remains a challenge mainly due to the higher occurrence of chronic wounds, which require intensive care and constant monitoring. Here, we demonstrate a fluorescent sensing system to monitor the wound status and to distinguish between an autonomously healing and a chronic wound at an early stage. The system allows monitoring two of the most relevant fluctuating wound parameters during the healing process which are pH and glucose concentration. A fluorescent pH indicator dye, carboxynaphthofluorescein, and a metabolite-sensing enzymatic system, based on glucose oxidase and horseradish peroxidase, were immobilized on a biocompatible polysaccharide matrix to develop a functional hydrogel coating for wound monitoring. The changes in metabolite and enzyme concentration in artificial wound extract were converted into a fluorescent signal.

  18. Application of a real-time biosensor to detect bacteria in platelet concentrates.

    PubMed

    Rotman, Boris; Cote, Mindy A

    2003-01-03

    A spore-based biosensor for detecting low levels of bacteria in real-time has been recently developed. The system (termed LEXSAS, label-free exponential signal-amplification system) exploits spore's ability to produce fluorescence when sensing neighboring bacterial cells. We studied the LEXSAS as a possible approach for identifying bacterially contaminated platelet concentrates prior to transfusion because the system offers rapid analysis, high sensitivity, and low cost. If successful, this approach could reduce the risk of morbidity and mortality from transfusion-related bacteremia and sepsis. In this study, we used the LEXSAS for detecting bacteria in platelet concentrates spiked with Bacillus cereus, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, or Streptococcus pyogenes. Bacteria were separated from platelets using a 2-min procedure based on bacterial resistance to detergents and osmotic shock. The results indicate that the LEXSAS could be used to design a practical biosensor for identifying bacterially contaminated platelets in real-time.

  19. Application of the target lipid model for deriving predicted no-effect concentrations for wastewater organisms.

    PubMed

    Redman, Aaron; McGrath, Joy; Febbo, Eric; Parkerton, Thomas; Letinski, Dan; Connelly, Martin; Winkelmann, Douglas; Toro, Dominic Di

    2007-11-01

    The target lipid model (TLM) was applied to literature data from 10 microbial toxicity assays to provide a quantitative effects assessment framework for wastewater treatment plant organisms. For the nonpolar organic chemicals considered, linear relationships between the logarithm of the median effect concentrations (EC50) and log(K(OW)) conformed to the TLM for all endpoints with the exception of nitrification inhibition. Additional experimental data for the nitrification inhibition endpoint were generated for 16 narcotic chemicals using a procedure that allowed testing of volatile substances. Results obtained from the present study demonstrated that the nitrification inhibition endpoint was not adequately described by the TLM consistent with previous literature data. Acute to chronic ratios (ACRs) defined as the ratio of the EC50 to the 10% effect concentration (EC10) were available for two of the endpoints investigated and ranged from 1.1 to 2.3 for the Tetrahymena growth assay and from 2.4 to 24.1 for the nitrification inhibition endpoint. No inhibitory effects for any of the microbial endpoints investigated were observed for compounds with log(K(OW)) >5. The critical target lipid body burdens (C(L)(*)) were calculated for the nine microbial toxicity endpoints conforming to the TLM and ranged from 252 to 2,250 micromol/g octanol. The Microtox light inhibition (C(L)(*) = 252 micromol/g octanol) and Tetrahymena pyriformis growth (C(L)(*) = 254 micromol/g octanol) assays were found to be the most sensitive endpoints. The predicted no-effect concentration (PNEC) derived using the HC5 (hazardous concentration to 5% of test organisms) statistical extrapolation procedure was calculated using TLM parameters for substances with log(K(OW)) from 0 to 5. Results from this analysis demonstrate PNECs for narcotic compounds are protective of wastewater organisms excluding nitrifying bacteria. Further model improvement is needed if protection of nitrifying bacteria in

  20. Onsager’s reciprocal relations for electroacoustic and sedimentation: Application to (concentrated) colloidal suspensions

    SciTech Connect

    Gourdin-Bertin, S.; Chassagne, C.

    2015-05-21

    In this article, the relations for electroacoustic phenomena, such as sedimentation potential, sedimentation intensity, colloid vibration potential, colloid vibration intensity/current, or electric sonic amplitude, are given, on the basis of irreversible thermodynamics. This formalism allows in particular to discuss the different expressions for concentrated suspensions found by various authors, which are of great practical interest. It was found that some existing expressions have to be corrected. Relations between the electrophoretic mobilities assessed by the different experiments are derived.

  1. Application of the optical method in experimental cardiology: action potential and intracellular calcium concentration measurement.

    PubMed

    Ronzhina, M; Cmiel, V; Janoušek, O; Kolářová, J; Nováková, M; Babula, P; Provazník, I

    2013-01-01

    It has been shown that, in addition to conventional contact electrode techniques, optical methods using fluorescent dyes can be successfully used for cardiac signal measurement. In this review, the physical and technical fundamentals of the method are described, as well as the properties of the most common systems for measuring action potentials and intracellular calcium concentration. Special attention is paid to summarizing limitations and trends in developing this method.

  2. Corn response and soil nutrient concentration from subsurface application of poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilizer management is vital to corn (Zea mays L.) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally surface broadcast, potentially causing volatilization of NH3. Recently a new application method was devel...

  3. Application of a neural network for gentamicin concentration prediction in a general hospital population.

    PubMed

    Corrigan, B W; Mayo, P R; Jamali, F

    1997-02-01

    Neural network (NN) computation is computer modeling based in part on simulation of the structure and function of the brain. These modeling techniques have been found useful as pattern recognition tools. In the present study, data including age, sex, height, weight, serum creatinine concentration, dose, dosing interval, and time of measurement were collected from 240 patients with various diseases being treated with gentamicin in a general hospital setting. The patient records were randomly divided into two sets: a training set of 220 patients used to develop relationships between input and output variables (peak and trough plasma concentrations) and a testing set (blinded from the NN) of 20 to test the NN. The network model was the back-propagation, feed-forward model. Various networks were tested, and the most accurate networks for peak and trough (calculated as mean percent error, root mean squared error of the testing group, and tau value between observed and predicted values) were reported. The results indicate that NNs can predict gentamicin serum concentrations accurately from various input data over a range of patient ages and renal function and may offer advantages over traditional dose prediction methods for gentamicin.

  4. Testing of a prototype Fresnel-lens concentrator for thermal applications

    SciTech Connect

    Lewandowski, A.

    1983-02-01

    A prototype Fresnel-lens concentrator, manufactured by E-Systems, Dallas, Texas, was tested for thermal performance at SERI's Mid-Temperature Collector Research Facility (MTCRF). This work was funded by the DOE in an effort to support development of a testing standard for concentrators. The data obtained from this testing were presented and utilized by a subcommittee of the American Society for Testing and Materials (ASTM) in the development process for the standard. Several tests were conducted on the concentrator using draft versions of the standard as guidance. Additional tests allowed but not required by the standard were conducted to determine the effect of the direct solar irradiance level on collector performance. It is the results of these additional tests that are of primary interest. The data show that non-linear heat losses cause collector efficiency to be a function of both ..delta..t/I/sub DN/ and I/sub DN/ and that the efficiency when fluid temperature is near ambient is also a function of I/sub DN/. This latter result is a characteristic unique to this collector, whereas the former holds for any collector with non-linear with heat loss.

  5. Application of falling-needle rheometry to highly concentrated DNA solutions.

    PubMed

    Burger, Jessica; Yamamoto, Hideki; Suzuki, Takamasa; Laesecke, Arno

    2014-01-01

    High-concentration DNA solutions are common both in vitro and in vivo, and understanding the rheological properties is a critical area of bioscience. Our previous measurements on high-concentration DNA solutions (2-6 mg/ml) interestingly provided evidence for a viscosity maximum with temperature. Under the influence of temperature, the measured viscosities indicated distinct differences in the interactions of highly polymerized DNA in unbuffered and buffered aqueous solutions. Under the same conditions, the buffered solutions were always less viscous, and in addition the viscosity maximum was not observed. In this research we have utilized a falling-needle rheometer in order to gain more insight into the nature of the previously observed viscosity maxima. The shape of the flow curves for all the DNA solutions indicated that the solutions are shear-thinning and has allowed us to confirm the existence of the viscosity maximum in unbuffered DNA solutions. Also we have been able to measure flow curves at very low shear rates, <10 s⁻¹. These results showed that the flow curves intersect and that the lower the concentration of DNA in solution, the lower is the temperature where the flow curves will intersect. Thus, the viscosity-temperature dependence is also a function of the shear rates experienced by the solution. Finally, as expected, the flow behavior of the DNA solutions becomes more Newtonian with increasing temperature, and there appears to be a small yield stress that decreases with increasing temperature.

  6. Influence of poultry litter land application on the concentrations of estrogens in water and sediment within a watershed.

    PubMed

    Luo, Qi; Adams, Paige; Lu, Junhe; Cabrera, Miguel; Huang, Qingguo

    2013-07-01

    This research studied the occurrence of estrogens in the Upper Satilla watershed, Georgia, USA, which was impacted by poultry litter land application and discharge from a sewage treatment plant (STP) receiving poultry wastes. Over 14 months, four estrogens in stream water, sediment, suspended particles, and STP samples were quantified by LC/MS. Estrogens were consistently found in the STP influent with high concentrations while they were below the detection limits in the majority of stream water, suspended particles, and sediment. Estrone, 17β-estradiol, and estriol were found in 18% of stream water samples with concentrations up to 46.4, 67.2, and 125 ng L(-1), respectively. However, 17α-ethinylestradiol was only detected in STP samples. Estrogens were found in 14% of suspended particle samples with the median concentration being 27.5 ng g(-1) for estrone, 104.5 ng g(-1) for 17β-estradiol, and 93.9 ng g(-1) for estriol. The estrogen concentrations in sediment were <4.95 ng g(-1), indicating that sediment is not a major sink for estrogens in this watershed. The quantitative analysis of the temporal and spatial distribution of the estrogens suggests the occasional elevation of estrogens in the watershed above the predicted-no-effect-concentrations to fish likely to be associated with litter disposal and rainfall events.

  7. Ethanol in pre-surgical hand rubs: concentration and duration of application for achieving European Norm EN 12791.

    PubMed

    Suchomel, M; Rotter, M

    2011-03-01

    In Europe, ethanol is a common active agent in hand rub formulations and nowadays it is also recommended in guidelines for hand hygiene published by the Centers for Disease Control and Prevention and by the World Health Organization. However, data on the range of concentrations and durations of application providing a basis for passing the efficacy test of the European norm EN 12791 are still lacking. Therefore, the bactericidal efficacy of rubbing clean hands with pure ethanol in volume concentrations of 95%, 85% or 75% during 3 min was compared with that of the reference procedure of EN 12791 employing n-propanol 60% v/v for 3 min, immediately and 3h after disinfection. Ethanol 85% was also tested at a 5 min application. A Latin-square design was used with 20 randomly allotted volunteers. Whereas the mean immediate bacterial reductions caused by ethanol at concentrations of 75% (log RF 1.68) and 95% (log RF 2.70) were significantly less efficacious compared to that of the reference (log RF 3.27), at 85% they were not significantly less active with both applications, 3 and 5 min (log RFs 2.90 and 3.12, respectively). Three hours after antisepsis, the bacterial reduction on the gloved hand was only significantly less efficacious than that of the reference when 75% ethanol was used. It is concluded that ethanol-based hand rubs have a good chance of meeting the EN 12791 requirements if their ethanol concentration is >75% v/v but <95% v/v and if they are applied for at least 3 min.

  8. The Concentration Dependence of the (Delta)s Term in the Gibbs Free Energy Function: Application to Reversible Reactions in Biochemistry

    ERIC Educational Resources Information Center

    Gary, Ronald K.

    2004-01-01

    The concentration dependence of (delta)S term in the Gibbs free energy function is described in relation to its application to reversible reactions in biochemistry. An intuitive and non-mathematical argument for the concentration dependence of the (delta)S term in the Gibbs free energy equation is derived and the applicability of the equation to…

  9. Fish-friendly prophylaxis/disinfection in aquaculture: Low concentration of peracetic acid is stress-free to the carp (Cyprinus carpio) after repeated applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of peracetic acid (PAA) at low concentrations has been proved to be a broad functional and eco-friendly prophylaxis/disinfection method against various fish pathogens. Therefore, regular applications of low concentration PAA is sufficient to control (potential) pathogens in recirculatin...

  10. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment.

    PubMed

    Udabage, Punsandani; Puvanenthiran, Amirtha; Yoo, Jin Ah; Versteeg, Cornelis; Augustin, Mary Ann

    2012-02-01

    The effects of high pressure (HP) treatment (100-400 MPa at 10-60 °C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20 °C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (~20 °C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40 °C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (~85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.

  11. Concentration dependent luminescence properties of Dy3+ doped lead free zinc phosphate glasses for visible applications

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.

    2016-10-01

    Dysprosium (Dy3+) doped lead free zinc phosphate glasses with chemical compositions (60 - x) NH4H2PO4 + 20ZnO + 10BaF2 + 10NaF + xDy2O3 (where x = 0.5, 1.0, 1.5, 2.0 mol%) have been prepared by melt quenching technique. The functional groups of vibrational bands have been assigned and clearly elucidated by FTIR and Raman spectral profiles for all these glass samples. Judd-Ofelt (J-O) intensity parameters (Ωλ: λ = 2, 4, 6) have been obtained from spectral intensities of different absorption bands of Dy3+ doped glasses. Radiative properties such as radiative transition probabilities ( A R ), radiative lifetimes ( τ R ), branching ratios ( β R ) and integrated absorption cross-sections ( Σ) for different excited states are calculated by using J-O parameters. Luminescence spectra exhibit three emission bands (from 4F9/2 level to 6H15/2, 6H13/2 and 6H11/2) for all the concentrations of Dy3+ ions before and after gamma irradiation. Various luminescence properties have been studied by varying the Dy3+ concentration for the three spectral profiles. Fluorescence decay curves of 4F9/2 level have been recorded. The energy transfer mechanism that leads to quenching of 4F9/2 state lifetime has been discussed by the variation of Dy3+ concentration. These glasses are expected to be useful for yellow luminescent materials.

  12. Comparison of the application of low concentration and 80% phenol solution in pilonidal sinus disease

    PubMed Central

    Sakçak, İbrahim; Avşar, Fatih Mehmet; Coşgun, Erdal

    2010-01-01

    Objectives Many conservative methods have been applied in the treatment of pilonidal sinus disease (PSD). The most commonly used conservative treatment is 80% phenol solution. Our observations demonstrated that 80% phenol solution caused much destruction in the sacrococcygeal region. Design In this study low concentrations of phenol were used with the aim of reducing the unwanted side-effects of high-concentration phenol without reducing the therapeutic effects. Participants We treated 112 patients (18 women, 94 men) with PSD using phenol solution. Patients were divided into two groups: Group A was treated with a 40% solution of phenol solution, and Group B was treated with an 80% solution of phenol solution. Setting All patients were treated on an outpatient basis. One mL of low (40%) or high (80%) concentration phenol solution was injected into the main sinus orifice. During the check it was observed and noted whether there was skin necrosis, fatty tissue necrosis or abscesses. Main outcome measures The mean age was 27.4 years (6–44). The median length of symptoms was seven months (0.5–132). In the 2.8 years (1–6) of mean follow-up period, the disease recurred in 13 (11.6%) patients. Results This treatment procedure was well-tolerated by all the patients except for those who had unwanted results. No patients in group A had skin necrosis, and only one had abscesses. In group B two patients had abscesses, and three had skin necrosis. Fatty tissue necrosis was seen in one patient in Group A and in five patients in Group B. Recurrence rates were four (7.4%) cases in Group A and nine (15.5%) cases in Group B. Conclusions It is possible to treat patients in a shorter time with a considerably smaller loss of working time, since the destruction of peripilonidal adipose tissue and skin is less. Therefore, the use of low-concentration phenol solution is an option to be considered in the treatment of PSD. PMID:21103097

  13. Application of an artificial neural network for evaluation of activity concentration exemption limits in NORM industry.

    PubMed

    Wiedner, Hannah; Peyrés, Virginia; Crespo, Teresa; Mejuto, Marcos; García-Toraño, Eduardo; Maringer, Franz Josef

    2016-12-27

    NORM emits many different gamma energies that have to be analysed by an expert. Alternatively, artificial neural networks (ANNs) can be used. These mathematical software tools can generalize "knowledge" gained from training datasets, applying it to new problems. No expert knowledge of gamma-ray spectrometry is needed by the end-user. In this work an ANN was created that is able to decide from the raw gamma-ray spectrum if the activity concentrations in a sample are above or below the exemption limits.

  14. Derivative Form of Off-axis Aberration Correction Surface and Its Application in Solar Energy Concentration

    NASA Astrophysics Data System (ADS)

    Li, Li; Chen, Ying-Tian; Hu, Sen

    2009-02-01

    By using the derivative method, we obtained the same result with that of the previous work of Chen et al. in 2006. Different from the integral form, the derivative form of the surface expression published in this paper is derived from differential equation and based on the theory of non-imaging focusing heliostat proposed by Chen et al. in 2001. The comparison of the derivative form of fixed aberration correction surface has been made with that of integral form surface as well as that of spherical surface in concentrating the solar ray.

  15. LPE-GaAs and LBSF-Si solar cells for tandem concentrator application

    SciTech Connect

    Blieske, U.; Sterk, S.; Bett, A.; Schumacher, J.; Wettling, W.; Marti, A.; Terron, M.J.; Luque, A.

    1994-12-31

    Design and efficiency measurements of a mechanically stacked concentrator tandem solar cell are presented. The GaA cell was grown by the LPE etch-back-regrowth method and has a diameter of 4 mm. The silicon solar cell is a high efficient LBSF concentrator solar cell of 5 mm diameter. Special care was taken to optimize the antireflection coatings on the back and front side of the GaAs solar cell. Both cells were processed at FhG-ISE in Freiburg. Their short circuit currents were measured at the ISE calibration laboratory under AM 1.5d conditions. The efficiency measurements were performed at UPM-IES in Madrid under outdoor conditions. At 27 suns (AM 1.5d, 25 C) the GaAs cell showed an efficiency of 22.9% and the silicon cell an efficiency of 2.9%. The two single cell efficiencies add to a tandem efficiency of 25.8% for the four terminal operation.

  16. Application of PAH concentration profiles in lake sediments as indicators for smelting activity.

    PubMed

    Warner, Wiebke; Ruppert, Hans; Licha, Tobias

    2016-09-01

    The ability of lake sediment cores to store long-term anthropogenic pollution establishes them as natural archives. In this study, we focus on the influence of copper shale mining and smelting in the Mansfeld area of Germany, using the depth profiles of two sediment cores from Lake Süßer See. The sediment cores provide a detailed chronological deposition history of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the studied area. Theisen sludge, a fine-grained residue from copper shale smelting, reaches the lake via deflation by wind or through riverine input; it is assumed to be the main source of pollution. To achieve the comparability of absolute contaminant concentrations, we calculated the influx of contaminants based on the sedimentation rate. Compared to the natural background concentrations, PAHs are significantly more enriched than heavy metals. They are therefore more sensitive and selective for source apportionment. We suggest two diagnostic ratios of PAHs to distinguish between Theisen sludge and its leachate: the ratio fluoranthene to pyrene ~2 and the ratio of PAH with logKOW<5.7 to PAH with a logKOW>5.7 converging to an even lower value than 2.3 (the characteristic of Theisen sludge) to identify the particulate input in lake environments.

  17. [Application of artificial neural networks on the prediction of surface ozone concentrations].

    PubMed

    Shen, Lu-Lu; Wang, Yu-Xuan; Duan, Lei

    2011-08-01

    Ozone is an important secondary air pollutant in the lower atmosphere. In order to predict the hourly maximum ozone one day in advance based on the meteorological variables for the Wanqingsha site in Guangzhou, Guangdong province, a neural network model (Multi-Layer Perceptron) and a multiple linear regression model were used and compared. Model inputs are meteorological parameters (wind speed, wind direction, air temperature, relative humidity, barometric pressure and solar radiation) of the next day and hourly maximum ozone concentration of the previous day. The OBS (optimal brain surgeon) was adopted to prune the neutral work, to reduce its complexity and to improve its generalization ability. We find that the pruned neural network has the capacity to predict the peak ozone, with an agreement index of 92.3%, the root mean square error of 0.0428 mg/m3, the R-square of 0.737 and the success index of threshold exceedance 77.0% (the threshold O3 mixing ratio of 0.20 mg/m3). When the neural classifier was added to the neural network model, the success index of threshold exceedance increased to 83.6%. Through comparison of the performance indices between the multiple linear regression model and the neural network model, we conclud that that neural network is a better choice to predict peak ozone from meteorological forecast, which may be applied to practical prediction of ozone concentration.

  18. Re-expansion method for circular waveguide discontinuities: Application to concentric expansion chambers

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2012-01-01

    The paper applies the re-expansion method for analyzing planar discontinuities at the junction of two axi-symmetrical circular waveguides. The normal modes in the two waveguides are expanded at the junction plane into a system of functions accounting for velocity singularities at the corner points. As the new expansion has a high convergence order, only a few terms have to be considered for obtaining the solution of most practical problems. This paper gives the equivalent impedance accounting for nonplanar waves into a plane-wave analysis and also the scattering matrix describing the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both sides of the duct. The last section applies the re-expansion technique to some concentric expansion chambers providing an explicit formula for the transmission loss coefficient. PMID:22352491

  19. Solubilization of rehydrated frozen highly concentrated micellar casein for use in liquid food applications.

    PubMed

    Lu, Y; McMahon, D J; Metzger, L E; Kommineni, A; Vollmer, A H

    2015-09-01

    Highly concentrated micellar casein concentrate (HC-MCC), a potential ingredient of protein-fortified food, is a gel at cold temperature. It contains ~17 to 21% casein, with most serum proteins and lactose removed by microfiltration and diafiltration, and it is then further concentrated using vacuum evaporation. The HC-MCC can be stored frozen, and our objective was to determine the conditions needed to obtain complete solubility of thawed HC-MCC in water and to understand its gelation upon cooling. Dispersibility (ability to pass through a 250-µm mesh sieve), suspendability (percentage of protein not sedimented at 80 × g within 5min), and solubility (percentage of protein not sedimented at 20,000 × g within 5min) were measured at 4, 12, or 20°C after various mixing conditions. Gelation upon cooling from 50 to 5°C was monitored based on storage (G') and loss (G'') moduli. The gelled HC-MCC was also examined by transmission electron microscopy. Thawed HC-MCC was added to water to reach a protein concentration of 3% and mixed using high shear (7,500rpm) for 1min or low shear (800rpm) for 30min at 4, 12, 20, or 50°C and at pH 6.4 to 7.2. The HC-MCC completely dispersed at 50°C, or at ≤20°C followed by overnight storage at 4°C. Suspendability at 50°C was ~90% whereas mixing at ≤20°C followed by overnight storage resulted in only ~57% suspendability. Solubility followed a similar trend with ~83% at 50°C and only ~29% at ≤20°C. Mixing HC-MCC with 60mM trisodium citrate increased dispersibility to 99% and suspendability and solubility to 81% at 20°C. Cold-gelling temperature, defined as the temperature at which G'=G'' when cooling from 50 to 5°C, was positively correlated with protein level in HC-MCC. Gelation occurred at 38, 28, and 7°C with 23, 20, and 17% of protein, respectively. Gelation was reversible upon heating, although after a second cooling cycle the HC-MCC gel had lower G'. In micrographs of gelled HC-MCC, the casein micelles were

  20. Influence of the application of three different elicitors on soybean plants on the concentrations of several isoflavones in soybean seeds.

    PubMed

    Zhang, Bo; Hettiarachchy, Navam; Chen, Pengyin; Horax, Ronny; Cornelious, Brian; Zhu, Danhua

    2006-07-26

    Soybean [Glycine max (L.) Merr.] is a rich source of isoflavones that are often affected by biotic and abiotic factors. The objectives of this study were to evaluate the effect of various concentrations of three natural elicitors applied at different soybean growth stages on isoflavone content and to compare the efficiency of several solvent systems in isoflavone extraction and quantification. The isoflavones extracted from R96-3444 soybean using eight solvent systems were separated, identified, and quantified by a high-performance liquid chromatography (HPLC) procedure. The soybean plants were sprayed with salicylic acid, methyl salicylate, or ethyl acetate at 0, 10(-6), 10(-3), and 10(-1) M at R1 (blooming) or R4 (full pods) growth stage. Results showed that 10(-3) M ethyl acetate sprayed at the R1 stage significantly increased total isoflavone content and the levels of some individual isoflavones in soybean seeds. With all the elicitors that were tested, concentration was a more important factor than application time with respect to isoflavone content with lower concentrations being more effective on most isoflavones. A 53% acetonitrile solvent system was the best solvent system for extracting total isoflavone, malonyl glucosides, genistein, glycitin, genistin, acetyl-daidzin, and acetyl-genistin. The results of this study will be useful for increasing the isoflavone content in desirable soybean varieties and improving isoflavone concentration during extraction.

  1. Optical study of diffraction grating/Fresnel lens combinations applied to a spectral-splitting solar concentrator for space applications.

    PubMed

    Michel, Céline; Loicq, Jérôme; Thibert, Tanguy; Habraken, Serge

    2015-08-01

    This paper presents a new design of a planar solar concentrator with spectral splitting of light for space applications. This concentrator spectrally splits the incident light into mainly two parts. Each part is then focused onto specific spatially separated photovoltaic cells allowing for independent control of respective cells' output power. These advantages of both spectral splitting and light focusing are combined here because of a specific diffraction grating superimposed on a Fresnel lens. The theoretical principle of the optical design is presented with optimization of each element and improvement steps including optimization of grating period evolution along the lens and testing of two kinds of gratings (a blazed and a lamellar one). First numerical results are presented highlighting the possibility to design a concentrator at about 10× or more for each cell with an output power larger than that of a classical concentrator focusing on a GaAs single junction cell and less than 10% of losses for tracking errors up to ±0.8°. Some experimental results are also presented.

  2. Intrascleral concentration vs depth profile of mitomycin-C after episcleral application: impact of applied concentration and volume of mitomycin-C solution.

    PubMed

    Vass, C; Georgopoulos, M; el Menyawi, I; Radda, S; Nimmerrichter, P

    2000-05-01

    The purpose of this study was to investigate the impact of different concentrations and volumes of Mitomycin-C (MMC) on the intrascleral concentration vs depth profile of MMC in an experimental model. The episcleral sides of scleral quadrants of human donor eyes were exposed for 1 min to sponges (corneal light shield, Merocel Corp.) soaked with MMC. After irrigation with 40 ml saline a central 8 mm diameter scleral disk was horizontally dissected with a cryotome. MMC concentrations of six layers of 140 microns thickness were analysed by means of high-performance liquid chromatography. In Experiment 1 (11 eyes) the sponges were soaked with 50 microliters of 10, 100 and 200 micrograms ml-1 MMC solutions. In Experiment 2 (12 eyes) the sponges were soaked with 10, 30, 50 and 80 microliters of a 200 micrograms ml-1 isotonic MMC solution. In Experiment 1 the MMC concentrations (microgram g-1) of layer 1 were 0.35 (+/- 0.20; 10 micrograms ml-1 group) and 9.22 (+/- 2.92; 200 micrograms ml-1 group). In Experiment 2 the MMC concentrations were 2.57 (+/- 1.17; 10 microliters group), 7.35 (+/- 2.49; 30 microliters group) and 11.67 (+/- 3.25; 80 microliters group). The scleral MMC concentrations were significantly influenced by the applied concentrations (layers 1-5) and by the applied volumes (all layers) of MMC solution. The intrascleral MMC concentration increased linearly with increasing concentration and not linearly with increasing volume of the applied MMC solution. To achieve more predictable scleral concentrations of MMC after trabeculectomy with MMC it seems advisable to control both the concentration and the volume of the MMC solution used to soak the sponge.

  3. Fabrication of microfluidic architectures for optimal flow rate and concentration measurement for lab on chip application

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.

  4. Numerical and experimental analysis of heat pipes with application in concentrated solar power systems

    NASA Astrophysics Data System (ADS)

    Mahdavi, Mahboobe

    Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material

  5. Monitoring heavy metal concentrations in leachates from a forest soil subjected to repeated applications of sewage sludge.

    PubMed

    Egiarte, G; Pinto, M; Ruíz-Romera, E; Camps Arbestain, M

    2008-12-01

    The aim of the study was to establish whether the repeated application of sewage sludge to an acid forest soil (Dystric Cambisol) would lead to short-term groundwater contamination. Sludge was applied at four loading rates (0, 2.4, 17 and 60 Mg ha(-1)) in two consecutive years and leachates were analysed. Heavy metal inputs to soils at the lowest dose were below EC regulations but, at higher doses, limits for Zn, Cd, Cr and Ni were exceeded. Repeated application of sludge at 60 Mg ha(-1) resulted in significantly (P<0.05) higher concentrations of Zn, Cd, Cr and Ni in the leachates than with other treatments. The drinking water standards for Cd and Ni were surpassed in all treatments. Control plots were contaminated by groundwater flow despite the existence of buffer zones between plots. This complicated interpretation of the results, highlighting the importance of careful design of this type of experiment.

  6. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding

  7. Performance measurements of new silicon carbide coated reflectors for concentrated solar power applications

    NASA Astrophysics Data System (ADS)

    Belasri, Djawed; Nakamura, Kazuki; Armstrong, Peter; Calvet, Nicolas

    2016-05-01

    The new silicon carbide coated mirrors (SiC-mirrors) developed by Ibiden Co., Ltd. and tested at the Masdar Institute of Science and Technology offer several advantages in concentrated solar power (CSP) structure and operation. The purpose of this paper is to present the results of the reflectance and durability of the SiC-mirrors compared to high quality CSP glass mirrors in conjunction with two different applied cleaning methods. SiC-mirrors are 40 % lighter than high quality CSP glass mirrors, which leads to reduce costs of heliostat, parabolic trough or linear Fresnel structures, including assembly and installation time, lower drive power requirements, and stress during tracking operation. Lab and field tests show the SiC mirrors' reflectance is as high as the high quality CSP glass mirrors. Indeed, after 32 weeks of exposure, the high quality CSP glass mirrors' reflectance has decreased by 19 %, while the SiC mirrors' reflectance has decreased by 20 % when the brushing with water cleaning was applied. Using the brushing without water cleaning, the reflectance has decreased by 13 % and 2 % for the high quality CSP glass mirrors and the SiC-mirrors, respectively.

  8. High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Peng, W. Y.; Sur, R.; Strand, C. L.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2016-07-01

    A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (hbox {NH}_3) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2 f/1 f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of hbox {NH}_3 at 10.39 {\\upmu }hbox {m} and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor's sensitivity to spectral interference from hbox {H}_2hbox {O} and hbox {CO}_2 without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of hbox {NH}_3 in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with hbox {NH}_3, achieving a demonstrated detection limit of 2.8 ± 0.26 ppm hbox {NH}_3 by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.

  9. Transformation techniques for cross-sectional and longitudinal endocrine data: application to salivary cortisol concentrations.

    PubMed

    Miller, Robert; Plessow, Franziska

    2013-06-01

    Endocrine time series often lack normality and homoscedasticity most likely due to the non-linear dynamics of their natural determinants and the immanent characteristics of the biochemical analysis tools, respectively. As a consequence, data transformation (e.g., log-transformation) is frequently applied to enable general linear model-based analyses. However, to date, data transformation techniques substantially vary across studies and the question of which is the optimum power transformation remains to be addressed. The present report aims to provide a common solution for the analysis of endocrine time series by systematically comparing different power transformations with regard to their impact on data normality and homoscedasticity. For this, a variety of power transformations of the Box-Cox family were applied to salivary cortisol data of 309 healthy participants sampled in temporal proximity to a psychosocial stressor (the Trier Social Stress Test). Whereas our analyses show that un- as well as log-transformed data are inferior in terms of meeting normality and homoscedasticity, they also provide optimum transformations for both, cross-sectional cortisol samples reflecting the distributional concentration equilibrium and longitudinal cortisol time series comprising systematically altered hormone distributions that result from simultaneously elicited pulsatile change and continuous elimination processes. Considering these dynamics of endocrine oscillations, data transformation prior to testing GLMs seems mandatory to minimize biased results.

  10. Dibasic Ammonium Phosphate Application Enhances Aromatic Compound Concentration in Bog Bilberry Syrup Wine.

    PubMed

    Wang, Shao-Yang; Li, Yi-Qing; Li, Teng; Yang, Hang-Yu; Ren, Jie; Zhang, Bo-Lin; Zhu, Bao-Qing

    2016-12-29

    A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo-2,3-butanediol, 2-phenylethanol, meso-2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.

  11. Concentrating solar power (CSP) power cycle improvements through application of advanced materials

    NASA Astrophysics Data System (ADS)

    Siefert, John A.; Libby, Cara; Shingledecker, John

    2016-05-01

    Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.

  12. On Using Model Populations to Determine Mechanical Properties of Skeletal Muscle. Application to Concentric Contraction Simulation.

    PubMed

    Sierra, M; Miana-Mena, F J; Calvo, B; Muñoz, M J; Rodríguez, J F; Grasa, J

    2015-10-01

    In the field of computational biomechanics, the experimental evaluation of the material properties is crucial for the development of computational models that closely reproduce real organ systems. When simulations of muscle tissue are concerned, stress/strain relations for both passive and active behavior are required. These experimental relations usually exhibit certain variability. In this study, a set of material parameters involved in a 3D skeletal muscle model are determined by using a system biology approach in which the parameters are randomly varied leading to a population of models. Using a set of experimental results from an animal model, a subset of the entire population of models was selected. This reduced population predicted the mechanical response within the window of experimental observations. Hence, a range of model parameters, instead of a single set of them, was determined. Rat Tibialis Anterior muscle was selected for this study. Muscles ([Formula: see text]) were activated through the sciatic nerve and during contraction the tissue pulled a weight fixed to the distal tendon (concentric contraction). Three different weights 1, 2 and 3 N were used and the time course of muscle stretch was analyzed obtaining values of (mean [Formula: see text] standard deviation): [Formula: see text], [Formula: see text] and [Formula: see text] respectively. A paired two-sided sign rank test showed significant differences between the muscle response for the three weights ([Formula: see text]). This study shows that the Monte Carlo method could be used for determine muscle characteristic parameters considering the variability of the experimental population.

  13. Economic inequalities amongst women with osteoporosis-related fractures: an application of concentration index decomposition

    PubMed Central

    Moradzadeh, Rahmatollah; Nadrian, Haidar; Golboni, Farzaneh; Kazemi-Galougahi, Mohammad Hasan; Moghimi, Nasrin

    2016-01-01

    Background: Considering the renewed emphasis on women’s health, attention to the new aspects of their health, such as equity, among different groups is warranted. The aim of this study was to investigate the economic inequalities among women with osteoporosis-related bone fractures (ORBFs) in Sanandaj, Iran. Methods: In this cross-sectional study, convenient sampling was employed to recruit 220 women with osteoporosis referring to the only rheumatology clinic in Sanandaj (the center of Kurdistan province in Iran) from January to April 2013. Main outcome was the history of fractures due to osteoporosis. Concentration index decomposition (CID) and logistic regression were used for data analysis. Results: In multivariate logistic analysis, the fourth and fifth quintiles of family economic status were found to be significantly associated with ORBFs. Risk difference and confidence interval (CI) for the relation between the history of bone fracture and family economic status was -0.115 (95% CI: -0.209, -0.021; P = 0.016), which reflected the higher prevalence of bone fractures among women with the lower economic levels. About 25% out of all ORBFs were happened among 20% of the women with low economic status. Conclusion: It was concluded that economic status plays an important role in happening ORBFs among underprivileged women. A reorientation on women’s health care services in Iran with a focus on underprivileged postmenopausal women seems to be necessary. There is a need for inter-sectoral coalition between the policymakers of the health system and those of other organizations to reduce the economic inequalities among osteoporotic women. PMID:27766236

  14. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  15. Reconstruction mechanisms of tantalum oxide coatings with low concentrations of silver for high temperature tribological applications

    SciTech Connect

    Stone, D. S.; Bischof, M.; Aouadi, S. M.; Gao, H.; Martini, A.; Chantharangsi, C.; Paksunchai, C.

    2014-11-10

    Silver tantalate (AgTaO{sub 3}) coatings have been found to exhibit outstanding tribological properties at elevated temperatures. To understand the mechanisms involved in the tribological behavior of the Ag-Ta-O system, tantalum oxide coatings with a small content of silver were produced to investigate the metastable nature of this self-lubricating material. The coatings were produced by unbalanced magnetron sputtering, ball-on-disk wear tested at 750 °C, and subsequently characterized by X-ray diffraction, Scanning Auger Nanoprobe, cross-sectional Scanning Electron Microscopy, and Transmission Electron Microscopy. Complementary molecular dynamic simulations were carried out to investigate changes in the chemical and structural properties at the interface due to sliding for films with varying silver content. Both the experimental characterization and the theoretical modeling showed that silver content affects friction and wear, through the role of silver in film reconstruction during sliding. The results suggest that the relative amount of silver may be used to tune film performance for a given application.

  16. Reconstruction mechanisms of tantalum oxide coatings with low concentrations of silver for high temperature tribological applications

    PubMed Central

    Stone, D. S.; Gao, H.; Chantharangsi, C.; Paksunchai, C.; Bischof, M.; Martini, A.; Aouadi, S. M.

    2014-01-01

    Silver tantalate (AgTaO3) coatings have been found to exhibit outstanding tribological properties at elevated temperatures. To understand the mechanisms involved in the tribological behavior of the Ag-Ta-O system, tantalum oxide coatings with a small content of silver were produced to investigate the metastable nature of this self-lubricating material. The coatings were produced by unbalanced magnetron sputtering, ball-on-disk wear tested at 750 °C, and subsequently characterized by X-ray diffraction, Scanning Auger Nanoprobe, cross-sectional Scanning Electron Microscopy, and Transmission Electron Microscopy. Complementary molecular dynamic simulations were carried out to investigate changes in the chemical and structural properties at the interface due to sliding for films with varying silver content. Both the experimental characterization and the theoretical modeling showed that silver content affects friction and wear, through the role of silver in film reconstruction during sliding. The results suggest that the relative amount of silver may be used to tune film performance for a given application. PMID:25425745

  17. Acute application of antioxidants protects against hyperoxia-induced reduction of plasma nitrite concentration.

    PubMed

    Vucinovic, Zoran; Duplancic, Darko; Seselja-Perisin, Ana; Kukoc-Modun, Lea; Gunjaca, Grgo; Radman, Maja; Vukovic, Jonatan; Tsikas, Dimitrios; Poljak, Kolja; Modun, Darko

    2015-01-01

    We investigated the effects of acute intake of antioxidants on hyperoxia-induced oxidative stress, reduction of plasma nitrite and change in arterial stiffness. Twelve healthy males randomly consumed either placebo or an oral antioxidant cocktail (vitamin C, 1000 mg; vitamin E, 600 IU; alpha-lipoic acid, 600 mg). Every therapy was consumed once, a week apart, in a cross-over design, 30 min before the experiment. The volunteers breathed 100% normobaric oxygen between 30th and 60th min of 1-h study protocol. Plasma levels of nitrite, lipid peroxides (LOOH) and vitamin C, arterial stiffness (indicated by augmentation index, AIx) and arterial oxygen (Ptc O2 ) pressure were measured before and after hyperoxia. Exposure to oxygen caused a similar increase of Ptc O2 in both placebo and antioxidants groups, confirming comparable exposure to hyperoxia (438 ± 100 versus 455 ± 83 mm Hg). Vitamin C was increased in the antioxidants group confirming successful application of antioxidants (69 ± 14 versus 57 ± 15 μm). Hyperoxia resulted in increased AIx and LOOH and decreased nitrite in placebo (-32 ± 11 versus -47 ± 13%, 72 ± 7 versus 62 ± 6 μm H2 O2 and 758 ± 184 versus 920 ± 191 nm, respectively), but not in the antioxidants group (-42 ± 13 versus -50 ± 13%, 64 ± 9 versus 61 ± 8 μm H2 O2 and 847 ± 156 versus 936 ± 201 nm, respectively). The acute intake of selected antioxidants was effective in preserving bioavailabity of ˙NO and vascular function, against hyperoxia-induced oxidative stress.

  18. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    NASA Astrophysics Data System (ADS)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  19. Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids.

    PubMed

    Mohanan, Sharika; Srivastava, Atul

    2014-04-10

    The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent

  20. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects.

    PubMed

    Bannwarth, M A; Grovermann, C; Schreinemachers, P; Ingwersen, J; Lamers, M; Berger, T; Streck, T

    2016-01-01

    Pesticide application rates are high and increasing in upland agricultural systems in Thailand producing vegetables, fruits and ornamental crops, leading to the pollution of stream water with pesticide residues. The objective of this study was to determine the maximum per hectare application rates of two widely used pesticides that would achieve non-hazardous pesticide concentrations in the stream water and to evaluate how farm household incomes would be affected if farmers complied with these restricted application rates. For this purpose we perform an integrated modeling approach of a hydrological solute transport model (the Soil and Water Assessment Tool, SWAT) and an agent-based farm decision model (Mathematical Programming-based Multi-Agent Systems, MPMAS). SWAT was used to simulate the pesticide fate and behavior. The model was calibrated to a 77 km(2) watershed in northern Thailand. The results show that to stay under a pre-defined eco-toxicological threshold, the current average application of chlorothalonil (0.80 kg/ha) and cypermethrin (0.53 kg/ha) would have to be reduced by 80% and 99%, respectively. The income effect of such reductions was simulated using MPMAS. The results suggest that if farm households complied with the application thresholds then their income would reduce by 17.3% in the case of chlorothalonil and by 38.3% in the case of cypermethrin. Less drastic income effects can be expected if methods of integrated pest management were more widely available. The novelty of this study is to combine two models from distinctive disciplines to evaluate pesticide reduction scenarios based on real-world data from a single study site.

  1. Application of MRI phase-difference mapping to assessment of vascular concentrations of BMS agent in mice.

    PubMed

    Ribot, Emeline Julie; Thiaudière, Eric; Roulland, Richard; Brugières, Pierre; Rahmouni, Alain; Voisin, Pierre; Franconi, Jean-Michel; Miraux, Sylvain

    2008-01-01

    Direct quantitation of contrast agent concentration can be performed using dynamic susceptibility contrast MRI. This method is based on phase imaging and administration of paramagnetic agents such as gadolinium-chelates. This technique has only been applied on humans or primates. However, numerous research models have been developed on small animals like mice. For this reason, the aim of this work was the application of this MRI technique, allowing the direct quantitation of the contrast agent concentrations in vivo, in the mouse vascular system at high field. For this purpose, Dy-DOTA has been preferred to Gd-DOTA due to a lower T(2)* effect. Dy-DOTA shifts in Larmor frequency were measured by phase difference mapping, using fast gradient-echo imaging at short echo times. Such an acquisition sequence allowed the limitation of susceptibility artifacts at high magnetic fields and phase wrapping. As demonstrated in a phantom oriented parallel to the static magnetic field, it is possible to measure contrast agent concentrations between 0 and 10 mm with an uncertainty of about 100 microm. Finally, the method was applied on living mice at 4.7 T. After the bolus injection, the evolution of contrast agent concentrations was assessed in brain blood vessels parallel to B(0). Long-term disappearance of contrast agent was monitored at high spatial resolution every 15 s. Alternatively, lower resolved images at 0.72 s time-resolution allowed preliminary assessment of arterial input functions. The feasibility of quantitative bolus-tracking in small rodents opens the way for comprehensive descriptions of flow and over time-dependent biological processes, especially in pathological murine models.

  2. Variation in concentrations of the fungicides tebuconazole and dichlofluanid following successive applications to greenhouse-grown lettuces.

    PubMed

    Rial-Otero, Raquel; Arias-Estévez, Manuel; López-Periago, Eugenio; Cancho-Grande, Beatriz; Simal-Gándara, Jesús

    2005-06-01

    Residual levels and degradation rates of tebuconazole and dichlofluanid in lettuce plants grown in a greenhouse under agricultural conditions typical of northwestern Spain were studied. Lettuce plants were sprayed four times with a homogeneous 0.2% aqueous solution of Folicur Combi (wettable powder containing 40% dichlofluanid and 10% tebuconazole) at a rate of 2500 g/ha. Samples were collected 1, 5, and 9 days after the first two applications and at times ranging from 1 to 27 days after the last two applications. All samples were stored in a refrigerator at 4 degrees C. Fungicide levels were determined by solid-liquid extraction (SLE) followed by gas chromatography and mass spectrometry detection (GC-MSD). Recovery was good for tebuconazole (98%) but low for dichlofluanid (29%); precision was good (<10% for both analytes), and quantification limits were low (<1.5 mg/kg). Seven days after the last application, dichlofluanid levels were below the maximum allowed limit established in Spain (10 mg/kg), but tebuconazole levels were above the corresponding limit (5 mg/kg). Tebuconazole concentration dynamics was accurately fitted by zeroth- or combined first- and zeroth-order models (depending on variety), but modeling of the behavior of dichlofluanid was less satisfactory, probably due to its instability.

  3. Evaluation of area source models to predict near ground level concentrations due to emissions released during agricultural applications.

    PubMed

    Nimmatoori, Praneeth; Kumar, Ashok

    2013-02-15

    The modeling of emissions to predict concentrations at downwind distances close to the area sources such as agricultural is of great interest for practical applications. In this study, three area source models used for agricultural sources - the Shear, the Parker, and the Smith models - are compared using two field data sets. Statistical performance measures are used to evaluate and compare the performance of the models. The evaluation results showed that the Shear model performed better than the Parker and the Smith models for all the near downwind distances under unstable conditions (B and C). The analysis of model algorithms indicate that the relatively better performance of the Shear model is due to the incorporation of a variation of wind speed and vertical eddy diffusivity (atmospheric turbulence) with height above the ground.

  4. Thorium concentrations in the lunar surface. II - Deconvolution modeling and its application to the regions of Aristarchus and Mare Smythii

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Etchegaray-Ramirez, M. I.; Metzger, A. E.

    1978-01-01

    The broad angular response which characterized the Apollo gamma ray spectrometer resulted in a loss of spatial resolution and some of the contrast in determining surface concentrations within lunar regions small compared to the field of view. A deconvolution technique has been developed which removes much of this instrumental effect, thereby improving both spatial resolution and accuracy at the cost of a loss in precision. Geometric models of regional thorium distribution are convoluted through the response function of the instrument to yield a predicted distribution which is compared with the observed data field for quality of fit. Application to areas which include Aristarchus and Mare Smythii confirm some geological relationships and fail to support others.

  5. Application of Mathematical Models in Combination with Monte Carlo Simulation for Prediction of Isoflurane Concentration in an Operation Room Theater

    PubMed Central

    ZARE SAKHVIDI, Mohammad Javad; BARKHORDARI, Abolfazl; SALEHI, Maryam; BEHDAD, Shekoofeh; FALLAHZADEH, Hossein

    2013-01-01

    Applicability of two mathematical models in inhalation exposure prediction (well mixed room and near field-far field model) were validated against standard sampling method in one operation room for isoflurane. Ninety six air samples were collected from near and far field of the room and quantified by gas chromatography-flame ionization detector. Isoflurane concentration was also predicted by the models. Monte Carlo simulation was used to incorporate the role of parameters variability. The models relatively gave more conservative results than the measurements. There was no significant difference between the models and direct measurements results. There was no difference between the concentration prediction of well mixed room model and near field far field model. It suggests that the dispersion regime in room was close to well mixed situation. Direct sampling showed that the exposure in the same room for same type of operation could be up to 17 times variable which can be incorporated by Monte Carlo simulation. Mathematical models are valuable option for prediction of exposure in operation rooms. Our results also suggest that incorporating the role of parameters variability by conducting Monte Carlo simulation can enhance the strength of prediction in occupational hygiene decision making. PMID:23912206

  6. Screening Carbohydrate Libraries for Protein Interactions Using the Direct ESI-MS Assay. Applications to Libraries of Unknown Concentration

    NASA Astrophysics Data System (ADS)

    Kitova, Elena N.; El-Hawiet, Amr; Klassen, John S.

    2014-08-01

    A semiquantitative electrospray ionization mass spectrometry (ESI-MS) binding assay suitable for analyzing mixtures of oligosaccharides, at unknown concentrations, for interactions with target proteins is described. The assay relies on the differences in the ratio of the relative abundances of the ligand-bound and free protein ions measured by ESI-MS at two or more initial protein concentrations to distinguish low affinity (≤103 M-1) ligands from moderate and high affinity (>105 M-1) ligands present in the library and to rank their affinities. Control experiments were performed on solutions of a single chain antibody and a mixture of synthetic oligosaccharides, with known affinities, in the absence and presence of a 40-component carbohydrate library to demonstrate the implementation and reliability of the assay. The application of the assay for screening natural libraries of carbohydrates against proteins is also demonstrated using mixtures of human milk oligosaccharides, isolated from breast milk, and fragments of a bacterial toxin and human galectin 3.

  7. Effect of thrombin concentration on the adhesion strength and clinical application of fibrin glue-soaked sponge.

    PubMed

    Campos, Francia; Fujio, Shingo; Sugata, Sei; Tokimura, Hiroshi; Hanaya, Ryosuke; Bohara, Manoj; Arita, Kazunori

    2013-01-01

    Fibrin glue-soaked gelatin sponge (FGGS) has been used for tissue sealing in neurosurgical practice, but too rapid clotting of fibrin glue occasionally prevents good fixation of FGGS. Dilution of thrombin may provide adequate manipulation time between mixing fibrinogen and thrombin on gelatin sponge and application into the tissue defects. The present study characterized the effect of thrombin dilution on the adhesion strength of FGGS and retrospectively assessed the clinical usage of the dilution for filling dead space or sealing arachnoid defect in 255 cases who underwent transsphenoidal surgery for the last 66 months. FGGS was prepared using three different concentrations of thrombin: 250 (standard), 50 (1:5 dilution), and 25 (1:10 dilution) units/ml, and incubated for three different periods (5, 20, and 60 seconds). FGGSs were applied over two adjacently positioned porcine skins placed on two metallic plates. The adhesion strength was evaluated by measuring maximum tensile strength during pulling out the sliding plate at a constant rate of displacement. The maximum adhesion strength was greater for FGGS with 1:10 diluted thrombin solution than for FGGS prepared with higher concentrations (p < 0.05). Adhesion strength did not decay for 20 seconds after the mixture. Only four of 255 cases (1.6%) required second reconstruction of sella floor due to the cerebrospinal fluid leakage. FGGS prepared with diluted thrombin solution can provide adequate adhesion strength for clinical use.

  8. Physical and mechanical properties in biodegradable films of whey protein concentrate-pullulan by application of beeswax.

    PubMed

    Khanzadi, Mehrdad; Jafari, Seid Mahdi; Mirzaei, Habibollah; Chegini, Faramarz Khodaian; Maghsoudlou, Yayha; Dehnad, Danial

    2015-03-15

    Different ratios of whey protein concentrate (WPC):pullulan (PUL) (70:30, 50:50, 30:70%w/w) and various rates of beeswax (BW) (0, 10, 20, and 30%w/wglycerol) were applied to prepare biodegradable WPC-PUL films containing glycerol as a plasticizer, for the first time. Thickness, moisture content, water solubility, water vapour permeability, colour, and mechanical properties of prepared films were measured. Higher ratios of WPC:PUL led to more desirable physical and mechanical properties; in other words, lower rates of thickness, moisture content, water solubility and water vapour permeability, and higher elongations were achieved. Application of BW (especially in higher contents) could successfully improve colour indices, diminish water solubility (nearly 12%) and water vapour permeability (approximately 3×10(-11)gm(-1)s(-1)Pa(-1)), and increase tensile strength (by about 7MPa) of WPC-PUL blend films. Our edible films enjoyed great whiteness and ignorable yellowness indices, making it a suitable alternative for application in food products. Overall, WPC70-PUL30 containing 30% BW resulted in the best performance of physical and mechanical aspects as an optimum film.

  9. Structure of artificial enamel lesions after topical applications of high-concentration sodium fluoride solution in vitro.

    PubMed

    Wen, H B; Cui, F Z; Chen, X Q; Wang, Q; Li, H D

    1995-01-01

    A three-layer structure, including a columnar layer (CL), a buffer layer, and unaffected intact enamel, was successively formed from the outer to the inner part of artificial enamel lesions (AEL) by topical applications of a high-concentration acidic sodium fluoride solution (10,000 ppm, pH 5.6) in vitro. The AEL was produced in bovine enamel that was decalcified for 5 days in a lactic acid gel system. The morphological observations by using scanning electron microscopy showed that the CL was made of columnar deposits of small globules about 0.5 microns in diameter. It was observed for the first time that small globules filled the demineralized interprismatic regions in the buffer layer. The unaffected intact enamel was protected from further demineralization under the acidic condition. Structure and composition of the CL were investigated by using X-ray diffraction and X-ray photoelectron spectroscopy. In the CL the atomic ratio was Ca:P = 12.6 and Ca:F = 0.75, and the small globules were mainly a mixture of polycrystalline calcium fluoride and hydroxyapatite. For comparison, the sound enamel and the AEL attained by applications of 0 and 100 ppm acidic sodium fluoride solutions (pH 5.6) were also investigated. The formation mechanism of the three-layer structure and the related cariostatic effects are discussed.

  10. Optical fiber-coupled ocular spectrometer for measurement of drug concentration in the anterior eye--applications in pharmaceuticals research.

    PubMed

    Miller, Joe; Wilson, William S; Blue, Robert; Wilson, Clive G; Uttamchandani, Deepak

    2010-12-01

    This paper describes in detail a novel optoelectronic system designed to measure drug absorption in the anterior segment of the eye following topical application of drug formulations. This minimally invasive measurement technique offers both a method for determining drug concentration in human eyes, and demonstrates an alternative to current testing processes in model animals, which require paracentesis of the anterior chamber of the eye. The optoelectronic technique can be used with formulations, which possess appropriate spectral characteristics, namely unique absorption or fluorescence spectra. Preliminary experiments using our measurement system have been performed in rabbit and man, where we have been successful in achieving the direct measurement of topically applied brimonidine, an alpha-2 agonist used in the treatment of glaucoma. This demonstrates the feasibility of performing real-time, in vivo testing of ophthalmic drug formulations in the eye of human test subjects. We further demonstrate the novel application of the optoelectronic system for detection of topically applied UV-absorbing compounds in rabbit cadaver eyes, with a view to evaluating potential ocular sunscreen formulations. In summary, this method can be applied for the rapid comparison of the penetration of different drug formulations into the anterior eye at greatly reduced cost and time.

  11. Inlay osteotome sinus floor elevation with concentrated growth factor application and simultaneous short implant placement in severely atrophic maxilla

    NASA Astrophysics Data System (ADS)

    Chen, Yonghui; Cai, Zhiyu; Zheng, Dingguo; Lin, Pei; Cai, Yahua; Hong, Shuxin; Lai, Yiwei; Wu, Dong

    2016-06-01

    Sinus floor elevation with simultaneous implant placement in severely atrophic maxilla is challenging. The aim of this retrospective study was to evaluate the short-term performance of modified osteotome sinus floor elevation (OSFE) with concentrated growth factor (CGF) application and concurrent placement of a short implant in cases with residual bone height (RBH) of 2–4 mm. Twenty-five short implants were installed in 16 patients with mean RBH of 3.23 mm using modified OSFE with CGFs from January 2012 to April 2014. Postoperatively, the implants were clinically evaluated, and vertical bone gain (VBG) was measured using cone beam computed tomography. The mean duration of follow-up was 19.88 months (12–32 months). All the implants were stable with an overall survival rate of 100%. The mean VBG immediately after surgery was 9.21 mm. Six months later, significant reduction of alveolar bone height (2.90 ± 0.22 mm) was found (P < 0.05). During the second 6-month period, further alveolar bone resorption (0.14 ± 0.11 mm) was noted but without significance (P > 0.05). Within the limits of this study, modified OSFE with CGF application and simultaneous short implant placement could yield predictable clinical results for severely atrophic maxilla with RBH of 2–4 mm.

  12. Inlay osteotome sinus floor elevation with concentrated growth factor application and simultaneous short implant placement in severely atrophic maxilla

    PubMed Central

    Chen, Yonghui; Cai, Zhiyu; Zheng, Dingguo; Lin, Pei; Cai, Yahua; Hong, Shuxin; Lai, Yiwei; Wu, Dong

    2016-01-01

    Sinus floor elevation with simultaneous implant placement in severely atrophic maxilla is challenging. The aim of this retrospective study was to evaluate the short-term performance of modified osteotome sinus floor elevation (OSFE) with concentrated growth factor (CGF) application and concurrent placement of a short implant in cases with residual bone height (RBH) of 2–4 mm. Twenty-five short implants were installed in 16 patients with mean RBH of 3.23 mm using modified OSFE with CGFs from January 2012 to April 2014. Postoperatively, the implants were clinically evaluated, and vertical bone gain (VBG) was measured using cone beam computed tomography. The mean duration of follow-up was 19.88 months (12–32 months). All the implants were stable with an overall survival rate of 100%. The mean VBG immediately after surgery was 9.21 mm. Six months later, significant reduction of alveolar bone height (2.90 ± 0.22 mm) was found (P < 0.05). During the second 6-month period, further alveolar bone resorption (0.14 ± 0.11 mm) was noted but without significance (P > 0.05). Within the limits of this study, modified OSFE with CGF application and simultaneous short implant placement could yield predictable clinical results for severely atrophic maxilla with RBH of 2–4 mm. PMID:27250556

  13. 40 CFR Table I-10 to Subpart I of... - Maximum Field Detection Limits Applicable to Fluorinated GHG Concentration Measurements for Stack...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Maximum Field Detection Limits Applicable to Fluorinated GHG Concentration Measurements for Stack Systems I Table I-10 to Subpart I of Part... Subpart I of Part 98—Maximum Field Detection Limits Applicable to Fluorinated GHG...

  14. Effect of soil and foliar application of zinc on grain zinc and cadmium concentration of wheat genotypes differing in Zn-efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-year field experiment was carried out to investigate the effectiveness of soil and foliar applications of zinc sulfate and soil application of waste rubber ash to increase Zn and decrease cadmium (Cd) concentration in grain of 10 wheat genotypes with different Zn-efficiency. Foliar spray of zi...

  15. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application.

    PubMed

    Moretti, Sarah Mello Leite; Bertoncini, Edna Ivani; Vitti, André César; Alleoni, Luís Reynaldo Ferracciú; Abreu-Junior, Cassio Hamilton

    2016-03-01

    Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.

  16. A long-wavelength quantum dot-concentric FRET configuration: characterization and application in a multiplexed hybridization assay.

    PubMed

    Li, Jia Jun; Algar, W Russ

    2016-06-21

    Quantum dot-based concentric Förster resonance energy transfer (cFRET) is a promising modality for the development of multifunctional fluorescent probes for bioanalysis and bioimaging. To date, the scope of cFRET has been largely limited to a prototypical configuration with a particular combination of quantum dot (QD) and fluorescent dyes linked through peptides. Expansion of the scope of cFRET is critical for its further development. Here, we expand the scope of cFRET in two capacities. First, we design and characterize a new long-wavelength cFRET configuration that combines red- and deep-red fluorescent dyes, Alexa Fluor 633 and Alexa Fluor 680, with an orange-emitting QD. Sequential and competitive energy transfer pathways are characterized through a rate analysis, where the balance of these rates more strongly favours competitive energy transfer in the new long-wavelength configuration versus sequential energy transfer in the previous prototypical configuration. Although the new cFRET configuration is more susceptible to photobleaching, its superior brightness and longer-wavelength excitation and emission provide an order of magnitude higher signal-to-background ratios in biological matrices (e.g., serum, blood) than the previous prototypical configuration. Second, we demonstrate that an oligonucleotide-linked, long-wavelength cFRET configuration has energy transfer similar to an analogous peptide-linked configuration, where the oligonucleotide-linked cFRET configuration can be combined with toehold-mediated strand displacement for the multiplexed detection of unlabeled nucleic acid targets as a single vector. Overall, this work establishes the general applicability of cFRET and introduces new strategies for its bioanalytical application.

  17. Nitrification and N2O production processes in soil incubations after ammonium fertilizer application at high concentrations

    NASA Astrophysics Data System (ADS)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Flessa, Heinz

    2016-04-01

    High concentrations of ammonium as they occur, e.g., after point-injection of ammonium fertilizer solution according to the CULTAN fertilization technique may retard nitrification. Potential advantages in comparison to conventional fertilization include a higher N efficiency of crops, reduced nitrate leaching, and lower N2O and N2 emissions. Dynamics of nitrification due to plant uptake and dilution processes, leading to decreasing ammonium concentrations in fertilizer depots, has only poorly been studied before. Furthermore, there is little information about the relative contribution of different N2O production processes under these conditions. To elucidate the process dynamics a laboratory incubation study was conducted. After fertilization with ammonium sulfate at 5 levels (from 0 to 5000 mg NH4+-N kg-1; 20mg NO3--N kg-1 each), sandy loam soil was incubated in dynamic soil microcosms for 21 days. N2O, CH4 and CO2 fluxes as well as isotope signatures of N2O and, at three dates, NO3- and NH4+ were measured. To identify N2O production processes, acetylene inhibition (0.01 vol.%), 15N tracer approaches, and isotopomer data (15N site preference and δ18O) were used. N2O emissions were highest at 450mg NH4+-N kg-1 and declined with further increasing concentrations. At 5000 mg NH4+-N kg-1 nitrification was completely inhibited. However, approximately 90% of N2O production was inhibited by acetylene application, and there was no change in the relative contribution of nitrification and denitrification to N2O production with N level. Applying the non-equilibrium technique to our 15N tracer data revealed heterogeneous distribution of denitrification in soil, with at least two distinct NO3- pools, and spatial separation of NO3- formation and consumption. In comparison with the acetylene inhibition and 15N tracer approaches the results of the isotopomer approach were reasonable and indicated substantial contribution of nitrifier-denitrification (10-40%) to total N2O

  18. Concentrations of biogenic amines in fundal layers in chickens with normal visual experience, deprivation, and after reserpine application.

    PubMed

    Ohngemach, S; Hagel, G; Schaeffel, F

    1997-01-01

    Previous experiments in chickens have shown that dopamine released from the retina may be one of the messengers controlling the growth of the underlying sclera. It is also possible, however, that the apparent relationship between dopamine and myopia is secondary and artifactual. We have done experiments to assess this hypothesis. Using High Pressure Liquid Chromatography with electrochemical detection (HPLC-ED), we have asked whether changes in dopamine metabolism are restricted to the local retinal regions in which myopia was locally induced. Furthermore, we have measured the concentrations of biogenic amines separately in different fundal layers (vitreous, retina, choroid, and sclera) to find out how changes induced by "deprivation" (= removal of high spatial frequencies from the retinal image by translucent eye occluders which produce "deprivation myopia") are transmitted through these layers. Finally, we have repeated the deprivation experiments after intravitreal application of the irreversible dopamine re-uptake blocker reserpine to see how suppression of dopaminergic transmission affects these changes. We found that (1) Alterations in retinal dopamine metabolism were indeed restricted to the retinal areas in which myopia was induced. (2) The retina was the major source of dopamine release with a steep gradient both to the vitreal and choroidal side. Vitreal content was about one-tenth, choroidal content about one-third, and scleral content about one-twentieth of that of the retina. (3) There was a drop by about 40% in vitreal dopamine, DOPAC (3,4-dihydroxyphenylacetic acid) and HVA (homovanilic acid) concentrations following deprivation which occurred already at a time where little changes could yet be seen in their total retinal contents. (4) Choroidal and scleral dopamine levels were not affected by deprivation, indicating that other messengers must relay the information to the sclera. (5) A single intravitreal injection of reserpine lowered dopamine and

  19. Application of ultradisperse magnetic adsorbents for removal of small concentrations of pollutants from large volumes of water

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Kuznetsov, Oleg

    2016-07-01

    with the adsorbed toluidine blue were removed from the solution by magnetic separation. The sorbent was proven to have high sorption capacity and rapid adsorption kinetics for toluidine blue. These experiments demonstrated the validity of the method, where a small concentration of a pollutant was successfully collected from a large volume of water. By varying the ratio of the sorbent/pollutant, it is possible to optimize the sorbent use and the time required to adsorb all pollutant present in the treated water. A variety of magnetically controlled sorbents can be designed and used in this method, from broad-spectrum adsorbing sorbents to sorbents specifically targeting a particular pollutant. These sorbents can be used either individually or as mixtures of sorbents with different properties, depending on the desired purification goals. Simplicity and scalability of this method allow a variety of ecological applications, as well as industrial ones, from process water purification to wastewater treatment.

  20. Hyperspectral imaging system for imaging O2Hb and HHb concentration changes in tissue for various clinical applications

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; de Roode, Rowland; Verdaasdonk, Rudolf M.; Noordmans, Herke J.

    2011-03-01

    To observe local variations in temperature, oxygenation and blood perfusion over time, four imaging systems were developed and compared: Two systems consisting of white broadband light source and a CCD camera in combination with a Liquid Crystal Tunable Filter, one in the visual domain, 420-730 nm, and one in the infrared domain, 650-1100 nm. Thirdly, a CCD camera in combination with a software controlled hyper-spectral light source consisting of a panel with 600 LEDs divided in 17 spectral groups in the range from 370 to 880 nm so that specific spectral distributions can be generated at high repetition rate (>1000 Hz) and, fourthly a standard IR thermal camera for comparison. From the acquired images at the selected wavelengths chromophores concentration images of oxy and deoxy hemoglobin can be calculated applying different algorithms. These imaging techniques were applied and compared for various clinical applications: Tumor demarcation, early inflammation, effectiveness of peripheral nerve block anesthesia, and localization of epileptic seizure. The relative changes in oxygenation and temperature could be clearly observed in good correlation with the physiological condition. The algorithms and data collection/processing can be optimized to enable a real-time diagnostic technique.

  1. Characterization of holmium fibers with various concentrations for fiber laser applications around 2.1 μm

    NASA Astrophysics Data System (ADS)

    Aubrecht, Jan; Peterka, Pavel; Honzatko, Pavel; Baravets, Yauhen; Jelinek, Michal; Kubecek, Vaclav; Pawliszewska, Maria; Sotor, Jaroslaw; Sobon, Grzegorz; Abramski, Krzysztof M.; Kasik, Ivan

    2016-04-01

    In this work, we present experimental results of characterization of the developed holmium-doped silica-based optical fibers with holmium ions concentrations in the range from 1000 to 10000 ppm. The fibers were fabricated by the modified chemical vapor deposition and solution doping method. They were characterized in terms of their spectral attenuation, refractive index profile, and especially performance in fiber laser. Simultaneously, two different fiber laser setups were tested. In the first one, holmium-doped fiber in Fabry-Perot configuration was pumping by in house developed thulium-doped fiber laser in ring arrangement. In the second one, bulk-optic pump-coupling configuration, consisted of a commercially available thulium fiber laser emitting at 1940 nm and system of lenses and mirrors was used. We have focused on comparison of laser output powers, slope efficiencies, and laser thresholds for individual holmiumdoped fiber in these different laser arrangements. Finally, the application of the developed fiber in subpicosecond fiber laser with graphene-based saturable absorber for mode-locking operation was investigated.

  2. Application of neural network and MODIS 250 m imagery for estimating suspended sediments concentration in Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Zhou, Bin; Xu, Jianming; Song, Lishong; Wang, Xin

    2009-01-01

    Suspended sediments concentration (SSC) in surface water derived from bottom sediment resuspension or discharge of sediment-laden rivers is an important indication of coastal water quality and changes rapidly in high-energy coastal area. Since artificial neural networks (ANN) had been proven successful in modeling a variety of geophysical transfer functions, an ANN model to simulate the relationship between surface water SSC and satellite-received radiances was employed. In situ SSC measurements from the Hangzhou Bay and the Moderate-resolution Imaging Spectroradiometer (MODIS) 250 m daily products were adopted in this study. Significant correlations were observed between in situ measurements and band 1-2 reflectance values of MODIS images, respectively. Results indicated that application of ANN model with one hidden layer appeared to yield superior simulation performance ( r 2 = 0.98; n = 25) compared with regression analysis method. The RMSE for the ANN model was less than 10%, whereas the RMSE for the regression analysis was more than 25%. Results also showed that different tidal situations affect the model simulation results to some extent. The SSC of surface water in Hangzhou Bay is high and changes rapidly due to tidal flood and ebb during a tidal cycle. The combined utilization of Terra and Aqua MODIS data can capture the tidal cycle induced dynamic of surface water SSC. This study demonstrated that MODIS 250 m daily products and ANN model are useful for monitoring surface SSC dynamic within high-energy coastal water environments.

  3. Data Concentrator

    NASA Technical Reports Server (NTRS)

    Willett, Mike

    2015-01-01

    Orbital Research, Inc., developed, built, and tested three high-temperature components for use in the design of a data concentrator module in distributed turbine engine control. The concentrator receives analog and digital signals related to turbine engine control and communicates with a full authority digital engine control (FADEC) or high-level command processor. This data concentrator follows the Distributed Engine Controls Working Group (DECWG) roadmap for turbine engine distributed controls communication development that operates at temperatures at least up to 225 C. In Phase I, Orbital Research developed detailed specifications for each component needed for the system and defined the total system specifications. This entailed a combination of system design, compiling existing component specifications, laboratory testing, and simulation. The results showed the feasibility of the data concentrator. Phase II of this project focused on three key objectives. The first objective was to update the data concentrator design modifications from DECWG and prime contractors. Secondly, the project defined requirements for the three new high-temperature, application-specific integrated circuits (ASICs): one-time programmable (OTP), transient voltage suppression (TVS), and 3.3V. Finally, the project validated each design by testing over temperature and under load.

  4. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... materials or other materials commingled with manure or set aside for disposal. (6) Medium concentrated..., treatment, or disposal of mortalities. (9) Small concentrated animal feeding operation (“Small CAFO”). An... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Concentrated animal feeding...

  5. 40 CFR 122.23 - Concentrated animal feeding operations (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials or other materials commingled with manure or set aside for disposal. (6) Medium concentrated..., treatment, or disposal of mortalities. (9) Small concentrated animal feeding operation (“Small CAFO”). An... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Concentrated animal feeding...

  6. Does application of the Rosiwal Principle to lunar soils require that concentrations of solar-wind-implanted species be grain-size independent

    NASA Technical Reports Server (NTRS)

    Becker, R. H.

    1977-01-01

    A reconsideration of the application of the Rosiwal Principle to lunar soils indicates a flaw in arguments put forth previously by Criswell (1975). Specifically, by introducing a boundary condition which must exist at the lunar surface, it is shown that concentrations of solar-wind-implanted species showing a dependence on grain size may be able to develop in soils at concentration levels below those required for saturation of grain surfaces. As a result, observed grain-size-dependent concentrations of solar-wind species in lunar soils do not necessarily require the exposure time scales or solar-wind fluxes deduced from the arguments of Criswell.

  7. Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China.

    PubMed

    Fang, Yong; Wang, Lin; Xin, Zhihong; Zhao, Liyan; An, Xinxin; Hu, Qiuhui

    2008-03-26

    Zn, Se, and Fe levels in 65 Chinese rice samples were investigated, and the results indicated that these micronutrients contents of rice products from different location varied considerably. The mean contents of Zn, Se and Fe in these rice samples were 21.5+/-1.8, 0.020+/-0.012, and 12.4+/-4.3 mg kg(-1), respectively, which were too low to meet the micronutrient demands for the population feeding on the rice as staple. A field orthogonal experiment L9 (3(4)) was conducted on rice cultivar Wuyunjing 7, to evaluate the effect of Zn, Se, and Fe foliar fertilization on the concentration of these micronutrients, yield, and protein and ash content of rice grain. The results indicated that Zn and Se were the main variables influencing the Zn, Se, and Fe content of rice, and the optimal combination of fertilization for enhancing these micronutrients was 0.90 kg ha(-1) Zn, 0.015 kg ha(-1) Se, and 0.90 kg ha(-1) Fe. Under the optimal application condition, Zn, Se, and Fe content of rice could be significantly increased by 36.7%, 194.1%, and 37.1%, respectively, compared with the control, without affecting grain yield and protein and ash content of rice products. Moreover, in the confirmation experiment on rice cultivar Ninggeng 1, the optimal fertilization could increase the Zn, Se, and Fe content of rice up to 17.4, 0.123, and 14.2 mg kg(-1), respectively.

  8. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.

    PubMed

    Zheng, Bo; Tice, Joshua D; Ismagilov, Rustem F

    2004-09-01

    For screening the conditions for a reaction by using droplets (or plugs) as microreactors, the composition of the droplets must be indexed. Indexing here refers to measuring the concentration of a solute by addition of a marker, either internal or external. Indexing may be performed by forming droplet pairs, where in each pair the first droplet is used to conduct the reaction, and the second droplet is used to index the composition of the first droplet. This paper characterizes a method for creating droplet pairs by generating alternating droplets, of two sets of aqueous solutions in a flow of immiscible carrier fluid within PDMS and glass microfluidic channels. The paper also demonstrates that the technique can be used to index the composition of the droplets, and this application is illustrated by screening conditions of protein crystallization. The fluid properties required to form the steady flow of the alternating droplets in a microchannel were characterized as a function of the capillary number Ca and water fraction. Four regimes were observed. At the lowest values of Ca, the droplets of the two streams coalesced; at intermediate values of Ca the alternating droplets formed reliably. At even higher values of Ca, shear forces dominated and caused formation of droplets that were smaller than the cross-sectional dimension of the channel; at the highest values of Ca, coflowing laminar streams of the two immiscible fluids formed. In addition to screening of protein crystallization conditions, understanding of the fluid flow in this system may extend this indexing approach to other chemical and biological assays performed on a microfluidic chip.

  9. Randomized, controlled clinical trial of safety and plasma concentrations of diclofenac in healthy neonatal foals after repeated topical application of 1% diclofenac sodium cream.

    PubMed

    Barnett, Susan E; Sellon, Debra C; Hines, Melissa T; Seino, Kathy K; Knych, Heather K

    2017-04-01

    OBJECTIVE To determine the plasma pharmacokinetics and safety of 1% diclofenac sodium cream applied topically to neonatal foals every 12 hours for 7 days. ANIMALS Twelve 2- to 14-day old healthy Arabian and Arabian-pony cross neonatal foals. PROCEDURES A 1.27-cm strip of cream containing 7.3 mg of diclofenac sodium (n = 6 foals) or an equivalent amount of placebo cream (6 foals) was applied topically to a 5-cm square of shaved skin over the anterolateral aspect of the left tarsometatarsal region every 12 hours for 7 days. Physical examination, CBC, serum biochemistry, urinalysis, gastric endoscopy, and ultrasonographic examination of the kidneys and right dorsal colon were performed before and after cream application. Venous blood samples were collected at predefined intervals following application of the diclofenac cream, and plasma diclofenac concentrations were determined by liquid chromatography-mass spectrometry. RESULTS No foal developed any adverse effects attributed to diclofenac application, and no significant differences in values of evaluated variables were identified between treatment groups. Plasma diclofenac concentrations peaked rapidly following application of the diclofenac cream, reaching a maximum of < 1 ng/mL within 2 hours, and declined rapidly after application ceased. CONCLUSIONS AND CLINICAL RELEVANCE Topical application of the 1% diclofenac sodium cream to foals as described appeared safe, and low plasma concentrations of diclofenac suggested minimal systemic absorption. Practitioners may consider use of this medication to treat focal areas of pain and inflammation in neonatal foals.

  10. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  11. Stochastic model for the fluctuations of the atmospheric concentration of radionuclides and its application to uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Ichige, Hiroyuki; Fukuchi, Shun; Hatano, Yuko

    2015-02-01

    We propose a new model of the atmospheric concentration of a radionuclide with the inclusion of fluctuations of the concentration. The model is a stochastic differential equation and we derive the analytic solution of the equation. The solution agrees very well with the Chernobyl Cs-137 data. The advantage of the model is that the uncertainty in radiation exposure risk, with regard to the concentration fluctuations, can be quantitatively estimated. We show the range of fluctuations of ±σ, ±2σ, ±3σ in the 10-year measurement of the atmospheric concentration in Chernobyl and confirmed the validity of the model.

  12. Quantification of bone mass gain in response to the application of biphasic bioceramics and platelet concentrate in critical-size bone defects.

    PubMed

    Lobo, Sonja Ellen; Wykrota, Francisco Henrique Lanna; Oliveira, Ana Carolina Marques Barbosa; Kerkis, Irina; Mahecha, Germán Bohorquez; Alves, Humberto José

    2009-05-01

    Biphasic bioceramics have been widely indicated for bone reconstruction; however, the real gain in bone mass due to the presence of such biomaterials has not been established yet nor the advantages of its association with platelet concentrate. This study aims at quantifying the volume of bone matrix, osteoblasts, osteocytes, blood vessels and adipose tissue after the application of a biphasic bioceramics composed of 65% hydroxyapatite and 35% beta-tricalcium phosphate. Critical-size bone defects were produced in rabbit femora and reconstructed with bioceramics only, with bioceramics combined with platelet concentrate, with platelet concentrate alone, and with no treatment (blood clot). The quantitative evaluation was performed on histological sections using histomorphometry. Our data provide original evidence that consolidates the indication of bioceramics for clinical bone loss reconstruction. The application of biphasic bioceramics alone led to major bone mass gain and was followed by its association with platelet concentrate. On the other hand, platelet concentrate can contribute to the augmentation and maintenance of the adipose tissue, representing a new field for future applications in plastic surgery.

  13. Application of geostatistics with Indicator Kriging for analyzing spatial variability of groundwater arsenic concentrations in Southwest Bangladesh.

    PubMed

    Hassan, M Manzurul; Atkins, Peter J

    2011-01-01

    This article seeks to explore the spatial variability of groundwater arsenic (As) concentrations in Southwestern Bangladesh. Facts about spatial pattern of As are important to understand the complex processes of As concentrations and its spatial predictions in the unsampled areas of the study site. The relevant As data for this study were collected from Southwest Bangladesh and were analyzed with Flow Injection Hydride Generation Atomic Absorption Spectrometry (FI-HG-AAS). A geostatistical analysis with Indicator Kriging (IK) was employed to investigate the regionalized variation of As concentration. The IK prediction map shows a highly uneven spatial pattern of arsenic concentrations. The safe zones are mainly concentrated in the north, central and south part of the study area in a scattered manner, while the contamination zones are found to be concentrated in the west and northeast parts of the study area. The southwest part of the study area is contaminated with a highly irregular pattern. A Generalized Linear Model (GLM) was also used to investigate the relationship between As concentrations and aquifer depths. A negligible negative correlation between aquifer depth and arsenic concentrations was found in the study area. The fitted value with 95 % confidence interval shows a decreasing tendency of arsenic concentrations with the increase of aquifer depth. The adjusted mean smoothed lowess curve with a bandwidth of 0.8 shows an increasing trend of arsenic concentration up to a depth of 75 m, with some erratic fluctuations and regional variations at the depth between 30 m and 60 m. The borehole lithology was considered to analyze and map the pattern of As variability with aquifer depths. The study has performed an investigation of spatial pattern and variation of As concentrations.

  14. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications. Issue study

    SciTech Connect

    Borden, C.S.; Schwartz, D.L.

    1984-12-31

    The purpose of this study is to assess the relative economic potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R and D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options. The results of this study provide the first comprehensive assessment of PV concentrator collector manufacturing costs in combination with those of flat-plate modules, both projected to their commercial potentials in the mid-1990's.

  15. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed.

  16. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  17. Low concentration ratio solar array for low Earth orbit multi-100kW application. Volume 2: Drawings

    NASA Technical Reports Server (NTRS)

    Nalbandian, S. J.; French, E. P.

    1982-01-01

    A preliminary design effort directed toward a low concentration ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 100 kW range) in low Earth orbit. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. Drawings for the preliminary design configuration and for the test hardware that was fabricated for design evaluation and test are provided.

  18. Flat high concentration devices

    SciTech Connect

    Minano, J.C.; Gonzalez, J.C.; Zanesco, I.

    1994-12-31

    During the last five years new concentrators achieving the theoretical maximum acceptance-angle-concentration product have appeared. In addition, some of these concentrators are very compact (concentrator depth/aperture diameter smaller than 1/3). The feasibility of these concentrators for photovoltaic applications is studied. It is concluded that these concentrators may be useful for high concentration cells (irradiance for maximum efficiency greater than 800 suns) if these cells have a small size (diameter smaller than 5 mm). The concentrators may provide for this case an acceptance angle of {approx} {+-}2.7 degrees with concentration factor around 1,000x and a concentrator depth 10 times the cell diameter. Instantaneous direct insolation and ambient temperature measurements of Madrid and a thermal model of the heat sink is used to calculate the annual electric energy output with which different concentration factors are compared. Concentration of 1,000x is close to the one giving the maximum annual electrical output.

  19. Subsurface band application of poultry litter and its influence on Phosphorus concentration and retention after runoff from permanent pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive P loss from agricultural fields has been identified as a major cause of eutrophication to river, lakes, and streams. To minimize and mitigate P loss from poultry litter (PL) applications, new technology is being developed for subsurface band application of litter below the soil surface. Th...

  20. Geographical distribution of the annual mean radon concentrations in primary schools of Southern Serbia - application of geostatistical methods.

    PubMed

    Bossew, P; Žunić, Z S; Stojanovska, Z; Tollefsen, T; Carpentieri, C; Veselinović, N; Komatina, S; Vaupotič, J; Simović, R D; Antignani, S; Bochicchio, F

    2014-01-01

    Between 2008 and 2011 a survey of radon ((222)Rn) was performed in schools of several districts of Southern Serbia. Some results have been published previously (Žunić et al., 2010; Carpentieri et al., 2011; Žunić et al., 2013). This article concentrates on the geographical distribution of the measured Rn concentrations. Applying geostatistical methods we generate "school radon maps" of expected concentrations and of estimated probabilities that a concentration threshold is exceeded. The resulting maps show a clearly structured spatial pattern which appears related to the geological background. In particular in areas with vulcanite and granitoid rocks, elevated radon (Rn) concentrations can be expected. The "school radon map" can therefore be considered as proxy to a map of the geogenic radon potential, and allows identification of radon-prone areas, i.e. areas in which higher Rn radon concentrations can be expected for natural reasons. It must be stressed that the "radon hazard", or potential risk, estimated this way, has to be distinguished from the actual radon risk, which is a function of exposure. This in turn may require (depending on the target variable which is supposed to measure risk) considering demographic and sociological reality, i.e. population density, distribution of building styles and living habits.

  1. Effects of surface applications of biosolids on groundwater quality and trace-element concentrations in crops near Deer Trail, Colorado, 2004-2010

    USGS Publications Warehouse

    Yager, Tracy J.B.; Crock, James G.; Smith, David B.; Furlong, Edward T.; Hageman, Philip L.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with Metro Wastewater Reclamation District (Metro District), studied biosolids composition and the effects of biosolids applications on groundwater quality and trace-element concentrations in crops of the Metro District properties near Deer Trail, Colorado, during 2004 through 2010. Priority parameters for each monitoring component included the nine trace elements regulated by Colorado for biosolids (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc); other constituents also were analyzed. All concentrations for the priority parameters in monthly biosolids samples were less than Colorado regulatory limits, and the concentrations were relatively consistent. Biosolids likely were the largest source of nitrogen and phosphorus on the Metro District properties. Plutonium isotopes were not detected in the biosolids, but many organic wastewater compounds (organic wastewater compounds: wastewater indicators, pharmaceuticals, and hormones) were detected in substantial concentrations relative to minimum reporting levels and various surface-water concentrations. Bismuth, copper, mercury, nitrogen, phosphorus, silver, biogenic sterols, detergent degradates, disinfectants, fire retardants, fragrances, pharmaceuticals, and plasticizers would be the most likely biosolids signature to indicate the presence of Metro District biosolids in soil or streambed sediment from the study area. Antimony, cadmium, cobalt, copper, molybdenum, nickel, nitrogen, phosphorus, selenium, tungsten, vanadium, zinc, detergent degradates, disinfectants, fire retardants, fragrances, pharmaceuticals or their degradates, and plasticizers would be the most likely biosolids signature for groundwater and surface water in the study area. More biosolids-signature components detected and larger concentration differences from untreated materials, baseline, and blank samples indicate more evidence of biosolids presence or effects

  2. [Measurement and data analysis of drug concentrations at the target site--potentials, limitations and fields of application].

    PubMed

    Schäftlein, André; el Talia, Maurice; Kloft, Charlotte

    2013-04-01

    Drug measurements in the blood are only surrogates for drug concentrations in peripheral tissues, which often represent the target sites of the drug. Due to drug specific and physiological characteristics, however, blood and target site concentrations may differ. For this reason, methods to measure drug concentrations at the target site have been developed during the last years. During the last decade, microdialysis has become the method of choice for the continuous study of unbound tissue concentrations of drugs. In order to fully exploit these measurements to quantify the concentration-time profile of the investigated drug, different tools of data analysis can be applied. The aim is to contribute to decision-making in selecting the optimal dose 1) for dosing schedules during the development program of new drugs and 2) for therapeutic usage for physicians and pharmacists. For these aims, the so called ,,nonlinear mixed effect (NLME) modelling approach" presents the method of choice as it determines the typical concentration-time profile of a drug as well as the variability within the investigated study population. Additionally, between-patient variability can be explained by patient-specific characteristics e.g. weight enabling dose individualisation within the whole investigated population. A systematic literature research in Pubmed for the use of antiinfectives in humans shows that the preferable methods of measuring concentrations at the target site (microdialysis) and data analysis (NLME) have rarely been used simultaneously. Hence, in future the benefit of linking both methods of choice should be further exploited in order to improve knowledge gain, to optimise antiinfective dosing regimens and to increase medication safety.

  3. Application of empirical model to predict background metal concentration in mixed carbonate-alumosilicate sediment (Adriatic Sea, Croatia).

    PubMed

    Felja, Igor; Romić, Marija; Romić, Davor; Bakić, Helena; Pikelj, Kristina; Juračić, Mladen

    2016-05-15

    A 96m long sediment core (S10-33) from the Mali Ston Channel (Adriatic Sea) showed large natural variation in carbonate share (between 1% and 95%) and concentration of elements. These variations indicate rather significant changes in fine-grained sediment that was deposited in this area during Younger Pleistocene and Holocene. Unaffected by anthropogenic influence, sediment in the core was used to determine background concentration of trace elements in sediment with various carbonate content. Here we propose a method of the normalization of trace elements to carbonate share, in order to assess natural/background concentration of metals in sediments consisting of carbonates and alumosilicates in various proportions. Six characteristic metals (Co, Cr, Cu, Ni, Pb, and Zn) that were normalized to carbonate share showed very good correlation, with much higher background concentrations in alumosilicate than in carbonate end member. Simple formulas were proposed to easily determine background concentration of these elements, in coastal and shelf depositional environments with mixed carbonate-alumosilicate sediments.

  4. Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation

    SciTech Connect

    Azarang, Majid E-mail: azarang@phys.usb.ac.ir; Shuhaimi, Ahmad; Sookhakian, M.; Yousefi, Ramin E-mail: raminyousefi@iaumis.ac.ir

    2014-08-28

    The effects of different concentrations of graphene oxide (GO) on the structure and optical properties of ZnO nanoparticles (NPs) were investigated. The nanocomposites were synthesized via the sol-gel method in a gelatin medium. X-ray diffraction patterns (XRD) and Fourier transform infrared spectroscopy indicated that the GO sheets were reduced and changed to reduced GO (RGO) during the calcination of the nanocomposites at 400 °C. In addition, the XRD patterns of the NPs indicated a hexagonal (wurtzite) structure for all the products. Microscopic studies showed that the NPs were decorated and dispersed on the RGO sheets very well. However, these studies revealed that the RGO concentration had an effect on the crystal growth process for the ZnO NPs. Furthermore, these studies showed that the NPs could be grown with a single crystal quality in an optimum RGO concentration. According to the XRD results that were obtained from pure ZnO NPs, the calcinations temperature was decreased by the RGO. UV–vis and room temperature photoluminescence studies showed that the optical properties of the ZnO/RGO nanocomposite were affected by the RGO concentration. Finally, the obtained ZnO/RGO nanocomposite was used to generate a photocurrent. Observations showed that the photocurrent intensity of the nanocomposite was significantly increased by increasing the RGO, with an optimum RGO concentration.

  5. Fuzzy control of ethanol concentration and its application to maximum glutathione production in yeast fed-batch culture

    SciTech Connect

    Alfafara, C.G.; Miura, Keigo; Shimizu, Hiroshi; Shioya, Suteaki; Suga, Kenichi ); Suzuki, Kazuyuki )

    1993-02-20

    A fuzzy logic controller (FLC) for the control of ethanol concentration was developed and utilized to realize the maximum production of glutathione (GSH) in yeast fed-batch culture. A conventional fuzzy controller, which uses the control error and its rate of change in the premise part of the linguistic rules, worked well when the initial error of ethanol concentration was small. However, when the initial error was large, controller overreaction resulted in an overshoot. An improved fuzzy controller was obtained to avoid controller overreaction by diagnostic determination of glucose emergency states', and then appropriate emergency control actions were implemented. The emergency control action was obtained by the use of weight coefficients and modification of linguistic rules to decrease the overreaction of the controller when the fermentation was in the emergency state. The improved fuzzy controller was able to control a constant ethanol concentration under conditions of large initial error.

  6. Application of Acoustic and Optic Methods for Estimating Suspended-Solids Concentrations in the St. Lucie River Estuary, Florida

    USGS Publications Warehouse

    Patino, Eduardo; Byrne, Michael J.

    2004-01-01

    Acoustic and optic methods were applied to estimate suspended-solids concentrations in the St. Lucie River Estuary, southeastern Florida. Acoustic Doppler velocity meters were installed at the North Fork, Speedy Point, and Steele Point sites within the estuary. These sites provide varying flow, salinity, water-quality, and channel cross-sectional characteristics. The monitoring site at Steele Point was not used in the analyses because repeated instrument relocations (due to bridge construction) prevented a sufficient number of samples from being collected at the various locations. Acoustic and optic instruments were installed to collect water velocity, acoustic backscatter strength (ABS), and turbidity data that were used to assess the feasibility of estimating suspended-solids concentrations in the estuary. Other data collected at the monitoring sites include tidal stage, salinity, temperature, and periodic discharge measurements. Regression analyses were used to determine the relations of suspended-solids concentration to ABS and suspended-solids concentration to turbidity at the North Fork and Speedy Point sites. For samples used in regression analyses, measured suspended-solids concentrations at the North Fork and Speedy Point sites ranged from 3 to 37 milligrams per liter, and organic content ranged from 50 to 83 percent. Corresponding salinity for these samples ranged from 0.12 to 22.7 parts per thousand, and corresponding temperature ranged from 19.4 to 31.8 ?C. Relations determined using this technique are site specific and only describe suspended-solids concentrations at locations where data were collected. The suspended-solids concentration to ABS relation resulted in correlation coefficients of 0.78 and 0.63 at the North Fork and Speedy Point sites, respectively. The suspended-solids concentration to turbidity relation resulted in correlation coefficients of 0.73 and 0.89 at the North Fork and Speedy Point sites, respectively. The adequacy of the

  7. Estimation of time-variable fast flow path chemical concentrations for application in tracer-based hydrograph separation analyses

    NASA Astrophysics Data System (ADS)

    Kronholm, Scott C.; Capel, Paul D.

    2016-09-01

    Mixing models are a commonly used method for hydrograph separation, but can be hindered by the subjective choice of the end-member tracer concentrations. This work tests a new variant of mixing model that uses high-frequency measures of two tracers and streamflow to separate total streamflow into water from slowflow and fastflow sources. The ratio between the concentrations of the two tracers is used to create a time-variable estimate of the concentration of each tracer in the fastflow end-member. Multiple synthetic data sets, and data from two hydrologically diverse streams, are used to test the performance and limitations of the new model (two-tracer ratio-based mixing model: TRaMM). When applied to the synthetic streams under many different scenarios, the TRaMM produces results that were reasonable approximations of the actual values of fastflow discharge (±0.1% of maximum fastflow) and fastflow tracer concentrations (±9.5% and ±16% of maximum fastflow nitrate concentration and specific conductance, respectively). With real stream data, the TRaMM produces high-frequency estimates of slowflow and fastflow discharge that align with expectations for each stream based on their respective hydrologic settings. The use of two tracers with the TRaMM provides an innovative and objective approach for estimating high-frequency fastflow concentrations and contributions of fastflow water to the stream. This provides useful information for tracking chemical movement to streams and allows for better selection and implementation of water quality management strategies.

  8. Assessment of Uncertainty in Ambient NO2 Concentration Determination and its Minimization through Application of Lab Scale Findings

    NASA Astrophysics Data System (ADS)

    Goyal, S. K.; Chavhan, C. D.

    2015-06-01

    Uncertainty/variability in measurement of NO2 in ambient air using Sodium Arsenite (SA) manual monitoring method (also known as modified Jacob & Hochheiser method) has been assessed through co-located sampling. Three sampling systems have been deployed and operated simultaneously for five days to find out variations in actual concentration determination. Significant variation in NO2 concentrations has been observed during sampling for 16 h (representing daytime activities) and 8 h (representing nighttime activities). Monitoring during co-located sampling showed considerable variation in flow rate, which can greatly influence the measured NO2 concentration, as in calculation a factor (82 %) for absorption efficiency of NO2 gas in absorption medium is used. At 0.5 l/min flow rate, the absorption efficiency for 8 h sampling is found to be about 69 %, which reduces to about 45 % at 1 l/min for the same sampling duration. Therefore, determination of actual NO2 concentration using this method at different conditions of flow rate and sampling duration may lead to under/over estimation of NO2 concentration, depending upon the specific sampling conditions, and may also affect decision making process involving this parameter. Further, efforts are made to minimize the variations in concentration determination through use of empirical relationships developed in laboratory studies carried out earlier by the present author. The variations are found to be reduced considerably after applying certain correction factors for absorption efficiency of NO2 due to sampling condition variations. This demonstrates the usefulness of lab scale experiments to the actual field monitoring scenario for appropriate decision making.

  9. Estimation of time-variable fast flow path chemical concentrations for application in tracer-based hydrograph separation analyses

    USGS Publications Warehouse

    Kronholm, Scott C.; Capel, Paul D.

    2016-01-01

    Mixing models are a commonly used method for hydrograph separation, but can be hindered by the subjective choice of the end-member tracer concentrations. This work tests a new variant of mixing model that uses high-frequency measures of two tracers and streamflow to separate total streamflow into water from slowflow and fastflow sources. The ratio between the concentrations of the two tracers is used to create a time-variable estimate of the concentration of each tracer in the fastflow end-member. Multiple synthetic data sets, and data from two hydrologically diverse streams, are used to test the performance and limitations of the new model (two-tracer ratio-based mixing model: TRaMM). When applied to the synthetic streams under many different scenarios, the TRaMM produces results that were reasonable approximations of the actual values of fastflow discharge (±0.1% of maximum fastflow) and fastflow tracer concentrations (±9.5% and ±16% of maximum fastflow nitrate concentration and specific conductance, respectively). With real stream data, the TRaMM produces high-frequency estimates of slowflow and fastflow discharge that align with expectations for each stream based on their respective hydrologic settings. The use of two tracers with the TRaMM provides an innovative and objective approach for estimating high-frequency fastflow concentrations and contributions of fastflow water to the stream. This provides useful information for tracking chemical movement to streams and allows for better selection and implementation of water quality management strategies.

  10. Application of passive sampling on assessment of concentration distribution and health risk of volatile organic compounds at a high-tech science park.

    PubMed

    Peng, Chiung-Yu; Hsiao, Sheng-Ling; Lan, Cheng-Hang; Huang, Yu-Li

    2013-01-01

    The objectives of this study are to investigate the volatile organic compound (VOC) distribution using passive samplers and to assess the resulting health risks in a high-tech science industrial park. With the advantages of passive sampling techniques, long-term and wide-area samples are collected. The results show TVOC concentrations in summer, fall, winter, and spring are 7.14 ± 5.66 ppb, 18.17 ± 5.81 ppb, 10.30 ± 3.54 ppb, and 14.56 ± 4.53 ppb, respectively; those on weekdays and weekends are 14.36 ± 6.80 ppb and 9.87 ± 4.86 ppb, respectively; and those in industrial and residential zones are 12.97 ± 0.39 ppb and 11.13 ± 0.68 ppb, respectively. Based on concentration variations, and benzene, toluene, ethylbenzene, and xylene ratios, we can resolve the source origins. Health risks are assessed based on the resulting concentrations. In the case of non-cancer chronic effects, long-term exposure to these concentrations does not support there is a risk of adverse health effects. However, potential cancer risks of exposure to these concentrations may occur, especially to carbon tetrachloride and benzene. By applying this study's procedures, information on VOC concentration distribution, source identification, and health assessment can be obtained and they are applicable to similar studies.

  11. Phenomenological study and application of the combined influence of iron concentration and irradiance on the photo-Fenton process to remove micropollutants.

    PubMed

    Carra, Irene; García Sánchez, José Luis; Casas López, José Luis; Malato, Sixto; Sánchez Pérez, José Antonio

    2014-04-15

    The presence of low concentrations of persistent pollutants in waters (μg/L or ng/L), also called micropollutants, brings as a consequence the need to apply advanced oxidation treatments for their removal. The successful application of solar-driven photo-Fenton to treat highly polluted wastewaters (g/L and mg/L of pollutants) has prompted its application to lowly polluted effluents. However, a decrease in contaminant concentration may involve an alteration in the intrinsic process phenomenon, which until now has only been widely studied at the milligram-per-litre level or higher with this process. The aim of this research was to study the combined influence of the operating variable (iron concentration) and the environmental variable (irradiance) and application on the photo-Fenton process at pH2.8 when removing micropollutants. For this purpose, experimentation was carried out at laboratory and pilot plant scales with a biocide mixture of acetamiprid (ACTM), thiabendazole (TBZ) and imazalil (IMZ) (100 μg/L each) as the model pollutant. Results indicated that above 15 WUV/m(2) and a light path length of 5 cm (the most commonly used path for this type of application) iron concentration limited the process and there was irradiance excess under these conditions. On the other hand, and given the circumstances of irradiance excess, a higher light path length (10 cm) was assessed. Results showed that path lengths wider than 5 cm are recommended since more wastewater volume could be treated with a higher process rate per surface unit.

  12. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE... animal production facility means a hatchery, fish farm, or other facility which meets the criteria in... any warm or cold water aquatic animal production facility as a concentrated aquatic animal...

  13. Determination of confidence intervals in non-normal data: application of the bootstrap to cocaine concentration in femoral blood.

    PubMed

    Desharnais, Brigitte; Camirand-Lemyre, Félix; Mireault, Pascal; Skinner, Cameron D

    2015-03-01

    Calculating the confidence interval is a common procedure in data analysis and is readily obtained from normally distributed populations with the familiar [Formula: see text] formula. However, when working with non-normally distributed data, determining the confidence interval is not as obvious. For this type of data, there are fewer references in the literature, and they are much less accessible. We describe, in simple language, the percentile and bias-corrected and accelerated variations of the bootstrap method to calculate confidence intervals. This method can be applied to a wide variety of parameters (mean, median, slope of a calibration curve, etc.) and is appropriate for normal and non-normal data sets. As a worked example, the confidence interval around the median concentration of cocaine in femoral blood is calculated using bootstrap techniques. The median of the non-toxic concentrations was 46.7 ng/mL with a 95% confidence interval of 23.9-85.8 ng/mL in the non-normally distributed set of 45 postmortem cases. This method should be used to lead to more statistically sound and accurate confidence intervals for non-normally distributed populations, such as reference values of therapeutic and toxic drug concentration, as well as situations of truncated concentration values near the limit of quantification or cutoff of a method.

  14. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application

    PubMed Central

    van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Kahn, Ralph; Levy, Robert; Verduzco, Carolyn; Villeneuve, Paul J.

    2010-01-01

    Background Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 μm (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations. Objective In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations. Methods We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model. Results We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 μg/m3. The World Health Organization Air Quality PM2.5 Interim Target-1 (35 μg/m3 annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 μg/m3 over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 μg/m3. Conclusions Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations. PMID:20519161

  15. [Effect of atmospheric CO2 concentration and nitrogen application level on absorption and transportation of nutrient elements in oilseed rape].

    PubMed

    Wang, Wen-ming; Zhang, Zhen-hua; Song, Hai-xing; Liu, Qiang; Rong, Xiang-min; Guan, Chun-yun; Zeng, Jing; Yuan, Dan

    2015-07-01

    Effect of elevated atmospheric-CO2 (780 µmol . mol-1) on the absorption and transportation of secondary nutrient elements (calcium, magnesium, sulphur) and micronutrient elements (iron, manganese, zinc, molybdenum and boron) in oilseed rape at the stem elongation stage were studied by greenhouse simulated method. Compared with the ambient CO2 condition, the content of Zn in stem was increased and the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with no nitrogen (N) application; the contents of Ca, S, B and Zn were increased, and the contents of Mg, Mn, Mo and Fe were decreased under the elevated atmospheric CO2 with N application (0.2 g N . kg-1 soil); except the content of Mo in leaf was increased, the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with two levels of N application. Compared with the ambient CO2 condition, the amounts of Ca and S relative to the total amount of secondary nutrient elements in stem and the amounts of B and Zn relative to the total amount of micronutrient elements in stem were increased under the elevated-CO2 treatment with both levels of N application, and the corresponding values of Mg, Fe, Mn and Mo were decreased; no-N application treatment increased the proportion of Ca distributed into the leaves, and the proportion of Mg distributed into leaves was increased by the normal-N application level; the proportions of Mn, Zn and Mo distributed into the leaves were increased at both N application levels. Without N application, the elevation of atmospheric CO2 increased the transport coefficients of SFe, Mo and SS,B, but decreased the transport coefficients of SMg,Fe, SMg, Mn and SS,Fe, indicating the proportions of Mo, S transported into the upper part of plant tissues was higher than that of Fe, and the corresponding value of B was higher than that observed for S, the corresponding value of Mg was higher than that of Fe and Mn. Under normal-N application

  16. Photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Boes, E. C.

    1980-01-01

    A status report on photovoltaic (PV) concentrators technology is presented. The major topics covered are as follows: (1) current PV concentrator arrays; designs, performances, and costs; (2) current PV concentrator array components; cells and cell assemblies, optical concentrators, support structures, tracking, and drive; (3) design of PV concentrator arrays; and (4) array manufacturing technology.

  17. Simultaneous determination of Si, Al and Na concentrations by particle induced gamma-ray emission and applications to reference materials and ceramic archaeological artifacts

    NASA Astrophysics Data System (ADS)

    Dasari, K. B.; Chhillar, S.; Acharya, R.; Ray, D. K.; Behera, A.; Lakshmana Das, N.; Pujari, P. K.

    2014-11-01

    A particle induced gamma ray emission (PIGE) method using 4 MeV proton beam was standardized for simultaneous determination of Si, Al and Na concentrations and has been applied for non-destructive analysis of several reference materials and archaeological clay pottery samples. Current normalized count rates of gamma-rays for the three elements listed above were obtained by an in situ method using Li as internal standard. The paper presents application of the in situ current normalized PIGE method for grouping study of 39 clay potteries, obtained from Rajasthan and Andhra Pradesh states of India. Grouping of artifacts was carried out using the ratios of SiO2 to Al2O3 concentrations, due to their non volatile nature. Powder samples and elemental standards in pellet forms (cellulose matrix) were irradiated using the 4 MeV proton beam (∼10 nA) from the 3 MV tandem accelerator at IOP Bhubaneswar, and assay of prompt gamma rays was carried out using a 60% relative efficiency HPGe detector coupled to MCA. The concentration ratio values of SiO2/Al2O3 indicated that pottery samples fell into two major groups, which are in good agreement with their collection areas. Reference materials from IAEA and NIST were analyzed for quantification of Si, Al and Na concentrations as a part of validation as well as application of PIGE method.

  18. Effects of Tissue Culture and Mycorrhiza Applications in Organic Farming on Concentrations of Phytochemicals and Antioxidant Capacities in Ginger (Zingiber officinale Roscoe) Rhizomes and Leaves.

    PubMed

    Min, Byungrok R; Marsh, Lurline E; Brathwaite, Keegan; Daramola, Adebola O

    2017-04-01

    Tissue culture and mycorrhiza applications can provide disease-free seedlings and enhanced nutrient absorption, respectively, for organic farming. Ginger (Zingiber officinale Roscoe) is rich in phytochemicals and has various health-protective potentials. This study was aimed at determining effects of tissue culture and mycorrhiza applications alone or in combinations in organic farming on phytochemical contents (total phenolics and flavonoids [TP and TF, respectively], gingerol and shogaol homologues, phenolic acids, and carotenoids) and antioxidant capacities (DPPH [2,2-diphenyl-1-picrylhydrazyl] radical scavenging, oxygen radical absorbance (ORAC), and iron-chelating capacities [ICC]) in solvent-extractable (Free) and cell-wall-matrix-bound (Bound) fractions of ginger rhizome and Free fraction of the leaves in comparison with non-organics. Concentrations of the phytochemicals and antioxidant capacities, except for carotenoids and ICC, were significantly higher in organic ginger rhizomes and leaves than in non-organics regardless of the fractions and treatments (P < 0.05). Mycorrhiza application in organic farming significantly increased levels of TP, TF, gingerols, and ORAC in the Free fraction of the rhizome (P < 0.05). Furthermore, the combined application of tissue culture and mycorrhiza significantly increased concentrations of TF and gingerols and ORAC in the Free fraction of the rhizome (P < 0.05), suggesting their synergistic effects. Considerable amounts of phenolics were found in the Bound fractions of the rhizomes. Six-gingerol, ferulic acid, and lutein were predominant ones among gingerols, phenolic acids, and carotenoids, respectively, in ginger rhizomes. The results suggest that organic farming with mycorrhiza and tissue culture applications can increase concentrations of phytochemicals and antioxidant capacities in ginger rhizomes and leaves and therefore improve their health-protective potentials.

  19. An analysis of the technical and economic performance of a parabolic trough concentrator for solar industrial process heat application

    NASA Astrophysics Data System (ADS)

    Clark, J. A.

    1982-09-01

    Design parameters and economic projections of importance to the commercial realization of mass-produced parabolic trough solar concentrators as industrial heat suppliers are presented. Numerical formulas are defined for obtaining a figure of merit for the thermal efficiency of a concentrator, taking into account the reflectivity, the mirror-receiver intercept factor, the end loss factor, tracking and misalignment errors, the absorptivity-transmissivity product at normal incidence of the receiver tube and its glass envelope, and durability. An economic analysis which includes all costs, tax write-offs, comparisons with conventional fuels, inflation rate, time of borrowing, maintenance, profits, and conversion efficiencies is developed. It was determined that the trough systems will become competitive in the U.S. when installed costs are $15.79/sq ft over a 10-yr investment period

  20. The effects of soil liming and sewage sludge application on dynamics of copper fractions and total copper concentration.

    PubMed

    Malinowska, Elżbieta

    2016-10-01

    The paper deals with effects of liming and different doses of municipal sewage sludge (5, 10, and 15 % of soil mass) on copper speciation in soil. In all samples, pH was determined together with total copper concentration, which was measured with the ICP-AES method. Concentration of copper chemical fractions was determined using the seven-step procedure of Zeien and Brümmer. In the soil treated with the highest dose of sludge (15 %), there was, compared to the control, a twofold increase in the concentration of copper and a threefold increase in the concentration of nitrogen. Copper speciation analysis showed that in the municipal sewage sludge the easily soluble and exchangeable fractions (F1 and F2) constituted only a small share of copper with the highest amount of this metal in the organic (F4) and residual (F7) fractions. In the soil, at the beginning of the experiment, the highest share was in the organic fraction (F4), the residual fraction (F7) but also in the fraction where copper is bound to amorphous iron oxides (F5). After 420 days, at the end of the experiment, the highest amount of copper was mainly in the organic fraction (F4) and in the fraction with amorphous iron oxides (F5). Due to mineralization of organic matter in the sewage sludge, copper was released into the soil with the share of the residual fraction (F7) decreasing. In this fraction, there was much more copper in limed soil than in non-limed soil.

  1. Seed protein, oil, fatty acids, and minerals concentration as affected by foliar K-glyphosate application in soybean cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies showed that glyphosate (Gly) may chelate cation nutrients, including potassium (K), which might affect the nutritional status of soybean seed. The objective of this study was to evaluate seed composition (protein, oil, fatty acids, and minerals) as influenced by foliar applications ...

  2. Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments

    PubMed Central

    Tang, Shen; Wong, Hing-Cheung; Wang, Zhong-Min; Huang, Yun; Zou, Jin; Zhuo, You; Pennati, Andrea; Gadda, Giovanni; Delbono, Osvaldo; Yang, Jenny J.

    2011-01-01

    Quantitative analysis of Ca2+ fluctuations in the endoplasmic/sarcoplasmic reticulum (ER/SR) is essential to defining the mechanisms of Ca2+-dependent signaling under physiological and pathological conditions. Here, we developed a unique class of genetically encoded indicators by designing a Ca2+ binding site in the EGFP. One of them, calcium sensor for detecting high concentration in the ER, exhibits unprecedented Ca2+ release kinetics with an off-rate estimated at around 700 s−1 and appropriate Ca2+ binding affinity, likely attributable to local Ca2+-induced conformational changes around the designed Ca2+ binding site and reduced chemical exchange between two chromophore states. Calcium sensor for detecting high concentration in the ER reported considerable differences in ER Ca2+ dynamics and concentration among human epithelial carcinoma cells (HeLa), human embryonic kidney 293 cells (HEK-293), and mouse myoblast cells (C2C12), enabling us to monitor SR luminal Ca2+ in flexor digitorum brevis muscle fibers to determine the mechanism of diminished SR Ca2+ release in aging mice. This sensor will be invaluable in examining pathogenesis characterized by alterations in Ca2+ homeostasis. PMID:21914846

  3. Evaluation of metal biouptake from the analysis of bulk metal depletion kinetics at various cell concentrations: theory and application.

    PubMed

    Rotureau, Elise; Billard, Patrick; Duval, Jérôme F L

    2015-01-20

    Bioavailability of trace metals is a key parameter for assessment of toxicity on living organisms. Proper evaluation of metal bioavailability requires monitoring the various interfacial processes that control metal partitioning dynamics at the biointerface, which includes metal transport from solution to cell membrane, adsorption at the biosurface, internalization, and possible excretion. In this work, a methodology is proposed to quantitatively describe the dynamics of Cd(II) uptake by Pseudomonas putida. The analysis is based on the kinetic measurement of Cd(II) depletion from bulk solution at various initial cell concentrations using electroanalytical probes. On the basis of a recent formalism on the dynamics of metal uptake by complex biointerphases, the cell concentration-dependent depletion time scales and plateau values reached by metal concentrations at long exposure times (>3 h) are successfully rationalized in terms of limiting metal uptake flux, rate of excretion, and metal affinity to internalization sites. The analysis shows the limits of approximate depletion models valid in the extremes of high and weak metal affinities. The contribution of conductive diffusion transfer of metals from the solution to the cell membrane in governing the rate of Cd(II) uptake is further discussed on the basis of estimated resistances for metal membrane transfer and extracellular mass transport.

  4. Ion exchange membranes as novel passive sampling material for organic ions: application for the determination of freely dissolved concentrations.

    PubMed

    Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2014-11-28

    Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner.

  5. A New Approach in Optimizing the Induction Heating Process Using Flux Concentrators: Application to 4340 Steel Spur Gear

    NASA Astrophysics Data System (ADS)

    Barka, Noureddine; Chebak, Ahmed; El Ouafi, Abderrazak; Jahazi, Mohammad; Menou, Abdellah

    2014-09-01

    The beneficial effects of using flux concentrators during induction heat treatment process of spur gears made of 4340 high strength steel is demonstrated using 3D finite element model. The model is developed by coupling electromagnetic field and heat transfer equations and simulated by using Comsol software. Based on an adequate formulation and taking into account material properties and process parameters, the model allows calculating temperature distribution in the gear tooth. A new approach is proposed to reduce the electromagnetic edge effect in the gear teeth which allows achieving optimum hardness profile after induction heat treatment. In the proposed method, the principal gear is positioned in sandwich between two other gears having the same geometry that act as flux concentrators. The gap between the gear and the flux concentrators was optimized by studying temperature variation between the tip and root regions of gear teeth. Using the proposed model, it was possible identifying processing conditions that allow for quasi-uniform final temperature profile in the medium and high frequency conditions during induction hardening of spur gears.

  6. Application of Hollow Fiber Forward Osmosis Membranes for Produced and Process Water Volume Reduction: An Osmotic Concentration Process.

    PubMed

    Minier-Matar, Joel; Santos, Ana; Hussain, Altaf; Janson, Arnold; Wang, Rong; Fane, Anthony G; Adham, Samer

    2016-06-07

    Produced and process water (PPW) from oil and gas operations, specifically in Qatar, are disposed of by deep well injection in onshore facilities. Disposing large volumes of PPW may affect deep well formation sustainability highlighting the need for effective PPW management. Forward osmosis (FO) was applied as an "osmotic concentration" process to reduce PPW injection volumes by 50% using brines and seawater as draw solutions (DS). The energy intensive step of restoring the salinity of the DS was eliminated; the diluted DS would be simply discharged to the ocean. Both hollow fiber and flat sheet FO membranes were tested and the former exhibited better flux and rejection; they are the focus of this study. Optimization experiments, conducted using Box-Behnken statistical design, confirmed that temperature and DS concentration had a substantial effect on performance. To validate the concept, a long-term experiment, under optimized conditions, was conducted with PPW as feed and brine from thermal desalination plant as DS which yielded an average flux of 24 L/m(2)h. The results confirmed that low-energy osmotic concentration FO has the potential for full-scale implementation to reduce PPW injection volumes. Pilot testing opportunities are being evaluated to demonstrate the effectiveness of this technology under field conditions.

  7. Design and Fabrication of a Dielectric Total Internal Reflecting Solar Concentrator and Associated Flux Extractor for Extreme High Temperature (2500K) Applications

    NASA Technical Reports Server (NTRS)

    Soules, Jack A.; Buchele, Donald R.; Castle, Charles H.; Macosko, Robert P.

    1997-01-01

    The Analex Corporation, under contract to the NASA Lewis Research Center (LeRC), Cleveland, Ohio, recently evaluated the feasibility of utilizing refractive secondary concentrators for solar heat receivers operating at temperatures up to 2500K. The feasibility study pointed out a number of significant advantages provided by solid single crystal refractive devices over the more conventional hollow reflective compound parabolic concentrators (CPCs). In addition to the advantages of higher concentration ratio and efficiency, the refractive concentrator, when combined with a flux extractor rod, provides for flux tailoring within the heat receiver cavity. This is a highly desirable, almost mandatory, feature for solar thermal propulsion engine designs presently being considered for NASA and Air Force thermal applications. Following the feasibility evaluation, the NASA-LeRC, NASA-Marshall Space Flight Center (MSFC), and Analex Corporation teamed up to design, fabricate, and test a refractive secondary concentrator/flux extractor system for potential use in the NASA-MSFC "Shooting Star" flight experiment. This paper describes the advantages and technical challenges associated with the design methodologies developed and utilized and the material and fabrication limitations encountered.

  8. Conceptual design study of concentrator enhanced solar arrays for space applications. 2kW Si and GaAs systems at 1 AU

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.

  9. [Progesterone and pregnanediol-glucuronid concentrations in saliva, milk and urine of female alpacas and their application in pregnancy diagnosis].

    PubMed

    Volkery, Janine; Wittek, Thomas; Sobiraj, Axel; Gottschalk, Jutta; Einspanier, Almuth

    2010-01-01

    The objective of the present study was the measurement of the pregnancy associated hormones progesterone (P4) and pregnanediol-glucuronide (PdG) in saliva, milk and urine of alpacas and their potential use in pregnancy diagnosis. Sample of blood, saliva, milk and urine were obtained from 36 female alpacas before mating and throughout the pregnancy. Concentrations of P4 and PdG were determined using an enzyme immunoassay (EIA). Pregnancy was checked by ultrasonography at any sampling time. The milk samples were also tested using a commercial on-farm progesterone kit which was designed for dairy cattle. EIA-Concentrations of P4 in blood, milk and urine and urine PdG concentrations were significantly higher in pregnant than in not pregnant alpacas. There was no difference in concentrations of P4 or PdG in saliva. The accuracy of the progesterone kit was 90% for diagnosis of pregnancy and 69% for non-pregnancy. However, 70% of the false positive results also showed relatively high P4 milk concentrations in the EIA. Values of P4 in blood and PdG in urine are comparable to previous reports in alpacas and therefore can be confirmed as an indicator for pregnancy. Saliva seems unsuitable in pregnancy diagnosis in alpacas, whereas milk seems to be an adequate alternative. The use of milk and urine would simplify the pregnancy diagnosis in alpacas since in contrast to the current methods (e. g. blood progesterone) the owners can take the samples. The avoidance of blood sampling results in a considerable stress reduction for the animals. P4 measurement in milk and PdG measurement in urine are good alternatives in pregnancy diagnosis during the first month of pregnancy, when a trans-abdominal ultrasonographic examination is not yet reliable. However, since high values of P4 and PdG only show the presence of active luteal tissue and therefore are indirect markers of pregnancy the diagnosis should be confirmed using ultrasound later in pregnancy.

  10. Diagnosing pregnancy in free-ranging dugongs using fecal progesterone metabolite concentrations and body morphometrics: a population application.

    PubMed

    Burgess, Elizabeth A; Lanyon, Janet M; Brown, Janine L; Blyde, David; Keeley, Tamara

    2012-05-15

    Assessing reproductive status and monitoring reproductive rates is important in the effective management of vulnerable marine mammal species such as the dugong (Dugong dugon). Knowledge of the reproductive physiology of this species is limited, and determining reproductive parameters (e.g., sexual maturation, pregnancy, and reproductive senescence) has been restricted by a lack of non-lethal methods for assessing reproductive status in free-ranging individuals. The aim of this study was to develop a method to identify pregnant individuals in a wild dugong population. Using an enzymeimmunoassay, we quantified concentrations of fecal progesterone metabolites (fP) in 322 dugongs, including confirmed pregnant females (n=10), presumed non-pregnant adult females (n=25), juvenile females (n=24), subadult females (n=41), adult females of unknown pregnancy state (n=63), and males of all sizes (n=159). External body morphometrics of each dugong were measured, and confirmation of pregnancy in adult female dugongs was determined by ultrasonography or observation of subsequent neonates. Concentrations of fP were different between sexes and reproductive size classes (P<0.001), and ∼30-fold higher in confirmed pregnant dugongs (2017-7760 ng/g) compared to presumed non-pregnant females (30-221 ng/g), juvenile females (29-195 ng/g), and males (24-261 ng/g) (P<0.001). Body measures of maximum and anal girths, and teat length were all greater in confirmed pregnant females than presumed non-pregnant females (all P<0.05). We evaluated a Discriminant Function Analysis (DFA) to provide a model for predicting pregnant and non-pregnant dugongs. Cross-validated results showed that the DFA correctly classified 100% of pregnant and non-pregnant females using fP concentrations, body length, fineness ratio (an index of body shape), and teat length (a female reproductive trait). Using the DFA model, we classified the pregnancy status of all female dugongs and identified a total of 30 females

  11. Influence of compost application on arsenic uptake by beans (Phaseolus vulgaris L.), irrigated with arsenic-contaminated waters at four different concentrations

    NASA Astrophysics Data System (ADS)

    Caporale, A. G.; Pigna, M.; Sommella, A.; Cozzolino, V.; Violante, A.

    2012-04-01

    The presence of arsenic (As) in soils and/or groundwaters, used for agricultural purposes, causes a strong abiotic stress to the cultivated plants, which results in the reduction of biomasses and yields, and the abundance of non-tradable products. It is therefore desirable to identify and develop production techniques capable of limiting the mobility and phyto-availability of As in soil, through the stabilization of the metalloid on the more recalcitrant soil fractions. Incorporation of compost into soil for As immobilization offers various potential advantages over other methods such as low-cost, simple methodology and low environmental impact. We studied the influence of compost application on the mobility and phyto-availability of As in soil, the growth of the bean plants irrigated with As-contaminated waters and their own As uptake. Bean was selected as test plant, because this crop is grown in several As-contaminated areas and suffers As toxicity. Bean plants growth was significantly affected by As and compost treatments. Increasing As concentration in the irrigation water decreased markedly the dry biomass, as a consequence of As phytotoxicity. The influence of compost application on plants growth was also significant, indicating the ability of the compost to alleviate the As phytotoxicity. Arsenic caused a reduction of the photosynthesis rate. By increasing As concentration in irrigation water, in fact, bean leaves showed a decrease in both chlorophyll A and B concentrations in their own mesophylls. However, by increasing level of compost application there was an increase of both chlorophylls concentrations in bean leaves. Arsenic concentration in roots was higher than that in shoots and bean yield. Bean plants showed a typical behavior of the plants sensitive to As toxicity, which usually tend to limit the As translocation from roots to shoots and yield. A low As allocation in bean yield is desirable, because a high As content in edible part of the plants

  12. Progress toward a 30 percent-efficient, monolithic, three-junction, two-terminal concentrator solar cell for space applications

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Chung, B.-C.; Virshup, G. F.; Schultz, J. C.; Macmillan, H. F.; Ristow, M. Ladle; Kuryla, M. S.; Bertness, K. A.

    1991-01-01

    Component efficiencies of 0.2/sq cm cells at approximately 100x AMO light concentration and 80 C temperatures are not at 15.3 percent for a 1.9 eV AlGaAs top cell, 9.9 percent for a 1.4 eV GaAs middle cell under a 1.9 eV AlGaAs filter, and 2.4 percent for a bottom 1.0 eV InGaAs cell under a GaAs substrate. The goal is to continue improvement in these performance levels and to sequentially grow these devices on a single substrate to give 30 percent efficient, monolithic, two-terminal, three-junction space concentrator cells. The broad objective is a 30 percent efficient monolithic two-terminal cell that can operate under 25 to 100x AMO light concentrations and at 75 to 100 C cell temperatures. Detailed modeling predicts that this requires three junctions. Two options are being pursued, and both use a 1.9 eV AlGaAs top junction and a 1.4 eV GaAs middle junction grown by a 1 atm OMVPE on a lattice matched substrate. Option 1 uses a low-doped GaAs substrate with a lattice mismatched 1.0 eV InGaAs cell formed on the back of the substrate. Option 2 uses a Ge substrate to which the AlGaAs and GaAs top junctions are lattice matched, with a bottom 0.7 eV Ge junction formed near the substrate interface with the GaAs growth. The projected efficiency contributions are near 16, 11, and 3 percent, respectively, from the top, middle, and bottom junctions.

  13. Estimation of microbial contamination of food from prevalence and concentration data: application to Listeria monocytogenes in fresh vegetables.

    PubMed

    Crépet, Amélie; Albert, Isabelle; Dervin, Catherine; Carlin, Frédéric

    2007-01-01

    A normal distribution and a mixture model of two normal distributions in a Bayesian approach using prevalence and concentration data were used to establish the distribution of contamination of the food-borne pathogenic bacteria Listeria monocytogenes in unprocessed and minimally processed fresh vegetables. A total of 165 prevalence studies, including 15 studies with concentration data, were taken from the scientific literature and from technical reports and used for statistical analysis. The predicted mean of the normal distribution of the logarithms of viable L. monocytogenes per gram of fresh vegetables was -2.63 log viable L. monocytogenes organisms/g, and its standard deviation was 1.48 log viable L. monocytogenes organisms/g. These values were determined by considering one contaminated sample in prevalence studies in which samples are in fact negative. This deliberate overestimation is necessary to complete calculations. With the mixture model, the predicted mean of the distribution of the logarithm of viable L. monocytogenes per gram of fresh vegetables was -3.38 log viable L. monocytogenes organisms/g and its standard deviation was 1.46 log viable L. monocytogenes organisms/g. The probabilities of fresh unprocessed and minimally processed vegetables being contaminated with concentrations higher than 1, 2, and 3 log viable L. monocytogenes organisms/g were 1.44, 0.63, and 0.17%, respectively. Introducing a sensitivity rate of 80 or 95% in the mixture model had a small effect on the estimation of the contamination. In contrast, introducing a low sensitivity rate (40%) resulted in marked differences, especially for high percentiles. There was a significantly lower estimation of contamination in the papers and reports of 2000 to 2005 than in those of 1988 to 1999 and a lower estimation of contamination of leafy salads than that of sprouts and other vegetables. The interest of the mixture model for the estimation of microbial contamination is discussed.

  14. Spectrophotometric Method for the Determination of Two Coformulated Drugs with Highly Different Concentrations. Application on Vildagliptin and Metformin Hydrochloride

    NASA Astrophysics Data System (ADS)

    Zaazaa, H. E.; Elzanfaly, E. S.; Soudi, A. T.; Salem, M. Y.

    2016-03-01

    A new smart simple validated spectrophotometric method was developed for the determination of two drugs one of which is in a very low concentration compared to the other. The method is based on spiking and dilution then simple mathematical manipulation of the absorbance spectra. This method was applied for the determination of a binary mixture of vildagliptin and metformin hydrochloride in the ratio 50:850 in laboratory prepared mixtures containing both drugs in this ratio and in pharmaceutical dosage form with good recoveries. The developed method was validated according to ICH guidelines and can be used for routine quality control testing.

  15. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites.

    PubMed

    Burgess, Robert M; Lohmann, Rainer; Schubauer-Berigan, Joseph P; Reitsma, Pamela; Perron, Monique M; Lefkovitz, Lisa; Cantwell, Mark G

    2015-08-01

    Currently, there is an effort under way to encourage remedial project managers at contaminated sites to use passive sampling to collect freely dissolved concentrations (Cfree ) of hydrophobic organic contaminants to improve site assessments. The objective of the present study was to evaluate the use of passive sampling for measuring water column Cfree for several hydrophobic organic contaminants at 3 US Environmental Protection Agency Superfund sites. Sites investigated included New Bedford Harbor (New Bedford, MA, USA), Palos Verdes Shelf (Los Angeles, CA, USA), and Naval Station Newport (Newport, RI, USA); and the passive samplers evaluated were polyethylene, polydimethylsiloxane-coated solid-phase microextraction fibers, semipermeable membrane devices, and polyoxymethylene. In general, the different passive samplers demonstrated good agreement, with Cfree values varying by a factor of 2 to 3. Further, at New Bedford Harbor, where conventional water sample concentrations were also measured (i.e., grab samples), passive sampler-based Cfree values agreed within a factor of 2. These findings suggest that all of the samplers were experiencing and measuring similar Cfree during their respective deployments. Also, at New Bedford Harbor, a strong log-linear, correlative, and predictive relationship was found between polyethylene passive sampler accumulation and lipid-normalized blue mussel bioaccumulation of polychlorinated biphenyls (r(2)  = 0.92, p < 0.05). The present study demonstrates the utility of passive sampling for generating scientifically accurate water column Cfree values, which is critical for making informed environmental management decisions at contaminated sediment sites.

  16. Application of solid-phase extraction for the concentration of chromophores, fluorophores, and photosensitizers from lens protein digests.

    PubMed

    Argirov, Ognyan K; Hubenova, Yolina; Argirova, Mariana D

    2014-11-01

    Solid-phase extraction was applied for the separation of protein digests obtained from aged human lenses, cataractous human lenses, calf lens proteins in vitro glycated with dehydroascorbic acid and native calf lens proteins. Four fractions were collected after stepwise elution with different solvents. The first fraction contained about 80% of the digested material possessing free amino groups. At the same time, the third and the fourth fractions were enriched in chromophores, fluorophores, and photosensitizing structures that originate mainly from advanced protein glycation. The comparison between the total digest and the fourth fraction based on their UV absorption at 330 nm, intensity of fluorescence (excitation/emission 350/450 nm), and production of singlet oxygen upon UVA irradiation argues that the solid-phase extraction was capable of concentrating the advanced glycation end-products about a hundredfold. Thus, this technique is a useful step for separation and concentration of fluorophores, chromophores, and photosensitizers from aged and glycated lens protein digests.

  17. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOEpatents

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  18. Evaluation of the effect of concentration and duration of application of sodium ascorbate hydrogel on the bond strength of composite resin to bleached enamel

    PubMed Central

    Dabas, Deepti; Patil, Anand C; Uppin, Veerendra M

    2011-01-01

    Aim: The effect of different concentrations of hydrogel of sodium ascorbate on bond strength of bleached enamel for varying periods of time and the mode of failure was evaluated. Materials and Methods: Seventy enamel surfaces were obtained from 35 human extracted premolars. Specimens were divided into four groups: no bleaching (control), bleaching with carbamide peroxide gel, bleaching and application of 10% / 20% sodium ascorbate hydrogel for 30, 60, 120 min. Surfaces were bonded with a total etch bonding system and composite resin. Specimens were tested for shear bond strength. Mode of failure was determined by stereomicroscope. Data were analyzed using a two-way analysis of variance, and Scheffe's post hoc test. Results: Sodium ascorbate hydrogel application following bleaching increased the resin-enamel bond strength and was directly proportional to its duration of application. However, there was no difference in bond strength with an increase in the concentration of sodium ascorbate hydrogel. Conclusion: Immediate bonding of composite resin to bleached enamel is possible after treatment with antioxidant sodium ascorbate hydrogel. PMID:22144802

  19. Application of saturation spectroscopy to the measurement of C(2), (3)II(u) concentrations in oxy-acetylene flames.

    PubMed

    Baronavski, A P; McDonald, J R

    1977-07-01

    The technique of saturation spectroscopy is applied to measure the concentration of C(2) in the (3)II(u) state in oxyacetylene flames. The two level model is further developed and extended for use in intensity regions slightly lower than that required to saturate the resonances completely. As a result, it has proved feasible to measure both the C(2) number density in the (3)II(u) state of ~10(16)/cm(3) and an excited electronic state lifetime of ~10(-12) sec, both of which depend only on the Einstein A coefficient. The experimental setup is described in detail, and possible extensions of the technique to other atomic and molecular systems are discussed.

  20. Closed-loop identification and control application for dissolved oxygen concentration in a full-scale coke wastewater treatment plant.

    PubMed

    Yoo, C K; Cho, J H; Kwak, H J; Choi, S K; Chun, H D; Lee, I

    2001-01-01

    The objective of this paper is to apply a closed-loop identification to actual dissolved oxygen control system in the coke wastewater treatment plant. It approximates the dissolved oxygen dynamics to a high order model using the integral transform method and reduces it to the first-order plus time delay (FOPTD) or second-order plus time delay (SOPTD) for the PID controller tuning. To experiment the process identification on the real plant, a simple set-point change of the speed of surface aerator under the closed-loop control without any mode change was used as an activation signal of the identification. The full-scale experimental results show a good identification performance and a good tracking ability for set-point change. As a result of improved control performance, the fluctuation of dissolved oxygen concentration variation has been decreased and the electric power saving has been accomplished.

  1. Effects of Tilt Angle, DNA Concentration, and Surface Potential on Directed Alignment of DNA Molecule for the Application to Nanodevices

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jin; Hong, Byungyou

    2013-03-01

    This paper reports an efficient approach to control both the density and direction of highly aligned DNA molecules and thus DNA-templated gold nanowires (AuNWs) on Si chips. We utilized tilting method to prepare stretched DNA structures on SiO2/Si substrate and found important parameters in the alignment process that tilt angle, DNA concentration, and surface potential are controlled the density and structure of DNA aligned on the surface. In additional, we also can be directly connected DNA-templated AuNWs between two terminal electrodes on Si chips. This method also describes a simple way to form singled, bundled and networked DNA arrays on Si substrates.

  2. Application of artificial neural networks in optimizing the fatty alcohol concentration in the formulation of an O/W emulsion.

    PubMed

    Kumar, K Jayaram; Panpalia, Gopal Mohan; Priyadarshini, Surabhi

    2011-06-01

    The purpose of this study was to optimize the concentration of a fatty alcohol, in addition to internal phase, for formulating a stable O/W emulsion, by using artificial neural networks (ANNs). Predictions from ANNs are accurate and allow quantification of the relative importance of the inputs. Furthermore, by varying the network topology and parameters it was possible to obtain output values that were close to experimental values. The ANN model's predictive results and the actual output values were compared. R(2) values depict the percentage of response variability for the model; R(2) value of 0.84 for the model suggested adequate modeling, which is supported by the correlation coefficient value of 0.9445.

  3. Ion chromatographic determination of lithium at trace level concentrations. Application to a tracer experiment in a high-mountain lake.

    PubMed

    Nickus, U; Thies, H

    2001-06-22

    The water residence time of a high-mountain seepage lake in the Austrian Alps was derived from the flushing rate of a tracer substance. A diluted lithium chloride solution was injected into the lake during holomictic conditions in order to favour the homogeneous distribution of the tracer. The exponential decline of the mass of lithium in the lake revealed a water residence time of 1.5 to 3 months for summer and almost no lake water exchange during winter. Lithium concentrations ranged from background values of 0.06 microg l(-1) to about 3 microg l(-1) immediately after the tracer injection. Lake water samples were analyzed with ion-exchange chromatography using a Dionex device with a CS 12A separation column. The method detection limit determined according to the definition of the US Envirinmental Protection Agency amounted to 0.009 microg l(-1).

  4. Application of digital image processing to a beta-gauge for determining mass concentration of suspending particulate matter in atmosphere.

    PubMed

    Gotoh, T

    1992-05-01

    A two-dimensional image of the mass concentration of suspending particulate matter (SPM) collected on Millipore filter paper was photographed with Ultrofilm-3H. The printed paper image was transformed into a digital image (256 x 256 pixels) with 256 gray levels. Two results were obtained. The averaged values of gray level over all pixels of the digital image was found to correlate with the mass value measured by a beta-gauge. The characteristical range of the digital image which was transformed to frequency by two-dimensional fast fourier transformation was found in the low frequency. It was presumed to relate to SPM from anthropogenic sources because the SPMs usually show higher density and smaller particle size than SPMs from natural sources.

  5. Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications.

    PubMed

    Kim, Youngwoo; Woo, Kyoohee; Kim, Inhyuk; Cho, Yong Soo; Jeong, Sunho; Moon, Jooho

    2013-11-07

    Among various candidate materials, Cu2ZnSnS4 (CZTS) is a promising earth-abundant semiconductor for low-cost thin film solar cells. We report a facile, less toxic, highly concentrated synthetic method utilizing the heretofore unrecognized, easily decomposable capping ligand of triphenylphosphate, where phase-pure, single-crystalline, and well-dispersed colloidal CZTS nanocrystals were obtained. The favorable influence of the easily decomposable capping ligand on the microstructural evolution of device-quality CZTS absorber layers was clarified based on a comparative study with commonly used oleylamine-capped CZTS nanoparticles. The resulting CZTS nanoparticles enabled us to produce a dense and crack-free absorbing layer through annealing under a N2 + H2S (4%) atmosphere, demonstrating a solar cell with an efficiency of 3.6% under AM 1.5 illumination.

  6. Plasma concentrations of lidocaine in dogs following lidocaine patch application over an incision compared to intact skin.

    PubMed

    Joudrey, S D; Robinson, D A; Kearney, M T; Papich, M G; da Cunha, A F

    2015-12-01

    The objective was to compare plasma lidocaine concentrations when a commercially available 5% lidocaine patch was placed on intact skin vs. an incision. Our hypothesis was that greater absorption of lidocaine would occur from the incision site compared to intact skin. Ten dogs were used in a crossover design. A patch was placed over an incision, and then after a washout period, a patch was placed over intact skin. Plasma lidocaine concentrations were measured at patch placement; 20, 40 and 60 min; and 2, 4, 6, 12, 24, 36, 48, 72 and 96 h after patch placement. After patch removal, the skin was graded using a subjective skin reaction system. No dogs required rescue analgesia, and no toxicity or skin reaction was noted. Mean ± SD AUC and CMAX were 3054.29 ± 1095.93 ng·h/mL and 54.1 ± 15.84 ng/mL in the Incision Group, and 2269.9 ± 1037.08 ng·h/mL and 44.5 ± 16.34 ng/mL in the No-Incision Group, respectively. The AUC was significantly higher in the Incision Group. The results of the study demonstrate that the actual body exposure to lidocaine was significantly higher when an incision was present compared to intact skin. No adverse effects were observed from either treatment. Efficacy was not evaluated.

  7. Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production.

    PubMed

    McGovern, Aoife C; Broadhurst, David; Taylor, Janet; Kaderbhai, Naheed; Winson, Michael K; Small, David A; Rowland, Jem J; Kell, Douglas B; Goodacre, Royston

    2002-06-05

    Two rapid vibrational spectroscopic approaches (diffuse reflectance-absorbance Fourier transform infrared [FT-IR] and dispersive Raman spectroscopy), and one mass spectrometric method based on in vacuo Curie-point pyrolysis (PyMS), were investigated in this study. A diverse range of unprocessed, industrial fed-batch fermentation broths containing the fungus Gibberella fujikuroi producing the natural product gibberellic acid, were analyzed directly without a priori chromatographic separation. Partial least squares regression (PLSR) and artificial neural networks (ANNs) were applied to all of the information-rich spectra obtained by each of the methods to obtain quantitative information on the gibberellic acid titer. These estimates were of good precision, and the typical root-mean-square error for predictions of concentrations in an independent test set was <10% over a very wide titer range from 0 to 4925 ppm. However, although PLSR and ANNs are very powerful techniques they are often described as "black box" methods because the information they use to construct the calibration model is largely inaccessible. Therefore, a variety of novel evolutionary computation-based methods, including genetic algorithms and genetic programming, were used to produce models that allowed the determination of those input variables that contributed most to the models formed, and to observe that these models were predominantly based on the concentration of gibberellic acid itself. This is the first time that these three modern analytical spectroscopies, in combination with advanced chemometric data analysis, have been compared for their ability to analyze a real commercial bioprocess. The results demonstrate unequivocally that all methods provide very rapid and accurate estimates of the progress of industrial fermentations, and indicate that, of the three methods studied, Raman spectroscopy is the ideal bioprocess monitoring method because it can be adapted for on-line analysis.

  8. Application of a Shape-Memory Alloy Concentrator in Displaced Patella Fractures: Technique and Long-Term Results.

    PubMed

    Zhang, Yuntong; Wang, Panfeng; Xia, Yan; Zhou, Panyu; Xie, Yang; Xu, Shuogui; Zhang, Chuncai

    2017-02-01

    Operative treatment is usually recommended in displaced patella fractures. Several techniques have been advocated for internal fixation of patella fractures. Despite the relatively good clinical outcomes that have been demonstrated in many studies, postoperative morbidities such as fixation failure, nonunion, infection, and knee stiffness are not uncommon. We present a new alternative treatment technique for displaced patellar fractures. Between April 1995 and May 2005, we used the Nitinol Patella Concentrator (NTPC) to treat 156 consecutive patients with displaced patellar fractures. Injuries arose from vehicular accidents in 56 (35.9%) cases, direct falls onto the knee in 85 (54.5%) cases, and sports injuries in 15 (9.6%) cases. The mean patient age was 46.3 years (range, 25-77 years). Clinical assessments were made using the Böstman knee score and the MOS SF-36 questionnaire (Medical Outcomes Study 36-item short-form health survey), which were both recorded at the final follow-up visit. The mean follow-up was 7.3 years (range, 6-17 years). At the final follow-up, the Böstman knee scores were excellent in 88 cases (28-30), good in 55 (20-27), and unsatisfactory in 13 (<20). According to the MOS SF-36 evaluation, the average score was 84.5 (range, 62-91). Treatment of patellar fracture with the NTPC not only may serve as an effective and rigid fixation method in multifragmented displaced and inferior pole fractures, but also may provide continuous concentrative compression during the osseous healing process. Thus, use of the NTPC may help restore the functional integrity of the extensor mechanism and permit early rehabilitation with a lower incidence of postoperative complications.

  9. Novel alginate-based nanocarriers as a strategy to include high concentrations of hydrophobic compounds in hydrogels for topical application

    NASA Astrophysics Data System (ADS)

    Nguyen, H. T. P.; Munnier, E.; Souce, M.; Perse, X.; David, S.; Bonnier, F.; Vial, F.; Yvergnaux, F.; Perrier, T.; Cohen-Jonathan, S.; Chourpa, I.

    2015-06-01

    The cutaneous penetration of hydrophobic active molecules is of foremost concern in the dermatology and cosmetic formulation fields. The poor solubility in water of those molecules limits their use in hydrophilic forms such as gels, which are favored by patients with chronic skin disease. The aim of this work is to design a novel nanocarrier of hydrophobic active molecules and to determine its potential as an ingredient of a topical form. The nanocarrier consists of an oily core surrounded by a protective shell of alginate, a natural polysaccharide isolated from brown algae. These calcium alginate-based nanocarriers (CaANCs) were prepared at room temperature and without the use of organic solvent by an accelerated nanoemulsification-polymer crosslinking method. The size (hydrodynamic diameter ˜200 nm) and surface charge (zeta potential ˜ - 30 mV) of the CaANCs are both compatible with their application on skin. CaANCs loaded with a fluorescent label were stable in model hydrophilic galenic forms under different storage conditions. Curcumin was encapsulated in CaANCs with an efficiency of ˜95%, fully retaining its antioxidant activity. The application of the curcumin-loaded CaANCs on excised human skin led to a significant accumulation of the active molecules in the upper layers of the skin, asserting the potential of these nanocarriers in active pharmaceutical and cosmetic ingredients topical delivery.

  10. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China.

    PubMed

    Liu, Dong-jun; Li, Li

    2015-06-23

    For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field.

  11. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China

    PubMed Central

    Liu, Dong-jun; Li, Li

    2015-01-01

    For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field. PMID:26110332

  12. Application of a novel sampling bailer device for the analysis of dissolved methane concentrations in municipal wastewater during and following anaerobic treatment.

    PubMed

    Beale, David J; Muster, Tim H; Low, Jason; Trickey, Mark

    2016-01-01

    Modern wastewater utilities need to be able to measure and quantify the amount of methane from their treatment facilities in order to understand the potential energy that can be produced and the amount of methane being lost. This paper describes the application of a novel sampling bailer designed for the collection of wastewater samples that minimises methane losses. Samples collected during and following anaerobic treatment from a wastewater treatment plant using a novel sampling bailer were analysed using a previously optimised analytical method. Analysis of wastewater and anaerobic pond samples using current industry approaches resulted in dissolved methane concentrations ranging from 0.01 to 14.33 mg L(-1). In comparison, the modified sampling protocol resulted in concentrations ranging from 0.08 to 18.73 mg L(-1). The relative standard deviations (RSD%) of low level spikes (5.0 mg L(-1) and 0.1 mg L(-1) methane; n = 5) were found to be 2.3 and 10.3, respectively. Statistical analysis of the dissolved methane concentrations using the two different approaches demonstrated a significant difference in the recovered dissolved methane concentrations, indicating there is a greater methane recovery potential in wastewater treatment plants than previously realised, when collected using the novel sampling bailer and analysed following the optimised analytical protocol.

  13. Application of solar photo-Fenton at circumneutral pH to nanofiltration concentrates for removal of pharmaceuticals in MWTP effluents.

    PubMed

    Miralles-Cuevas, S; Oller, I; Pérez, J A Sánchez; Malato, S

    2015-01-01

    In view of the inefficient elimination of micro-pollutants by today's conventional biological treatments and new legislation requiring elimination of at least 80 % of their concentration, the application of an advanced tertiary treatment must be studied. A good option would be advanced oxidation processes (AOPs), which have very often been combined with physicochemical pre-treatSments to increase efficiency or reduce operating costs. This study focused on the combination of membrane nanofiltration and solar photo-Fenton for the main purpose of removing five pharmaceuticals (sulfamethoxazole, ibuprofen, ofloxacin, carbamazepine and flumequine) from real MWTP effluents under realistic conditions (μg L(-1)). This research also included tests performed with modified photo-Fenton using a low iron concentration at circumneutral pH and a low hydrogen peroxide dose, in an attempt to reduce major treatment costs. Over 80 % of dissolved organic carbon, chemical oxygen demand and turbidity were also retained during nanofiltration, making pharmaceutical removal less efficient in terms of concentrate treatment time than direct treatment, i.e. the concentrate illumination time was around 150 min while direct treatment was around 40 min. Nevertheless, it should be highlighted that, although no savings in installation costs was observed for the combined system (nanofiltration/solar photo-Fenton), the reaction rate improved and so, there was a savings in reagent costs (mainly hydrogen peroxide and sulfuric acid).

  14. Measurements of blood flow and blood concentration change using laser speckle in fiber illumination and its application to estimation of stress condition

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Shinohara, Tomomi; Funamizu, Hideki; Kyoso, Masaki; Shimatani, Yuichi; Yuasa, Tomonori; Aizu, Yoshihisa

    2016-11-01

    Speckle imaging method is useful for monitoring of blood flow in living bodies. We have proposed so far the method for simultaneous imaging of blood flow and blood concentration change using laser speckle patterns at two wavelengths. However, our conventional measurement system has difficulty in adjusting the illuminating optical axis of two laser sources. Therefore, we introduce a novel arrangement using a coaxial fiber illumination in the detection of speckle patterns in two wavelengths. By this arrangement, the blood flow can be stably analyzed with a frame rate using an estimation parameter proposed by the authors based on the spatial contrast of speckle patterns. This parameter is useful for estimating an autonomic nervous function which reflects stress conditions caused by tension and excitement. In this study, we present measurements of the blood flow and blood concentration change in the fiber illumination, and its application to estimation of stress condition.

  15. Cadmium concentration and distribution in corn (Zea mays L.) grown on a calcareous soil for three years after three annual sludge applications.

    PubMed

    Webber, L R; Beauchamp, E G

    1979-01-01

    The disposal of digested sewage sludge on crop-producing land appeals to municipalities as an option but may pose a hazard to human and animal health if the plant material contains elevated levels of some heavy metals. This paper reports the levels of cadmium in corn grain and stover for six years -- three years with sludge applied annually and for three years after sludge applications were terminated. The cadmium concentration in corn grain from the sixth year was similar to values found in corn grown on non-sludged plots. In corn stover from treated plots the cadmium concentration was greater than from untreated plots. Our study indicated that phytotoxic levels of cadmium did not exist even though elevated levels occurred in the corn stover.

  16. Immediate response of Ca2+ concentration in myocardial cells against oxidation stress by extracellular photosensitization reaction using Talaporfin sodium for the arrhythmia treatment application

    NASA Astrophysics Data System (ADS)

    Ogawa, Emiyu; Takahashi, Mei; Ito, Arisa; Arai, Tsunenori

    2014-02-01

    We studied the immediate response of myocardial cells by continuous observation using confocal microscope against oxidation stress by extracellular photosensitization reaction using Talaporfin sodium for tachyarrhythmia treatment application. Immediate response in order from several seconds to several minutes is required for the arrhythmia treatment since operators should judge the therapeutic effect during the tachyarrhythmia ablation procedure. To understand the immediate response of myocardial cells, we measured the intracellular Ca2+ concentration using fluo-4 AM during and after the extracellular photosensitization reaction. Talaporfin sodium concentration was varied 10-30 μg/ml. A red diode laser of 663 nm in wavelength was irradiated under the microscope with the radiant exposure of 40 J/cm2 and irradiance of 0.29 W/cm2. We observed the fluorescence image of fluo-4 AM each 400 ms during until 10 min after the photosensitization reaction. The myocardial cell beatings were stopped about 2 s after the beginning of the laser irradiation. The blebs were formed with the Ca2+ inflow. The intracellular Ca2+ was re-decreased after the bleb formation and then the cell necrosis was induced. The cell lethality 10 min after the laser irradiation was less than bleb formation ratio. The time response of the cell necrosis was shortened with the photosensitizer concentration increasing and the minimum average value was 209 s in the case of the 30 μg/ml in photosensitizer concentration and 40 J/cm2 in the radiant exposure. We think this extracellular photosensitization reaction may be applicable to tachyarrhythmia treatment in terms of its immediate response.

  17. Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants

    PubMed Central

    Antoniou, Chrystalla; Filippou, Panagiota; Mylona, Photini; Fasoula, Dionysia; Ioannides, Ioannis; Polidoros, Alexios; Fotopoulos, Vasileios

    2013-01-01

    Nitric oxide (NO) is a bioactive molecule involved in numerous biological events that has been reported to display both pro-oxidant and antioxidant properties in plants. Several reports exist which demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the expression regulation of many antioxidant enzymes. This study attempts to provide a novel insight into the effect of application of low (100 μΜ) and high (2.5 mM) concentrations of SNP on the nitrosative status and nitrate metabolism of mature (40 d) and senescing (65 d) Medicago truncatula plants. Higher concentrations of SNP resulted in increased NO content, cellular damage levels and reactive oxygen species (ROS) concentration, further induced in older tissues. Senescing M. truncatula plants demonstrated greater sensitivity to SNP-induced oxidative and nitrosative damage, suggesting a developmental stage-dependent suppression in the plant’s capacity to cope with free oxygen and nitrogen radicals. In addition, measurements of the activity of nitrate reductase (NR), a key enzyme involved in the generation of NO in plants, indicated a differential regulation in a dose and time-dependent manner. Furthermore, expression levels of NO-responsive genes (NR, nitrate/nitrite transporters) involved in nitrogen assimilation and NO production revealed significant induction of NR and nitrate transporter during long-term 2.5 mM SNP application in mature plants and overall gene suppression in senescing plants, supporting the differential nitrosative response of M. truncatula plants treated with different concentrations of SNP. PMID:23838961

  18. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    SciTech Connect

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yields from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.

  19. Application of the quartz crystal microbalance to measurement of the concentration of electrolyte in lead-acid batteries

    SciTech Connect

    Charlesworth, J.M.; Garrard, W.N.C.

    1995-12-01

    The density of the electrolyte in a lead-acid battery may change by 10-20% during the discharge-charge cycle and the value within this range can be used as an indication of the fraction of available energy stored in the battery. We describe the application of a quartz crystal microbalance to the determination of the density of sulphuric acid solutions over a range of temperatures and during the discharge of a typical lead-acid battery. The sensor response varied linearly with temperature and in a quadratic manner with the density of the solution. Good agreement with the theoretically predicted behavior of thickness shear mode oscillators immersed in liquids was observed. The sensor performed well in the laboratory experiments using artificial conditions; however, initial studies using the sensor in a lead-acid battery operating under real conditions revealed that stray capacitances could influence the oscillator stability.

  20. Design and evaluation of a high temperature/pressure supercritical carbon dioxide direct tubular receiver for concentrating solar power applications

    NASA Astrophysics Data System (ADS)

    Ortega, Jesus Daniel

    This work focuses on the development of a solar power thermal receiver for a supercritical-carbon dioxide (sCO2), Brayton power-cycle to produce ~1 MWe. Closed-loop sCO2 Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. High temperatures (923--973 K) and pressures (20--25 MPa) are required in the solar receiver to achieve thermal efficiencies of ~50%, making concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. In this study, the CSP receiver is required to achieve an outlet temperature of 923 K at 25 MPa or 973 K at 20 MPa to meet the operating needs. To obtain compatible receiver tube material, an extensive material review was performed based the ASME Boiler and Pressure Vessel Code, ASME B31.1 and ASME B313.3 codes respectively. Subsequently, a thermal-structural model was developed using a commercial computational fluid (CFD) dynamics and structural mechanics software for designing and analyzing the tubular receiver that could provide the heat input for a ~2 MWth plant. These results were used to perform an analytical cumulative damage creep-fatigue analysis to estimate the work-life of the tubes. In sequence, an optical-thermal-fluid model was developed to evaluate the resulting thermal efficiency of the tubular receiver from the NSTTF heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. The K-ω SST turbulence model and P-1 radiation model used in Fluent were coupled with SolTrace to provide the heat flux distribution on the receiver surface. The creep-fatigue analysis displays the damage accumulated due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. The receiver surface temperatures were found to be within the safe

  1. Error analysis for reducing noisy wide-gap concentric cylinder rheometric data for nonlinear fluids - Theory and applications

    NASA Technical Reports Server (NTRS)

    Borgia, Andrea; Spera, Frank J.

    1990-01-01

    This work discusses the propagation of errors for the recovery of the shear rate from wide-gap concentric cylinder viscometric measurements of non-Newtonian fluids. A least-square regression of stress on angular velocity data to a system of arbitrary functions is used to propagate the errors for the series solution to the viscometric flow developed by Krieger and Elrod (1953) and Pawlowski (1953) ('power-law' approximation) and for the first term of the series developed by Krieger (1968). A numerical experiment shows that, for measurements affected by significant errors, the first term of the Krieger-Elrod-Pawlowski series ('infinite radius' approximation) and the power-law approximation may recover the shear rate with equal accuracy as the full Krieger-Elrod-Pawlowski solution. An experiment on a clay slurry indicates that the clay has a larger yield stress at rest than during shearing, and that, for the range of shear rates investigated, a four-parameter constitutive equation approximates reasonably well its rheology. The error analysis presented is useful for studying the rheology of fluids such as particle suspensions, slurries, foams, and magma.

  2. Contol of Surface Mounted Permanent Magnet Motors with Special Application to Motors with Fractional-Slot Concentrated Windings

    SciTech Connect

    Patil, N.; Lawler, J.S.; McKeever, J.

    2007-07-31

    A 30-pole, 6-kW prototype of a fractional-slot permanent magnet synchronous motor (PMSM) design has been developed to operate at a maximum speed of 6000 rpm [1,2]. This machine has significantly more inductance than regular PMSMs with distributed windings. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a suitable controller. To prepare for this test/control development effort, ORNL used PMSM models developed over a number of previous studies to preview the control issues that arise when a dynamic controller drives a high inductance PMSM machine during steady state performance evaluations. The detailed steady state model developed includes all motor and inverter loss mechanisms and was useful for assessing the performance of the dynamic controller before it was put into operation. This report documents the results of tests demonstrating the effectiveness of ORNL's simple low-cost control scheme during characterization of the fractional-slot concentrated windings (FSCW) PMSM motor. The control scheme is simple because only the supply voltage magnitude and the phase angle between the back-electromotive force (emf) and the supply voltage is controlled. It is low-cost because it requires no current or phase voltage sensors.

  3. Application of extraction chromatography to the separation of thorium and uranium dissolved in a solution of high salt concentration.

    PubMed

    Fujiwara, Asako; Kameo, Yutaka; Hoshi, Akiko; Haraga, Tomoko; Nakashima, Mikio

    2007-01-26

    Extraction chromatography with commercially available UTEVA resin (for uranium and tetravalent actinide) was applied for the separation of Th and U from control solutions prepared from a multi-element control solution and from sample solutions of solidified simulated waste. Thorium and U in control solutions with 1-5mol/dm(3) HNO(3) were extracted with UTEVA resin and recovered with a solution containing 0.1mol/dm(3) HNO(3) and 0.05mol/dm(3) oxalic acid to be separated from the other metallic elements. Extraction behavior of U in the sample solutions was similar to that in the control solutions, but extraction of Th was dependent on the concentration of HNO(3). Thorium was extracted from 5mol/dm(3) HNO(3) sample solutions but not from 1mol/dm(3) HNO(3) sample solutions. We conjecture that thorium fluoride formation interferes with extraction of Th. Addition of Al(NO(3))(3) and Fe(NO(3))(3), which have higher stability constant with fluoride ion than Th, does improve extractability of Th from 1mol/dm(3) HNO(3) sample solution.

  4. A Novel Application for Low Frequency Electrochemical Impedance Spectroscopy as an Online Process Monitoring Tool for Viable Cell Concentrations

    PubMed Central

    Slouka, Christoph; Wurm, David J.; Brunauer, Georg; Welzl-Wachter, Andreas; Spadiut, Oliver; Fleig, Jürgen; Herwig, Christoph

    2016-01-01

    New approaches in process monitoring during industrial fermentations are not only limited to classical pH, dO2 and offgas analysis, but use different in situ and online sensors based on different physical principles to determine biomass, product quality, lysis and far more. One of the very important approaches is the in situ accessibility of viable cell concentration (VCC). This knowledge provides increased efficiency in monitoring and controlling strategies during cultivations. Electrochemical impedance spectroscopy—EIS—is used to monitor biomass in a fermentation of E. coli BL21(DE3), producing a recombinant protein using a fed batch-based approach. Increases in the double layer capacitance (Cdl), determined at frequencies below 1 kHz, are proportional to the increase of biomass in the batch and fed batch phase, monitored in offline and online modes for different cultivations. A good correlation of Cdl with cell density is found and in order to get an appropriate verification of this method, different state-of-the-art biomass measurements are performed and compared. Since measurements in this frequency range are largely determined by the double layer region between the electrode and media, rather minor interferences with process parameters (aeration, stirring) are to be expected. It is shown that impedance spectroscopy at low frequencies is a powerful tool for cultivation monitoring. PMID:27845720

  5. Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium

    PubMed Central

    Nam, Sun-Hwa; Lee, Woo-Mi

    2012-01-01

    Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU’s hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation methodAcute to chronic ratio (SEMACR), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 μg/l and 0.034 μg/l, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea. PMID:24278601

  6. Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry.

    PubMed

    Węgiel, Krystian; Jedlińska, Katarzyna; Baś, Bogusław

    2016-06-05

    A study of a new type of mercury-free working electrode - the bismuth bulk annular band working electrode (BiABE) - applied for thallium(I) detection via differential pulse anodic stripping voltammetry (DP ASV), preceded by the complexation of interfering ions (Cd(2+), Pb(2+)) with EDTA in an acetate buffer (pH 4.5), is reported. The optimisation of experimental conditions included selection of the appropriate supporting electrolyte solution, potential and time of preconcentration, and DP mode parameters. The peak current was proportional to the concentration of Tl(I) in the range from 0.5 to 49nmolL(-1) (R=0.9992) and from 0.05 to 1.4nmolL(-1) (R=0.9987) for accumulation times of 60s and 300s, respectively. For 60s of accumulation time, the LOD was 0.005nmolL(-1) (1ngL(-1)) (at S/N=3), and the sensitivity of 18.5nA/nM was achieved. The relative standard deviation for 4.9nmolL(-1) of Tl(I) was 4.3% (n=5). Finally, the proposed method was successfully applied to determine Tl(I) in the certified reference materials-waters (SPS-SW1 and SPS-SW2) as well as the spiked tap and river water samples.

  7. Application of self-organising maps towards segmentation of soybean samples by determination of amino acids concentration.

    PubMed

    Silva, Lívia Ramazzoti Chanan; Angilelli, Karina Gomes; Cremasco, Hágata; Romagnoli, Érica Signori; Galão, Olívio Fernandes; Borsato, Dionisio; Moraes, Larissa Alexandra Cardoso; Mandarino, José Marcos Gontijo

    2016-09-01

    Soybeans are widely used both for human nutrition and animal feed, since they are an important source of protein, and they also provide components such as phytosterols, isoflavones, and amino acids. In this study, were determined the concentrations of the amino acids lysine, histidine, arginine, asparagine, glutamic acid, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine present in 14 samples of conventional soybeans and 6 transgenic, cultivated in two cities of the state of Paraná, Londrina and Ponta Grossa. The results were tabulated and presented to a self-organising map for segmentation according planting regions and conventional or transgenic varieties. A network with 7000 training epochs and a 10 × 10 topology was used, and it proved appropriate in the segmentation of the samples using the data analysed. The weight maps provided by the network, showed that all the amino acids were important in targeting the samples, especially isoleucine. Three clusters were formed, one with only Ponta Grossa samples (including transgenic (PGT) and common (PGC)), a second group with Londrina transgenic (LT) samples and the third with Londrina common (LC) samples.

  8. Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium.

    PubMed

    Nam, Sun-Hwa; Lee, Woo-Mi; An, Youn-Joo

    2012-06-01

    Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU's hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation methodAcute to chronic ratio (SEMACR), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 μg/l and 0.034 μg/l, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea.

  9. Rotational cars application to simultaneous and multiple-point temperature and concentration determination in a turbulent flow

    NASA Technical Reports Server (NTRS)

    Snow, J. B.; Murphy, D. V.; Chang, R. K.

    1984-01-01

    Coherent Anti-stokes Raman Scattering (CARS) from the pure rotational Raman lines of N2 is employed to measure the instantaneous rotational temperature of N2 gas at room temperature and below with good spatial resolution. A broad-bandwidth dye laser is used to obtain the entire rotational spectrum from a signal laser pulse; the CARS signal is then dispersed by a spectrograph and recorded on an optical multichannel analyzer. A best-fit temperature is found in several seconds with the aid of a computer for each experimental spectrum by a least squares comparison with calculated spectra. The model used to calculate the theoretical spectra incorporates the temperature and pressure dependence of the pressure-broadened rotational Raman lines, includes the nonresonant background susceptibility, and assumes that the pump laser has a finite linewidth. Temperatures are fit to experimental spectra recorded over the temperature range of 135 to 296K, and over the pressure range of 0.13 to 15.3 atm. In addition to the spatially resolved single point work, we have used multipoint CARS to obtain information from many spatially resolved volume elements along a cylindrical line (0.1 x 0.1 x 2.0 mm). We also obtained qualitative information on the instantaneous species concentration and temperature at 20 spatially resolved volume elements (0.1 x 0.1 x 0.1 mm) along a line.

  10. The Applicability of the Distribution Coefficient, KD, Based on Non-Aggregated Particulate Samples from Lakes with Low Suspended Solids Concentrations

    PubMed Central

    Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian

    2015-01-01

    Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, KD. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in KD were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the KD (n = 15 for each metal, p > 0.05) for Mn (r2 = 0.0063), Cu (r2 = 0.0002, Cr (r2 = 0.021), Ni (r2 = 0.0023), Cd (r2 = 0.00001), Co (r2 = 0.096), Hg (r2 = 0.116) or Pb (r2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of KD. The findings conform to the increasingly documented theory that the use of KD in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water. PMID:26200885

  11. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  12. Manufacture and optimization of low-cost tubular ceramic supports for membrane filtration: application to algal solution concentration.

    PubMed

    Issaoui, Mansour; Limousy, Lionel; Lebeau, Bénédicte; Bouaziz, Jamel; Fourati, Mohieddine

    2017-01-05

    Low-cost tubular macroporous supports for ceramic membranes were elaborated using the extrusion method, followed by curing, debinding, and sintering processes, from a powder mixture containing kaolin, starch, and sand. The obtained substrates were characterized using mercury intrusion porosimetry, water absorption test, water permeability, scanning electron microscopy, and three-point bending test to evaluate the effects of the additives on the relevant characteristics. According to experimental results, adding the starch ratio to the kaolin powder shows a notable impact on the membrane porosity and consequently on the water permeability of the tubular supports, whereas their mechanical strength decreased compared to those prepared from kaolin alone. It has been shown that the addition of an appropriate amount of starch to the ceramic paste leads to obtaining membrane supports with the desired porosity. Indeed, the water permeability increased significantly from 20 to 612 L h(-1) m(-2) bar(-1) for samples without and with 20 wt% of starch, respectively, as well as the open porosity, the apparent porosity, and the pore size distribution. The bending strength decreased slightly and reached about 4 MPa for samples with the highest starch amounts. On the other hand, the incorporation of sand in a mixture of kaolin + 10 wt% starch increased the mechanical strength and the water permeability. The samples containing 3 wt% of sand exhibited a bending strength four times higher than the supports without sand; the water permeability measured was about 221 L h(-1) m(-2) bar(-1). These elaborated tubular supports for membrane are found to be suitable for solution concentration; they were applied for algal solution and are also easily cleaned by water.

  13. Stable binding of alternative protein-enriched food matrices with concentrated cranberry bioflavonoids for functional food applications.

    PubMed

    Grace, Mary H; Guzman, Ivette; Roopchand, Diana E; Moskal, Kristin; Cheng, Diana M; Pogrebnyak, Natasha; Raskin, Ilya; Howell, Amy; Lila, Mary Ann

    2013-07-17

    Defatted soy flour (DSF), soy protein isolate (SPI), hemp protein isolate (HPI), medium-roast peanut flour (MPF), and pea protein isolate (PPI) stably bind and concentrate cranberry (CB) polyphenols, creating protein/polyphenol-enriched matrices. Proanthocyanidins (PAC) in the enriched matrices ranged from 20.75 mg/g (CB-HPI) to 10.68 mg/g (CB-SPI). Anthocyanins (ANC) ranged from 3.19 mg/g (CB-DSF) to 1.68 mg/g (CB-SPI), whereas total phenolics (TP) ranged from 37.61 mg/g (CB-HPI) to 21.29 mg/g (CB-SPI). LC-MS indicated that the enriched matrices contained all identifiable ANC, PAC, and flavonols present in CB juice. Complexation with SPI stabilized and preserved the integrity of the CB polyphenolic components for at least 15 weeks at 37 °C. PAC isolated from enriched matrices demonstrated comparable antiadhesion bioactivity to PAC isolated directly from CB juice (MIC 0.4-0.16 mg/mL), indicating their potential utility for maintenance of urinary tract health. Approximately 1.0 g of polyphenol-enriched matrix delivered the same amount of PAC available in 1 cup (300 mL) of commercial CB juice cocktail, which has been shown clinically to be the prophylactic dose for reducing recurring urinary tract infections. CB-SPI inhibited Gram-positive and Gram-negative bacterial growth. Nutritional and sensory analyses indicated that the targeted CB-matrix combinations have high potential for incorporation in functional food formulations.

  14. Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; Werth, Charles J.; Valocchi, Albert J.

    2016-07-01

    Characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydrogeophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with "big data" processing and numerous large-scale numerical simulations. To tackle such difficulties, the principal component geostatistical approach (PCGA) has been proposed as a "Jacobian-free" inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed in the traditional inversion methods. PCGA can be conveniently linked to any multiphysics simulation software with independent parallel executions. In this paper, we extend PCGA to handle a large number of measurements (e.g., 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data were compressed by the zeroth temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Only about 2000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method.

  15. Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging

    SciTech Connect

    Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; Werth, Charles J.; Valocchi, Albert J.

    2016-06-09

    When characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydro-geophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with “big data” processing and numerous large-scale numerical simulations. To tackle such difficulties, the Principal Component Geostatistical Approach (PCGA) has been proposed as a “Jacobian-free” inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed in the traditional inversion methods. PCGA can be conveniently linked to any multi-physics simulation software with independent parallel executions. In our paper, we extend PCGA to handle a large number of measurements (e.g. 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data was compressed by the zero-th temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Moreover, only about 2,000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method. This article is protected by copyright. All rights reserved.

  16. Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging

    DOE PAGES

    Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; ...

    2016-06-09

    When characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydro-geophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with “big data” processing and numerous large-scale numerical simulations. To tackle such difficulties, the Principal Component Geostatistical Approach (PCGA) has been proposed as a “Jacobian-free” inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed inmore » the traditional inversion methods. PCGA can be conveniently linked to any multi-physics simulation software with independent parallel executions. In our paper, we extend PCGA to handle a large number of measurements (e.g. 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data was compressed by the zero-th temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Moreover, only about 2,000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method. This article is protected by copyright. All rights reserved.« less

  17. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications

    SciTech Connect

    Kim, T.; Singh, D.; Singh, M.

    2015-05-01

    Graphite foam with extremely high thermal conductivity has been investigated to enhance heat transfer of latent heat thermal energy storage (LHTES) systems. However, the use of graphite foam for elevated temperature applications (>600 °C) is limited due to poor oxidation resistance of graphite. In the present study, oxidation resistance of graphite foam coated with silicon carbide (SiC) was investigated. A pre-ceramic polymer derived coating (PDC) method was used to form a SiC coating on the graphite foams. Post coating deposition, the samples were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The oxidation resistance of PDC-SiC coating was quantified by measuring the weight of the samples at several measuring points. The experiments were conducted under static argon atmosphere in a furnace. After the experiments, oxidation rates (%/hour) were calculated to predict the lifetime of the graphite foams. The experimental results showed that the PDC-SiC coating could prevent the oxidation of graphite foam under static argon atmosphere up to 900 °C.

  18. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications

    DOE PAGES

    Kim, T.; Singh, D.; Singh, M.

    2015-05-01

    Graphite foam with extremely high thermal conductivity has been investigated to enhance heat transfer of latent heat thermal energy storage (LHTES) systems. However, the use of graphite foam for elevated temperature applications (>600 °C) is limited due to poor oxidation resistance of graphite. In the present study, oxidation resistance of graphite foam coated with silicon carbide (SiC) was investigated. A pre-ceramic polymer derived coating (PDC) method was used to form a SiC coating on the graphite foams. Post coating deposition, the samples were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The oxidation resistance of PDC-SiC coating was quantifiedmore » by measuring the weight of the samples at several measuring points. The experiments were conducted under static argon atmosphere in a furnace. After the experiments, oxidation rates (%/hour) were calculated to predict the lifetime of the graphite foams. The experimental results showed that the PDC-SiC coating could prevent the oxidation of graphite foam under static argon atmosphere up to 900 °C.« less

  19. Evaluation of NO(x) flue gas analyzers for accuracy and their applicability for low-concentration measurements.

    PubMed

    Gluck, Steven; Glenn, Chuck; Logan, Tim; Vu, Bac; Walsh, Mike; Williams, Pat

    2003-06-01

    The requirements of the Texas State Implementation Plan of the U.S. Clean Air Act for the Houston-Galveston Ozone Nonattainment Area stipulate large reductions in oxides of nitrogen (NO(x)) emissions. A large number of sources at Dow Chemical Co. sites within the nonattainment area may require the addition of continuous emission monitoring systems (CEMS) for online analysis of NO(x), CO, and O2. At the outset of this work, it was not known whether the analyzers could accurately measure NO(x) as low as 2 ppm. Therefore, NO(x) CEMS analyzers from five different companies were evaluated for their ability to reliably measure NO(x) in the 2-20 ppm range. Testing was performed with a laboratory apparatus that accurately simulated different mixtures of flue gas and, on a limited basis, simulated a dual-train sampling system on a gas turbine. The results indicate that this method is a reasonable approach for analyzer testing and reveal important technical performance aspects for accurate NO(x) measurements. Several commercial analyzers, if installed in a CEMS application with sampling conditioning components similar to those used in this study, can meet the U.S. Environmental Protection Agency's measurement data quality requirements for accuracy.

  20. A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Wei, Wei; Liu, Yuanyuan; Qin, Zengguang

    2017-03-01

    A portable analog lock-in amplifier capable of accurate phase detection is proposed in this paper. The proposed lock-in amplifier, which uses the dual-channel orthometric signals as the references to build the xy coordinate system, can detect the relative phase between the input and x-axis based on trigonometric function. The sensitivity of the phase measurement reaches 0.014 degree, and a detection precision of 0.1 degree is achieved. At the same time, the performance of the lock-in amplifier is verified in the high precision optical oxygen concentration detection. Experimental results reveal that the portable analog lock-in amplifier is accurate for phase detection applications. In the oxygen sensing experiments, 0.058% oxygen concentration resulted in 0.1 degree phase shift detected by the lock-in amplifier precisely. In addition, the lock-in amplifier is small and economical compared with the commercial lock-in equipments, so it can be easily integrated in many portable devices for industrial applications.

  1. Optimization of BaZrO3 concentration as secondary phase in superconducting YBa2Cu3O7 for high current applications

    NASA Astrophysics Data System (ADS)

    Malik, Bilal A.; Malik, Manzoor A.; Asokan, K.

    2016-04-01

    We report the superconducting state properties of YBa2Cu3O7 (YBCO) on introduction of BaZrO3 (BZO) as a secondary phase. YBCO+xBZO (x= 0, 2, 4, 6, and 10 wt%) composite samples were prepared by solid state reaction method and characterized for structural, morphological and superconducting properties. X-ray diffraction confirms the increased crystallinity and images of scanning electron microscopy measurement show an increase in both grain size and grain connectivity on addition of BZO in YBCO. These effects are well pronounced in an applied magnetic field. Critical current density, JC, as well as the pinning force peaks at 4% of BZO concentration showed significant difference. A three-fold enhancement in JC and a six-fold enhancement in pinning force were observed at this optimum BZO concentration. This has been attributed to the pinning of flux lines in YBCO due to introduction of BZO as a secondary phase. These results show that this composite has potential application in high current applications.

  2. A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Wei, Wei; Liu, Yuanyuan; Qin, Zengguang

    2016-10-01

    A portable analog lock-in amplifier capable of accurate phase detection is proposed in this paper. The proposed lock-in amplifier, which uses the dual-channel orthometric signals as the references to build the xy coordinate system, can detect the relative phase between the input and x-axis based on trigonometric function. The sensitivity of the phase measurement reaches 0.014 degree, and a detection precision of 0.1 degree is achieved. At the same time, the performance of the lock-in amplifier is verified in the high precision optical oxygen concentration detection. Experimental results reveal that the portable analog lock-in amplifier is accurate for phase detection applications. In the oxygen sensing experiments, 0.058% oxygen concentration resulted in 0.1 degree phase shift detected by the lock-in amplifier precisely. In addition, the lock-in amplifier is small and economical compared with the commercial lock-in equipments, so it can be easily integrated in many portable devices for industrial applications.

  3. Application of an optimized flow cytometry-based quantification of Platelet Activation (PACT): Monitoring platelet activation in platelet concentrates

    PubMed Central

    Roest, Mark; Henskens, Yvonne M. C.; de Laat, Bas; Huskens, Dana

    2017-01-01

    Background Previous studies have shown that flow cytometry is a reliable test to quantify platelet function in stored platelet concentrates (PC). It is thought that flow cytometry is laborious and hence expensive. We have optimized the flow cytometry-based quantification of agonist induced platelet activation (PACT) to a labor, time and more cost-efficient test. Currently the quality of PCs is only monitored by visual inspection, because available assays are unreliable or too laborious for use in a clinical transfusion laboratory. Therefore, the PACT was applied to monitor PC activation during storage. Study design and methods The optimized PACT was used to monitor 5 PCs during 10 days of storage. In brief, optimized PACT uses a ready-to-use reaction mix, which is stable at -20°C. When needed, a test strip is thawed and platelet activation is initiated by mixing PC with PACT. PACT was based on the following agonists: adenosine diphosphate (ADP), collagen-related peptide (CRP) and thrombin receptor-activating peptide (TRAP-6). Platelet activation was measured as P-selectin expression. Light transmission aggregometry (LTA) was performed as a reference. Results Both PACT and LTA showed platelet function decline during 10-day storage after stimulation with ADP and collagen/CRP; furthermore, PACT showed decreasing TRAP-induced activation. Major differences between the two tests are that PACT is able to measure the status of platelets in the absence of agonists, and it can differentiate between the number of activated platelets and the amount of activation, whereas LTA only measures aggregation in response to an agonist. Also, PACT is more time-efficient compared to LTA and allows high-throughput analysis. Conclusion PACT is an optimized platelet function test that can be used to monitor the activation of PCs. PACT has the same accuracy as LTA with regard to monitoring PCs, but it is superior to both LTA and conventional flow cytometry based tests with regard to labor

  4. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Motors with Concentrated Windings

    SciTech Connect

    McKeever, John W; Patil, Niranjan; Lawler, Jack

    2007-07-01

    A 30 pole, 6 kW, and 6000 maximum revolutions per minute (rpm) prototype of the permanent magnet synchronous motor (PMSM) with fractional-slot concentrated windings (FSCW) has been designed, built, and tested at the University of Wisconsin at Madison (UWM). This machine has significantly more inductance than that of regular PMSMs. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a controller that will achieve maximum efficiency. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study how steady state performance of high inductance PMSM machines relates to control issues. This report documents the results of this research. The amount of inductance that enables the motor to achieve infinite constant power speed ratio (CPSR) is given by L{sub {infinity}} = E{sub b}/{Omega}{sub b}I{sub R}, where E{sub b} is the root-mean square (rms) magnitude of the line-to-neutral back-electromotive force (emf) at base speed, {Omega}{sub b} is the base speed in electrical radians per second, and I{sub R} is the rms current rating of the motor windings. The prototype machine that was delivered to ORNL has about 1.5 times as much inductance as a typical PMSM with distributed integral slot windings. The inventors of the FSCW method, who designed the prototype machine, remarked that they were 'too successful' in incorporating inductance into their machine and that steps would be taken to modify the design methodology to reduce the inductance to the optimum value. This study shows a significant advantage of having the higher inductance rather than the optimal value because it enables the motor to develop the required power at lower current thereby reducing motor and inverter losses and improving efficiency. The main problem found with high inductance machines driven by a conventional phase advance (CPA) method is that the motor current at high

  5. Impact of nitrogen concentration on the performance of LaAlO3(1-y/2)Ny films for high-k gate dielectric applications

    NASA Astrophysics Data System (ADS)

    Shi, G. H.; Lu, X. B.; Kong, X. K.; Liu, Z. G.

    2005-02-01

    A series of LaAlO3(1-y/2)Ny (LAON) films with different nitrogen concentrations have been prepared by pulsed laser deposition on Pt-coated silicon substrates and directly on hydrogen terminated Si (100) substrates using LaAlO3(1-y/2)Ny ceramic targets with y = 0, 0.2, 0.4, 0.8 and 1, respectively. All the films as deposited at a substrate temperature of 600°C and in 20 Pa nitrogen ambient have amorphous structures. Their crystallization temperatures are not less than 845°C. For ease of comparison, all the films are deposited under the same deposition conditions and all the films deposited on hydrogen terminated silicon (100) substrates have the same physical thickness of 9 nm. The dielectric constant of the materials as well as the equivalent oxide thickness (EOT) and the leakage current density of the Pt/LAON/Si structures as functions of nitrogen concentration of the films were studied systematically and determined. It is found that with a dielectric constant of 33, an EOT of 2 nm and a leakage current density of 11.5 mA cm-2 at 1 V, the LAON films with y = 0.4 exhibited optimal properties for high-k gate dielectric applications. The reasons for the excellent performance of the films with this nitrogen concentration were discussed.

  6. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications

    NASA Astrophysics Data System (ADS)

    Landry, Guillaume; Parodi, Katia; Wildberger, Joachim E.; Verhaegen, Frank

    2013-08-01

    Dedicated methods of in-vivo verification of ion treatment based on the detection of secondary emitted radiation, such as positron-emission-tomography and prompt gamma detection require high accuracy in the assignment of the elemental composition. This especially concerns the content in carbon and oxygen, which are the most abundant elements of human tissue. The standard single-energy computed tomography (SECT) approach to carbon and oxygen concentration determination has been shown to introduce significant discrepancies in the carbon and oxygen content of tissues. We propose a dual-energy CT (DECT)-based approach for carbon and oxygen content assignment and investigate the accuracy gains of the method. SECT and DECT Hounsfield units (HU) were calculated using the stoichiometric calibration procedure for a comprehensive set of human tissues. Fit parameters for the stoichiometric calibration were obtained from phantom scans. Gaussian distributions with standard deviations equal to those derived from phantom scans were subsequently generated for each tissue for several values of the computed tomography dose index (CTDIvol). The assignment of %weight carbon and oxygen (%wC,%wO) was performed based on SECT and DECT. The SECT scheme employed a HU versus %wC,O approach while for DECT we explored a Zeff versus %wC,O approach and a (Zeff, ρe) space approach. The accuracy of each scheme was estimated by calculating the root mean square (RMS) error on %wC,O derived from the input Gaussian distribution of HU for each tissue and also for the noiseless case as a limiting case. The (Zeff, ρe) space approach was also compared to SECT by comparing RMS error for hydrogen and nitrogen (%wH,%wN). Systematic shifts were applied to the tissue HU distributions to assess the robustness of the method against systematic uncertainties in the stoichiometric calibration procedure. In the absence of noise the (Zeff, ρe) space approach showed more accurate %wC,O assignment (largest error of

  7. Aerial Application of Mancozeb and Urinary Ethylene Thiourea (ETU) Concentrations among Pregnant Women in Costa Rica: The Infants’ Environmental Health Study (ISA)

    PubMed Central

    Mora, Ana María; Córdoba, Leonel; Cano, Juan Camilo; Quesada, Rosario; Faniband, Moosa; Wesseling, Catharina; Ruepert, Clemens; Öberg, Mattias; Eskenazi, Brenda; Mergler, Donna; Lindh, Christian H.

    2014-01-01

    Background: Mancozeb and its main metabolite ethylene thiourea (ETU) may alter thyroid function; thyroid hormones are essential for fetal brain development. In Costa Rica, mancozeb is aerially sprayed at large-scale banana plantations on a weekly basis. Objectives: Our goals were to evaluate urinary ETU concentrations in pregnant women living near large-scale banana plantations, compare their estimated daily intake (EDI) with established reference doses (RfDs), and identify factors that predict their urinary ETU concentrations. Methods: We enrolled 451 pregnant women from Matina County, Costa Rica, which has large-scale banana production. We visited 445 women up to three times during pregnancy to obtain urine samples (n = 872) and information on factors that possibly influence exposure. We determined urinary ETU concentrations using liquid chromatography mass spectrometry. Results: Pregnant women’s median urinary ETU concentrations were more than five times higher than those reported for other general populations. Seventy-two percent of the women had EDIs above the RfD. Women who lived closest (1st quartile, < 48 m) to banana plantations on average had a 45% (95% CI: 23, 72%) higher urinary ETU compared with women who lived farthest away (4th quartile, ≥ 565 m). Compared with the other women, ETU was also higher in women who washed agricultural work clothes on the day before sampling (11%; 95% CI: 4.9, 17%), women who worked in agriculture during pregnancy (19%; 95% CI: 9.3, 29%), and immigrant women (6.2%; 95% CI: 1.0, 13%). Conclusions: The pregnant women’s urinary ETU concentrations are of concern, and the principal source of exposure is likely to be aerial spraying of mancozeb. The factors predicting ETU provide insight into possibilities for exposure reduction. Citation: van Wendel de Joode B, Mora AM, Córdoba L, Cano JC, Quesada R, Faniband M, Wesseling C, Ruepert C, Öberg M, Eskenazi B, Mergler D, Lindh CH. 2014. Aerial application of mancozeb and

  8. Concentrating collectors

    SciTech Connect

    Not Available

    1981-06-01

    Selected specifications from sixteen concentrating collector manufacturers are tabulated. Eleven are linear parabolic trough collectors, and the others include slats, cylindrical trough, linear Fresnel lens, parabolic cylindrical Fresnel lens, and two point focus parabolic dish collectors. Also included is a brief discussion of the operating temperatures and other design considerations for concentrating collectors. (LEW)

  9. A flow system for generation of concentration perturbation in two-dimensional correlation near-infrared spectroscopy: application to variable selection in multivariate calibration.

    PubMed

    Pereira, Claudete Fernandes; Pasquini, Celio

    2010-05-01

    A flow system is proposed to produce a concentration perturbation in liquid samples, aiming at the generation of two-dimensional correlation near-infrared spectra. The system presents advantages in relation to batch systems employed for the same purpose: the experiments are accomplished in a closed system; application of perturbation is rapid and easy; and the experiments can be carried out with micro-scale volumes. The perturbation system has been evaluated in the investigation and selection of relevant variables for multivariate calibration models for the determination of quality parameters of gasoline, including ethanol content, MON (motor octane number), and RON (research octane number). The main advantage of this variable selection approach is the direct association between spectral features and chemical composition, allowing easy interpretation of the regression models.

  10. Application of Monitoring Methods for Remote Detection of Atmospheric CO2 - Concentration Levels during a Back-Production Test at the Ketzin Pilot Site

    NASA Astrophysics Data System (ADS)

    Schütze, Claudia; Sauer, Uta; Schossland, Andreas; Möller, Ingo; Seegert, Christian; Schlömer, Stefan; Möller, Fabian; Liebscher, Axel; Martens, Sonja; Dietrich, Peter

    2015-04-01

    Reliable detection and assessment of near-surface CO2 leakages from storage formations require the application of various monitoring tools at different spatial scales. Especially, tools for atmospheric monitoring have the potential to detect CO2 leakages over larger areas (> 10,000 m2). Within the framework of the MONACO project ('Monitoring approach for geological CO2 storage sites using a hierarchical observation concept', Geotechnologien project funded by BMBF 03G0785A), an integrative hierarchical monitoring concept was developed and validated at different field sites with the aim to establish a modular observation strategy including investigations in the shallow subsurface, at ground surface level and the lower atmospheric boundary layer. The atmospheric monitoring methods applied in the case of the CO2 back-production experiment at the Ketzin pilot site comprise point sensors to observe the near-surface CO2 concentration, micrometeorological approaches using Eddy Covariance (EC) measurements and ground-based optical remote sensing techniques based on open-path Fourier-transform infrared (OP FTIR) spectroscopy. The back-production test was performed in October 2014 and a total amount of 240 tonnes of CO2 were safely back-produced via one well from the CO2 storage reservoir over a two-week period. The main aims of the atmospheric monitoring were a) the observation of the gas dispersion in the lower atmosphere, b) the determination of maximum CO2 concentration values and c) identification of the main challenges associated with the monitoring of point source leakages with the proposed methodological set up under typical environmental conditions. The presentation will give a short introduction into the ground-based atmospheric monitoring approach and will show results obtained during the back-production field experiment. As a main result, the combination of methods was validated as suitable approach for continuous monitoring of the atmospheric CO2 concentration

  11. Rapid methods for inversion of MAXDOAS elevation profiles to surface-associated box concentrations, visibility, and heights: application to analysis of Arctic BrO events

    NASA Astrophysics Data System (ADS)

    Donohoue, D.; Carlson, D.; Simpson, W. R.

    2010-11-01

    Multiple Axis Differential Optical Absorption Spectroscopy (MAXDOAS) is a remote sensing technique that measures surface-associated trace gas profiles using simple automated instrumentation that requires very low power and is deployable at remote sites. However, the analysis of MAXDOAS data is complex and often cannot be applied rapidly or consistently over long measurement periods. Here we present three transparent methods to analyze MAXDOAS data. The box profile method finds the best trace gas layer height and surface-associated vertical column density (VCD) to simultaneously fit oxygen collisional dimer (O4) and trace gas differential slant column density (dSCD) observations. The elevated viewing method estimates the surface-associated VCD from observations at high view elevations, such as 10° and 20°. The horizon viewing method estimates the surface concentration of a trace gas by using near-horizon view trace gas and O4 data. We apply these methods to a two-month data set and show that the methods retrieve information 80% of the time and provides a consistent time series. Surface-associated trace gas VCD observations by the elevated viewing method correlate (r2 > 0.93) with the box profile method with slopes within 15% of unity. Surface-associated concentration observations from the horizon viewing method correlate well (r2 > 0.90) with the box profile method and a slope within 4% of unity. Application of these retrieval methods to UV-absorbing trace gases other than BrO is straightforward, and application in other spectral regions is discussed. These methods provide rapid and comprehensive inversions of MAXDOAS spectral data that are useful during field campaigns, as well as, verification of more complex (e.g. optimal estimate inversion) methods.

  12. Application of concentrated deep sea water inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice

    PubMed Central

    2012-01-01

    Background Mineral water from deep-sea bedrock, formed over thousands of years, is rich in minerals such as Ca, Mg, Na, K, Fe and others. Our present study was to investigate the preventive effects of natural deep-sea water on developing atopic dermatitis (AD). Methods We elicited AD by application of DNCB (2,4-dinitro-chlorobezene) in Nc/Nga mouse dorsal skin. Deep Sea water (DSW) was filtered and concentrated by a nanofiltration process and reverse osmosis. We applied concentrated DSW (CDSW) to lesions five times per week for six weeks, followed by evaluation. 1% pimecrolimus ointment was used as positive control. The severity of skin lesions was assessed macroscopically and histologically. Levels of inflammatory mediators and cytokines in the serum were detected by Enzyme-linked immunosorbent assay (ELISA) and the levels of CD4+ and CD8+ spleen lymphocytes were determined by flow cytometry analysis. Results DNCB-treated mice showed atopic dermatitis-like skin lesions. Treatment of mice with CDSW reduced the severity of symptoms in the skin lesions, including edema, erythema, dryness, itching, and transepidermal water loss (TEWL). Histological analyses demonstrated that epidermal thickness and infiltration of inflammatory cells were decreased after CDSW treatment. Given these interesting observations, we further evaluated the effect of CDSW on immune responses in this AD model. Treatment AD mice with CDSW inhibited up-regulation of IgE, histamine, and pro-inflammatory cytokines in the serum. Also, the CD4+/CD8+ ratio in spleen lymphocyte was down-regulated after treatment with CDSW. Finally, cytokines, especially IL-4 and IL-10 which are important for Th2 cell development, were reduced. Conclusions Our data suggests that topical application of CDSW could be useful in preventing the development of atopic dermatitis. PMID:22834904

  13. Agricultural pesticide applications and observed concentrations in surface waters from four drainage basins in the Central Columbia Plateau, Washington and Idaho, 1993-94

    USGS Publications Warehouse

    Wagner, R.J.; Ebbert, J.C.; Roberts, L.M.; Ryker, S.J.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, the use and occurrence of agricultural pesticides were investigated in four drainage basins--two dominated by irrigated agriculture and two by dryland agriculture--in the Central Columbia Plateau of eastern Washington. For this study, 85 pesticides or pesticide metabolites were selected for analysis from a list of nearly 400 compounds commonly used in the United States. Pesticide-use data included estimates of the total quantity of herbicides, insecticides, and fungicides applied to croplands in each of the four drainage basins and reported times of application for selected pesticides. Pesticide-occurrence data included concentrations of pesticides in samples collected at one surface-water site at or near the outflow of each of the four drainage basins, where surface waters were sampled one to five times a month from March 1993 through May 1994. Of the 85 pesticides or pesticide metabolites targeted for analysis, a total of 45 different compounds were detected in samples from the four sites, ranging in concentration from at or near the limit of detection (as low as 0.001 microgram per liter) to a maximum of 8.1 micrograms per liter. None of the concentrations of pesticides exceeded the U.S. Environmental Protection Agency (USEPA) drinking water standards, but concentrations of five pesticides exceeded the USEPA freshwater-chronic criteria for the protection of aquatic life. Forty-one different pesticides or pesticide metabolites were detected in surface waters sampled at the two sites representing irrigated agriculture drainage basins. The herbicides atrazine, DCPA, and EPTC were detected most frequently at the two sampling sites. Not all pesticides that were applied were detected, however. For example, disulfoton, phorate, and methyl parathion accounted for 15 percent of the insecticides applied in the two irrigated drainage basins, yet none of these pesticides were detected in

  14. The application of Reiki in nurses diagnosed with Burnout Syndrome has beneficial effects on concentration of salivary IgA and blood pressure.

    PubMed

    Díaz-Rodríguez, Lourdes; Arroyo-Morales, Manuel; Cantarero-Villanueva, Irene; Férnandez-Lao, Carolina; Polley, Marie; Fernández-de-las-Peñas, César

    2011-01-01

    This study aimed to investigate the immediate effects of the secretory immunoglobulin A (sIgA), α-amylase activity and blood pressure levels after the application of a Reiki session in nurses with Burnout Syndrome. A randomized, double-blind, placebo-controlled, crossover design was conducted to compare the immediate effects of Reiki versus control intervention (Hand-off sham intervention) in nurses with Burnout Syndrome. Sample was composed of eighteen nurses (aged 34-56 years) with burnout syndrome. Participants were randomly assigned to receive either a Reiki treatment or a placebo (sham Reiki) treatment, according to the established order in two different days. The ANOVA showed a significant interaction time x intervention for diastolic blood pressure (F=4.92, P=0.04) and sIgA concentration (F=4.71, P=0.04). A Reiki session can produce an immediate and statistically significant improvement in sIgA concentration and diastolic blood pressure in nurses with Burnout Syndrome.

  15. Dispersion for two classes of random variables: general theory and application to inference of an external ligand concentration by a cell.

    PubMed

    Barato, Andre C; Seifert, Udo

    2015-09-01

    We derive expressions for the dispersion for two classes of random variables in Markov processes. Random variables such as current and activity pertain to the first class, which is composed of random variables that change whenever a jump in the stochastic trajectory occurs. The second class corresponds to the time the trajectory spends in a state (or cluster of states). While the expression for the first class follows straightforwardly from known results in the literature, we show that a similar formalism can be used to derive an expression for the second class. As an application, we use this formalism to analyze a cellular two-component network estimating an external ligand concentration. The uncertainty related to this external concentration is calculated by monitoring different random variables related to an internal protein. We show that, inter alia, monitoring the time spent in the phosphorylated state of the protein leads to a finite uncertainty only if there is dissipation, whereas the uncertainty obtained from the activity of the transitions of the internal protein can reach the Berg-Purcell limit even in equilibrium.

  16. Concentrating Radioactivity

    ERIC Educational Resources Information Center

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  17. Application of the angle measure technique as image texture analysis method for the identification of uranium ore concentrate samples: New perspective in nuclear forensics.

    PubMed

    Fongaro, Lorenzo; Ho, Doris Mer Lin; Kvaal, Knut; Mayer, Klaus; Rondinella, Vincenzo V

    2016-05-15

    The identification of interdicted nuclear or radioactive materials requires the application of dedicated techniques. In this work, a new approach for characterizing powder of uranium ore concentrates (UOCs) is presented. It is based on image texture analysis and multivariate data modelling. 26 different UOCs samples were evaluated applying the Angle Measure Technique (AMT) algorithm to extract textural features on samples images acquired at 250× and 1000× magnification by Scanning Electron Microscope (SEM). At both magnifications, this method proved effective to classify the different types of UOC powder based on the surface characteristics that depend on particle size, homogeneity, and graininess and are related to the composition and processes used in the production facilities. Using the outcome data from the application of the AMT algorithm, the total explained variance was higher than 90% with Principal Component Analysis (PCA), while partial least square discriminant analysis (PLS-DA) applied only on the 14 black colour UOCs powder samples, allowed their classification only on the basis of their surface texture features (sensitivity>0.6; specificity>0.6). This preliminary study shows that this method was able to distinguish samples with similar composition, but obtained from different facilities. The mean angle spectral data obtained by the image texture analysis using the AMT algorithm can be considered as a specific fingerprint or signature of UOCs and could be used for nuclear forensic investigation.

  18. Modelling and control synthesis of a micro-combined heat and power interface for a concentrating solar power system in off-grid rural power applications

    NASA Astrophysics Data System (ADS)

    Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea

    2016-05-01

    Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.

  19. Impact of direct and indirect application of rising furfural concentrations on viability, infectivity and reproduction of the root-knot nematode, Meloidogyne incognita in Pisum sativum.

    PubMed

    Abdelnabby, Hazem; Wang, Yunhe; Xiao, Xueqiong; Wang, Gaofeng; Yang, Fan; Xiao, Yannong

    2016-07-01

    The gradual withdraw of several broadly used nematicides from market has enhanced the need to develop sustainable and eco-friendly alternatives with nematicidal properties. Furfural is one of the promising alternatives to fill this need. Baseline information about the impact of furfural on egg hatch, penetration potential and ultrastructure of nematode is lacking. In this study, the reagent-grade (purity ≥ 99.0%) of furfural was applied against Meloidogyne incognita. In vitro tests showed gradual reduction in either the rate of egg hatch or second stage juvenile (J2) viability of M. incognita when immersed in concentrations ranging from 0 to 10.0 μl/ml furfural. The mean EC50 for J2 and egg hatch was 0.37 and 0.27 μl/ml furfural, respectively. Furfural, even at low concentrations, resulted in a considerable suppression in egg hatch. Hatch was <5% after 8 days at 0.63 μl/ml furfural. The same furfural concentrations after 12 h caused 57.25% loss of viability in J2. Moreover, the penetration rate of juveniles to pea roots was suppressed when furfural was even applied at low rates. In pot experiments, furfural was applied as liquid (direct) or vapor (indirect) treatments at rates of 0-1.5 ml/kg soil. Significant reduction in galling, egg production and population density of M. incognita observed when furfural was applied at rates >0.2 ml/kg soil. No adverse effect was detected on plants or free-living nematodes as a result of furfural application. Liquid furfural proved to have superior juvenile-suppressive effect whereas its vapor has such superiority against eggs. Scanning electron microscope (SEM) study showed irregular appearance of the body surface accompanied with some cuticle disfigurement of furfural-treated juveniles. These results indicated that furfural can adversely affect egg hatch, juvenile viability, penetration potential and ultrastructure of M. incognita. Furfural may therefore be of a considerable potential as an appropriate

  20. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations.

    PubMed

    Contini, Daniele; Cesari, Daniela; Conte, Marianna; Donateo, Antonio

    2016-08-01

    The evaluation of the contribution of coal-fired thermo-electrical power plants to particulate matter (PM) is important for environmental management, for evaluation of health risks, and for its potential influence on climate. The application of receptor models, based on chemical composition of PM, is not straightforward because the chemical profile of this source is loaded with Si and Al and it is collinear with the profile of crustal particles. In this work, a new methodology, based on Positive Matrix Factorization (PMF) receptor model and Si/Al diagnostic ratio, specifically developed to discriminate the coal-fired power plant contribution from the crustal contribution is discussed. The methodology was applied to daily PM10 samples collected in central Italy in proximity of a large coal-fired power plant. Samples were simultaneously collected at three sites between 2.8 and 5.8km from the power plant: an urban site, an urban background site, and a rural site. Chemical characterization included OC/EC concentrations, by thermo-optical method, ions concentrations (NH4(+), Ca(2+), Mg(2+), Na(+), K(+), Mg(2+), SO4(2-), NO3(-), Cl(-)), by high performances ion chromatography, and metals concentrations (Si, Al, Ti, V, Mn, Fe, Ni, Cu, Zn, Br), by Energy dispersive X-ray Fluorescence (ED-XRF). Results showed an average primary contribution of the power plant of 2% (±1%) in the area studied, with limited differences between the sites. Robustness of the methodology was tested inter-comparing the results with two independent evaluations: the first obtained using the Chemical Mass Balance (CMB) receptor model and the second correlating the Si-Al factor/source contribution of PMF with wind directions and Calpuff/Calmet dispersion model results. The contribution of the power plant to secondary ammonium sulphate was investigated using an approach that integrates dispersion model results and the receptor models (PMF and CMB), a sulphate contribution of 1.5% of PM10 (±0.3%) as

  1. High-resolution monitoring of nutrients in groundwater and surface waters: process understanding, quantification of loads and concentrations, and management applications

    NASA Astrophysics Data System (ADS)

    van Geer, Frans C.; Kronvang, Brian; Broers, Hans Peter

    2016-09-01

    Four sessions on "Monitoring Strategies: temporal trends in groundwater and surface water quality and quantity" at the EGU conferences in 2012, 2013, 2014, and 2015 and a special issue of HESS form the background for this overview of the current state of high-resolution monitoring of nutrients. The overview includes a summary of technologies applied in high-frequency monitoring of nutrients in the special issue. Moreover, we present a new assessment of the objectives behind high-frequency monitoring as classified into three main groups: (i) improved understanding of the underlying hydrological, chemical, and biological processes (PU); (ii) quantification of true nutrient concentrations and loads (Q); and (iii) operational management, including evaluation of the effects of mitigation measures (M). The contributions in the special issue focus on the implementation of high-frequency monitoring within the broader context of policy making and management of water in Europe for support of EU directives such as the Water Framework Directive, the Groundwater Directive, and the Nitrates Directive. The overview presented enabled us to highlight the typical objectives encountered in the application of high-frequency monitoring and to reflect on future developments and research needs in this growing field of expertise.

  2. Viscosity measurements of antibody solutions by photon correlation spectroscopy: an indirect approach - limitations and applicability for high-concentration liquid protein solutions.

    PubMed

    Wagner, Michael; Reiche, Katharina; Blume, Alfred; Garidel, Patrick

    2013-01-01

    Photon correlation spectroscopy (PCS) is compared with classic rheological measurements using the cone-and-plate technique for the determination of the viscosity of protein solutions. The potential advantages using PCS are small sample volume and fast determination of zero-shear viscosity. The present study assesses potentials and limitations of the applicability of this method for the determination of viscosity of antibody solutions in protein science development. The principle of the assay is based on the determination of the apparent hydrodynamic radius of commercial available latex beads of known size added to protein solutions. Using the Stokes-Einstein equation, the hydrodynamic radius can be converted to viscosity. Several latex particle sizes and concentrations were evaluated and the assay optimized. The PCS assay for viscosity determination was tested using water/glycerol-mixtures, where the viscosity was measured with rheometer using the cone-and-plate method and also compared with published data. Different protein solutions of bovine serum albumin, lysozyme and monoclonal antibodies were then used and the PCS results were compared with viscosity data obtained by the cone-and-plate method. It could be shown that the PCS assay has limitations for the determination of the viscosity of protein solutions, especially monoclonal antibodies. The main reason is due to protein-latex bead interactions leading to the formation of larger aggregates. The use of surface modification of the latex beads can in principle prevent this interaction.

  3. A New Approach for Estimating Background Rates of Erosion Using Concentration of Meteoric 10-Be Adhered to River Sediment: Application to the Rapidly Eroding Waipaoa Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Reusser, L. J.; Bierman, P. R.; Pavich, M.; Finkel, R.

    2007-12-01

    New and existing data suggest that the concentration of atmospherically- produced, meteoric 10-Be adhered to river sediment provides a proxy for basin-scale erosion rates. Although the widely applied method of analyzing in situ produced 10-Be in river sediments has proven useful for estimating pre-anthropogenic rates of erosion in a variety of environments, there are lithologic limitation. In contrast, measuring the concentration of meteoric 10-Be adhered to river sediment allows erosion rate analysis in landscapes underlain by quartz-deficient or fine-grained lithologies, as well as in basins where the concentration of quartz varies spatially. By assuming that basins are in an overall isotopic steady-state, that erosion is rapid enough that decay is negligible, and that the integrated delivery rate of 10-Be from the atmosphere (D10-Be) can be estimated, basin-scale mass loss rates (Ms) can be solved by equating the 10-Be flux in from the atmosphere with the flux of 10-Be out of the basin on sediment (C10-Be) and expressed as sediment yield per unit area (Ys). Fin = Fout D10-Be * A = Ms * C10-Be Ms = (D10-Be * A)/ C10-Be Ys = D10-Be / C10-Be To validate this new approach, we examined the limited data that do exist and found reasonable correspondence between erosion rates estimated from meteoric 10-Be concentrations and estimated by other means. As a first application, we use meteoric 10-Be in river sediment to estimate basin-scale erosion rates from catchments within and near the mud-stone dominated Waipaoa River Basin draining the tectonically active east coast of New Zealand's North Island. Near total conversion of indigenous forest to pasture over the past century in the Waipaoa Basin has resulted in some of the most dramatic and widespread erosional features on the planet, and contemporary sediment yields that rank among the highest in the world (~7 million kg/(km2 * yr)). The amount of meteoric 10-Be adhered to eight river sediment samples suggests that modern

  4. Conceptual design study of concentrator enhanced solar arrays for space applications. Performance evaluation of 5 KW and 20 KW systems in Si and GaAs at 1 AU employing a flat plate trough concentrator

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A simple, efficient and very lightweight preliminary design for a 5 KW and 20 KW BOL output concentrated array evolved and is described by drawings. The relative effectiveness of this design, as compared to an unconcentrated planar array of equal power output, was measured by comparing power to mass performance of and the solar cell area required by each. Improvements in power to mass performance as high as 42% together with array area size reduction of 57% are possible in GaAs systems. By contrast, when the same concentrator design is applied to silicon systems, no improvement in power to mass can be obtained although array area reductions as high as 35% are obtainable.

  5. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    USGS Publications Warehouse

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    Inconsistencies related to changing laboratory methods were also examined via two manipulative experiments. In the first experiment, increasing and decreasing “stair-step” patterns of changes in censoring level, overall representing a factor-of-five change in the laboratory reporting limit, were artificially imposed on a 27-year record with no censoring and a period-of-record concentration trend of –68.4 percent. Trends estimated on the basis of the manipulated records were broadly similar to the original trend (–63.6 percent for decreasing censoring levels and –70.3 percent for increasing censoring levels), lending a degree of confidence that the survival regression routines upon which WRTDS is based are generally robust to data censoring. The second experiment considered an abrupt disappearance of low-concentration observations of total phosphorus, associated with a laboratory method change and not reflected through censoring, near the middle of a 28-year record. By process of elimination, an upward shift in the estimated flow-normalize concentration trend line around the same time was identified as a likely artifact resulting from the laboratory method change, although a contemporaneous change in watershed processes cannot be ruled out. Decisions as to how to treat records with potential sampling protocol or laboratory methods-related artifacts should be made on a case-by-case basis, and trend results should be appropriately qualified.

  6. Optimization of the virus concentration method using polyethyleneimine-conjugated magnetic beads and its application to the detection of human hepatitis A, B and C viruses.

    PubMed

    Uchida, Eriko; Kogi, Mieko; Oshizawa, Tadashi; Furuta, Birei; Satoh, Koei; Iwata, Akiko; Murata, Mitsuhiro; Hikata, Mikio; Yamaguchi, Teruhide

    2007-07-01

    To enhance the sensitivity of virus detection by polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR), a novel virus concentration method using polyethyleneimine (PEI)-conjugated magnetic beads was developed in our previous study. However, several viruses could not be concentrated by this method. In this paper, the conditions of virus concentration were optimized to concentrate a wide range of viruses more efficiently. The PEI beads adsorbed viruses more efficiently than other cationic polymers, and the optimum virus concentration was obtained under weak acidic conditions. Mass spectrometric analysis revealed that several serum proteins, such as complement type 3, complement type 4 and immunoglobulin M (IgM), were co-adsorbed by the PEI beads, suggesting that the beads may adsorb viruses not only by direct adsorption, but also via immune complex formation. This hypothesis was confirmed by the result that poliovirus, which PEI beads could not adsorb directly, could be concentrated by the beads via immune complex formation. On the other hand, hepatitis A (HAV) and hepatitis C (HCV) viruses were adsorbed directly by PEI beads almost completely. Like poliovirus, hepatitis B virus (HBV) was concentrated efficiently by the addition of anti-HBV IgM. In conclusion, virus concentration using PEI beads is a useful method to concentrate a wide range of viruses and can be used to enhance the sensitivity of detection of HAV, HBV and HCV.

  7. APPLICATION OF STANDARDIZED QUALITY CONTROL PROCEDURES TO OPEN-PATH FOURIER TRANSFORM INFRARED DATA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FT-IR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric eases at a concentrated swine production facility. A total of 2200 OP/FT-IR spectra were acquired along nine different monitoring paths d...

  8. Effects of doping concentration and co-doping with cerium on the luminescence properties of Gd3Ga5O12:Cr3+ for thermometry applications

    NASA Astrophysics Data System (ADS)

    Pareja, Jhon; Litterscheid, Christian; Molina, Alejandro; Albert, Barbara; Kaiser, Bernhard; Dreizler, Andreas

    2015-09-01

    The accuracy of surface temperature measurements using thermographic phosphors relies on an extensive knowledge of the temperature-dependent properties of the phosphor. This paper addresses the effects of doping concentration and co-doping with cerium on the luminescence properties of the Gd3Ga5O12:Cr3+ phosphor. High-crystallinity Gd3Ga5O12:Cr3+,Ce3+ powder samples (GGG:Cr,Ce) with different Cr3+ and Ce3+ concentrations were synthesized, and their luminescence spectra as well as their decay lifetime properties were characterized after UV laser excitation. Results revealed that the concentration quenching decreases the luminescence lifetime at concentrations above 0.5 mol% Cr3+ while the emission spectrum remains independent of the Cr3+ concentration. Co-doping with small amounts of Ce3+ improves the temperature-dependent luminescence characteristics by reducing the afterglow and producing fairly mono-exponential luminescence decays without changing the lifetime.

  9. Validation of a simple HPLC-UV method for rifampicin determination in plasma: Application to the study of rifampicin arteriovenous concentration gradient.

    PubMed

    Goutal, Sébastien; Auvity, Sylvain; Legrand, Tiphaine; Hauquier, Fanny; Cisternino, Salvatore; Chapy, Hélène; Saba, Wadad; Tournier, Nicolas

    2016-05-10

    In clinical practice, rifampicin exposure is estimated from its concentration in venous blood samples. In this study, we hypothesized that differences in rifampicin concentration may exist between arterial and venous plasma. An HPLC-UV method for determining rifampicin concentration in plasma using rifapentine as an internal standard was validated. The method, which requires a simple protein precipitation procedure as sample preparation, was performed to compare venous and arterial plasma kinetics after a single therapeutic dose of rifampicin (8.6 mg/kg i.v, infused over 30 min) in baboons (n=3). The method was linear from 0.1 to 40 μg mL(-1) and all validation parameters fulfilled the international requirements. In baboons, rifampicin concentration in arterial plasma was higher than in venous plasma. Arterial Cmax was 2.1±0.2 fold higher than venous Cmax. The area under the curve (AUC) from 0 to 120 min was ∼80% higher in arterial plasma, indicating a significant arteriovenous concentration gradient in early rifampicin pharmacokinetics. Arterial and venous plasma concentrations obtained 6h after rifampicin injection were not different. An important arteriovenous equilibration delay for rifampicin pharmacokinetics is reported. Determination in venous plasma concentrations may considerably underestimate rifampicin exposure to organs during the distribution phase.

  10. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites.

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically, acquiring...

  11. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically acquiring ...

  12. [Application of the network thermodynamics to interpretation of membrane transport: evaluation of the resistance coefficients of the polymeric membrane in polarization concentration conditions].

    PubMed

    Slyzak, Andrzej

    2011-01-01

    The Kedem-Katchalsky equations, derived using symmetric transformation of the Peusner's network transformation, to interpretation of transport through Nephrophan membrane of glucose aqueous solutions in concentration polarization conditions were employed. The values of Rij* (i does not equal j = 1, 2) coefficients were calculated. From these calculations it results that, the values of coefficients R11*, R12* = R21* and R22* are nonlinear dependent as well as on concentration of solutions (C) and configuration of membrane system.

  13. An exploratory microdialysis study investigating the effect of repeated application of a diclofenac epolamine medicated plaster on prostaglandin concentrations in skeletal muscle after standardized physical exercise

    PubMed Central

    Burian, Angela; Frangione, Valeria; Rovati, Stefano; Mautone, Giuseppe; Leuratti, Chiara; Vaccani, Angelo; Crevenna, Richard; Keilani, Mohammad; Burian, Bernhard; Brunner, Martin; Zeitlinger, Markus

    2013-01-01

    Aim Muscle injuries and extensive exercise are associated with cyclo-oxygenase dependent formation of inflammatory prostaglandins. Since the effect of topical administration of non-steroidal anti-inflammatory drugs (NSAIDs) on local cyclo-oxygenase is unknown, the present exploratory, open label, non-randomized study set out to measure exercise induced release of prostaglandins before and after epicutaneous administration of diclofenac. Methods Microdialysis was used to determine the local interstitial concentration of PGE2 and 8-iso-PGF2α as well as diclofenac concentrations in the vastus lateralis under rest, dynamic exercise and during recovery in 12 healthy subjects at baseline and after a treatment phase applying a total of seven plasters medicated with 180 mg of diclofenac epolamine over 4 days. Results At baseline PGE2 concentrations were 1169 ± 780 pg ml−1 at rest and 1287 ± 459 pg ml−1 during dynamic exercise and increased to 2005 ± 1126 pg ml−1 during recovery. After treatment average PGE2 concentrations were 997 ± 588 pg ml−1 at rest and 1339 ± 892 pg ml−1 during exercise. In contrast with the baseline phase no increase in PGE2 concentrations was recorded during the recovery period after treatment (PGE2 1134 ± 874 pg ml−1). 8-iso-PGF2α was neither affected by exercise nor by treatment with diclofenac. Local and systemic concentrations of diclofenac were highly variable but comparable with previous clinical pharmacokinetic studies. Conclusions We can hypothesize an effect of topical diclofenac epolamine plaster on limiting the increase of local concentrations of the pro-inflammatory prostaglandin PGE2 induced in the muscle of healthy human subjects following standardized physical exercise. No effect of diclofenac treatment on 8-iso-PGF2α concentrations was observed, mainly since isoprostane is produced by a free radical-catalyzed lipid peroxidation mechanism independent of cyclo-oxygenases. PMID:23551197

  14. Long-term applications of untreated and alum-treated poultry litter drive soil nitrogen concentrations and associated microbial community dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum sulfate (alum)-treatment retains ammonia in poultry litter, potentially altering nitrogen cycling after application to soil. The objective of this research was to assess if eight and nine years of annual application of untreated or alum-treated poultry litters or ammonium nitrate have resul...

  15. Application of oysters as useful concentration indicators to evaluate the fate of xenoestrogenic alkylphenols along the western coastal areas of Taiwan

    NASA Astrophysics Data System (ADS)

    Ding, Wanghsien

    2016-04-01

    The oyster is an important aquacultural species in Taiwan. Since oysters naturally inhabit shelves near the coast, samples from particular "oyster cultural sites" can be applied to evaluate the pollution levels of segments of coastal water. Insufficient wastewater treatment has caused untreated wastewaters to flow into rivers, and hence, into oyster cultural areas in estuaries as well as shallow coastal waters. Therefore, the concentration of pollutants in the oysters can be used as concentration indicators to evaluate the fate of the pollutants on the western coastal areas of Taiwan. In this study, xenoestrogenic alkylphenols were determined in oyster samples by extractive steam distillation prior to their determination by gas chromatography - mass spectrometry. The results show that a group of 4-nonylphenol isomers (4-NPs) were ubiquitous in oysters with concentration levels ranging from 23 to 3370 ng/g (wet weight). The concentrations of 4-NPs varied with different levels of 4-NPs found across unrelated estuaries water samples, and higher level of 4-NPs in water samples caused higher concentration of 4-NPs found in oyster tissue samples. Moreover, at the same oyster sites mentioned previously, the levels of 4-NPs in oysters decreased significantly after the year 2008. This drop in 4-NPs level can be attributed to environmental regulations that banned 4-NPs as additives in household cleaning agents since January 2008 in Taiwan. Due to the mentioned reasons, oysters are concluded to be useful organic pollutant concentration indicators in marine environments.

  16. [Polyphase character of the dependence of Brassica napus germ root and hypocotyl growth on zeatin and thidiazuron concentrations with view of applicability to biological life support systems].

    PubMed

    Komarova, G I; Babosha, A V

    2010-01-01

    Physiologically active substances are considered as a potential component of plant cultivation technologies for biological life support systems. In spacelight, plant reactions to growth-regulating agents may be changed by the specific stress factors such as microgravity, radiation, and trace admixtures in cabin air. Complex character of the concentration dependence of PAS efficiency and consequent variability generate a need to optimize plant growth regulating technologies in order to stabilize the wanted effect. Pattern of the concentration dependence of zeatin and tidiazurone effects on roots and hypocotyls growth was analyzed in rape germs. 24-hour Brassica napus germs grown in the dark in thermostat at 24 degrees C were transferred to Petri dishes with solutions of cytokinins under study for continued incubation under the same conditions for the next 24 hours. Roots and hypocotyls were measured. Zeatin concentration curve for roots was multiphase and, in addition to the general trend towards greater inhibition with increase of phyto-hormone concentration and had clearly defined minimum and maximum. The dependence of root growth inhibition on tidiazurone concentration also was not monotonic and had a distinct similarity with the zeatin curve. Gradual increase of tidiazurone concentration used in combination with zeatin brought about a predictable gradual twist of the zeatin curve; however, in most of the instances no additive cytokinin effect was observed. A supposition can be made that PAS interaction with the phytohormone regulation system may be a factor in variability of activity of these substances.

  17. Development of plastic disks containing flame retardants for elucidating changes in their concentrations due to simulated weathering and the application of these disks to weathering tests.

    PubMed

    Hanari, Nobuyasu; Otake, Takamitsu; Itoh, Nobuyasu; Wada, Ayaka; Ohata, Masaki

    2017-02-01

    Flame retardants (FRs) are useful because they can prevent combustion and delay the spread of fire after the ignition on commercial products containing plastics. However, such commercial products could be a primary source of environmental contamination with FRs. Plastic disks containing FRs were prepared to elucidate changes in the concentrations of the FRs after weathering tests. Acrylonitrile-butadiene-styrene (ABS) and polycarbonate (PC) resin were separately kneaded with a combination of three organic FRs [Dechlorane plus (DP), tetrabromobisphenol A (TBBPA), and triphenyl phosphate (TPhP)] and one inorganic FR [antimony trioxide (Sb2O3)]. The concentrations of TBBPA/TPhP and DP/Sb2O3 in the final preparations were respectively 1000 and 500 mg/kg in compliance with the RoHS directive on organobromine FR. The concentrations of elements in the final preparations were 300 mg/kg for chlorine, 600 mg/kg for bromine, 100 mg/kg for phosphorus, and 400 mg/kg for antimony, respectively. The analytical concentrations (three FRs and four elements) were consistent with the expected concentrations (maximum difference -9.5% in the PC disks). The FRs and elements in the disks were sufficiently homogenous (maximum inhomogeneity 4.3% in the PC disks). The prepared disks were subjected to weathering tests; the concentrations of TBBPA in the disks decreased significantly (30 to 40%) whereas the concentrations of the elements did not change under the condition of this study. On the other hand, there were no drastic differences on relationships of FRs and elements such as DP/chlorine and TPhP/phosphorus.

  18. A Statistical Method to Estimate PM2.5 Concentrations over Europe from Meteorology and Its Application to the Effect of Climate Change

    NASA Astrophysics Data System (ADS)

    Lecoeur, Ève; Seigneur, Christian; Pagé, Christian; Terray, Laurent

    2013-04-01

    Atmospheric particulate matter (PM) pollution has become a field of great interest because of its impacts on human health, climate change, and atmospheric visibility. In particular, fine particles with an aerodynamical diameter less than or equal to 2.5 μm (PM2.5) are regulated in North America and Europe. It is well-known that PM concentrations depend on meteorology via its effects on the emissions, the kinetics of chemical reactions, the gas/particle partitionning, and the removal of PM from the atmosphere. Therefore, climate change is expected to affect PM concentrations. First studies of the effect of climate change on air quality have originally been conducted on ozone, whereas the study of its effect on PM concentrations is more recent. However, most of the work pertaining PM has focused so far on the United States. Furthermore, there is currently no strong consensus on the effects of the present and future climate on PM2.5 concentrations. Therefore, we propose here a statistical method which estimates PM2.5 concentrations over Europe from the meteorology and which can be applied to present and future climates. In more detail, we apply a multiple linear regression model to understand the relationships between PM2.5 concentrations and meteorological variables in Europe. Multiple linear regression predictors include temperature, precipitation, wind speed, and weather types, which are representative of the large-scale atmospheric circulation. We use the results of a 9-year (2000-2008) model simulation as PM2.5 pseudo-observations. By assuming that the weather types will remain the same in the future (stationarity), we use different model predictions provided by the IPCC to study how the frequency of the weather types will change in the future. The statistical model is used to estimate future PM2.5 concentrations that would result from this climate change.

  19. The application of a multi-wavelength Aethalometer to estimate iron dust and black carbon concentrations in the marine boundary layer of Cape Verde

    NASA Astrophysics Data System (ADS)

    Fialho, P.; Cerqueira, M.; Pio, C.; Cardoso, J.; Nunes, T.; Custódio, D.; Alves, C.; Almeida, S. M.; Almeida-Silva, M.; Reis, M.; Rocha, F.

    2014-11-01

    The two-component model (Fialho et al., 2006) was used to decouple the contributions of black carbon (BC) and iron oxides, present in dust, to the aerosol attenuation coefficient, measured with a multi-wavelength Aethalometer. The model results were compared with the elemental carbon (EC) and iron concentrations determined in the laboratory from the analysis of aerosol particles collected with conventional samplers. The comparison was based on one year of data obtained at Praia, Santiago Island, Cape Verde, after side by side operation of the aerosol monitoring instruments. The linear regression equation that best describes the relationship between BC concentrations, derived from the Aethalometer, and EC concentrations, derived from a PM10 high-volume sampler after filter analysis with a thermal optical method, presents a slope of 1.01 ± 0.05 and a correlation coefficient (r) of 0.90, showing that the model worked as intended to describe BC concentrations without interferences from iron dust. On the other hand, the linear regression equation that best describes the relationship between the iron concentrations derived from the Aethalometer and elemental iron concentrations, derived from a PM10 low-volume sampler after filter analysis by k0 - Instrumental Neutron Activation Analysis, presents a slope of 0.495 ± 0.014 and a correlation coefficient (r) of 0.96. These results show that the two-component model underestimated the iron concentrations in dust aerosol, which was explained by differences in the size range of particles sampled with the Aethalometer and the PM10 low-volume sampler together with differences in the size distribution of iron oxides.

  20. Progesterone, pregnanediol-3-glucuronide, relaxin and oestrone sulphate concentrations in saliva, milk and urine of female alpacas (Vicugna pacos) and their application in pregnancy diagnosis.

    PubMed

    Volkery, J; Gottschalk, J; Sobiraj, A; Wittek, T; Einspanier, A

    2012-08-25

    The pregnancy-associated hormones, progesterone (P4), pregnanediol-3-glucuronide (PdG), relaxin (RLN) and oestrone sulphate (E1S) in plasma, saliva, milk and urine of alpacas were measured in order to assess their potential use for pregnancy diagnosis. Samples were obtained from 36 female alpacas before mating and at different stages throughout pregnancy (confirmed by ultrasonography). The hormone concentrations were determined using enzyme immunoassays. Milk samples were also tested using a commercial on-farm P4 kit, designed for dairy cattle. Although the concentration of P4 in plasma, milk and urine, and the concentration of PdG in urine were significantly higher in pregnant than in non-pregnant alpacas, there was no difference in the concentrations of P4 or PdG in saliva. The on-farm milk P4 kit showed a sensitivity of 90 per cent for diagnosis of pregnancy and a specificity of 69 per cent for non-pregnancy. The concentration of RLN in plasma increased significantly after the second month, and concentration of E1S in plasma and urine during the last month of pregnancy, whereas, there were no significant differences in RLN or E1S concentrations in saliva and milk between pregnant and non-pregnant alpacas. Values of P4, RLN and E1S in plasma, and PdG and E1S in urine are comparable with the previous reports in alpacas and, therefore, can be confirmed as an indicator for pregnancy. This is the first study to include determination of pregnancy-associated hormones in the saliva and milk of alpacas. However, saliva seems to be unsuitable for pregnancy diagnosis in alpacas, whereas, P4 in milk, as well as PdG and E1S in urine, seem to be adequate tools for diagnosis.

  1. Application of dimensionless sediment rating curves to predict suspended-sediment concentrations, bedload, and annual sediment loads for rivers in Minnesota

    USGS Publications Warehouse

    Ellison, Christopher A.; Groten, Joel T.; Lorenz, David L.; Koller, Karl S.

    2016-10-27

    Consistent and reliable sediment data are needed by Federal, State, and local government agencies responsible for monitoring water quality, planning river restoration, quantifying sediment budgets, and evaluating the effectiveness of sediment reduction strategies. Heightened concerns about excessive sediment in rivers and the challenge to reduce costs and eliminate data gaps has guided Federal and State interests in pursuing alternative methods for measuring suspended and bedload sediment. Simple and dependable data collection and estimation techniques are needed to generate hydraulic and water-quality information for areas where data are unavailable or difficult to collect.The U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency and the Minnesota Department of Natural Resources, completed a study to evaluate the use of dimensionless sediment rating curves (DSRCs) to accurately predict suspended-sediment concentrations (SSCs), bedload, and annual sediment loads for selected rivers and streams in Minnesota based on data collected during 2007 through 2013. This study included the application of DSRC models developed for a small group of streams located in the San Juan River Basin near Pagosa Springs in southwestern Colorado to rivers in Minnesota. Regionally based DSRC models for Minnesota also were developed and compared to DSRC models from Pagosa Springs, Colorado, to evaluate which model provided more accurate predictions of SSCs and bedload in Minnesota.Multiple measures of goodness-of-fit were developed to assess the effectiveness of DSRC models in predicting SSC and bedload for rivers in Minnesota. More than 600 dimensionless ratio values of SSC, bedload, and streamflow were evaluated and delineated according to Pfankuch stream stability categories of “good/fair” and “poor” to develop four Minnesota-based DSRC models. The basis for Pagosa Springs and Minnesota DSRC model effectiveness was founded on measures of goodness

  2. Rapid Method To Determine Intracellular Drug Concentrations in Cellular Uptake Assays: Application to Metformin in Organic Cation Transporter 1-Transfected Human Embryonic Kidney 293 Cells.

    PubMed

    Chien, Huan-Chieh; Zur, Arik A; Maurer, Tristan S; Yee, Sook Wah; Tolsma, John; Jasper, Paul; Scott, Dennis O; Giacomini, Kathleen M

    2016-03-01

    Because of the importance of intracellular unbound drug concentrations in the prediction of in vivo concentrations that are determinants of drug efficacy and toxicity, a number of assays have been developed to assess in vitro unbound concentrations of drugs. Here we present a rapid method to determine the intracellular unbound drug concentrations in cultured cells, and we apply the method along with a mechanistic model to predict concentrations of metformin in subcellular compartments of stably transfected human embryonic kidney 293 (HEK293) cells. Intracellular space (ICS) was calculated by subtracting the [(3)H]-inulin distribution volume (extracellular space, ECS) from the [(14)C]-urea distribution volume (total water space, TWS). Values obtained for intracellular space (mean ± S.E.M.; μl/10(6) cells) of monolayers of HEK cells (HEK-empty vector [EV]) and cells overexpressing human organic cation transporter 1 (HEK-OCT1), 1.21± 0.07 and 1.25±0.06, respectively, were used to determine the intracellular metformin concentrations. After incubation of the cells with 5 µM metformin, the intracellular concentrations were 26.4 ± 7.8 μM and 268 ± 11.0 μM, respectively, in HEK-EV and HEK-OCT1. In addition, intracellular metformin concentrations were lower in high K(+) buffer (140 mM KCl) compared with normal K(+) buffer (5.4 mM KCl) in HEK-OCT1 cells (54.8 ± 3.8 μM and 198.1 ± 11.2 μM, respectively; P < 0.05). Our mechanistic model suggests that, depending on the credible range of assumed physiologic values, the positively charged metformin accumulates to particularly high levels in endoplasmic reticulum and/or mitochondria. This method together with the computational model can be used to determine intracellular unbound concentrations and to predict subcellular accumulation of drugs in other complex systems such as primary cells.

  3. Application of spectral decomposition of ²²²Rn activity concentration signal series measured in Niedźwiedzia Cave to identification of mechanisms responsible for different time-period variations.

    PubMed

    Przylibski, Tadeusz Andrzej; Wyłomańska, Agnieszka; Zimroz, Radosław; Fijałkowska-Lichwa, Lidia

    2015-10-01

    The authors present an application of spectral decomposition of (222)Rn activity concentration signal series as a mathematical tool used for distinguishing processes determining temporal changes of radon concentration in cave air. The authors demonstrate that decomposition of monitored signal such as (222)Rn activity concentration in cave air facilitates characterizing the processes affecting changes in the measured concentration of this gas. Thanks to this, one can better correlate and characterize the influence of various processes on radon behaviour in cave air. Distinguishing and characterising these processes enables the understanding of radon behaviour in cave environment and it may also enable and facilitate using radon as a precursor of geodynamic phenomena in the lithosphere. Thanks to the conducted analyses, the authors confirmed the unquestionable influence of convective air exchange between the cave and the atmosphere on seasonal and short-term (diurnal) changes in (222)Rn activity concentration in cave air. Thanks to the applied methodology of signal analysis and decomposition, the authors also identified a third process affecting (222)Rn activity concentration changes in cave air. This is a deterministic process causing changes in radon concentration, with a distribution different from the Gaussian one. The authors consider these changes to be the effect of turbulent air movements caused by the movement of visitors in caves. This movement is heterogeneous in terms of the number of visitors per group and the number of groups visiting a cave per day and per year. Such a process perfectly elucidates the observed character of the registered changes in (222)Rn activity concentration in one of the decomposed components of the analysed signal. The obtained results encourage further research into precise relationships between the registered (222)Rn activity concentration changes and factors causing them, as well as into using radon as a precursor of

  4. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25°C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R>0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6°C, while it increased by up to 750% when the indoor temperature increased from 15°C to 30°C.

  5. Validation and application of cavity-enhanced, near-infrared tunable diode laser absorption spectrometry for measurements of methane carbon isotopes at ambient concentrations.

    PubMed

    Mortazavi, Behzad; Wilson, Benjamin J; Dong, Feng; Gupta, Manish; Baer, Doug

    2013-10-15

    Methane is an effective greenhouse gas but has a short residence time in the atmosphere, and therefore, reductions in emissions can alleviate its greenhouse gas warming effect within a decadal time frame. Continuous and high temporal resolution measurements of methane concentrations and carbon isotopic ratios (δ(13)CH4) can inform on mechanisms of formation, provide constraints on emissions sources, and guide future mitigation efforts. We describe the development, validation, and deployment of a cavity-enhanced, near-infrared tunable diode laser absorption spectrometry system capable of quantifying δ(13)CH4 at ambient methane concentrations. Laboratory validation and testing show that the instrument is capable of operating over a wide dynamic range of methane concentration and provides a measurement precision for δ(13)CH4 of better than ± 0.5 ‰ (1σ) over 1000 s of data averaging at ambient methane concentrations. The analyzer is accurate to better than ± 0.5 ‰, as demonstrated by measurements of characterized methane/air samples with minimal dependence (<1 ‰) of measured carbon isotope ratio on methane concentration. Deployment of the instrument at a marsh over multiple days demonstrated how methane fluxes varied by an order of magnitude over 2 day deployment periods, and showed a 17 ‰ variability in δ(13)CH4 of the emitted methane during the growing season.

  6. Low concentration ratio solar array for low Earth orbit multi-100 kW application. Volume 1: Design, analysis and development tests

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A preliminary design effort directed toward a low concentration ratio photovoltaic array system capable of delivering multihundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of .25 sq. m. The structural analysis and design trades leading to the baseline design are discussed. It describes the configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.

  7. Development of a Rat Plasma and Brain Extracellular Fluid Pharmacokinetic Model for Bupropion and Hydroxybupropion Based on Microdialysis Sampling, and Application to Predict Human Brain Concentrations.

    PubMed

    Cremers, Thomas I F H; Flik, Gunnar; Folgering, Joost H A; Rollema, Hans; Stratford, Robert E

    2016-05-01

    Administration of bupropion [(±)-2-(tert-butylamino)-1-(3-chlorophenyl)propan-1-one] and its preformed active metabolite, hydroxybupropion [(±)-1-(3-chlorophenyl)-2-[(1-hydroxy-2-methyl-2-propanyl)amino]-1-propanone], to rats with measurement of unbound concentrations by quantitative microdialysis sampling of plasma and brain extracellular fluid was used to develop a compartmental pharmacokinetics model to describe the blood-brain barrier transport of both substances. The population model revealed rapid equilibration of both entities across the blood-brain barrier, with resultant steady-state brain extracellular fluid/plasma unbound concentration ratio estimates of 1.9 and 1.7 for bupropion and hydroxybupropion, respectively, which is thus indicative of a net uptake asymmetry. An overshoot of the brain extracellular fluid/plasma unbound concentration ratio at early time points was observed with bupropion; this was modeled as a time-dependent uptake clearance of the drug across the blood-brain barrier. Translation of the model was used to predict bupropion and hydroxybupropion exposure in human brain extracellular fluid after twice-daily administration of 150 mg bupropion. Predicted concentrations indicate that preferential inhibition of the dopamine and norepinephrine transporters by the metabolite, with little to no contribution by bupropion, would be expected at this therapeutic dose. Therefore, these results extend nuclear imaging studies on dopamine transporter occupancy and suggest that inhibition of both transporters contributes significantly to bupropion's therapeutic efficacy.

  8. The importance of evaluating the real metal concentration in nanoparticles post-synthesis for their applications: A case-study using silver nanoparticles.

    PubMed

    Galazzi, Rodrigo Moretto; Santos, Elias de Barros; Caurin, Tatiana; Pessôa, Gustavo de Souza; Mazali, Italo Odone; Arruda, Marco Auréli Zezzio

    2016-01-01

    To determine whether the effect observed in a study is related to the nanoparticle only or to their synergic effect with the "free" metal ions, the real concentration of silver (104±8 and 100±2 mg L(-1)) after AgNP synthesis is obtained through ICP-MS and ICP OES in the solution after the AgNP synthesis and in different fractions after centrifugation (at 8100 g for 40 min). From the resuspension of the AgNP contained in the solution (AgNP-total) after synthesis (AgNP-res), concentrations of 49±3 and 51±3 mg L(-1) are found and concentrations of 50±7 and 47±2 mg L(-1) in the supernatant (Ag-sup) are found using ICP-MS and ICP OES respectively. The characterization of AgNP-total, AgNP-res and Ag-sup is performed by HRTEM and UV-vis, corroborating the results in terms of Ag determination, and indicates that half of the total silver concentration is in the AgNP form and that the other half is in the "free" silver form. The results of the stability test of the NPs indicate a 7% decrease in Ag as NP three months after its synthesis.

  9. Inorganic carbon dominates total dissolved carbon concentrations and fluxes in British rivers: Application of the THINCARB model - Thermodynamic modelling of inorganic carbon in freshwaters.

    PubMed

    Jarvie, Helen P; King, Stephen M; Neal, Colin

    2017-01-01

    River water-quality studies rarely measure dissolved inorganic carbon (DIC) routinely, and there is a gap in our knowledge of the contributions of DIC to aquatic carbon fluxes and cycling processes. Here, we present the THINCARB model (THermodynamic modelling of INorganic CARBon), which uses widely-measured determinands (pH, alkalinity and temperature) to calculate DIC concentrations, speciation (bicarbonate, HCO3(-); carbonate, CO3(2-); and dissolved carbon dioxide, H2CO3(⁎)) and excess partial pressures of carbon dioxide (EpCO2) in freshwaters. If calcium concentration measurements are available, THINCARB also calculates calcite saturation. THINCARB was applied to the 39-year Harmonised Monitoring Scheme (HMS) dataset, encompassing all the major British rivers discharging to the coastal zone. Model outputs were combined with the HMS dissolved organic carbon (DOC) datasets, and with spatial land use, geology, digital elevation and hydrological datasets. We provide a first national-scale evaluation of: the spatial and temporal variability in DIC concentrations and fluxes in British rivers; the contributions of DIC and DOC to total dissolved carbon (TDC); and the contributions to DIC from HCO3(-) and CO3(2-) from weathering sources and H2CO3(⁎) from microbial respiration. DIC accounted for >50% of TDC concentrations in 87% of the HMS samples. In the seven largest British rivers, DIC accounted for an average of 80% of the TDC flux (ranging from 57% in the upland River Tay, to 91% in the lowland River Thames). DIC fluxes exceeded DOC fluxes, even under high-flow conditions, including in the Rivers Tay and Tweed, draining upland peaty catchments. Given that particulate organic carbon fluxes from UK rivers are consistently lower than DOC fluxes, DIC fluxes are therefore also the major source of total carbon fluxes to the coastal zone. These results demonstrate the importance of accounting for DIC concentrations and fluxes for quantifying carbon transfers from land

  10. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    PubMed

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake.

  11. Spatiotemporal comparison of highly-resolved emissions and concentrations of carbon dioxide and criteria pollutants in Salt Lake City, Utah for health and policy applications

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Fasoli, B.; Bares, R.; o'Keefe, D.; Song, T.; Huang, J.; Horel, J.; Crosman, E.; Ehleringer, J. R.

    2015-12-01

    This study addresses the need for robust highly-resolved emissions and concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are dependent on proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present emissions inventories and modeled concentrations for CO2 and CAPs: carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), particulate matter (PM2.5 and PM10), and sulfur oxides (SOx) for Salt Lake County, Utah. We compare the resulting concentrations against stationary and mobile measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at an hourly, building and road link resolution as well as hourly gridded emissions with a 0.002o x 0.002o spatial resolution. Two methods for deriving criteria pollutant emission inventories were compared. One was constructed using methods similar to Hestia but downscales total emissions based on the 2011 National Emissions Inventory (NEI). The other used Emission Modeling Clearinghouse spatial and temporal surrogates to downscale the NEI data from annual and county-level resolution to hourly and 0.002o x 0.002o grid cells. The gridded emissions from both criteria pollutant methods were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The CALPUFF dispersion model was used to transport emissions and estimate air pollutant concentrations at an hourly 0.002o x 0.002o resolution. The resulting concentrations were spatially compared in the same manner

  12. LASER APPLICATIONS IN MEDICINE: Effect of glucose concentration in a model light-scattering suspension on propagation of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Popov, A. P.; Priezzhev, A. V.; Myllylä, Risto

    2005-11-01

    The propagation of laser pulses in the 2% aqueous solution of intralipid — a suspension of lipid particles with optical properties close to those of the human skin, is numerically simulated at different glucose concentrations. The temporal profiles of 820-nm laser pulses diffusely backscattered from a flat, 2-mm thick solution layer are simulated. The laser pulse profiles are detected by fibreoptic detectors of diameter 0.3 mm with the numerical apertures 0.19, 0.29, and 0.39. It is shown that this method can be used to detect changes in the glucose level in the physiological concentration range (100-500 mg dL-1) by monitoring variations in the peak intensity and area of the laser pulse temporal profile (pulse energy).

  13. ECUT: Energy Conversion and Utilization Technologies program biocatalysis research activity. Potential membrane applications to biocatalyzed processes: Assessment of concentration polarization and membrane fouling

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.

    1983-01-01

    Separation and purification of the products of biocatalyzed fermentation processes, such as ethanol or butanol, consumes most of the process energy required. Since membrane systems require substantially less energy for separation than most alternatives (e.g., distillation) they have been suggested for separation or concentration of fermentation products. This report is a review of the effects of concentration polarization and membrane fouling for the principal membrane processes: microfiltration, ultrafiltration, reverse osmosis, and electrodialysis including a discussion of potential problems relevant to separation of fermentation products. It was concluded that advanced membrane systems may result in significantly decreased energy consumption. However, because of the need to separate large amounts of water from much smaller amounts of product that may be more volatile than wate, it is not clear that membrane separations will necessarily be more efficient than alternative processes.

  14. Improved liquid chromatography-tandem mass spectrometric method for the determination of ethyl glucuronide concentrations in hair: applications to forensic cases.

    PubMed

    Imbert, Laurent; Gaulier, Jean-Michel; Dulaurent, Sylvain; Morichon, Julien; Bevalot, Fabien; Izac, Paul; Lachâtre, Gérard

    2014-01-01

    Ethyl glucuronide (EtG) is a direct marker of ethanol consumption, and its assay in hair is an efficient tool for chronic alcoholism diagnosis. In 2012, the Society of Hair Testing proposed a new consensus for hair concentrations interpretation, strongly advising the use of analytical methods providing a limit of quantification of less than 3 pg/mg. The present work describes the optimization and validation of a previously developed liquid chromatography-tandem mass spectrometric method in order to comply with this recommendation. The concentration range of this improved method is from 3 to 1,000 pg/mg. Some cases are then described to illustrate the usefulness of hair EtG: a forensic post-mortem case and two cases of suspension of driving licences. Finally, hair samples of some teetotallers (n = 10) have been analyzed, which allowed neither to quantitate nor to detect any trace of EtG.

  15. Studies of the pulse charge of lead-acid batteries for PV applications. Part III. Electrolyte concentration effects on the electrochemical performance of the positive plate

    NASA Astrophysics Data System (ADS)

    Kirchev, A.; Delaille, A.; Karoui, F.; Perrin, M.; Lemaire, E.; Mattera, F.

    2008-05-01

    In the third part of this work the effects of the sulphuric acid concentration on the positive plate discharge capacity, impedance and oxygen overvoltage are discussed. It has been found that the full discharge capacity of the positive plate is available down to electrolyte concentrations of 3 mol l-1 (s.g. 1.18 g ml-1). At further acid dilution, capacity of the positive plate declines, keeping the utilization of the sulphuric acid about 50%. Decreasing the acid concentration, the oxygen overvoltage decreases with a factor of 12-18 mV M-1, excluding the effect of the equilibrium potential of the oxygen electrode as a function of pH. The capacitance of the electrical double layer decrease linearly with the dilution of the sulphuric acid suggesting strong adsorption effects. This suggestion has been confirmed from the measurements of potential of the zero charge of the positive plate, which increases from 1.11 to 1.34 V vs. Ag/Ag2SO4 in the region 1.11-4.60 M H2SO4. From the measurement of the time constant of the electronic transfer through the gel part of the lead dioxide (Tgel) as a function of the acid concentration and the applied potential, a change in the mechanism of the lead dioxide hydration has been estimated-below 1 M H2SO4Tgel increases sharply, showing sharp increases of the extent of the hydration. The dilution of the electrolyte increases substantially the value of average double layer current in the beginning of the charge. During the pulse overcharge at the employed frequency of 1 Hz, the average double layer current is equal to the pulse amplitude, suggesting that the maximal efficiency of the pulse charge is reached.

  16. A new and simple method for delivering clamped nitric oxide concentrations in the physiological range: application to activation of guanylyl cyclase-coupled nitric oxide receptors.

    PubMed

    Griffiths, Charmaine; Wykes, Victoria; Bellamy, Tomas C; Garthwaite, John

    2003-12-01

    The signaling molecule nitric oxide (NO) could engage multiple pathways to influence cellular function. Unraveling their relative biological importance has been difficult because it has not been possible to administer NO under the steady-state conditions that are normally axiomatic for analyzing ligand-receptor interactions and downstream signal transduction. To address this problem, we devised a chemical method for generating constant NO concentrations, derived from balancing NO release from a NONOate donor with NO consumption by a sink. On theoretical grounds, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) was selected as the sink. The mixture additionally contained urate to convert an unwanted product of the reaction (NO2) into nitrite ions. The method enabled NO concentrations covering the physiological range (0-100 nM) to be formed within approximately 1 s. Moreover, the concentrations were sufficiently stable over at least several minutes to be useful for biological purposes. When applied to the activation of guanylyl cyclase-coupled NO receptors, the method gave an EC50 of 1.7 nM NO for the protein purified from bovine lung, which is lower than estimated previously using a biological NO sink (red blood cells). The corresponding values for the alpha1beta1 and alpha2beta1 isoforms were 0.9 nM and 0.5 nM, respectively. The slopes of the concentration-response curves were more shallow than before (Hill coefficient of 1 rather than 2), questioning the need to consider the binding of more than one NO molecule for receptor activation. The discrepancies are ascribable to limitations of the earlier method. Other biological problems can readily be addressed by adaptations of the new method.

  17. Environmental Concentrations, Fate, and Risk Assessment of Pyrethrins and Piperonyl Butoxide After Aerial Ultralow-Volume Applications for Adult Mosquito Management

    DTIC Science & Technology

    2008-01-01

    end point) for PBO samples taken 1 h before the appli- cation for Daphnia magna , rainbow trout (Oncorhynchus my- kiss), and bluegill sunfish (Lepomis...after application in Princeton for D. magna , rainbow trout, and bluegill sunfish were 0.0003, less than 0.0001, and less than 0.0001, respectively

  18. Effects of tillage and poultry manure application rates on Salmonella and fecal indicator bacteria concentrations in tiles draining Des Moines Lobe soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of poultry manure (PM) to cropland as fertilizer is a common practice in artificially drained regions of the Upper Midwest. To assess the potential for PM to contribute pathogenic bacteria to downstream waters, information is needed on the impacts of manure management and tillage practi...

  19. Application of modified organo-nanoclay as the sorbent for zinc determination by FAAS: an optimization study of an online pre-concentration system.

    PubMed

    Khajeh, Mostafa

    2012-01-01

    An online column pre-concentration technique, coupled with flame atomic absorption spectrometry, was developed using a column filled with nanoclay modified with morin. For this purpose, zinc was determined in the water and biological samples. The sample solution was passed through the modified nanoclay column. The adsorbed zinc was subsequently eluted from the column with nitric acid solution. The optimization step was performed using two-level fractional factorial (2(5-2)) and Box-Behnken designs. Firstly, the fractional factorial design was performed for preliminary evaluation of the significant factors. The results showed that pH, amount of morin, and concentration of eluent were significant. The Box-Behnken experimental design was carried out in order to determine the optimum conditions. The optimum conditions were found to be at pH 5.8, 1.8 mg L(-1) of morin and 3.0 mol L(-1) of eluent concentration. Under these optimum conditions, the limit of detection was found to be 0.11 μg L(-1). Furthermore, the relative standard deviation of the ten replicate determinations was <2.8.0%. The method was validated by analyzing the zinc using a certified reference material that is NRCC-SLRS-4 riverine water. The developed procedure was applied to the extraction and determination of zinc in the water and biological samples.

  20. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana.

    PubMed

    Yang, Zhenhua; Zhao, Yue; Liu, Zhiyong; Liu, Chenfeng; Hu, Zhipeng; Hou, Yuyong

    2017-01-01

    Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.

  1. Application of photonic crystal enhanced fluorescence to detection of low serum concentrations of human IgE antibodies specific for a purified cat allergen (Fel D1).

    PubMed

    Tan, Yafang; Halsey, John F; Tang, Tiantian; Wetering, Scott Vande; Taine, Elaine; Cleve, Mark Van; Cunningham, Brian T

    2016-03-15

    We demonstrate the detection of low concentrations of allergen-specific Immunoglobulin E (IgE) in human sera using a Photonic Crystal Enhanced Fluorescence (PCEF) microarray platform. The Photonic Crystal (PC) surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cy5, was used to amplify the fluorescence signal intensity measured from a multiplexed allergen microarray. Surface-based sandwich immunoassays were used to detect and quantify specific IgE antibodies against a highly purified cat allergen (Fel d1). A comparison of the lowest detectable concentration of IgE measured by the PC microarray system and a commercially available clinical analyzer demonstrated that the PCEF microarray system provides higher sensitivity. The PCEF system was able to detect low concentrations of specific IgE (~0.02 kU/L), which is 5-17-fold more sensitive than the commercially available FDA-approved analyzers. In preliminary experiments using multi-allergen arrays, we demonstrate selective simultaneous detection of IgE antibodies to multiple allergens.

  2. Application of Photonic Crystal Enhanced Fluorescence to Detection of Low Serum Concentrations of Human IgE Antibodies Specific for a Purified Cat Allergen (Fel d1)

    PubMed Central

    Tan, Yafang; Halsey, John F.; Tang, Tiantian; Wetering, Scott Vande; Taine, Elaine; Van Cleve, Mark; Cunningham, Brian T.

    2015-01-01

    We demonstrate the detection of low concentrations of allergen-specific Immunoglobulin E (IgE) in human sera using a Photonic Crystal Enhanced Fluorescence (PCEF) microarray platform. The Photonic Crystal (PC) surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cy5, was used to amplify the fluorescence signal intensity measured from a multiplexed allergen microarray. Surface-based sandwich immunoassays were used to detect and quantify specific IgE antibodies against a highly purified cat allergen (Fel d1). A comparison of the lowest detectable concentration of IgE measured by the PC microarray system and a commercially available clinical analyzer demonstrated that the PCEF microarray system provides higher sensitivity. The PCEF system was able to detect low concentrations of specific IgE (~0.02 kU/L), which is 5 to 17 -fold more sensitive than the commercially available FDA-approved analyzers. In preliminary experiments using multi-allergen arrays, we demonstrate selective simultaneous detection of IgE antibodies to multiple allergens. PMID:26406461

  3. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    PubMed Central

    Zhao, Yue; Liu, Zhiyong; Liu, Chenfeng; Hu, Zhipeng

    2017-01-01

    Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana. PMID:28194424

  4. The self-assemble of natural cyclodextrins in aqueous solutions: Application of miniature permeation studies for critical aggregation concentration (cac) determinations.

    PubMed

    Saokham, Phennapha; Sá Couto, André; Ryzhakov, Alexey; Loftsson, Thorsteinn

    2016-05-30

    Permeation techniques can be applied to determine the critical aggregation concentration (cac) of natural cyclodextrins (CDs) in aqueous solutions although the method is both laborious and time consuming. In the present study, the permeation technique was modified and the influence of osmotic pressure, sampling time, CD concentration and molecular weight-cut off (MWCO) of the membrane were investigated in two different permeation units, that is Franz diffusion cells and Slide-A-Lyzer™ MINI Dialysis. While both the osmotic pressure and CD concentration affect the steady state flux in both permeation units, effects of sampling time and the MWCO of the mounted membrane were only observed in the Franz diffusion cells. The osmotic effect was negligible in the Slide-A-Lyzer™ MINI Dialysis units. The modified permeation technique using Slide-A-Lyzer™ MINI Dialysis units was then used to determine the cac of natural CDs in water. The cac of αCD, βCD and γCD was 1.19±0.17, 0.69±0.05 and 0.93±0.04% (w/v), respectively. The results indicated that the cac values depended on their intrinsic solubility. Moreover, the cac value of γCD in aqueous hydrocortisone/γCD inclusion complex solution was identical to the γCD cac value determined in pure water.

  5. Application of the shock layer theory to the determination of the mass transfer rate coefficient and its concentration dependence for proteins on anion exchange columns

    SciTech Connect

    Sajonz, P. ||; Guan-Sajonz, H.; Zhong, G.; Guiochon, G. |

    1997-03-01

    The extension of the shock layer theory to systems having a slow mass transfer kinetics and a concentration-dependent rate coefficient is discussed. Experiments were carried out with bovine serum albumin on two anion exchanges, TSK-GEL-DEAE-5PW and Resource-Q. The adsorption isotherm data, determined by single-step frontal analysis, could be fitted to simplified bi-Langmuir equations with vary small residuals. A lumped kinetic model (solid film linear driving force model, with rate coefficient k{sub f}) was used to account for the mass transfer kinetics. The profile of each breakthrough curve (BC) was fitted to the curve calculated with this transport model and the rate coefficient k{sub f} obtained by identification. A linear dependence of k{sub f} on the average concentration of the step of the BC was found. The shock layer thicknesses (SLT) calculated for different relative concentrations agreed very well with the experimental results. This justifies the use of the SLT for the direct determination of rate coefficients. 19 refs., 9 figs., 2 tabs.

  6. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    SciTech Connect

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the

  7. Application of a UV-Vis submersible probe for capturing changes in DOC concentrations across a mire complex during the snowmelt and summer periods

    NASA Astrophysics Data System (ADS)

    Avagyan, Armine; Runkle, Benjamin; Kutzbach, Lars

    2013-04-01

    An accurate quantification of dissolved organic carbon (DOC) is crucial for understanding changes in water resources under the influence of climate, land use and urbanization. However, the conventionally used methods do not allow high frequency in situ analyses in remote or hostile environments (e.g., industrial wastewater or during environmental high-flow events, such as snowmelt or floods). In particular, missing measurements during the snowmelt period in landscapes of the boreal region can lead to significant miscalculations in regional carbon budgets. Therefore, the aim of the study was to test the performance of a portable, submersible UV-Vis spectrophotometer (spectro::lyser, s::can Messtechnik GmbH, Austria) during the snowmelt period in a boreal mire-forest catchment, and to provide a conceptual understanding of the spatial and temporal dynamics of DOC concentrations during and after snowmelt. During 2011, water samples were collected from the near-pristine Ust-Pojeg mire complex in northwestern Russia (61° 56'N, 50° 13'E). Sampling started during the spring snowmelt period and continued until late fall. The mire presented a mosaic of different landscape units. The mire consisted of minerogeous (fen), ombrogenous (bog), and transitional forest-mire (lagg) zones. Water samples were taken from the surface across the mire (22 points at 50-m intervals). DOC concentrations were analyzed directly at the study site using a portable, submersible UV-Vis spectrophotometer, which uses high-resolution absorbance measurements over the wavelength range 200-742.5 nm at 2.5-nm intervals as a proxy for DOC content. Because the DOC composition of fluids varies by site, a local calibration replaced the default settings of the spectro::lyser (Global Calibration) to enhance the accuracy of the measurements. To evaluate the local calibration and correct for drift, the same samples (n = 157) were additionally analyzed using the wet persulfate oxidation method (O

  8. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe - Part 2: Evaluation of chemical concentrations and sensitivity simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sartelet, K.; Zhu, S.; Wang, W.; Wu, S.-Y.; Zhang, X.; Wang, K.; Tran, P.; Seigneur, C.; Wang, Z.-F.

    2013-07-01

    An offline-coupled model (WRF/Polyphemus) and an online-coupled model (WRF/Chem-MADRID) are applied to simulate air quality in July 2001 at horizontal grid resolutions of 0.5° and 0.125° over Western Europe. The model performance is evaluated against available surface and satellite observations. The two models simulate different concentrations in terms of domainwide performance statistics, spatial distribution, temporal variations, and column abundance. WRF/Chem-MADRID at 0.5° gives higher values than WRF/Polyphemus for the domainwide mean and over polluted regions in Central and southern Europe for all surface concentrations and column variables except for the tropospheric ozone residual (TOR). Compared with observations, WRF/Polyphemus gives better statistical performance for daily HNO3, SO2, and NO2 at the European Monitoring and Evaluation Programme (EMEP) sites, maximum 1 h O3 at the AirBase sites, PM2.5 at the AirBase sites, maximum 8 h O3 and PM10 composition at all sites, column abundance of CO, NO2, TOR, and aerosol optical depth (AOD), whereas WRF/Chem-MADRID gives better statistical performance for NH3, hourly SO2, NO2, and O3 at the AirBase and BDQA (Base de données de la qualité de l'air) sites, maximum 1 h O3 at the BDQA and EMEP sites, and PM10 at all sites. WRF/Chem-MADRID generally reproduces well the observed high hourly concentrations of SO2 and NO2 at most sites except for extremely high episodes at a few sites, and WRF/Polyphemus performs well for hourly SO2 concentrations at most rural or background sites where pollutant levels are relatively low, but it underpredicts the observed hourly NO2 concentrations at most sites. Both models generally capture well the daytime maximum 8 h O3 concentrations and diurnal variations of O3 with more accurate peak daytime and minimal nighttime values by WRF/Chem-MADRID, but neither model reproduces extremely low nighttime O3 concentrations at several urban and suburban sites due to underpredictions of

  9. Meteorological detrending of primary and secondary pollutant concentrations: Method application and evaluation using long-term (2000-2012) data in Atlanta

    NASA Astrophysics Data System (ADS)

    Henneman, Lucas R. F.; Holmes, Heather A.; Mulholland, James A.; Russell, Armistead G.

    2015-10-01

    The effectiveness of air pollution regulations and controls are evaluated based on measured air pollutant concentrations. Air pollution levels, however, are highly sensitive to both emissions and meteorological fluctuations. Therefore, an assessment of the change in air pollutant levels due to emissions controls must account for these meteorological fluctuations. Two empirical methods to quantify the impact of meteorology on pollutant levels are discussed and applied to the 13-year time period between 2000 and 2012 in Atlanta, GA. The methods employ Kolmogorov-Zurbenko filters and linear regressions to detrended pollutant signals into long-term, seasonal, weekly, short-term, and white-noise components. The methods differ in how changes in weekly and holiday emissions are accounted for. Both can provide meteorological adjustments on a daily basis for future use in acute health analyses. The meteorological impact on daily signals of ozone, NOx, CO, SO2, PM2.5, and PM species are quantified. Analyses show that the substantial decreases in seasonal averages of NOx and SO2 correspond with controls implemented in the metropolitan Atlanta area. Detrending allows for the impacts of some controls to be observed with averaging times of as little as 3 months. Annual average concentrations of NOx, SO2, and CO have all fallen by at least 50% since 2000. Reductions in NOx levels, however, do not lead to uniform reductions in ozone. While average detrended summer average maximum daily average 8 h ozone (MDA8h O3) levels fell by 4% (2.2 ± 2 ppb) between 2000 and 2012, winter averages have increased by 12% (3.8 ± 1.4 ppb), providing further evidence that high ozone levels are NOx-limited and lower ozone concentrations are NOx-inhibited. High ozone days (with MDA8h O3 greater than 60 ppb) decreased both in number and in magnitude over the study period.

  10. Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity.

    PubMed

    Traversi, Deborah; Villa, Silvia; Lorenzi, Eugenio; Degan, Raffaella; Gilli, Giorgio

    2012-11-30

    Biogas is an energy source that is produced via the anaerobic digestion of various organic materials, including waste-water sludge and organic urban wastes. Among the microorganisms involved in digestion, methanogens are the major microbiological group responsible for methane production. To study the microbiological equilibrium in an anaerobic reactor, we detected the methanogen concentration during wet digestion processes fed with pre-treated urban organic waste and waste-water sludge. Two different pre-treatments were used in successive experimental digestions: pressure-extrusion and turbo-mixing. Chemical parameters were collected to describe the process and its production. The method used is based on real-time quantitative PCR (RT-qPCR) with the functional gene mcrA as target. First, we evaluated the validity of the analyses. Next, we applied this method to 50 digestate samples and then we performed a statistical analysis. A positive and significant correlation between the biogas production rate and methanogen abundance was observed (r = 0.579, p < 0.001). This correlation holds both when considering all of the collected data and when the two data sets are separated. The pressure-extrusion pre-treatment allowed to obtain the higher methane amount and also the higher methanogen presence (F = 41.190, p < 0.01). Moreover a higher mean methanogen concentration was observed for production rate above than of 0.6 m(3) biogas/kg TVS (F = 7.053; p < 0.05). The applied method is suitable to describe microbiome into the anaerobic reactor, moreover methanogen concentration may have potential for use as a digestion optimisation tool.

  11. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  12. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    PubMed

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air.

  13. Influence of UV lamp, sulfur(IV) concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications.

    PubMed

    Xiao, Qian; Wang, Ting; Yu, Shuili; Yi, Peng; Li, Lei

    2017-03-15

    Bromate (BrO3(-)) is a possible human carcinogen regulated worldwide at a strict standard of 10 μg/L in drinking water. Removal of BrO3(-) by advanced reduction processes (ARPs) has attracted much attention due to its high reduction efficiency and easier combination with ultraviolet (UV) disinfection. In this study, we employed a UV/sulfite process to degrade BrO3(-) and studied the effects of UV lamp, sulfur(IV) concentration, and pH on effectiveness of the system in degrading BrO3(-). Low-pressure UV lamps (UV-L) instead of medium-pressure UV lamps (UV-M) were selected because of the high ultraviolet-C (UV-C) efficiency of UV-L. The increased sulfur(IV) concentration is proportionally correlated with enhanced degradation kinetics. BrO3(-) reduction was improved by increasing pH when pH is within 6.0-9.0, and principal component analysis demonstrated that pH is the most influential factor over sulfur(IV) concentration and type of UV lamp. Degradation mechanisms at different pH levels were subsequently investigated. Results showed that the reduction reactions are induced by hydrated electron (eaq(-)) at pH > 9.0, by H at pH 4.0, and by both eaq(-) and H at pH 7.0. Effective quantum efficiency for the formation of eaq(-) and H in the photocatalytic systems was determined to be 0.109 ± 0.001 and 0.034 ± 0.001 mol E(-1), respectively. Furthermore, mass balance calculation of bromine and sulfur at pH 7 showed that bromide, sulfate and possibly dithionate ions were the major products, and a degradation pathway was proposed accordingly. Moreover, UV/sulfite processes could reduce the initial bromate concentration of 0.1 mM by 82% and 95% in the presence and absence of O2 in tap water respectively, and 99% in the absence of O2 in deionized water within 20 min at pH 9.0 and 2.0 mM sulfur (IV).

  14. Application of a partial least-squares regression model to retrieve chlorophyll- a concentrations in coastal waters using hyper-spectral data

    NASA Astrophysics Data System (ADS)

    Ryan, Kimberly; Ali, Khalid

    2016-03-01

    Coastal and inland waters represent a diverse set of resources that support natural habitats and provide valuable ecosystem services to the human population. Monitoring the quality of these waters is essential to maintaining the resources they provide, and long-term monitoring may offer a better understanding of the relationship between human development and the health of these resource producers. The implementation of conventional monitoring is typically time-intensive and limited in geographic scale. Alternatively, the use of airborne and spaceborne remote sensors provides a synoptic view of water quality with better spatial coverage to more accurately identify dynamic and unique parameters. Concentrations of optically active constituents (OACs) such as suspended sediments and the phytoplankton pigment chlorophylla (CHL a), act as proxies for water quality and can be detected by optical sensors. Traditional remote sensing techniques were developed using multispectral sensors, and employ band ratio algorithms that seek to predict the concentrations of OACs in relation to water quality. In complex coastal waters, overlapping spectral signatures of OACs often confound these algorithms and reduce their predictive capacity. The objective of this study was to develop a dataset to test the predictive capabilities of partial least-squares regression, a multivariate statistical method, for hyperspectral remote sensing and in situ CHL a concentrations. This paper presents the model performance for a dataset developed in Long Bay, a ~160 km arcuate bay that spans the border between North and South Carolina. The model uses multivariate-based statistical modeling to capitalize on the spectral advantage gained by hyperspectral sensors when observing such waters. Following this approach, a multivariate-based monitoring tool for the prediction of CHL a concentrations is presented with a partial least-squares regression (PLSR) method using hyperspectral and laboratory

  15. X-Ray Microanalytic Concentration Measurements in Unsectioned Specimens: a Technique and its Application to Zinc, Manganese, and Iron Enriched Mechanical Structures of Organisms from Three Phyla

    NASA Astrophysics Data System (ADS)

    Schofield, Robert M. S.

    A method for measuring concentrations of minor elements in microscopic volumes of heterogeneous, unsectioned biological specimens using an ion microprobe is developed. The element quantity is obtained from PIXE (Proton Induced X-ray Emission) and the total quantity of material is derived from STIM (Scanning Transmission Ion Microscopy) energy loss measurements. Sources of error, including changes in x-ray production cross section with proton energy and absorption of induced x-rays, are discussed and a method of calculating the total measurement uncertainty, typically about 25% here, is developed. The measurement accuracy is shown to be improved for symmetric specimens, and a method of using the bremsstrahlung background to correct for x-ray attenuation within irregular specimens is developed. Methods for measuring local concentrations in internal features are also discussed. With this technique, scorpions were found to contain cuticular accumulations of one or more heavy metals (manganese up to 5% of dry weight, iron up to 8%, zinc up to 24%) in the chelicera, pedipalp denticles, tarsal claws, and stingers; different region soften contained different metals. The stingers are argued to be of particular interest because they are not homologous to legs. Similar accumulations were found in spiders, some other chelicerates and crustaceans. Previous reports of manganese and zinc accumulations in insect and worm mouth parts were augmented with local concentration measurements and with the detection of other enrichment features (such as 6% iron in the paragnaths of the worm Nereis vexillosa). Zinc accumulations (up to only 0.1%) were also found in the tips of the teeth of a hagfish, Myxine + glutinosa. X-ray images of several of these features are presented. It is argued that the extreme magnitude of some concentration values suggests that some metals are incorporated in unusual biominerals rather than organically bound. Results of x-ray diffractometry and Vickers

  16. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes

    PubMed Central

    Vedicherla, Srujana

    2017-01-01

    Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT), Allogeneic Juvenile Chondrocyte Implantation (NuQu®), and Matrix-Induced Autologous Chondrocyte Implantation (MACI). Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml) and incubation time (1 and 12 h), combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen) of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation. PMID:28337445

  17. A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water.

    PubMed

    Cao, Qing; Huang, Feng; Zhuang, Zanyong; Lin, Zhang

    2012-04-07

    This work aims at the investigation of nano-Mg(OH)(2) as a promising adsorbent for uranium recovery from water. Systematic analysis including the uranium adsorption isotherm, the kinetics and the thermodynamics of adsorption of low concentrations of uranyl tricarbonate (0.1-20 mg L(-1)) by nano-Mg(OH)(2) was carried out. The results showed a spontaneous and exothermic uranium adsorption process by Mg(OH)(2), which could be well described with pseudo second order kinetics. Surface site calculation and zeta potential measurement further demonstrated that UO(2)(CO(3))(3)(4-) was a monolayer adsorbed onto nano-Mg(OH)(2) by electrostatic forces. Accordingly, the adsorption behavior met the conditions of the Langmuir isotherm. Moreover, in most of the reported literature, nano-Mg(OH)(2) had a higher UO(2)(CO(3))(3)(4-) adsorption affinity b, which implied a higher adsorption amount at equilibrium in a dilute adsorbate system. The significance of the adsorption affinity b for choosing and designing adsorbents with respect to low concentration of resources/pollutants treatment has also been assessed.

  18. Thin film concentrator panel development

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1982-01-01

    The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.

  19. A new application of micellar liquid chromatography in the determination of free ampicillin concentration in the drug-human serum albumin standard solution in comparison with the adsorption method.

    PubMed

    Stępnik, Katarzyna E; Malinowska, Irena; Maciejewska, Małgorzata

    2016-06-01

    The determination of free drug concentration is a very important issue in the field of pharmacology because only the unbound drug fraction can achieve a pharmacological effect. Due to the ability to solubilize many different compounds in micellar aggregates, micellar liquid chromatography (MLC) can be used for direct determination of free drug concentration. Proteins are not retained on the stationary phase probably due to the formation of protein - surfactant complexes which are excluded from the pores of stationary phase. The micellar method is simple and fast. It does not require any pre-preparation of the tested samples for analysis. The main aim of this paper is to demonstrate a completely new applicability of the analytical use of MLC concerning the determination of free drug concentration in the standard solution of human serum albumin. The well-known adsorption method using RP-HPLC and the spectrophotometric technique was applied as the reference method. The results show that the free drug concentration value obtained in the MLC system (based on the RP-8 stationary phase and CTAB) is similar to that obtained by the adsorption method: both RP-HPLC (95.83μgmL(-1), 79.86% of free form) and spectrophotometry (95.71μgmL(-1), 79.76%). In the MLC the free drug concentration was 93.98μgmL(-1) (78.3%). This indicates that the obtained results are within the analytical range of % of free ampicillin fraction and the MLC with direct sample injection can be treated like a promising method for the determination of free drug concentration.

  20. Investigation of High-Level Synthesis tools’ applicability to data acquisition systems design based on the CMS ECAL Data Concentrator Card example

    NASA Astrophysics Data System (ADS)

    HUSEJKO, Michal; EVANS, John; RASTEIRO DA SILVA, Jose Carlos

    2015-12-01

    High-Level Synthesis (HLS) for Field-Programmable Logic Array (FPGA) programming is becoming a practical alternative to well-established VHDL and Verilog languages. This paper describes a case study in the use of HLS tools to design FPGA-based data acquisition systems (DAQ). We will present the implementation of the CERN CMS detector ECAL Data Concentrator Card (DCC) functionality in HLS and lessons learned from using HLS design flow. The DCC functionality and a definition of the initial system-level performance requirements (latency, bandwidth, and throughput) will be presented. We will describe how its packet processing control centric algorithm was implemented with VHDL and Verilog languages. We will then show how the HLS flow could speed up design-space exploration by providing loose coupling between functions interface design and functions algorithm implementation. We conclude with results of real-life hardware tests performed with the HLS flow-generated design with a DCC Tester system.

  1. Preparation of novel alginate based anion exchanger from Ulva japonica and its application for the removal of trace concentrations of fluoride from water.

    PubMed

    Paudyal, Hari; Pangeni, Bimala; Inoue, Katsutoshi; Kawakita, Hidetaka; Ohto, Keisuke; Ghimire, Kedar Nath; Alam, Shafiq

    2013-11-01

    A green seaweed, Ulva japonica, was modified by loading multivalent metal ions such as Zr(IV) and La(III) after CaCl2 cross-linking to produce metal loaded cross-linked seaweed (M-CSW) adsorbents, which were characterized by elemental analysis, functional groups identification, and metal content determination. Maximum sorption potential for fluoride was drastically increased after La(III) and Zr(IV) loading, which were evaluated as 0.58 and 0.95 mmol/g, respectively. Loaded fluoride was quantitatively desorbed by using dilute alkaline solution for its regeneration. Mechanism of fluoride adsorption was inferred in terms of ligand exchange reaction between hydroxyl ion on co-ordination sphere of the loaded metal ions of M-CSW and fluoride ion in aqueous solution. Application of M-CSW for the treatment of actual waste plating solution exhibited successful removal of fluoride to clear the effluent and environmental standards in Japan, suggesting high possibility of its application for the treatment of fluoride rich waste water.

  2. Structural refinement, band-gap analysis and optical properties of GdAlO3 nanophosphors influenced by Dy3+ ion concentrations for white light emitting device applications

    NASA Astrophysics Data System (ADS)

    Jisha, P. K.; Naik, Ramachandra; Prashantha, S. C.; Nagaswarupa, H. P.; Nagabhushana, H.; Basavaraj, R. B.; Sharma, S. C.; Prasad, Daruka

    2016-04-01

    Nanosized GdAlO3 phosphors activated with Dy3+ were prepared by a combustion method. Synthesized phosphors were calcined at 1000 °C for 3 h in order to achieve crystallinity. Powder x-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis was used to characterize the prepared product. The orthorhombic phase was observed in the XRD pattern. The particle size of the samples was calculated as around 25 nm. The SEM images show an irregular shape of the prepared nanophosphor. Functional groups of the phosphors were examined by Fourier transform infrared (FTIR) spectroscopy. Photoluminescence (PL) properties of Dy3+ doped GdAlO3 for near-ultraviolet excitation (352 nm) were studied in order to investigate the possibility of its use in white light emitting device applications. Judd-Ofelt intensity parameters, radiative transition rate (A T) and radiative lifetimes (τ rad) were evaluated from the emission spectrum by adopting a standard procedure. The Commission International de l’Eclairage (CIE) color coordinates and correlated color temperature (CCT) are studied for the optimized phosphor. It is found that the color coordinates of Dy3+ doped GdAlO3 powders fall in the white region of the CIE diagram, and the average CCT value was found to be about 6276 K. Therefore, the present phosphor is highly useful for display applications.

  3. Derivation of predicted no effect concentrations (PNEC) for marine environmental risk assessment: application of different approaches to the model contaminant Linear Alkylbenzene Sulphonates (LAS) in a site-specific environment.

    PubMed

    Hampel, M; González-Mazo, E; Vale, C; Blasco, J

    2007-05-01

    Four sediment-dwelling marine organisms were exposed to sediments spiked with increasing concentrations of Linear Alkylbenzene Sulphonate (LAS). The selected endpoint mortality was reported daily and acute LC(50) (96 h), as well as final LC(10) values were calculated for the derivation of environmentally safe predicted no effect concentrations (PNEC) for the sediment compartment. PNECs were estimated by both application of assessment factors (AF) and the equilibrium partitioning method (EPM) as proposed by the EU TGD. Finally, environmental risk assessment in a site-specific environment, the Sancti Petri Channel, South Iberian Peninsula, was carried out at three different sampling stations with known environmental LAS concentrations. PNECs obtained by the assessment factor approach with acute toxicity data were one to two orders of magnitude lower than those from the equilibrium partitioning method. On the other hand, when applying lower AFs to the estimated LC(10) values, the PNECs obtained by both approaches were more similar. Environmental risk assessment carried out with the estimated PNECs in a site specific environment with known sediment LAS concentrations revealed that PNECs obtained with acute toxicity data were over conservative whereas those obtained with AF=10 on LC(10) data and EPM produced more realistic results in accordance with field observations carried out in the study area.

  4. Effect of pH and monovalent cations on the Raman spectrum of water: Basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Puppulin, Leonardo; La Rosa, Angelo; Boffelli, Marco; Zhu, Wenliang; McEntire, Bryan J.; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori

    2015-12-01

    The effect of hydrogen carbonate (HCO3-) and cations (Na+, K+) solvated in water were revisited according to high spectrally resolved Raman measurements. Water solutions with different bicarbonate concentrations or added with increasing amounts of monovalent cations were examined with respect to their Raman spectra both in the bulk state and at the solid/liquid interface with a silicon nitride (Si3N4) bioceramic. Spectroscopic calibrations confirmed that the Raman emission from OH-stretching in water is sensitive to molarity variations (in the order of tens of mM). The concentration gradient developed at the solid/liquid interface in cation-added solutions interacting with a Si3N4 surface was measured and found to be peculiar to individual cations. Local variation in pH was detected in ionic solutions interacting with Si3N4 samples, which might represent a useful property for Si3N4 in a number of biomedical applications.

  5. Quantitative analysis of tenuifolin concentrations in rat plasma and tissue using LC⬜MS/MS: application to pharmacokinetic and tissue distribution study.

    PubMed

    Ma, Bo; Li, Xiaotian; Li, Jing; Zhang, Qi; Liu, Yinhui; Yang, Xiaojing; Sun, Jingjing; Yao, Di; Liu, Lei; Liu, Xiaoxin; Ying, Hanjie

    2014-01-01

    A sensitive, reliable and accurate reversed-phased liquid chromatography with tandem mass spectrometry (LC⬜MS/MS) in negative ion mode was developed and validated for the quantification of tenuifolin in rat plasma and tissue. A single step protein precipitation by methanol was used to prepare plasma and tissue homogenate samples. Tenuifolin and polydatin (internal standard, IS) were separated by HPLC using a C18 column and an isocratic mobile phase consisted of acetonitrile and water containing 0.05% formic acid (42:58, v/v) running at a flow rate of 0.2 ml/min for 6 min. Detection and quantification were performed using a mass spectrometer by the multiple reaction monitoring (MRM) in negative electrospray ionization mode. The transition monitored were m/z [M↙H](↙) 679.4 ⠙ 455.4 for tenuifolin and m/z [M↙H](↙) 389.0 ⠙ 227.2 for IS, respectively. Calibration curves were recovered over a concentration range of 0.5⬜1000 ng/ml for plasma, heart, liver, lung and kidney, 0.5⬜200 ng/ml for spleen, and 0.5⬜50 ng/ml for brain, respectively. The lower limit of quantification was 0.5 ng/ml for plasma and tissue homogenates. The inter-day precision (R.S.D.) was less than 12.9% and intra-day precision R.S.D. was less than 13.4%, while the inter-day accuracy (R.E.) was ranged from ↙7.20 to 6.87% and intra-day accuracy (R.E.) was ranged from ↙6.20 to 8.04% in plasma and tissue homogenates. This method was successfully applied to the pharmacokinetic and tissue distribution study of pure tenuifolin in rat. The pharmacokinetic study indicated that poor absorption into systemic circulation was observed after rat was administered orally tenuifolin, and the absolute bioavailability was low (0.83 ± 0.28%). The results of tissue distribution showed the higher tenuifolin concentrations were found in liver, kidney and heart, and the small amount of drug was distributed quickly into the brain tissue at 5 min after the intravenous injection of tenuifolin

  6. Experimental investigation of anaerobic nitrogen fixation rates with varying pressure, temperature and metal concentration with application to the atmospheric evolution of early Earth and Mars.

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek

    2012-07-01

    The atmosphere of the early Earth is thought to have been significantly different than the modern composition of 21% O2 and 78% N2, yet the planet has been clearly established as hosting microbial life as far back as 3.8 billion years ago. As such, constraining the atmospheric composition of the early Earth is fundamental to establishing a database of habitable atmospheric compositions. A similar argument can be made for the planet Mars, where nitrates have been hypothesized to exist in the subsurface. During the early period on Mars when liquid water was likely more abundant, life may have developed to take advantage of available nitrates and a biologically-driven Martian nitrogen cycle could have evolved. Early Earth atmospheric composition has been investigated numerically, but only recently has the common assumption of a pN2 different than modern been investigated. Nonetheless, these latest attempts fail to take into account a key atmospheric parameter: life. On modern Earth, nitrogen is cycled vigorously by biology. The nitrogen cycle likely operated on the early Earth, but probably differed in the metabolic processes responsible, dominantly due to the lack of abundant oxygen which stabilizes oxidized forms of N that drive de-nitrification today. Recent advances in evolutionary genomics suggest that microbial pathways that are relatively uncommon today (i.e. vanadium and iron-based nitrogen fixation) probably played important roles in the early N cycle. We quantitatively investigate in the laboratory the effects of variable pressure, temperature and metal concentration on the rates of anoxic nitrogen fixation, as possible inputs for future models investigating atmospheric evolution, and better understand the evolution of the nitrogen cycle on Earth. A common anaerobic methanogenic archaeal species with i) a fully sequenced genome, ii) all three nitrogenases (molybdenum, vanadium and iron-based) and iii) the ability to be genetically manipulated will be used as

  7. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  8. Application of a two-stream radiative transfer model for leaf lignin and cellulose concentrations from spectral reflectance measurements, part 2

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Vandenbosch, Jeannette; Grove, Cindy I.

    1993-01-01

    We used the Kubelka-Munk theory of diffuse spectral reflectance in layers to analyze influences of multiple chemical components in leaves. As opposed to empirical approaches to estimation of plant chemistry, the full spectral resolution of laboratory reflectance data was retained in an attempt to estimate lignin or other constituent concentrations from spectral band positions. A leaf water reflectance spectrum was derived from theoretical mixing rules, reflectance observations, and calculations from theory of intrinsic k- and s-functions. Residual reflectance bands were then isolated from spectra of fresh green leaves. These proved hard to interpret for composition in terms of simple two component mixtures such as lignin and cellulose. We next investigated spectral and dilution influences of other possible components (starch, protein). These components, among others, added to cellulose in hypothetical mixtures, produce band displacements similar to lignin, but will disguise by dilution the actual abundance of lignin present in a multicomponent system. This renders interpretation of band positions problematical. Knowledge of end-members and their spectra, and a more elaborate mixture analysis procedure may be called for. Good observational atmospheric and instrumental conditions and knowledge thereof are required for retrieval of expected subtle reflectance variations present in spectra of green vegetation.

  9. Estimates of pesticide concentrations and fluxes in two rivers of an extensive French multi-agricultural watershed: application of the passive sampling strategy.

    PubMed

    Poulier, Gaëlle; Lissalde, Sophie; Charriau, Adeline; Buzier, Rémy; Cleries, Karine; Delmas, François; Mazzella, Nicolas; Guibaud, Gilles

    2015-06-01

    In this study, the passive sampling strategy was evaluated for its ability to improve water quality monitoring in terms of concentrations and frequencies of quantification of pesticides, with a focus on flux calculation. Polar Organic Chemical Integrative Samplers (POCIS) were successively exposed and renewed at three sampling sites of an extensive French multi-agricultural watershed from January to September 2012. Grab water samples were recovered every 14 days during the same period and an automated sampler collected composite water samples from April to July 2012. Thirty-nine compounds (pesticides and metabolites) were analysed. DEA, diuron and atrazine (banned in France for many years) likely arrived via groundwater whereas dimethanamid, imidacloprid and acetochlor (all still in use) were probably transported via leaching. The comparison of the three sampling strategies showed that the POCIS offers lower detection limits, resulting in the quantification of trace levels of compounds (acetochlor, diuron and desethylatrazine (DEA)) that could not be measured in grab and composite water samples. As a consequence, the frequencies of occurrence were dramatically enhanced with the POCIS compared to spot sample data. Moreover, the integration of flood events led to a better temporal representation of the fluxes when calculated with the POCIS compared to the bimonthly grab sampling strategy. We conclude that the POCIS could be an advantageous alternative to spot sampling, offering better performance in terms of quantification limits and more representative data.

  10. A new strategy to improve the predictive ability of the local lazy regression and its application to the QSAR study of melanin-concentrating hormone receptor 1 antagonists.

    PubMed

    Li, Jiazhong; Li, Shuyan; Lei, Beilei; Liu, Huanxiang; Yao, Xiaojun; Liu, Mancang; Gramatica, Paola

    2010-04-15

    In the quantitative structure-activity relationship (QSAR) study, local lazy regression (LLR) can predict the activity of a query molecule by using the information of its local neighborhood without need to produce QSAR models a priori. When a prediction is required for a query compound, a set of local models including different number of nearest neighbors are identified. The leave-one-out cross-validation (LOO-CV) procedure is usually used to assess the prediction ability of each model, and the model giving the lowest LOO-CV error or highest LOO-CV correlation coefficient is chosen as the best model. However, it has been proved that the good statistical value from LOO cross-validation appears to be the necessary, but not the sufficient condition for the model to have a high predictive power. In this work, a new strategy is proposed to improve the predictive ability of LLR models and to access the accuracy of a query prediction. The bandwidth of k neighbor value for LLR is optimized by considering the predictive ability of local models using an external validation set. This approach was applied to the QSAR study of a series of thienopyrimidinone antagonists of melanin-concentrating hormone receptor 1. The obtained results from the new strategy shows evident improvement compared with the commonly used LOO-CV LLR methods and the traditional global linear model.

  11. Accurate automated non-resonant NRA depth profiling: Application to the low 3He concentration detection in UO 2 and SiC

    NASA Astrophysics Data System (ADS)

    Martin, G.; Sauvage, T.; Desgardin, P.; Garcia, P.; Carlot, G.; Barthe, M. F.

    2007-05-01

    An automated method was developed to extract elemental depth profiles from non-resonant nuclear reaction analyses (NRA), which involves a two-stage procedure. The first stage enables the determination of the number of layers to be used in the final depth profile determination along with the thicknesses of each of the layers. To this end, the RESNRA program, which relies on the SIMNRA 5.0 simulation software to calculate a multilayer target, was designed at CERI. A definition of the depth resolution based on statistical considerations is proposed. In the second stage of the fitting process, a depth profile and corresponding error bars are extracted from the experimental spectrum by running a generalized reduced gradient (GRG2) algorithm using the previously calculated multilayer target. The one-to-one correspondence between the experimental spectrum and the depth profile demonstrates the objectivity of the method. The method is then applied to determining low concentration 3He depth profiles in implanted UO 2 and SiC samples using the 3He( 2H, 4He) 1H non-resonant nuclear reaction. The results clearly demonstrate the relevance and potential of the method.

  12. Synthesis and application of ion-imprinted polymer for extraction and pre-concentration of iron ions in environmental water and food samples.

    PubMed

    Roushani, Mahmoud; Beygi, Tahereh Musa; Saedi, Zahra

    2016-01-15

    In this work, a novel Fe(III) ion imprinted polymer as a sorbent for extraction of iron ions from different samples was synthesized. Precipitation of thermal copolymerization was used for preparation of polymeric sorbent. In this technique, methacrylic acid, ethylene glycoldimethacrylate, 2,2'-azobisisobutyronitrile and (DHBPT)2 {(DHBPT)2=3,6-bis (3,5-dimethyl-1-H-pyrzol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine)} were used as monomer, cross-linker, initiator and ligand, respectively, in the presence of Fe(III) ions and ethanol as a porogenic solvent. Moreover, control polymer (NIP) particles were similarly prepared without the Fe(III) ions. XRD, FT-IR, SEM and nitrogen adsorption-desorption techniques have been used to characterization of these prepared polymeric samples. Iron ion imprinted polymer particles, abbreviated as Fe(III)-IIP, were leached with 50 mL of HCl (50% (v/v)). Absorption capacity for ion imprinted polymer was calculated about 40.41 mg·g(-1). Per-concentration of iron ion was investigated as a function of pH, weight of IIP, adsorption and desorption times, and volumes of sample. FAAS technique was used to determination of Fe(III) ion in the foods and waters samples.

  13. Application of an improved biuret method to the determination of total protein in urine and cerebrospinal fluid without concentration step by use of Hitachi 7170 auto-analyzer.

    PubMed

    Guobing, X; Lili, J; Lihua, Z; Tiean, X

    2001-01-01

    A biuret automated colorimetric assay for total protein in urine and cerebrospinal fluids was established. The procedures were as follows. Acidify all urine sample before analysis. Add precipitant Na(2)WO(4) to urine samples. After 10 min, centrifuge, decant the supernatant fluid, drain the inverted tubes on absorbent tissue, dissolve the precipitation with 0.1 mol/L NaOH, and finally adapt the reconstituted urine to the Hitachi 7170 analyzer. A cell-free cerebrospinal fluid sample produced by centrifugation can be inserted in an auto-analyzer for protein measurement directly. The program: mix 35 microl sample (CSF or reconstituted urine) and standard with 0.2 mol/L NaOH; incurable at 37 degrees C for 5 min, and real A1. Add concentrated biuret reagent, and 10 min later measure absorbance A2 at 546 nm vs. reagent blank. Secondary wavelength was 700 nm. The test results were calculated against a one-point standard. This biuret colorimetric method was relatively simple, fast, and accurate for the determination of protein in urine and cerebrospinal fluid, with a wide linearity extending from 0.125 g/L up to 6 g/L, had a good correlation with Benzethonium chloride turbidimetry technique, and was a practical routine method.

  14. Synthesis and application of ion-imprinted polymer for extraction and pre-concentration of iron ions in environmental water and food samples

    NASA Astrophysics Data System (ADS)

    Roushani, Mahmoud; Beygi, Tahereh Musa; Saedi, Zahra

    2016-01-01

    In this work, a novel Fe(III) ion imprinted polymer as a sorbent for extraction of iron ions from different samples was synthesized. Precipitation of thermal copolymerization was used for preparation of polymeric sorbent. In this technique, methacrylic acid, ethylene glycoldimethacrylate, 2,2‧-azobisisobutyronitrile and (DHBPT)2 {(DHBPT)2 = 3,6-bis (3,5-dimethyl-1-H-pyrzol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine)} were used as monomer, cross-linker, initiator and ligand, respectively, in the presence of Fe(III) ions and ethanol as a porogenic solvent. Moreover, control polymer (NIP) particles were similarly prepared without the Fe(III) ions. XRD, FT-IR, SEM and nitrogen adsorption-desorption techniques have been used to characterization of these prepared polymeric samples. Iron ion imprinted polymer particles, abbreviated as Fe(III)-IIP, were leached with 50 mL of HCl (50% (v/v)). Absorption capacity for ion imprinted polymer was calculated about 40.41 mg·g- 1. Per-concentration of iron ion was investigated as a function of pH, weight of IIP, adsorption and desorption times, and volumes of sample. FAAS technique was used to determination of Fe(III) ion in the foods and waters samples.

  15. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    SciTech Connect

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  16. Intrinsic bioactivity of thyrotropin in human serum is inversely correlated with thyroid hormone concentrations. Application of a new bioassay using the FRTL-5 rat thyroid cell strain.

    PubMed Central

    Dahlberg, P A; Petrick, P A; Nissim, M; Menezes-Ferreira, M M; Weintraub, B D

    1987-01-01

    We have developed a new bioassay for thyrotropin (TSH) in human serum to evaluate bioactivity in normal individuals and patients with different degrees of primary hypothyroidism. Unpurified TSH in serum showed no stimulation of cyclic AMP production in cultured FRTL-5 rat thyroid cells, but after immunopurification showed potent stimulatory activity. Immunoaffinity purification permitted up to 400-fold concentration of serum TSH, allowing bioactivity measurements even in certain normal sera. The limit of detection in the FRTL-5 bioassay was 10 microU of human TSH per 0.5 ml incubate, and half-maximal responses for standard human TSH was 102 +/- 26 (+/- SE) microU/0.5 ml. Immunoaffinity-purified serum TSH varied in bioactivity-to-immunoactivity (B/I) ratios from less than 0.25 to 1.21 among four euthyroid subjects and eight primary hypothyroid patients. An inverse correlation was found between B/I ratios of immunopurified basal TSH and the serum-free T4 (r = -0.7237, P less than 0.01), T4 (r = -0.6650, P less than 0.05), and T3 (r = -0.6382, P less than 0.05). B/I ratios of immunopurified TSH from three hypothyroid patients before and after acute stimulation by thyrotropin-releasing hormone showed no significant change, despite major changes in serum TSH. In summary, the present study shows an inverse relationship between the metabolic status of an individual and the intrinsic bioactivity of TSH. Images PMID:3571493

  17. Net electric power of concentrating solar mirror systems for application in space as a function of the distance to the sun

    NASA Astrophysics Data System (ADS)

    Blumenberg, Jürgen; Panagopoulos, Petros

    The use of solar radiation by means of concentrating solar mirror systems, such as parabolic and spheric configurations, mainly is an engineering problem. A decisive characteristic for the optimisation of a complete system with turboelectric power conversion is the thermal cycle applied. Besides the Carnot process, here taken up into the study as an ideal comparative process, suitable processes for the technological realisation are the Brayton process and the Rankine process. The Brayton process is a typical gas turbine process using only the gaseous phase. The Rankine process is a steam engine process using liquid and gaseous phase. The work in hand shows how such solar systems with turboelectric conversion are optimised with respect to their specific weight (kg/kW e) and how the distance to the sun as well as technological data enter into the analysis. As expected, the Carnot cycle as an ideal comparative process for both types of systems shows the best results for the optimum specific mass of the system. Regarding the real processes, the Rankine cycle shows more favourable characteristics than the Brayton cycle. The difference of the specific masses of the real processes mainly results from the different thermal conditions at the radiator. The influence of the distance to the sun is as expected. The nearer to the sun the solar power system operates, the better is the optimum specific mass of the system. For distances to the sun between 0.3 and 1.0 AU the spheric system shows a better behaviour than the parabolic system. For distances to the sun greater than 2.0 AU the parabolic system shows better behaviour of the specific weight. In the region between 1 and 2 AU the better optimum specific mass of the system belongs to the technological data used in the analysis.

  18. A rapid and simple high-performance liquid chromatography method for the determination of human plasma levofloxacin concentration and its application to bioequivalence studies.

    PubMed

    Zhou, Zhi-Ling; Yang, Min; Yu, Xi-Yong; Peng, Huai-Yan; Shan, Zhi-Xin; Chen, Shu-Zhen; Lin, Qiu-Xiong; Liu, Xiao-Ying; Chen, Tie-Feng; Zhou, Shu-Feng; Lin, Shu-Guang

    2007-10-01

    A high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) for the determination of levofloxacin in human plasma is described. Neutralized with phosphate buffer (pH 7.0), the sample (0.1 mL) was extracted with dichlormethane (1 mL). After voltex-mixing and centrifuged at 3000g for 6 min at 4 degrees C, the upper aqueous layer was aspirated using a micro vacuum pump and the organic layer was directly transferred to a clean test tube without pipetting. The organic solvent was evaporated and the residues were reconstituted with the mobile phase. Levofloxacin and terazosin (internal standard, IS) were chromatographically separated on a C(18) column with a mobile phase containing phosphate buffer (pH 3.0, 10 mm), acetonitrile and triethylamine (76:24:0.076, v/v/v) at a flow rate of 1 mL/min. The analytes were detected using fluorescence detection at an excitation and emission wavelength of 295 and 440 nm, respectively. The linear range of the calibration curves was 0.0521-5.213 microg/mL for levofloxacin with a lower limit of quantitation (0.0521 microg/mL). The retention times of levofloxacin and terazosin were 2.5 and 3.1 min, respectively. Within- and between-run precision was less than 12 and 11%, respectively. Accuracy ranged from -6.3 to 4.5%. The recovery ranged from 86 to 89% at the concentrations of 0.0521, 0.5213 and 5.213 microg/mL. The present HPLC-FLD method is sensitive, efficient and reliable. The method described herein has been successfully used for the pharmacokinetic and bioequivalence studies of a levofloxacin formulation product after oral administration to healthy Chinese volunteers.

  19. The effect of a preventive program, including the application of low-concentration fluoride varnish, on caries control in high-risk children.

    PubMed

    Zimmer, S; Bizhang, M; Seemann, R; Witzke, S; Roulet, J F

    2001-03-01

    The aim of this 2-year prospective randomized clinical study was to evaluate the efficacy of a prevention program for schoolchildren with high caries risk. A sample of 419 subjects was divided into a test (T, n = 259) and control group (C, n = 160). Four times a year, the test group received professional tooth-cleaning and application of a 0.1% fluoride varnish as well as motivation and instruction in oral hygiene. The control group received only oral hygiene instruction and took part in supervised toothbrushing once a year. At baseline and after 2 years, the D3,4MFS and the incipient lesions (D1,2) were recorded. After 2 years, 318 subjects (T = 187, C = 131) were included in the data analysis. The baseline D1,2 was 6.18 (T) and 5.50 (C), the D3,4MFS 2.13 (T) and 2.08 (C), respectively. No statistically significant difference was found for the baseline values. At the final examination, the D1,2 increment was 3.96 in the test and 6.53 in the control group, showing a statistically significant difference (P < 0.001). No such difference was found for the D3,4MFS increment (T: 2.22; C: 2.61). The results indicate that it might not be possible to prevent cavities in high caries risk children by means of the described program.

  20. Applications

    NASA Astrophysics Data System (ADS)

    Stern, Arthur M.

    1986-07-01

    Economic incentives have spurred numerous applications of genetically engineered organisms in manufacture of pharmaceuticals and industrial chemicals. These successes, involving a variety of methods of genetic manipulation, have dispelled early fears that genetic engineering could not be handled safely, even in the laboratory. Consequently, the potential for applications in the wider environment without physical containment is being considered for agriculture, mining, pollution control, and pest control. These proposed applications range from modest extensions of current plant breeding techniques for new disease-resistant species to radical combinations of organisms (for example, nitrogen-fixing corn plants). These applications raise concerns about potential ecological impacts (see chapter 5), largely because of adverse experiences with both deliberate and inadvertent introductions of nonindigenous species.

  1. Application of a vital fluorescent staining method for simultaneous, near-real-time concentration monitoring of two bacterial strains in an Atlantic coastal plain aquifer in Oyster, Virginia.

    PubMed

    Fuller, Mark E; Mailloux, Brian J; Streger, Sheryl H; Hall, James A; Zhang, Pengfei; Kovacik, William P; Vainberg, Simon; Johnson, William P; Onstott, Tullis C; DeFlaun, Mary F

    2004-03-01

    Two differentially labeled bacterial strains were monitored in near-real time during two field-scale bacterial transport experiments in a shallow aquifer in July 2000 and July 2001. Comamonas sp. strain DA001 and Acidovorax sp. strain OY-107 were grown and labeled with the vital fluorescent stain TAMRA/SE (5 [and -6]-carboxytetramethylrhodamine, succinimidyl ester) or CFDA/SE (5 [and -6]-carboxyfluorescein diacetate, succinimidyl ester). Fluorescently labeled cells and a conservative bromide tracer were introduced into a suboxic superficial aquifer, followed by groundwater collection from down-gradient multilevel samplers. Cells were enumerated in the field by microplate spectrofluorometry, with confirmatory analyses for selected samples done in the laboratory by epifluorescence microscopy, flow cytometry, and ferrographic capture. There was general agreement in the results from all of the vital-stain-based enumeration methods, with differences ranging from <10% up to 40% for the analysis of identical samples between different tracking methods. Field analysis by microplate spectrofluorometry was robust and efficient, allowing thousands of samples to be analyzed in quadruplicate for both of the injected strains. The near-real-time data acquisition allowed adjustments to the predetermined sampling schedule to be made. The microplate spectrofluorometry data sets for the July 2000 and July 2001 experiments allowed the transport of the injected cells to be related to the site hydrogeology and injection conditions and enabled the assessment of differences in the transport of the two strains. This near-real-time method should prove effective for a number of microbial ecology applications.

  2. Reconstructing Middle Eocene Climate and Atmospheric Carbon Dioxide Concentration: Application of a mechanistic theoretical approach to fossil plants from the Messel Pit (Germany)

    NASA Astrophysics Data System (ADS)

    Grein, M.; Roth-Nebelsick, A.; Wilde, V.; Konrad, W.; Utescher, T.

    2009-12-01

    It is assumed that changes in atmospheric CO2 concentrations (from now on expressed as Ca) strongly influenced the development of global temperatures during parts of the Cenozoic. Thus, detailed knowledge of ancient Ca and its variations is of utmost importance for exploring the coupling of atmospheric CO2 and global climate change. Numerous techniques (such as carbon and boron isotopes) were applied in order to obtain Ca, with varying and sometimes even conflicting results. Stomatal density (number of stomata per leaf area) represents another promising proxy for the calculation of ancient Ca since many plants reduce the number of stomata (pores on the leaf surface used for gas exchange) under increasing Ca. As a reason it is assumed that plants try to adjust stomatal conductance in order to optimize their gas exchange (which means maximal assimilation at minimal transpiration). The common technique for calculating Ca from fossil stomatal frequency is to create empirical transfer functions of living plants derived from herbar material or greenhouse experiments. In the presented project, Ca of the Middle Eocene is calculated by applying a different approach which utilizes a mechanistic-theoretical calibration. It couples the processes of a) C3-photosynthesis, b) diffusion and c) transpiration with palaeoclimatic and leaf-anatomical data. The model also includes an optimisation principle supported by ecophysiological data. According to this optimisation principle, plants adjust their stomatal conductance in such a way that photosynthesis rates are constrained by optimal water use (transpiration). This model was applied in the present study to fossil plants from the Messel Pit near Darmstadt (Germany). In order to reconstruct Ca by using fossil plant taxa from Messel, numerous parameters which represent model input have to be estimated from measurements of living representatives. Furthermore, since climate parameters are also required by the model, quantitative

  3. Application of 'Six Sigma{sup TM}' and 'Design of Experiment' for Cementation - Recipe Development for Evaporator Concentrate for NPP Ling AO, Phase II (China) - 12555

    SciTech Connect

    Fehrmann, Henning; Perdue, Robert

    2012-07-01

    Cementation of radioactive waste is a common technology. The waste is mixed with cement and water and forms a stable, solid block. The physical properties like compression strength or low leach ability depends strongly on the cement recipe. Due to the fact that this waste cement mixture has to fulfill special requirements, a recipe development is necessary. The Six Sigma{sup TM}' DMAIC methodology, together with the Design of experiment (DoE) approach, was employed to optimize the process of a recipe development for cementation at the Ling Ao nuclear power plant (NPP) in China. The DMAIC offers a structured, systematical and traceable process to derive test parameters. The DoE test plans and statistical analysis is efficient regarding the amount of test runs and the benefit gain by getting a transfer function. A transfer function enables simulation which is useful to optimize the later process and being responsive to changes. The DoE method was successfully applied for developing a cementation recipe for both evaporator concentrate and resin waste in the plant. The key input parameters were determined, evaluated and the control of these parameters were included into the design. The applied Six Sigma{sup TM} tools can help to organize the thinking during the engineering process. Data are organized and clearly presented. Various variables can be limited to the most important ones. The Six Sigma{sup TM} tools help to make the thinking and decision process trace able. The tools can help to make data driven decisions (e.g. C and E Matrix). But the tools are not the only golden way. Results from scoring tools like the C and E Matrix need close review before using them. The DoE is an effective tool for generating test plans. DoE can be used with a small number of tests runs, but gives a valuable result from an engineering perspective in terms of a transfer function. The DoE prediction results, however, are only valid in the tested area. So a careful selection of input

  4. Thin solar concentrator with high concentration ratio

    NASA Astrophysics Data System (ADS)

    Lin, Jhe-Syuan; Liang, Chao-Wen

    2013-09-01

    Solar concentrators are often used in conjunction with III-V multi-junction solar cells for cost reduction and efficiency improvement purposes. High flux concentration ratio, high optical efficiency and high manufacture tolerance are the key features required for a successful solar concentrator design. This paper describes a novel solar concentrator that combines the concepts, and thus the advantages, of both the refractive type ad reflective type. The proposed concentrator design adopts the Etendue-cascading concept that allows the light beams from all the concentric annular entrance pupils to be collected and transferred to the solar cell with minimal loss. This concept enables the system to perform near its Etendue-Limit and have a high concentration ratio simultaneously. Thereby reducing the costs of solar cells and therefor achieves a better the per watts cost. The concentrator demonstrated has a thing aspect ratio of 0.19 with a zero back focal distance. The numerical aperture at the solar cell immersed inside the dielectric concentrator is as high as 1.33 achieving a unprecedented high optical concentration ratio design.

  5. NREL's Concentrated Solar Radiation User Facility

    SciTech Connect

    Lewandowski, A.

    1999-09-01

    Declared a national user facility in 1993, NREL's Concentrated Solar Radiation User Facility (CSR) allows industry, government, and university researchers to examine the effects and applications of as much as 50,000 suns of concentrated solar radiation using a High-Flux Solar Furnace and long-term exposure using an ultraviolet (UV) concentrator.

  6. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity - Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios M.; Barbosa, Susana M.; Matos, Jose A. O.

    2015-04-01

    The presence or absence of long-range correlations in environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas Radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental Radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, Radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between hours and one day) arising from marked periodic components probably related to tidal frequencies, and (iii) low-frequency variability indicating a true long-range dependent process, which might be dominated by a response to meteorological drivers. In the presence of such multi-scale variability, common estimators of long-range memory in time series are necessarily prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. We emphasize that similar properties can be found in other types of geophysical time series (for

  7. Investigation of in-situ poly(lactic acid)/soy protein concentrate composites: Composite preparation, properties and foam application development

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    2011-12-01

    In this study, soy protein (SP), the residue of oil crushing, was used for preparation of value-added thermoplastics. Novel poly(lactic acid) (PLA)/soy protein concentrate (SPC) blends were investigated and foaming of the resulting blends was developed. PLA/SPC blends were prepared by twin-screw extrusion and test specimens by injection molding. Unlike the practice elsewhere SP was used as a filler in mixing with other polymers, SPC was processed as a plastic component in blending process in this work. Processing SPC as plastic component, water played an important role in terms of the deformability and the morphology of SP thus the properties of the blends. Plasticization of SP, compatibilization of the blends and structure-property relationship of the PLA/SPC blends were studied. In the literature water and glycerol were often used together in preparing SP plastics or plastic blends, but this study found that this traditional combination did not provide the best results in terms of morphology and mechanical properties. Water is only recommended in plasticizing SP in the blends. This study showed water as a plasticizer was a domain factor on control of morphology and properties of PLA/SPC blends. The due to the evaporation of water after extrusion, SP domain lost its deformability thus resulted in in-situ composites. Interconnected SPC phase structure was achieved by control water content in the pre-formulated SPC and SPC content in the blends. A novel dual compatibilization method was developed to improve the properties of PLA/SPC blends. Poly(2-ethyl-2-oxazoline) was used to improve the dispersion of SPC in the blending stage, and polymeric methylene diphenyl diisocyanate was used to improve the interfacial adhesion between SPC and PLA in the subsequent processing. The result showed excellent mechanical properties and improved thermal properties of PLA/SPC blends. Using processing aids is an effective way to decrease processing temperature and thermal degradation

  8. Theoretical maximum concentration factors for solar concentrators

    SciTech Connect

    Nicolas, R.O.; Duran, J.C.

    1984-11-01

    The theoretical maximum concentration factors are determined for different definitions of the factor for two-dimensional and three-dimensional solar concentrators that are valid for any source with nonuniform intensity distribution. Results are obtained starting from those derived by Winston (1970) for Lambertian sources. In particular, maximum concentration factors for three models of the solar-disk intensity distribution are calculated. 12 references.

  9. Multiscale modeling and experimental interpretation of perovskite oxide materials in thermochemical energy storage and conversion for application in concentrating solar power

    NASA Astrophysics Data System (ADS)

    Albrecht, Kevin J.

    Decarbonization of the electric grid is fundamentally limited by the intermittency of renewable resources such as wind and solar. Therefore, energy storage will play a significant role in the future of grid-scale energy generation to overcome the intermittency issues. For this reason, concentrating solar power (CSP) plants have been a renewable energy generation technology of interest due to their ability to participate in cost effective and efficient thermal energy storage. However, the ability to dynamically dispatch a CSP plant to meet energy demands is currently limited by the large quantities of sensible thermal energy storage material needed in a molten salt plant. Perovskite oxides have been suggested as a thermochemical energy storage material to enhance the energy storage capabilities of particle-based CSP plants, which combine sensible and chemical modes of energy storage. In this dissertation, computational models are used to establish the thermochemical energy storage potential of select perovskite compositions, identify system configurations that promote high values of energy storage and solar-to-electric efficiency, assess the kinetic and transport limitation of the chemical mode of energy storage, and create receiver and reoxidation reactor models capable of aiding in component design. A methodology for determining perovskite thermochemical energy storage potential is developed based on point defect models to represent perovskite non-stoichiometry as a function of temperature and gas phase oxygen partial pressure. The thermodynamic parameters necessary for the model are extracted from non-stoichiometry measurements by fitting the model using an optimization routine. The procedure is demonstrated for Ca0.9Sr0.1MnO 3-d which displayed combined energy storage values of 705.7 kJ/kg -1 by cycling between 773 K and 0.21 bar oxygen to 1173 K and 10 -4 bar oxygen. Thermodynamic system-level models capable of exploiting perovskite redox chemistry for energy

  10. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  11. Line-focus concentrating collector program

    NASA Technical Reports Server (NTRS)

    Dugan, V. L.

    1980-01-01

    The Line-Focus Concentrating Collector Program has emphasized the development and dissemination of concentrating solar technology in which the reflected sunlight is focused onto a linear or line receiver. Although a number of different types of line-focus concentrators were developed, the parabolic trough has gained the widest acceptance and utilization within the industrial and applications sectors. The trough is best applied for application scenarios which require temperatures between 140 and 600 F. Another concept, the bowl, is investigated for applications which may require temperatures in the range between 600 and 1200 F. Current technology emphases are upon the reduction of system installation cost and the implementation of production oriented engineering.

  12. Development of a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt for preconcentration of trace metals in saline aqueous samples: application to the determination of Pb and Cd.

    PubMed

    Yousefi, Seyed Reza; Shemirani, Farzaneh

    2010-06-11

    A new ionic liquid-based dispersive liquid-liquid microextraction method was developed for preconcentration and determination of compounds in aqueous samples containing very high salt concentrations. This method can solve the problems associated with the limited application of the conventional IL-based DLLME in these samples. This is believed to arise from dissolving of the ionic liquids in aqueous samples with high salt content. In this method, the robustness of microextraction system against high salt concentration (up to 40%, w/v) is increased by introducing a common ion of the ionic liquid into the sample solution. The proposed method was applied satisfactorily to the preconcentration of lead and cadmium in saline samples. After preconcentration, the settled IL-phase was dissolved in 100 microL ethanol and aspirated into the flame atomic absorption spectrometer (FAAS) using a home-made microsample introduction system. Several variables affecting the microextraction efficiency were investigated and optimized. Under the optimized conditions and preconcentration of only 10 mL of sample, the enhancement factors of 273 and 311 and the detection limits of 0.6 microg L(-1) and 0.03 microg L(-1) were obtained for lead and cadmium, respectively. Validation of the method was performed by both an analysis of a certified reference material (CRM) and comparison of results with those obtained by ISO standard method.

  13. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity. Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Potirakis, S. M.; Barbosa, S. M.; Matos, J. A. O.; Pereira, A. J. S. C.; Neves, L. J. P. F.

    2015-05-01

    The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes.Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics.

  14. Altering prolactin concentrations in sows.

    PubMed

    Farmer, C

    2016-07-01

    Prolactin has a multiplicity of actions, but it is of particular importance in gestating and lactating animals. In sows, it is involved in the control of mammary development and also holds essential roles in the lactogenic and galactopoietic processes. Furthermore, low circulating concentrations of prolactin are associated with the agalactia syndrome. The crucial role of prolactin makes it important to understand the various factors that can alter its secretion. Regulation of prolactin secretion is largely under the negative control of dopamine, and dopamine agonists consistently decrease prolactin concentrations in sows. On the other hand, injections of dopamine antagonists can enhance circulating prolactin concentrations. Besides pharmacologic agents, many other factors can also alter prolactin concentrations in sows. The use of Chinese-derived breeds, for instance, leads to increased prolactin concentrations in lactating sows compared with standard European white breeds. Numerous husbandry and feeding practices also have a potential impact on prolactin concentrations in sows. Factors, such as provision of nest-building material prepartum, housing at farrowing, high ambient temperature, stress, transient weaning, exogenous thyrotropin-releasing factor, exogenous growth hormone-releasing factor, nursing frequency, prolonged photoperiod, fasting, increased protein and/or energy intake, altered energy sources, feeding high-fiber diets, sorghum ergot or plant extracts, were all studied with respect to their prolactinemic properties. Although some of these practices do indeed affect circulating prolactin concentrations, none leads to changes as drastic as those brought about by dopamine agonists or antagonists. It appears that the numerous factors regulating prolactin concentrations in sows are still not fully elucidated, and that studies to develop novel applicable ways of increasing prolactin concentrations in sows are warranted.

  15. SQUID With Integral Flux Concentrator

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Sisk, Robert C.

    1989-01-01

    In improved superconducting quantum interference device (SQUID), change in size and shape of superconducting ring improves coupling to external signal coil and eases coil-positioning tolerances. More rugged and easier to manufacture than conventional SQUID's with comparable electrical characteristics. Thin-film superconducting flux concentrator utilizes Meissner effect to deflect magnetic field of signal coil into central hole of SQUID. Used in magnetometers, ammeters, analog-to-digital converters, and related electronic applications in which high signal-to-noise ratios required.

  16. Miniaturized Cassegrainian concentrator concept demonstration

    NASA Astrophysics Data System (ADS)

    Patterson, R. E.; Rauschenbach, H. S.

    High concentration ratio photovoltaic systems for space applications have generally been considered impractical because of perceived difficulties in controlling solar cell temperatures to reasonably low values. A miniaturized concentrator system is now under development which surmounts this objection by providing acceptable solar cell temperatures using purely passive cell cooling methods. An array of identical miniaturized, rigid Cassegrainian optical systems having a low f-number with resulting short dimensions along their optical axes are rigidly mounted into a frame to form a relatively thin concentrator solar array panel. A number of such panels, approximately 1.5 centimeters thick, are wired as an array and are folded against one another for launch in a stowed configuration. Deployment on orbit is similar to the deployment of conventional planar honeycomb panel arrays or flexible blanket arrays. The miniaturized concept was conceived and studied in the 1978-80 time frame. Progress in the feasibility demonstration to date is reported.

  17. Photovoltaic concentrator initiative: Concentrator cell development

    SciTech Connect

    Wohlgemuth, J.H.; Narayanan, S.

    1993-05-01

    This project involves the development of a large-area, low-cost, high-efficiency concentrator solar cell for use in the Entech 22-sun linear-focus Fresnel lens concentrator system. The buried contact solar cell developed at the University of New South Wales was selected for this project. Both Entech and the University of New South Wales are subcontractors. This annual report presents the program efforts from November 1990 through December 1991, including the design of the cell, development of a baseline cell process, and presentation of the results of preliminary cell processing. Important results include a cell designed for operation in a real concentrator system and substitution of mechanical grooving for the previously utilized laser scribing.

  18. Air Data - Concentration Map

    EPA Pesticide Factsheets

    Make a map of daily concentrations over several days. The daily air quality can be displayed in terms of the Air Quality Index or in concentration ranges for certain PM species like organic carbon, nitrates, and sulfates.

  19. Photovoltaics. III - Concentrators

    NASA Astrophysics Data System (ADS)

    Backus, C. E.

    1980-02-01

    Photovoltaic concentration systems that redirect sunlight falling on a surface to a smaller solar-cell surface concentrating the intensity of sunlight many times are examined. It is noted that solar cells for concentrating systems must be designed for low internal resistance as well as for high sunlight intensities. Two designs of silicon cells are presented that perform well at high concentrations; these are interdigitated back-contact cells and vertical multijunction cells. Attention is given to heat tapping of reemitted light.

  20. A network property necessary for concentration robustness

    PubMed Central

    Eloundou-Mbebi, Jeanne M. O.; Küken, Anika; Omranian, Nooshin; Kleessen, Sabrina; Neigenfind, Jost; Basler, Georg; Nikoloski, Zoran

    2016-01-01

    Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications. PMID:27759015

  1. A network property necessary for concentration robustness

    NASA Astrophysics Data System (ADS)

    Eloundou-Mbebi, Jeanne M. O.; Küken, Anika; Omranian, Nooshin; Kleessen, Sabrina; Neigenfind, Jost; Basler, Georg; Nikoloski, Zoran

    2016-10-01

    Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications.

  2. Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Claustre, H.; Jamet, C.; Uitz, J.; Ras, J.; Mignot, A.; D'Ortenzio, F.

    2015-01-01

    neural network-based method is developed to assess the vertical distribution of (1) chlorophyll a concentration ([Chl]) and (2) phytoplankton community size indices (i.e., microphytoplankton, nanophytoplankton, and picophytoplankton) from in situ vertical profiles of chlorophyll fluorescence. This method (FLAVOR for Fluorescence to Algal communities Vertical distribution in the Oceanic Realm) uses as input only the shape of the fluorescence profile associated with its acquisition date and geo-location. The neural network is trained and validated using a large database including 896 concomitant in situ vertical profiles of High-Performance Liquid Chromatography (HPLC) pigments and fluorescence. These profiles were collected during 22 oceanographic cruises representative of the global ocean in terms of trophic and oceanographic conditions, making our method applicable to most oceanic waters. FLAVOR is validated with respect to the retrieval of both [Chl] and phytoplankton size indices using an independent in situ data set and appears to be relatively robust spatially and temporally. To illustrate the potential of the method, we applied it to in situ measurements of the BATS (Bermuda Atlantic Time Series Study) site and produce monthly climatologies of [Chl] and associated phytoplankton size indices. The resulting climatologies appear very promising compared to climatologies based on available in situ HPLC data. With the increasing availability of spatially and temporally well-resolved data sets of chlorophyll fluorescence, one possible global-scale application of FLAVOR could be to develop 3-D and even 4-D climatologies of [Chl] and associated composition of phytoplankton communities. The Matlab and R codes of the proposed algorithm are provided as supporting information.

  3. Recent trends in concentrated photovoltaics concentrators' architecture

    NASA Astrophysics Data System (ADS)

    Buljan, Marina; Mendes-Lopes, João; Benítez, Pablo; Miñano, Juan Carlos

    2014-01-01

    The field of concentrated photovoltaics (CPV) has met some remarkable advances in recent years. The continuous increase in conversion efficiency of multijunction solar cells and new advancements in optics have led to new demands and opportunities for optical design in CPV. This paper is a mini-review on current requirements for CPV optical design, and it presents some of the main trends in recent years on CPV systems architecture.

  4. Line-focus concentrating solar collectors

    SciTech Connect

    Leonard, J. A.; Dugan, V. L.

    1980-01-01

    An overview of the line-focus concentrating solar collector technology and applications is presented. Included are a description of the collectors, some of the key features of the engineering approach, instantaneous and all-day performance and operating data, temperature capabilities and limitations for selected collectors, projected future capabilities for peak and annual performance. Projected system capital costs and annualized life cycle costs for thermal energy produced are discussed. Several existing application projects which employ line concentrating collectors are reviewed, and finally, plans for future DOE-funded line concentrating collector projects are described.

  5. Concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Dupas, A.

    1982-11-01

    Various configurations for concentrating photovoltaic systems are described and their operating principles are explained. The effects of temperature and series resistance on system efficiency are discussed. As an example, the french family of photovoltaic concentrating systems, SOPHOCLE, is described. The SOPHOCLE family of generators is characterized by the use of a heliostat with altazimuth mounting and by the choice of medium concentration (C=45) by fresnel lenses on silicon cells.

  6. Freeze concentration beats the heat

    SciTech Connect

    Rosen, J.

    1990-12-01

    This paper reports on freeze concentration (FC) which saves energy and money in packaging, shipping, and storing food products. FC---in contrast to existing heat-evaporation processes---retains volatile flavor and aroma compounds in food products so that no additives are required to restore the taste and smell of the original product. In recent tests on orange, grapefruit, and pineapple juices, reconstituted FC juices were found to be superior in taste to juices produced by evaporation and similar to the original pasteurized juices. The dairy industry, which is the largest user of energy for concentration in the food sector, is looking to FC for new products such as frozen concentrated milk as well as better use of the milk by-products of cheese production. The biggest potential for new FC applications is in those industries that consume large amounts of energy for separation processing, according to a 1987 report prepared for EPRI. In the food industry, this includes milk, vinegar, and beer producers. Potential applications also abound in the pulp and paper, pharmaceutical, chemical, and petroleum industries. FC separates substances via crystallization at substantial energy savings.

  7. Purification and concentration of alphavirus.

    PubMed

    Lundstrom, Kenneth

    2012-07-01

    The alphaviruses Semliki Forest virus and Sindbis virus have been used frequently as expression vectors in vitro and in vivo. Usually, these systems consist of replication-deficient vectors that require a helper vector for packaging of recombinant particles. Replication-proficient vectors have also been engineered. Alphaviral vectors can be used as nucleic-acid-based vectors (DNA and RNA) or infectious particles. High-titer viral production is achieved in <2 d. The broad host range of alphaviruses facilitates studies in mammalian and nonmammalian cell lines, primary cells in culture, and in vivo. The strong preference for expression in neuronal cells has made alphaviruses particularly useful in neurobiological studies. Unfortunately, their strong cytotoxic effect on host cells, relatively short-term transient expression patterns, and the reasonably high cost of viral production remain drawbacks. However, novel mutant alphaviruses have showed reduced cytotoxicity and prolonged expression. Membrane proteins (which are generally difficult to express at high levels in recombinant systems) have generated high yields and facilitate applications in structural biology. Alphaviruses have also been applied in vaccine development and gene therapy. Generally, purification or concentration of alphaviruses is not necessary. However, for instance, the medium derived from baby hamster kidney cells is toxic to primary neurons in culture. Including a purification step substantially improves the survival of the transduced neurons. Viral concentration and purification may also be advantageous for in vivo studies in animal models and are mandatory for clinical applications. This protocol describes three methods for purification and concentration of alphavirus.

  8. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  9. High concentration plasma-reduced plateletapheresis concentrates.

    PubMed

    Perseghin, Paolo

    2011-06-01

    Single-donor hyperconcentrated plateletapheresis (dry-platelets) collection has been introduced in the 90's as a part of the newly developed multi-component collection strategy. This approach allowed to safely collect multiple components from a single apheresis donation, i.e. RBC, FFP and/or plateletpheresis units. Dry-platelets are usually resuspended in additive solution to maintain an adequate pH during the storage period until use. Some concern existed about possible higher degrees of platelet activation in dry-platelets units when compared to standard concentration (1.0-1.6 × 10(6)/μL platelets) units and its possible correlation with lower in vivo efficiency and/or survival of the former units. Several authors investigated this specific issue, and dry-platelets units proved to be equally effective than standard concentration plateletpheresis units in recipients. The use of dry-platelets units may reduce (i) the risk of passive infusion of naturally occurring ABO-related hemolytic antibodies when donor O platelets are given to group A, B, or AB recipient, (ii) the risk of TRALI when multiparous donors undergo plateletpheresis. Furthermore, dry-platelet collection may allow for an increased amount of FFP sent to industry. Finally, hyperconcentrated platelet units may be used for "niche" indications, such as intrauterine platelet transfusion or, in case of autologous dry-platelet collection, for further freezing for long term storage in selected patients within onco-hematological settings.

  10. Segmented holographic spectrum splitting concentrator

    NASA Astrophysics Data System (ADS)

    Ayala, Silvana P.; Vorndran, Shelby; Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.

  11. Uranium concentrations in asparagus

    SciTech Connect

    Tiller, B.L.; Poston, T.M.

    1992-05-01

    Concentrations of uranium were determined in asparagus collected from eight locations near and ten locations on the Hanford Site southcentral Washington State. Only one location (Sagemoor) had samples with elevated concentrations. The presence of elevated uranium in asparagus at Sagemoor may be explained by the elevated levels in irrigation water. These levels of uranium are comparable to levels previously reported upstream and downstream of the 300-FF-1 Operable Unit on the Hanford Site (0.0008 {mu}g/g), but were below the 0.020-{mu}g/g level reported for brush collected at Sagemoor in a 1982 study. Concentrations at all other onsite and offsite sample locations were considerably lower than concentrations reported immediately upstream and downstream of the 300-FF-1 Operable Unit. Using an earlier analysis of the uranium concentrations in asparagus collected from the Hanford Site constitutes a very small fraction of the US Department of Energy effective dose equivalent limit of 100 mrem.

  12. Concentration of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  13. Nebulization Reflux Concentrator

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Collins, V. G.

    1986-01-01

    Nebulization reflux concentrator extracts and concentrates trace quantities of water-soluble gases for subsequent chemical analysis. Hydrophobic membrane and nebulizing nozzles form scrubber for removing trace quantities of soluble gases or other contaminants from atmosphere. Although hydrophobic membrane virtually blocks all transport of droplets, it offers little resistance to gas flow; hence, device permits relatively large volumes of gas scrubbed efficiently with very small volumes of liquid. This means analyzable quantities of contaminants concentrate in extracting solutions in much shorter times than with conventional techniques.

  14. Concentrating photovoltaic solar panel

    DOEpatents

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  15. Cryogenic flux-concentrator

    NASA Technical Reports Server (NTRS)

    Bailey, B. M.; Brechna, H.; Hill, D. A.

    1969-01-01

    Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources.

  16. Water Sample Concentrator

    SciTech Connect

    Idaho National Laboratory

    2009-07-21

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  17. High concentration dust monitor

    NASA Astrophysics Data System (ADS)

    Lilienfeld, P.

    1981-06-01

    The development, design, fabrication, and testing of a portable, self-contained prototype monitoring instrument capable of detecting and measuring airborne coal dust levels as concentrations in the range of 20 to 500 g/cu m is described. The output of the high concentration dust monitor is essentially independent of particle size and composition, with a response time of 10 seconds. Direct concentration readout as well as internal memory or recording capabilities are incorporated in the device. The operation of the instrument is based on direct sensing of the mass concentration of airborne dust by air-path beta radiation attenuation. The monitor is battery operated and incorporates a microprocessor that controls periodic automatic zero referencing, executes the mass computations, records the data for subsequent playback, and performs internal diagnostic checks.

  18. Water Sample Concentrator

    ScienceCinema

    Idaho National Laboratory

    2016-07-12

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  19. Joined concentric tubes

    DOEpatents

    DeJonghe, Lutgard; Jacobson, Craig; Tucker, Michael; Visco, Steven

    2013-01-01

    Tubular objects having two or more concentric layers that have different properties are joined to one another during their manufacture primarily by compressive and friction forces generated by shrinkage during sintering and possibly mechanical interlocking. It is not necessary for the concentric tubes to display adhesive-, chemical- or sinter-bonding to each other in order to achieve a strong bond. This facilitates joining of dissimilar materials, such as ceramics and metals.

  20. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  1. Photovoltaic concentrator module improvements study

    SciTech Connect

    Levy, S.L.; Kerschen, K.A. ); Hutchison, G. ); Nowlan, M.J. )

    1991-08-01

    This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

  2. Sample concentration using optical chromatography

    NASA Astrophysics Data System (ADS)

    Hart, Sean J.; Terray, Alex; Arnold, Jonathan; Leski, Tomasz A.

    2007-03-01

    Optical chromatography is a technique for the separation of particles that capitalizes on the balance between optic and fluidic forces. When microscopic particles in a fluid flow encounter a laser beam propagating in the opposite direction, they are trapped axially along the beam. They are then optically pushed upstream from the laser focal point to rest at a point where the optic and fluidic forces on the particle balance. Because optical and fluid forces are sensitive to differences in the physical and chemical properties of a particle, both coarse and fine separations are possible. We describe how an optical chromatography beam directed into a tailored flow environment, has been adapted to operate as an optical filter for the concentration / bioenrichment of colloidal and biological samples. In this work, the demonstrated ability to concentrate spores of the biowarfare agent, Bacillus anthracis, may have significant impact in the biodefense arena. Application of these techniques and further design of fluidic and optical environments will allow for more specific identification, concentration and separation of many more microscopic particle and biological suspensions.

  3. Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul

    2015-04-01

    Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.

  4. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  5. Thermal cloak-concentrator

    NASA Astrophysics Data System (ADS)

    Shen, Xiangying; Li, Ying; Jiang, Chaoran; Ni, Yushan; Huang, Jiping

    2016-07-01

    For macroscopically manipulating heat flow at will, thermal metamaterials have opened a practical way, which possesses a single function, such as either cloaking or concentrating the flow of heat even though environmental temperature varies. By developing a theory of transformation heat transfer for multiple functions, here we introduce the concept of intelligent thermal metamaterials with a dual function, which is in contrast to the existing thermal metamaterials with single functions. By assembling homogeneous isotropic materials and shape-memory alloys, we experimentally fabricate a kind of intelligent thermal metamaterials, which can automatically change from a cloak (or concentrator) to a concentrator (or cloak) when the environmental temperature changes. This work paves an efficient way for a controllable gradient of heat, and also provides guidance both for arbitrarily manipulating the flow of heat and for efficiently designing similar intelligent metamaterials in other fields.

  6. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  7. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  8. Concentrating photovoltaic technology

    SciTech Connect

    Edenburn, M.W.

    1984-01-01

    This paper will summarize the status and discuss likely future directions of photovoltaic concentrator technology. A current commercial Si cell module has a peak efficiency of 15.5%, and 17% has been reached with an experimental module. Advanced cells and module design improvements offer still higher efficiencies. Concentrator Fresnel lens array fields installed several years ago have all demonstrated very good electrical performance with little performance degradation. Fresnel lens arrays were commercially available and prices of $7/watt for installed one megawatt systems have been quoted. Cost projections predict that current technology concentrating PV arrays can be installed for less than $2/watt if they are manufactured in large, steady quantities. More advanced designs may cost even less.

  9. Hydrogen Peroxide Concentrator

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.

    2007-01-01

    A relatively simple and economical process and apparatus for concentrating hydrogen peroxide from aqueous solution at the point of use have been invented. The heart of the apparatus is a vessel comprising an outer shell containing tubular membranes made of a polymer that is significantly more permeable by water than by hydrogen peroxide. The aqueous solution of hydrogen peroxide to be concentrated is fed through the interstitial spaces between the tubular membranes. An initially dry sweep gas is pumped through the interiors of the tubular membranes. Water diffuses through the membranes and is carried away as water vapor mixed into the sweep gas. Because of the removal of water, the hydrogen peroxide solution flowing from the vessel at the outlet end is more concentrated than that fed into the vessel at the inlet end. The sweep gas can be air, nitrogen, or any other gas that can be conveniently supplied in dry form and does not react chemically with hydrogen peroxide.

  10. Nebulization reflux concentrator

    NASA Technical Reports Server (NTRS)

    Collins, V. G.; Cofer, W. R., III

    1986-01-01

    A nebulization reflux concentrator for removing trace gas contaminants from a sample gas is described. Sample gas from a gas supply is drawn by a suction source into a vessel. The gas enters the vessel through an atomizing nozzle, thereby atomizing and entraining a scrubbing liquid solvent drawn through a siphon tube from a scrubbing liquid reservoir. The gas and entrained liquid rise through a concentrator and impinge upon a solvent phobic filter, whereby purified gas exits through the filter housing and contaminated liquid coalesces on the solvent phobic filter and falls into the reservoir.

  11. The Metabolizable Energy Value, Standardized Ileal Digestibility of Amino Acids in Soybean Meal, Soy Protein Concentrate and Fermented Soybean Meal, and the Application of These Products in Early-weaned Piglets.

    PubMed

    Zhang, H Y; Yi, J Q; Piao, X S; Li, P F; Zeng, Z K; Wang, D; Liu, L; Wang, G Q; Han, X

    2013-05-01

    Three experiments were conducted to evaluate the metabolizable energy (ME) value, standardized ileal digestibility (SID) of amino acids (AA) of soybean meal (SBM), soy protein concentrate (SPC) and fermented soybean meal (FSBM), and the application of these products in early-weaned piglets. In Exp. 1, four barrows with initial body weight (BW) of 14.2±1.4 kg were used in a 4×4 Latin square design. The diet 1 contained corn as the only energy source. The other three diets replaced 25% of corn in diet 1 with one of the three soybean products, and the digestable energy (DE) and ME contents were determined by difference. In Exp. 2, four barrows (initial BW of 18.2±1.5 kg) were fitted with ileal T-cannulas and allotted to a 4×4 Latin square design. Three cornstarch-based diets were formulated using each of the soybean products as the sole source of AA. A nitrogen-free diet was also formulated to measure endogenous losses of AA. In Exp. 3, ninety six piglets (initial BW of 5.6±0.9 kg) weaned at 21±2 d were blocked by weight and assigned to one of three treatments for a 21-d growth performance study. The control diet was based on corn and SBM, the two treatments' diets contained either 10% SPC or FSBM and were formulated to same SID lysine to ME ratio of 3.6 g/Mcal. The results showed that the ME content of SPC was greater than SBM (p<0.05). The SID of most AA in SPC was greater than the SID of AA in SBM (p<0.05). For the essential AA, the SID of histidine, isoleucine, leucine, lysine and threonine in FSBM were greater than in SBM (p<0.05). Even though they were fed same SID lysine to ME ratio of 3.6 g/Mcal diets, pigs fed SPC and FSBM diets had greater weight gain, G:F (p<0.05) and better fecal score (p<0.05) than pigs fed SBM diet. In conclusion, SPC showed a higher ME content and SID of AA than the SBM. SID of some essential AA in FSBM was higher than SBM and was similar with SPC. But the lower antigenic proteins and anti-nutritional factors content in SPC and

  12. The Metabolizable Energy Value, Standardized Ileal Digestibility of Amino Acids in Soybean Meal, Soy Protein Concentrate and Fermented Soybean Meal, and the Application of These Products in Early-weaned Piglets

    PubMed Central

    Zhang, H. Y.; Yi, J. Q.; Piao, X. S.; Li, P. F.; Zeng, Z. K.; Wang, D.; Liu, L.; Wang, G. Q.; Han, X.

    2013-01-01

    Three experiments were conducted to evaluate the metabolizable energy (ME) value, standardized ileal digestibility (SID) of amino acids (AA) of soybean meal (SBM), soy protein concentrate (SPC) and fermented soybean meal (FSBM), and the application of these products in early-weaned piglets. In Exp. 1, four barrows with initial body weight (BW) of 14.2±1.4 kg were used in a 4×4 Latin square design. The diet 1 contained corn as the only energy source. The other three diets replaced 25% of corn in diet 1 with one of the three soybean products, and the digestable energy (DE) and ME contents were determined by difference. In Exp. 2, four barrows (initial BW of 18.2±1.5 kg) were fitted with ileal T-cannulas and allotted to a 4×4 Latin square design. Three cornstarch-based diets were formulated using each of the soybean products as the sole source of AA. A nitrogen-free diet was also formulated to measure endogenous losses of AA. In Exp. 3, ninety six piglets (initial BW of 5.6±0.9 kg) weaned at 21±2 d were blocked by weight and assigned to one of three treatments for a 21-d growth performance study. The control diet was based on corn and SBM, the two treatments’ diets contained either 10% SPC or FSBM and were formulated to same SID lysine to ME ratio of 3.6 g/Mcal. The results showed that the ME content of SPC was greater than SBM (p<0.05). The SID of most AA in SPC was greater than the SID of AA in SBM (p<0.05). For the essential AA, the SID of histidine, isoleucine, leucine, lysine and threonine in FSBM were greater than in SBM (p<0.05). Even though they were fed same SID lysine to ME ratio of 3.6 g/Mcal diets, pigs fed SPC and FSBM diets had greater weight gain, G:F (p<0.05) and better fecal score (p<0.05) than pigs fed SBM diet. In conclusion, SPC showed a higher ME content and SID of AA than the SBM. SID of some essential AA in FSBM was higher than SBM and was similar with SPC. But the lower antigenic proteins and anti-nutritional factors content in SPC and

  13. A time-varying magnetic flux concentrator

    NASA Astrophysics Data System (ADS)

    Kibret, B.; Premaratne, M.; Lewis, P. M.; Thomson, R.; Fitzgerald, P. B.

    2016-08-01

    It is known that diverse technological applications require the use of focused magnetic fields. This has driven the quest for controlling the magnetic field. Recently, the principles in transformation optics and metamaterials have allowed the realization of practical static magnetic flux concentrators. Extending such progress, here, we propose a time-varying magnetic flux concentrator cylindrical shell that uses electric conductors and ferromagnetic materials to guide magnetic flux to its center. Its performance is discussed based on finite-element simulation results. Our proposed design has potential applications in magnetic sensors, medical devices, wireless power transfer, and near-field wireless communications.

  14. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  15. Dilution, Concentration, and Flotation

    ERIC Educational Resources Information Center

    Liang, Ling; Schmuckler, Joseph S.

    2004-01-01

    As both classroom teaching practice and literature show, many students have difficulties learning science concepts such as density. Here are some investigations that identify the relationship between density and floating through experimenting with successive dilution of a liquid, or the systematic change of concentration of a saltwater solution.…

  16. Solar concentrator advanced development program. Final report

    SciTech Connect

    Knasel, D.; Ehresman, D.

    1989-10-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  17. Scattering Solar Thermal Concentrators

    SciTech Connect

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  18. Window-Integrated Low Concentration Planar Light Guide Solar Concentrators

    NASA Astrophysics Data System (ADS)

    Williams, Daniel James Lawler

    Several novel low concentration solar concentrator photovoltaic designs are presented, based on the planar light guide architecture pioneered by the University of Rochester. These systems are designed for integration into windows, requiring them to be stationary and to have a large acceptance angle since they cannot move to track the sun. The application goal is to use solar generated electricity to offset the energy lost through the window during cold times of the year. The systems are evaluated for their effective insulation properties given the calculated net energy lost. Without moving parts, they optimize to have acceptance angles of about 20° to 35° in the vertical direction and +/-90° in the horizontal direction, but have peak optical efficiencies of less than 50%. By including internally moving parts, the acceptance angle is increased to nearly a full pi steradians (the full sky from the point of view of the window) and the average optical efficiency increases to over 50%. Systems in certain locations are not viable due to low solar irradiance in the wintertime, e.g., Rochester, NY. Others, however, reduce net energy loss to zero for much of the year. A prototype of one of the systems is fabricated, measured, and modeled. The simulated and measured performance data are compared and are in close agreement, validating the model and the evaluation methods used during system optimization.

  19. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  20. Cyclindrical concentrators as a limit case of torodial concentrators

    SciTech Connect

    Minano, J.C.

    1984-06-15

    Cylindrical concentrators are viewed as a limit case of torodial concentrators with the purpose of applying to them some results obtained for axisymmetrical optical systems. This enables us to obtain easily the directional intercept factor of a cyclindrical nonimaging concentrator called the Ideal Tubular Concentrator. A useful tool for designing new cylindrical concentrators is also derived.

  1. Electrolyte Concentrates Treat Dehydration

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  2. Ultralight inflatable fresnel lens solar concentrators

    NASA Astrophysics Data System (ADS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1998-01-01

    Since 1986, ENTECH and NASA Lewis have been developing refractive solar concentrators for space applications. These Fresnel lens concentrators can be configured as either point-focus dome lenses or line-focus cylindrical lenses. Small point-focus or line-focus lenses can be used to concentrate sunlight onto solar cells in space photovoltaic (PV) arrays. Large point-focus lenses can be used for high solar flux applications. In March 1997, a NASA Phase I SBIR program was initiated to develop ultralight inflatable lenses of both the line-focus and point-focus types. Special program emphasis is being placed on large point-focus lenses for various high-concentration applications, including solar dynamic (SD) power, alkali metal thermal energy conversion (AMTEC), thermophotovoltaics (TPV), and solar thermal propulsion (STP). Key outputs of the Phase I program include conceptual designs, optical performance predictions, micrometeoroid puncture analyses, manufacturing process identification, and functional prototype hardware. This paper summarizes the key results of the Phase I program, leading to the conclusion that inflatable dome lenses will provide excellent high-concentration optical performance, unequaled shape error tolerance, extremely low mass/aperture area ratio, proven manufacturability with space qualified materials, and small make-up gas requirements to maintain inflation on-orbit.

  3. Multiple-Panel Cylindrical Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Brown, E. M.

    1983-01-01

    Trough composed of many panels concentrates Sun's energy on solar cells, even when trough is not pointed directly at Sun. Tolerates deviation as great as 5 degrees from direction of sun. For terrestrial applications, multiple-flat-plate design offers potential cost reduction and ease of fabrication.

  4. On applicability of the photochemical-equilibrium approach for retrieval of O and H mesospheric distributions from the satellite-based measurements of the airglow emission and ozone concentration

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Belikovich, Mikhail; Kulikov, Mikhail

    2016-04-01

    Atomic oxygen and hydrogen are known to be among key components for the photochemistry and energy balance of the Earth's atmosphere between approximately 80 and 100 km altitude (mesopause region). Therefore, obtaining information about the vertical distributions of O and H concentrations is an important task in studies of this region. Solving of this problem is rather difficult due to the absence of regular methods which allow one to direct measurements of distributions of these components in mesosphere. However, indirect methods used to retrieve O and H distributions from the satellite-based measurements of the OH and O2(1D) airglow emission, as well as the data of IR and microwave O3 measurements have a sufficiently long development history. These methods are rooted in the use of the condition of photochemical equilibrium of ozone density in the range of altitudes from 50 to 100 km. A significant factor is that an insufficient volume of such measurement data forces researchers to use approximate ("truncated") photochemical-equilibrium conditions. In particular, it is assumed that in the daytime the ozone production reaction is perfectly balanced by ozone photodissociation, whereas during the night the only ozone sink is the reaction of ozone with atomic hydrogen, which, in its turn, leads to formation of excited OH and airglow emission of the latter. The presentation analyzes applicability of the photochemical-equilibrium conditions both in the total and truncated forms for description of the spatio-temporal evolution of mesospheric ozone during a year. The analysis is based on year-long time series generated by a 3D chemical transport model, which reproduces correctly various types of atmosphere dynamics in the range of altitudes from 50 to 100 km. These data are used to determine statistics of the ratio between the correct (calculated dynamically) distributions of the O3 density and its uncontracted and truncated equilibrium values for the conditions of the

  5. Zinc depolarized electrochemical CO2 concentration

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.

    1975-01-01

    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers.

  6. Continuous Flow Microfluidic Bioparticle Concentrator

    PubMed Central

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-01-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies. PMID:26061253

  7. Continuous Flow Microfluidic Bioparticle Concentrator.

    PubMed

    Martel, Joseph M; Smith, Kyle C; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A; Kapur, Ravi; Toner, Mehmet

    2015-06-10

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies.

  8. Continuous Flow Microfluidic Bioparticle Concentrator

    NASA Astrophysics Data System (ADS)

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-06-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies.

  9. Concentrated Solar Thermoelectric Power

    SciTech Connect

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  10. Vapor concentration monitor

    DOEpatents

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  11. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Taylor, T.I.; Spindel, W.

    1960-02-01

    A method of concentrating N/sup 15/ in a liquid is described. Gaseous nitric oxide and at least one liquid selected from the group consisting of the aqueous oxyacids and oxides of nitrogen, wherein the atomic ratio of oxygen to nitrogen is greater than unity, are brought into intimate contact to cause an enrichment of the liquid and a depletion of the gas in N/sup 15/. The liquid is, thereafter, reacted with sulfur dioxide to produce a gas contuining nitric oxide. The gas contuining nitric oxide is then continuously passed in countercurrent contact with the liquid to cause further enrichment of the liquid.

  12. Modeling of concentrated suspensions

    NASA Astrophysics Data System (ADS)

    van den Brule, B. H. A. A.; Jongschaap, R. J. J.

    1991-03-01

    The constitutive equation of a concentrated suspension of spherical particles in a Newtonian medium is derived. To this end the method of local volume averaging is employed. To calculate the contribution of the particles to the stress tensor it is assumed that the stress generated in the interstitial holes between the particles is negligible compared to the stress generated in !he narrow gaps separating the particles. The use of the resulting expression is demonstrated with two examples on a cubical arrangement of particles: pure shear and simple shear. Furthermore, the validity of the lubrication approximation employed in this work is checked against the results derived by Nunan and Keller for periodic suspensions.

  13. Concentric Loop Surface Coil

    NASA Astrophysics Data System (ADS)

    Hernández-Flores, R.; Rodríguez-González, A. O.; Salgado-Lujambio, P.; Barrios-Alvarez, F. A.

    2002-08-01

    A surface coil for MRI consisted of two concentric loops was developed for brain imaging. Prior to build the coil prototype, the magnetic field (B1) generated by the coil was numerically simulated. This field simulation is based on the Biot-Savart law for the circular- and square-shaped loops. From these theoretical results, we can appreciate an improvement on the B1 homogeneity. Brain images obtained at 1.5 Tesla show a good sensitivity in a particular region of interest. Also, these images compared well against images obtained with a circular-shaped coil. This receiver coil can generate high quality brain images.

  14. Fixed solar energy concentrator

    SciTech Connect

    Houghton, A.J.; Knasel, T.M.

    1981-01-20

    An apparatus for the concentration of solar energy upon a fixed array of solar cells is disclosed. A transparent material is overlayed upon the cell array, and a diffuse reflective coating is applied to the surface area of the transparent medium in between cells. Radiant light, which reflects through the transparent layer and does not fall directly incident to a cell surface is reflected by the coating layer in an approximate cosine pattern. Thereafter, such light undergoes internal reflection and rediffusion until subsequently it either strikes a solar cell surface or is lost through the upper surface of the transparent material.

  15. Concentric layer ramjet fuel

    SciTech Connect

    Burdette, G.W.; Francis, J.P.

    1988-03-08

    This patent describes a solid fuel ramjet grain comprising concentric layers of solid ramjet fuel having a perforation therethrough along the center axis of the grain. The performation is connected to a combustion after-chamber. The solid ramjet fuel layers comprises a pure hydroxyl-terminated polybutadiene hydrocarbon fuel or a mixture of a hydroxyl-terminated polybutadiene hydrocarbon fuel and from about 5 to about 60 percent by weight of an additive to increase the fuel regression rate selected from the group consisting of magnesium, boron carbide, aluminum, and zirconium such that, when buried in the operation of the ramjet, each fuel layer produces a different level of thrust.

  16. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  17. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  18. Benchmarking concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Muthirayan, Buvaneshwari; Meuret, Youri; Thienpont, Hugo

    2010-08-01

    Integral to photovoltaics is the need to provide improved economic viability. To achieve this goal, photovoltaic technology has to be able to harness more light at less cost. A large variety of concentrating photovoltaic concepts has provided cause for pursuit. To obtain a detailed profitability analysis, a flexible evaluation is crucial for benchmarking the cost-performance of this variety of concentrating photovoltaic concepts. To save time and capital, a way to estimate the cost-performance of a complete solar energy system is to use computer aided modeling. In this work a benchmark tool is introduced based on a modular programming concept. The overall implementation is done in MATLAB whereas Advanced Systems Analysis Program (ASAP) is used for ray tracing calculations. This allows for a flexible and extendable structuring of all important modules, namely an advanced source modeling including time and local dependence, and an advanced optical system analysis of various optical designs to obtain an evaluation of the figure of merit. An important figure of merit: the energy yield for a given photovoltaic system at a geographical position over a specific period, can be calculated.

  19. An advanced concentrator for solar dynamic power systems in space

    NASA Technical Reports Server (NTRS)

    Beninga, Kelly; Davenport, Roger

    1989-01-01

    Solar concentrators based on rigidized stretched-membrane technology, which have been shown to be a possible alternative to rigid segmented concentrators for solar dynamic power applications in space, are discussed. Membrane concentrators offer an advantage in weight, efficiency of structure use, deployability, and cost. Predeployment packaging and subsequent deployment of a prototype membrane concentrator has been demonstrated. Attractive membrane fabrication techniques have been identified and demonstrated. The concept is described, and materials selection and membrane fabrication are examined.

  20. Recent developments in refractive concentrators for space photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Oneill, Mark J.

    1993-01-01

    Since SPRAT 11, significant progress has been made in the development of refractive concentrator elements and components designed specifically for space applications. The status of the mini-dome Fresnel lens concentrator array is discussed and then the results of work recently completed in the area of prismatic cell covers for concentrator systems are summarized. This is followed by a brief discussion of some work just starting in the area of line-focus refractive concentrators for space.

  1. 27 CFR 24.113 - Description of volatile fruit-flavor concentrate operations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... fruit-flavor concentrate operations. 24.113 Section 24.113 Alcohol, Tobacco Products and Firearms... Operations Application § 24.113 Description of volatile fruit-flavor concentrate operations. Each applicant intending to produce volatile fruit-flavor concentrate shall include on the TTB F 5120.25 application a...

  2. 27 CFR 24.113 - Description of volatile fruit-flavor concentrate operations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fruit-flavor concentrate operations. 24.113 Section 24.113 Alcohol, Tobacco Products and Firearms... Operations Application § 24.113 Description of volatile fruit-flavor concentrate operations. Each applicant intending to produce volatile fruit-flavor concentrate shall include on the TTB F 5120.25 application a...

  3. 27 CFR 24.113 - Description of volatile fruit-flavor concentrate operations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fruit-flavor concentrate operations. 24.113 Section 24.113 Alcohol, Tobacco Products and Firearms... Operations Application § 24.113 Description of volatile fruit-flavor concentrate operations. Each applicant intending to produce volatile fruit-flavor concentrate shall include on the TTB F 5120.25 application a...

  4. 27 CFR 24.113 - Description of volatile fruit-flavor concentrate operations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fruit-flavor concentrate operations. 24.113 Section 24.113 Alcohol, Tobacco Products and Firearms... Operations Application § 24.113 Description of volatile fruit-flavor concentrate operations. Each applicant intending to produce volatile fruit-flavor concentrate shall include on the TTB F 5120.25 application a...

  5. 27 CFR 24.113 - Description of volatile fruit-flavor concentrate operations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... fruit-flavor concentrate operations. 24.113 Section 24.113 Alcohol, Tobacco Products and Firearms... Operations Application § 24.113 Description of volatile fruit-flavor concentrate operations. Each applicant intending to produce volatile fruit-flavor concentrate shall include on the TTB F 5120.25 application a...

  6. Non-tracking solar concentrator with a high concentration ratio

    DOEpatents

    Hinterberger, Henry

    1977-01-01

    A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.

  7. Decadal application of WRF/chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 2: Current vs. future simulations

    NASA Astrophysics Data System (ADS)

    Yahya, Khairunnisa; Campbell, Patrick; Zhang, Yang

    2017-03-01

    Following a comprehensive model evaluation, this Part II paper presents projected changes in future (2046-2055) climate, air quality, and their interactions under the RCP4.5 and RCP8.5 scenarios using the Weather, Research and Forecasting model with Chemistry (WRF/Chem). I