DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambertin, D.; Chartier, D.; Joussot-Dubien, C.
2007-07-01
Since the late sixties, bitumen has been widely used by the nuclear industry as a matrix for the immobilization of low- and intermediate level radioactive waste originating mainly from the nuclear activities: precipitation or evaporator concentrates, ion exchange resins, incinerator ashes, and filter materials. Depending on bitumen and operating conditions, bituminization of radioactive waste can be operated between 130 and 180 deg. C, so chemical reaction can be induced with nitrate or nitrite towards elements contained in waste (TPB, potassium nickel ferrocyanide and cobalt compound) and bitumen. These reactions are mainly exothermic this is the reason why the enthalpy reactionmore » and their temperature of initiation have to be determined independently of their concentration in waste. In this work, we have studied by Calvet Calorimetry at 0.1 deg. C/min heating rates, the behaviour of chemical elements especially oxido-reduction couples that can react at a temperature range 100- 300 deg. C (Nitrate/PPFeNi, Nitrite/PPFeNi, Nitrate/TBP, Nitrite/TBP, Nitrate/bitumen and Nitrite/bitumen). The initial temperature reaction of nitrates or nitrites towards potassium nickel ferrocyanide (PPFeNi) has been studied and is equal respectively to 225 deg. C and 175 deg. C. Because of the large scale temperature reaction of nitrate and PPFeNi, enthalpy reaction can not be calculated, although enthalpy reaction of nitrite and PPFeNi is equal to 270 kJ/mol of nitrite. Sodium Nitrate and TBP behaviour has been investigated, and an exothermic reaction at 135 deg. C until 250 deg. C is evidenced. The exothermic energy reaction is a function of TBP concentration and the enthalpy reaction has been determined. (authors)« less
Keto-Timonen, Riikka; Lindström, Miia; Puolanne, Eero; Niemistö, Markku; Korkeala, Hannu
2012-07-01
The effect of three different concentrations of sodium nitrite (0, 75, and 120 mg/kg) on growth and toxigenesis of group II (nonproteolytic) Clostridium botulinum type B was studied in Finnish wiener-type sausage, bologna-type sausage, and cooked ham. A low level of inoculum (2.0 log CFU/g) was used for wiener-type sausage and bologna-type sausage, and both low (2.0 log CFU/g) and high (4.0 log CFU/g) levels were used for cooked ham. The products were formulated and processed under simulated commercial conditions and stored at 8°C for 5 weeks. C. botulinum counts were determined in five replicate samples of each nitrite concentration at 1, 3, and 5 weeks after thermal processing. All samples were positive for C. botulinum type B. The highest C. botulinum counts were detected in nitrite-free products. Toxigenesis was observed in nitrite-free products during storage, but products containing either 75 or 120 mg/kg nitrite remained nontoxic during the 5-week study period, suggesting that spores surviving the heat treatment were unable to germinate and develop into a toxic culture in the presence of nitrite. The results suggest that the safety of processed meat products with respect to group II C. botulinum type B can be maintained even with a reduced concentration (75 mg/kg) of sodium nitrite.
Poppers: legal highs with questionable contents? A case series of poppers maculopathy.
Rewbury, Rebecca; Hughes, Edward; Purbrick, Robert; Prior, Stephen; Baron, Mark
2017-11-01
Poppers are volatile alkyl nitrite compounds that are inhaled to enhance sexual experience and for their psychoactive effects. A less well-known side effect is foveal maculopathy, which has emerged following changes in their chemical composition. It is unclear if certain individuals are more susceptible to retinal damage or if there is a relationship between pattern of inhalation and brands used. A case series of 12 patients presenting to Sussex Eye Hospital, Brighton, with poppers-related visual impairment. Follow-up data were available in 10 cases, at a median time interval of 5 months (range 0-31 months). Eight samples of poppers were analysed using proton nuclear magnetic resonance spectroscopy. Patients presented with disrupted central vision occurring soon after inhalation. All demonstrated disruption of the inner segment/outer segment junction on spectral domain optical coherence tomography. Six of the brands implicated in causing visual symptoms contained isopropyl nitrite, while Jungle Juice Plus varieties, used without side effects in one case, contained amyl nitrite, 2-methyl butyl nitrite and isobutyl alcohol. In general, symptomatic resolution, alongside partial, if not full, recovery of foveal architecture was observed following abstention. On the basis of the products tested here, it seems that isopropyl nitrite is toxic to the fovea and can cause significant visual disturbance. The production of poppers is unregulated and their popularity is concerning, particularly given their exemption from the Psychoactive Substances Act 2016, which might suggest that they are harmless chemicals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DFT Study on Nitrite Reduction Mechanism in Copper-Containing Nitrite Reductase.
Lintuluoto, Masami; Lintuluoto, Juha M
2016-01-12
Dissimilatory reduction of nitrite by copper-containing nitrite reductase (CuNiR) is an important step in the geobiochemical nitrogen cycle. The proposed mechanisms for the reduction of nitrite by CuNiRs include intramolecular electron and proton transfers, and these two events are understood to couple. Proton-coupled electron transfer is one of the key processes in enzyme reactions. We investigated the geometric structure of bound nitrite and the mechanism of nitrite reduction on CuNiR using density functional theory calculations. Also, the proton transfer pathway, the key residues, and their roles in the reaction mechanism were clarified in this study. In our results, the reduction of T2 Cu site promotes the proton transfer, and the hydrogen bond network around the binding site has an important role not only to stabilize the nitrite binding but also to promote the proton transfer to nitrite.
Modeling the long-term durability of concrete barriers in the context of low-activity waste storage
NASA Astrophysics Data System (ADS)
Protière, Y.; Samson, E.; Henocq, P.
2013-07-01
The paper investigates the long-term durability of concrete barriers in contact with a cementitious wasteform designed to immobilize low-activity nuclear waste. The high-pH pore solution of the wasteform contains high concentration level of sulfate, nitrate, nitrite and alkalis. The multilayer concrete/wasteform system was modeled using a multiionic reactive transport model accounting for coupling between species, dissolution/ precipitation reactions, and feedback effect. One of the primary objectives was to investigate the risk associated with the presence of sulfate in the wasteform on the durability of concrete. Simulation results showed that formation of expansive phases, such as gypsum and ettringite, into the concrete barrier was not extensive. Based on those results, it was not possible to conclude that concrete would be severely damaged, even after 5,000 years. Lab work was performed to provide data to validate the modeling results. Paste samples were immersed in sulfate contact solutions and analyzed to measure the impact of the aggressive environment on the material. The results obtained so far tend to confirm the numerical simulations.
Oxygen isotopes in nitrite: Analysis, calibration, and equilibration
Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.
2007-01-01
Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in “mixed” samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant.
Role of blood and vascular smooth muscle in the vasoactivity of nitrite.
Liu, Taiming; Schroeder, Hobe J; Barcelo, Lisa; Bragg, Shannon L; Terry, Michael H; Wilson, Sean M; Power, Gordon G; Blood, Arlin B
2014-10-01
Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. Copyright © 2014 the American Physiological Society.
Role of blood and vascular smooth muscle in the vasoactivity of nitrite
Liu, Taiming; Schroeder, Hobe J.; Barcelo, Lisa; Bragg, Shannon L.; Terry, Michael H.; Wilson, Sean M.; Power, Gordon G.
2014-01-01
Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. PMID:25108012
Growth of Staphylococcus and Salmonella on Frankfurters With and Without Sodium Nitrite
Bayne, Henry G.; Michener, H. David
1975-01-01
Conventional and nitrite-free frankfurters in loosely wrapped packages were compared as to their ability to support growth of Salmonella, Staphylococcus, and their naturally occurring spoilage flora at 7 C (simulating refrigerated storage) and 20 C (simulating possible temperature abuse). At 7 C Salmonella did not grow in either type of frankfurter; Staphylococcus and the natural spoilage flora sometimes grew more rapidly in the absence of nitrite, but the difference was not significant. At 20 C growth of Salmonella, Staphylococcus, and of the spoilage flora was, at most, only slightly faster on nitrite-free frankfurters. Salmonella was not suppressed in broth culture experiments at the pH and nitrite content found in frankfurters. Although either type of frankfurter can become hazardous due to growth of Salmonella or Staphylococcus, no unusual or additional hazard resulted from the omission of nitrite from frankfurters. PMID:952
Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc
2003-07-01
Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions.
Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc
2003-01-01
Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions. PMID:12839751
In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination
Smith, R.L.; Miller, D.N.; Brooks, M.H.; Widdowson, M.A.; Killingstad, M.W.
2001-01-01
In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.
King, Amanda M; Glass, Kathleen A; Milkowski, Andrew L; Sindelar, Jeffrey J
2015-08-01
The antimicrobial impact of purified and natural sources of both nitrite and ascorbate were evaluated against Clostridium perfringens during the postthermal processing cooling period of deli-style turkey breast. The objective of phase I was to assess comparable concentrations of nitrite (0 or 100 ppm) and ascorbate (0 or 547 ppm) from both purified and natural sources. Phase II was conducted to investigate concentrations of nitrite (50, 75, or 100 ppm) from cultured celery juice powder and ascorbate (0, 250, or 500 ppm) from cherry powder to simulate alternative curing formulations. Ground turkey breast (75% moisture, 1.2% salt, pH 6.2) treatments were inoculated with C. perfringens spores (three-strain mixture) to yield 2.5 log CFU/g. Individual 50-g portions were vacuum packaged, cooked to 71.1°C, and chilled from 54.4 to 26.7°C in 5 h and from 26.7 to 7.2°C in 10 additional hours. Triplicate samples were assayed for growth of C. perfringens at predetermined intervals by plating on tryptose-sulfite-cycloserine agar; experiments were replicated three times. In phase I, uncured, purified nitrite, and natural nitrite treatments without ascorbate had 5.3-, 4.2-, and 4.4-log increases in C. perfringens, respectively, at 15 h, but <1-log increase was observed at the end of chilling in treatments containing 100 ppm of nitrite and 547 ppm of ascorbate from either source. In phase II, 0, 50, 75, and 100 ppm of nitrite and 50 ppm of nitrite plus 250 ppm of ascorbate supported 4.5-, 3.9-, 3.5-, 2.2-, and 1.5-log increases in C. perfringens, respectively. In contrast, <1-log increase was observed after 15 h in the remaining phase II treatments supplemented with 50 ppm of nitrite and 500 ppm of ascorbate or ≥75 ppm of nitrite and ≥250 ppm of ascorbate. These results confirm that equivalent concentrations of nitrite, regardless of the source, provide similar inhibition of C. perfringens during chilling and that ascorbate enhances the antimicrobial effect of nitrite on C. perfringens at concentrations commonly used in alternative cured meats.
Sellimi, Sabrine; Benslima, Abdelkarim; Ksouda, Ghada; Montero, Veronique Barragan; Hajji, Mohamed; Nasri, Moncef
2017-10-21
Background Nitrite salts are still common additives in the meat industry. The present study provides a first approach on the employment of the lyophilized aqueous extract (WE) of the Tunisian seaweed Cystoseira barbata for the quality enhancement of turkey meat sausage. Methods WE was supplemented as a natural antioxidant agent to investigate its effectiveness in delaying lipid oxidation turkey meat sausages containing reduced amounts of sodium nitrites. Results On storage day 5, all concentrations of WE (0.01-0.4 %) reduced the meat lipid oxidation by approximately 36 %, as compared to the negative control containing only 80 mg/kg of meat of sodium nitrites as antioxidant. It was noted that within 15 days of refrigerated storage, a meat system containing 80 mg/kg of meat of sodium nitrites and 0.02 % and 0.04 % of WE had similar Thiobarbituric Acid Reactive Substances (TBARS) levels (19±1.32 and 17±1.12 µmol/kg of meat, respectively), which were comparable to the positive control containing sodium nitrites (150 mg/kg of meat) and 0.045 % vitamin C (18.46±1.27 µmol/kg of meat). In-depth, the metabolomic profiling using gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-quadripole-time-of-flight-mass spectrometry (LC-QTOF-MS) analyses of the Tunisian seaweed C. barbata solvent extracts showed that the main active compounds were phenolic compounds, fatty acids and sterols. Conclusions Overall, the cold medium containing C. barbata lyophilized aqueous extrac, with strong antioxidant activity and antihypertensive properties, may open the way to the development of a natural quality enhancement strategy for new functional and ever healthier reduced nitrites meat sausages based on algae.
Submergible torch for treating waste solutions and method thereof
Mattus, Alfred J.
1995-01-01
A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.
Submergible torch for treating waste solutions and method thereof
Mattus, Alfred J.
1994-01-01
A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.
Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions
Singh Raman, R. K.; Siew, Wai Hoong
2014-01-01
This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC) in a nitrite-containing chloride solution. Slow strain rate testing (SSRT) in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution. PMID:28788276
Sofos, J N; Busta, F F; Allen, C E
1979-01-01
Samples of (i) a control or of (ii) sodium nitrite-containing or (iii) sorbic acid-containing, mechanically deboned chicken meat frankfurter-type emulsions inoculated with Clostridium botulinum spores, or a combination of ii and iii, were temperature abuse at 27 degrees C. Spore germination and total microbial growth were followed and examined at specified times and until toxic samples were detected. The spores germinated within 3 days in both control and nitrite (20, 40 and 156 micrograms/g) treatments. Sorbic acid (0.2%) alone or in combination with nitrite (20, 40, and 156 micrograms/g) significantly (P less than 0.05) inhibited spore germinations. No significant germination was recorded until toxic samples were detected. A much longer incubation period was necessary for toxin to be formed in nitrite-sorbic acid combination treatments as contrasted with controls or nitrite and sorbic acid used individually. Total growth was not affected by the presence of nitrite, whereas sorbic acid appeared to depress it. Possible mechanisms explaining the effects of nitrite and sorbic acid on spore germination and growth are postulated. PMID:384904
Submergible torch for treating waste solutions and method thereof
Mattus, A.J.
1994-12-06
A submergible torch is described for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution. 2 figures.
Smith, Richard L.; Böhlke, John Karl; Garabedian, Stephen P.; Revesz, Kinga M.; Yoshinari, Tadashi
2004-01-01
Denitrification was measured within a nitrate‐contaminated aquifer on Cape Cod, Massachusetts, using natural gradient tracer tests with 15N nitrate. The aquifer contained zones of relatively high concentrations of nitrite (up to 77 μM) and nitrous oxide (up to 143 μM) and has been the site of previous studies examining ground water denitrification using the acetylene block technique. Small‐scale (15–24 m travel distance) tracer tests were conducted by injecting 15N nitrate and bromide as tracers into a depth interval that contained nitrate, nitrite, nitrous oxide, and excess nitrogen gas. The timing of the bromide breakthrough curves at down‐gradient wells matched peaks in 15N abundance above background for nitrate, nitrite, nitrous oxide, and nitrogen gas after more than 40 days of travel. Results were simulated with a one‐dimensional transport model using linked reaction kinetics for the individual steps of the denitrification reaction pathway. It was necessary to include within the model spatial variations in background concentrations of all nitrogen oxide species. The model indicated that nitrite production (0.036–0.047 μmol N (L aquifer)−1 d−1) was faster than the subsequent denitrification steps (0.013–0.016 μmol N (L aquifer)−1 d−1 for nitrous oxide and 0.013–0.020 μmol N (L aquifer)−1 d−1 for nitrogen gas) and that the total rate of reaction was slower than indicated by both acetylene block tracer tests and laboratory incubations. The rate of nitrate removal by denitrification was much slower than the rate of transport, indicating that nitrate would migrate several kilometers down‐gradient before being completely consumed.
Characterization of nitrite degradation by Lactobacillus casei subsp. rhamnosus LCR 6013.
Liu, Dong-mei; Wang, Pan; Zhang, Xin-yue; Xu, Xi-lin; Wu, Hui; Li, Li
2014-01-01
Nitrites are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. The nitrite degradation capacity of Lactobacillus casei subsp. rhamnosus LCR 6013 was investigated in pickle fermentation. After LCR 6013 fermentation for 120 h at 37°C, the nitrite concentration in the fermentation system was significantly lower than that in the control sample without the LCR 6013 strain. The effects of NaCl and Vc on nitrite degradation by LCR 6013 in the De Man, Rogosa and Sharpe (MRS) medium were also investigated. The highest nitrite degradations, 9.29 mg/L and 9.89 mg/L, were observed when NaCl and Vc concentrations were 0.75% and 0.02%, respectively in the MRS medium, which was significantly higher than the control group (p ≤ 0.01). Electron capture/gas chromatography and indophenol blue staining were used to study the nitrite degradation pathway of LCR 6013. The nitrite degradation products contained N2O, but no NH4(+). The LCR 6013 strain completely degraded all NaNO2 (50.00 mg/L) after 16 h of fermentation. The enzyme activity of NiR in the periplasmic space was 2.5 times of that in the cytoplasm. Our results demonstrated that L. casei subsp. rhamnosus LCR 6013 can effectively degrade nitrites in both the pickle fermentation system and in MRS medium by NiR. Nitrites are degraded by the LCR 6013 strain, likely via the nitrate respiration pathway (NO2(-)>NO->N2O->N2), rather than the aammonium formation pathway (dissimilatory nitrate reduction to ammonium, DNRA), because the degradation products contain N2O, but not NH4(+).
Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun
2006-03-01
A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.
Sohn, C H; Seo, D W; Ryoo, S M; Lee, J H; Kim, W Y; Lim, K S; Oh, B J
2014-01-01
Construction workers are exposed to a wide variety of health hazards such as poisoning at the construction sites. Various forms of poisoning incidents in construction workers have been reported. However, studies on methemoglobinemia caused by unintentional ingestion of antifreeze admixtures containing sodium nitrite at the construction sites have not been reported yet. The aim of this study was to evaluate life-threatening methemoglobinemia after unintentional ingestion of antifreeze admixtures containing sodium nitrite at the construction sites and describe similar incidents involving ingestion of antifreeze admixtures in Korea. Retrospective observational case series study on patients with methemoglobinemia after unintentional ingestion of antifreeze admixtures containing sodium nitrite admitted to the emergency department (ED) from January 1, 2010 to December 31, 2012 and cases reported to the Korea Occupational Safety and Health Agency (KOSHA) was performed. Results. Six victims were admitted to our ED. They had methemoglobin levels ranging from 32.4% to 71.5% and all of them recovered after receiving one (2 mg/kg) or two doses infusion of methylene blue. From the data of the KOSHA, six incidents that caused 27 victims were identified. Of 27 victims, five were included in the ED cases. For all incidents, antifreeze admixtures were not contained in their original containers and all new containers did not have a new label. All workers mistook antifreeze admixtures for water. Among the 28 victims included in this study, four died. Unintentional ingestion of antifreeze admixtures containing sodium nitrite at the construction sites can cause life-threatening methemoglobinemia. There is a need to store and label potentially hazardous materials properly to avoid unintentional ingestion at the construction sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1986-12-01
At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations.« less
Jung, Samooel; Lee, Chul Woo; Lee, Juri; Yong, Hae In; Yum, Su Jin; Jeong, Hee Gon; Jo, Cheorun
2017-12-15
This study investigated the effect of atmospheric pressure plasma (APP) treatment on nitrite content and functionality of plant extracts. Ethanolic extracts of Perilla frutescens (EEP) were prepared and treated with APP for 60min. Nitrite content increased from 0 to 45.8mg/l in EEP after APP treatment for 60min. Antimicrobial activity of EEP against Clostridium perfringens and Salmonella Typhimurium was increased by APP with no influence on antioxidative activity (p<0.05). Lyophilized EEP (LEEP) treated with APP for 60min contained 3.74mg/g nitrite. The control (LEEP without APP) contained no nitrite. The minimum inhibitory concentration (MIC) of LEEP for C. perfringens was 200µg/ml. The control did not inhibit C. perfringens growth between 25 and 1000µg/ml. MICs of LEEP and the control against S. Typhimurium were 25 and 50µg/ml, respectively. New nitrite sources with increased antimicrobial activity can be produced from natural plants by APP treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Buerk, Donald G; Barbee, Kenneth A; Jaron, Dov
2011-01-01
Recent evidence in the literature suggests that tissues play a greater role than blood in reducing nitrite to NO under ischemic or hypoxic conditions. Our previous mathematical model for coupled NO and O(2) transport around an arteriole, modified to include superoxide generation from dysfunctional endothelium, was developed further to include nitrite reductase activity in blood and tissue. Steady-state radial and axial NO and pO(2) profiles in the arteriole and surrounding tissue were simulated for different blood flow rates and arterial blood pO(2) values. The resulting computer simulations demonstrate that nitrite reductase activity in blood is not a very effective mechanism for conserving NO due to the strong scavenging of NO by hemoglobin. In contrast, nitrite reductase activity in tissue is much more effective in increasing NO bioavailability in the vascular wall and contributes progressively more NO as tissue hypoxia becomes more severe.
NASA Technical Reports Server (NTRS)
Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.
1984-01-01
Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.
The structure of liquid alkali nitrates and nitrites
Wilding, Martin C.; Wilson, Mark; Ribeiro, Mauro C. C.; ...
2017-07-26
State of the art high energy X-ray diffraction experiments and simulation models (employing a description of charge transfer) are applied to pure molten alkali nitrates and nitrites and uncover significant emerging structure.
Occurrence of nitrate, nitrite and volatile nitrosamines in certain feedstuffs and animal products.
Ologhobo, A D; Adegede, H I; Maduagiwu, E N
1996-01-01
Nitrate, nitrite and nitrosamines were analysed in poultry feeds, meat and eggs. The poultry meat was boiled and roasted while the eggs were raw and boiled, and the effects of these processing treatments on the level of these compounds were investigated. Nitrate levels in the meat samples were significantly (P < 0.05) reduced by boiling and roasting, with boiling being more effective. Nitrite levels were also reduced significantly by processing (P < 0.05). The feed samples contained levels of nitrate which were significantly different (P < 0.05) from one producer to another. Nitrite levels were generally low in all feed samples. Nitrosamines were not detected in any of the feed samples and in the meat samples except in two samples of boiled meat which contained 0.001 g/kg each.
Yao, Jun; Chen, Luxi; Zhu, Huayue; Shen, Dongsheng; Qiu, Zhanhong
2017-04-01
Simulated landfill was operated for 508 days to investigate the effect of municipal solid waste incinerator (MSWI) bottom ash layer on the migration of nitrate, nitrite, and ammonia when it was used as the intermediate layer in the landfill. The result suggested that the MSWI bottom ash layer could capture the nitrate, nitrite, and ammonia from the leachate. The adsorption of the nitrate, nitrite, and ammonia on the MSWI bottom ash layer was saturated at the days 396, 34, and 97, respectively. Afterwards, the nitrogen species were desorbed from the MSWI bottom ash layer. Finally, the adsorption and desorption could reach the equilibrium. The amounts of adsorbed nitrate and nitrite on the MSWI bottom ash layer were 1685.09 and 7.48 mg, respectively, and the amount of the adsorbed and transformed ammonia was 13,773.19 mg, which was much higher than the desorbed. The water leaching test and synthetic precipitation leaching procedure (SPLP) results showed that the leachable nitrate, nitrite, and ammonia in the MSWI bottom ash were greatly increased after the landfill operation, suggesting that the adsorbed nitrogen could be finally leached out. Besides, the results also showed that MSWI bottom ash layer could affect the release of nitrate and ammonia at the initial stage of the landfill. However, it had little effect on the release of nitrite.
Lee, Soomin; Lee, Heeyoung; Kim, Sejeong; Lee, Jeeyeon; Ha, Jimyeong; Choi, Yukyung; Oh, Hyemin; Choi, Kyoung-Hee; Yoon, Yohan
2018-03-13
Nitrite plays a major role in inhibiting the growth of foodborne pathogens, including Clostridium botulinum that causes botulism, a life-threatening disease. Nitrite serves as a color-fixing agent in processed meat products. However, N-nitroso compounds can be produced from nitrite. They are considered as carcinogens. Thus, consumers desire processed meat products that contain lower concentrations (below conventional concentrations of products) of nitrite or no nitrite at all, although the portion of nitrite intake by processed meat consumption in total nitrite intake is very low. However, lower nitrite levels might expose consumers to risk of botulism poisoning due to C. botulinum or illness caused by other foodborne pathogens. Hence, lower nitrite concentrations in combination with other factors such as low pH, high NaCl level, and others have been recommended to decrease the risk of food poisoning. In addition, natural compounds that can inhibit bacterial growth and function as color-fixing agents have been developed to replace nitrite in processed meat products. However, their antibotulinal effects have not been fully clarified. Therefore, to have processed meat products with lower nitrite concentrations, low pH, high NaCl concentration, and others should also be applied together. Before using natural compounds as replacement of nitrite, their antibotulinal activities should be examined.
Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; In Yong, Hae; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun
2015-10-01
We investigated the possible use of atmospheric pressure plasma-treated water (PTW) as a nitrite source in curing process. Emulsion-type sausages were manufactured with PTW, celery powder containing nitrite, and synthetic sodium nitrite at a concentration of nitrite ion 70mgkg(-1). In terms of sausage quality, there were no noticeable effects of PTW on the total aerobic bacterial counts, color, and peroxide values of sausages compared with those of celery powder and sodium nitrite throughout 28days of storage at 4°C. Sausage with added PTW had lower concentrations of residual nitrite compared to those of added celery powder and sodium nitrite during the storage period (P<0.05). The sensory properties of PTW-treated and sodium nitrite-treated sausages were not different, whereas the sausage with added celery powder received the lowest scores in taste and acceptability. From the results, it is concluded that PTW can be used as a nitrite source equivalent to a natural curing agent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of Nitrite/Nitrate concentrations on Corrosivity of Washed Precipitate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
2001-03-28
Cyclic polarization scans were performed using A-537 carbon steel in simulated washed precipitate solutions of various nitrite and nitrate concentrations. The results of this study indicate that nitrate is an aggressive anion in washed precipitate. Furthermore, a quantitative linear log-log relationship between the minimum effective nitrite concentration and the nitrate concentration was established for washed precipitate with other ions at their average compositions.
Zhang, Ou; Zou, Xuan; Li, Qi-Hong; Sun, Zhi; Liu, Yong Dong; Zhong, Ru Gang
2016-07-07
N-nitrosodimethylamine (NDMA), as a representative of endogenously formed N-nitroso compounds (NOCs), has become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, effects of ethanol and acetic acid on the formation of NDMA from dimethylamine (DMA) and nitrite in simulated gastric fluid (SGF) were investigated. Experimental results showed that ethanol in the concentrations of 1-8% (v/v) and acetic acid in the concentrations of 0.01-8% (v/v) exhibit inhibitory and promotion effects on the formation of NDMA, respectively. Moreover, they are both in a dose-dependent manner with the largest inhibition/promotion rate reaching ∼70%. Further experimental investigations indicate that ethanol and acetic acid are both able to scavenge nitrite in SGF. It implies that there are interactions of ethanol and acetic acid with nitrite or nitrite-related nitrosating agents rather than DMA. Theoretical calculations confirm the above experimental results and demonstrate that ethanol and acetic acid can both react with nitrite-related nitrosating agents to produce ethyl nitrite (EtONO) and acetyl nitrite (AcONO), respectively. Furthermore, the reactivities of ethyl nitrite, acetyl nitrite, and dinitrogen trioxide reacting with DMA were found in the order of AcONO > N2O3 ≫ EtONO. This is probably the main reason why there are completely different effects of ethanol and acetic acid on NDMA formation. On the basis of the above results, two requirements for a potential inhibitor of NOCs formation in SGF were provided. The results obtained in this study will be helpful in better understanding the inhibition/promotion mechanisms of compounds on NDMA formation in SGF and searching for protective substances to prevent carcinogenic NOCs formation.
Jackson, Armitra L; Kulchaiyawat, Charlwit; Sullivan, Gary A; Sebranek, Joseph G; Dickson, James S
2011-03-01
A major concern for processed meats marketed as natural/organic is that they do not contain nitrite in concentrations known to be most effective for inhibiting foodborne pathogens. Supplemental treatments to increase the level and consistency of antimicrobial protection in these products may be important to provide consumers with the degree of safety that they have come to expect from conventionally cured meats. Therefore, the objective of this study was to identify and test ingredients that might improve processed meat product safety without altering their natural/organic status. Eight treatments of hams and frankfurters were prepared: (A) uncured control (typical ingredients except nitrite and nitrate); (B) conventionally cured control (erythorbate, nitrite, and a lactate-diacetate blend); (C) natural nitrate cure (including starter culture containing Staphylococcus carnosus); (D) natural nitrate cure (culture and natural antimicrobial A containing a vinegar, lemon, and cherry powder blend); (E) natural nitrate cure (culture and antimicrobial B containing a cultured sugar and vinegar blend); (F) natural nitrite cure without additional antimicrobials; (G) natural nitrite cure with natural antimicrobial A; and (H) natural nitrite cure with antimicrobial B. For the hams, treatments C, D, E, and H impacted growth of Clostridium perfringens to the same extent (P < 0.05) as the conventionally cured control (approximately 2 log less growth over time than uncured control). For frankfurters, treatments D, G, and H had an effect (approximately 1 log) on growth equivalent to that of the conventionally cured control (P < 0.05). These results suggest that natural/organic cured meats have more potential for pathogen growth than conventionally cured products, but supplemental natural ingredients offer safety improvement.
Lancaster, J R; Vega, J M; Kamin, H; Orme-Johnson, N R; Orme-Johnson, W H; Krueger, R J; Siegel, L M
1979-02-25
EPR spectroscopic and chemical analyses of spinach nitrite reductase show that the enzyme contains one reducible iron-sulfur center, and one site for binding either cyanide or nitrite, per siroheme. The heme is nearly all in the high spin ferric state in the enzyme as isolated. The extinction coefficient of the enzyme has been revised to E386 = 7.6 X 10(4) cm-1 (M heme)-1. The iron-sulfur center is reduced with difficulty by agents such as reduced methyl viologen (equilibrated with 1 atm of H2 at pH 7.7 in the presence of hydrogenase) or dithionite. Complexation of the enzyme with CO (a known ligand for nitrite reductase heme) markedly increases the reducibility of the iron-sulfur center. New chemical analyses and reinterpretation of previous data show that the enzyme contains 6 mol of iron and 4 mol of acid-labile S2-/mol of siroheme. The EPR spectrum of reduced nitrite reductase in 80% dimethyl sulfoxide establishes clearly that the enzyme contains a tetranuclear iron-sulfur (Fe4S4) center. The ferriheme and Fe4S4 centers are reduced at similar rates (k = 3 to 4 s-1) by dithionite. The dithionite-reduced Fe4S4 center is rapidly (k = 100 s-1) reoxidized by nitrite. These results indicate a role for the Fe4S4 center in catalysis.
NASA Astrophysics Data System (ADS)
Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.
2017-10-01
The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.
Nitrite in feed: From Animal health to human health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa
Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case ofmore » livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also carried out taking into account all direct and indirect sources of nitrite from the human diet, including carry-over of nitrite in animal-based products such as milk, eggs and meat products. Human exposure was then compared with the acceptable daily intake (ADI) for nitrite of 0-0.07 mg/kg b.w. per day. Overall, the low levels of nitrite in fresh animal products represented only 2.9% of the total daily dietary exposure and thus were not considered to raise concerns for human health. It is concluded that the potential health risk to animals from the consumption of feed or to man from eating fresh animal products containing nitrite, is very low.« less
Li, Nan; Wang, Peng; Liu, Qingsong; Cao, Hailei
2010-01-01
High-concentration nitrite-containing wastewater that presents extreme toxicity to human health and organisms is difficult to be treated using traditional biological process. In this study, a novel microwave-enhanced chemical reduction process (MECRP) using sulfaminic acid (SA) was proposed as a new manner to treat such type of wastewater. Based on lab-scale experiments, it was shown that 75%-80% nitrite (NO2-) could be removed within time as short as 4 min under 50 W microwave irradiation in pH range 5-10 when molar ratio of SA to nitrite (SA/NO2-) was 0.8. Pilot-scale investigations demonstrated that MECRP was able to achieve nitrite and chemical oxygen demand (COD) removal with efficiency up to 80% and 20%, respectively under operating conditions of SA concentration 80 kg/m3, SA/NO2- ratio 0.8, microwave power 3.4 kW, and stirring time 3 min. Five-day biological oxygen demand (BOD5)/COD value of treated effluent after MECRP was increased from 0.05 to 0.36 (by 620%), which clearly suggested a considerable improvement of biodegradability for subsequent biological treatment. This study provided a demonstration of using microwave irradiation to enhance reaction between SA and nitrite in a short time, in which nitrite in wastewater was completely converted into nitrogen gas without leaving any sludge and secondary pollutants.
LaBar, J; Sander, J
1975-11-25
The reaction of the analgesic amidopyrine (100 mg) with nitrite extracted from cured meats and from spinach in varying degrees of spoilage was studied. Unde physiological conditions the carcinogenic dimethylnitrosamine was formed at milligram levels at nitrite concentrations as low as 4 mg (in 175 ml extracted from 100 g boiled ham). The rate of decrease in concentration in the human stomach after ingestion of amidopyrine and of nitrite contained in boiled ham or in a broth from boiled ham was also measured.
van Dalen, Christine J.; Winterbourn, Christine C.; Kettle, Anthony J.
2005-01-01
Eosinophil peroxidase is a haem enzyme of eosinophils that is implicated in oxidative tissue injury in asthma. It uses hydrogen peroxide to oxidize thiocyanate and bromide to their respective hypohalous acids. Nitrite is also a substrate for eosinophil peroxidase. We have investigated the mechanisms by which the enzyme oxidizes nitrite. Nitrite was very effective at inhibiting hypothiocyanous acid (‘cyanosulphenic acid’) and hypobromous acid production. Spectral studies showed that nitrite reduced the enzyme to its compound II form, which is a redox intermediate containing FeIV in the haem active site. Compound II does not oxidize thiocyanate or bromide. These results demonstrate that nitrite is readily oxidized by compound I, which contains FeV at the active site. However, it reacts more slowly with compound II. The observed rate constant for reduction of compound II by nitrite was determined to be 5.6×103 M−1·s−1. Eosinophils were at least 4-fold more effective at promoting nitration of a heptapeptide than neutrophils. This result is explained by our finding that nitrite reacts 10-fold faster with compound II of eosinophil peroxidase than with the analogous redox intermediate of myeloperoxidase. Nitration by eosinophils was increased 3-fold by superoxide dismutase, which indicates that superoxide interferes with nitration. We propose that at sites of eosinophilic inflammation, low concentrations of nitrite will retard oxidant production by eosinophil peroxidase, whereas at higher concentrations nitrogen dioxide will be a major oxidant formed by these cells. The efficiency of protein nitration will be decreased by the diffusion-controlled reaction of superoxide with nitrogen dioxide. PMID:16336215
Komori, Hirofumi; Miyazaki, Kentaro; Higuchi, Yoshiki
2009-04-02
A multi-copper protein with two cupredoxin-like domains was identified from our in-house metagenomic database. The recombinant protein, mgLAC, contained four copper ions/subunits, oxidized various phenolic and non-phenolic substrates, and had spectroscopic properties similar to common laccases. X-ray structure analysis revealed a homotrimeric architecture for this enzyme, which resembles nitrite reductase (NIR). However, a difference in copper coordination was found at the domain interface. mgLAC contains a T2/T3 tri-nuclear copper cluster at this site, whereas a mononuclear T2 copper occupies this position in NIR. The trimer is thus an essential part of the architecture of two-domain multi-copper proteins, and mgLAC may be an evolutionary precursor of NIR.
Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.
Einsiedl, Florian
2009-01-01
The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water, evidence of 18O enriched water in the remaining sulfate in the experiments that contained nitrite also demonstrates that SO3(2-) recycling to sulfate affects sulfur and oxygen isotope fractionation during bacterial sulfate reduction to some extent. Even though reduction of adenosine-5'-phosphosulfate (APS) to sulfite of -25 per thousand was not fully expressed, SO3(2-) was recycled to SO4(2-). On the basis of the results of this study a sulfur isotope fractionation for APSR of upto approximately -30 per thousand can be assumed. However, reported NO2(-) concentrations of up to 20 microM in freshwater and marine habitats may not significantly impact the ability to use stable isotope analysis in assessing bacterial sulfate reduction.
Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing.
Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; Yong, Hae In; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun
2015-01-01
The interaction of plasma with liquid generates nitrogen species including nitrite (NO(-) 2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (p<0.05) were significantly higher than the control. These data indicate that PTW can be used as a nitrite source in the curing process of meat without addition of other nitrite sources.
Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing
Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho
2015-01-01
The interaction of plasma with liquid generates nitrogen species including nitrite (NO−2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (p<0.05) were significantly higher than the control. These data indicate that PTW can be used as a nitrite source in the curing process of meat without addition of other nitrite sources. PMID:26761900
SOLVENT EXTRACTION OF RUTHENIUM
Hyman, H.H.; Leader, G.R.
1959-07-14
The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.
NASA Astrophysics Data System (ADS)
Wood, C.; Travis, N. M.; Forbes, M. S.; Casciotti, K. L.
2016-12-01
Hypoxic and anoxic zones are found in oceans worldwide. These zones can be caused by warm water "caps" that trap colder water underneath the warm water so the cold water cannot replenish its oxygen. Processes such as global warming and eutrophication can also contribute to such oxygen-depleted zones. Thus, it is important to study these zones to investigate and reveal the impact humans have on ecosystems worldwide so we can fix the problems we have caused. The Eastern Tropical North Pacific (ETNP), off the southwestern coast of Mexico, contains a natural-oxygen deficient zone. On a research cruise to the ETNP in April 2016, incubations were conducted to measure the rates of nitrification in the upper water column (upper 100 m) at three stations. Incubations were conducted in light and dark bottles spiked with 15N-containing nitrite. In this study, nitrite concentration in incubation starting points was analyzed. For each point, four depths of increasing depth (they varied depending on the station) were analyzed, and for each depth there were three samples. For each sample five absorbance measurements were averaged to calculate nitrite concentration against known standards. Concentrations of nitrite were found to increase moving into the oxygen deficient zone. The nitrite peaks at the coastal stations were at shallower depths than the peak at the centermost station in the low-oxygen zone. At the centermost station within the oxygen-deficient region, the nitrite concentration at the primary peak was 1.6µM, which was the highest point out of all the stations. This nitrite concentration data will be expanded to all stations where 15N addition incubation experiments were performed. In the future, these time-zero data will be combined with time-24 data to calculate nitrite oxidation rates based on 15N isotope analysis. Measuring nitrite oxidation rates will help us further understand processes structuring nitrite accumulation in the ETNP low-oxygen zone.
Kim, Hyun-Wook; Hwang, Ko-Eun
2017-01-01
We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract (p<0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score (p<0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid (p>0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid (p<0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions. PMID:28515652
Griesenbeck, John S; Steck, Michelle D; Huber, John C; Sharkey, Joseph R; Rene, Antonio A; Brender, Jean D
2009-04-06
Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance. We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ) as adapted for use in the National Birth Defects Prevention Study. Multiple reference databases were searched for published literature reflecting nitrate, nitrite, and nitrosamine values in foods. Relevant published literature was reviewed; only publications reporting results for items listed on the WFFQ were selected for inclusion. The references selected were prioritized according to relevance to the U.S. population. Based on our estimates, vegetable products contain the highest levels of nitrate, contributing as much as 189 mg/serving. Meat and bean products contain the highest levels of nitrites with values up to 1.84 mg/serving. Alcohol, meat and dairy products contain the highest values of nitrosamines with a maximum value of 0.531 microg/serving. The estimates of dietary nitrates, nitrites, and nitrosamines generated in this study are based on the published values currently available. To our knowledge, these are the only estimates specifically designed for use with the adapted WFFQ and generated to represent food items available to the U.S. population. The estimates provided may be useful in other research studies, specifically in those exploring the relation between exposure to these compounds in foods and adverse health outcomes.
Choi, Yun-Sang; Kim, Tae-Kyung; Jeon, Ki-Hong; Park, Jong-Dae; Kim, Hyun-Wook; Hwang, Ko-Eun; Kim, Young-Boong
2017-01-01
We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract ( p <0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid ( p <0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid ( p <0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score ( p <0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid ( p >0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid ( p <0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions.
Sen, Kakali; Horrell, Sam; Kekilli, Demet; Yong, Chin W; Keal, Thomas W; Atakisi, Hakan; Moreau, David W; Thorne, Robert E; Hough, Michael A; Strange, Richard W
2017-07-01
Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (Asp CAT and His CAT ) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the Asp CAT protonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site 'capping residue' (Ile CAT ), a determinant of ligand binding, are influenced both by temperature and by the protonation state of Asp CAT . A previously unobserved conformation of Ile CAT is seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.
Papagianni, M; Sergelidis, D
2013-06-10
Weissellin A is a listericidal bacteriocin produced by the sausage-isolated strain of Weissella paramesenteroides DX. The response of the strain to various concentrations of the added curing agent NaNO2 (0.0025, 0.005 and 0.01g/L) was evaluated in bioreactor fermentations using a meat simulation medium. The presence of nitrite suppressed bacteriocin production - the effect being more pronounced with increasing concentrations. Weissellin A was produced as a growth-associated metabolite in the absence of nitrite or its presence in the low concentration of 0.005g/L under aerobic conditions. The suppressive effect of nitrite was apparent under conditions supporting increased specific production rates, e.g. 50% and 100% dissolved oxygen tension, but no effect was observed under anaerobic conditions. As the latter prevail in the microenvironment of fermented meat products, the absence of any influence of nitrite on bacteriocin production is an important finding that enlightens the role of this species of lactic acid bacteria in its common substrates. Copyright © 2013 Elsevier Inc. All rights reserved.
Fatal methemoglobinemia caused by liniment solutions containing sodium nitrite.
Saito, T; Takeichi, S; Yukawa, N; Osawa, M
1996-01-01
We describe a case of fatal methemoglobinemia (MetHb-emia) resulting from application of liniment solution containing large quantities of sodium nitrite. As a remedial treatment of atopic dermatitis, the liniment solution was applied all over the boy's body. Autopsy findings showed no significant macroscopic or microscopic findings except blood tinted chocolate brown color and chronic atopic dermatitis over the whole surface of the body. Quantitation of the methemoglobin (MetHb) in the blood was performed using spectrophotometer; MetHb concentration of the blood was 76%. Ion chromatographic determination revealed a nitrite concentration of 1 mg/L in the serum. Such a liniment solution is not authorized by the Ministry of Public Welfare.
The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.
Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang
2016-01-01
The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.
FORMATION OF NITRITE AND NITRATE BY ACTINOMYCETES AND FUNGI
Hirsch, P.; Overrein, L.; Alexander, M.
1961-01-01
Hirsch, P. (Cornell University, Ithaca, New York), L. Overrein, and M. Alexander. Formation of nitrite and nitrate by actinomycetes and fungi. J. Bacteriol. 82:442–448. 1961.—Nitrite was produced by strains of Mycobacterium, Nocardia, Streptomyces, Micromonospora, and Streptosporangium in media containing ammonium phosphate as the sole nitrogen source. The quantity of nitrite formed was small, and the concentration was affected by pH and by the relative levels of carbon and nitrogen. Aspergillus flavus produced little nitrite from ammonium but formed in excess of 100 parts per million of nitrate-nitrogen. Peroxidase activity and heterotrophic nitrification were reduced in acid conditions, but mycelial development of the fungus was not markedly affected. The inability of A. flavus to form nitrate and nitrite at low pH appears to result from a selective effect of pH upon nitrification rather than being a consequence of the decomposition of nitrogenous intermediates. PMID:13714587
Effect of chard powder on colour and aroma formation in cooked sausages
NASA Astrophysics Data System (ADS)
Nasonova, V. V.; Tunieva, E. K.
2017-09-01
The use of nitrate-containing vegetable powders instead of sodium nitrite in meat products requires changes in technological production parameters in order to obtain traditional organoleptic characteristics in the finished products. The aim of this work was to study the effect of chard powder on colour and aroma formation in cooked sausages. Cooked sausage samples were: control with nitrite curing mixture; type 1 sausages with chard powder and ascorbic acid; type 2 sausages with chard powder and sodium ascorbate. To transform nitrate ions contained in the vegetable chard powder to nitrite ions using a denitrifying culture, preliminary thermal treatments were used: 30 and 60 min at 40±2°C, after which the sausages were cooked until a temperature of 72±2°C was achieved. The sausages were stored for 40 days at 0-6°C. When sausage meat was initially held at 40°C for 60 min, a homogenous pink colour formed in the sausages with the vegetable powder. The indicators of lightness, redness and yellowness in cooked sausages as well as the indicators of instrumental odour assessment did not differ significantly (p>0.05). The indicators of colour stability during storage were 1.1-3.0% higher in the sausages with the chard powder compared to the control. The mass fraction of sodium nitrite in the experimental sausages was 2.0-2.2 higher than in the control (p>0.05). As a result of cooked sausage storage, the differences in the sodium nitrite content in the control and types 1 and 2 sausages were similar. During storage, the mass fraction of sodium nitrite decreased in types 1 and 2 sausages by 55.6 and 54.8%, respectively (p<0.05). Cooked sausages with the chard powder contained 2.1-2.4 times more sodium nitrate than did control sausages (p<0.05). However, all tested sausage samples complied with legislative requirements in terms of their sodium nitrite and nitrate levels.
Griesenbeck, John S; Steck, Michelle D; Huber, John C; Sharkey, Joseph R; Rene, Antonio A; Brender, Jean D
2009-01-01
Background Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance. Methods We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ) as adapted for use in the National Birth Defects Prevention Study. Multiple reference databases were searched for published literature reflecting nitrate, nitrite, and nitrosamine values in foods. Relevant published literature was reviewed; only publications reporting results for items listed on the WFFQ were selected for inclusion. The references selected were prioritized according to relevance to the U.S. population. Results Based on our estimates, vegetable products contain the highest levels of nitrate, contributing as much as 189 mg/serving. Meat and bean products contain the highest levels of nitrites with values up to 1.84 mg/serving. Alcohol, meat and dairy products contain the highest values of nitrosamines with a maximum value of 0.531 μg/serving. The estimates of dietary nitrates, nitrites, and nitrosamines generated in this study are based on the published values currently available. Conclusion To our knowledge, these are the only estimates specifically designed for use with the adapted WFFQ and generated to represent food items available to the U.S. population. The estimates provided may be useful in other research studies, specifically in those exploring the relation between exposure to these compounds in foods and adverse health outcomes. PMID:19348679
Drabik-Markiewicz, G; Dejaegher, B; De Mey, E; Impens, S; Kowalska, T; Paelinck, H; Vander Heyden, Y
2010-01-11
N-nitrosamines are meant to be probable or possible carcinogenic components, possibly formed out of a reaction between nitrite and N-containing substances such as amino acids and secondary amines. Nitrite is often used for processing meat products because of its colouring and antimicrobial properties. During this experimental setup, the influence of proline, hydroxyproline or pyrrolidine on N-nitrosamine formation in meat samples was evaluated. The N-nitrosamines concentrations were measured with gas chromatography-thermal energy analyzer. Only the concentrations of N-nitrosodimethylamine and N-nitrosopyrrolidine were found above the limit of detection in a number of tested experimental conditions. The concentration of these two N-nitrosamines was modelled as a function of temperature and nitrite concentration for different situations (presence or absence of added natural N-containing meat components). It could be concluded that proline and pyrrolidine promoted the formation of N-nitrosopyrrolidine. It could also be confirmed that the higher the temperature of the meat processing procedure and the higher the sodium nitrite amounts added, the higher were the yields of the respective N-nitrosamines.
Nisin: a possible alternative or adjunct to nitrite in the preservation of meats.
Rayman, M K; Aris, B; Hurst, A
1981-01-01
Nisin at 75 ppm (75 microgram/g) was superior to 150 ppm of nitrite in inhibiting outgrowth of Clostridium sporogenes PA3679 spores in meat slurries, which had been heated to simulate the process used for cooked ham. The inhibitory activity of nisin decreased as the spore load or pH of the slurries increased. Unlike nitrite, inhibition by nisin was unaffected by high levels of iron either as a constituent of meats or when added as an iron salt. In slurries treated with 75 ppm of nisin, refrigerated storage for 56 days resulted in depletion of nisin to a level low enough to allow outgrowth within 3 to 10 days if the slurries were subsequently abused at 35 degrees C. In contrast, a combination of 40 ppm of nitrite and either 75 or 100 ppm of nisin almost completely inhibited outgrowth in these slurries. The nisin-nitrite combination appeared to have a synergistic effect, and the low concentration of nitrite was sufficient to preserve the color in meats similar to that of products cured with 150 ppm of nitrite. PMID:7195188
Corrosion of radioactive waste tanks containing washed sludge and precipitates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1988-05-01
At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species formore » carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.« less
Effect of calcium nitrite on the properties of concrete used in prestressed piles and beams.
DOT National Transportation Integrated Search
1992-01-01
This study evaluates the concretes in steam-cured prestressed piles and beams containing calcium nitrite as protection against chloride-induced corrosion of the steel strands and assesses their field performance over a 3-year period. Concretes contai...
Influence of Nitrogen Source on NDMA Formation during Chlorination of Diuron
Chen, Wei-Hsiang; Young, Thomas M.
2009-01-01
N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N′-(3,4-dichlorophenyl)-N, N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitrite < nitrate < ammonium for a given chlorine, nitrogen, and diuron dose. Formation of dichloramine seemed to fully explain enhanced NDMA formation in the presence of ammonium. Nitrate unexpectedly enhanced nitrosation of diuron derivatives to form NDMA compared to the cases of no added nitrogen or nitrite addition. Nitrite addition is less effective because it consumes more chlorine and produces intermediates that react rapidly with diuron and its aromatic byproducts. Differences between surface and groundwater in nitrogen forms and concentrations and disinfection approaches, suggest strategies to reduce NDMA formation should vary with drinking water source. PMID:19457535
Influence of nitrogen source on NDMA formation during chlorination of diuron.
Chen, Wei-Hsiang; Young, Thomas M
2009-07-01
N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N'-(3,4-dichlorophenyl)-N,N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitrite
Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose
2018-05-01
The work found that the electron-donating properties of ferrous ions (Fe 2+ ) can be used for the conversion of nitrite (NO 2 - ) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe 2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe 2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe 2+ -to-Fe 3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe 2+ and reduce its autoxidation to Fe 3+ . These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe 2+ was observed on nitrifying bacteria biofilms in PBS at pH 6. Copyright © 2018 Elsevier Inc. All rights reserved.
Green Alternatives to Nitrates and Nitrites in Meat-based Products-A Review.
Gassara, Fatma; Kouassi, Anne Patricia; Brar, Satinder Kaur; Belkacemi, Khaled
2016-10-02
Several food additives are added in food for their preservation to maintain the freshness of food (antioxidants) or to slow down or stop the growth of microorganisms (preservative agents). Nitrites and nitrates are used as preservative agents in meat. Nitrites give a smoked taste, a pinkish color in the meat and protect the consumers against the risk of bacterial deterioration. Their addition is however very limited as, in high dose, it can have risks on human health and the environment. Nitrites may also combine with secondary or tertiary amines to form N-nitroso derivatives. Certain N-nitroso compounds have been shown to produce cancers in a wide range of laboratory animals. Thus, alternatives of nitrates and nitrites are the object of numerous research studies. Alternatives, such as the addition of vitamins, fruits, chemicals products, natural products containing nitrite or spices, which have similar properties of nitrites, are in evaluation. In fact, spices are considered to have several organoleptic and anti-microbial properties which would be interesting to study. Several spices and combinations of spices are being progressively evaluated. This review discusses the sources of nitrites and nitrates, their use as additives in food products, their physicochemical properties, their negatives effects and the use of alternatives of nitrites and nitrates in preserving meat products.
Krause, B L; Sebranek, J G; Rust, R E; Mendonca, A
2011-12-01
Salt concentration, vegetable juice powder (VJP) concentration and temperature were investigated to determine necessary conditions for incubation of curing brines including VJP and a starter culture containing Staphylococcus carnosus prior to production of naturally cured, no-nitrate/nitrite-added meat products. Subsequently, incubated brines were utilized to produce no-nitrate/nitrite-added sliced ham in which quality characteristics and residual nitrite concentrations were measured to determine feasibility of brine incubation for nitrate conversion prior to injection. Two ham treatments (one with VJP and starter culture; one with pre-converted VJP) and a nitrite-added control were used. No differences (P>0.05) were found for color in the VJP treatments. Control sliced ham was redder after 42 days of storage, retaining significantly (P<0.05) greater a* (redness) than either of the VJP treatments. Residual nitrite concentration was greater (P<0.05) in the control hams during the first week of storage. While the nitrite-added control retained greater red color and initially had more residual nitrite than the VJP treatments, the two VJP treatments did not differ from each other. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sodium nitrite potentiates renal oxidative stress and injury in hemoglobin exposed guinea pigs.
Baek, Jin Hyen; Zhang, Xiaoyuan; Williams, Matthew C; Hicks, Wayne; Buehler, Paul W; D'Agnillo, Felice
2015-07-03
Methemoglobin-forming drugs, such as sodium nitrite (NaNO2), may exacerbate oxidative toxicity under certain chronic or acute hemolytic settings. In this study, we evaluated markers of renal oxidative stress and injury in guinea pigs exposed to extracellular hemoglobin (Hb) followed by NaNO2 at doses sufficient to simulate clinically relevant acute methemoglobinemia. NaNO2 induced rapid and extensive oxidation of plasma Hb in this model. This was accompanied by increased renal expression of the oxidative response effectors nuclear factor erythroid 2-derived-factor 2 (Nrf-2) and heme oxygenase-1 (HO-1), elevated non-heme iron deposition, lipid peroxidation, interstitial inflammatory cell activation, increased expression of tubular injury markers kidney injury-1 marker (KIM-1) and liver-fatty acid binding protein (L-FABP), podocyte injury, and cell death. Importantly, these indicators of renal oxidative stress and injury were minimal or absent following infusion of Hb or NaNO2 alone. Together, these results suggest that the exposure to NaNO2 in settings associated with increased extracellular Hb may potentiate acute renal toxicity via processes that are independent of NaNO2 induced erythrocyte methemoglobinemia. Published by Elsevier Ireland Ltd.
Special nuclear material simulation device
Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.
2014-08-12
An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.
Yang, Si; Wo, Yaqi; Meyerhoff, Mark E.
2014-01-01
Cobalt(III) 5, 10, 15-tris(4-tert-butylphenyl) corrole with a triphenylphosphine axial ligand and rhodium(III) 5,10,15,20-tetra(p-tert-butylphenyl)porphyrin are incorporated into plasticized poly(vinyl chloride) films to fabricate nitrite-selective bulk optodes via absorbance measurements. The resulting films yield sensitive, fast and fully reversible response toward nitrite with significantly enhanced nitrite selectivity over other anions including lipophilic anions such as thiocyanate and perchlorate. The selectivity patterns differ greatly from the Hofmeister series based on anion lipophilicity and are consistent with selectivity obtained with potentiometric sensors based on the same ionophores. The optical nitrite sensors are shown to be useful for detecting rates of emission of nitric oxide (NO) from NO releasing polymers containing S-nitroso-N-acetyl-penicillamine. PMID:25150700
Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang
2016-05-20
Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.
Method for solidifying liquid radioactive wastes
Berreth, Julius R.
1976-01-01
The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.
The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions
Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.
2018-05-09
In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less
The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.
In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less
Pérez, Julio; Lotti, Tommaso; Kleerebezem, Robbert; Picioreanu, Cristian; van Loosdrecht, Mark C M
2014-12-01
This model-based study investigated the mechanisms and operational window for efficient repression of nitrite oxidizing bacteria (NOB) in an autotrophic nitrogen removal process. The operation of a continuous single-stage granular sludge process was simulated for nitrogen removal from pretreated sewage at 10 °C. The effects of the residual ammonium concentration were explicitly analyzed with the model. Competition for oxygen between ammonia-oxidizing bacteria (AOB) and NOB was found to be essential for NOB repression even when the suppression of nitrite oxidation is assisted by nitrite reduction by anammox (AMX). The nitrite half-saturation coefficient of NOB and AMX proved non-sensitive for the model output. The maximum specific growth rate of AMX bacteria proved a sensitive process parameter, because higher rates would provide a competitive advantage for AMX. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes
Boatner, L.A.; Sales, B.C.
1984-04-11
Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
Food sources of nitrates and nitrites: the physiologic context for potential health benefits.
Hord, Norman G; Tang, Yaoping; Bryan, Nathan S
2009-07-01
The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglobinemia. Despite the physiologic roles for nitrate and nitrite in vascular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little attention. Approximately 80% of dietary nitrates are derived from vegetable consumption; sources of nitrites include vegetables, fruit, and processed meats. Nitrites are produced endogenously through the oxidation of nitric oxide and through a reduction of nitrate by commensal bacteria in the mouth and gastrointestinal tract. As such, the dietary provision of nitrates and nitrites from vegetables and fruit may contribute to the blood pressure-lowering effects of the Dietary Approaches to Stop Hypertension (DASH) diet. We quantified nitrate and nitrite concentrations by HPLC in a convenience sample of foods. Incorporating these values into 2 hypothetical dietary patterns that emphasize high-nitrate or low-nitrate vegetable and fruit choices based on the DASH diet, we found that nitrate concentrations in these 2 patterns vary from 174 to 1222 mg. The hypothetical high-nitrate DASH diet pattern exceeds the World Health Organization's Acceptable Daily Intake for nitrate by 550% for a 60-kg adult. These data call into question the rationale for recommendations to limit nitrate and nitrite consumption from plant foods; a comprehensive reevaluation of the health effects of food sources of nitrates and nitrites is appropriate. The strength of the evidence linking the consumption of nitrate- and nitrite-containing plant foods to beneficial health effects supports the consideration of these compounds as nutrients.
Lavieri, Nicolas A; Sebranek, Joseph G; Cordray, Joseph C; Dickson, James S; Horsch, Ashley M; Jung, Stephanie; Manu, David K; Brehm-Stecher, Byron F; Mendonça, Aubrey F
2014-05-01
Sodium nitrite exerts an inhibitory effect on the growth of Listeria monocytogenes. The objective of this study was to investigate the effects of various nitrite concentrations from a vegetable source with and without high hydrostatic pressure (HHP) on the recovery and growth of L. monocytogenes on ready-to-eat restructured ham. A preconverted celery powder was used as the vegetable source of nitrite. Targeted concentrations of natural nitrite investigated were 0, 50, and 100 mg/kg. HHP treatments evaluated were 400 MPa for 4 min and 600 MPa for 1 or 4 min at 12 ± 2 °C (initial temperature of the pressurization fluid). Viable L. monocytogenes populations were monitored on modified Oxford medium and thin agar layer medium through 98 days of storage at 4 ± 1 °C. Populations on both media did not differ. The HHP treatment at 600 MPa for 4 min resulted in L. monocytogenes populations below the detection limit of our sampling protocols throughout the storage period regardless of the natural nitrite concentration. The combination of HHP at 400 MPa for 4 min or 600 MPa for 1 min with natural nitrite resulted in initial inhibition of viable L. monocytogenes. Ham formulations that did not contain natural nitrite allowed faster growth of L. monocytogenes than did those with nitrite, regardless of whether they were treated with HHP. The results indicate that nitrite from a vegetable source at the concentrations used in this study resulted in slower growth of this microorganism. HHP treatments enhanced the inhibitory effects of natural nitrite on L. monocytogenes growth. Thus, the combination of natural nitrite plus HHP appears to have a synergistic inhibitory effect on L. monocytogenes growth.
NASA Astrophysics Data System (ADS)
Roger, Isolda; Wilson, Claire; Senn, Hans M.; Sproules, Stephen; Symes, Mark D.
2017-08-01
The copper-containing nitrite reductases (CuNIRs) are a class of enzymes that mediate the reduction of nitrite to nitric oxide in biological systems. Metal-ligand complexes that reproduce the salient features of the active site of CuNIRs are therefore of fundamental interest, both for elucidating the possible mode of action of the enzymes and for developing biomimetic catalysts for nitrite reduction. Herein, we describe the synthesis and characterization of a new tris(2-pyridyl) copper complex ([Cu1(NO2)2]) that binds two molecules of nitrite, and displays all three of the common binding modes for NO2-, with one nitrite bound in an asymmetric quasi-bidentate κ2-ONO manner and the other bound in a monodentate fashion with a linkage isomerism between the κ1-ONO and κ1-NO2 binding modes. We use density functional theory to help rationalize the presence of all three of these linkage isomers in one compound, before assessing the redox activity of [Cu1(NO2)2]. These latter studies show that the complex is not a competent nitrite reduction electrocatalyst in non-aqueous solvent, even in the presence of additional proton donors, a finding which may have implications for the design of biomimetic catalysts for nitrite reduction.
Effect of nitrite on a thermophilic, methanogenic consortium from an oil storage tank.
Kaster, Krista M; Voordouw, Gerrit
2006-10-01
Samples from an oil storage tank (resident temperature 40 to 60 degrees C), which experienced unwanted periodic odorous gas emissions, contained up to 2,400/ml of thermophilic, lactate-utilizing, sulfate-reducing bacteria. Significant methane production was also evident. Enrichments on acetate gave sheathed filaments characteristic of the acetotrophic methanogen Methanosaeta thermophila of which the presence was confirmed by determining the PCR-amplified 16S rDNA sequence. 16S rDNA analysis of enrichments, grown on lactate- and sulfate-containing media, indicated the presence of bacteria related to Garciella nitratireducens, Clostridium sp. and Acinetobacter sp. These sulfidogenic enrichments typically produced sulfide to a maximum concentration of 5-7 mM in media containing excess lactate and 10 mM sulfate or thiosulfate. Both the production of sulfide and the consumption of acetate by the enrichment cultures were inhibited by low concentrations of nitrite (0.5-1.0 mM). Hence, addition of nitrite may be an effective way to prevent odorous gas emissions from the storage tank.
21 CFR 573.700 - Sodium nitrite.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive... as a preservative and color fixative in canned pet food containing fish, meat, and fish and meat... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and...
Pietrasik, Z; Gaudette, N J; Johnston, S P
2017-07-01
The effects of high pressure processing (HPP; 600MPa for 3min at 8°C) on the quality and shelf life of reduced sodium naturally-cured wieners was studied. HPP did not negatively impact processing characteristics and assisted in extending shelf life of all wiener treatments up to a 12week storage period. At week 8, HPP wieners received higher acceptability scores, indicating HPP can effectively extend the sensory quality of products, including sodium reduced formulations containing natural forms of nitrite. Substitution of 50% NaCl with modified KCl had negative effect on textural characteristics of conventionally cured wieners but not those processed with celery powder as a source of nitrite. Celery powder favorably affected hydration of textural properties of wieners, and consumer acceptability of juiciness and texture was higher compared to nitrite. Sodium reduction, independent of curing agent, negatively impacted flavor acceptability, while only nitrite containing reduced sodium wieners scored significantly lower than both regular salt wieners for texture, juiciness and saltiness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Myers, Megan I; Sebranek, Joseph G; Dickson, James S; Shaw, Angela M; Tarté, Rodrigo; Adams, Kristin R; Neibuhr, Steve
2016-01-01
Increased popularity of natural and organic processed meats can be attributed to the growing consumer demand for preservative-free foods, including processed meats. To meet this consumer demand, meat processors have begun using celery juice concentrate in place of sodium nitrite to create products labeled as no-nitrate or no-nitrite-added meat products while maintaining the characteristics unique to conventionally cured processed meats. Because of flavor limitations, natural cures with celery concentrate typically provide lower ingoing nitrite concentrations for ready-to-eat processed meats than do conventional cures, which could allow for increased growth of pathogens, such as Clostridium perfringens, during cooked product cooling such as that required by the U.S. Department of Agriculture. The objective of this study was to investigate the implications associated with reduced nitrite concentrations for preventing C. perfringens outgrowth during a typical cooling cycle used for cooked products. Nitrite treatments of 0, 50, and 100 ppm were tested in a broth system inoculated with a three-strain C. perfringens cocktail and heated with a simulated product thermal process followed by a typical cooling-stabilization process. The nitrite concentration of 50 ppm was more effective for preventing C. perfringens outgrowth than was 0 ppm but was not as effective as 100 ppm. The interaction between nitrite and temperature significantly affected (P < 0.05) C. perfringens outgrowth in both total population and number of vegetative cells. Both temperature and nitrite concentration significantly affected (P < 0.05) C. perfringens spore survival, but the interaction between nitrite and temperature did not have a significant effect (P > 0.05) on spore outgrowth. Results indicate that decreased nitrite concentrations (50 ppm) have increased potential for total C. perfringens population outgrowth during cooling and may require additional protective measures, such as faster chilling rates.
Modelling nitrite dynamics and associated feedback processes in the Benguela oxygen minimum zone
NASA Astrophysics Data System (ADS)
Mashifane, T. B.; Vichi, M.; Waldron, H. N.; Machu, E.; Garçonc, V.
2016-08-01
Understanding nitrite dynamics in oxygen minimum zones (OMZs) is a challenge as it represents an intermediary nitrogen species with a short turnover time. Nitrite is also reduced to nitrogen in OMZs, preventing its accumulation. This creates difficulties in detecting nitrite with colorimetric methods as concentrations may occur below detection limits in some regions. Nitrite concentrations are key to understanding intermediate nitrogen processes and their implication for nitrogen loss in OMZs. A coupled physical-biogeochemical model is applied in the Benguela OMZ to study nitrite dynamics and its associated feedback processes. Simulated results show occurrence of primary and secondary nitrite maxima in the Benguela shelf waters. The primary nitrite maxima in the Benguela are attributed to nitrification and nitrate assimilation as they occur in association with the nitracline. Secondary nitrite maxima accumulate in the Angola-Benguela Front (ABF) OMZ and are attributed to denitrification. The secondary nitrite maxima are consumed by anaerobic ammonium oxidation (anammox) off Walvis Bay. Nitrite maxima are restricted to the shelf off Walvis Bay and advected offshore in the ABF region. Interchanges between the poleward South Atlantic Central Water (SACW) and the equatorward, well-aerated Eastern South Atlantic Central Water (ESACW) drive the seasonality of nitrogen processes in the Benguela. Subsequent nitrite reduction in the Benguela OMZ leads to nitrous oxide production, with high concentrations occurring in the ABF region as a result of nitrification and denitrification. Off Walvis Bay, nitrous oxide production is low since nitrite is consumed by anammox. Nitrous oxide production occurs in thermocline, intermediate and deeper water masses in the ABF region. High N fluxes in the Benguela are attributed to nitrification as compared to anammox and denitrification. Results from this study demonstrate the role of intermediate nitrogen species in nitrogen feedback processes in the Benguela and can be applied in other regions.
NITRIFICATION BY ASPERGILLUS FLAVUS1
Marshall, K. C.; Alexander, M.
1962-01-01
Marshall, K. C. (Cornell University, Ithaca, N. Y.) and M. Alexander. Nitrification by Aspergillus flavus. J. Bacteriol. 83:572–578. 1962.—Aspergillus flavus has been shown to produce bound hydroxylamine, nitrite, and nitrate when grown in peptone, amino acid, or buffered ammonium media. Free hydroxylamine was not detected in these cultures, but it was found in an unbuffered ammonium medium in which neither nitrite nor nitrate was formed. Evidence was obtained for the presence of β-nitropropionic acid in the filtrate of an actively nitrifying culture. Alumina treatment of an ammonium medium prevented the formation by growing cultures of nitrite and nitrate but not bound hydroxylamine. The effect of alumina treatment was reversed by the addition of 10−3m CeCl3 to the medium. Extracts of the fungus contained peroxidase and an enzyme capable of catalyzing the production of nitrite from β-nitropropionic acid. The nitrite-forming enzyme is apparently specific for β-nitropropionate; no activity was found with nitromethane, nitroethane, and nitropropane as substrates. Nitrate was not reduced to nitrite nor was nitrite oxidized to nitrate by the hyphal extracts. The significance of these observations in nitrification by A. flavus is discussed. PMID:14470254
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.
2011-06-08
Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less
Edwards, Tara A; Calica, Nicole A; Huang, Dolores A; Manoharan, Namritha; Hou, Weiguo; Huang, Liuqin; Panosyan, Hovik; Dong, Hailiang; Hedlund, Brian P
2013-08-01
Despite its importance in the nitrogen cycle, little is known about nitrite oxidation at high temperatures. To bridge this gap, enrichment cultures were inoculated with sediment slurries from a variety of geothermal springs. While nitrite-oxidizing bacteria (NOB) were successfully enriched from seven hot springs located in US Great Basin, south-western China, and Armenia at ≤ 57.9 °C, all attempts to enrich NOB from > 10 hot springs at ≥ 61 °C failed. The stoichiometric conversion of nitrite to nitrate, chlorate sensitivity, and sensitivity to autoclaving all confirmed biological nitrite oxidation. Regardless of origin, all successful enrichments contained organisms with high 16S rRNA gene sequence identity (≥ 97%) with Nitrospira calida. In addition, Armenian enrichments also contained close relatives of Nitrospira moscoviensis. Physiological properties of all enrichments were similar, with a temperature optimum of 45-50 °C, yielding nitrite oxidation rates of 7.53 ± 1.20 to 23.0 ± 2.73 fmoles cell(-1) h(-1), and an upper temperature limit between 60 and 65 °C. The highest rates of NOB activity occurred with initial NO2 - concentrations of 0.5-0.75 mM; however, lower initial nitrite concentrations resulted in shorter lag times. The results presented here suggest a possible upper temperature limit of 60-65 °C for Nitrospira and demonstrate the wide geographic range of Nitrospira species in geothermal environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Martin, W.; Smith, J. A.; Lewis, M. J.; Henderson, A. H.
1988-01-01
1. Unactivated extracts of bovine retractor penis (BRP) contains 3-7 microM nitrite. Acid-activation of these extracts at pH 2 for 10 min followed by neutralization generates the active form of inhibitory factor (IF; assayed by its vasodilator action on rabbit aorta), and is associated with partial loss of nitrite. 2. Increasing the time of acid-activation at pH 2 from 10 to 60 min with intermittent vortex mixing generates greater vasodilator activity and increases nitrite loss. 3. When acid-activated and neutralized extracts are incubated at 37 degrees C or 30 min or boiled for 5 min, vasodilator activity is lost and nitrite content increased. Reactivation of these samples at pH 2 for 10 min followed by neutralization leads to partial recoveries of vasodilator activity with loss in nitrite content. 4. Addition of sodium nitrite to BRP extracts increases acid-activatable vasodilator activity pro rata. 5. Acid-activation of aqueous sodium nitrite solutions results in less loss of nitrite and generation of less vasodilator activity than BRP extracts. Vasodilatation is only transient and is rapidly abolished on neutralization, whereas responses to acid-activated BRP extracts are more prolonged and activity is stable on ice. 6. Bovine aortic endothelial cells yield vasodilator activity that is indistinguishable from that isolated from BRP. It is activated by acid, stable on ice, abolished by boiling or by haemoglobin, and appears to be due to the generation of nitric oxide (NO) from nitrite.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2897219
Experimental studies of methemoglobinemia due to percutaneous absorption of sodium nitrite.
Saito, T; Takeichi, S; Nakajima, Y; Yukawa, N; Osawa, M
1997-01-01
Methemoglobin formation caused by a liniment solution containing sodium nitrite (30 g/L and 140 g/L) was studied in rats with normal or abraded skin, by measuring the methemoglobin concentration before and after application of liniment solutions with differing nitrite concentration. Each liniment solution (120 microL) was applied. Methemoglobin was measured for 180 minutes using a hemoximeter. Simultaneously, arterial blood pressure and cutaneous blood flow was measured by laser Doppler flowmetry and a pressure transducer. After the application of each liniment solution to normal skin, the methemoglobin concentration was not significantly modified depending on the time after application. Application of liniment solution to abraded skin (140 g/L) resulted in a marked increase in methemoglobin concentration. A remarkable decrease in arterial blood pressure and subcutaneous blood flow were observed after application of liniment solution to abraded skin (140 g/L). Each of these findings are characteristic of nitrite and they imply the percutaneous absorption of nitrite. Regardless of the nitrite concentration, the methemoglobin concentration was consistently higher in abraded skin than in normal skin.
Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P
2015-09-01
Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.
Inhibition Of Washed Sludge With Sodium Nitrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J. W.; Lozier, J. S.
2012-09-25
This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrationsmore » and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.« less
Flow injection analysis of nitrate and nitrite in commercial baby foods.
Chetty, Adrian A; Prasad, Surendra
2016-04-15
Commercial baby foods are an easy alternative to home-made meals especially for working parents in a nuclear family therefore it is imperative to determine the nitrate and nitrite content in commercially available baby foods varieties marketed in Fiji. A total of 108 baby food samples were analyzed for nitrate and nitrite using our standardized flow injection analysis (FIA) technique with colorimetric detection technique employing sulfanilamide and N-(1-naphthyl)ethylenediamine dihydrochloride as color reagents where the samples throughput was 38 h(-1). The commercial baby food varieties chosen comprised of vegetables, cereals, fruits and milk. The study shows that the nitrate content of the baby foods studied ranges from 2.10 to 220.67 mg kg(-1) whereas the nitrite content ranges from 0.44 to 3.67 mg kg(-1). Typical recoveries of spiked nitrate residues ranged from 92% to 106%. The study shows that the average nitrate content of commercially available baby foods in Fiji descends below the maximum level proposed by the European Union Legislation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lu, Yunhao; Dong, Yanzuo; Li, Xueli; He, Qiang
2016-10-14
The nitration and nitrosation reactions of catechol, resorcinol, and hydroquinone (0.05 mmol/L) with sodium nitrite (0.05 mmol/L) at pH 3 and 37 °C were studied by using liquid chromatography and mass spectrometry (LC-MS) and atom charge analysis, which was aimed to provide chemical insight into the nitrite-scavenging behavior of polyphenols. The 3 benzenediols showed different mechanisms to scavenge nitrite due to their differences in hydroxyl position. Catechol was nitrated with 1 NO 2 group at the hydroxyl oxygen, and resorcinol was nitrosated with 2 NO groups at the C 2 and C 4 (or C 6 ) positions of the benzene ring. Hydroquinone could scavenge nitrite through both nitration and nitrosation mechanisms. The nitrated hydroquinone had 1 NO 2 group at the hydroxyl oxygen in the molecule, while the nitrosated 1 containing 2 NO groups at the benzene ring might have 3 structure probabilities. The results may provide a structure-activity understanding on the nitrite-scavenging property of polyphenols, so as to promote their application in the food industry for the removal of possibly toxic nitrites found in many vegetables and often in processed meat products. © 2016 Institute of Food Technologists®.
Titov, V Iu; Petrenko, Iu M; Vanin, A F; Stepuro, I I
2010-01-01
The capacity of nitrite, S-nitrosothiols (RS-NO), dinitrosyl iron complexes (DNICs) with thiol-containing ligands, and nitrosoamines to inhibit catalase has been used for the selective determination of these compounds in purely chemical systems and biological liquids: cow milk and colostram. The limiting sensitivity of the method is 50 nM. A comparison of the results of the determinations of RS-NO, DNIC, and nitrite by the catalase method and the Greese method conventionally used for nitrite detection showed that, firstly, Greese reagents decompose DNIC and RS-NO to form nitrite. Therefore, the Greese method cannot be used for nitrite determination in solutions of these substances. Secondly, Greese reagents interact with complexes of mercury ions with RS-NO, inducing the release of nitrosonium ions from the complex followed by the hydrolysis of nitrosonium to nitrite. Thus, the proposition about the spontaneous decay of the complexes of mercury ions with RS-NO is incorrect. Keeping in mind a high sensitivity of the method, the use of catalase as an enzyme detector of nitrosocompounds allows one to detect these compounds in neutral medium without prior purification of the object, thereby preventing artificial effects due to noncontrolled modifications of the compounds under study.
Mechanisms for Cellular NO Oxidation and Nitrite Formation in Lung Epithelial Cells
Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Wang, Jun; Frizzell, Sam; Gladwin, Mark T.
2013-01-01
Airway lining fluid contains relatively high concentrations of nitrite and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 hrs under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low oxygen conditions. The addition of oxy-hemoglobin (oxy-Hb) to the A549 cell media decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and bitrate, suggesting an enzymatic activity is required. This NO oxidation activity was found to be highest in membrane bound proteins with molecular sizes < 100 kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ) and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation (NO+). We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via ρ-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol (SNO) formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell membrane associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells. PMID:23639566
Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A
2006-01-01
The combined SHARON-Anammox process for treating wastewater streams with high ammonia load is the focus of this paper. In particular, partial nitritation in the SHARON reactor should be performed to such an extent that a nitrite:ammonium ratio is generated which is optimal for full conversion in an Anammox process. In the simulation studies performed in this contribution, the nitrite:ammonium ratio produced in a SHARON process with fixed volume, as well as its effect on the subsequent Anammox process, is examined for realistic influent conditions and considering both direct and indirect pH effects on the SHARON process. Several possible operating modes for the SHARON reactor, differing in control strategies for O2, pH and the produced nitrite:ammonium ratio and based on regulating the air flow rate and/or acid/base addition, are systematically evaluated. The results are quantified through an operating cost index. Best results are obtained by means of cascade feedback control of the SHARON effluent nitrite:ammonium ratio through setting an O2 set-point that is tracked by adjusting the air flow rate, combined with single loop pH control through acid/base addition.
Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang
2014-09-02
NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.
NASA Astrophysics Data System (ADS)
Grogan, Brandon R.; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.
2013-12-01
The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system.
Evaluation of induced color changes in chicken breast meat during simulation of pink color defect.
Holownia, K; Chinnan, M S; Reynolds, A E; Koehler, P E
2003-06-01
The objective of the study was to establish a pink threshold and simulate the pink defect in cooked chicken breast meat with treatment combinations that would induce significant changes in the color of raw and cooked meat. The subjective pink threshold used in judging pink discoloration was established at a* = 3.8. Samples of three color groups (normal, lighter than normal, and darker than normal) of boneless, skinless chicken breast muscles were selected based on instrumental color values. The in situ changes were induced using sodium chloride, sodium tripolyphosphate, sodium erythorbate, and sodium nitrite at two levels: present and not present. Fillets in all treatments were subjected to individual injections, followed by tumbling, cooking, and chilling. Samples were analyzed for color [lightness (L*), red/green axis (a*), yellow/blue axis (b*)] and reflectance spectra. Simulation of the pink defect was achieved in eight of the 16 treatment combinations when sodium nitrite was present and in an additional two treatment combinations when it was absent. Pinking in cooked samples was affected (P < 0.05) by L* of raw meat color. Results confirmed that it was possible to simulate the undesired pinking in cooked chicken white meat when in situ conditions were induced by sodium chloride, sodium tripolyphosphate, and sodium nitrite. The continuation of the simulation study can aid in developing alternative processing methods to eliminate potential pink defects.
Jin, S. K.; Park, J. H.
2013-01-01
The individual and interactive effects of Schisandra chinensis powder (SCP) and sodium nitrite additions on color, pH, water holding capacity, residual nitrite, 2-thiobarbituric acid reactive substances (TBARS), volatile basic nitrogen, texture properties, fatty acids, amino acids and sensory evaluation of cooked pork sausages were investigated after 20 d of storage at 4°C. The powders (0, 0.5 and 1.0%) were added to sausages either alone or in combination with nitrite (0 and 100 ppm). SCP added-sausages showed lower L* (lightness) and W (whiteness) values, and higher b* (yellowness) values than sausage containing no nitrite, and exhibited the highest a* values at a 0.5% addition (p<0.05). Residual nitrite and TBARS values were found to be significantly reduced as the addition levels of SCP increased (p<0.05). As the addition of SCP increased, the sausage showed gradually decreased brittleness, cohesiveness, springiness, gumminess and chewiness, while adhesiveness increased. Polyunsaturated fatty acid, n-6 and n-6/n-3 fatty acid ratio concentrations were significantly higher in sausages containing SCP (p<0.05). The addition of SCP to sausage significantly (p<0.05) increased the ammonia content (by 0.5% SCP) and aromatic amino acid concentrations (by 1.0% SCP) (p<0.05). Inclusion of SCP in sausage meat resulted in a significant deterioration in quality characteristics of flavor, springiness, juiciness and overall acceptability (p<0.05). As expected, the observed changes in a*, W, pH, shear force, texture property, TBARS, fatty acid, amino acid and sensory score of sausages, depended on the rate of addition of nitrite (p<0.05). These results suggest that SCP addition is not an effective way of improving the sensory evaluation of sausages, but may beneficially affect TBARS, nitrite scavenging activity, fatty acid and amino acid content in pork sausages. PMID:25049766
[Effect of DMPP on inorganic nitrogen runoff loss from vegetable soil].
Yu, Qiao-Gang; Fu, Jian-Rong; Ma, Jun-Wei; Ye, Jing; Ye, Xue-Zhu
2009-03-15
The effect of urea with 1% 3,4-dimethyl pyrazole phosphate (DMPP) on inorganic nitrogen runoff loss from agriculture field was determined in an undisturbed vegetable soil by using the simulated artificial rainfall method. The results show that, during the three simulated artificial rainfall period, the ammonium nitrogen content in the runoff water is increased 1.42, 2.82 and 1.95 times with the DMPP application treatment compared to regular urea treatment, respectively. In the urea with DMPP addition treatment, the nitrate nitrogen content is decreased 70.2%, 59.7% and 52.1% in the three simulated artificial rainfall runoff water, respectively. The nitrite nitrogen content is also decreased 98.7%, 90.6% and 85.6% in the three simulated artificial rainfall runoff water, respectively. The nitrate nitrogen and nitrite nitrogen runoff loss are greatly declined with the DMPP addition in the urea. Especially the nitrite nitrogen is in a significant low level and is near to the treatment with no fertilizer application. The inorganic nitrogen runoff loss is declined by 39.0% to 44.8% in the urea with DMPP addition treatment. So DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation, decline the nitrogen runoff loss, lower the nitrogen transformation risk to the waterbody and be beneficial for the ecological environment.
Qin, Xin; Deng, Li; Hu, Caihong; Li, Li; Chen, Xiaohua
2017-10-20
The possible catalytic mechanism of the reduction of nitrite by copper-containing nitrite reductases (CuNiRs) is examined by using the M06 function according to two copper models, which include type-one copper (T1Cu) and type-two copper (T2Cu) sites. Examinations confirm that the protonation of two residues, His255 and Asp98, near the T2Cu site, can modulate the redox states of T1Cu and T2Cu, but cannot directly cause electron transfer from T1Cu to T2Cu. The electron hole remains at the T2Cu site when only one residue, His255 or Asp98, is protonated. However, the hole resides at the T1Cu site when both His255 and Asp98 are protonated. Then, the first protonation of nitrite takes place through indirect proton transfer from protonated His255 through the bridging H 2 O and Asp98 with three protons moving together, which cannot cause the cleavage of the HO-NO bond. Subsequently, the substrate is required to obtain another proton from reprotonated His255 through the bridging H 2 O. The reprotonation of nitrite induces the generation of nitric oxide (NO) and H 2 O at the T2Cu site through a special double-proton-coupled spin-exchanged electron-transfer mechanism with indirect proton transfer from His255 to the substrate, a beta-electron of T2Cu I shift to the NO cation, and the remaining alpha-electron changing spin direction at the same time. These results may provide useful information to better understand detailed proton-/electron-transfer reactions for the catalytic processes of CuNiR. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Color compensation in nitrite-reduced meat batters incorporating paprika or tomato paste.
Bázan-Lugo, Eduardo; García-Martínez, Ignacio; Alfaro-Rodríguez, Rosa Hayde; Totosaus, Alfonso
2012-06-01
Nitrite is a key ingredient the manufacture of meat products, forming a stable pink color characteristic of cured products, retarding the development of rancidity and off-odors and flavors during storage, and preventing microbial growth. The negative aspects of nitrite and the demands for healthy foods result in the need to reduce nitrite in cured meat products. Paprika or tomato has been employed as natural pigments in meat products. The objective of this work was to determine the effect of incorporating paprika powder or tomato paste on the texture, rancidity and instrumental and sensory color compensation in nitrite-reduced meat batters. Addition of tomato paste improved moisture content, resulting in harder but less cohesive samples as compared to control and paprika-containing meat batters. Color characteristics of reduced nitrite samples obtained higher a* red coloration (8.9 for paprika and 7.7-8.0 for tomato paste), as compared to control samples (5.65). Instrumental color was low in control samples, with high values for tomato paste and paprika samples. Nonetheless, tomato paste used to compensate color in nitrite-reduced meat batters was ranked closer to the control sample in sensory evaluation. Color characteristics-instrumental and sensory-in these kinds of meat products were enhanced by the addition of 2.5-3.0% of tomato paste, presenting results close to the non-reduced nitrite control. Similarly, antioxidant components of tomato paste or paprika reduced lipid oxidation. Nitrite reduction from 150 to 100 ppm could be achieved employing tomato paste as a natural pigment to improve color and texture. Copyright © 2011 Society of Chemical Industry.
Tsai, S C; ElSohly, M A; Dubrovsky, T; Twarowska, B; Towt, J; Salamone, S J
1998-10-01
The adulteration of urine specimens with nitrite ion hasseen shown to mask the gas chromatography-mass spectrometry (GC-MS) confirmation testing of marijuana use. This study was designed to further investigate the effect of nitrite adulteration on the detection of five commonly abused drugs by immunoassay screening and GC-MS analysis. The drugs tested are cocaine metabolite (benzoylecgonine), morphine, 11-nor-delta-tetrahydrocannabinol-9-carboxylic acid (THCCOOH), amphetamine, and phencyclidine. The immunoassays evaluated included the instrument-based Abuscreen ONLINE assays, the on-site Abuscreen ONTRAK assays, and the one-step ONTRAK TESTCUP-5 assay. Multianalyte standards containing various levels of drugs were used to test the influence of both potassium and sodium nitrite. In the ONLINE immunoassays, the presence of up to 1.0M nitrite in the multianalyte standards had no significant effect for benzoylecgonine, morphine, and phencyclidine assays. With a high concentration of nitrite, ONLINE became more sensitive for amphetamine (detected more drug than what was expected) and less sensitive for THCCOOH (detected less drug than what was expected). No effects of nitrite were observed on the results of the Abuscreen ONTRAK assays. Similarly, no effects were observed on the absolute qualitative results of the TESTCUP-5 when testing the nitrite-adulterated standards. However, the produced intensities of the signals that indicate the negative test results were slightly lowered in the THC and phencyclidine assays. The presence of 1.0M of nitrite did not show dramatic interference with the GC-MS analysis of benzoylecgonine, morphine, amphetamine, and phencyclidine. In contrast, nitrite ion significantly interfered with the detection of THCCOOH by GC-MS. The presence of 0.03M of nitrite ion resulted in significant loss in the recovery of THCCOOH and its internal standard by GC-MS. The problem of nitrite adulteration could be alleviated by sodium bisulfite treatment even when the specimens were spiked with 1.0M of nitrite ion. Although bisulfite treatment decomposed all nitrite ions in the sample to recover the remaining THCCOOH by GC-MS, the net recovery of THCCOOH depended on urinary pH and time and conditions of sample storage. The presence of nitrite concentrations that might arise from all possible natural sources, including microorganisms, pathological conditions, and medications, did not interfere with the GC-MS analysis of THCCOOH.
Gerling, Eva-Maria; Ternes, Waldemar
2014-12-01
We studied the stability of the valuable vitamer nutrients α-tocotrienol and α-tocopherol and options for their protection in salami-type sausages (blended with α-tocotrienol-rich barley oil) and curing brine. Four different sausage formulations were produced containing nitrite curing salt; nitrite curing salt and ascorbic acid (300mg/kg); nitrite curing salt and carnosic acid (45mg/kg); or sodium chloride. Initial vitamer contents (100mg/kg) did not decrease significantly during ripening and decreased only slightly during storage. Ascorbic acid and carnosic acid were found to be effective in preserving the vitamers in fresh sausages. Freeze-drying of sausages resulted in a significant loss of vitamers (97%), particularly after 14-day storage at room temperature, even in the presence of shielding gases. The vitamer content in the curing brine decreased with decreasing pH in the presence of nitrite. A nitrite concentration of 136mg/L at pH4 resulted in significant loss (90%) of the vitamers. Sufficient stability of the vitamers in salami-type sausage and curing brine can be achieved by processing, formulation, and storage conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stevanović, M; Cadez, P; Zlender, B; Filipic, M
2000-07-01
The preformed cooked cured meat pigment (CCMP) synthesized directly from bovine red blood cells or through a hemin intermediate was found to be a viable colorant for application to comminuted pork as a nitrite substitute. However the genotoxicity of CCMP and meat emulsion coagulates prepared with CCMP has not been evaluated. Therefore the objectives of this work were to investigate genotoxicity of CCMP and the influence of CCMP addition on genotoxicity and the content of residual nitrite in model meat emulsion coagulates. Meat emulsions were prepared from white (musculus longissimus dorsi) and red (musculus quadriceps femoris) pork muscles with two different amounts of synthesized pigment CCMP. Comparatively, emulsions with fixed addition of nitrite salt and emulsions without any addition for color development were made. Genotoxicity of CCMP and meat emulsion coagulates was tested with the SOS/umu test and the Ames test. Neither CCMP nor meat emulsion coagulates prepared with CCMP or nitrite salt were genotoxic in the SOS/umu test. In the Ames test using Salmonella Typhimurium strains TA98 and TA100 samples of coagulates prepared with CCMP and with nitrite showed weak mutagenic activity in Salmonella Typhimurium strain TA100 but only in the absence of the metabolic activation, while CCMP was not mutagenic. Coagulates prepared with CCMP contained significantly less residual nitrite than coagulates prepared with nitrite salt. These results indicate that from the human health standpoint the substitution of nitrite salt with CCMP would be highly recommendable.
Frías, José E; Flores, Enrique
2015-07-01
Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria assimilate nitrate, but regulation of the nitrate assimilation system varies in different cyanobacterial groups. In the N2-fixing, heterocyst-forming cyanobacteria, the nirA operon, which includes the structural genes for the nitrate assimilation system, is expressed in the presence of nitrate or nitrite if ammonium is not available to the cells. Here we studied the genes required for production of an active nitrate reductase, providing information on the nitrate-dependent induction of the operon, and found evidence for possible protein-protein interactions in the maturation of nitrate reductase and nitrite reductase. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Determination of selected anions in water by ion chromatography
Fishman, Marvin J.; Pyen, Grace
1979-01-01
Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rain water and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram.Minimum detection limits range from 0.01 milligrams per liter for fluoride to 0.20 milligrams per liter for chloride and sulfate. Percent relative standard deviations were less than nine percent for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 milligrams per liter in rainfall samples. Precision for fluoride ranged from 12 to 22 percent, but is attributed to the low concentrations in these samples. The other anions were not detected.To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103 percent. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104 percent. No recovery data were obtained for nitrite.Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography.
Reactive transport modeling of nitrogen in Seine River sediments
NASA Astrophysics Data System (ADS)
Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.
2016-02-01
Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.
Van Hecke, Thomas; Vanden Bussche, Julie; Vanhaecke, Lynn; Vossen, Els; Van Camp, John; De Smet, Stefaan
2014-02-26
Uncured and nitrite-cured chicken, pork, and beef were used as low, medium, and high sources of heme-Fe, respectively, and exposed to an in vitro digestion model simulating the mouth, stomach, duodenum, and colon. With increasing content of iron compounds, up to 25-fold higher concentrations of the toxic lipid oxidation products malondialdehyde, 4-hydroxy-2-nonenal, and other volatile aldehydes were formed during digestion, together with increased protein carbonyl compounds as measurement of protein oxidation. Nitrite curing of all meats lowered lipid and protein oxidation to the level of oxidation in uncured chicken. Strongly depending on the individual fecal inoculum, colonic digestion of beef resulted in significantly higher concentrations of the NOC-specific DNA adduct O(6)-carboxymethyl-guanine compared to chicken and pork, whereas nitrite curing had no significant effect. This study confirms previously reported evidence that heme-Fe is involved in the epidemiological association between red meat consumption and colorectal cancer, but questions the role of nitrite curing in this association.
Pelaz, L; Gómez, A; Garralón, G; Letona, A; Fdz-Polanco, M
2018-02-01
A denitrifying pilot plant was designed, constructed and operated for more than five months. The plant treated domestic wastewater with high ammonium nitrogen concentration, which had previously undergone an anaerobic process at 18 °C. The process consisted of one biofilter with 2 h of hydraulic retention time for denitritation. Different synthetic nitrite concentrations were supplied to the anoxic reactor to simulate the effluent of a nitritation process. This work investigates the advanced denitritation of wastewater using the organic matter and other alternative electron donors present in an anaerobic treatment process effluent: methane and sulfide. The denitrifying bacteria were able to treat wastewater at an inlet nitrite concentration of 75 mg NO 2 - -N/L with a removal efficiency of 92.9%. When the inlet nitrite concentration was higher, the recirculation of the gas from the top of the anoxic reactor was successful to enhance the nitrite removal, achieving a NO 2 - elimination efficiency of 98.3%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Jun-Hwan; Kim, Jin-Young; Lim, Lok-Ji; Kim, Su Kyoung; Choi, Hye Sung; Hur, Young Baek
2018-06-11
Juvenile olive flounders, Paralichthys olivaceus (mean weight 2.69 ± 0.31 g), were raised in bio-floc and seawater for six months, these P. olivaceus (mean weight 280.1 ± 10.5 g, mean length 28.37 ± 2.3 cm) were exposed to different concentrations of waterborne nitrite (0, 25, 50, 100, and 200 mg NO 2 - /L) for 7 days. None of the P. olivaceus individuals exposed to bio-floc and seawater containing waterborne nitrite concentrations of 200 mg/L for 7 days survived. Hematological parameters (hemoglobin and hematocrit) were significantly reduced by nitrite exposure. Regarding plasma components, the concentrations of glucose, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) increased significantly in response to nitrite exposure, whereas cholesterol concentrations significantly decreased. Stress indicators, including concentrations of plasma glucose, cortisol, and liver and gill concentrations of heat shock protein 70 (HSP70) were significantly increased by nitrite exposure. The results of the study indicate that nitrite exposure affected the hematological parameters and stress indicators of P. olivaceus raised in bio-floc and seawater, and these changes were more prominent in the P. olivaceus raised in seawater than those raised in bio-floc. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mechanisms for cellular NO oxidation and nitrite formation in lung epithelial cells.
Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Myerburg, Mike M; Wang, Jun; Frizzell, Sam; Gladwin, Mark T
2013-08-01
Airway lining fluid contains relatively high concentrations of nitrite, and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 h under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low-oxygen conditions. The addition of oxyhemoglobin to the A549 cell medium decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and nitrate, suggesting an enzymatic activity is required. This NO oxidation activity was highest in membrane-bound proteins with molecular size <100kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation. We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into the medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via p-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell-membrane-associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Nitrosamines in bacon: a case study of balancing risks.
McCutcheon, J W
1984-01-01
Nitrite has been used for centuries to preserve, color, and flavor meat. Today, about 10 billion pounds of cured meat products are produced annually, accounting for some one-tenth of the American food supply. Regulators became concerned about the safety of using nitrite in the early 1960s when studies showed the presence of carcinogenic nitrosamines in cured meat products. In the early 1970s, a study at the Massachusetts Institute of Technology implicated nitrite itself as a carcinogen. As studies have raised concern over the safety of nitrite, regulators have had to weigh the potential risk from cancer against nitrite's proven role in protecting consumers from deadly food poisoning bacteria. Today there is little scientific support for the theory that nitrite is a direct carcinogen. To deal with the nitrosamine problem, the U.S. Department of Agriculture (USDA) lowered the permissible amount of nitrite in cured meats to that level considered necessary for botulism protection. Regulators, however, found it necessary to take additional steps with bacon because nitrosamines were found consistently in fried bacon samples. In addition to lowering the amount of nitrite that could be added to "pumped bacon" (cured by injecting liquid curing agents in the pork belly), USDA required the addition of nitrosamine inhibitors and began an intensive monitoring program in processing plants to ensure that fried bacon did not contain confirmable nitrosamines. The cooperative effort between Government and industry resulted in the virtual elimination of confirmable nitrosamines in pumped bacon by 1980. USDA is continuing its efforts to reduce nitrite in meats wherever possible. It is involved in active research programs in the Federal Government, academia, and industry. PMID:6431483
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristy, S.S.; Bennett, R.K. Jr.; Dillon, J.J.
1986-12-31
The use of perchloroethylene (perc) as an ingredient in coolants for machining enriched uranium at the Oak Ridge Y-12 Plant has been discontinued because of environmental concerns. A new coolant was substituted in December 1985, which consists of an aqueous solution of propylene glycol with borax (sodium tetraborate) added as a nuclear poison and with a nitrite added as a corrosion inhibitor. Uranium surfaces machined using the two coolants were compared with respects to residual contamination, corrosion or corrosion potential, and with the aqueous propylene glycol-borax coolant was found to be better than that of enriched uranium machined with themore » perc-mineral oil coolant. The boron residues on the final-finished parts machined with the borax-containing coolant were not sufficient to cause problems in further processing. All evidence indicated that the enriched uranium surfaces machined with the borax-containing coolant will be as satisfactory as those machined with the perc coolant.« less
Morales Guerrero, Josefina C; García Zepeda, Rodrigo A; Flores Ruvalcaba, Edgar; Martínez Michel, Lorelei
2012-09-01
We evaluated the two methods accepted by the Mexican norm for the determination of nitritesin infant meat-based food with vegetables. We determined the content of nitrites in the infant food, raw materials as well as products from the intermediate stages of production. A reagent blank and a reference sample were included at each analytical run. In addition, we determined the sensitivity, recovery percentage and accuracy of each methodology. Infant food results indicated an important difference in the nitrite content determined under each methodology, due to the persistent presence of turbidity in the extracts. Different treatments were proposed to eliminate the turbidity, but these only managed to reduce it. The turbidity was attributed to carbohydrates which disclosed concentration exhibit a wide dispersion and were below the quantifiable limit under both methodologies; therefore it is not recommended to apply these techniques with food suspected to contain traces of nitrites.
Hu, Shihu; Zeng, Raymond J.; Haroon, Mohamed F.; Keller, Jurg; Lant, Paul A.; Tyson, Gene W.; Yuan, Zhiguo
2015-01-01
This study investigates interactions between recently identified denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (anammox) processes in controlled anoxic laboratory reactors. Two reactors were seeded with the same inocula containing DAMO organisms Candidatus Methanoperedens nitroreducens and Candidatus Methylomirabilis oxyfera, and anammox organism Candidatus Kuenenia stuttgartiensis. Both were fed with ammonium and methane, but one was also fed with nitrate and the other with nitrite, providing anoxic environments with different electron acceptors. After steady state reached in several months, the DAMO process became solely/primarily responsible for nitrate reduction while the anammox process became solely responsible for nitrite reduction in both reactors. 16S rRNA gene amplicon sequencing showed that the nitrate-driven DAMO organism M. nitroreducens dominated both the nitrate-fed (~70%) and the nitrite-fed (~26%) reactors, while the nitrite-driven DAMO organism M. oxyfera disappeared in both communities. The elimination of M. oxyfera from both reactors was likely the results of this organism being outcompeted by anammox bacteria for nitrite. K. stuttgartiensis was detected at relatively low levels (1–3%) in both reactors. PMID:25732131
Payne, W. J.; Riley, P. S.; Cox, C. D.
1971-01-01
Pseudomonas perfectomarinus was found to grow anaerobically at the expense of nitrate, nitrite, or nitrous oxide but not chlorate or nitric oxide. In several repetitive experiments, anaerobic incubation in culture media containing nitrate revealed that an average of 82% of the cells in aerobically grown populations were converted to the capacity for respiration of nitrate. Although they did not form colonies under these conditions, the bacteria synthesized the denitrifying enzymes within 3 hr in the absence of oxygen or another acceptable inorganic oxidant. This was demonstrated by the ability, after anaerobic incubation, of cells and of extracts to reduce nitrite, nitric oxide, and nitrous oxide to nitrogen. From crude extracts of cells grown on nitrate, nitrite, or nitrous oxide, separate complex fractions were obtained that utilized reduced nicotinamide adenine dinucleotide as the source of electrons for the reduction of (i) nitrite to nitric oxide, (ii) nitric oxide to nitrous oxide, and (iii) nitrous oxide to nitrogen. Gas chromatographic analyses revealed that each of these fractions reduced only one of the nitrogenous oxides. PMID:4324803
Van Hecke, Thomas; Vossen, Els; Hemeryck, Lieselot Y; Vanden Bussche, Julie; Vanhaecke, Lynn; De Smet, Stefaan
2015-11-15
Uncured and nitrite-cured pork were subjected, raw, cooked (65 °C, 15 min) or overcooked (90 °C, 30 min), to an in vitro digestion model, which includes mouth, stomach, duodenum, and colon phases. Heating of uncured meat resulted in a pronounced increase in lipid and protein oxidation products throughout digestion. Nitrite-curing had an antioxidant effect during digestion, but this effect disappeared when the meat was overcooked, resulting in up to ninefold higher 4-hydroxy-2-nonenal concentrations compared with digested nitrite-cured raw and cooked pork. Colonic digesta contained significantly higher concentrations of the NOC-specific DNA adduct O(6)-carboxy-methylguanine when pork underwent a more intense heating procedure, independent of nitrite-curing, depending strongly on the fecal inoculum used. Since processed meats are usually nitrite-cured, the present study suggests that overcooking processed meat is likely to result in the formation of genotoxic compounds during digestion and should, therefore, be avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of ergothioneine on S-nitrosoglutathione catabolism.
Misiti, F; Castagnola, M; Zuppi, C; Giardina, B; Messana, I
2001-01-01
Ergothioneine (ESH) is a low-molecular-mass thiol present in millimolar concentrations in a limited number of tissues, including erythrocytes, kidney, seminal fluid and liver; however, its biological function is still unclear. In the present study we investigated the role of ESH in the catabolism of S-nitrosoglutathione (GSNO). The results show that: (1) GSNO decomposition is strongly influenced by ESH (k"=0.178+/-0.032 M(-1) x s(-1)); (2) ammonia is the main nitrogen-containing compound generated by the reaction; and (3) nitrite is practically absent under both aerobic and anaerobic conditions. These findings are markedly different from those reported for the GSH-induced decomposition of GSNO, in which the nitrogen-containing end products are nitrite, ammonia and nitrous oxide (N(2)O) under aerobic conditions but nitrite, ammonia, nitric oxide (NO) and small quantities of hydroxylamine under anaerobic conditions. Considering the high concentration of ESH in specific cells, the reaction with GSNO should be considered as an important molecular event occurring in the cell. PMID:11389687
Oxidation of Octopus vulgaris hemocyanin by nitrogen oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvato, B.; Giacometti, G.M.; Beltramini, M.
1989-01-24
The reaction of Octopus vulgaris hemocyanin with nitrite was studied under a variety of conditions in which the green half-met derivative is formed. Analytical evidence shows that the amount of chemically detectable nitrite in various samples of the derivative is not proportional to the cupric copper detected by EPR. The kinetics of oxidation of hemocyanin as a function of protein concentration and pH, in the presence of nitrite and ascorbate, is consistent with a scheme in which NO/sub 2/ is the reactive oxidant. We suggest that the green half-methemocyanin contains a metal center with one cuprous and one cupric coppermore » without an exogenous nitrogen oxide ligand.« less
De Marothy, S A; Blomberg, M R A; Siegbahn, P E M
2007-01-30
Density functional methods have been applied to investigate the properties of the active site of copper-containing nitrite reductases and possible reaction mechanisms for the enzyme catalysis. The results for a model of the active site indicate that a hydroxyl intermediate is not formed during the catalytic cycle, but rather a state with a protonated nitrite bound to the reduced copper. Electron affinity calculations indicate that reduction of the T2 copper site does not occur immediately after nitrite binding. Proton affinity calculations are indicative of substantial pK(a) differences between different states of the T2 site. The calculations further suggest that the reaction does not proceed until uptake of a second proton from the bulk solution. They also indicate that Asp-92 may play both a key role as a proton donor to the substrate, and a structural role in promoting catalysis. In the D92N mutant another base, presumably a nearby histidine (His-249) may take the role as the proton donor. On the basis of these model calculations and available experimental evidence, an ordered reaction mechanism for the reduction of nitrite is suggested. An investigation of the binding modes of the nitric oxide product and the nitrite substrate to the model site has also been made, indicating that nitric oxide prefers to bind in an end-on fashion to the reduced T2 site.
Action Spectra for Nitrate and Nitrite Assimilation in Blue-Green Algae 1
Serrano, Aurelio; Losada, Manuel
1988-01-01
Action spectra for the assimilation of nitrate and nitrite have been obtained for several blue-green algae (cyanobacteria) with different accessory pigment composition. The action spectra for both nitrate and nitrite utilization by nitrate-grown Anacystis nidulans L-1402-1 cells exhibited a clear peak at about 620 nanometers, corresponding to photosystem II (PSII) C-phycocyanin absorption, the contribution of chlorophyll a (Chl a) being barely detectable. The action spectrum for nitrate reduction by a nitrite reductase mutant of A. nidulans R2 was very similar. All these action spectra resemble the fluorescence excitation spectrum of cell suspensions of the microalgae monitored at 685 nanometers—the fluorescence band of Chl a in PSII. In contrast, the action spectrum for nitrite utilization by nitrogen-starved A. nidulans cells, which are depleted of C-phycocyanin, showed a maximum near 680 nanometers, attributable to Chl a absorption. The action spectrum for nitrite utilization by Calothrix sp. PCC 7601 cells, which contain both C-phycoerythrin and C-phycocyanin as PSII accessory pigments, presented a plateau in the region from 550 to 630 nanometers. In this case, there was also a clear parallelism between the action spectrum and the fluorescence excitation spectrum, which showed two overlapped peaks with maxima at 562 and 633 nanometers. The correlation observed between the action spectra for both nitrate and nitrite assimilation and the light-harvesting pigment content of the blue-green algae studied strongly suggests that phycobiliproteins perform a direct and active role in these photosynthetic processes. PMID:16666041
Isolation and identification of oxidation products of syringol from brines and heated meat matrix.
Bölicke, Sarah-Maria; Ternes, Waldemar
2016-08-01
In this study we developed new extraction and detection methods (using HPLC-UV and LC-MS), making it possible to analyze the smoke phenol syringol and its oxidation products nitrososyringol, nitrosyringol, and the syringol dimer 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol, which were identified in heated meat for the first time. Preliminary brine experiments performed with different concentrations of ascorbic acid showed that high amounts of this antioxidant also resulted in almost complete degradation of syringol and to formation of the oxidation products when the brines were heated at low pH values. Heat treatment (80°C) and subsequent simulated digestion applied to meat samples containing syringol, ascorbic acid and different concentrations of sodium nitrite produced 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol even at a low nitrite level in the meat matrix, while nitroso- and nitrosyringol were isolated only after the digestion experiments. Increasing amounts of oxygen in the meat matrix decreased the syringol concentration and enhanced the formation of the reaction products in comparison to the samples without added oxygen. Copyright © 2016 Elsevier Ltd. All rights reserved.
Latham, Elizabeth A; Pinchak, William E; Trachsel, Julian; Allen, Heather K; Callaway, Todd R; Nisbet, David J; Anderson, Robin C
2018-04-30
The effects of dietary nitrate and Paenibacillus 79R4 (79R4), a denitrifying bacterium, when co-administered as a probiotic, on methane emissions, nitrate and nitrite-metabolizing capacity and fermentation characteristics were studied in vitro. Mixed populations of rumen microbes inoculated with 79R4 metabolized all levels of nitrite studied after 24 h in vitro incubation. Results from in vitro simulations resulted in up to 2 log 10 colony forming unit reductions in E. coli O157:H7 and Campylobacter jejuni when these were co-cultured with 79R4. Nitrogen gas was the predominant final product of nitrite reduction by 79R4. When tested with nitrate-treated incubations of rumen microbes, 79R4 inoculation (provided to achieve 10 6 cells/mL rumen fluid volume) complemented the ruminal methane-decreasing potential of nitrate (P < 0.05) while concurrently increasing fermentation efficiency and enhancing ruminal nitrate and nitrite-metabolizing activity (P < 0.05) compared to untreated and nitrate only-treated incubations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bemrah, Nawel; Leblanc, Jean-Charles; Volatier, Jean-Luc
2008-01-01
The results of French intake estimates for 13 food additives prioritized by the methods proposed in the 2001 Report from the European Commission on Dietary Food Additive Intake in the European Union are reported. These 13 additives were selected using the first and second tiers of the three-tier approach. The first tier was based on theoretical food consumption data and the maximum permitted level of additives. The second tier used real individual food consumption data and the maximum permitted level of additives for the substances which exceeded the acceptable daily intakes (ADI) in the first tier. In the third tier reported in this study, intake estimates were calculated for the 13 additives (colours, preservatives, antioxidants, stabilizers, emulsifiers and sweeteners) according to two modelling assumptions corresponding to two different food habit scenarios (assumption 1: consumers consume foods that may or may not contain food additives, and assumption 2: consumers always consume foods that contain additives) when possible. In this approach, real individual food consumption data and the occurrence/use-level of food additives reported by the food industry were used. Overall, the results of the intake estimates are reassuring for the majority of additives studied since the risk of exceeding the ADI was low, except for nitrites, sulfites and annatto, whose ADIs were exceeded by either children or adult consumers or by both populations under one and/or two modelling assumptions. Under the first assumption, the ADI is exceeded for high consumers among adults for nitrites and sulfites (155 and 118.4%, respectively) and among children for nitrites (275%). Under the second assumption, the average nitrites dietary exposure in children exceeds the ADI (146.7%). For high consumers, adults exceed the nitrite and sulfite ADIs (223 and 156.4%, respectively) and children exceed the nitrite, annatto and sulfite ADIs (416.7, 124.6 and 130.6%, respectively).
Lee, Han-Seung; Ryu, Hwa-Sung; Park, Won-Jun; Ismail, Mohamed A.
2015-01-01
In this study, the ability of lithium nitrite and amino alcohol inhibitors to provide corrosion protection to reinforcing steel was investigated. Two types of specimens—reinforcing steel and a reinforced concrete prism that were exposed to chloride ion levels resembling the chloride attack environment—were prepared. An autoclave accelerated corrosion test was then conducted. The variables tested included the chloride-ion concentration and molar ratios of anti-corrosion ingredients in a CaOH2-saturated aqueous solution that simulated a cement-pore solution. A concentration of 25% was used for the lithium nitrite inhibitor LiNO2, and an 80% solution of dimethyl ethanolamine ((CH3)2NCH2CH2OH, hereinafter DMEA) was used for the amino alcohol inhibitor. The test results indicated that the lithium nitrite inhibitor displayed anti-corrosion properties at a molar ratio of inhibitor of ≥0.6; the amino alcohol inhibitor also displayed anti-corrosion properties at molar ratios of inhibitor greater than approximately 0.3. PMID:28787936
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cash, R.J.; Dukelow, G.T.; Forbes, C.J.
1993-03-01
This is the seventh quarterly report on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by heating it to high temperatures [above 285{degrees}C (545{degrees}F)]. In the mid 1950s approximately 140 metric tons of ferrocyanide were added to 24 underground high-level radioactive waste tanks. An implementation plan (Cash 1991) responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990) was issued in March 1991 describing the activities thatmore » were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to US Department of Energy by Westinghouse Hanford Company in December 1992. Milestones completed this quarter are described in this report. Contents of this report include: Introduction; Defense Nuclear Facilities Safety Board Implementation Plan Task Activities (Defense Nuclear Facilities Safety Board Recommendation for enhanced temperature measurement, Recommendation for continuous temperature monitoring, Recommendation for cover gas monitoring, Recommendation for ferrocyanide waste characterization, Recommendation for chemical reaction studies, and Recommendation for emergency response planning); Schedules; and References. All actions recommended by the Defense Nuclear Facilities Safety Board for emergency planning by Hanford Site emergency preparedness organizations have been completed.« less
NASA Astrophysics Data System (ADS)
Kaiser, R.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnston, J. R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.
2014-03-01
Cosmic-ray muons are highly-penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. This paper presents the prototype scintillating-fibre detector developed for this application at the University of Glasgow. Experimental results taken with test objects are shown in comparison to results from GEANT4 simulations. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.
SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS
Beederman, M.; Vogler, S.; Hyman, H.H.
1959-07-14
The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.
9 CFR 318.303 - Critical factors and the application of the process schedule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... container; (3) Container orientation during thermal processing; (4) Product formulation; (5) Particle size; (6) Maximum thickness for flexible, and to some extent semirigid containers during thermal processing; (7) Maximum pH; (8) Percent salt; (9) Ingoing (or formulated) nitrite level (ppm); (10) Maximum water...
Cost of Irradiating Bacon and the Associated Energy Savings
1979-03-01
Irradiated Food(s) Consumers Irradiation Cost Analysis Energy Savings Stan 1 izatlon Consumer Acceptance Meat ~~~~~~~~~~~~~~~~~ ~ ô. ~ iii~- ) I I...eliminating nitrites in bacon would reduce or eliminate the formation of highly carcinogenic nitrosami~es, but would Increase the threatof botulism...Sterilized by Irradiation, bacon without nitrite does not contain nitrosamines and does not cause botulism. Consumer panel taste tests show no difference
Ho, Xing Lin; Loke, Wai Mun
2017-07-01
A randomized, double-blinded, placebo-controlled and crossover study was conducted to simultaneously measure the effects, 3 h after consumption and after 4-wk daily exposure to plant sterols-enriched food product, on in vivo nitrite and nitrate production in healthy adults. Eighteen healthy participants (67% female, 35.3 [mean] ± 9.5 [SD] years, mean body mass index 22.8 kg/m 2 ) received 2 soy milk (20 g) treatments daily: placebo and one containing 2.0 g free plant sterols equivalent of their palmityl esters (β-sitosterol, 55%; campesterol, 29%; and stigmasterol, 23%). Nitrite and nitrate concentrations were measured in the blood plasma and urine, using stable isotope-labeled gas chromatography-mass spectrometry. L-arginine and asymmetric dimethylarginine concentrations in blood serum were measured using commercially available enzyme immunoassays. Nitrite and nitrate concentrations in blood plasma (nitrite 5.83 ± 0.50 vs. 4.52 ± 0.27; nitrate 15.78 ± 0.96 vs. 13.43 ± 0.81 μmol/L) and urine (nitrite 1.12 ± 0.22 vs. 0.92 ± 0.36, nitrate 12.23 ± 1.15 vs. 9.71 ± 2.04 μmol/L) were significantly elevated after 4-wk plant sterols supplementation Placebo and 3-h treatments did not affect the blood plasma and urinary concentrations of nitrite and nitrate. Circulating levels of L-arginine and asymmetric dimethylarginine were unchanged in the placebo and treatment arms. Total plant sterols, β-Sitosterol, campesterol, and stigmasterol concentrations were significantly elevated after 4-wk treatments compared to the placebo and 3-h treatments. Blood plasma nitrite and nitrate concentrations correlated significantly with the plasma total and specific plant sterol concentrations. Our results suggest that dietary plant sterols, in the combination used, can upregulate nitrite, and nitrate production in vivo. © 2017 Institute of Food Technologists®.
Effects of wastewater effluent on the South Platte River from Littleton to Denver
Spahr, N.E.; Blakely, S.R.
1985-01-01
The U.S. Geological Survey 's one-dimensional steady-state water quality model was used to investigate the effects of the effluent from the Bi-City WWTP (Wastewater Treatment Plant) on the South Platte River. The Bi-City WWTP is operated by the Cities of Littleton and Englewood. The model was calibrated from a 14.5 mile reach for 5-day carbonaceous biochemical oxygen demand, organic, ammonia, nitrite and nitrate using data collected during September 1983. Model verification was completed using data collected during October 1982 and January 1984 for all constituents except nitrite nitrogen. Nitrite nitrogen could not be verified for the cold temperature conditions of January of 1984. Measured benthic sediment oxygen demand used in model ranged from 1.01 to 2.77 grams per square meter per day. Model simulations were made for an estimated 7-day, 10-year discharge of 18 cubic feet per second, upstream from the outfall of the WWTP. Two groups of simulations were made for both warm and cold temperature conditions. In the first group of simulation variations were made in effluent 5-day carbonaceous biochemical oxygen demand concentrations and flow rates. The second group of simulations varied the amount of nitrogen discharged as ammonia and nitrate. The extent of the mixing zone downstream of the WWTP outfall was determined by injecting Rhodamine WT dye into the effluent. The mixing zone was found to extend 0.8 miles during low-flow conditions. (USGS)
Koch, Carl D; Gladwin, Mark T; Freeman, Bruce A; Lundberg, Jon O; Weitzberg, Eddie; Morris, Alison
2017-04-01
Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors. Copyright © 2017 Elsevier Inc. All rights reserved.
A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.
Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei
2017-09-01
A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.
Arihara, K; Itoh, M
2000-06-01
Lactobacillus gasseri, one of the predominant lactobacilli in human intestinal tracts, is utilized for probiotics and dairy starter cultures. However, since L. gasseri is relatively sensitive to sodium chloride and sodium nitrite (essential compounds for meat products), it is difficult to utilize this species for conventional fermented meat products. In this study, efforts were directed to generate mutants of L. gasseri resisting sodium chloride and sodium nitrite. UV irradiation of the strain of L. gasseri JCM1131(T) generated several mutants resisting these compounds. A mutant strain 1131-M8 demonstrated satisfactory growth in meat containing 3.3% sodium chloride and 200 ppm sodium nitrite. Although proteins extracted from the cell surface of 1131-M8 were slightly different from those of the original strain, other biochemical characteristics of both strains were indistinguishable. These results suggest that the L. gasseri mutant obtained in this study could be utilized as a starter culture to develop probiotic meat products.
7 CFR 205.301 - Product composition.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT... aids; (5) Contain sulfites, nitrates, or nitrites added during the production or handling process, Except, that, wine containing added sulfites may be labeled “made with organic grapes”; (6) Be produced...
7 CFR 205.301 - Product composition.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT... aids; (5) Contain sulfites, nitrates, or nitrites added during the production or handling process, Except, that, wine containing added sulfites may be labeled “made with organic grapes”; (6) Be produced...
7 CFR 205.301 - Product composition.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT... aids; (5) Contain sulfites, nitrates, or nitrites added during the production or handling process, Except, that, wine containing added sulfites may be labeled “made with organic grapes”; (6) Be produced...
7 CFR 205.301 - Product composition.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT... aids; (5) Contain sulfites, nitrates, or nitrites added during the production or handling process, Except, that, wine containing added sulfites may be labeled “made with organic grapes”; (6) Be produced...
Crété, P; Caboche, M; Meyer, C
1997-04-01
Higher plant nitrite reductase (NiR) is a monomeric chloroplastic protein catalysing the reduction of nitrite, the product of nitrate reduction, to ammonium. The expression of this enzyme is controlled at the transcriptional level by light and by the nitrogen source. In order to study the post-transcriptional regulation of NiR, Nicotiana plumbaginifolia and Arabidopsis thaliana were transformed with a chimaeric NiR construct containing the tobacco leaf NiR1 coding sequence driven by the CaMV 35S RNA promoter. Transformed plants did not show any phenotypic difference when compared with the wild-type, although they overexpressed NiR activity in the leaves. When these plants were grown in vitro on media containing either nitrate or ammonium as sole nitrogen source, NiR mRNA derived from transgene expression was constitutively expressed, whereas NiR activity and protein level were strongly reduced on ammonium-containing medium. These results suggest that, together with transcriptional control, post-transcriptional regulation by the nitrogen source is operating on NiR expression. This post-transcriptional regulation of tobacco leaf NiR1 expression was observed not only in the closely related species N. plumbaginifolia but also in the more distant species A. thaliana.
Huang, Jian-Sheng; Yang, Ping; Li, Chong-Ming; Guo, Yong; Lai, Bo; Wang, Ye; Feng, Li; Zhang, Yun
2015-01-01
In order to study the effect of nitrite and nitrate on the performance of microbial fuel cell, a system combining an anaerobic fluidized bed (AFB) and a microbial fuel cell (MFC) was employed for high-strength nitrogen-containing synthetic wastewater treatment. Before this study, the AFB-MFC had been used to treat high-strength organic wastewater for about one year in a continuous flow mode. The results showed that when the concentrations of nitrite nitrogen and nitrate nitrogen were increased from 1700 mg/L to 4045 mg/L and 545 mg/L to 1427 mg/L, respectively, the nitrite nitrogen and nitrate nitrogen removal efficiencies were both above 99%; the COD removal efficiency went up from 60.00% to 88.95%; the voltage was about 375 ± 15 mV while the power density was at 70 ± 5 mW/m(2). However, when the concentrations of nitrite nitrogen and nitrate nitrogen were above 4045 mg/L and 1427 mg/L, respectively, the removal of nitrite nitrogen, nitrate nitrogen, COD, voltage, and power density were decreased to be 86%, 88%, 77%, 180 mV, and 17 mW/m(2) when nitrite nitrogen and nitrate nitrogen were increased to 4265 mg/L and 1661 mg/L. In addition, the composition of biogas generated in the anode chamber was analyzed by a gas chromatograph. Nitrogen gas, methane, and carbon dioxide were obtained. The results indicated that denitrification happened in anode chamber.
Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; ...
2015-07-09
In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H 2O 2 significantly diminishing the responsiveness to 2 mM NaNO 2, and 10 mM H 2O 2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H 2O 2, dramatically stimulated root abscission of A. pinnata in response tomore » nitrite, especially for plants previously cultivated in medium containing 5 mM KNO 3 compared to plants cultivated under N 2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H 2O 2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less
Cohen, Michael F; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N; Yamasaki, Hideo
2015-01-01
In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.
Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo
2015-01-01
In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission. PMID:26217368
Nitrogen removal via nitrite from seawater contained sewage.
Peng, Yongzhen; Yu, De-Shuang; Liang, Dawei; Zhu, Guibing
2004-01-01
Under the control of both pH and the concentration of free ammonia (FA), the nitrification-denitrification via nitrite pathway was accomplished in SBR to achieve enhanced biological nitrogen removal from seawater contained wastewater, which is used to flush toilet, under relatively high salinity. Several parameters including salinity, temperature, pH, and NH4+-N loading rate were studied to evaluate their effects. The results indicate that at different salinity the nitrogen removal efficiency is relative to ammonia-nitrogen loading rate. The nitrogen removal efficiency reaches above 90% when the NH4+-N loading does not exceed 0.15 kg NH4+-N/kg MLSS d. With the salinity increasing, the ammonia-nitrogen loading rate should be lowered to obtain high removal efficiency. The evaluation of temperature effect shows that nitrogen removal efficiency is promoted twice when reaction temperature is elevated from 20 to 30 degrees C. Moderately high pH in the range of 7.5-8.5 has advantage to achieve effective nitrification-denitrification via nitrite, the process of which is caused by the selective inhibition of free ammonia (FA).
Numerical analysis of nuclear power plant structure subjected to aircraft crash
NASA Astrophysics Data System (ADS)
Saberi, Reza; Alinejad, Majid; Mahdavi, Mir Omid; Sepanloo, Kamran
2017-12-01
An aircraft crashing into a nuclear containment may induce a series of disasters related to containment capacity, including local penetration and perforation of the containment, intensive vibrations, and fire ignited after jet fuel leakage. In this study, structural safety of a reinforced concrete containment vessel (RCCV) has been studied against the direct hit of Airbus A320, Boeing 707-320 and Phantom F4 aircrafts. ABAQUS/explicit finite element code has been used to carry out the three-dimensional numerical simulations. The impact locations identified on the nuclear containment structure are mid height of containment, center of the cylindrical portion, junction of dome and cylinder, and over the cylindrical portion close to the foundation level. The loading of the aircraft has been assigned through the corresponding reaction-time response curve. The concrete damaged plasticity model was predicted to simulate the behavior of concrete while the behavior of steel reinforcement was incorporated using elastoplastic material model. Dynamic loading conditions were considered using dynamic increase factor. The mid height of containment and center of cylindrical portion have been found to experience most severe deformation against each aircraft crash. It has also been found that compression damage in concrete is not critical at none of the impact locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alspaugh, J.A.; Granger, D.L.
Activated macrophages are able to inhibit the replication of intracellular microbes and tumor cells. In the murine system, this cytostatic effect is associated with the oxidation of L-arginine to L-citrulline, nitrite, and nitrate and is thought to be mediated by an intermediate of this reaction, possibly nitric oxide (NO.). By exposing replicating Cryptococcus neoformans cells to conditions under which NO. is chemically generated, we have observed a cytostatic effect similar to that caused by activated murine macrophages. Nitric oxide is formed as a decomposition product of nitrite salts in acidic, aqueous solutions. Although C. neoformans replicates well in the presencemore » of high nitrite concentrations at physiologic pH, its growth in acidic media can be inhibited by the addition of low concentrations of sodium nitrite. The degree of cytostasis is dependent on both the pH and the nitrite concentration of the NO. generating solution. The cytostatic effector molecule appears to be a gas since, in addition to inhibiting C. neoformans replication in solution, it is able to exert its inhibitory effect across a gas-permeable but ion-impermeable membrane. At high nitrite concentrations, a fungicidal effect occurs. We propose that the growth inhibition of C. neoformans upon exposure to chemically generated NO. or some related oxide of nitrogen represents a cell-free system simulating the cytostatic effect of activated murine macrophages.« less
Sluggett, Gregory W; Zelesky, Todd; Hetrick, Evan M; Babayan, Yelizaveta; Baertschi, Steven W
2018-02-05
Accelerated stability studies of pharmaceutical products are commonly conducted at various combinations of temperature and relative humidity (RH). The RH of the sample environment can be controlled to set points using humidity-controlled stability chambers or via storage of the sample in a closed container in the presence of a saturated aqueous salt solution. Herein we report an unexpected N-nitrosation reaction that occurs upon storage of carvedilol- or propranolol-excipient blends in a stability chamber in the presence of saturated sodium nitrite (NaNO 2 ) solution to control relative humidity (∼60% RH). In both cases, the major products were identified as the corresponding N-nitroso derivatives of the secondary amine drugs based on mass spectrometry, UV-vis and retention time. These degradation products were not observed upon storage of the samples at the same temperature and humidity but in the presence of saturated potassium iodide (KI) solution (∼60% RH) for humidity control. The levels of the N-nitrosamine derivatives varied with the pH of various NaNO 2 batches. The presence of volatile NOx species in the headspace of a container containing saturated NaNO 2 solution was confirmed via the Griess assay. The process for formation of the N-nitrosamine derivatives is proposed to involve volatilization of nitric oxide (NO) from aqueous nitrite solution into the headspace of the container followed by diffusion into the solid drug-excipient blend and subsequent reaction of NOx with the secondary amine. Copyright © 2017 Elsevier B.V. All rights reserved.
Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy
2017-12-14
Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown.
He, Tengxia; Xie, Deti; Li, Zhenlun; Ni, Jiupai; Sun, Quan
2017-09-01
The ability of Arthrobacter arilaitensis Y-10 for nitrogen removal from simulated wastewater was studied. Results showed that ammonium was the best inorganic nitrogen for strain Y-10's cell growth, which could also promote nitrate reduction. Approximately 100.0% of ammonium was removed in the nitrogen removal experiments. The nitrate removal efficiency was 73.3% with nitrate as sole nitrogen source, and then the nitrate efficiency was increased to 85.3% and 100.0% with ammonium and nitrate (both about 5 or 100mg/L) as the mixed nitrogen sources. Nitrite accumulation was observed in presence of ammonium and nitrate. When the concentration of sole nitrite nitrogen was 10.31mg/L, the nitrite removal efficiency was 100.0%. Neither ammonium nor nitrate was accumulated during the whole experimental process. All experimental results indicated that A. arilaitensis Y-10 could remove ammonium, nitrate and nitrite at 15°C from wastewater, and could also perform simultaneous nitrification and denitrification under aerobic condition. Copyright © 2017. Published by Elsevier Ltd.
Aigle, Axel; Bonin, Patricia; Iobbi-Nivol, Chantal; Méjean, Vincent; Michotey, Valérie
2017-03-20
To explain anaerobic nitrite/nitrate production at the expense of ammonium mediated by manganese oxide (Mn(IV)) in sediment, nitrate and manganese respirations were investigated in a strain (Shewanella algae C6G3) presenting these features. In contrast to S. oneidensis MR-1, a biotic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during anaerobic growth with Mn(IV) under condition of limiting electron acceptor, concomitantly, with a higher electron donor stoichiometry than expected. This low and reproducible transitory accumulation is the result of production and consumption since the strain is able to dissimilative reduce nitrate into ammonium. Nitrite production in Mn(IV) condition is strengthened by comparative expression of the nitrate/nitrite reductase genes (napA, nrfA, nrfA-2), and rates of the nitrate/nitrite reductase activities under Mn(IV), nitrate or fumarate conditions. Compared with S. oneidensis MR-1, S. algae contains additional genes that encode nitrate and nitrite reductases (napA-α and nrfA-2) and an Outer Membrane Cytochrome (OMC)(mtrH). Different patterns of expression of the OMC genes (omcA, mtrF, mtrH and mtrC) were observed depending on the electron acceptor and growth phase. Only gene mtrF-2 (SO1659 homolog) was specifically expressed under the Mn(IV) condition. Nitrate and Mn(IV) respirations seem connected at the physiological and transcriptional levels.
NASA Astrophysics Data System (ADS)
Aigle, Axel; Bonin, Patricia; Iobbi-Nivol, Chantal; Méjean, Vincent; Michotey, Valérie
2017-03-01
To explain anaerobic nitrite/nitrate production at the expense of ammonium mediated by manganese oxide (Mn(IV)) in sediment, nitrate and manganese respirations were investigated in a strain (Shewanella algae C6G3) presenting these features. In contrast to S. oneidensis MR-1, a biotic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during anaerobic growth with Mn(IV) under condition of limiting electron acceptor, concomitantly, with a higher electron donor stoichiometry than expected. This low and reproducible transitory accumulation is the result of production and consumption since the strain is able to dissimilative reduce nitrate into ammonium. Nitrite production in Mn(IV) condition is strengthened by comparative expression of the nitrate/nitrite reductase genes (napA, nrfA, nrfA-2), and rates of the nitrate/nitrite reductase activities under Mn(IV), nitrate or fumarate conditions. Compared with S. oneidensis MR-1, S. algae contains additional genes that encode nitrate and nitrite reductases (napA-α and nrfA-2) and an Outer Membrane Cytochrome (OMC)(mtrH). Different patterns of expression of the OMC genes (omcA, mtrF, mtrH and mtrC) were observed depending on the electron acceptor and growth phase. Only gene mtrF-2 (SO1659 homolog) was specifically expressed under the Mn(IV) condition. Nitrate and Mn(IV) respirations seem connected at the physiological and transcriptional levels.
Nitrite oxidizing bacteria for water treatment in coastal aquaculture system
NASA Astrophysics Data System (ADS)
Noorak, S.; Rakkhiaw, S.; Limjirakhajornt, K.; Uppabullung, A.; Keawtawee, T.; Sangnoi, Y.
2018-04-01
This research aimed to isolate and characterize nitrite oxidizing bacteria and to study their capability for water quality improvement. Fourteen strains of bacteria with nitrite-oxidizing character were isolated after 21 days of enrichment in Pep-Beef-NOB medium contained NaNO2. Two strains, SF-1 and SF-5, showed highest nitrite removal rate for 42.42% and 37.2%, respectively. These strains were determined an efficiency of open-system wastewater treatment for 14 days. The results showed that control, SF-1 and SF-5 had remove ammonia from day 1 to day 6. At the end of the study, ammonia was removed by the control, SF-1 and SF-5 for 81.27%, 70.1% and 69.82%, respectively. Nitrite concentration was lowest at day 8 with removal rate of 98.73%, 98.3% and 97.24% from control, SF-1 and SF-5, respectively. However, nitrite concentration in control experiment was increased again at day 11 whereas in SF-1 and SF-5 were increased at day 13. Chemical Oxygen Demand (COD) was decreased by 77.78%, 73.50% and 78.63% in the control, SF-1 and SF-5, respectively. Biological Oxygen Demand (BOD) in the control, SF-1 and SF-5 were reduced by 85.92%, 79.53% and 82.09%, respectively. Based on 16S rRNA gene, SF-1 and SF-5 were identified as Bacillus vietnamensis and B. firmus, respectively.
Aigle, Axel; Bonin, Patricia; Iobbi-Nivol, Chantal; Méjean, Vincent; Michotey, Valérie
2017-01-01
To explain anaerobic nitrite/nitrate production at the expense of ammonium mediated by manganese oxide (Mn(IV)) in sediment, nitrate and manganese respirations were investigated in a strain (Shewanella algae C6G3) presenting these features. In contrast to S. oneidensis MR-1, a biotic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during anaerobic growth with Mn(IV) under condition of limiting electron acceptor, concomitantly, with a higher electron donor stoichiometry than expected. This low and reproducible transitory accumulation is the result of production and consumption since the strain is able to dissimilative reduce nitrate into ammonium. Nitrite production in Mn(IV) condition is strengthened by comparative expression of the nitrate/nitrite reductase genes (napA, nrfA, nrfA-2), and rates of the nitrate/nitrite reductase activities under Mn(IV), nitrate or fumarate conditions. Compared with S. oneidensis MR-1, S. algae contains additional genes that encode nitrate and nitrite reductases (napA-α and nrfA-2) and an Outer Membrane Cytochrome (OMC)(mtrH). Different patterns of expression of the OMC genes (omcA, mtrF, mtrH and mtrC) were observed depending on the electron acceptor and growth phase. Only gene mtrF-2 (SO1659 homolog) was specifically expressed under the Mn(IV) condition. Nitrate and Mn(IV) respirations seem connected at the physiological and transcriptional levels. PMID:28317859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni
In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H 2O 2 significantly diminishing the responsiveness to 2 mM NaNO 2, and 10 mM H 2O 2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H 2O 2, dramatically stimulated root abscission of A. pinnata in response tomore » nitrite, especially for plants previously cultivated in medium containing 5 mM KNO 3 compared to plants cultivated under N 2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H 2O 2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less
NASA Astrophysics Data System (ADS)
Bao, Yun
During the production of nuclear weapon by the DOE, large amounts of liquid waste were generated and stored in millions of gallons of tanks at Savannah River, Hanford and INEEL sites. Typically, the waste contains large amounts of soluble NaOH, NaNO2 and NaNO3 and small amounts of soluble fission products, cladding materials and cleaning solution. Due to its high sodium content it has been called sodium bearing waste (SBW). We have formulated, tested and evaluated a new type of hydroceramic waste form specifically designed to solidify SBW. Hydroceramics can be made from an alumosilicate source such as metakaolin and NaOH solutions or the SBW itself. Under mild hydrothermal conditions, the mixture is transformed into a solid consisting of zeolites. This process leads to the incorporation of radionuclides into lattice sites and the cage structures of the zeolites. Hydroceramics have high strength and inherent stability in realistic geologic settings. The process of making hydroceramics from a series of SBWs was optimized. The results are reported in this thesis. Some SBWs containing relatively small amounts of NaNO3 and NaNO2 (SigmaNOx/Sigma Na<25 mol%) can be directly solidified with metakaolin. The remaining SBW having high concentrations of nitrate and nitrite (SigmaNOx/Sigma Na>25 mol%) require pretreatment since a zeolitic matrix such as cancrinite is unable to host more than 25 mol% nitrate/nitrite. Two procedures to denitrate/denitrite followed by solidification were developed. One is based on calcination in which a reducing agent such as sucrose and metakaolin have been chosen as a way of reducing nitrate and nitrite to an acceptable level. The resulting calcine can be solidified using additional metakaolin and NaOH to form a hydroceramic. As an alternate, a chemical denitration/denitrition process using Si and Al powders as the reducing agents, followed by adding metakaolin to the solution prepare a hydroceramic was also investigated. Si and Al not only are the reducing agents, but they also provide Si and Al species to make zeolites during the reducing process. Performance of the hydroceramics was documented using SEM microstructure and X-ray diffraction phase analysis, mechanical property and leaching tests (Product Consistency Test and ANSI/ANS-16.1 leaching test).
Nitrates and nitrites in selected vegetables purchased at supermarkets in Siedlce, Poland.
Raczuk, Jolanta; Wadas, Wanda; Głozak, Katarzyna
2014-01-01
Vegetables constitute a vital part of the human diet, being the main source of minerals, vitamins, dietary fibre and phytochemicals. They however, also contain nitrates and nitrites, which adversely affect human health. To determine nitrate and nitrite content in selected vegetables purchased at supermarket chains in Siedlce and to assess their impact on consumer health. Vegetable samples were purchased from local supermarkets in Siedlce, town situated in the Mazovian province (Voivodeship) of Poland. These consisted of 116 samples of nine vegetables types including butterhead and iceberg lettuce, beetroot, white cabbage, carrot, cucumber, radish, tomato and potato collected between April and September 2011. Concentrations of nitrate and nitrite were determined by standard colorimetric methods used in Poland, with results expressed as mg per kg fresh weight of vegetables. Nitrate concentrations varied between 10 mg x kg(-1) to 4800 mg x kg(-1). The highest mean nitrate concentrations were found in radishes (2132 mgkg(-1)), butterhead lettuce (1725 mg x kg(-1)), beetroots (1306 mg x kg(-1)) and iceberg lettuce (890 mg x kg(-1)), whereas the lowest were found in cucumber (32 mg x kg(-1)) and tomato (35 mg x kg(-1)). Nitrite levels were also variable; the highest concentrations measured were in beetroot (mean 9.19 mg x kg(-1)) whilst much smaller amounts were present in carrot, cucumbers, iceberg lettuce, white cabbage, tomatoes and potatoes. The daily adult consumption of 100 g amounts of the studied vegetables were found not exceed the ADI for both nitrates and nitrites. Findings indicated the need for monitoring nitrate and nitrite content in radishes, butterhead lettuce and beetroot due to consumer health concerns.
Yetim, Hasan; Kayacier, Ahmed; Kesmen, Zulal; Sagdic, Osman
2006-02-01
Kavurma is a traditional cooked (fried) meat product manufactured to preserve meat. Some bacterial genera, e.g., clostridia are important in kavurma. The objective of this study was to determine the influence of nitrite and the traditional cooking process on the survival and proliferation of Clostridium botulinum and the autoxidation properties of the kavurma. For this purpose, Clostridium sporogenes having similar characteristics to C. botulinum was used, and the samples were inoculated with 10(6) CFU/g C. sporogenes cells before the traditional cooking. The final products were packaged and stored under refrigeration for 6 months, and then the oxidation parameters (TBA, peroxide and free fatty acid values) and C. sporogenes counts of samples were determined. It was observed that C. sporogenes could survive during the traditional cooking process and storage. However, counts decreased during storage; for example, nitrite containing samples initially had 3.21logCFU/g C. sporogenes and 2.73logCFU/g at the end of storage. While nitrite had a slight antimicrobial effect on clostridia, it significantly reduced the TBA, peroxide and FFA values of the samples. In conclusion, it is suggested that addition of 100ppm of nitrite might be useful in kavurma processing because of its role in limiting oxidation as well as its antimicrobial effect.
Tocheva, Elitza I; Eltis, Lindsay D; Murphy, Michael E P
2008-04-15
The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.
Luong, Susan; Fu, Shanlin
2014-03-01
In vitro urine adulteration is a well-documented practice adopted by individuals aiming to evade detection of drug use, when required to undergo mandatory sports and workplace drug testing. Potassium nitrite is an effective urine adulterant due to its oxidizing potential, and has been shown to mask the presence of many drugs of abuse. However, limited research has been conducted to understand its mechanism of action, and to explore the possibility of the drugs undergoing direct oxidation to form stable reaction products. In this study, opiates including morphine, codeine, morphine-3-glucuronide and morphine-6-glucuronide were exposed to potassium nitrite in water and urine to mimic the process of nitrite adulteration. It was found that two stable reaction products were detected by liquid chromatography-mass spectrometry (LC-MS) when morphine and morphine-6-glucuronide were exposed to nitrite. Isolation and elucidation using spectrometric and spectroscopic techniques revealed that they were 2-nitro-morphine and 2-nitro-morphine-6-glucuronide, respectively. These reaction products were also formed when an authentic morphine-positive urine specimen was fortified with nitrite. 2-Nitro-morphine was found to be stable enough to undergo the enzymatic hydrolysis procedure and also detectable by gas chromatography-mass spectrometry (GC-MS) after forming a trimethylsilyl derivative. On the contrary, morphine-3-glucuronide did not appear to be chemically manipulated when exposed to potassium nitrite in urine. These reaction products are not endogenously produced, are relatively stable and can be monitored with both LC-MS and GC-MS confirmatory techniques. As a result, these findings have revealed the possibility for the use of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide as markers for the indirect monitoring of morphine and morphine-6-glucuronide in urine specimens adulterated with nitrite. Copyright © 2013 John Wiley & Sons, Ltd.
Reductive precipitation of metals photosensitized by tin and antimony porphyrins
Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner
2003-09-30
A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.
Modeling pitting corrosion of iron exposed to alkaline solutions containing nitrate and nitrite
NASA Astrophysics Data System (ADS)
Chen, Lifeng
2001-07-01
Pitting corrosion could be extremely serious for dilute high-level radioactive waste stored or processed in carbon steel tanks at the Savannah River Site. In these solutions, nitrate is an aggressive ion with respect to pitting of carbon steel while nitrite can be used as an inhibitor. Excessive additions of nitrite increase the risk of generating unstable nitrogen compounds during waste processing, and insufficient additions of nitrite could increase the risk of corrosion-induced failure. Thus there are strong incentives to obtain a fundamental understanding of the role of nitrite in pitting corrosion prevention with these solution chemistries. In this dissertation, both a 1-D and a 2-D model are used to study the pitting mechanism as a function of nitrite/nitrate ratios. The 1-D model used BAND(J) to test a reaction mechanism for the passivation behavior by comparing the predicted Open Circuit Potential (OCP) with OCP data from experiments at different NO2-/NO3- ratio. The model predictions are compared with Cyclic Potentiodynamic Polarization (CPP) experiments. A 2-D model was developed for the propagation of a pit in iron by writing subroutines for finite element software of GAMBIT and FIDAP. Geometrically distributed anodic and cathodic reactions are assumed. The results show three partial explanations describing the inhibition influence of nitrite to iron corrosion: the competing reduction reaction of nitrate to nitrite, the formation of Fe(OH)+, and the function of the porous film. The current distributions and the effect of porosity of the film on pH are also explained. The calculation results also show that rate of pit growth decreases as the pit diameter increases until it reaches a constant value. The profile of the local current density on the pit wall is parabolic for small pits and it changes to a linear distribution for large pits. The model predicts that addition of nitrite will decrease the production of ferrous ions and those can prevent iron from dissolving. Also nitrate ion will accumulate in the pit if not enough inhibitor is added to the solution, and this will accelerate pit growth.
NASA Astrophysics Data System (ADS)
Kosarev, V. A.; Kuznetsova, E. E.
2014-02-01
The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.
Jelicks, L A; Wittenberg, B A
1995-05-01
The proximal histidine N delta H proton of deoxymyoglobin experiences a large hyperfine shift resulting in its 1H nuclear magnetic resonance (NMR) signal appearing at approximately 76 ppm (at 35 degrees C), downfield of the diamagnetic spectral region. 1H NMR of this proton is used to monitor sarcoplasmic oxygen pressure in isolated perfused rat heart. This method monitors intracellular oxygenation in the whole heart and does not reflect oxygenation in a limited region. The deoxymyoglobin resonance intensity is reduced upon conversion of myoglobin to the ferric form by sodium nitrite. 1H resonances of the N delta H protons of the alpha and beta subunits of bovine deoxyhemoglobin do not interfere with the measurement of myoglobin deoxygenation in blood-perfused rat heart. We find that steady-state myoglobin deoxygenation is increased progressively (and reversibly) as oxygenation of the perfusing medium is decreased in both saline and red blood cell-perfused hearts at constant work output. An eightfold increase in the heart rate of the blood-perfused heart resulted in no change in the deoxymyoglobin signal intensity. Intracellular PO2 of myoglobin-containing cells is maintained remarkably constant in changing work states.
Hammes, Walter P
2012-04-01
Within the universe of food fermentation processes the multi-purpose use of nitrate and/or nitrite is a unique characteristic of meat fermentations. These curing agents play a decisive role in obtaining the specific sensory properties, stability and hygienic safety of products such as fermented sausages, ham and, more recently, emulsion type of sausages. The use of nitrate is the traditional method in curing processes and requires its reduction to reactive nitrite. Thus, nitrate reduction is the key event that is exclusively performed by microorganisms. Under controlled fermentation conditions starter cultures are used that contain staphylococci and/or Kocuria varians, which in addition to strongly affecting sensory properties exhibit efficient nitrate reductase activity. To obtain clean label products some plant sources of nitrate have been in use. When producing thermally treated sausages (e.g. of emulsion type), starter cultures are used that form nitrite before cooking takes place. Staphylococci reduce nitrite to ammonia after nitrate has been consumed. K. varians is devoid of nitrite reductase activity. Nitrate and nitrite reductases are also present in certain strains of lactobacilli. It was shown that their application as starter cultures warrants efficient activity in sausages made with either nitrate or nitrite. NO is formed from nitrite in numerous chemical reactions among which disproportionation and reaction with reductants either added or endogenous in meat are of practical importance. Numerous nitrosation and nitrosylation reactions take place in the meat matrix among which the formation of nitrosomyoglobin is of major sensory importance. Safety considerations in meat fermentation relate to the safe nature of the starter organisms and to the use of nitrate/nitrite. Staphylococci ("micrococci") in fermented meat have a long tradition in food use but have not received the QPS status from the EFSA. They require, therefore, thorough assessment with regard to toxigenicity and pathogenicity determinants as well as presence of transferable antibiotic resistance. Nitrate and nitrite are still considered basically undesired in food. The main objections are based on their potential to form nitrosamines with carcinogenic potential. In view of new results from intensive research of NO, potential risks are opposed by positive effects on human health. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dasgupta, Amitava; Wahed, Amer; Wells, Alice
2002-02-01
Several adulterants are used to mask tests for abused drugs in urine. Adulterants such as "Klear" and "Whizzies" contain potassium nitrite, and "Urine Luck" contains pyridinium chlorochromate (PCC). The presence of these adulterants cannot be detected by routine specimen integrity checks (pH, specific gravity, and temperature). We developed rapid spot tests for detecting these adulterants in urine. Addition of 3% hydrogen peroxide in urine adulterated with PCC caused rapid formation of a dark brown color. In contrast, unadulterated urine turned colorless when hydrogen peroxide was added. When urine contaminated with nitrite and 2 to 3 drops of 2N hydrochloric acid were added to 2% aqueous potassium permanganate solution, the dark pink permanganate solution turned colorless immediately with effervescence. Urine contaminated with nitrite liberated iodine from potassium iodide solution in the presence of 2N hydrochloric acid. Urine adulterated with PCC also liberated iodine from potassium iodide in acid medium but did not turn potassium permanganate solution colorless. Urine specimens from volunteers and random urine samples that tested negative for drugs did not cause false-positive results. These rapid spot tests are useful for detecting adulterated urine to avoid false-negative drug tests.
Chemical Sensitization of Clostridium botulinum Spores to Radiation in Meat1
Krabbenhoft, K. L.; Corlett, D. A.; Anderson, A. W.; Elliker, P. R.
1964-01-01
Beef ground round inoculated with 1,000,000 spores of Clostridium botulinum 33-A per gram and containing various additives was exposed to gamma radiation. Spores were inactivated in samples (irradiated at 2.0, 2.5, and 3.0 Mrad) which contained sodium nitrate (1,000 ppm) plus sodium chloride (2.5%). Similar results were obtained when sodium nitrite (200 ppm) was substituted for sodium nitrate, except that there was evidence of spore survival in 1 of 120 cans irradiated at 2.0 Mrad. Spore destruction was based upon the absence of spores and mouse-lethal toxin in meat subcultures made from cans incubated at 35 C for 120 days. Spores were not destroyed when exposed to 2.5 or 3.0 Mrad in the absence of sodium nitrate, sodium nitrite, or sodium chloride. Furthermore, the use of these chemicals individually, together with radiation, was ineffective. The additives alone in the absence of radiation also did not cause spore destruction. Radiation levels of 2.0, 2.5, and 3.0 Mrad, when used with sodium chloride at 1.5 or 2.0% and sodium nitrate at 500 ppm or sodium nitrite at 100 ppm, were ineffective. PMID:14215973
Simultaneous Nitrite-Dependent Anaerobic Methane and Ammonium Oxidation Processes▿
Luesken, Francisca A.; Sánchez, Jaime; van Alen, Theo A.; Sanabria, Janeth; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Kartal, Boran
2011-01-01
Nitrite-dependent anaerobic oxidation of methane (n-damo) and ammonium (anammox) are two recently discovered processes in the nitrogen cycle that are catalyzed by n-damo bacteria, including “Candidatus Methylomirabilis oxyfera,” and anammox bacteria, respectively. The feasibility of coculturing anammox and n-damo bacteria is important for implementation in wastewater treatment systems that contain substantial amounts of both methane and ammonium. Here we tested this possible coexistence experimentally. To obtain such a coculture, ammonium was fed to a stable enrichment culture of n-damo bacteria that still contained some residual anammox bacteria. The ammonium supplied to the reactor was consumed rapidly and could be gradually increased from 1 to 20 mM/day. The enriched coculture was monitored by fluorescence in situ hybridization and 16S rRNA and pmoA gene clone libraries and activity measurements. After 161 days, a coculture with about equal amounts of n-damo and anammox bacteria was established that converted nitrite at a rate of 0.1 kg-N/m3/day (17.2 mmol day−1). This indicated that the application of such a coculture for nitrogen removal may be feasible in the near future. PMID:21841030
21 CFR 172.177 - Sodium nitrite used in processing smoked chub.
Code of Federal Regulations, 2011 CFR
2011-04-01
... be heated by a controlled heat process which provides a monitoring system positioned in as many... subsequent storage and distribution. All shipping containers, retail packages, and shipping records shall...) The label and labeling of the additive container shall bear, in addition to the other information...
21 CFR 172.177 - Sodium nitrite used in processing smoked chub.
Code of Federal Regulations, 2014 CFR
2014-04-01
... provides a monitoring system positioned in as many strategic locations in the smokehouse as necessary to... containers, retail packages, and shipping records shall indicate with appropriate notice the perishable... container shall bear, in addition to the other information required by the Act, the name of the additive. (2...
21 CFR 172.177 - Sodium nitrite used in processing smoked chub.
Code of Federal Regulations, 2012 CFR
2012-04-01
... be heated by a controlled heat process which provides a monitoring system positioned in as many... subsequent storage and distribution. All shipping containers, retail packages, and shipping records shall...) The label and labeling of the additive container shall bear, in addition to the other information...
21 CFR 172.177 - Sodium nitrite used in processing smoked chub.
Code of Federal Regulations, 2013 CFR
2013-04-01
... be heated by a controlled heat process which provides a monitoring system positioned in as many... subsequent storage and distribution. All shipping containers, retail packages, and shipping records shall...) The label and labeling of the additive container shall bear, in addition to the other information...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
This bibliography contains citations concerning non-quick war gaming for strategic and tactical nuclear warfare. Analyses and comparative evaluations, based upon computerized simulations, are considered as are manuals and specification for the various computer programs employed. Stage 64 and Satan II and III are covered prominently. (This updated bibliography contains 356 citations, 36 of which are new entries to the previous edition.)
Lang, Longqi; Pocquet, Mathieu; Ni, Bing-Jie; Yuan, Zhiguo; Spérandio, Mathieu
2017-02-01
The aim of this work is to compare the capability of two recently proposed two-pathway models for predicting nitrous oxide (N 2 O) production by ammonia-oxidizing bacteria (AOB) for varying ranges of dissolved oxygen (DO) and nitrite. The first model includes the electron carriers whereas the second model is based on direct coupling of electron donors and acceptors. Simulations are confronted to extensive sets of experiments (43 batches) from different studies with three different microbial systems. Despite their different mathematical structures, both models could well and similarly describe the combined effect of DO and nitrite on N 2 O production rate and emission factor. The model-predicted contributions for nitrifier denitrification pathway and hydroxylamine pathway also matched well with the available isotopic measurements. Based on sensitivity analysis, calibration procedures are described and discussed for facilitating the future use of those models.
Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy
2017-01-01
Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown. PMID:29286382
Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga
2014-01-01
Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.
Gerbl, Friedrich W.; Weidler, Gerhard W.; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga
2014-01-01
Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6–47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH4)2SO4as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH+4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ. PMID:24904540
Opländer, Christian; Volkmar, Christine M; Paunel-Görgülü, Adnana; Fritsch, Thomas; van Faassen, Ernst E; Mürtz, Manfred; Grieb, Gerrit; Bozkurt, Ahmet; Hemmrich, Karsten; Windolf, Joachim; Suschek, Christoph V
2012-02-15
Vascular ischemic diseases, hypertension, and other systemic hemodynamic and vascular disorders may be the result of impaired bioavailability of nitric oxide (NO). NO but also its active derivates like nitrite or nitroso compounds are important effector and signal molecules with vasodilating properties. Our previous findings point to a therapeutical potential of cutaneous administration of NO in the treatment of systemic hemodynamic disorders. Unfortunately, no reliable data are available on the mechanisms, kinetics and biological responses of dermal application of nitric oxide in humans in vivo. The aim of the study was to close this gap and to explore the therapeutical potential of dermal nitric oxide application. We characterized with human skin in vitro and in vivo the capacity of NO, applied in a NO-releasing acidified form of nitrite-containing liniments, to penetrate the epidermis and to influence local as well as systemic hemodynamic parameters. We found that dermal application of NO led to a very rapid and significant transepidermal translocation of NO into the underlying tissue. Depending on the size of treated skin area, this translocation manifests itself through a significant systemic increase of the NO derivates nitrite and nitroso compounds, respectively. In parallel, this translocation was accompanied by an increased systemic vasodilatation and blood flow as well as reduced blood pressure. We here give evidence that in humans dermal application of NO has a therapeutic potential for systemic hemodynamic disorders that might arise from local or systemic insufficient availability of NO or its bio-active NO derivates, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.
A diazonium ion cascade from the nitrosation of tolazoline, an imidazoline-containing drug.
Loeppky, Richard N; Shi, Jianzheng; Barnes, Charles L; Geddam, Sailaja
2008-02-01
Tolazoline (1-benzylimidazoline), a representative imidazoline-containing drug, reacts readily with nitrite in acetic acid to produce a complex product mixture. Fourteen compounds have been identified as products of this transformation when an 8-fold excess of HNO2 is used. The products, which include N-nitrosoamides, esters, alcohols, and phenylacetic acid, are rationalized as arising from a cascade of reactive diazonium ions. N-Nitrosotolazoline can be isolated from the nitrosation reaction in good yield when the mixture is extracted with CH2Cl2 as the transformation progresses. It nitrosates much more rapidly (50x) than tolazoline to give, among other products, the oxime [1-( N-nitroso-2-imidazolinyl)benzylidene]hydroxylamine, which can also be produced in good yield from the reaction of tolazoline with isopropyl nitrite. At low substrate and nitrite concentrations, the main reaction products are N-nitrosotolazoline, its decomposition product N-2-hydroxyethylphenylacetamide, the above-mentioned oxime, phenyl acetic acid, and 2-hydroxyethyl phenylacetate. The tolazoline nitrosation rate in three buffer systems has been determined at pH 3.4 and 37 degrees C ( kobs = 6.25 x 10 (-5) s (-1) in 0.5 M acetate buffer with a 10 * [NO2(-)] = 250 mM). Because N-nitrosotolazoline exhibits the chemical properties of a direct-acting mutagen and carcinogen, we have used the rate data to estimate its level of formation at nitrite concentrations <3 mM. Cursory examination of the nitrosation chemistry of oxymetazoline, a related drug, is primarily focused at its electron-rich aromatic ring.
Xu, Yi; He, Tengxia; Li, Zhenlun; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue
2017-01-01
The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL -1 h -1 , respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.
NASA Technical Reports Server (NTRS)
Francis, Somilez Asya
2014-01-01
The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.
Chemical Safety: Molten Salt Baths Cited as Lab Hazards.
ERIC Educational Resources Information Center
Baum, Rudy
1982-01-01
Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…
Thermodynamic consequences of hydrogen combustion within a containment of pressurized water reactor
NASA Astrophysics Data System (ADS)
Bury, Tomasz
2011-12-01
Gaseous hydrogen may be generated in a nuclear reactor system as an effect of the core overheating. This creates a risk of its uncontrolled combustion which may have a destructive consequences, as it could be observed during the Fukushima nuclear power plant accident. Favorable conditions for hydrogen production occur during heavy loss-of-coolant accidents. The author used an own computer code, called HEPCAL, of the lumped parameter type to realize a set of simulations of a large scale loss-of-coolant accidents scenarios within containment of second generation pressurized water reactor. Some simulations resulted in high pressure peaks, seemed to be irrational. A more detailed analysis and comparison with Three Mile Island and Fukushima accidents consequences allowed for withdrawing interesting conclusions.
Simulation Of A Photofission-Based Cargo Interrogation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Michael; Gozani, Tsahi; Stevenson, John
A comprehensive model has been developed to characterize and optimize the detection of Bremsstrahlung x-ray induced fission signatures from nuclear materials hidden in cargo containers. An effective active interrogation system should not only induce a large number of fission events but also efficiently detect their signatures. The proposed scanning system utilizes a 9-MV commercially available linear accelerator and the detection of strong fission signals i.e. delayed gamma rays and prompt neutrons. Because the scanning system is complex and the cargo containers are large and often highly attenuating, the simulation method segments the model into several physical steps, representing each changemore » of radiation particle. Each approximation is carried-out separately, resulting in a major reduction in computational time and a significant improvement in tally statistics. The model investigates the effect on the fission rate and detection rate by various cargo types, densities and distributions. Hydrogenous and metallic cargos, homogeneous and heterogeneous, as well as various locations of the nuclear material inside the cargo container were studied. We will show that for the photofission-based interrogation system simulation, the final results are not only in good agreement with a full, single-step simulation but also with experimental results, further validating the full-system simulation.« less
Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography
NASA Astrophysics Data System (ADS)
Thomay, C.; Velthuis, J.; Poffley, T.; Baesso, P.; Cussans, D.; Frazão, L.
2016-03-01
The non-invasive imaging of dense objects is of particular interest in the context of nuclear waste management, where it is important to know the contents of waste containers without opening them. Using Muon Scattering Tomography (MST), it is possible to obtain a detailed 3D image of the contents of a waste container on reasonable timescales, showing both the high and low density materials inside. We show the performance of such a method on a Monte Carlo simulation of a dummy waste drum object containing objects of different shapes and materials. The simulation has been tuned with our MST prototype detector performance. In particular, we show that both a tungsten penny of 2 cm radius and 1 cm thickness, and a uranium sheet of 0.5 cm thickness can be clearly identified. We also show the performance of a novel edge finding technique, by which the edges of embedded objects can be identified more precisely than by solely using the imaging method.
Destruction of Navy Hazardous Wastes by Supercritical Water Oxidation
1994-08-01
cleaning and derusting (nitrite and citric acid solutions), electroplating ( acids and metal bearing solutions), electronics and refrigeration... acid forming chemical species or that contain a large amount of dissolved solids present a challenge to current SCWO •-chnology. Approved for public...Waste streams that contain a large amount of mineral- acid forming chemical species or that contain a large amount of dissolved solids present a challenge
NASA Astrophysics Data System (ADS)
Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.
2013-12-01
The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm-3 and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01fm-3 or less. An originally uniform system of nuclear matter is observed to form spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the pasta system from MD simulations and to place constraints on the equilibration time of the system.
De Prá, Marina C; Kunz, Airton; Bortoli, Marcelo; Scussiato, Lucas A; Coldebella, Arlei; Vanotti, Matias; Soares, Hugo M
2016-02-01
In this study were fitted the best kinetic model for nitrogen removal inhibition by ammonium and/or nitrite in three different nitrogen removal systems operated at 25 °C: a nitrifying system (NF) containing only ammonia oxidizing bacteria (AOB), an ANAMMOX system (AMX) containing only ANAMMOX bacteria, and a deammonification system (DMX) containing both AOB and ANAMMOX bacteria. NF system showed inhibition by ammonium and was best described by Andrews model. The AMX system showed a strong inhibition by nitrite and Edwards model presented a best system representation. For DMX system, the increased substrate concentration (until 1060 mg NH3-N/L) tested was not limiting for the ammonia consumption rate and the Monod model was the best model to describe this process. The AOB and ANAMMOX sludges combined in the DMX system displayed a better activity, substrate affinity and excellent substrate tolerance than in nitrifying and ANAMMOX process. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ona-Nguema, G.; Guerbois, D.; Morin, G.; Zhang, Y.; Noel, V.; Brest, J.
2013-12-01
The occurrence of high nitrite concentrations as a result of anthropogenic activities is an important water quality concern as it is highly toxic to human and fauna, and it is used as a nitrogen source for the assimilation process. The toxicity of nitrite is related to its transformation into carcinogenic N-nitroso compounds, which are suspected to be responsible for some gastric cancers, and to its ability to convert the hemoglobin to methaemoglobin what is then unable to fix oxygen and to transport it to the tissues, involving hypoxia and the blue-baby syndrome [1]. To reduce the adverse effect of nitrite on human health and on macroalgal blooms, any process enhancing the transformation of nitrite ions to nitrogen gas is of interest for the remediation of natural environments. To achieve this purpose the use of processes involving Fe(II)-containing minerals could be considered as one of the best options. Green-rusts are mixed Fe(II-III) layered double hydroxides commonly found in anoxic zones of natural environments such as sediments and hydromorphic soils. In such anoxic environments, green rust minerals play an important role in the biogeochemical redox cycling of iron and nitrogen, and can affect the speciation and mobility of many organic and inorganic contaminants. The present study investigates the reduction of nitrite by two synthetic and two biogenic green rusts. On the one hand, Fe(II-III) hydroxychloride and Fe(II-III) hydroxycarbonate green rusts were used as synthetic interlayer forms of GR, which are referred to as ';syn-GR(CO3)' and ';syn-GR(Cl)', respectively. On the other hand, the study was performed with biogenic Fe(II-III) hydroxycarbonate green rusts obtained from the bioreduction of two ferric precursors, either Fe(III)-oxyhydroxycarbonate or lepidocrocite; these biogenic green rusts are referred to as ';bio-GR(CO3)F' and ';bio-GR(CO3)L', respectively. For synthetic green rusts, results showed that the oxidation of both syn-GR(CO3) and syn-GR(Cl) led to the reduction of nitrite ions to ammonium, and that the production of ammonium depended on their Fe(II) content. XRD patterns indicated that both synthetic green rusts were fully oxidized into magnetite during the reaction with nitrite. For biogenic green rusts, the study revealed that both bio-GR(CO3)F and bio-GR(CO3)L were capable of reducing nitrite ions without ammonium production, suggesting the conversion of nitrite ions to nitrogen gas. Moreover, we provided evidence for the first time that the interactions of bio-GR(CO3)F with nitrite led to the formation of an hydroxy-nitrite green rust as a result of the incorporation of nitrite in the interlayer region of bio-GR(CO3)F; such an intercalation of nitrite ions was not observed in experiments with bio-GR(CO3)L. XRD analysis indicated that GR(NO2) was formed as an intermediate reaction product prior to the fully oxidation of GR to ferric oxyhydroxides. [1] Philips S., Laanbroek H. J. and Verstraete W. (2002). Rev. Environ. Sci. Biotechnol. 1, 115-141.
40 CFR 721.4740 - Alkali metal nitrites.
Code of Federal Regulations, 2010 CFR
2010-07-01
... periodic classification of chemical elements) lithium, sodium, potassium, rubidium, cesium, and francium... defined in 40 CFR 721.3) containing amines. (b) [Reserved] [58 FR 27944, May 12, 1993, as amended at 58 FR...
40 CFR 721.4740 - Alkali metal nitrites.
Code of Federal Regulations, 2011 CFR
2011-07-01
... periodic classification of chemical elements) lithium, sodium, potassium, rubidium, cesium, and francium... defined in 40 CFR 721.3) containing amines. (b) [Reserved] [58 FR 27944, May 12, 1993, as amended at 58 FR...
Halobacterium denitrificans sp. nov. - An extremely halophilic denitrifying bacterium
NASA Technical Reports Server (NTRS)
Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.
1986-01-01
Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.
Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium
NASA Technical Reports Server (NTRS)
Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.
1986-01-01
Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.
Panesar, N S; Chan, K W
2000-12-15
Nitrites and nitrates are consumed nonchalantly in diet. Organic nitrates are also used as vasodilators in angina pectoris, but the therapy is associated with tolerance whose mechanism remains elusive. Previously, we found inorganic nitrate inhibited steroidogenesis in vitro. Because adrenocorticoids regulate water and electrolyte metabolism, tolerance may ensue from steroid deficiency. We have studied the effects of nitrite and nitrate on in vitro synthesis and in vivo blood levels of steroid hormones. In vitro, nitrite was more potent than nitrate in inhibiting human chorionic gonadotropin (hCG)-stimulated androgen synthesis by Mouse Leydig Tumor cells. At concentrations above 42 mM, nitrite completely inhibited androgen synthesis, and, unlike nitrate, the inhibition was irreversible by increasing hCG concentration. The cAMP production remained intact but reduced with both ions. The nitric oxide (NO) scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (c-PTIO) significantly increased hCG- or cAMP-stimulated androgen synthesis in all buffers, suggesting that NO is a chemical species directly involved in the nitrite/nitrate-induced inhibition. This is further supported by c-PTIO countering the inhibitory action of methylene blue on androgen synthesis. Rats given distilled water containing 50 mg/L NaNO(2) or NaNO(3) for 4 weeks drank significantly less daily. At the end, their blood corticosterone and testosterone levels were significantly decreased. The adrenocortical histology showed bigger lipid droplets, which are pathogonomic of impaired steroidogenesis. Nitrite and nitrate are metabolized to NO, which binds heme in cytochrome P450 enzymes, thereby inhibiting steroidogenesis. Therapeutic nitrates likewise may decrease adrenal (and gonadal) steroidogenesis. Cortisol deficiency would impair water excretion causing volume expansion, and aldosterone deficiency would cause sodium loss and raised renin. Paradoxically, volume expansion without sodium retention and raised renin has all been reported in tolerance. Copyright 2000 Academic Press.
Seabra, Amedea B; Ouellet, Marc; Antonic, Marija; Chrétien, Michelle N; English, Ann M
2013-11-30
Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Sulfide‐ and nitrite‐dependent nitric oxide production in the intestinal tract
Vermeiren, Joan; Van de Wiele, Tom; Van Nieuwenhuyse, Glynn; Boeckx, Pascal; Verstraete, Willy; Boon, Nico
2012-01-01
Summary In the gut ecosystem, nitric oxide (NO) has been described to have damaging effects on the energy metabolism of colonocytes. Described mechanisms of NO production are microbial reduction of nitrate via nitrite to NO and conversion of l‐arginine by NO synthase. The aim of this study was to investigate whether dietary compounds can stimulate the production of NO by representative cultures of the human intestinal microbiota and whether this correlates to other processes in the intestinal tract. We have found that the addition of a reduced sulfur compound, i.e. cysteine, contributed to NO formation. This increase was ascribed to higher sulfide concentrations generated from cysteine that in turn promoted the chemical conversion of nitrite to NO. The NO release from nitrite was of the order of 4‰ at most. Overall, it was shown that two independent biological processes contribute to the chemical formation of NO in the intestinal tract: (i) the production of sulfide by fermentation of sulfur containing amino acids or reduction of sulfate by sulfate reducing bacteria, and (ii) the reduction of nitrate to nitrite. Our results indicate that dietary thiol compounds in combination with nitrate may contribute to colonocytes damaging processes by promoting NO formation. PMID:22129449
Effects of antioxidant combinations on shelf stability of irradiated chicken sausage during storage
NASA Astrophysics Data System (ADS)
Hwang, Ko-Eun; Kim, Hyun-Wook; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Ju-Woon; Choi, Yun-Sang; Kim, Cheon-Jei
2015-01-01
This study was conducted in order to investigate the combined effects of gamma irradiation (0, 2.5, and 5 kGy) and antioxidant combination, mugwort extract (ME) and ascorbic acid (Aa), on the pH, total color difference (ΔE), hue angle (H°), 2-thiobarbituricacid-reactive substances (TBARS) values, residual nitrite contents, and sensory evaluation in chicken sausage during storage. The pH values and sensory properties, except for color, of chicken sausage were not significantly affected by adding ME or treating irradiation during storage. However, ΔE, and H° values of samples containing ME (either alone or with Aa) were higher than that of control, whereas irradiation had no significant effect during storage. A combination of ME+Aa (0.2% ME+0.05% Aa) was effective at delaying lipid oxidation in irradiated chicken sausage. In addition, nitrite contents were reduced by gamma ray as a dose dependent manner and, particularly in ME+Aa was most effective in decreasing the residual nitrite. Our results suggested that gamma irradiation combined with an antioxidant mixture is a useful technology for reducing the residual nitrite and retarding the lipid oxidation in chicken sausage.
Ashworth, Ann; Mitchell, Klaus; Blackwell, Jamie R; Vanhatalo, Anni; Jones, Andrew M
2015-10-01
Epidemiological studies suggest that green leafy vegetables, which are high in dietary nitrate, are protective against CVD such as stroke. High blood pressure (BP) is a major risk factor for stroke and inorganic nitrate has been shown to reduce BP. The objective of the present study was to test the hypothesis that diets containing high-nitrate (HN) vegetables would increase plasma nitrate and nitrite concentrations and reduce BP in healthy women. A randomized, crossover trial, where participants received HN vegetables (HN diet) or avoided HN vegetables (Control diet) for 1 week. Before and after each intervention, resting BP and plasma nitrate and nitrite concentrations were measured. University of Exeter, UK. Nineteen healthy women (mean age 20 (sd 2) years; mean BMI 22·5 (sd 3·8) kg/m2). The HN diet significantly increased plasma nitrate concentration (before HN diet: mean 24·4 (sd 5·6) µmol/l; after HN diet: mean 61·0 (sd 44·1) µmol/l, P<0·05) and plasma nitrite concentration (before HN diet: mean 98 (sd 91) nmol/l; after HN diet: mean 185 (sd 34) nmol/l, P<0·05). No significant change in plasma nitrate or nitrite concentration was observed after the Control diet. The HN diet significantly reduced resting systolic BP (before HN diet: mean 107 (sd 9) mmHg; after HN diet: mean 103 (sd 6) mmHg, P<0·05). No significant change in systolic BP was observed after the Control diet (before Control diet: mean 106 (sd 8) mmHg; after Control diet: mean 106 (sd 8) mmHg). Consumption of HN vegetables significantly increased plasma nitrate and nitrite concentrations and reduced BP in normotensive women.
A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water
Haaijer, Suzanne C. M.; Ji, Ke; van Niftrik, Laura; Hoischen, Alexander; Speth, Daan; Jetten, Mike S. M.; Damsté, Jaap S. Sinninghe; Op den Camp, Huub J. M.
2013-01-01
Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB), a bioreactor cultivation approach was adopted to first enrich nitrifiers and ultimately nitrite oxidizers from Dutch coastal North Sea water. With solely ammonia as the substrate an active nitrifying community consisting of novel marine Nitrosomonas aerobic ammonia oxidizers (ammonia-oxidizing bacteria) and Nitrospina and Nitrospira NOB was obtained which converted a maximum of 2 mmol of ammonia per liter per day. Switching the feed of the culture to nitrite as a sole substrate resulted in a Nitrospira NOB dominated community (approximately 80% of the total microbial community based on fluorescence in situ hybridization and metagenomic data) converting a maximum of 3 mmol of nitrite per liter per day. Phylogenetic analyses based on the 16S rRNA gene indicated that the Nitrospira enriched from the North Sea is a novel Nitrospira species with Nitrospira marina as the next taxonomically described relative (94% 16S rRNA sequence identity). Transmission electron microscopy analysis revealed a cell plan typical for Nitrospira species. The cytoplasm contained electron light particles that might represent glycogen storage. A large periplasmic space was present which was filled with electron dense particles. Nitrospira-targeted polymerase chain reaction analyses demonstrated the presence of the enriched Nitrospira species in a time series of North Sea genomic DNA samples. The availability of this new Nitrospira species enrichment culture facilitates further in-depth studies such as determination of physiological constraints, and comparison to other NOB species. PMID:23515432
PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES
Barrick, J.G.; Fries, B.A.
1960-09-27
A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.
NASA Astrophysics Data System (ADS)
Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.
2014-05-01
Cosmic-ray muons are highly penetrative charged particles that are observed at the sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be determined with respect to the scattering density λ, a parameter which is related to the atomic number Z of the scattering material. Images reconstructed from this simulation are presented for a range of anticipated scenarios that highlight the expected image resolution and the potential of this system for the identification of high-Z materials within a shielded, concrete-filled container. First results from a constructed prototype system are presented in comparison with those from a detailed simulation. Excellent agreement between experimental data and simulation is observed showing clear discrimination between the different materials assayed throughout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallman, R J; Gottula, R C; Holcomb, E E
1987-05-01
An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented.
Winkler, Mari-K H; Boets, Pieter; Hahne, Birk; Goethals, Peter; Volcke, Eveline I P
2017-01-01
The conditions present in both in vitro and in vivo ecosystems determine the microbial population harbouring it. One commonly accepted theory is that a species with a high substrate affinity and low growth rate (k-strategist) will win the competition against a second species with a lower substrate affinity and higher growth rate (r-strategist) if both species are subjected to low substrate concentrations. In this study two nitrite oxidizing bacteria (NOB), Nitrospira defluvii (k-strategist) and Nitrobacter vulgaris (r-strategist), were cultivated in a continuous reactor systems. The minimal hydraulic retention time (HRT) required for maintaining the slower growing Nitrospira was first determined. A reactor containing Nitrobacter was set to the same HRT and Nitrospira was injected to evaluate the effect of the dilution rate on the competition between both species. By following the microbial population dynamics with qPCR analysis, it was shown that not only the substrate affinity drives the competition between k- and r-strategists but also the dilution rate. Experimental data and numerical simulations both revealed that the washout of Nitrobacter was significantly delayed at dilution rates close to the μmax of Nitrospira. The competition could be even reverted towards Nitrobacter (r-strategist) despite of low nitrite concentrations and dilution rates lower than the μmax of Nitrospira.
Doi, Yuki; Shimizu, Motoyuki; Fujita, Tomoya; Nakamura, Akira; Takizawa, Noboru
2014-01-01
We identified the extremely nitrite-tolerant bacterium Achromobacter denitrificans YD35 that can grow in complex medium containing 100 mM nitrite (NO2−) under aerobic conditions. Nitrite induced global proteomic changes and upregulated tricarboxylate (TCA) cycle enzymes as well as antioxidant proteins in YD35. Transposon mutagenesis generated NO2−-hypersensitive mutants of YD35 that had mutations at genes for aconitate hydratase and α-ketoglutarate dehydrogenase in the TCA cycle and a pyruvate dehydrogenase (Pdh) E1 component, indicating the importance of TCA cycle metabolism to NO2− tolerance. A mutant in which the pdh gene cluster was disrupted (Δpdh mutant) could not grow in the presence of 100 mM NO2−. Nitrite decreased the cellular NADH/NAD+ ratio and the cellular ATP level. These defects were more severe in the Δpdh mutant, indicating that Pdh contributes to upregulating cellular NADH and ATP and NO2−-tolerant growth. Exogenous acetate, which generates acetyl coenzyme A and then is metabolized by the TCA cycle, compensated for these defects caused by disruption of the pdh gene cluster and those caused by NO2−. These findings demonstrate a link between NO2− tolerance and pyruvate/acetate metabolism through the TCA cycle. The TCA cycle mechanism in YD35 enhances NADH production, and we consider that this contributes to a novel NO2−-tolerating mechanism in this strain. PMID:24413603
The Antibiofilm efficacy of nitric oxide on soft contact lenses.
Kim, Dong Ju; Park, Joo-Hee; Kim, Marth; Park, Choul Yong
2017-11-21
To investigate the antibiofilm efficacy of nitric oxide (NO) on soft contact lenses. Nitrite (NO precursor) release from various concentrations (0-1000 μM) of sodium nitrite (NaNO 2, NO donor) was measured by Griess Assay. Cell viability assay was performed using human corneal epithelial cell under various concentration (0-1000 μM) of NaNO 2 . Biofilm formation on soft contact lenses was achieved by adding Staphylococcus aureus or Pseudomonas aeruginosa to the culture media. Various concentrations of NaNO 2 (0-1000 μM) were added to the culture media, each containing soft contact lens. After incubation in NaNO 2 containing culture media for 1, 3, or 7 days, each contact lens was transferred to a fresh, bacteria-free media without NaNO 2 . The bacteria in the biofilm were dispersed in the culture media for planktonic growth. After reculturing the lenses in the fresh media for 24 h, optical density (OD) of media was measured at 600 nm and colony forming unit (CFU) was counted by spreading media on tryptic soy agar plate for additional 18 h. Nitrite release from NaNO 2 showed dose-dependent suppressive effect on biofilm formation. Most nitrite release from NaNO 2 tended to occur within 30 min. The viability of human corneal epithelial cells was well maintained at tested NaNO 2 concentrations. The bacterial CFU and OD showed dose-dependent decrease in the NaNO 2 treated samples on days 1, 3 and 7 for both Staphylococcus aureus and Pseudomonas aeruginosa. NO successfully inhibited the biofilm formation by Staphylococcus aureus or Pseudomonas aeruginosa on soft contact lenses in dose-dependent manner.
Ferrocyanide Safety Program. Quarterly report for the period ending March 31, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meacham, J.E.; Cash, R.J.; Dukelow, G.T.
1994-04-01
Various high-level radioactive waste from defense operations has accumulated at the Hanford Site in underground storage tanks since the mid-1940s. During the 1950s, additional tank storage space was required to support the defense mission. To obtain this additional storage volume within a short time period, and to minimize the need for constructing additional storage tanks, Hanford Site scientists developed a process to scavenge {sup 137}Cs from tank waste liquids. In implementing this process, approximately 140 metric tons of ferrocyanide were added to waste that was later routed to some Hanford Site single-shell tanks. The reactive nature of ferrocyanide in themore » presence of an oxidizer has been known for decades, but the conditions under which the compound can undergo endothermic and exothermic reactions have not been thoroughly studied. Because the scavenging process precipitated ferrocyanide from solutions containing nitrate and nitrite, an intimate mixture of ferrocyanides and nitrates and/or nitrites is likely to exist in some regions of the ferrocyanide tanks. This quarterly report provides a status of the activities underway at the Hanford Site on the Ferrocyanide Safety Issue, as requested by the Defense Nuclear Facilities Safety Board (DNFSB) in their Recommendation 90-7. A revised Ferrocyanide Safety Program Plan addressing the total Ferrocyanide Safety Program, including the six parts of DNFSB Recommendation 90-7, was recently prepared and released in March 1994. Activities in the revised program plan are underway or have been completed, and the status of each is described in Section 4.0 of this report.« less
NASA Astrophysics Data System (ADS)
Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret
2017-04-01
In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption rates were also detected within the layer of the secondary nitrite maximum. The imbalances between nitrite production and consumption rates help to explain the distribution of nitrite in the water column. The primary nitrite maximum in the upper oxycline is consistent with ammonium oxidation exceeding nitrite oxidation. Nitrite consumption rates exceeding rates of nitrite production result in the low nitrite concentration at the oxic-anoxic interface. Within the secondary nitrite maximum in the anoxic layer, production and consumption of nitrite are equivalent within measurement error. These low turnover rates suggest the stability of the nitrite pool in the secondary nitrite maximum over long time scales (decades to millennial). These data could be implemented into biogeochemical models to decipher the origin and the evolution of nitrite distribution in the OMZs.
Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater
NASA Astrophysics Data System (ADS)
Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.
2017-08-01
Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (
Diethylcarbamazine Attenuates the Development of Carrageenan-Induced Lung Injury in Mice
Ribeiro, Edlene Lima; Barbosa, Karla Patricia de Souza; Fragoso, Ingrid Tavares; Donato, Mariana Aragão Matos; Oliveira dos Santos Gomes, Fabiana; da Silva, Bruna Santos; Silva, Amanda Karolina Soares e; Rocha, Sura Wanessa Santos; Amaro da Silva Junior, Valdemiro; Peixoto, Christina Alves
2014-01-01
Diethylcarbamazine (DEC) is an antifilarial drug with potent anti-inflammatory properties as a result of its interference with the metabolism of arachidonic acid. The aim of the present study was to evaluate the anti-inflammatory activity of DEC in a mouse model of acute inflammation (carrageenan-induced pleurisy). The injection of carrageenan into the pleural cavity induced the accumulation of fluid containing a large number of polymorphonuclear cells (PMNs) as well as infiltration of PMNs in lung tissues and increased production of nitrite and tumor necrosis factor-α and increased expression of interleukin-1β, cyclooxygenase (COX-2), and inducible nitric oxide synthase. Carrageenan also induced the expression of nuclear factor-κB. The oral administration of DEC (50 mg/Kg) three days prior to the carrageenan challenge led to a significant reduction in all inflammation markers. The present findings demonstrate that DEC is a potential drug for the treatment of acute lung inflammation. PMID:24550603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Kimberly A.
2009-08-01
The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.
Optimal segmentation and packaging process
Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.
1999-01-01
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.
21 CFR 181.34 - Sodium nitrite and potassium nitrite.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium nitrite are subject to prior sanctions issued by the U.S. Department of Agriculture for use as color...
21 CFR 181.34 - Sodium nitrite and potassium nitrite.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium nitrite are subject to prior sanctions issued by the U.S. Department of Agriculture for use as color...
21 CFR 181.34 - Sodium nitrite and potassium nitrite.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrite and potassium nitrite. 181.34... nitrite and potassium nitrite. Sodium nitrite and potassium nitrite are subject to prior sanctions issued... without sodium or potassium nitrate, in the curing of red meat and poultry products. [48 FR 1705, Jan. 14...
Nadtochiy, Sergiy M.; Redman, Emily K.
2010-01-01
The continually increasing rate of myocardial infarction (MI) in the Western world at least partly can be explained by a poor diet lacking in green vegetables, fruits, and fish, and enriched in food that contains saturated fat. In contrast, a number of epidemiological studies provide strong evidence highlighting the cardioprotective benefits of the Mediterranean diet enriched in green vegetables, fruits, fish and grape wine. Regular consumption of these products leads to an accumulation of nitrate/nitrite/NO•, polyunsaturated fatty acids (PUFA), and polyphenolic compounds, such as resveratrol, in the human body. Studies have confirmed that these constituents are bioactive exogenous mediators, which induce strong protection against MI. The aim of this review is to provide a critical, in-depth analysis of the cardioprotective pathways mediated by nitrite/NO•, PUFA, and phenolic compounds of grape wines discovered in the recent years, including cross-talk between different mechanisms and compounds. Overall, these findings may facilitate the design and synthesis of novel therapeutic tools for the treatment of MI. PMID:21454053
Oxidation phenomena and color properties of grape pomace on nitrite-reduced meat emulsion systems.
Riazi, Fatemeh; Zeynali, Fariba; Hoseini, Ebrahim; Behmadi, Homa; Savadkoohi, Sobhan
2016-11-01
The present study focuses on the effect of different levels of red grape pomace (1 and 2%, w/w) on the color changes, lipid oxidation (TBARS), antioxidant activity, microbial counts, total phenol content and sensory attributes of the sausages formulated with various levels of sodium nitrite (30, 60 and 120mg/kg). It was found that the addition of grape pomace (1%, w/w) in combination of reduced nitrite levels to the beef sausage samples reduced TBARS content and the degree of lipid oxidation. Antioxidant activity and total phenol contents were further evaluated based on DPPH scavenging activity method. A significant reduction in lightness (L*) and yellowness (b*) of systems containing grape pomace was observed, following by an increase in the oxidative stability and the radical scavenging activity. Acceptability of beef sausages was not significantly (P>0.05) affected by the addition of grape pomace and had relatively greater scores from a sensory point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue
2017-01-01
The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626
Increased formation of carcinogenic PAH metabolites in fish promoted by nitrite.
Shailaja, M S; Rajamanickam, Rani; Wahidulla, Solimabi
2006-09-01
Nitrite (NO(2)(-)), a highly reactive chemical species, accumulates in coastal waters as a result of pollution with nitrogenous waste and/or an imbalance in the bacterial processes of nitrification and denitrification. The present study probed the impact of nitrite (NO(2)(-)) on the metabolism of polycyclic aromatic hydrocarbons (PAHs) in fish. In a laboratory experiment, exposure of euryhaline fish, Oreochromis mossambicus to industrial effluents containing PAHs in the presence of NO(2)(-) enhanced the cytochrome P450-dependent biotransformation activity determined as 7-ethoxyresorufin-O-deethylase (EROD), by nearly 36% compared to the value observed in the absence of NO(2)(-) (50.2 +/- 6.74 pmol resorufin min(-1) g(-1) liver). Fixed wavelength fluorescence measurements in bile revealed maximum enhancement to have occurred in the metabolites of benzo[a]pyrene, a carcinogenic PAH. Lasting, sublethal physiological deterioration was apparent in fish exposed simultaneously to an oil refinery effluent and NO(2)(-), from the unremittingly decreasing liver somatic index, even after the withdrawal of the contaminants.
Dooley, D M; Moog, R S; Liu, M Y; Payne, W J; LeGall, J
1988-10-15
Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue copper proteins establish that both the 458 and 585 nm bands are associated with Cu(II)-S(Cys) chromophores. A histidine ligand probably is also present. Different sets of vibrational frequencies are observed with 457.9 nm (ambient) or 476.1 nm (77 K) excitation as compared with 590 nm (ambient) or 593 nm (77 K) excitation. Excitation profiles indicate that the 458 and 585 nm absorption bands are associated with separate [Cu(II)-S(Cys)N(His)] sites or with inequivalent and uncoupled cysteine ligands in the same site. The former possibility is considered to be more likely.
Hüsler, B R.; Blum, J W.
2001-05-01
There is marked endogenous production of nitrate in young calves. Here we have studied the contribution of exogenous nitrate and nitrite to plasma concentrations and urinary excretion of nitrite and nitrate in milk-fed calves. In experiment 1, calves were fed 0 or 200 &mgr;mol nitrate or nitrite/kg(0.75) or 100 &mgr;mol nitrite plus 100 &mgr;mol nitrate/kg(0.75) with milk for 3 d. In experiment 2, calves were fed 400 &mgr;mol nitrate or nitrite/kg(0.75) with milk for 1 d. Plasma nitrate rapidly and comparably increased after feeding nitrite, nitrate or nitrite plus nitrate. The rise of plasma nitrate was greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. Plasma nitrate decreased slowly after the 3-d administration of 200 &mgr;mol nitrate or nitrite/kg(0.75) and reached pre-experimental concentrations 4 d later. Urinary nitrate excretions nearly identically increased if nitrate, nitrite or nitrite plus nitrate were administered and excreted amounts were greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. After nitrite ingestion plasma nitrite only transiently increased after 2 and 4 h and urinary excretion rates remained unchanged. Plasma nitrate concentration remained unchanged if milk was not supplemented with nitrite or nitrate. Nitrate concentrations were stable for 24 h after addition of nitrite to full blood in vitro, whereas nitrite concentrations decreased within 2 h. In conclusion, plasma nitrate concentrations and urinary nitrate excretions are enhanced dose-dependently by feeding low amounts of nitrate and nitrite, whereas after ingested nitrite only a transient and small rise of plasma nitrite is observed because of rapid conversion to nitrate.
Pencil graphite leads as simple amperometric sensors for microchip electrophoresis.
Natiele Tiago da Silva, Eiva; Marques Petroni, Jacqueline; Gabriel Lucca, Bruno; Souza Ferreira, Valdir
2017-11-01
In this work we demonstrate, for the first time, the use of inexpensive commercial pencil graphite leads as simple amperometric sensors for microchip electrophoresis. A PDMS support containing one channel was fabricated through soft lithography and sanded pencil graphite leads were inserted into this channel to be used as working electrodes. The electrochemical and morphological characterization of the sensor was carried out. The graphite electrode was coupled to PDMS microchips in end-channel configuration and electrophoretic experiments were performed using nitrite and ascorbate as probe analytes. The analytes were successfully separated and detected in well-defined peaks with satisfactory resolution using the microfluidic platform proposed. The repeatability of the pencil graphite electrode was satisfactory (RSD values of 1.6% for nitrite and 12.3% for ascorbate, regarding the peak currents) and its lifetime was estimated to be ca. 700 electrophoretic runs over a cost of ca. $ 0.05 per electrode. The limits of detection achieved with this system were 2.8 μM for nitrite and 5.7 μM for ascorbate. For proof of principle, the pencil graphite electrode was employed for the real analysis of well water samples and nitrite was successfully quantified at levels below its maximum contaminant level established in Brazil and US. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim
2007-01-01
A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.
NASA Astrophysics Data System (ADS)
Mahon, D. F.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.
2013-12-01
Cosmic-ray muons are highly penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. A prototype scintillating-fibre detector has been developed for this application, consisting of two tracking modules above and below the volume to be assayed. Each module comprises two orthogonal planes of 2 mm fibres. The modular configuration allows the reconstruction of the initial and scattered muon trajectories which enable the container content, with respect to atomic number Z, to be determined. Fibre signals are read out by Hamamatsu H8500 MAPMTs with two fibres coupled to each pixel via dedicated pairing schemes developed to avoid space point ambiguities and retain the high spatial resolution of the fibres. A likelihood-based image reconstruction algorithm was developed and tested using a GEANT4 simulation of the prototype system. Images reconstructed from this simulation are presented in comparison with experimental results taken with test objects. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.
Van Hulle, S W H; Callens, J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P
2012-01-01
This contribution deals with NO and N2O emissions during autotrophic nitrogen removal in a granular sludge reactor. Two possible model scenarios describing this emission by ammonium- oxidizing biomass have been compared in a simulation study of a granular sludge reactor for one-stage partial nitritation--Anammox. No significant difference between these two scenarios was noticed. The influence of the bulk oxygen concentration, granule size, reactor temperature and ammonium load on the NO and N2O emissions has been assessed. The simulation results indicate that emission maxima of NO and N2O coincide with the region for optimal Anammox conversion. Also, most of the NO and N2O are present in the off-gas, owing to the limited solubility of both gases. The size of granules needs to be large enough not to limit optimal Anammox activity, but not too large as this implies an elevated production of N2O. Temperature has a significant influence on N2O emission, as a higher temperature results in a better N-removal efficiency and a lowered N2O production. Statistical analysis of the results showed that there is a strong correlation between nitrite accumulation and N2O production. Further, three regions of operation can be distinguished: a region with high N2O, NO and nitrite concentration; a region with high N2 concentrations and, as such, high removal percentages; and a region with high oxygen and nitrate concentrations. There is some overlap between the first two regions, which is in line with the fact that maximum emission of NO and N2O coincides with the region for optimal Anammox conversion.
Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahey, N.M.; Smith, M.M.; Voeks, A.M.
The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program.more » Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.« less
Redondo-Solano, Mauricio; Valenzuela-Martinez, Carol; Cassada, David A; Snow, Daniel D; Juneja, Vijay K; Burson, Dennis E; Thippareddi, Harshavardhan
2013-09-01
The effect of nitrite and erythorbate on Clostridium perfringens spore germination and outgrowth in ham during abusive cooling (15 h) was evaluated. Ham was formulated with ground pork, NaNO2 (0, 50, 100, 150 or 200 ppm) and sodium erythorbate (0 or 547 ppm). Ten grams of meat (stored at 5 °C for 3 or 24 h after preparation) were transferred to a vacuum bag and inoculated with a three-strain C. perfringens spore cocktail to obtain an inoculum of ca. 2.5 log spores/g. The bags were vacuum-sealed, and the meat was heat treated (75 °C, 20 min) and cooled within 15 h from 54.4 to 7.2 °C. Residual nitrite was determined before and after heat treatment using ion chromatography with colorimetric detection. Cooling of ham (control) stored for 3 and 24 h, resulted in C. perfringens population increases of 1.46 and 4.20 log CFU/g, respectively. For samples that contained low NaNO2 concentrations and were stored for 3 h, C. perfringens populations of 5.22 and 2.83 log CFU/g were observed with or without sodium erythorbate, respectively. Residual nitrite was stable (p > 0.05) for both storage times. Meat processing ingredients (sodium nitrite and sodium erythorbate) and their concentrations, and storage time subsequent to preparation of meat (oxygen content) affect C. perfringens spore germination and outgrowth during abusive cooling of ham. Copyright © 2013 Elsevier Ltd. All rights reserved.
Daneshvar Tarigh, Ghazale; Shemirani, Farzaneh
2014-10-01
This paper describes an innovative and rapidly dispersive magnetic solid phase extraction spectrofluorimetry (DMSPE-FL) method for the analysis of trace amounts of nitrite in some environmental water samples. The method includes derivatization of aqueous nitrite with 2, 3-diaminonaphthalene (DAN), analysis of highly fluorescent 2, 3-naphthotriazole (NAT) derivative using spectrofluorimetry after DSPME. The novelty of our method is based on forming NAT that was independent with the pH-responsive and was adsorbed on MMWCNT by hydrophobic attractions in both acidic and basic media. The extraction efficiency of the sorbent was investigated by extraction of nitrite. The optimum extraction conditions for NO2(-) were obtained as of extraction time, 1.5 min; 10mg sorbent from 160 mL of the sample solution, and elution with 1 mL of acetone/KOH. Under the optimal conditions, the calibration curves were obtained in the range of 0.1-80 µg L(-1) (R(2)=0.999) and LOD (S/N=3) was obtained in 34 ng L(-1). Relative standard deviations (RSD) were 0.6 % (five replicates at 5 μg L(-1)). In addition, the feasibility of the method was demonstrated with extraction and determination of nitrite from some real samples containing tap, mineral, sea, rain, snow and ground waters, with the recovery in standard addition to real matrix of 94-102 % and RSDs of 1.8-10.6%. Copyright © 2014 Elsevier B.V. All rights reserved.
Osada, K; Hoshina, S; Nakamura, S; Sugano, M
2000-09-01
The levels of cholesterol oxidation derivatives (OxChol) in eight commercial species of meat products were examined. These products contained more than 1 mg/100 g of OxChol, and 7beta-hydroxycholesterol + 5beta-epoxycholesterol (111-1092 microg/100 g), 5alpha-epoxycholesterol (80-712 microg/100 g), cholestanetriol (0-368 microg/100 g), and 7-ketocholesterol (708-1204 microg/100 g) were detected. To know the interaction of sodium nitrite supplementation against cholesterol oxidation in meat products, sausage was produced with or without varying levels of sodium nitrite and stored in the refrigerator for 15 days. As a result, cholesterol oxidation in sausage was inhibited by addition of sodium nitrite in a dose-dependent manner. This observation may be associated with inactivation of O(2)(-) radical and stabilization of polyunsaturated fatty acids (PUFAs). In fact, the levels of OxChol in sausage increased, accompanying the decrease of coexisting linoleic acid when sodium nitrite was not added to sausage meat. Thus, cholesterol oxidation in meat products seems to be considarably promoted by the oxidation of coexisting PUFAs. On the other hand, additive apple polyphenol also inhibited linoleic acid oxidation in sausage and then suppressed cholesterol oxidation through its radical scavenging effects. Therefore, apple polyphenol, having a large amount of an oligomer of catechin, may interfere with cholesterol oxidation in meat processing or storage of meat products through its antioxidative action and be useful as a new antioxitant for meat products when it is added to the original meat before processing.
Urinary Excretion of N-Nitroso Compounds in Rats Fed Sodium Nitrite and/or Hot Dogs
2015-01-01
Nitrite-treated meat is a reported risk factor for colon cancer. Mice that ingested sodium nitrite (NaNO2) or hot dogs (a nitrite-treated product) showed increased fecal excretion of apparent N-nitroso compounds (ANC). Here, we investigated for the first time whether rats excrete increased amounts of ANC in their urine after they are fed NaNO2 and/or hot dogs. Rats were treated for 7 days with NaNO2 in drinking water or were fed hot dogs. Their 24 h urine samples were analyzed for ANC by thermal energy analysis on days 1–4 after nitrite or hot dog treatment was stopped. For two rats fed 480 mg NaNO2/L drinking water, mean urinary ANC excretion on days 1–4 was 30, 5.2, 2.5, and 0.8 nmol/day, respectively. For two to eight rats/dose given varied NaNO2 doses, mean urinary ANC output on day 1 increased from 0.9 (for no nitrite) to 37 (for 1000 mg NaNO2/L drinking water) nmol ANC/day. Urine samples of four rats fed 40–60% hot dogs contained 12–13 nmol ANC on day 1. Linear regression analysis showed highly significant correlations between urinary ANC excretion on day 1 after stopping treatment and varied (a) NaNO2 level in drinking water for rats fed semipurified or commercials diet and (b) hot dog levels in the diet. Some correlations remained significant up to 4 days after nitrite treatment was stopped. Urinary output of ANC precursors (compounds that yield ANC after mild nitrosation) for rats fed semipurified or commercial diet was 11–17 or 23–48 μmol/day, respectively. Nitrosothiols and iron nitrosyls were not detected in urinary ANC and ANCP. Excretion of urinary ANC was about 60% of fecal ANC excretion for 1 to 2 days after NaNO2 was fed. Administered NaNO2 was not excreted unchanged in rat urine. We conclude that urinary ANC excretion in humans could usefully be surveyed to indicate exposure to N-nitroso compounds. PMID:25183213
Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong
2015-01-01
The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.
Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel
NASA Astrophysics Data System (ADS)
Janney, D. E.; Keiser, D. D.
2003-09-01
Argonne National Laboratory has developed a pyroprocessing-based technique for conditioning spent sodium-bonded nuclear-reactor fuel in preparation for long-term disposal. The technique produces a metallic waste form whose nominal composition is stainless steel with 15 wt.% Zr (SS-15Zr), up to ˜ 11 wt.% actinide elements (primarily uranium), and a few percent metallic fission products. Actual and simulated waste forms show similar eutectic microstructures with approximately equal proportions of iron solid solution phases and Fe-Zr intermetallics. This article reports on an analysis of simulated waste forms containing uranium, neptunium, and plutonium.
Nitrification can be a problem in distribution systems where chloramines are used as secondary disinfectants. A very rapid monochloramine residual loss is often associated with the onset of nitrification. During nitrification, ammonia-oxidizing bacteria biologically oxidize fre...
Raat, Nicolaas J.H.; Noguchi, Audrey C.; Liu, Virginia B.; Raghavachari, Nalini; Liu, Delong; Xu, Xiuli; Shiva, Sruti; Munson, Peter J.; Gladwin, Mark T.
2009-01-01
Dietary nitrate, found in abundance in green vegetables, can be converted to the cytoprotective molecule nitrite by oral bacteria, suggesting that nitrate and nitrite may represent active cardioprotective constituents of the Mediterranean diet. We therefore tested the hypothesis that dietary nitrate and nitrite levels modulate tissue damage and ischemic gene expression in a mouse liver ischemia-reperfusion model. We found that stomach content, plasma, heart and liver nitrite levels were significantly reduced after dietary nitrate and nitrite depletion, and could be restored to normal levels with nitrite supplementation in water. Remarkably, we confirmed that basal nitrite levels significantly reduced liver injury after ischemia-reperfusion. Consistent with an effect of nitrite on the post-translational modification of complex I of the mitochondrial electron transport chain, the severity of liver infarction was inversely proportional to complex I activity after nitrite repletion in the diet. The transcriptional response of dietary nitrite after ischemia was more robust than after normoxia, suggesting a hypoxic potentiation of nitrite-dependent transcriptional signaling. Our studies indicate that normal dietary nitrate and nitrite levels modulate ischemic stress responses and hypoxic gene expression programs, supporting the hypothesis that dietary nitrate and nitrite are cytoprotective components of the diet. PMID:19464364
21 CFR 181.34 - Sodium nitrite and potassium nitrite.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red meat...
21 CFR 181.34 - Sodium nitrite and potassium nitrite.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red meat...
NASA Astrophysics Data System (ADS)
Luo, Zuoyong; Wang, Baojie; Liu, Mei; Jiang, Keyong; Liu, Mingxing; Wang, Lei
2014-07-01
Different amounts of vitamin C were added to diets fed to juveniles (2.5 ± 0.15 g) of sea cucumber Apostichopus japonic u s (Selenka) in an attempt to reduce the stress response of specimens exposed to nitrite stress. A commercial feed was used as the control diet and three experimental diets were made by supplementing 1 000, 1 500, or 2 000 mg vitamin C/kg diet to control diet separately in a 45-day experiment. Sea cucumbers were exposed to three different levels (0.5, 1.0, and 1.5 mg/L) of nitrite stress for 4, 8, and 12 h at four time intervals (0, 15, 30, and 45 d). Growth of the animals was recorded during the experiment. Reactive oxygen species (ROS) (i.e. hydroxyl free radical (-OH), malondialdehyde (MDA) and total antioxidant capacity (T-AOC)) and antioxidant enzyme activities (i.e., superoxide dismutase (SOD) and catalase (CAT)) were measured. Response surface methodology (RSM) was used to analyze the effect of multiple factors on ROS indices and enzyme activities. Weight gain (WG) and special growth rate (SGR) of vitamin C supplementation groups were significantly higher than those of control group ( P < 0.05). The levels of -OH and MDA increased under exposure time extending and nitrite concentration increasing, whereas T-AOC level decreased. SOD and CAT activities increased at 4 h and 8 h and decreased at 12 h. During the days in which the animal consumed experimental diets, the levels of -OH and MDA decreased and that of T-AOC increased. This result suggests that diets containing vitamin C could reduce the nitrite stress response in the animals and increase their antioxidant capacity. The multifactor regression equation of growth performance, ROS indices, and duration of feeding results suggest that vitamin C supplementation of 1 400-2 000 mg/kg diet for 29-35 days could reduce effectively the effects of nitrite exposure.
Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content
NASA Technical Reports Server (NTRS)
Ma, Jin; Kahwaji, Chadi I.; Ni, Zhenmin; Vaziri, Nosratola D.; Purdy, Ralph E.
2003-01-01
The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.
Soil HONO Emissions and Its Potential Impact on the Atmospheric Chemistry and Nitrogen Cycle
NASA Astrophysics Data System (ADS)
Su, H.; Chen, C.; Zhang, Q.; Poeschl, U.; Cheng, Y.
2014-12-01
Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. The HONO emissions rates are estimated to be comparable to that of nitric oxide (NO) and could be an important source of atmospheric reactive nitrogen. Fertilized soils appear to be particularly strong sources of HONO. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. A new HONO-DNDC model was developed to simulate the evolution of HONO emissions in agriculture ecosystems. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. Reference: Su, H. et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011.
Suzuki, Yasutada; Aruga, Terutomi; Kuwahara, Hiroyuki; Kitamura, Miki; Kuwabara, Tetsuo; Kawakubo, Susumu; Iwatsuki, Masaaki
2004-06-01
A portable colorimeter using a red-green-blue light-emitting diode as a light source has been developed. An embedded controller sequentially turns emitters on and off, and acquires the signals detected by two photo diodes synchronized with their blinking. The controller calculates the absorbance and displays it on a liquid-crystal display. The whole system, including a 006P dry cell, is contained in a 100 x 70 x 50 mm aluminum case and its mass is 280 g. This colorimeter was successfully applied to the on-site determination of nitrite and iron in river-water.
Damacena-Angelis, Célio; Oliveira-Paula, Gustavo H; Pinheiro, Lucas C; Crevelin, Eduardo J; Portella, Rafael L; Moraes, Luiz Alberto B; Tanus-Santos, Jose E
2017-08-01
Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite ( 15 N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15 N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the Michaelis constant. Together, our results show that nitrate inhibits XOR-mediated NO production from nitrite, and this mechanism may explain how nitrate attenuates the vascular and blood pressure responses to nitrite. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Regulation of nitrite transport in red blood cells by hemoglobin oxygen fractional saturation.
Vitturi, Dario A; Teng, Xinjun; Toledo, José C; Matalon, Sadis; Lancaster, Jack R; Patel, Rakesh P
2009-05-01
Allosteric regulation of nitrite reduction by deoxyhemoglobin has been proposed to mediate nitric oxide (NO) formation during hypoxia. Nitrite is predominantly an anion at physiological pH, raising questions about the mechanism by which it enters the red blood cell (RBC) and whether this is regulated and coupled to deoxyhemoglobin-mediated reduction. We tested the hypothesis that nitrite transport by RBCs is regulated by fractional saturation. Using human RBCs, nitrite consumption was faster at lower fractional saturations, consistent with faster reactions with deoxyheme. A membrane-based regulation was suggested by slower nitrite consumption with intact versus lysed RBCs. Interestingly, upon nitrite addition, intracellular nitrite concentrations attained a steady state that, despite increased rates of consumption, did not change with decreasing oxygen tensions, suggesting a deoxygenation-sensitive step that either increases nitrite import or decreases the rate of nitrite export. A role for anion exchanger (AE)-1 in the control of nitrite export was suggested by increased intracellular nitrite concentrations in RBCs treated with DIDS. Moreover, deoxygenation decreased steady-state levels of intracellular nitrite in AE-1-inhibited RBCs. Based on these data, we propose a model in which deoxyhemoglobin binding to AE-1 inhibits nitrite export under low oxygen tensions allowing for the coupling between deoxygenation and nitrite reduction to NO along the arterial-to-venous gradient.
Nitrification can be a problem in distribution systems where chloramines are used as secondary disinfectants. A very rapid monochloramine residual loss is often associated with the onset of nitrification. During nitrification, ammonia-oxidizing bacteria biologically oxidize fre...
Le Roux, Xavier; Bouskill, Nicholas J.; Niboyet, Audrey; ...
2016-05-17
Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO 2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundancemore » and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO 2 +Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Roux, Xavier; Bouskill, Nicholas J.; Niboyet, Audrey
Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO 2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundancemore » and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO 2 +Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.« less
Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun
2015-01-01
Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications. PMID:26446494
Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun
2015-10-08
Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications.
Investigation of gaseous nuclear rocket technology
NASA Technical Reports Server (NTRS)
Kendall, J. S.
1972-01-01
The experimental and theoretical investigations conducted during the period from September 1969 through September 1972 are reported which were directed toward obtaining information necessary to determine the feasibility of the full-scale nuclear light bulb engine, and of small-scale nuclear tests involving fissioning uranium plasmas in a unit cell installed in a driver reactor, such as the Nuclear Furnace. Emphasis was placed on development of RF simulations of conditions expected in nuclear tests in the Nuclear Furnace. The work included investigations of the following: (1) the fluid mechanics and containment characteristics of one-component and two-component vortex flows, both unheated and RF-induction heated; (2) heating of particle-seeded streams by thermal radiation from a dc arc to simulate propellant heating; (3) condensation and separation phenomena for metal-vapor/heated-gas mixtures to provide information for conceptual designs of components of fuel exhaust and recycle systems; (4) the characteristics of the radiant energy spectrum emitted from the fuel region, with emphasis on definition of fuel and buffer-gas region seed systems to reduce the ultraviolet radiation emitted from the nuclear fuel; and (5) the effects of nuclear radiation on the optical transmission characteristics of transparent materials.
Kishikawa, Hiroshi; Nishida, Jiro; Ichikawa, Hitoshi; Kaida, Shogo; Matsukubo, Takashi; Miura, Soichiro; Morishita, Tetsuo; Hibi, Toshifumi
2011-01-01
In the normal acid-secreting stomach, luminally generated nitric oxide, which contributes to carcinogenesis in the proximal stomach, is associated with the concentration of nitrate plus nitrite (nitrate/nitrite) in gastric juice. We investigated whether the serum nitrate/nitrite concentration is associated with that of gastric juice and whether it can be used as a serum marker. Serum and gastric juice nitrate/nitrite concentration, Helicobacter pylori antibody, and gastric pH were measured in 176 patients undergoing upper endoscopy. Multiple regression analysis revealed that serum nitrate/nitrite concentration was the best independent predictor of gastric juice nitrate/nitrite concentration. On single regression analysis, serum and gastric juice nitrate/nitrite concentration were significantly correlated, according to the following equation: gastric juice nitrate/nitrite concentration (μmol/l) = 3.93 - 0.54 × serum nitrate/nitrite concentration (μmol/l; correlation coefficient = 0.429, p < 0.001). In analyses confined to subjects with gastric pH less than 2.0, and in those with serum markers suggesting normal acid secretion (pepsinogen-I >30 ng/ml and negative H. pylori antibody), the serum nitrate/nitrite concentration was an independent predictor of the gastric juice nitrate/nitrite concentration (p < 0.001). Measuring the serum nitrate/nitrite concentration has potential in estimating the gastric juice nitrate/nitrite concentration. The serum nitrate/nitrite concentration could be useful as a marker for mutagenesis in the proximal stomach. Copyright © 2011 S. Karger AG, Basel.
[Prevalence of new designer drugs and their legal status in Japan].
Kikura-Hanajiri, Ruri; Uchiyama, Nahoko; Kawamura, Maiko; Ogata, Jun; Goda, Yukihiro
2013-01-01
In recent years, many analogs of narcotics have been widely distributed as easily available psychotropic substances and have become a serious problem in Japan. To counter the spread of these non-controlled substances, the Pharmaceutical Affairs Law in Japan was amended in 2006 to establish a new category; Designated Substances in order to more strictly control these substances. In April 2007, 31 compounds and 1 plant were first controlled as Designated Substances. Before 2007, the major compounds distributed in the Japanese illegal drug market were tryptamines, phenethylamines and piperazines. Alkyl nitrites, such as isobutyl nitrite and isopentyl nitrite, were also widely distributed. After they were listed as Narcotics or Designated Substances in 2007, these compounds, especially the tryptamines, quickly disappeared from the market. In their place, cathinone derivatives have been widely distributed, as well as different phenethylamines and piperazines. Additionally, in recent years, new herbal products containing synthetic cannabinoids have appeared globally. As at July 2012, 78 substances (including 1 plant; Salvia divinorum) were listed in the category of Designated Substances. They were 13 tryptamines, 17 phenethylamines, 11 cathinones, 4 piperazines, 23 synthetic cannabinoids, 6 alkyl nitrites, 3 other compounds and 1 plant. In this review, we show our survey of the spread of new designer drugs in Japan, focusing especially on synthetic cannabinoids and cathinone derivatives. Also, the prevalence and legal status of these substances in other countries will be presented.
Lopez-Ruiz, Nuria; Curto, Vincenzo F; Erenas, Miguel M; Benito-Lopez, Fernando; Diamond, Dermot; Palma, Alberto J; Capitan-Vallvey, Luis F
2014-10-07
In this work, an Android application for measurement of nitrite concentration and pH determination in combination with a low-cost paper-based microfluidic device is presented. The application uses seven sensing areas, containing the corresponding immobilized reagents, to produce selective color changes when a sample solution is placed in the sampling area. Under controlled conditions of light, using the flash of the smartphone as a light source, the image captured with the built-in camera is processed using a customized algorithm for multidetection of the colored sensing areas. The developed image-processing allows reducing the influence of the light source and the positioning of the microfluidic device in the picture. Then, the H (hue) and S (saturation) coordinates of the HSV color space are extracted and related to pH and nitrite concentration, respectively. A complete characterization of the sensing elements has been carried out as well as a full description of the image analysis for detection. The results show good use of a mobile phone as an analytical instrument. For the pH, the resolution obtained is 0.04 units of pH, 0.09 of accuracy, and a mean squared error of 0.167. With regard to nitrite, 0.51% at 4.0 mg L(-1) of resolution and 0.52 mg L(-1) as the limit of detection was achieved.
Hwang, Ko-Eun; Kim, Hyun-Wook; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Kim, Cheon-Jei
2014-01-01
The application of ganghwa mugwort (GM), ascorbic acid (AC), and their combinations for reduction of residual nitrite contents was analyzed in pork sausages during storage of 28 d. Six treatments of pork sausages contained the following: Control (no antioxidant added), AC (0.05% AC), GM 0.1 (0.1% GM), GM 0.2 (0.2% GM), AC+GM 0.1 (0.05% AC + 0.1% GM) and AC+GM 0.2 (0.05% AC + 0.2% GM). Results showed that the mixture of 0.05% AC and 0.2% GM was most effective for reducing thiobarbituric acid reactive substances (TBARS) and residual nitrite contents than the control and GM added sausages alone (p<0.05). The color values of all treatments were significantly affected by adding GM (either alone or with AC). Additionally, the total color difference (ΔE) and hue angle (H°) values of treatments added with GM were higher than those of the control as the amount of GM increased (p<0.05). However, there were no significant differences in the pH values between the control and all treatments during the storage period (p>0.05). Our results showed possible applications of antioxidant combination, for preventing the lipid oxidation and decreasing the residual nitrite levels of meat products. PMID:26760936
Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuentes, R. E.; Wyrwas, R. B.
2016-05-01
During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting inmore » dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.« less
Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation
Qian, Jin; Zhou, Junmei; Zhang, Zhen; Liu, Rulong; Wang, Qilin
2016-01-01
A novel biological nitrogen removal system based on nitritation coupled with thiosulfate-driven denitritation (Nitritation-TDD) was developed to achieve a high nitrogen removal rate and low sludge production. A nitritation sequential batch reactor (nitritation SBR) and an anoxic up-flow sludge bed (AnUSB) reactor were applied for effective nitritation and denitritation, respectively. Above 75% nitrite was accumulated in the nitritation SBR with an influent ammonia loading rate of 0.43 kg N/d/m3. During Nitritation-TDD operation, particle sizes (d50) of the sludge decreased from 406 to 225 um in nitritation SBR and from 327–183 um in AnUSB reactor. Pyrosequencing tests revealed that ammonium-oxidizing bacteria (AOB) population was stabilized at approximately 7.0% (calculated as population of AOB-related genus divided by the total microbial population) in the nitritation SBR. In contrast, nitrite-oxidizing bacteria (NOB) population decreased from 6.5–0.6% over the same time, indicating the effective nitrite accumulation in the nitritation SBR. Thiobacillus, accounting for 34.2% in the AnUSB reactor, was mainly responsible for nitrogen removal via autotrophic denitritation, using an external source of thiosulfate as electron donor. Also, it was found that free nitrous acid could directly affect the denitritation activity. PMID:27272192
Chloride inhibition of nitrite uptake for non-teleost Actinopterygiian fishes.
Boudreaux, Perry J; Ferrara, Allyse M; Fontenot, Quenton C
2007-06-01
Fish that transport environmental chloride with a gill uptake mechanism (gill epithelial Cl(-)/HCO(3)(-)cotransport exchange system), also transport nitrite into plasma through the same mechanism. Because of the relationship between nitrite uptake and the gill chloride uptake mechanism, nitrite uptake can provide insight regarding the method of chloride uptake for fish. This study was designed to determine if non-teleost fishes concentrate nitrite in their plasma, and to determine if chloride inhibits nitrite uptake in non-teleost fish. To determine if bowfin Amia calva, spotted gar Lepisosteus oculatus, alligator gar Atractosteus spatula, and paddlefish Polyodon spathula concentrate environmental nitrite in their plasma, individuals were exposed to concentrations of 0, 1, 10, or 100 mg/L nitrite-N. After exposure, all species had plasma nitrite-N concentrations greater than environmental levels. To determine if chloride inhibits nitrite uptake for spotted gar, alligator gar, and paddlefish, fish were exposed to 1 mg/L nitrite-N and 20 mg/L chloride as calcium chloride, or to 1 mg/L nitrite-N only. Chloride effectively prevented nitrite from being concentrated in the plasma of all species. It appears that non-teleost fish concentrate nitrite in their plasma via their chloride uptake mechanism and that this is an ancestral characteristic for teleost.
Erythrocytes are the major intravascular storage sites of nitrite in human blood
Dejam, André; Hunter, Christian J.; Pelletier, Mildred M.; Hsu, Lewis L.; Machado, Roberto F.; Shiva, Sruti; Power, Gordon G.; Kelm, Malte; Gladwin, Mark T.; Schechter, Alan N.
2005-01-01
Plasma levels of nitrite ions have been used as an index of nitric oxide synthase (NOS) activity in vivo. Recent data suggest that nitrite is a potential intravascular repository for nitric oxide (NO), bioactivated by a nitrite reductase activity of deoxyhemoglobin. The precise levels and compartmentalization of nitrite within blood and erythrocytes have not been determined. Nitrite levels in whole blood and erythrocytes were determined using reductive chemiluminescence in conjunction with a ferricyanide-based hemoglobin oxidation assay to prevent nitrite destruction. This method yields sensitive and linear measurements of whole blood nitrite over 24 hours at room temperature. Nitrite levels measured in plasma, erythrocytes, and whole blood from 15 healthy volunteers were 121 plus or minus 9, 288 plus or minus 47, and 176 plus or minus 17 nM, indicating a surprisingly high concentration of nitrite within erythrocytes. The majority of nitrite in erythrocytes is located in the cytosol unbound to proteins. In humans, we found a significant artery-to-vein gradient of nitrite in whole blood and erythrocytes. Shear stress and acetylcholine-mediated stimulation of endothelial NOS significantly increased venous nitrite levels. These studies suggest a dynamic intravascular NO metabolism in which endothelial NOS-derived NO is stabilized as nitrite, transported by erythrocytes, and consumed during arterial-to-venous transit. (Blood. 2005;106:734-739) PMID:15774613
GENIE Production Release 2.10.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, M.; Andreopoulos, C.; Athar, M.
2015-12-25
GENIE is a neutrino Monte Carlo event generator that simulates the primary interaction of a neutrino with a nuclear target, along with the subsequent propagation of the reaction products through the nuclear medium. It additionally contains libraries for fully-featured detector geometries and for managing various types of neutrino flux. This note details recent updates to GENIE, in particular, changes introduced into the newest production release, version 2.10.0.
Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís
2013-01-01
The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427
In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors.
Cuartero, Maria; Crespo, Gaston; Cherubini, Thomas; Pankratova, Nadezda; Confalonieri, Fabio; Massa, Francesco; Tercier-Waeber, Mary-Lou; Abdou, Melina; Schäfer, Jörg; Bakker, Eric
2018-04-03
A new submersible probe for the in situ detection of nitrate, nitrite, and chloride in seawater is presented. Inline coupling of a desalination unit, an acidification unit, and a sensing flow cell containing all-solid-state membrane electrodes allows for the potentiometric detection of nitrate and nitrite after removal of the key interfering ions in seawater, chloride and hydroxide. Thus, the electrodes exhibited attractive analytical performances for the potentiometric detection of nitrate and nitrite in desalinated and acidified seawater: fast response time ( t 95 < 12 s), excellent stability (long-term drifts of <0.5 mV h -1 ), good reproducibility (calibration parameter deviation of <3%), and satisfactory accuracy (uncertainties <8%Diff compared to reference technique). The desalination cell, which can be repetitively used for about 30 times, may additionally be used as an exhaustive, and therefore calibration-free, electrochemical sensor for chloride and indirect salinity detection. The detection of these two parameters together with nitrate and nitrite may be useful for the correlation of relative changes in macronutrient levels with salinity cycles, which is of special interest in recessed coastal water bodies. The system is capable of autonomous operation during deployment, with routines for repetitive measurements (every 2 h), data storage and management, and computer visualization of the data in real time. In situ temporal profiles observed in the Arcachon Bay (France) showed valuable environmental information concerning tide-dependent cycles of nitrate and chloride levels in the lagoon, which are here observed for the first time using direct in situ measurements. The submersible probe based on membrane electrodes presented herein may facilitate the study of biogeochemical processes occurring in marine ecosystems by the direct monitoring of nitrate and nitrite levels, which are key chemical targets in coastal waters.
Nitrate ammonification in mangrove soils: a hidden source of nitrite?
Balk, Melike; Laverman, Anniet M.; Keuskamp, Joost A.; Laanbroek, Hendrikus J.
2015-01-01
Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903
Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís
2013-01-01
The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.
Nitrate ammonification in mangrove soils: a hidden source of nitrite?
Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J
2015-01-01
Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.
Crashworthiness of the AT-400A shipping container
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruda, J.D.; York, A.R. II
1996-05-01
Shipping containers used for transporting radioactive material must be certified using federal regulations. These regulations require the container be tested or evaluated in severe mechanical and thermal environments which represent hypothetical accident scenarios. The containers are certified if the inner container remains leaktight. This paper presents results from finite element simulations of the accidents which include subjecting the AT-400A (for Pu from dismantled nuclear weapons) to a 30-foot (9 m) drop onto an unyielding target and crushing the container with an 1100 lb (500 kg) steel plate dropped from 30 feet. The nonlinear PRONTO3D finite element results were validated usingmore » test results. The simulations of the various impacts and crushes identified trends and worst-case orientations. They also showed that there is a significant margin of safety based on the failure of the containment vessel.« less
Optimal segmentation and packaging process
Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.
1999-08-10
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.
Monte Carlo Simulation of a 12 MeV Cargo Container Inspection System
NASA Astrophysics Data System (ADS)
Ozcan, Ibrahim; Chandler, Katherine; Spaulding, Randy; Farfan, Eduardo
2007-05-01
After the terrorist events of 9/11, border security has become one of the most important issues in national security due to the large number of cargo containers entering the country. Screening of all cargo containers for nuclear materials should be performed during border inspections. The technical aspects of inspecting cargo containers using electron accelerators have been studied previously. However, the radiological protection aspects involved in these studies have not been fully considered. This screening process may accidentally harm operators, workers, and bystanders; as well as stowaways hiding inside the containers. In this research project, external doses were estimated at various locations near the inspection system. A 12-MeV linear accelerator (LINAC) was used in the experiment. The relationship between the various locations and doses were determined in this simulation. The simulation was performed using MCNPX. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B2.8
Xing, X H; Inoue, T; Tanji, Y; Unno, H
1999-01-01
In order to examine the microbial degradation of p-nitrophenol (PNP) by a mixed culture system and simultaneous removal of nitrite released via the degradation, an activated sludge retained in porous carrier particles and a suspension culture as a control were acclimated to artificial sewage containing PNP as the sole carbon source. The adaptation of microbes retained in porous carrier particles to PNP was faster than that of suspended microbes by more than 20 d. After microbial adaptation to PNP, it was degraded completely without significant accumulation of intermediate metabolites. The PNP degradation activity of the retained microbes was more than 2 times higher than that of the suspended microbes. By increasing the retained microbial concentration, nitrite released from the degraded PNP was removed by denitrification. This research demonstrates that using microbes retained in porous carrier particles is not only effective for reduction of acclimation time but also enables simultaneous removal of the nitrogen compounds resulting from the degradation of nitroaromatics.
NC10 bacteria in marine oxygen minimum zones
Padilla, Cory C; Bristow, Laura A; Sarode, Neha; Garcia-Robledo, Emilio; Gómez Ramírez, Eddy; Benson, Catherine R; Bourbonnais, Annie; Altabet, Mark A; Girguis, Peter R; Thamdrup, Bo; Stewart, Frank J
2016-01-01
Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic oxygen minimum zones (OMZs) off northern Mexico and Costa Rica. NC10 16S rRNA genes were detected at all sites, peaking in abundance in the anoxic zone with elevated nitrite and methane concentrations. Phylogenetic analysis of particulate methane monooxygenase genes further confirmed the presence of NC10. rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized to participate in O2-producing NO dismutation. These findings confirm pelagic OMZs as a niche for NC10, suggesting a role for this group in OMZ nitrogen, methane and oxygen cycling. PMID:26918666
Vega-Villa, K; Pluta, R; Lonser, R; Woo, S
2013-01-01
A long-term sodium nitrite infusion is intended for the treatment of vascular disorders. Phase I data demonstrated a significant nonlinear dose-exposure-toxicity relationship within the therapeutic dosage range. This study aims to develop a quantitative systems pharmacology model characterizing nitric oxide (NO) metabolome and methemoglobin after sodium nitrite infusion. Nitrite, nitrate, and methemoglobin concentration–time profiles in plasma and RBC were used for model development. Following intravenous sodium nitrite administration, nitrite undergoes conversion in RBC and tissue. Nitrite sequestered by RBC interacts more extensively with deoxyhemoglobin, which contributes greatly to methemoglobin formation. Methemoglobin is formed less-than-proportionally at higher nitrite doses as characterized with facilitated methemoglobin removal. Nitrate-to-nitrite reduction occurs in tissue and via entero-salivary recirculation. The less-than-proportional increase in nitrite and nitrate exposure at higher nitrite doses is modeled with a dose-dependent increase in clearance. The model provides direct insight into NO metabolome disposition and is valuable for nitrite dosing selection in clinical trials. PMID:23903463
Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie
2014-01-01
We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L−1 d−1, to 530 nmoles N L−1 d−1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations. PMID:25329300
Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie
2014-01-01
We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1) d(-1), to 530 nmoles N L(-1) d(-1), contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations.
Adhikari, Utpal Kumar; Rahman, M Mizanur
2017-04-01
The nirk gene encoding the copper-containing nitrite reductase (CuNiR), a key catalytic enzyme in the environmental denitrification process that helps to produce nitric oxide from nitrite. The molecular mechanism of denitrification process is definitely complex and in this case a theoretical investigation has been conducted to know the sequence information and amino acid composition of the active site of CuNiR enzyme using various Bioinformatics tools. 10 Fasta formatted sequences were retrieved from the NCBI database and the domain and disordered regions identification and phylogenetic analyses were done on these sequences. The comparative modeling of protein was performed through Modeller 9v14 program and visualized by PyMOL tools. Validated protein models were deposited in the Protein Model Database (PMDB) (PMDB id: PM0080150 to PM0080159). Active sites of nirk encoding CuNiR enzyme were identified by Castp server. The PROCHECK showed significant scores for four protein models in the most favored regions of the Ramachandran plot. Active sites and cavities prediction exhibited that the amino acid, namely Glycine, Alanine, Histidine, Aspartic acid, Glutamic acid, Threonine, and Glutamine were common in four predicted protein models. The present in silico study anticipates that active site analyses result will pave the way for further research on the complex denitrification mechanism of the selected species in the experimental laboratory. Copyright © 2016. Published by Elsevier Ltd.
Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite
NASA Technical Reports Server (NTRS)
McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.
1999-01-01
As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.
Merino, Leonardo; Darnerud, Per Ola; Toldrá, Fidel; Ilbäck, Nils-Gunnar
2016-01-01
The food additive nitrite (E249, E250) is commonly used in meat curing as a food preservation method. Because of potential negative health effects of nitrite, its use is strictly regulated. In an earlier study we have shown that the calculated intake of nitrite in children can exceed the acceptable daily intake (ADI) when conversion from dietary nitrate to nitrite is included. This study examined time-dependent changes in nitrite levels in four Swedish meat products frequently eaten by children: pork/beef sausage, liver paté and two types of chicken sausage, and how the production process, storage and also boiling (e.g., simmering in salted water) and frying affect the initial added nitrite level. The results showed a steep decrease in nitrite level between the point of addition to the product and the first sampling of the product 24 h later. After this time, residual nitrite levels continued to decrease, but much more slowly, until the recommended use-by date. Interestingly, this continuing decrease in nitrite was much smaller in the chicken products than in the pork/beef products. In a pilot study on pork/beef sausage, we found no effects of boiling on residual nitrite levels, but frying decreased nitrite levels by 50%. In scenarios of time-dependent depletion of nitrite using the data obtained for sausages to represent all cured meat products and including conversion from dietary nitrate, calculated nitrite intake in 4-year-old children generally exceeded the ADI. Moreover, the actual intake of nitrite from cured meat is dependent on the type of meat source, with a higher residual nitrite levels in chicken products compared with pork/beef products. This may result in increased nitrite exposure among consumers shifting their consumption pattern of processed meats from red to white meat products.
Merino, Leonardo; Darnerud, Per Ola; Toldrá, Fidel; Ilbäck, Nils-Gunnar
2016-01-01
ABSTRACT The food additive nitrite (E249, E250) is commonly used in meat curing as a food preservation method. Because of potential negative health effects of nitrite, its use is strictly regulated. In an earlier study we have shown that the calculated intake of nitrite in children can exceed the acceptable daily intake (ADI) when conversion from dietary nitrate to nitrite is included. This study examined time-dependent changes in nitrite levels in four Swedish meat products frequently eaten by children: pork/beef sausage, liver paté and two types of chicken sausage, and how the production process, storage and also boiling (e.g., simmering in salted water) and frying affect the initial added nitrite level. The results showed a steep decrease in nitrite level between the point of addition to the product and the first sampling of the product 24 h later. After this time, residual nitrite levels continued to decrease, but much more slowly, until the recommended use-by date. Interestingly, this continuing decrease in nitrite was much smaller in the chicken products than in the pork/beef products. In a pilot study on pork/beef sausage, we found no effects of boiling on residual nitrite levels, but frying decreased nitrite levels by 50%. In scenarios of time-dependent depletion of nitrite using the data obtained for sausages to represent all cured meat products and including conversion from dietary nitrate, calculated nitrite intake in 4-year-old children generally exceeded the ADI. Moreover, the actual intake of nitrite from cured meat is dependent on the type of meat source, with a higher residual nitrite levels in chicken products compared with pork/beef products. This may result in increased nitrite exposure among consumers shifting their consumption pattern of processed meats from red to white meat products. PMID:26743589
Bartholomay, Roy C.; Knobel, LeRoy L.; Tucker, Betty J.; Twining, Brian V.
2000-01-01
The U.S. Geological Survey, in response to a request from the U.S. Department of Energy?s Phtsburgh Naval Reactors Ofilce, Idaho Branch Office, sampled water from 13 wells during 1997?98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A totalof91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen qualityassurance samples also were collected and analyze~ seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however, some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.
Ustynyuk, Yuri A; Gavrikov, Alexei V; Sergeyev, Nikolay M
2006-11-28
The quantum-chemical simulation (DFT, PBE, TZ2p basis set) of the mechanism of catalytic hydrogenation of compounds containing R(n)X --> O semipolar bonds (R(n)X = N(2), Me(2)S, C(5)H(5)N, Ph(3)P) on the Wilkinson catalyst (Ph(3)P)(3)RhCl with para-hydrogen showed that this process proceeds with retention of proton nuclear spin correlation, which enables a principal possibility to synthesize para-H(2)O, i.e. the nuclear spin isomer of water with antiparallel proton spins, using this route.
Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang
2012-01-01
Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.
Yu, Yangyang; Zhao, Jianqiang; Wang, Sha; Zhao, Huimin; Ding, Xiaoqian; Gao, Kun
2017-12-01
Double-chamber microbial fuel cell was applied to investigate the performance of the electricity production and nitrite denitrification through feeding nitrite into the cathode. Factors influencing denitrification performance and power production, such as external resistance, influent nitrite concentration and Nitrite Oxygen Bacteria inhibitors, were studied. The results show that when the concentration of nitrite nitrogen and external resistance were 100 mg L -1 and 10 Ω, respectively, the nitrite denitrification reached the best state. The NaN 3 can inhibit nitrite oxidation effectively; meanwhile, the nitrite denitrification with N 2 O as the final products was largely improved. The [Formula: see text] was reduced to [Formula: see text], causing the cathode denitrification coulombic efficiency to exceed 100%. In chemoautotrophic bio-nitrification, microorganisms may utilize H 2 O to oxidize nitrite under anaerobic conditions. Proteobacteria might play a major role in the process of denitrification in MFC.
Dezfulian, Cameron; Olsufka, Michele; Fly, Deborah; Scruggs, Sue; Do, Rose; Maynard, Charles; Nichol, Graham; Kim, Francis
2018-01-01
Patients resuscitated from cardiac arrest have brain and cardiac injury. Recent animal studies suggest that the administration of sodium nitrite after resuscitation from 12min of asystole limits acute cardiac dysfunction and improves survival and neurologic outcomes. It has been hypothesized that low doses of IV sodium nitrite given during resuscitation of out of hospital cardiac arrest (OHCA) will improve survival. Low doses of sodium nitrite (e.g., 9.6mg of sodium nitrite) are safe in healthy individuals, however the effect of nitrite on blood pressure in resuscitated cardiac arrest patients is unknown. We performed a single-center, pilot trial of low dose sodium nitrite (1 or 9.6mg dose) vs. placebo in hospitalized out-of-hospital cardiac arrest patient to determine whether nitrite administration reduced blood pressure and whether whole blood nitrite levels increased in response to nitrite administration. This is the first reported study of sodium nitrite in cardiac arrest patients. Infusion of low doses of sodium nitrite in comatose survivors of OHCA (n=7) compared to placebo (n=4) had no significant effects on heart rate within 30min after infusion (70±20 vs. 78±3 beats per minute, p=0.18), systolic blood pressure (103±20 vs 108±15mmHg, p=0.3), or methemoglobin levels (0.92±0.33 vs. 0.70±0.26, p=0.45). Serum nitrite levels of 2-4μM were achieved within 15min of a 9.6mg nitrite infusion. Low dose sodium nitrite does not cause significant hemodynamic effect in patients with OHCA, which suggests that nitrite can be delivered safely in this critically ill patient population. Higher doses of sodium nitrite are necessary in order to achieve target serum level of 10μM. Copyright © 2017 Elsevier B.V. All rights reserved.
Isanta, Eduardo; Reino, Clara; Carrera, Julián; Pérez, Julio
2015-09-01
Partial nitritation for a low-strength wastewater at low temperature was stably achieved in an aerobic granular reactor. A bench-scale granular sludge bioreactor was operated in continuous mode treating an influent of 70 mg N-NH4(+) L(-1) to mimic pretreated municipal nitrogenous wastewater and the temperature was progressively decreased from 30 to 12.5 °C. A suitable effluent nitrite to ammonium concentrations ratio to a subsequent anammox reactor was maintained stable during 300 days at 12.5 °C. The average applied nitrogen loading rate at 12.5 °C was 0.7 ± 0.3 g N L(-1) d(-1), with an effluent nitrate concentration of only 2.5 ± 0.7 mg N-NO3(-) L(-1). The biomass fraction of nitrite-oxidizing bacteria (NOB) in the granular sludge decreased from 19% to only 1% in 6 months of reactor operation at 12.5 °C. Nitrobacter spp. where found as the dominant NOB population, whereas Nitrospira spp. were not detected. Simulations indicated that: (i) NOB would only be effectively repressed when their oxygen half-saturation coefficient was higher than that of ammonia-oxidizing bacteria; and (ii) a lower specific growth rate of NOB was maintained at any point in the biofilm (even at 12.5 °C) due to the bulk ammonium concentration imposed through the control strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liang, Fang; Du, Kui; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang
2015-12-28
To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m(2); temperature: 30°C; pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R(2) = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.; Mowrey, J.
1995-12-01
This report describes the design, development and testing of process controls for selected system operations in the Browns Ferry Nuclear Plant (BFNP) Reactor Water Cleanup System (RWCU) using a Computer Simulation Platform which simulates the RWCU System and the BFNP Integrated Computer System (ICS). This system was designed to demonstrate the feasibility of the soft control (video touch screen) of nuclear plant systems through an operator console. The BFNP Integrated Computer System, which has recently. been installed at BFNP Unit 2, was simulated to allow for operator control functions of the modeled RWCU system. The BFNP Unit 2 RWCU systemmore » was simulated using the RELAP5 Thermal/Hydraulic Simulation Model, which provided the steady-state and transient RWCU process variables and simulated the response of the system to control system inputs. Descriptions of the hardware and software developed are also included in this report. The testing and acceptance program and results are also detailed in this report. A discussion of potential installation of an actual RWCU process control system in BFNP Unit 2 is included. Finally, this report contains a section on industry issues associated with installation of process control systems in nuclear power plants.« less
21 CFR 177.1210 - Closures with sealing gaskets for food containers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... cetyl sulfate 1 percent. Sodium decylbenzenesulfonate Do. Sodium decyl sulfate Do. Sodium formaldehyde sulfoxylate 0.05 percent. Sodium lauryl sulfate 1 percent. Sodium lignin sulfonate 0.2 percent. Sodium myristyl sulfate (sodium tetradecyl sulfate) 0.6 percent. Sodium nitrite 0.2 percent; for use only in...
Characterization and inhibition of nitrite uptake in shortnose sturgeon fingerlings
Fontenot, Q.C.; Isely, J.J.; Tomasso, J.R.
1999-01-01
Efforts are underway to culture the endangered shortnose sturgeon Acipenser brevirostrum for possible reintroduction. As part of a larger project to develop culture techniques for this species, the uptake of nitrite was evaluated in fingerlings (16.5 ?? 4.85 g; mean ?? SD). Plasma nitrite concentrations increased significantly with exposure time (0-5 d) and dose (0-4 mg nitrite-N/L). Shortnose sturgeon fingerlings were able to concentrate nitrite in their plasma to more than 63 times the environmental concentration. Chloride, as either sodium chloride or calcium chloride, partially inhibited nitrite uptake. However, calcium chloride was a better inhibitor. After previous exposure (2 d at 2.13 ?? 0.080 mg nitrite-N/L) plasma nitrite-N decreased from 165.5 to 36.7 mg/L during a 3-d simultaneous exposure to 2.13 ?? 0.080 mg nitrite-N/L and treatment with 40 mg chloride/L as calcium chloride. The addition of calcium chloride to the water appeared to be an effective means of preventing nitrite uptake and treating nitrite toxicity in hatchery-reared shortnose sturgeon fingerlings.
A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Stewart, Eric; Canabal, Francisco
2016-01-01
The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.
Nitrite oxidation in the Namibian oxygen minimum zone.
Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel M M
2012-06-01
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in (15)N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (≤372 nM NO(2)(-) d(-1)) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ~9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO(3)(-) was re-oxidized back to NO(3)(-) via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.
Jensen, Frank B; Rohde, Sabina
2010-04-01
Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.
Trojanowicz, K; Plaza, E; Trela, J
2017-11-09
In the paper, the extension of mathematical model of partial nitritation-anammox process in a moving bed biofilm reactor (MBBR) is presented. The model was calibrated with a set of kinetic, stoichiometric and biofilm parameters, whose values were taken from the literature and batch tests. The model was validated with data obtained from: laboratory batch experiments, pilot-scale MBBR for a reject water deammonification operated at Himmerfjärden wastewater treatment and pilot-scale MBBR for mainstream wastewater deammonification at Hammarby Sjöstadsverk research facility, Sweden. Simulations were conducted in AQUASIM software. The proposed, extended model proved to be useful for simulating of partial nitritation/anammox process in biofilm reactor both for reject water and mainstream wastewater at variable substrate concentrations (influent total ammonium-nitrogen concentration of 530 ± 68; 45 ± 2.6 and 38 ± 3 gN/m 3 - for reject water - and two cases of mainstream wastewater treatment, respectively), temperature (24 ± 2.8; 15 ± 1.1 and 18 ± 0.5°C), pH (7.8 ± 0.2; 7.3 ± 0.1 and 7.4 ± 0.1) and aeration patterns (continuous aeration and intermittent aeration with variable dissolved oxygen concentrations and length of aerated and anoxic phases). The model can be utilized for optimizing and testing different operational strategies of deammonification process in biofilm systems.
Sviatenko, L K; Gorb, L; Leszczynska, D; Okovytyy, S I; Shukla, M K; Leszczynski, J
2017-03-22
Alkaline hydrolysis of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), as one of the most promising methods for nitrocompound remediation, was investigated computationally at the PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory. Computational simulation shows that RDX hydrolysis is a highly exothermic multistep process involving initial deprotonation and nitrite elimination, cycle cleavage, further transformation of cycle-opened intermediates to end products caused by a series of C-N bond ruptures, hydroxide attachments, and proton transfers. Computationally predicted products of RDX hydrolysis such as nitrite, nitrous oxide, formaldehyde, formate, and ammonia correspond to experimentally observed ones. Accounting of specific hydration of hydroxide is critical to create an accurate kinetic model for alkaline hydrolysis. Simulated kinetics of the hydrolysis are in good agreement with available experimental data. A period of one month is necessary for 99% RDX decomposition at pH 10. Computations predict significant increases of the reaction rate of hydrolysis at pH 11, pH 12, and pH 13.
Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats.
Pierson, M D; Smoot, L A
1982-01-01
Historically, nitrite has been a component of meat-curing additives for several centuries. In recent years the safety of nitrite as an additive in cured meats has been questioned mainly because of the possible formation of carcinogenic nitrosamines. Nitrite has many important functions in meat curing including its role in color development, flavor, antioxidant properties, and antimicrobial activity. The inhibition of Clostridium botulinum growth and toxin production is an especially important antimicrobial property of nitrite. This review discusses the effects of processing, curing ingredients (especially nitrite), and storage of cured meats in relation to the control of C. botulinum. If nitrite is eliminated from cured meats or the level of usage decreased, then alternatives for the antibotulinal function of nitrite need to be considered. Several potential alternatives including sorbates, parabens, and biological acidulants are discussed.
Heat, Mass and Aerosol Transfers in Spray Conditions for Containment Application
NASA Astrophysics Data System (ADS)
Porcheron, Emmanuel; Lemaitre, Pascal; Nuboer, Amandine; Vendel, Jacques
TOSQAN is an experimental program undertaken by the Institut de Radioprotection et de Surété Nucleaire (IRSN) in order to perform thermal hydraulic containment studies. The TOSQAN facility is a large enclosure devoted to simulating typical accidental thermal hydraulic flow conditions in nuclear Pressurized Water Reactor (PWR) containment. The TOSQAN facility, which is highly instrumented with non-intrusive optical diagnostics, is particularly adapted to nuclear safety CFD code validation. The present work is devoted to studying the interaction of a water spray injection used as a mitigation means in order to reduce the gas pressure and temperature in the containment, to produce gases mixing and washout of fission products. In order to have a better understanding of heat and mass transfers between spray droplets and the gas mixture, and to analyze mixing effects due to spray activation, we performed detailed characterization of the two-phase flow.
Roche, Camille J.; Dantsker, David; Alayash, Abdu I.; Friedman, Joel M.
2012-01-01
The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αβ dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb–Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αβ Hb dimer. The presented results show that the Hb dimer in the Hb–Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb–Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb–Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation. PMID:22521791
Ammonia on the prebiotic Earth: Iron(II) reduction of nitrite. [Abstract only
NASA Technical Reports Server (NTRS)
Summers, David P.; Chang, Sherwood
1994-01-01
Theories for the origin of life require the availability of reduced nitrogen. In the non-reducing atmosphere suggested by geochemical evidence, production in the atmosphere and survival of NH3 against photochemical destruction are problematic. Electric discharges and impact shocks would produce NO rather than HCN or NH3. Conversion of NO to nitrous and nitric acid (by way of HNO) and precipitation in acid rain would provide a source of fixed nitrogen to the early ocean. One solution to the NH3 problem may have been the reduction of nitrite/nitrate in the ocean with aqueous ferrous iron, Fe(2+): 6Fe(+2) + 7 H2O + NO2(-) yields 3Fe2O3 + 11 H(+) + NH3. We have measured the kinetics of this reaction as a function of temperature, pH, and concentrations of salts, Fe(+2), and NO2(-). Cations (Na(+), Mg(2+), K(+)) and anions (Cl(-), Br(-), SO4(2-)) increase the rate by factors of 4 to 8. Although a competing pathway yields N2, the efficiency of the conversion of nitrite to ammonia ranges from 25% to 85%. Nitrate reduction was not consistently reproducible; however, when it was observed, its rate was slower by at least 8X than that of nitrite reduction. If the prebiotic atmosphere contained 0.2 to 10 atmospheres CO2 as suggested by Walker (1985), the Fe(+2) concentration and the rate would have been limited by siderite (FeCO3) solubility.
Cyanate as energy source for nitrifiers
Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael
2015-01-01
Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031
Auxiliary-field quantum Monte Carlo simulations of neutron matter in chiral effective field theory.
Wlazłowski, G; Holt, J W; Moroz, S; Bulgac, A; Roche, K J
2014-10-31
We present variational Monte Carlo calculations of the neutron matter equation of state using chiral nuclear forces. The ground-state wave function of neutron matter, containing nonperturbative many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons interacting on a 10(3) discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features of the chiral nuclear force. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a momentum-space cutoff of Λ=414 MeV/c, a resolution scale at which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral nuclear interaction (Entem and Machleidt Λ=414 MeV [L. Coraggio et al., Phys. Rev. C 87, 014322 (2013).
Nitrite toxicity to the crayfish Procambarus clarkii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutzmer, M.P.; Tomasso, J.R.
The purpose of this study was to determine the effects of acute nitrite exposure to the crayfish Procambarus clarkii (Decapoda). Specific objectives of this study included (1) determining the 24-, 48-, 72- and 96-h LC-50's of nitrite to crayfish of different weights and genders in freshwater, (2) determining the LC-50's of nitrite to crayfish in water with elevated chloride concentrations, and (3), in order to gain insight into the mechanisms of nitrite toxicity in crayfish, determining hemolymph nitrite concentrations in crayfish exposed to nitrite in freshwater and water with elevated chloride concentrations.
Pun, Priti; Jones, Jesica; Wolfe, Craig; Deming, Douglas D.; Power, Gordon G.; Blood, Arlin B.
2016-01-01
Background Plasma nitrite serves as a reservoir of nitric oxide (NO) bioactivity. Because nitrite ingestion is markedly lower in newborns than adults, we hypothesized plasma nitrite levels would be lower in newborns than in adults, and that infants diagnosed with necrotizing enterocolitis (NEC), a disease characterized by ischemia and bacterial invasion of intestinal walls, would have lower levels of circulating nitrite in the days prior to diagnosis. Methods Single blood and urine samples were collected from 9 term infants and 12 adults, 72 preterm infants every 5 d for 3 wk, and from 13 lambs before and after cord occlusion. Results Nitrite fell 50% relative to cord levels in the first day after birth; and within 15 min after cord occlusion in lambs. Urinary nitrite was higher in infants than adults. Plasma and urinary nitrite levels in infants who developed NEC were similar to those of preterm control infants on days 1 and 5, but significantly elevated at 15 and 20 d after birth. Conclusion Plasma nitrite falls dramatically at birth while newborn urinary nitrite levels are significantly greater than adults. Acute NEC is associated with elevated plasma and urinary nitrite levels. PMID:26539663
Nitrite transport into pig erythrocytes and its potential biological role.
Jensen, F B
2005-07-01
To study nitrite transport and its oxygenation dependency in pig erythrocytes, as this is fundamental to the possible participation of nitrite in blood flow regulation via its reduction to nitric oxide by deoxygenated haemoglobin (Hb). Pig red blood cells (RBCs) were tonometer-equilibrated to physiological pCO2 in oxygenated and deoxygenated states. Nitrite was added and the kinetics of NO2- influx and methaemoglobin (metHb) formation were assessed at variable temperature and haematocrit. Nitrite quickly permeated and equilibrated across the membrane, and then continued to enter RBCs as a consequence of its intracellular removal (via reactions with Hb to form nitrate and metHb in oxygenated cells, and NO and metHb in deoxygenated cells). The membrane permeation as such showed little oxygenation dependency, but as metHb formation was significantly higher in oxygenated than deoxygenated RBCs, nitrite transport tended to be largest into oxygenated RBCs. This contrasts with a preferential permeation of deoxygenated RBCs in some fish species. Nitrite transport showed low temperature sensitivity but was speeded up at low haematocrit via more rapid intracellular nitrite removal (metHb formation). Nitrite influx was not affected by inhibitors of facilitated diffusion (DIDS, phloretin and PCMB) and may occur via conductive transport. Extracellular pH was stable during nitrite transport. Nitrite extensively permeates both oxygenated and deoxygenated pig RBCs, which may enable a dual function of nitrite entry: viz. conversion to NO at low pO2 to promote blood flow and detoxification to non-toxic nitrate at inappropriate high nitrite levels.
Nitrite oxidation in the Namibian oxygen minimum zone
Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel MM
2012-01-01
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2− d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3− was re-oxidized back to NO3− via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways. PMID:22170426
BRENDA: a dynamic simulator for a sodium-cooled fast reactor power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hetrick, D.L.; Sowers, G.W.
1978-06-01
This report is a users' manual for one version of BRENDA (Breeder Reactor Nuclear Dynamic Analysis), which is a digital program for simulating the dynamic behavior of a sodium-cooled fast reactor power plant. This version, which contains 57 differential equations, represents a simplified model of the Clinch River Breeder Reactor Project (CRBRP). BRENDA is an input deck for DARE P (Differential Analyzer Replacement, Portable), which is a continuous-system simulation language developed at the University of Arizona. This report contains brief descriptions of DARE P and BRENDA, instructions for using BRENDA in conjunction with DARE P, and some sample output. Amore » list of variable names and a listing for BRENDA are included as appendices.« less
Quantum nuclear pasta and nuclear symmetry energy
NASA Astrophysics Data System (ADS)
Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.
2017-05-01
Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.
Physico-chemical interactions at the concrete-bitumen interface of nuclear waste repositories
NASA Astrophysics Data System (ADS)
Bertron, A.; Ranaivomanana, H.; Jacquemet, N.; Erable, B.; Sablayrolles, C.; Escadeillas, G.; Albrecht, A.
2013-07-01
This study investigates the fate of nitrate and organic acids at the bitumenconcrete-steel interface within a repository storage cell for long-lived, intermediatelevel, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V-paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. C-steel chips, simulating the presence of steel in the repository, were added in the systems for some experiments. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium, ammonium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the absence of steel, whereas, reduction of nitrates was observed in the presence of steel (production of NH4+). The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching; no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.
Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng
2015-01-01
The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.
21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nitrites and/or nitrates in curing premixes. 170... and Decisions § 170.60 Nitrites and/or nitrates in curing premixes. (a) Nitrites and/or nitrates are.... (b) Nitrites and/or nitrates, when packaged separately from flavoring and seasoning in curing...
21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Nitrites and/or nitrates in curing premixes. 170... and Decisions § 170.60 Nitrites and/or nitrates in curing premixes. (a) Nitrites and/or nitrates are.... (b) Nitrites and/or nitrates, when packaged separately from flavoring and seasoning in curing...
21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Nitrites and/or nitrates in curing premixes. 170... and Decisions § 170.60 Nitrites and/or nitrates in curing premixes. (a) Nitrites and/or nitrates are.... (b) Nitrites and/or nitrates, when packaged separately from flavoring and seasoning in curing...
Total salivary nitrates and nitrites in oral health and periodontal disease.
Sánchez, Gabriel A; Miozza, Valeria A; Delgado, Alejandra; Busch, Lucila
2014-01-30
It is well known that nitrites are increased in saliva from patients with periodontal disease. In the oral cavity, nitrites may derive partly from the reduction of nitrates by oral bacteria. Nitrates have been reported as a defence-related mechanism. Thus, the aim of the present study was to determine the salivary levels of total nitrate and nitrite and their relationship, in unstimulated and stimulated saliva from periodontal healthy subjects, and from patients with chronic periodontal disease. Nitrates and nitrites were determined in saliva from thirty healthy subjects and forty-four patients with periodontal disease. A significant increase in salivary nitrates and nitrites was observed. Nitrates and nitrites concentration was related to clinical attachment level (CAL). A positive and significant Pearson's correlation was found between salivary total nitrates and nitrites. Periodontal treatment induced clinical improvement and decreased nitrates and nitrites. It is concluded that salivary nitrates and nitrites increase, in patients with periodontal disease, could be related to defence mechanisms. The possibility that the salivary glands respond to oral infectious diseases by increasing nitrate secretion should be explored further. Copyright © 2013 Elsevier Inc. All rights reserved.
Rock-Magnetic Method for Post Nuclear Detonation Diagnostics
NASA Astrophysics Data System (ADS)
Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.
2011-12-01
A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.
NASA Astrophysics Data System (ADS)
Kurihara, Osamu; Kim, Eunjoo; Kunishima, Naoaki; Tani, Kotaro; Ishikawa, Tetsuo; Furuyama, Kazuo; Hashimoto, Shozo; Akashi, Makoto
2017-09-01
A tool was developed to facilitate the calculation of the early internal doses to residents involved in the Fukushima Nuclear Disaster based on atmospheric transport and dispersion model (ATDM) simulations performed using Worldwide version of System for Prediction of Environmental Emergency Information 2nd version (WSPEEDI-II) together with personal behavior data containing the history of the whereabouts of individul's after the accident. The tool generates hourly-averaged air concentration data for the simulation grids nearest to an individual's whereabouts using WSPEEDI-II datasets for the subsequent calculation of internal doses due to inhalation. This paper presents an overview of the developed tool and provides tentative comparisons between direct measurement-based and ATDM-based results regarding the internal doses received by 421 persons from whom personal behavior data available.
Pinheiro, Lucas C; Ferreira, Graziele C; Amaral, Jefferson H; Portella, Rafael L; Tella, Sandra de O C; Passos, Madla A; Tanus-Santos, Jose E
2016-12-01
The nitric oxide (NO • ) metabolites nitrite and nitrate exert antihypertensive effects by mechanisms that involve gastric formation of S-nitrosothiols. However, while the use of antiseptic mouthwash (AM) is known to attenuate the responses to nitrate by disrupting its enterosalivary cycle, there is little information about whether AM attenuates the effects of orally administered nitrite. We hypothesized that the antihypertensive effects of orally administered nitrite would not be prevented by AM because, in contrast to oral nitrate, oral nitrite could promote S-nitrosothiols formation in the stomach without intereference by AM. Chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats (and normotensive controls) treated with AM (or vehicle) once/day. We found that orally administered nitrite exerts antihypertensive effects that were not affected by AM. This finding contrasts with lack of antihypertensive responses to oral nitrate in 2K1C hypertensive rats treated with AM. Nitrite and nitrate treatments increased plasma nitrites, nitrates, and S-nitrosothiols concentrations. However, while treatment with AM attenuated the increases in plasma nitrite concentrations after both nitrite and nitrate treatments, AM attenuated the increases in S-nitrosothiols in nitrate-treated rats, but not in nitrite-treated rats. Moreover, AM attenuated vascular S-nitrosylation (detected by the SNO-RAC method) after nitrate, but not after nitrite treatment. Significant correlations were found between the hypotensive responses and S-nitrosothiols, and vascular S-nitrosylation levels. These results show for the first time that oral nitrite exerts antihypertensive effects notwithstanding the fact that antiseptic mouthwash disrupts the enterosalivary circulation of nitrate. Our results support a major role for S-nitrosothiols formation resulting in vascular S-nitrosylation as a key mechanism for the antihypertensive effects of both oral nitrite and nitrate. Copyright © 2016 Elsevier Inc. All rights reserved.
Ammonification in Bacillus subtilis Utilizing Dissimilatory Nitrite Reductase Is Dependent on resDE
Hoffmann, Tamara; Frankenberg, Nicole; Marino, Marco; Jahn, Dieter
1998-01-01
During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation. PMID:9422613
Vacuum-based surface modification of organic and metallic substrates
NASA Astrophysics Data System (ADS)
Torres, Jessica
Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous-containing polymer surfaces through ion implantation of trimethyl phosphine onto PE is presented. Air exposure of the resulting P-implanted PE leads to the surface selective oxidation of phosphorous moieties. P-containing hydrocarbon films are used to model the surface chemical changes of P-containing polymers exposed to AO. Results indicate that oxidized phosphorous species protect the film from AO-induced erosion. The low temperature (<150 K) oxidation of nitrided iron surfaces exposed to oxygen reveal the formation of iron oxynitride (FexNyO z, nitrosonium ions (NO+) as well as nitrite/nitrito and nitrate type species. The production of nitrite/nitrito and nitrate species is taken as evidence for the existence of oxygen insertion chemistry into the iron nitride lattice under these low temperature oxidation conditions. Upon annealing the oxidized iron nitride surface, nitrogen desorbs exclusively as nitric oxide (NO).
Silvestrini, Lucia; Rossi, Beatrice; Gallmetzer, Andreas; Mathieu, Martine; Scazzocchio, Claudio; Berardi, Enrico; Strauss, Joseph
2015-01-01
A few yeasts, including Hansenula polymorpha are able to assimilate nitrate and use it as nitrogen source. The genes necessary for nitrate assimilation are organised in this organism as a cluster comprising those encoding nitrate reductase (YNR1), nitrite reductase (YNI1), a high affinity transporter (YNT1), as well as the two pathway specific Zn(II)2Cys2 transcriptional activators (YNA1, YNA2). Yna1p and Yna2p mediate induction of the system and here we show that their functions are interdependent. Yna1p activates YNA2 as well as its own (YNA1) transcription thus forming a nitrate-dependent autoactivation loop. Using a split-YFP approach we demonstrate here that Yna1p and Yna2p form a heterodimer independently of the inducer and despite both Yna1p and Yna2p can occupy the target promoter as mono- or homodimer individually, these proteins are transcriptionally incompetent. Subsequently, the transcription factors target genes containing a conserved DNA motif (termed nitrate-UAS) determined in this work by in vitro and in vivo protein-DNA interaction studies. These events lead to a rearrangement of the chromatin landscape on the target promoters and are associated with the onset of transcription of these target genes. In contrast to other fungi and plants, in which nuclear accumulation of the pathway-specific transcription factors only occur in the presence of nitrate, Yna1p and Yna2p are constitutively nuclear in H. polymorpha. Yna2p is needed for this nuclear accumulation and Yna1p is incapable of strictly positioning in the nucleus without Yna2p. In vivo DNA footprinting and ChIP analyses revealed that the permanently nuclear Yna1p/Yna2p heterodimer only binds to the nitrate-UAS when the inducer is present. The nitrate-dependent up-regulation of one partner protein in the heterodimeric complex is functionally similar to the nitrate-dependent activation of nuclear accumulation in other systems.
NASA Astrophysics Data System (ADS)
Deyglun, Clément; Carasco, Cédric; Pérot, Bertrand
2014-06-01
The detection of Special Nuclear Materials (SNM) by neutron interrogation is extensively studied by Monte Carlo simulation at the Nuclear Measurement Laboratory of CEA Cadarache (French Alternative Energies and Atomic Energy Commission). The active inspection system is based on the Associated Particle Technique (APT). Fissions induced by tagged neutrons (i.e. correlated to an alpha particle in the DT neutron generator) in SNM produce high multiplicity coincidences which are detected with fast plastic scintillators. At least three particles are detected in a short time window following the alpha detection, whereas nonnuclear materials mainly produce single events, or pairs due to (n,2n) and (n,n'γ) reactions. To study the performances of an industrial cargo container inspection system, Monte Carlo simulations are performed with the MCNP-PoliMi transport code, which records for each neutron history the relevant information: reaction types, position and time of interactions, energy deposits, secondary particles, etc. The output files are post-processed with a specific tool developed with ROOT data analysis software. Particles not correlated with an alpha particle (random background), counting statistics, and time-energy resolutions of the data acquisition system are taken into account in the numerical model. Various matrix compositions, suspicious items, SNM shielding and positions inside the container, are simulated to assess the performances and limitations of an industrial system.
Monitoring nitrite and nitrate residues in frankfurters during processing and storage.
Pérez-Rodríguez, M L; Bosch-Bosch, N; Garciá-Mata, M
1996-09-01
Frankfurter-type sausages were prepared in a pilot plant with different concentrations of NaNO(2) (75, 125 or 250 ppm) combined or not with 200 ppm KNO(3). A meat system, free of curing agents, was also used as control. Nitrite and nitrate levels were tested in various processing steps and over 120 days storage at 3 °C of the vacuum-packaged frankfurters. Little influence of the originally added nitrite level on the amount of nitrate formed was observed. Important losses of nitrite and nitrate were due to cooking. Thereafter about 50% of the nitrite added initially remained in this form in all samples (39, 59 and 146 ppm, respectively) and between 10 and 15% as nitrate. When only nitrate was initially added, formation of nitrite after cooking was observed (maximum level 43 ppm NaNO(2)). Formulations prepared with both nitrate and nitrite showed no significant differences (p < 0.01) respect to their nitrite or nitrate counterparts. A good correlation among nitrite and nitrate levels and storage time was showed by multiple linear regression analysis. It is concluded that the use of nitrate in combination with nitrite in cooked meat products seems to have little technological significance and adds to the total body burden of nitrite.
Mechanisms of Human Erythrocytic Bioactivation of Nitrite*
Liu, Chen; Wajih, Nadeem; Liu, Xiaohua; Basu, Swati; Janes, John; Marvel, Madison; Keggi, Christian; Helms, Christine C.; Lee, Amber N.; Belanger, Andrea M.; Diz, Debra I.; Laurienti, Paul J.; Caudell, David L.; Wang, Jun; Gladwin, Mark T.; Kim-Shapiro, Daniel B.
2015-01-01
Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood. PMID:25471374
Carballo, J; Cavestany, M; Jiménez-Colmenero, F
1991-01-01
The effect of different lighting conditions (darkness and exposure to 1900 ± 100 lux) on colour stability, conversion of added nitrite (residual nitrite, nitrite converted to nitrate, nitroso heme pigments, and protein-bound nitrite) and oxidative rancidity (2-thiobarbituric acid index) in sliced, vacuum-packaged pork bologna as a function of storage temperature (0 ± 1°C and 7 ± 1°C) was studied. Colour (redness) losses over the storage period were more dependent upon photochemical processes than on thermal processes, and the action of temperature on colour was attributable to its effect on microbial growth, which in turn also affects oxygen availability. Conversion of nitrite into the different fractions studied was chiefly temperature-dependent, but exposure to light lowered the residual nitrite content. Nevertheless, the effect of illumination on the constant rate of residual nitrite depletion was dependent on the storage temperature. Recovery of the added nitrite, i.e. the total of the nitrite in all the fractions combined, was highly dependent upon fluctuations in the residual nitrite levels and varied over the storage period. Under the conditions of the experiment, photo-oxidation did not appear to be a determining factor in lipid oxidation. Copyright © 1991. Published by Elsevier Ltd.
Brockmann, D; Morgenroth, E
2010-03-01
In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers. Copyright 2009 Elsevier Ltd. All rights reserved.
21 CFR 172.175 - Sodium nitrite.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium nitrite...
21 CFR 172.175 - Sodium nitrite.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium nitrite...
21 CFR 172.175 - Sodium nitrite.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium nitrite...
21 CFR 172.175 - Sodium nitrite.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified... follows: (1) As a color fixative in smoked cured tunafish products so that the level of sodium nitrite...
Enzyme activity in terrestrial soil in relation to exploration of the Martian surface
NASA Technical Reports Server (NTRS)
Mclaren, A. D.
1974-01-01
Sensitive tests for the detection of extracellular enzyme activity in Martian soil was investigated using simulated Martian soil. Enzyme action at solid-liquid water interfaces and at low humidity were studied, and a kinetic scheme was devised and tested based on the growth of microorganisms and the oxidation of ammonium nitrite.
Kruse, Myriam; Zumbrägel, Sabine; Bakker, Evert; Spieck, Eva; Eggers, Till; Lipski, André
2013-10-01
Metabolically-active autotrophic nitrite oxidizers from activated sludge were labeled with (13)C-bicarbonate under exposure to different temperatures and nitrite concentrations. The labeled samples were characterized by FAME-SIP (fatty acid methyl ester-stable isotope probing). The compound cis-11-palmitoleic acid, which is the major lipid of the most abundant nitrite oxidizer in activated sludge, Candidatus Nitrospira defluvii, showed (13)C-incorporation in all samples exposed to 3 mM nitrite. Subsequently, the lipid cis-7-palmitoleic acid was labeled, and it indicated the activity of a nitrite oxidizer that was different from the known Nitrospira taxa in activated sludge. The highest incorporation of cis-7-palmitoleic acid label was found after incubation with a nitrite concentration of 0.3 mM at 17 and 22°C. While activity of Nitrobacter populations could not be detected by the FAME-SIP approach, an unknown nitrite oxidizer with the major lipid cis-9 isomer of palmitoleic acid exhibited (13)C-incorporation at 28°C with 30 mM nitrite. These results indicated flexibility of nitrite-oxidizing guilds in a complex community responding to different conditions. Labeled lipids so far not described for activated sludge-associated nitrifiers indicated the presence of unknown nitrite oxidizers in this habitat. The FAME-SIP-based information can be used to define appropriate conditions for the enrichment of nitrite-oxidizing guilds from complex samples. Copyright © 2013 Elsevier GmbH. All rights reserved.
Christiansen, L. N.; Johnston, R. W.; Kautter, D. A.; Howard, J. W.; Aunan, W. J.
1973-01-01
Comminuted ham was formulated with different levels of sodium nitrite and nitrate, inoculated with Clostridium botulinum, and pasteurized to an internal temperature of 68.5 C. When added to the meat, nitrite concentrations decreased, and cooking had little effect on them. Nitrite concentrations decreased more rapidly during storage at 27 than at 7 C; however they remained rather constant at formulated levels throughout the experiment at both incubation temperatures. The level of nitrite added to the meat greatly influenced growth and toxin production of C. botulinum. The concentration of nitrite necessary to effect complete inhibition was dependent on the inoculum level. With 90 C. botulinum spores/g of meat, botulinum toxin developed in samples formulated with 150 but not with 200 μg of nitrite per g of meat. At a spore level of 5,000/g, toxin was detected in samples with 400 but not with 500 μg of nitrite per g of the product incubated at 27 C. At lower concentrations of nitrite, growth was retarded at both spore levels. No toxin developed in samples incubated at 7 C. Nitrate showed a statistically significant inhibitory effect at a given nitrite level; however, the effect was insufficient to be of practical value. Analyses for 14 volatile nitrosamines from samples made with varying levels of nitrite and nitrate were negative at a detection level of 0.01 μg of nitrite or nitrate per g of meat. PMID:4572891
Increase in gastric pH reduces hypotensive effect of oral sodium nitrite in rats.
Pinheiro, Lucas C; Montenegro, Marcelo F; Amaral, Jefferson H; Ferreira, Graziele C; Oliveira, Alisson M; Tanus-Santos, Jose E
2012-08-15
The new pathway nitrate-nitrite-nitric oxide (NO) has emerged as a physiological alternative to the classical enzymatic pathway for NO formation from l-arginine. Nitrate is converted to nitrite by commensal bacteria in the oral cavity and the nitrite formed is then swallowed and reduced to NO under the acidic conditions of the stomach. In this study, we tested the hypothesis that increases in gastric pH caused by omeprazole could decrease the hypotensive effect of oral sodium nitrite. We assessed the effects of omeprazole treatment on the acute hypotensive effects produced by sodium nitrite in normotensive and L-NAME-hypertensive free-moving rats. In addition, we assessed the changes in gastric pH and plasma levels of nitrite, NO(x) (nitrate+nitrite), and S-nitrosothiols caused by treatments. We found that the increases in gastric pH induced by omeprazole significantly reduced the hypotensive effects of sodium nitrite in both normotensive and L-NAME-hypertensive rats. This effect of omeprazole was associated with no significant differences in plasma nitrite, NO(x), or S-nitrosothiol levels. Our results suggest that part of the hypotensive effects of oral sodium nitrite may be due to its conversion to NO in the acidified environment of the stomach. The increase in gastric pH induced by treatment with omeprazole blunts part of the beneficial cardiovascular effects of dietary nitrate and nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.
Guo, Xing; Liu, Bianfang; Gao, Lina; Zhou, Yuan; Shan, Yuanyuan; Lü, Xin
2018-06-01
Excessive nitrite in food is potentially harmful to human health because of its carcinogenic effects caused by nitroso-dervivatives. Douchi, which widely distributed throughout the country, is a traditional solid fermented soybean food with low nitrite content. In this study, bacterias which can degrade nitrite were isolated from Douchi and identified according to 16S rDNA sequence. Acinetobacter guillouiae, Acinetobacter bereziniae, Bacillus subtilis, Bacillus tequilensis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus aryabhattai and Bacillus methylotrophicus were selected. It was shown that all strains have nitrite degradation capability, in which 99.41 % nitrite can be degraded by Bacillus subtilis NDS1. The enzyme activities of these strains were determined at 24 h and 48 h, which corresponded to their nitrite degradation rates. The strains were firstly tried to inoculate in Jiangshui, which is a kind of traditional fermented vegetable in northwest China and often has high nitrite content. It was found that Bacillus subtilis NDS1, Bacillus tequilensis NDS3, Acinetobacter bereziniae NDS4, Bacillus subtilis NDS6, Bacillus subtilis NDS12 can degrade nitrite in Jiangshui more quickly, among which Acinetobacter bereziniae NDS4 degraded almost all nitrite in 48 h while it took 180 h for control. These results indicated that the selected strains have potential to become nitrite degradition agent in food. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials
NASA Astrophysics Data System (ADS)
Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.
2013-04-01
A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.
Interactions of nitrite with catalase: Enzyme activity and reaction kinetics studies.
Krych-Madej, Justyna; Gebicka, Lidia
2017-06-01
Catalase, a heme enzyme, which catalyzes decomposition of hydrogen peroxide to water and molecular oxygen, is one of the main enzymes of the antioxidant defense system of the cell. Nitrite, used as a food preservative has long been regarded as a harmful compound due to its ability to form carcinogenic nitrosamines. Recently, much evidence has been presented that nitrite plays a protective role as a nitric oxide donor under hypoxic conditions. In this work the effect of nitrite on the catalytic reactions of catalase was studied. Catalase was inhibited by nitrite, and this process was pH-dependent. IC 50 values varied from about 1μM at pH5.0 to about 150μM of nitrite at pH7.4. The presence of chloride significantly enhanced nitrite-induced catalase inhibition, in agreement with earlier observations. The kinetics of the reactions of nitrite with ferric catalase, its redox intermediate, Compound I, and catalase inactive form, Compound II, was also studied. Possible mechanisms of nitrite-induced catalase inhibition are analyzed and the biological consequences of the reactions of catalase with nitrite are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Mahyar, Abolfazl; Ayazi, Parviz; Froozesh, Mahta; Daneshi-Kohan, Mohammad-Mahdi; Barikani, Ameneh
2012-06-01
This study was performed to determine the relationship between urinary nitrite results and bacterial resistance to antimicrobial drugs in urinary tract infection of children. In a cross-section study 119 children younger than 12 years with urinary tract infection were evaluated in Qazvin children's hospital. Patients were divided into negative and positive nitrite groups depending on urinary nitrite test result. Rates of antibiotic resistance in the two groups were compared. Sixty seven patients were in the negative nitrite group and 52 in the positive nitrite group. Resistance rates to ceftriaxone, trimethoprim sulfamethoxazole, ampicillin, gentamicin, amikacin, nalidixic acid, cephalothin and nitrofurantoin in the nitrite negative group were 7.5%, 31.3%, 50.7%, 11.9%, 9%, 3%, 14.9% and 11.9%, respectively. These values in the nitrite positive group were 21.2%, 28.8%, 63.5%, 7.7%, 5.8%, 1.9%, 9.6%, and 3.8%, respectively (P>0.05). This study showed that there is no correlation between urinary nitrite results and bacterial resistance to antimicrobial drugs. Therefore, it seems that physicians should not adjust antibiotic therapy for UTI based on nitrite results.
Rajeev, Lara; Chen, Amy; Kazakov, Alexey E.; ...
2015-08-17
Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness atmore » low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. Here we discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Finally, our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.« less
Blood Pressure-Lowering Effect of Orally Ingested Nitrite Is Abolished by a Proton Pump Inhibitor.
Montenegro, Marcelo F; Sundqvist, Michaela L; Larsen, Filip J; Zhuge, Zhengbing; Carlström, Mattias; Weitzberg, Eddie; Lundberg, Jon O
2017-01-01
Inorganic nitrate and nitrite from dietary and endogenous sources are metabolized to NO and other bioactive nitrogen oxides that affect blood pressure. The mechanisms for nitrite bioactivation are unclear, but recent studies in rodents suggest that gastric acidity may influence the systemic effects of this anion. In a randomized, double-blind, placebo-controlled crossover study, we tested the effects of a proton pump inhibitor on the acute cardiovascular effects of nitrite. Fifteen healthy nonsmoking, normotensive subjects, aged 19 to 39 years, were pretreated with placebo or esomeprazole (3×40 mg) before ingesting sodium nitrite (0.3 mg kg -1 ), followed by blood pressure monitoring. Nitrite reduced systolic blood pressure by a maximum of 6±1.3 mm Hg when taken after placebo, whereas pretreatment with esomeprazole blunted this effect. Peak plasma nitrite, nitrate, and nitroso species levels after nitrite ingestion were similar in both interventions. In 8 healthy volunteers, we then infused increasing doses of sodium nitrite (1, 10, and 30 nmol kg -1 min -1 ) intravenously. Interestingly, although plasma nitrite peaked at similar levels as with orally ingested nitrite (≈1.8 µmol/L), no changes in blood pressure were observed. In rodents, esomeprazole did not affect the blood pressure response to the NO donor, DEA NONOate, or vascular relaxation to nitroprusside and acetylcholine, demonstrating an intact downstream NO-signaling pathway. We conclude that the acute blood pressure-lowering effect of nitrite requires an acidic gastric environment. Future studies will reveal if the cardiovascular complications associated with the use of proton pump inhibitors are linked to interference with the nitrate-nitrite-NO pathway. © 2016 American Heart Association, Inc.
Prudêncio, M; Eady, R R; Sawers, G
2001-01-01
The blue dissimilatory nitrite reductase (NiR) from Alcaligenes xylosoxidans is a trimer containing two types of Cu centre, three type 1 electron transfer centres and three type 2 centres. The latter have been implicated in the binding and reduction of nitrite. The Cu ion of the type 2 centre of the oxidized enzyme is ligated by three His residues, and additionally has a co-ordinated water molecule that is also hydrogen-bonded to the carboxyl of Asp(92) [Dodd, Van Beeumen, Eady and Hasnain (1998), J. Mol. Biol. 282, 369-382]. Two mutations of this residue have been made, one to a glutamic acid residue and a second to an asparagine residue; the effects of both mutations on the spectroscopic and catalytic properties of the enzyme have been analysed. EPR spectroscopy revealed that both mutants retained intact type 1 Cu centres with g( parallel)=2.12 (A( parallel)=0 mT) and g( perpendicular)=2.30 (A( perpendicular)=6.4 mT), which was consistent with their blue colour, but differed in their activities and in the spectroscopic properties of the type 2 centres. The D92E mutant had an altered geometry of its type 2 centre such that nitrite was no longer capable of binding to elicit changes in the EPR parameters of this centre. Accordingly, this mutation resulted in a form of NiR that had very low enzyme activity with the artificial electron donors reduced Methyl Viologen and sodium dithionite. As isolated, the EPR spectrum of the Asp(92)-->Asn (D92N) mutant showed no characteristic type 2 hyperfine lines. However, oxidation with iridium hexachloride partly restored a type 2 EPR signal, suggesting that type 2 copper is present in the enzyme but in a reduced, EPR-silent form. Like the Asp(92)-->Glu mutant, D92N had very low enzyme activities with either Methyl Viologen or dithionite. Remarkably, when the physiological electron donor reduced azurin I was used, both mutant proteins exhibited restoration of enzyme activity. The degree of restoration differed for the two mutants, with the D92N derivative exhibiting approx. 60% of the activity seen for the wild-type NiR. These findings suggest that on formation of an electron transfer complex with azurin, a conformational change in NiR occurs that returns the catalytic Cu centre to a functionally active state capable of binding and reducing nitrite. PMID:11139389
NASA Astrophysics Data System (ADS)
Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki
2015-10-01
For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.
Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste
Boatner, Lynn A.; Sales, Brian C.
1989-01-01
Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.
Anoxic control of odour and corrosion from sewer networks.
Yang, W; Vollertsen, J; Hvitved-Jacobsen, T
2004-01-01
Anoxic processes can effectively control odour and corrosion in sewer networks. However, the absence of fundamental knowledge on the kinetics of anoxic transformation of sewage prevents the engineering applications of anoxic control in sewers. This paper focuss on a basic understanding of the anoxic transformations needed for a conceptual simulation of the water phase processes. Experiments conducted in batch reactors have shown that nitrite builds up in wastewater during denitrification. Part of the nitrate-reducing biomass is capable of utilizing nitrite after nitrate is depleted. Compared with aerobic transformation, anoxic processes have low values of maximum growth rate of the biomass and also a low endogenous respiration rate. Heterotrophic yield determined under anoxic conditions, at level of 0.25 mmol e-eq (mmol e-eq)(-1), accounted for less than 40% of the corresponding aerobic values.
Expression and purification of spinach nitrite reductase in E. coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellissimo, D.; Privalle, L.
1991-03-11
The study of structure-function relationships in nitrite reductase (NiR) by site-directed mutagenesis requires an expression system from which suitable quantities of active enzyme can be purified. Spinach NiR cDNA was cloned into pUC18 and expressed in E.coli JM109 as a beta-galactosidase fusion protein. The IPTG-induced fusion protein contains five additional amino acids at the N-terminus. The expressed NiR in aerobic cultures was mostly insoluble and inactive indicating the presence of inclusion bodies. By altering growth conditions, active NiR could represent 0.5-1.0% of the total E.coli protein, Effects of the addition of delta-aminolevulinic acid, a heme precursor, and anaerobic growth weremore » also examined. Spinach NiR was purified approximately 200 fold to homogeneity. When subjected to electrophoresis on SDS polyacrylamide gels, the NiR migrated as a single band with similar mobility to pure spinach enzyme. The expressed enzyme also reacted with rabbit anti-spinach NiR antibody as visualized by Western blot analysis. The absorption spectrum of the E.coli-expressed enzyme was identical to spinach enzyme with a Soret and alpha band a 386 and 573 nm, respectively, and an A{sub 278}/A{sub 386} = 1.9. The addition of nitrite produced the characteristic shifts in the spectrum. The E. coli-expressed NiR catalyzed the methylviologen-dependent reduction of nitrite. The specific activity was 100 U/mg. The K{sub m} determined for nitrite was 0.3 mM which is in agreement with values reported for the enzyme. These results indicate that the E.coli-expressed NiR is fully comparable to spinach NiR in purity, catalytic activity and physical state. Site-directed mutants have been made using PCR to examine structure-function relationships in this enzyme.« less
NASA Astrophysics Data System (ADS)
Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.
2013-12-01
Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.
Discovery of a diazo-forming enzyme in cremeomycin biosynthesis.
Waldman, Abraham J; Balskus, Emily P
2018-05-17
The molecular architectures and potent bioactivities of diazo-containing natural products have attracted the interest of synthetic and biological chemists. Despite this attention, the biosynthetic enzymes involved in diazo group construction have not been identified. Here, we show the ATP-dependent enzyme CreM installs the diazo group in cremeomycin via late-stage N-N bond formation using nitrite. This finding should inspire efforts to use diazo-forming enzymes in biocatalysis and synthetic biology and enable genome-based discovery of new diazo-containing metabolites.
Nuclear pasta phases within the quark-meson coupling model
NASA Astrophysics Data System (ADS)
Grams, Guilherme; Santos, Alexandre M.; Panda, Prafulla K.; Providência, Constança; Menezes, Débora P.
2017-05-01
In this work, the low-density regions of nuclear and neutron star matter are studied. The search for the existence of nuclear pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter in β equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in the coexistence phases regime and we present results that show the existence of the pasta phases subject to some choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in supernova simulations.
Tsai, Fu-Te; Chen, Pei-Lin; Liaw, Wen-Feng
2010-04-14
Nitrosylation of [PPN](2)[(ONO)(2)Fe(eta(2)-ONO)(2)] [1; PPN = bis(triphenylphosphoranylidene)ammonium] yields the nitrite-containing {Fe(NO)}(7) mononitrosyliron complex (MNIC) [PPN](2)[(NO)Fe(ONO)(3)(eta(2)-ONO)] (2). At 4 K, complex 2 exhibits an S = (3)/(2) axial EPR spectrum with principal g values of g( perpendicular) = 3.971 and g( parallel) = 2.000, suggestive of the {Fe(III)(NO(-))}(7) electronic structure. Addition of 1 equiv of PPh(3) to complex 2 triggers O-atom transfer of the chelating nitrito ligand under mild conditions to yield the {Fe(NO)(2)}(9) dinitrosyliron complex (DNIC) [PPN][(ONO)(2)Fe(NO)(2)] (3). These results demonstrate that both electronic structure [{Fe(III)(NO(-))}(7), S = (3)/(2)] and redox-active ligands ([RS](-) for [(RS)(3)Fe(NO)](-) and [NO(-)] for complex 2) are required for the transformation of {Fe(NO)}(7) MNICs into {Fe(NO)(2)}(9) DNICs. In comparison with the PPh(3)-triggered O-atom abstraction of the chelating nitrito ligand of the {Fe(NO)(2)}(9) DNIC [(1-MeIm)(2)(eta(2)-ONO)Fe(NO)(2)] (5; 1-MeIm = 1-methylimidazole) to generate the {Fe(NO)(2)}(10) DNIC [(1-MeIm)(PPh(3))Fe(NO)(2)] (6), glacial acetic acid protonation of the N-bound nitro ligand in the {Fe(NO)(2)}(10) DNIC [PPN][(eta(1)-NO(2))(PPh(3))Fe(NO)(2)] (7) produced the {Fe(NO)(2)}(9) DNIC [PPN][(OAc)(2)Fe(NO)(2)] (8), nitric oxide, and H(2)O. These results demonstrate that the distinct electronic structures of {Fe(NO)(2)}(9/10) motifs [{Fe(NO)(2)}(9) vs {Fe(NO)(2)}(10)] play crucial roles in modulating nitrite binding modes (O-bound chelating/monodentate nitrito for {Fe(NO)(2)}(9) DNICs vs N-bound nitro as a pi acceptor for {Fe(NO)(2)}(10) DNICs) and regulating nitrite activation pathways (O-atom abstraction by PPh(3) leading to the intermediate with a nitroxyl-coordinated ligand vs protonation accompanied by dehydration leading to the intermediate with a nitrosonium-coordinated ligand). That is, the redox shuttling between the {Fe(NO)(2)}(9) and {Fe(NO)(2)}(10) DNICs modulates the nitrite binding modes and then triggers nitrite activation to generate nitric oxide.
Hachiya, Takushi; Ueda, Nanae; Kitagawa, Munenori; Hanke, Guy; Suzuki, Akira; Hase, Toshiharu; Sakakibara, Hitoshi
2016-11-01
Ferredoxin:NADP(H) oxidoreductase (FNR) plays a key role in redox metabolism in plastids. Whereas leaf FNR (LFNR) is required for photosynthesis, root FNR (RFNR) is believed to provide electrons to ferredoxin (Fd)-dependent enzymes, including nitrite reductase (NiR) and Fd-glutamine-oxoglutarate aminotransferase (Fd-GOGAT) in non-photosynthetic conditions. In some herbal species, however, most nitrate reductase activity is located in photosynthetic organs, and ammonium in roots is assimilated mainly by Fd-independent NADH-GOGAT. Therefore, RFNR might have a limited impact on N assimilation in roots grown with nitrate or ammonium nitrogen sources. AtRFNR genes are rapidly induced by application of toxic nitrite. Thus, we tested the hypothesis that RFNR could contribute to nitrite reduction in roots by comparing Arabidopsis thaliana seedlings of the wild type with loss-of-function mutants of RFNR2 When these seedlings were grown under nitrate, nitrite or ammonium, only nitrite nutrition caused impaired growth and nitrite accumulation in roots of rfnr2 Supplementation of nitrite with nitrate or ammonium as N sources did not restore the root growth in rfnr2 Also, a scavenger for nitric oxide (NO) could not effectively rescue the growth impairment. Thus, nitrite toxicity, rather than N depletion or nitrite-dependent NO production, probably causes the rfnr2 root growth defect. Our results strongly suggest that RFNR2 has a major role in reduction of toxic nitrite in roots. A specific set of genes related to nitrite reduction and the supply of reducing power responded to nitrite concomitantly, suggesting that the products of these genes act co-operatively with RFNR2 to reduce nitrite in roots. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark
2011-07-01
In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish. Copyright © 2011 Elsevier B.V. All rights reserved.
The use and control of nitrate and nitrite for the processing of meat products.
Honikel, Karl-Otto
2008-01-01
Nitrate and nitrite are used for the purpose of curing meat products. In most countries the use of both substances, usually added as potassium or sodium salts, is limited. Either the ingoing or the residual amounts are regulated by laws. The effective substance is nitrite acting primarily as an inhibitor for some microorganisms. Nitrite added to a batter of meat is partially oxidized to nitrate by sequestering oxygen - thus it acts as an antioxidant - a part of nitrite is bound to myoglobin, forming the heat stable NO-myoglobin, a part is bound to proteins or other substances in meat. Nitrate may be reduced to nitrite in raw meat products by microorganisms. As oxidation and reduction may occur the concentrations of nitrite plus nitrate in a product has to be controlled and measured especially if the residual amounts are regulated. This sum of both compounds is important for the human body. Intake of nitrate with food leads to its absorption over the digestive tract into the blood. In the oral cavity nitrate appears again where it is reduced to nitrite. With the saliva the nitrite is mixed with food, having the same effect as nitrite in a batter (inhibiting growth of some pathogenic microorganisms) and swallowed. In the stomach nitrite can eventually form carcinogenic nitrosamines in the acidic environment.
Influence of turkey meat on residual nitrite in cured meat products.
Kilic, B; Cassens, R G; Borchert, L L
2001-02-01
A response surface experimental design was employed to estimate residual nitrite level at various initial nitrite concentrations, percent turkey meat in the formula, and heat quantity (F) values using a typical wiener as the test system. Pork and mechanically separated turkey were used as the meat ingredients. Residual nitrite and pH were measured at day 1, 7 days, 14 days, and 49 days after processing. Protein, fat, salt, moisture, and CIE (L*a*b*) color values were also determined. Results showed that the effect of turkey meat on residual nitrite level was significant (P < 0.01). An increased amount of turkey meat in the formula resulted in lower residual nitrite levels at a fixed pH. The residual nitrite level was initially proportional to initial nitrite concentration, but it became a nonsignificant factor during longer storage time. Differences in heat quantity had a significant effect (P < 0.05) on residual nitrite level initially. Greater heat quantity decreased residual nitrite level in finished cured meat products at a fixed pH. However, this effect became nonsignificant during longer storage. Reduction of residual nitrite in wieners because of turkey meat addition at a fixed pH was due to characteristics of the turkey tissue, but the mechanism of action remains unknown. It was also established that commercial wieners had a higher pH if poultry meat was included in the formulation.
Nowka, Boris; Daims, Holger
2014-01-01
Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB (Nitrobacter, Nitrospira, Nitrotoga). With half-saturation constants (Km) between 9 and 27 μM nitrite, Nitrospira bacteria are adapted to live under significant substrate limitation. Nitrobacter showed a wide range of lower substrate affinities, with Km values between 49 and 544 μM nitrite. However, the advantage of Nitrobacter emerged under excess nitrite supply, sustaining high maximum specific activities (Vmax) of 64 to 164 μmol nitrite/mg protein/h, contrary to the lower activities of Nitrospira of 18 to 48 μmol nitrite/mg protein/h. The Vmax (26 μmol nitrite/mg protein/h) and Km (58 μM nitrite) of “Candidatus Nitrotoga arctica” measured at a low temperature of 17°C suggest that Nitrotoga can advantageously compete with other NOB, especially in cold habitats. The kinetic parameters determined represent improved basis values for nitrifying models and will support predictions of community structure and nitrification rates in natural and engineered ecosystems. PMID:25398863
NASA Astrophysics Data System (ADS)
Yi, Ping; Wang, Qingkang; Kong, Xianjing
2017-01-01
The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.
NASA Astrophysics Data System (ADS)
Bromberger, B.; Bar, D.; Brandis, M.; Dangendorf, V.; Goldberg, M. B.; Kaufmann, F.; Mor, I.; Nolte, R.; Schmiedel, M.; Tittelmeier, K.; Vartsky, D.; Wershofen, H.
2012-03-01
An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.
McDonnell, Lindsey M; Glass, Kathleen A; Sindelar, Jeffrey J
2013-08-01
The objective of this study was to identify ingredients that inhibit Listeria monocytogenes in natural, organic, or clean-label ready-to-eat meat and poultry products. Fourteen ingredients were screened in uncured (no-nitrate-or-nitrite-added), traditional-cured (156 ppm of purified sodium nitrite), cultured (alternative cured, natural nitrate source, and Staphylococcus carnosus), or preconverted (alternative cured, natural nitrite source) turkey slurries. Slurries were cooked, cooled, inoculated to yield 3 log CFU/ml L. monocytogenes, stored at 4°C, and tested weekly for 4 weeks. Three antimicrobial ingredients, 1.5 % vinegar-lemon-cherry powder blend, 2.5 % buffered vinegar, and 3.0 % cultured sugar-vinegar blend, were incorporated into alternative-cured ham and uncured roast beef and deli-style turkey breast. Controls included all three meat products without antimicrobial ingredients and a traditional-cured ham with 2.8 % sodium lactate-diacetate. Cooked, sliced products were inoculated with 3 log CFU/g L. monocytogenes, vacuum packed, and stored at 4 or 7°C, for up to 12 weeks. For control products without antimicrobial agents stored at 4°C, a 2-log L. monocytogenes increase was observed at 2 weeks for ham and turkey and at 4 weeks for roast beef. Growth (>1-log increase) in the sodium lactate-diacetate was delayed until week 6. Compared with the control, the addition of either vinegar-lemon-cherry powder blend or buffered vinegar delayed L. monocytogenes growth for an additional 2 weeks, while the addition of cultured sugar-vinegar blend delayed growth for an additional 4 weeks for both ham and turkey. The greatest L. monocytogenes delay was observed in roast beef containing any of the three antimicrobial ingredients, with no growth detected through 12 weeks at 4°C for all the treatments. As expected, L. monocytogenes grew substantially faster in products stored at 7°C than at 4°C. These data suggest that antimicrobial ingredients from a natural source can enhance the safety of ready-to-eat meat and poultry products, but their efficacy is improved in products containing nitrite and with lower moisture and pH.
Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin
2014-12-15
Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nitrosamines in cured meat products.
Sen, N P; Iyengar, J R; Miles, W F; Panalaks, T
1976-01-01
One hundred samples of specially selected spiced meat products (sausages, salami, bologna, wieners, meat loaf, canned luncheon mean, etc) were analysed for nitrate, nitrite and volatile nitrosamines. None of the samples contained high levels of nitrosamines, but many contained traces, generally in the range from 2-50 mug/kg. Some contained as many as four nitrosamines, namely, NDMA, NDEA, NPip and NPy. In a few cases the samples were reanalysed after two weeks' storage at 4 or -20 degrees C, but no significant change in the nitrosamine levels could be detected. The identity of the nitrosamines was confirmed by GLC-high-resolution-MS.
A defense in depth approach for nuclear power plant accident management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chih-Yao Hsieh; Hwai-Pwu Chou
2015-07-01
An initiating event may lead to a severe accident if the plant safety functions have been challenged or operators do not follow the appropriate accident management procedures. Beyond design basis accidents are those corresponding to events of very low occurrence probability but such an accident may lead to significant consequences. The defense in depth approach is important to assure nuclear safety even in a severe accident. Plant Damage States (PDS) can be defined by the combination of the possible values for each of the PDS parameters which are showed on the nuclear power plant simulator. PDS is used to identifymore » what the initiating event is, and can also give the information of safety system's status whether they are bypassed, inoperable or not. Initiating event and safety system's status are used in the construction of Containment Event Tree (CET) to determine containment failure modes by using probabilistic risk assessment (PRA) technique. Different initiating events will correspond to different CETs. With these CETs, the core melt frequency of an initiating event can be found. The use of Plant Damage States (PDS) is a symptom-oriented approach. On the other hand, the use of Containment Event Tree (CET) is an event-oriented approach. In this study, the Taiwan's fourth nuclear power plants, the Lungmen nuclear power station (LNPS), which is an advanced boiling water reactor (ABWR) with fully digitized instrumentation and control (I and C) system is chosen as the target plant. The LNPS full scope engineering simulator is used to generate the testing data for method development. The following common initiating events are considered in this study: loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), loss of offsite power (LOOP), station blackout (SBO). Studies have indicated that the combination of the symptom-oriented approach and the event-oriented approach can be helpful to find mitigation strategies and is useful for the accident management. (authors)« less
Jones, Jesica A.; Ninnis, Janet R.; Hopper, Andrew O.; Ibrahim, Yomna; Merritt, T. Allen; Wan, Kim-Wah; Power, Gordon G.; Blood, Arlin B.
2015-01-01
Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. Nitrite metabolism in breast milk was measured after freeze-thawing, at different temperatures, varying oxygen tensions, and after inhibition of potential nitrite-metabolizing enzymes. Nitrite concentrations averaged 0.07 ± 0.01 μM in milk of mothers of preterm infants, less than that of term infants (0.13 ± 0.02 μM) (P < .01). Nitrate concentrations averaged 13.6 ± 3.7 μM and 12.7 ± 4.9 μM, respectively. Nitrite and nitrate concentrations in infant formulas varied from undetectable to many-fold more than breast milk. Concentrations in parenteral nutrition were equivalent to or lower than those of breast milk. Freeze-thawing decreased nitrite concentration ∼64%, falling with a half-life of 32 minutes at 37°C. The disappearance of nitrite was oxygen-dependent and prevented by ferricyanide and 3 inhibitors of lactoperoxidase. Nitrite concentrations in breast milk decrease with storage and freeze-thawing, a decline likely mediated by lactoperoxidase. Compared to adults, infants ingest relatively little nitrite and nitrate, which may be of importance in the modulation of blood flow and the bacterial flora of the infant GI tract, especially given the protective effects of swallowed nitrite. PMID:23894175
Jones, Jesica A; Ninnis, Janet R; Hopper, Andrew O; Ibrahim, Yomna; Merritt, T Allen; Wan, Kim-Wah; Power, Gordon G; Blood, Arlin B
2014-09-01
Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. Nitrite metabolism in breast milk was measured after freeze-thawing, at different temperatures, varying oxygen tensions, and after inhibition of potential nitrite-metabolizing enzymes. Nitrite concentrations averaged 0.07 ± 0.01 μM in milk of mothers of preterm infants, less than that of term infants (0.13 ± 0.02 μM) (P < .01). Nitrate concentrations averaged 13.6 ± 3.7 μM and 12.7 ± 4.9 μM, respectively. Nitrite and nitrate concentrations in infant formulas varied from undetectable to many-fold more than breast milk. Concentrations in parenteral nutrition were equivalent to or lower than those of breast milk. Freeze-thawing decreased nitrite concentration ~64%, falling with a half-life of 32 minutes at 37°C. The disappearance of nitrite was oxygen-dependent and prevented by ferricyanide and 3 inhibitors of lactoperoxidase. Nitrite concentrations in breast milk decrease with storage and freeze-thawing, a decline likely mediated by lactoperoxidase. Compared to adults, infants ingest relatively little nitrite and nitrate, which may be of importance in the modulation of blood flow and the bacterial flora of the infant GI tract, especially given the protective effects of swallowed nitrite. © 2013 American Society for Parenteral and Enteral Nutrition.
Blood, Arlin B.; Schroeder, Hobe J.; Terry, Michael H.; Merrill-Henry, Jeanette; Bragg, Shannon L.; Vrancken, Kurt; Liu, Taiming; Herring, Jason L.; Sowers, Lawrence C.; Wilson, Sean M.; Power, Gordon G.
2011-01-01
Background Nitrite can be converted to nitric oxide (NO) by a number of different biochemical pathways. In newborn lambs an aerosol of inhaled nitrite has been found to reduce pulmonary blood pressure, possibly acting via conversion to NO by reaction with intraerythrocytic deoxyhemoglobin. If so, the vasodilating effects of nitrite would be attenuated by free hemoglobin in plasma that would rapidly scavenge NO. Methods and Results Pulmonary vascular pressures and resistances to flow were measured in anesthetized newborn lambs. Plasma hemoglobin concentrations were then elevated, resulting in marked pulmonary hypertension. This effect was attenuated if infused hemoglobin was first oxidized to methemoglobin which does not scavenge NO. These results further implicate NO as a tonic pulmonary vasodilator. Next, while free hemoglobin continued to be infused, the lambs were given inhaled NO gas (20 ppm), inhaled sodium nitrite aerosol (0.87 M), or an intravascular nitrite infusion (3 mg·hr−1 bolus, 5 mg·kg−1·hr−1 infusion). Inhaled NO and inhaled nitrite aerosol both resulted in pulmonary vasodilation. Intravascular infusion of nitrite, however, did not. Increases in exhaled NO gas were observed while breathing the nitrite aerosol (~20 ppb NO) but not during intravascular infusion of nitrite. Conclusions We conclude that the pulmonary vasodilating effect of inhaled nitrite results from its conversion to NO in airway and parenchymal lung tissue and is not dependent on reactions with deoxyhemoglobin in the pulmonary circulation. Inhaled nitrite aerosol remains a promising candidate to reduce pulmonary hypertension in clinical application. PMID:21282501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajeev, Lara; Chen, Amy; Kazakov, Alexey E.
Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness atmore » low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. Here we discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Finally, our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.« less
Lochmatter, Samuel; Maillard, Julien; Holliger, Christof
2014-01-01
This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970
Nitrites and nitrates in the human diet: Carcinogens or beneficial hypotensive agents?
Butler, Anthony
2015-06-05
The presence of nitrite in the human diet was thought to constitute a hazard as secondary nitrosamines are known to cause gastric cancers. Recent publications on the physiology of serum nitrite have been consulted. Nitrite is added to some foodstuffs as an antibotulinum agent. The epidemiological evidence that nitrite causes gastric ulcers is weak. On the other hand, evidence that the presence of nitrite in serum lowers blood pressure is strong. This allows us to explain why a Tang dynasty treatment for angina, given in a Dunhuang medical manuscript, can be successful. The presence of nitrite in food is free of danger and a diet high in nitrate is beneficial to the health. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nitrite spray treatment to promote red color stability of vacuum packaged beef.
Song, Xiao; Cornforth, Daren; Whittier, Dick; Luo, Xin
2015-01-01
Sodium nitrite solutions were sprayed on select grade boneless rib (M. longissimus thoracis) and bottom round (mainly M. biceps femoris) steaks individually, to form bright red nitric oxide myoglobin (NO-Mb) in vacuum packages. Our objective was to determine the optimum level of nitrite in spray for stable raw steak redness, low or no residual nitrite, and low surface pinking (ham-like cured color) after cooking. Results showed that steaks sprayed with 100-350 ppm nitrite solutions had 3.0-3.6g weight gain and a calculated level of 1.3-5.3mg nitrite added/kg steak, but very low (<1 ppm) residual nitrite. Nitrite sprays of 250-350 ppm were optimum for raw steak color during 21 days of storage at 1°C (a*>10; chroma C*>16). Raw steak redness was less stable in round than rib. Visual scores for pinkness after cooking were low, indicating that cooked color at even the highest nitrite treatment (350 ppm) was acceptable. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yan, Hui; Zhuo, Xiangyi; Shen, Baohua; Xiang, Ping; Shen, Min
2016-01-01
Although nitrite is widely used in meat processing, it is a major toxicity hazard to children and is responsible for the blue-baby syndrome. A simple and effective method to determine nitrite in whole blood has been devised using ion chromatography with suppressed conductivity detection. The blood sample was deproteinized by adding acetonitrile and purified with mini-cartridges to remove hydrophobic compounds, chloride ions, and metal ions. An aliquot of the filtrate was injected onto the ion chromatography. The retention time for nitrite was 13.8 min and the detection limit of nitrite in whole blood was 0.4 μmol/L. The calibration curve was linear (r(2) = 0.9999) over the concentration working range. The blood nitrite concentration of a victim who attempted suicide by ingesting sodium nitrite powder was determined using the present method. The basal levels for nitrite in human blood was determined with 7.1 ± 0.9 μmol/L (n = 12). © 2015 American Academy of Forensic Sciences.
The effect of dietary factors on nitrosoproline levels in human urine.
Stich, H F; Hornby, A P; Dunn, B P
1984-05-15
The effect of dietary components on the levels of nitrosoproline ( NPRO ) excreted over a 24 h period in the urine was examined in volunteers ingesting known amounts of various food products. The ingestion of nitrite-preserved meats (85-170 g per meal), including canned, rolled or Yunnan ham, cured pork, luncheon meat, and various Chinese and European-style sausages, led to urinary NPRO excretion levels ranging from 2.5 to 78.5 micrograms/24 h, whereas the consumption of non-preserved meat and fish products, including chicken, herring, salmon, shrimp, ground beef (hamburger), pork chops and beef liver, led to relatively low NPRO excretion levels, ranging from 0.0 to 0.8 micrograms/24 h. The urinary NPRO levels of 22 vegetarians and 14 lacto-vegetarians averaged 0.8 and 1.4 micrograms/24 h, respectively. A change from a nitrite-preserved meat diet to a vegetarian diet was accompanied by an approximately six-fold reduction in urinary NPRO levels; however, these remained above control levels for at least 3 days following the dietary change. The relatively high NPRO levels following the ingestion of nitrite-preserved meats could not be reduced by nitrite-trapping chemicals, including ascorbic acid, ferulic acid, caffeic acid, or phenolic-containing mixtures such as coffee and tea, which were effective in suppressing endogenous NPRO formation following the intake of nitrate and proline. The high urinary NPRO levels after ingestion of preserved meat products appear to be due to the consumption of preformed NPRO . An understanding of the relative contribution of preformed and endogenously formed nitrosamines appears to be essential when designing dietary intervention programmes.
Bosse Née Danz, Ramona; Gibis, Monika; Schmidt, Herbert; Weiss, Jochen
2016-07-01
The influence of the nitrate reductase activity of two Staphylococcus carnosus strains used as starter cultures on the formation of nitrate, nitrite and color pigments in cured raw ham was investigated. In this context, microbiological, chemical and multivariate image analyses were carried out on cured raw hams, which were injected with different brines containing either nitrite or nitrate, with or without the S. carnosus starter cultures. During processing and storage, the viable counts of staphylococci remained constant at 6.5logcfu/g in the hams inoculated with starter cultures, while the background microbiota of the hams processed without the starter cultures developed after 14days. Those cured hams inoculated with S. carnosus LTH 7036 (high nitrate reductase activity) showed the highest decrease in nitrate and high nitrite concentrations in the end product, but were still in the range of the legal European level. The hams cured with nitrate and without starter culture or with the other strain, S. carnosus LTH 3838 (low nitrate reductase activity) showed higher residual nitrate levels and a lower nitrite content in the end product. The multivariate image analysis identified spatial and temporal differences in the meat pigment profiles of the differently cured hams. The cured hams inoculated with S. carnosus LTH 3838 showed an uncured core due to a delay in pigment formation. Therefore, the selection of starter cultures based on their nitrate reductase activity is a key point in the formation of curing compounds and color pigments in cured raw ham manufacture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nitrate and Nitrite Reduction by Wolffia arrhiza1
Swader, J. A.; Stocking, C. R.
1971-01-01
Nitrate reductase was not found to be present in or associated with partially purified, intact chloroplasts aqueously isolated from Wolffia arrhiza. Such chloroplasts are capable of using nitrite but not nitrate as an electron acceptor during light-stimulated electron transport in the absence of additional cytoplasmic components. When nitrite acts as an electron acceptor under these conditions, on the average 1.5 moles of oxygen are evolved per mole of nitrite reduced by the chloroplasts, indicating a probable reduction of nitrite to ammonia. Chloroplasts ruptured by osmotic shock fail to reduce nitrite in the absence of additional components. PMID:16657592
Nitrate and Nitrite Reduction by Wolffia arrhiza.
Swader, J A; Stocking, C R
1971-02-01
Nitrate reductase was not found to be present in or associated with partially purified, intact chloroplasts aqueously isolated from Wolffia arrhiza. Such chloroplasts are capable of using nitrite but not nitrate as an electron acceptor during light-stimulated electron transport in the absence of additional cytoplasmic components. When nitrite acts as an electron acceptor under these conditions, on the average 1.5 moles of oxygen are evolved per mole of nitrite reduced by the chloroplasts, indicating a probable reduction of nitrite to ammonia. Chloroplasts ruptured by osmotic shock fail to reduce nitrite in the absence of additional components.
NASA Technical Reports Server (NTRS)
Summers, D. P.
1999-01-01
An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.
NASA Technical Reports Server (NTRS)
Puthoff, R. L.
1972-01-01
A study to determine the feasibility of containing the fission products of a mobile reactor in the event of an impact is presented. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block at 1055 ft/sec. The model was significantly deformed and the concrete block demolished. No leaks were detected nor were any cracks observed in the model after impact.
Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian; Elenter, Deborah
2009-06-01
A steady-state model presented by Boltz, Johnson, Daigger, and Sandino (2009) describing integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor (MBBR) systems has been demonstrated to simulate, with reasonable accuracy, four wastewater treatment configurations with published operational data. Conditions simulated include combined carbon oxidation and nitrification (both IFAS and MBBR), tertiary nitrification MBBR, and post denitrification IFAS with methanol addition as the external carbon source. Simulation results illustrate that the IFAS/MBBR model is sufficiently accurate for describing ammonia-nitrogen reduction, nitrate/nitrite-nitrogen reduction and production, biofilm and suspended biomass distribution, and sludge production.
Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Béline, Fabrice; Magrí, Albert
2018-02-01
Swine wastewater was treated in two continuously aerated activated sludge (AS) systems at high (AS1: 1.7-2.6 mg/L) and low (AS2: 0.04-0.08 mg/L) dissolved oxygen (DO), and at three temperatures (10, 20, and 30 °C). Biochemical oxygen demand (BOD) removal was >94.8%. Meanwhile, total nitrogen (N) removal was significantly higher in AS2, at 64, 89, and 88%, than in AS1, at 12, 24, and 46%, for 10, 20, and 30 °C, respectively. The experimental data were considered in a simulation study using an AS model for BOD and N removal, which also included nitrite, free ammonia, free nitrous acid, and temperature. Simulations at high-DO showed that ammonium was partly oxidized into nitrate but not removed, whereas at low-DO ammonium was removed mainly through the nitrite shortcut in simultaneous nitrification-denitrification. This study demonstrates that treatment at low-DO is an effective method for removing N, and modelling a helpful tool for its optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schmidt, A.R.; Stamer, J.K.
1987-01-01
Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)
Tripatara, Pinpat; Patel, Nimesh S A; Webb, Andrew; Rathod, Krishnaraj; Lecomte, Florence M J; Mazzon, Emanuela; Cuzzocrea, Salvatore; Yaqoob, Mohammed M; Ahluwalia, Amrita; Thiemermann, Christoph
2007-02-01
In normal conditions, nitric oxide (NO) is oxidized to the anion nitrite, but in hypoxia, this nitrite may be reduced back to NO by the nitrite reductase action of deoxygenated hemoglobin, acidic disproportionation, or xanthine oxidoreductase (XOR). Herein, is investigated the effects of topical sodium nitrite administration in a rat model of renal ischemia/reperfusion (I/R) injury. Rats were subjected to 60 min of bilateral renal ischemia and 6 h of reperfusion in the absence or presence of sodium nitrite (30 nmol) administered topically 1 min before reperfusion. Serum creatinine, serum aspartate aminotransferase, creatinine clearance, fractional excretion of Na(+), and plasma nitrite/nitrate concentrations were measured. The nitrite-derived NO-generating capacity of renal tissue was determined under acidic and hypoxic conditions by ozone chemiluminescence in homogenates of kidneys that were subjected to sham, ischemia-only, and I/R conditions. Nitrite significantly attenuated renal dysfunction and injury, an effect that was abolished by previous treatment of rats with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazole-1-oxyl-3-oxide (2.5 mumol intravenously 5 min before ischemia and 50 nmol topically 6 min before reperfusion). Renal tissue homogenates produced significant amounts of NO from nitrite, an effect that was attenuated significantly by the xanthine oxidoreductase inhibitor allopurinol. Taken together, these findings demonstrate that topically administered sodium nitrite protects the rat kidney against I/R injury and dysfunction in vivo via the generation, in part, of xanthine oxidoreductase-catalyzed NO production. These observations suggest that nitrite therapy might prove beneficial in protecting kidney function and integrity during periods of I/R such as those encountered in renal transplantation.
Survey of nitrite content in foods from north-east China.
Yuan, Y; Zhang, T; Zhuang, H; Wang, K; Zheng, Y; Zhang, H; Zhou, B; Liu, J
2010-01-01
This study reports a survey of nitrite in a variety of foods consumed in north-east China and estimates the intake of nitrite for the north-east Chinese consumer. A total of 642 food categories including rice and rice products, flour and flour products, soybean and products, vegetables, fruit, preserved vegetables, cured meat products, dairy products, fish products, salt, and soy sauce were analysed for their content of nitrite. Nitrite content was quite different both between different food categories and within the same food category, ranging from not determined (n.d.) to 19.7 mg kg(-1). A great variation in the content of nitrite was found for all the food products. The average content of nitrite was highest in cured meat products (14.3 mg kg(-1)). Next to that, the nitrite content was high in the order of preserved vegetables (4.1 mg kg(-1)), soybean products (3.5 mg kg(-1)), and dairy products (1.9 mg kg(-1)). The lowest average values of nitrite were detected in soy sauce, rice and rice products, salt and fish products, the contents being 0.1, 0.3, 0.3, and 0.6 mg kg(-1). Calculations on the basis of these results and including dietary surveys show that the average intake of nitrite in north-east China from food was 0.03 mg kg(-1) body weight for an average Chinese person weighing 60 kg, and the data are lower than the established acceptable daily intake (ADI) for nitrite. Cured meat products are normally the major contributor to average nitrite intake of the north-east Chinese population. The second contributor is vegetables.
Gam, Le Thi Hong; Jensen, Frank Bo; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Bayley, Mark
2018-03-01
Nitrite and carbon dioxide are common environmental contaminants in the intensive aquaculture ponds used to farm clown knifefish (Chitala ornata) in the Mekong delta, Vietnam. Here we tested the hypothesis that hypercapnia reduces nitrite uptake across the gills, because pH regulation will reduce chloride uptake and hence nitrite uptake as the two ions compete for the same transport route via the branchial HCO 3 - /Cl - exchanger. Fish fitted with arterial catheters were exposed to normocapnic/normoxic water (control), nitrite (1 mM), hypercapnia (21 mmHg CO 2 ), or combined hypercapnia (acclimated hypercapnia) and nitrite for 96 h. Blood was sampled to measure acid-base status, haemoglobin derivatives and plasma ions. Plasma nitrite increased for 48 h, but levels stayed below the exposure concentration, and subsequently decreased as a result of nitrite detoxification to nitrate. The total uptake of nitrite (evaluated as [NO 2 - ] + [NO 3 - ]) was significantly decreased in hypercapnia, in accordance with the hypothesis. Methemoglobin and nitrosylhemoglobin levels were similarly lower during hypercapnic compared to normocapnic nitrite exposure. The respiratory acidosis induced by hypercapnia was half-compensated by bicarbonate accumulation in 96 h, which was mainly chloride-mediated (i.e. reduced Cl - influx via the branchial HCO 3 - /Cl - exchanger). Plasma osmolality and main ions (Na + , Cl - ) were significantly decreased by hypercapnia and by nitrite exposure, consistent with inhibition of active transport. We conclude that hypercapnia induces a long-lasting, and mainly chloride-mediated acid-base regulation that reduces the uptake of nitrite across the gills. Copyright © 2018 Elsevier B.V. All rights reserved.
Weisz, Dany; Seabrook, Jamie A; Lim, Rodrick K
2010-07-01
Previous studies in adults have refuted the use of nitrites as a predictor of bacterial resistance to both trimethoprim-sulfamethoxazole and cephalosporins. Some centers now consider first-line outpatient therapy with an oral third-generation cephalosporin appropriate for young children. The objective of this study was to determine if nitrite-negative pediatric urinary tract infections (UTIs) were more likely than nitrite-positive UTIs to be resistant to cephalosporins. This may enable physicians to adjust antimicrobial therapy before patients leave the Emergency Department (ED) to avoid the complications of ineffectively treated pediatric UTIs. A retrospective chart review examined, over a 9-month period, 173 pediatric patients who were diagnosed with a clinical UTI in the ED and who also had a positive urine culture and a recorded dipstick at the time of visit. The chi-squared test and Fisher's exact test were used to compare nitrite-negative vs. nitrite-positive UTIs for resistance to third-generation cephalosporins and other empiric antimicrobials. For third-generation cephalosporins, 1.4% of nitrite-positive UTIs were resistant, whereas 14.4% of nitrite-negative UTIs were resistant (95% confidence interval [CI] -0.22 to -0.05). For first-generation cephalosporins, 8.4% were resistant in the nitrite-positive group, compared to 22.2% in the nitrite-negative group (95% CI -0.24 to -0.03). The absence of urinary nitrites is a significant indicator for potential resistance to cephalosporins in pediatric UTIs. Due to low levels of pediatric UTI resistance, cephalosporins continue to represent useful empiric therapy in the general pediatric population. However, in high-risk patients, physicians may opt to alter their empiric choice of antibiotic based on the presence of urinary nitrites. Copyright 2010 Elsevier Inc. All rights reserved.
Ferretti, S; Lee, S K; MacCraith, B D; Oliva, A G; Richardson, D J; Russell, D A; Sapsford, K E; Vidal, M
2000-11-01
Nitrite is an important human health and environmental analyte. As such, the European Union (EU) has imposed a limit for nitrite in potable water of 0.1 mg l-1 (2.18 microM). In order to develop an optical biosensing system for the determination of nitrite ions in environmental waters, cytochrome cd1 nitrite reductase has been extracted and purified from the bacterium Paracoccus pantotrophus. The protein has been spectroscopically characterised in solution and important kinetic parameters of nitrite reduction of the cytochrome cd1 enzyme, i.e., Km, Vmax and kcat have been determined. The influence of pH on the activity of the cytochrome cd1 has been investigated and the results suggest that this enzyme can be used for the determination of nitrite in the pH range 6-9. Biosensing experiments with the cytochrome cd1 in solution suggested that the decrease in intensity of the absorption band associated with the d1 haem (which is the nitrite binding site), at 460 nm, with increasing nitrite concentrations would enable the measurement of this analyte with the optimum limit of detection. The cytochrome cd1 has been encapsulated in a bulk sol-gel monolith with no structural changes observed and retention of enzymatic activity. The detection of nitrite ions in the range 0.075-1.250 microM was achieved, with a limit of detection of 0.075 microM. In order to increase the speed of response, a sol-gel sandwich thin film structure was formulated with the cytochrome cd1. This structure enabled the determination of nitrite concentrations within ca. 5 min. The sol-gel sandwich entrapped cytochrome cd1 enzyme was found to be stable for several months when the films were stored at 4 degrees C.
Disposal of hypergolic propellants, phase 6 task 4. Disposal pond products
NASA Technical Reports Server (NTRS)
Cohenour, B. C.; Wiederhold, C. N.
1977-01-01
Waste monomethyl hydrazine scrubber liquor, consisting of aqueous solutions containing small amounts of CH4, Cl2, CH3Cl, CH2Cl2, and CHCl3 as well as large amounts of CH3OH is scheduled to be dumped in stabilization ponds along with nitrate and nitrite salt solutions obtained as waste liquors from the N2O4 scrubbers. The wastes are investigated as to the hazardous materials generated by such combinations of items as described as well as the finite lifetime of such materials in the stabilization ponds. The gas liquid chromatograph was used in the investigation. A series of experiments designed to convert nitrate and nitrite salts to the environmentally innocuous N2O and N2 using solar energy is reported. Results indicate that this solar conversion is feasible.
Tiso, Mauro; Schechter, Alan N.
2015-01-01
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health. PMID:25803049
Böhmer, Anke; Pich, Andreas; Schmidt, Mario; Haghikia, Arash; Tsikas, Dimitrios
2016-04-15
Previously we found by HPLC with fluorescence detection that inorganic nitrite induces oxidation of glutathione (GSH) to its disulfide (GSSG) in intact and more abundantly in lyzed red blood cells (RBCs) from healthy humans. In the present work, we performed MS-based protein analysis and observed that nitrite (range, 0-20mM) induces formation of S-glutathionyl hemoglobin (HbSSG) at cysteine (Cys) β93 and β112 of oxyhemoglobin (HbO2) in lyzed human RBCs (range, 6-8mM HbO2). Hemoglobin species were isolated from incubation mixtures of nitrite in lyzed RBCs by ultrafiltration or affinity chromatography and analyzed by HPLC and LC-MS/MS. The mechanism likely involves inhibition of catalase activity by nitrite (IC50, 9 μM), which allows H2O2 to accumulate and oxidize Cys moieties of oxyhemoglobin and erythrocytic GSH to form HbSSG in addition to GSSG. In freshly prepared hemolysate samples, nitrite induced release of superoxide and molecular oxygen. In the presence of paracetamol and nitrite in hemolysate samples, 3-nitro-paracetamol was detected. Nitrite also induced S-nitroso hemoglobin (HbSNO) formation in low yield (i.e., 0.1%). Synthetic cysteine (Cys), glutathione (GSH), N-acetylcysteine (NAC) and N-acetylcysteine ethyl ester (NACET) inhibited nitrite-induced modifications of oxyhemoglobin including methemoglobin, HbSSG (CysSH > NACET > GSH ≈ NAC; thiol concentration, 50 μM) and HbSNO. Nitrite-induced oxidative modifications may alter physiological hemoglobin functions and may require alternative treatments for conditions associated with oxidized hemoglobin like in nitrite-induced methemoglobinemia. Accumulation of soluble Cys in RBCs via oral administration of NACET could be a new promising strategy to prevent nitrite-induced methemoglobinemia by nitrite and other oxidants. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Ling; Frizzell, Sheila A.; Zhao, Xuejun; Gladwin, Mark T.
2013-01-01
The airway epithelium provides important barrier and host defense functions. Recent studies reveal that nitrite is an endocrine reservoir of nitric oxide (NO) bioactivity that is converted to NO by enzymatic reductases along the physiological oxygen gradient. Nitrite signaling has been described as NO dependent activation mediated by reactions with deoxygenated redox active hemoproteins, such as hemoglobin, myoglobin, neuroglobin, xanthine oxidoreductase (XO) and NO synthase at low pH and oxygen tension. However, nitrite can also be readily oxidized to nitrogen dioxide (NO2•) via heme peroxidase reactions, suggesting the existence of alternative oxidative signaling pathways for nitrite under normoxic conditions. In the present study we examined normoxic signaling effects of sodium nitrite on airway epithelial cell wound healing. In an in vitro scratch injury model under normoxia, we exposed cultured monolayers of human airway epithelial cells to various concentrations of sodium nitrite and compared responses to NO donor. We found sodium nitrite potently enhanced airway epithelium wound healing at physiological concentrations (from 1uM). The effect of nitrite was blocked by the NO and NO2• scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (c-PTIO). Interestingly, nitrite treatment did not increase cyclic guanosine monophosphate (cGMP) levels under these normoxic conditions, even in the presence of a phosphodiesterase 5 inhibitor, suggesting cGMP independent signaling. Consistent with an oxidative signaling pathway requiring hydrogen peroxide (H2O2)/heme peroxidase/NO2• signaling, the effects of nitrite were potentiated by superoxide dismutase (SOD) and low concentration H2O2, whereas inhibited completely by catalase, followed by downstream extracellular-signal-regulated kinase (ERK) 1/2 activation. Our data represent the first description of normoxic nitrite signaling on lung epithelial cell proliferation and wound healing and suggest novel oxidative signaling pathways involving nitrite-H2O2 reactions, possibly via the intermediary, NO2•. PMID:22425780
Moreno, Lyman; Predicala, Bernardo; Nemati, Mehdi
2010-04-01
The effects of manure age on emission of H(2)S and required level of nitrite or molybdate to control these emissions were investigated in the present work. Molybdate mediated control of H(2)S emission was also studied in semi-pilot scale open systems, and in specifically designed chambers which simulated swine production rooms. With fresh 1-, 3- and 6-month old manures average H(2)S concentration in the headspace gas of the closed systems were 4856+/-460, 3431+/-208, 1037+/-98 ppm and non-detectable, respectively. Moreover, the level of nitrite or molybdate required to control the emission of H(2)S decreased as manure age increased. In the semi-pilot scale open system and chambers, average H(2)S concentration at the surface of agitated fresh manure were 831+/-26 and 88.4+/-5.7 ppm, respectively. Furthermore, 0.1-0.25 mM molybdate was sufficient to control the emission of H(2)S. A cost study for an average size swine operation showed that the cost of treatment with molybdate was less than 1% of the overall production cost for each market hog. Copyright 2009 Elsevier Ltd. All rights reserved.
Gui, Daxiang; Dai, Xing; Zheng, Tao; Wang, Xiangxiang; Silver, Mark A; Chen, Lanhua; Zhang, Chao; Diwu, Juan; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao
2018-02-05
The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na 2 UV 2 (HPO 3 ) 6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.
Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits
Machha, Ajay
2012-01-01
Purpose In the last decade, a growing scientific and medical interest has emerged toward cardiovascular effects of dietary nitrite and nitrate; however, many questions concerning their mode of action(s) remain unanswered. In this review, we focus on multiple mechanisms that might account for potential cardiovascular beneficial effects of dietary nitrite and nitrate. Results Beneficial changes to cardiovascular health from dietary nitrite and nitrate might result from several mechanism(s) including their reduction into nitric oxide, improvement in endothelial function, vascular relaxation, and/or inhibition of the platelet aggregation. From recently obtained evidence, it appears that the longstanding concerns about the toxicity of oral nitrite or nitrate are overstated. Conclusion Dietary nitrite and nitrate may have cardiovascular protective effects in both healthy individuals and also those with cardiovascular disease conditions. A role for nitrite and nitrate in nitric oxide biosynthesis and/or in improving nitric oxide bioavailability may eventually provide a rationale for using dietary nitrite and nitrate supplementation in the treatment and prevention of cardiovascular diseases. PMID:21626413
Role of xanthine oxidoreductase in the anti-thrombotic effects of nitrite in rats in vivo.
Kramkowski, K; Leszczynska, A; Przyborowski, K; Kaminski, T; Rykaczewska, U; Sitek, B; Zakrzewska, A; Proniewski, B; Smolenski, R T; Chabielska, E; Buczko, W; Chlopicki, S
2016-01-01
The mechanisms underlying nitrite-induced effects on thrombosis and hemostasis in vivo are not clear. The goal of the work described here was to investigate the role of xanthine oxidoreductase (XOR) in the anti-platelet and anti-thrombotic activities of nitrite in rats in vivo. Arterial thrombosis was induced electrically in rats with renovascular hypertension by partial ligation of the left renal artery. Sodium nitrite (NaNO2, 0.17 mmol/kg twice daily for 3 days, p.o) was administered with or without one of the XOR-inhibitors: allopurinol (ALLO) and febuxostat (FEB) (100 and 5 mg/kg, p.o., for 3 days). Nitrite treatment (0.17 mmol/kg), which was associated with a significant increase in NOHb, nitrite/nitrate plasma concentration, resulted in a substantial decrease in thrombus weight (TW) (0.48 ± 0.03 mg vs. vehicle [VEH] 0.88 ± 0.08 mg, p < 0.001) without a significant hypotensive effect. The anti-thrombotic effect of nitrite was partially reversed by FEB (TW = 0.63 ± 0.06 mg, p < 0.05 vs. nitrites), but not by ALLO (TW = 0.43 ± 0.02 mg). In turn, profound anti-platelet effect of nitrite measured ex vivo using collagen-induced whole-blood platelet aggregation (70.5 ± 7.1% vs. VEH 100 ± 4.5%, p < 0.05) and dynamic thromboxaneB2 generation was fully reversed by both XOR-inhibitors. In addition, nitrite decreased plasminogen activator inhibitor-1 concentration (0.47 ± 0.13 ng/ml vs. VEH 0.62 ± 0.04 ng/ml, p < 0.05) and FEB/ALLO reversed this effect. In vitro the anti-platelet effect of nitrite (1 mM) was reversed by FEB (0.1 mM) under hypoxia (0.5%O2) and normoxia (20%O2). Nitrite treatment had no effect on coagulation parameters. In conclusion, the nitrite-induced anti-platelet effect in rats in vivo is mediated by XOR, but XOR does not fully account for the anti-thrombotic effects of nitrite.
Inorganic Nitrite Therapy: Historical perspective and future directions
Kevil, Christopher G.; Kolluru, Gopi K.; Pattillo, Christopher B.; Giordano, Tony
2015-01-01
Over the past several years, investigators studying nitric oxide (NO) biology and metabolism have come to learn that the one electron oxidation product of NO, nitrite anion, serves as a unique player in modulating tissue NO bioavailability. Numerous studies have examined how this oxidized metabolite of NO can act as a salvage pathway for maintaining NO equivalents through multiple reduction mechanisms in permissive tissue environments. Moreover, it is now clear that nitrite anion production and distribution throughout the body can act in an endocrine manner to augment NO bioavailability that is important for physiological and pathological processes. These discoveries have led to renewed hope and efforts for an effective NO based therapeutic agent through the unique action of sodium nitrite as an NO pro-drug. More recent studies also indicate that sodium nitrate may also increase plasma nitrite levels via the enterosalivary circulatory system resulting in nitrate reduction to nitrite by microorganisms found within the oral cavity. In this review, we discuss the importance of nitrite anion in several disease models along with an appraisal of sodium nitrite therapy in the clinic, potential caveats of such clinical uses, and future possibilities of nitrite based therapies. PMID:21619929
Effect of processed and red meat on endogenous nitrosation and DNA damage.
Joosen, Annemiek M C P; Kuhnle, Gunter G C; Aspinall, Sue M; Barrow, Timothy M; Lecommandeur, Emmanuelle; Azqueta, Amaya; Collins, Andrew R; Bingham, Sheila A
2009-08-01
Haem in red meat (RM) stimulates the endogenous production of mutagenic nitroso compounds (NOC). Processed (nitrite-preserved red) meat additionally contains high concentrations of preformed NOC. In two studies, of a fresh RM versus a vegetarian (VEG) diet (six males and six females) and of a nitrite-preserved red meat (PM) versus a VEG diet (5 males and 11 females), we investigated whether processing of meat might increase colorectal cancer risk by stimulating nitrosation and DNA damage. Meat diets contained 420 g (males) or 366 g (females) meat/per day. Faecal homogenates from day 10 onwards were analysed for haem and NOC and associated supernatants for genotoxicity. Means are adjusted for differences in male to female ratios between studies. Faecal NOC concentrations on VEG diets were low (2.6 and 3.5 mmol/g) but significantly higher on meat diets (PM 175 +/- 19 nmol/g versus RM 185 +/- 22 nmol/g; P = 0.75). The RM diet resulted in a larger proportion of nitrosyl iron (RM 78% versus PM 54%; P < 0.0001) and less nitrosothiols (RM 12% versus PM 19%; P < 0.01) and other NOC (RM 10% versus PM 27%; P < 0.0001). There was no statistically significant difference in DNA breaks induced by faecal water (FW) following PM and RM diets (P = 0.80). However, PM resulted in higher levels of oxidized pyrimidines (P < 0.05). Surprisingly, VEG diets resulted in significantly more FW-induced DNA strand breaks than the meat diets (P < 0.05), which needs to be clarified in further studies. Meats cured with nitrite have the same effect as fresh RM on endogenous nitrosation but show increased FW-induced oxidative DNA damage.
Lucey, K.J.
1989-01-01
The US Geological Survey maintains a quality assurance program based on the analysis of reference samples for its National Water Quality Laboratory located in Denver, Colorado. Reference samples containing selected inorganic, nutrient, and precipitation (low-level concentration) constituents are prepared at the Survey 's Water Quality Services Unit in Ocala, Florida, disguised as routine samples, and sent daily or weekly, as appropriate, to the laboratory through other Survey offices. The results are stored permanently in the National Water Data Storage and Retrieval System (WATSTORE), the Survey 's database for all water data. These data are analyzed statistically for precision and bias. An overall evaluation of the inorganic major ion and trace metal constituent data for water year 1988 indicated a lack of precision in the National Water Quality Laboratory for the determination of 8 out of 58 constituents: calcium (inductively coupled plasma emission spectrometry), fluoride, iron (atomic absorption spectrometry), iron (total recoverable), magnesium (atomic absorption spectrometry), manganese (total recoverable), potassium, and sodium (inductively coupled plasma emission spectrometry). The results for 31 constituents had positive or negative bias during water year 1988. A lack of precision was indicated in the determination of three of the six nutrient constituents: nitrate plus nitrite nitrogen as nitrogen, nitrite nitrogen as nitrogen, and orthophosphate as phosphorus. A biased condition was indicated in the determination of ammonia nitrogen as nitrogen, ammonia plus organic nitrogen as nitrogen, and nitrate plus nitrite nitrogen as nitrogen. There was acceptable precision in the determination of all 10 constituents contained in precipitation samples. Results for ammonia nitrogen as nitrogen, sodium, and fluoride indicated a biased condition. (Author 's abstract)
Production and consumption of nitric oxide by three methanotrophic bacteria.
Ren, T; Roy, R; Knowles, R
2000-09-01
We studied nitrogen oxide production and consumption by methanotrophs Methylobacter luteus (group I), Methylosinus trichosporium OB3b (group II), and an isolate from a hardwood swamp soil, here identified by 16S ribosomal DNA sequencing as Methylobacter sp. strain T20 (group I). All could consume nitric oxide (nitrogen monoxide, NO), and produce small amounts of nitrous oxide (N(2)O). Only Methylobacter strain T20 produced large amounts of NO (>250 parts per million by volume [ppmv] in the headspace) at specific activities of up to 2.0 x 10(-17) mol of NO cell(-1) day(-1), mostly after a culture became O(2) limited. Production of NO by strain T20 occurred mostly in nitrate-containing medium under anaerobic or nearly anaerobic conditions, was inhibited by chlorate, tungstate, and O(2), and required CH(4). Denitrification (methanol-supported N(2)O production from nitrate in the presence of acetylene) could not be detected and thus did not appear to be involved in the production of NO. Furthermore, cd(1) and Cu nitrite reductases, NO reductase, and N(2)O reductase could not be detected by PCR amplification of the nirS, nirK, norB, and nosZ genes, respectively. M. luteus and M. trichosporium produced some NO in ammonium-containing medium under aerobic conditions, likely as a result of methanotrophic nitrification and chemical decomposition of nitrite. For Methylobacter strain T20, arginine did not stimulate NO production under aerobiosis, suggesting that NO synthase was not involved. We conclude that strain T20 causes assimilatory reduction of nitrate to nitrite, which then decomposes chemically to NO. The production of NO by methanotrophs such as Methylobacter strain T20 could be of ecological significance in habitats near aerobic-anaerobic interfaces where fluctuating O(2) and nitrate availability occur.
Marsalek, Ondrej; Markland, Thomas E
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Nitrite formation from vegetable sources and its use as a preservative in cooked sausage.
Ko, Young Mi; Park, Jin Hwa; Yoon, Ki Sun
2017-04-01
Due to the potential health risk associated with nitrites, nitrite alternatives from natural sources in meat products have been investigated. We compared the nitrate contents of young radish, lettuce and commercial vegetable powder (cabbage and Chinese cabbage). We also investigated the effect of incubation time and salt addition on vegetable nitrite formation from vegetable sources. The antioxidant and antimicrobial effects of vegetable nitrite in cooked sausage were also compared with sodium nitrite. Young radish produced the greatest amount of nitrite after 24 h of incubation at 38 °C. On average, an approximately 32% reduction of nitrite was observed in sausage during 4 weeks of storage. Lipid oxidation in sausage was significantly prevented by vegetable nitrite produced from vegetable powder or young radish. The colour of the sausage prepared with young radish was most similar to that of the sausage with sodium nitrite. The addition of young radish to sausage significantly prevented the growth of Listeria monocytogenes at 4 °C and Staphylococcus aureus at 8 °C. Young radish was more effective as a natural antioxidant and antimicrobial agent as compared to commercial vegetable powder, which is currently used to make natural meat products, indicating that young radish has a high potential as a natural preservative. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hemp, James; Lücker, Sebastian; Schott, Joachim; Pace, Laura A; Johnson, Jena E; Schink, Bernhard; Daims, Holger; Fischer, Woodward W
2016-11-01
Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.
Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.
Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris
2015-11-15
Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hong, Xuan; Chen, Zhongwei; Zhao, Chungui; Yang, Suping
2017-06-01
Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO = 7.20-7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO = 4.08-4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO = 0.36-0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.
Role of aldehyde dehydrogenase in hypoxic vasodilator effects of nitrite in rats and humans
Arif, Sayqa; Borgognone, Alessandra; Lin, Erica Lai-Sze; O'Sullivan, Aine G; Sharma, Vishal; Drury, Nigel E; Menon, Ashvini; Nightingale, Peter; Mascaro, Jorge; Bonser, Robert S; Horowitz, John D; Feelisch, Martin; Frenneaux, Michael P; Madhani, Melanie
2015-01-01
Background and Purpose Hypoxic conditions favour the reduction of nitrite to nitric oxide (NO) to elicit vasodilatation, but the mechanism(s) responsible for bioconversion remains ill defined. In the present study, we assess the role of aldehyde dehydrogenase 2 (ALDH2) in nitrite bioactivation under normoxia and hypoxia in the rat and human vasculature. Experimental Approach The role of ALDH2 in vascular responses to nitrite was studied using rat thoracic aorta and gluteal subcutaneous fat resistance vessels from patients with heart failure (HF; 16 patients) in vitro and by measurement of changes in forearm blood flow (FBF) during intra-arterial nitrite infusion (21 patients) in vivo. Specifically, we investigated the effects of (i) ALDH2 inhibition by cyanamide or propionaldehyde and the (ii) tolerance-independent inactivation of ALDH2 by glyceryl trinitrate (GTN) on the vasodilator activity of nitrite. In each setting, nitrite effects were measured via evaluation of the concentration–response relationship under normoxic and hypoxic conditions in the absence or presence of ALDH2 inhibitors. Key Results Both in rat aorta and human resistance vessels, dilatation to nitrite was diminished following ALDH2 inhibition, in particular under hypoxia. In humans there was a non-significant trend towards attenuation of nitrite-mediated increases in FBF. Conclusions and Implications In human and rat vascular tissue in vitro, hypoxic nitrite-mediated vasodilatation involves ALDH2. In patients with HF in vivo, the role of this enzyme in nitrite bioactivation is at the most, modest, suggesting the involvement of other more important mechanisms. PMID:25754766
Cortelli, Sheila C; Costa, Fernando O; Rodrigues, Edson; Cota, Luis O M; Cortelli, Jose R
2015-08-01
Nitrite is a biologic factor relevant to oral and systemic homeostasis. Through an oral bacteria reduction process, it was suggested that periodontal therapy and chlorhexidine (CHX) rinse could affect nitrite levels, leading to negative effects, such as an increase in blood pressure. This 6-month randomized clinical trial evaluated the effects of periodontal therapeutic protocols on salivary nitrite and its relation to subgingival bacteria. One hundred patients with periodontitis were allocated randomly to debridement procedures in four weekly sections (quadrant scaling [QS]) or within 24 hours (full-mouth scaling [FMS]) in conjunction with a 60-day CHX (QS + CHX and FMS + CHX), placebo (QS + placebo and FMS + placebo), or no mouthrinse (QS + none and FMS + none) use. Real-time polymerase chain reaction determined total bacterial, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Streptococcus oralis, and Actinomyces naeslundii levels. Salivary nitrite concentration was determined with Griess reagent. Data were analyzed statistically at baseline and 3 and 6 months by analysis of variance, Kruskal-Wallis, Mann-Whitney U, and Spearman correlation tests (P <0.05). Nitrite concentrations did not tend to change over time. Regarding CHX use, there was a negative correlation between nitrite and total bacterial load at 6 months (FMS + CHX) and one positive correlation between P. gingivalis and nitrite at baseline (QS + CHX). Independently of rinse type, in the FMS group, nitrite correlated negatively with several microbial parameters and also with a higher percentage of deep periodontal pockets. The relationship between nitrite and bacterial levels appears weak. Short-term scaling exhibited a greater influence on nitrite concentrations then long-term CHX use.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0434; FRL-8826-6] Inorganic Nitrates-Nitrite... for the registration review of inorganic nitrates - nitrites, carbon and carbon dioxide, and gas... identifies those species for which exposure and effects may occur for all inorganic nitrates- nitrites...
Wesolowski, Edwin A.
1996-01-01
Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.
He, Tengxia; Li, Zhenlun; Xie, Deti; Sun, Quan; Xu, Yi; Ye, Qing; Ni, Jiupai
2018-04-01
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH 4 + -N and NO 3 - -N/NO 2 - -N (about 5 mg/L-N each) and high concentration of mixed NH 4 + -N and NO 3 - -N/NO 2 - -N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.
Thorn, K.A.; Thorne, P.G.; Cox, L.G.
2004-01-01
Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to microbial or chemical degradation of the polymeric materials remain unknown.
Thorn, Kevin A.; Thorne, Philip G.; Cox, Larry G.
2004-01-01
Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to microbial or chemical degradation of the polymeric materials remain unknown.
NASA Astrophysics Data System (ADS)
Zhang, Fengyuan; Zhu, Xinyue; Jiao, Zhijuan; Liu, Xiaoyan; Zhang, Haixia
2018-07-01
An uncontrolled increase of nitrite concentration in groundwater, rivers and lakes is a growing threat to public health and environment. It is important to monitor the nitrite levels in water and clinical diagnosis. Herein, we developed a switch-off fluorescence probe (PyI) for the sensitive detection of nitrite ions in the aqueous media. This probe selectively recognizes nitrite ions through a distinct visual color change from colorless to pink with a detection limit of 0.1 μM. This method has been successfully applied to the determination of nitrites in tap water, lake water and Yellow River water with recoveries in the range of 94.8%-105.4%.
Antweiler, Ronald C.; Patton, Charles J.; Taylor, Howard E.
1996-01-01
The apparatus and methods used for the automatic, colorimetric determinations of dissolved nutrients (nitrate plus nitrite, nitrite, ammonium and orthophosphate) in natural waters are described. These techniques allow for the determination of nitrate plus nitrite for the concentration range 0.02 to 8 mg/L (milligrams per liter) as N (nitrogen); for nitrite, the range is 0.002 to 1.0 mg/L as N; for ammonium, the range is 0.006 to 2.0 mg/L as N; and for orthophosphate, the range is 0.002 to 1.0 mg/L as P (phosphorus). Data are presented that demonstrate the accuracy, precision and quality control of the methods.
Maeda, Koki; Morioka, Riki; Hanajima, Dai; Osada, Takashi
2010-01-01
The diversity and dynamics of the denitrifying genes (nirS, nirK, and nosZ) encoding nitrite reductase and nitrous oxide (N(2)O) reductase in the dairy cattle manure composting process were investigated. A mixture of dried grass with a cattle manure compost pile and a mature compost-added pile were used, and denaturing gradient gel electrophoresis was used for denitrifier community analysis. The diversity of nirK and nosZ genes significantly changed in the initial stage of composting. These variations might have been induced by the high temperature. The diversity of nirK was constant after the initial variation. On the other hand, the diversity of nosZ changed in the latter half of the process, a change which might have been induced by the accumulation of nitrate and nitrite. The nirS gene fragments could not be detected. The use of mature compost that contains nitrate and nitrite promoted the N(2)O emission and significantly affected the variation of nosZ diversity in the initial stage of composting, but did not affect the variation of nirK diversity. Many Pseudomonas-like nirK and nosZ gene fragments were detected in the stage in which N(2)O was actively emitted.
NASA Astrophysics Data System (ADS)
Sakata, R.; Takeda, S.; Kinoshita, Y.; Waga, M.
2017-09-01
This study was carried out to examine the reddening of meat products due to the addition of natural yellow salt (YS) and carbon monoxide (CO). Following YS or NaCl addition at 2% to pork subsequent to nitrite (0∼100 ppm) treatment, color development due to this addition was analyzed visually. Heme pigment content in the meat was also determined spectrophotometrically. YS was found to bring about greater reddening than NaCl, indicating residual nitrite and nitrate content to be significantly higher in meat containing YS, through the amount of either was quite small. The amount of nitrite required for a red color to develop was noted to vary significantly from one meat product to another. CO treatment of pork caused the formation of carboxy myoglobin (COMb) with consequent reddening of the meat. COMb was shown to be heat-stable and form stably at pH 5.0 to ∼8.0 and to be extractable with water, but was barely extractable at all with acetone. Nitric oxide was found to have greater affinity toward myoglobin (Mb) than CO. Nitrosyl Mb was noted to be stable in all meat products examined. CO was seen to be capable of controlling the extent of lipid oxidation.
Armenteros, Mónica; Aristoy, María-Concepción; Toldrá, Fidel
2012-07-01
Nitrate and nitrite are commonly added to dry-cured ham to provide protection against pathogen microorganisms, especially Clostridium botulinum. Both nitrate and nitrite were monitored with ion chromatography in dry-cured hams salted with different NaCl formulations (NaCl partially replaced by KCl and/or CaCl(2), and MgCl(2)). Nitrate, that is more stable than nitrite, diffuses into the ham and acts as a reservoir for nitrite generation. A correct nitrate and nitrite penetration was detected from the surface to the inner zones of the hams throughout its processing, independently of the salt formulation. Nitrate and nitrite achieved similar concentrations, around 37 and 2.2 ppm, respectively in the inner zones of the ham for the three assayed salt formulations at the end of the process, which are in compliance with European regulations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kishikawa, Naoya; Kondo, Naoko; Amponsaa-Karikari, Abena; Kodamatani, Hitoshi; Ohyama, Kaname; Nakashima, Kenichiro; Yamazaki, Shigeo; Kuroda, Naotaka
2014-02-01
Isoamyl nitrite is used as a therapeutic reagent for cardiac angina and as an antidote for cyanide poisoning, but it is abused because of its euphoric properties. Therefore, a method to determine isoamyl nitrite is required in many fields, including pharmaceutical and forensic studies. In this study, a simple, rapid and sensitive method for the determination of isoamyl nitrite was developed using a flow injection analysis system equipped with a chemiluminescence detector and on-line photoreactor. This method is based on on-line ultraviolet irradiation of isoamyl nitrite and subsequent luminol chemiluminescence detection without the addition of an oxidant. A linear standard curve was obtained up to 1.0 μM of isoamyl nitrite with a detection limit (blank + 3SD) of 0.03 μM. The method was successfully applied to determine isoamyl nitrite content in pharmaceutical preparations. Copyright © 2013 John Wiley & Sons, Ltd.
[Evaluation of nitrites and nitrates food intake in the students' group].
Wawrzyniak, Agata; Hamułka, Jadwiga; Pankowska, Iwona
2010-01-01
The aim of study was to determine the intake of nitrites and nitrates in daily food rations of the students' group in 2008 using 3-day dietary food records method and literature mean values of nitrates and nitrites in food products. Intakes of these compounds were calculated and compared to acceptable daily intake (ADI). The average intake of nitrites was 1.7 mg NaNO2/per person/day (28.0% of ADI), nitrates 77.3 mg NaNO3/per person/day that means 25.4% of ADI. The largest nitrites food intake was noticed for meat products supplied 56.5% of nitrites and cereals (20%). Whereas vegetables and their products supplied 76.1% of nitrates: potatoes 17.1%, cabbage 15.5%, beetroots 13.7%. Calculated nitrites intake for men was 2.4 higher than for women. There were no significant differences of nitrates intake between men and women groups.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
...)] Sodium Nitrite From China And Germany; Scheduling of Expedited Five-Year Reviews Concerning the Countervailing Duty Order and Antidumping Duty Order on Sodium Nitrite From China and the Antidumping Duty Order on Sodium Nitrite From Germany AGENCY: United States International Trade Commission. ACTION: Notice...
21 CFR 172.175 - Sodium nitrite.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrite. 172.175 Section 172.175 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.175 Sodium nitrite. The food additive sodium nitrite may be safely used in or on specified foods in accordance with the...
Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels
Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; ...
2016-07-29
Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.
Iron aluminides and nickel aluminides as materials for chemical air separation
Kang, Doohee
1991-01-01
The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.
2008-08-01
degradation. Urea was expected to be a good nitrogen source because the genome of JS666 contains genes for all 3 subunits of urease with 60 to 83...identity to known ureases . However, growth with urea was indistinguishable from no nitrogen or nitrite supplementation. Cation effects 0 1 2 3 4 5 6 7
Method for cleaning and passivating a metal surface
NASA Technical Reports Server (NTRS)
Alexander, George B. (Inventor); Carpenter, Norman F. (Inventor)
1976-01-01
A cleaning solvent useful in the cleaning of metal surfaces, e.g. nickle-iron alloys, contains sulfamic acid, citric acid, a solvent for hydrocarbon residues, and a surfactant. Metal surfaces are cleaned by contacting the surface with the cleaning solvent and then passivated by contact with aqueous solutions of citric acid or sodium nitrite or a combination of the two.
Iron aluminides and nickel aluminides as materials for chemical air separation
Kang, D.
1991-01-29
The present invention is directed to a chemical air separation process using a molten salt solution of alkali metal nitrate and nitrite wherein the materials of construction of the containment for the process are chosen from intermetallic alloys of nickel and/or iron aluminide wherein the aluminum content is 28 atomic percent or greater to impart enhanced corrosion resistance.
Kim, Hyeong Sang; Hur, Sun Jin
2018-01-15
The objective of this study was to determine the effect of six different starter cultures of enterobacteria on the concentration of residual nitrite in fermented sausages during in vitro human digestion. Before digestion, the concentration of residual nitrite was dependent on starter culture in fermented sausage and ranged from 25.2 to 33.2mg/kg. Among the six starter cultures of enterobacteria, Pediococcus acidilactici, Pediococcus pentosaceus, and Staphylococcus carnosus showed higher nitrite depletion ability than the other three strains in fermented sausages. The concentration of residual nitrite in fermented sausages was significantly (p<0.05) decreased after stomach digestion and ranged from 17.4 to 21.6mg/kg. Enterobacteria Escherichia coli (E. coli) and/or Lactobacillus casei (L. casei) effectively increased the degree of depletion of residual nitrite in large intestine digestion. In conclusion, starter cultures could influence the concentration of residual nitrite during in vitro human digestion. They could deplete residual nitrite in fermented sausages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Use of nitrite inhalants ("poppers") among American youth.
Wu, Li-Tzy; Schlenger, William E; Ringwalt, Chris L
2005-07-01
We examined the patterns and correlates of nitrite inhalant use among adolescents aged 12 to 17 years. Study data were drawn from the 2000 and 2001 National Household Surveys on Drug Abuse. Logistic regression was used to identify the characteristics associated with nitrite inhalant use. Among adolescents aged 12 to 17 years, 1.5% reported any lifetime use of nitrite inhalants. The prevalence of lifetime nitrite inhalant use increased to 12% and 14% among adolescents who were dependent on alcohol and any drug in the past year, respectively. Many nitrite inhalant users used at least three other types of inhalants (68%) and also met the criteria for alcohol (33%) and drug (35%) abuse or dependence. Increased odds of nitrite inhalant use were associated with residing in nonmetropolitan areas, recent utilization of mental health services, delinquent behaviors, past year alcohol and drug abuse and dependence, and multi-drug use. Adolescents who had used nitrite inhalants at least once in their lifetime tend to engage in delinquent activities and report co-occurring multiple drug abuse and mental health problems in the past year.
Removal of ammonia solutions used in catalytic wet oxidation processes.
Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua
2003-08-01
Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.
Detection Of Special Nuclear Materials Tagged Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deyglun, Clement; Perot, Bertrand; Carasco, Cedric
In order to detect Special Nuclear Materials (SNM) in unattended luggage or cargo containers in the field of homeland security, fissions are induced by 14 MeV neutrons produced by an associated particle DT neutron generator, and prompt fission particles correlated with tagged neutron are detected by plastic scintillators. SMN produce high multiplicity events due to induced fissions, whereas nonnuclear materials produce low multiplicity events due to cross-talk, (n,2n) or (n,n'γ) reactions. The data acquisition electronics is made of compact FPGA boards. The coincidence window is triggered by the alpha particle detection, allowing to tag the emission date and direction ofmore » the 14 MeV interrogating neutron. The first part of the paper presents experiment vs. calculation comparisons to validate MCNP-PoliMi simulations and the post-processing tools developed with the data analysis framework ROOT. Measurements have been performed using different targets (iron, lead, graphite), first with small plastic scintillators (10 x 10 x 10 cm{sup 3}) and then with large detectors (10 x 10 x 100 cm{sup 3}) to demonstrate that nuclear materials can be differentiated from nonnuclear dense materials (iron, lead) in iron and wood matrixes. A special attention is paid on SNM detection in abandoned luggage. In the second part of the paper, the performances of a cargo container inspection system are studied by numerical simulation, following previous work reported in. Detectors dimensions and shielding against the neutron generator background are optimized for container inspection. Events not correlated to an alpha particle (uncorrelated background), counting statistics, time and energy resolutions of the data acquisition system are all taken into account in a realistic numerical model. The impact of the container matrix (iron, ceramic, wood) has been investigated by studying the system capability to detect a few kilograms of SNM in different positions in the cargo container, within 10 min acquisitions. (authors)« less
Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Menert, Anne; Lemmiksoo, Vallo; Saluste, Alar; Tenno, Taavo; Tomingas, Martin
2011-01-01
Nitrifying biomass on ring-shaped carriers was modified to nitritating one in a relatively short period of time (37 days) by limiting the air supply, changing the aeration regime, shortening the hydraulic retention time and increasing free ammonia (FA) concentration in the moving-bed biofilm reactor (MBBR). The most efficient strategy for the development and maintenance of nitritating biofilm was found to be the inhibition of nitrifying activity by higher FA concentrations (up to 6.5 mg/L) in the process. Reject water from sludge treatment from the Tallinn Wastewater Treatment Plant was used as substrate in the MBBR. The performance of high-surfaced biocarriers taken from the nitritating activity MBBR was further studied in batch tests to investigate nitritation and nitrification kinetics with various FA concentrations and temperatures. The maximum nitrite accumulation ratio (96.6%) expressed as the percentage of NO2(-)-N/NOx(-)-N was achieved for FA concentration of 70 mg/L at 36 degrees C. Under the same conditions the specific nitrite oxidation rate achieved was 30 times lower than the specific nitrite formation rate. It was demonstrated that in the biofilm system, inhibition by FA combined with the optimization of the main control parameters is a good strategy to achieve nitritating activity and suppress nitrification.
Nielsen, Per M; Fago, Angela
2015-08-01
Carbonic anhydrase (CA) is a zinc enzyme that catalyzes hydration of carbon dioxide (CO2) and dehydration of bicarbonate in red blood cells, thus facilitating CO2 transport and excretion. Bovine CA II may also react with nitrite to generate nitric oxide, although nitrite is a known inhibitor of the CO2 hydration reaction. To address the potential in vivo interference of these reactions and the nature of nitrite binding to the enzyme, we here investigate the inhibitory effect of 10-30 mM nitrite on Michaelis-Menten kinetics of CO2 hydration and bicarbonate dehydration by stopped-flow spectroscopy. Our data show that nitrite significantly affects the apparent dissociation constant KM for CO2 (11 mM) and bicarbonate (221 mM), and the turnover number kcat for the CO2 hydration (1.467 × 10(6) s(-1)) but not for the bicarbonate dehydration (7.927 × 10(5) s(-1)). These effects demonstrate mixed and competitive inhibition for the reaction with CO2 and bicarbonate, respectively, and are consistent with nitrite binding to the active site zinc. The high apparent dissociation constant found here for CO2, bicarbonate and nitrite (16-120 mM) are all overall consistent with published data and reveal a large capacity of free enzyme available for binding each of the three substrates at their in vivo levels, with little or no significant interference among reactions. The low affinity of the enzyme for nitrite suggests that the in vivo interaction between red blood cell CA II and nitrite requires compartmentalization at the anion exchanger protein of the red cell membrane to be physiologically relevant. Copyright © 2015 Elsevier Inc. All rights reserved.
Guimaraes, Danielle A; Dos Passos, Madla A; Rizzi, Elen; Pinheiro, Lucas C; Amaral, Jefferson H; Gerlach, Raquel F; Castro, Michele M; Tanus-Santos, Jose E
2018-05-20
Cardiac hypertrophy is a common consequence of chronic hypertension and leads to heart failure and premature death. The anion nitrite is now considered as a bioactive molecule able to exert beneficial cardiovascular effects. Previous results showed that nitrite attenuates hypertension-induced increases in reactive oxygen species (ROS) production in the vasculature. Whether antioxidant effects induced by nitrite block critical signaling pathways involved in cardiac hypertrophy induced by hypertension has not been determined yet. The Akt/mTOR signaling pathway is responsible to activate protein synthesis during cardiac remodeling and is activated by increased ROS production, which is commonly found in hypertension. Here, we investigated the effects of nitrite treatment on cardiac remodeling and activation of this hypertrophic signaling pathway in 2 kidney-1 clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral nitrite at 1 or 15 mg/kg for four weeks. Nitrite treatment (15 mg/kg) reduced systolic blood pressure and decreased ROS production in the heart tissue from hypertensive rats. This nitrite dose also blunted hypertension-induced activation of mTOR pathway and cardiac hypertrophy. While the lower nitrite dose (1 mg/kg) did not affect blood pressure, it exerted antioxidant effects and tended to attenuate mTOR pathway activation and cardiac hypertrophy induced by hypertension. Our findings provide strong evidence that nitrite treatment decreases cardiac remodeling induced by hypertension as a result of its antioxidant effects and downregulation of mTOR signaling pathway. This study may help to establish nitrite as an effective therapy in hypertension-induced cardiac hypertrophic remodeling. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-12-01
This bibliography contains citations concerning the toxicity of food additives (excluding antioxidants) and their effects on the liver, kidneys, bladder, and other organs. The carcinogenic and teratogenic properties of these substances are also considered. The synthetic sweeteners, particularly the saccharins and cyclamates, and other additives, including nitrates and nitrites are discussed. Methods to detect and quantitate these additives are also included. (This updated bibliography contains 340 citations, 132 of which are new entries to the previous edition.)
NASA Astrophysics Data System (ADS)
Sudolská, Mária; Cantrel, Laurent; Budzák, Šimon; Černušák, Ivan
2014-03-01
Monohydrated complexes of iodine species (I, I2, HI, and HOI) have been studied by correlated ab initio calculations. The standard enthalpies of formation, Gibbs free energy and the temperature dependence of the heat capacities at constant pressure were calculated. The values obtained have been implemented in ASTEC nuclear accident simulation software to check the thermodynamic stability of hydrated iodine compounds in the reactor coolant system and in the nuclear containment building of a pressurised water reactor during a severe accident. It can be concluded that iodine complexes are thermodynamically unstable by means of positive Gibbs free energies and would be represented by trace level concentrations in severe accident conditions; thus it is well justified to only consider pure iodine species and not hydrated forms.
Samal, Andrey A.; Honavar, Jaideep; Brandon, Angela; Bradley, Kelley M.; Doran, Stephen; Liu, Yanping; Dunaway, Chad; Steele, Chad; Postlethwait, Edward M.; Squadrito, Giuseppe L.; Fanucchi, Michelle V.; Matalon, Sadis; Patel, Rakesh P.
2012-01-01
Cl2 gas toxicity is complex and occurs during, and post exposure leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl2 exposure can occur in diverse situations encompassing mass casualty scenarios underscoring the need for post-exposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we compared the efficacy of a single dose, post (30min) Cl2 exposure administration of nitrite (1mg/kg) via intraperitoneal (IP) or intramuscular (IM) injection in rats, to decrease ALI. Exposure of rats to Cl2 gas (400ppm, 30min) significantly increased ALI and caused RAS 6–24h post exposure as indexed by BAL sampling of lung surface protein, PMN and increased airway resistance and elastance prior to and post methacholine challenge. IP nitrite decreased Cl2 - dependent increases in BAL protein but not PMN. In contrast IM nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase independent manner. Histological evaluation of airways 6h post exposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl2 exposed rats. Both IP and IM nitrite improved airway histology compared to Cl2 gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with IM compared to IP nitrite. Airways were rendered more sensitive to methacholine induced resistance and elastance after Cl2 gas exposure. Interestingly, IM nitrite, but not IP nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of IM and IP therapy showed a two-fold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl2 exposure dependent increases in circulating leukocytes. Halving the IM nitrite dose resulted in no effect in PMN accumulation but significant reduction of of BAL protein levels indicating distinct nitrite dose dependence for inhibition of Cl2 dependent lung permeability and inflammation. These data highlight the potential for nitrite as a post-exposure therapeutic for Cl2 gas induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics. PMID:22917977
Yu, Ran; Chandran, Kartik
2010-03-04
Nitrosomonas europaea is a widely studied chemolithoautotrophic ammonia oxidizing bacterium. While significant work exists on the ammonia oxidation pathway of N. europaea, its responses to factors such as dissolved oxygen limitation or sufficiency or exposure to high nitrite concentrations, particularly at the functional gene transcription level are relatively sparse. The principal goal of this study was to investigate responses at the whole-cell activity and gene transcript levels in N. europaea 19718 batch cultures, which were cultivated at different dissolved oxygen and nitrite concentrations. Transcription of genes coding for principal metabolic pathways including ammonia oxidation (amoA), hydroxylamine oxidation (hao), nitrite reduction (nirK) and nitric oxide reduction (norB) were quantitatively measured during batch growth, at a range of DO concentrations (0.5, 1.5 and 3.0 mg O2/L). Measurements were also conducted during growth at 1.5 mg O2/L in the presence of 280 mg-N/L of externally added nitrite. Several wide ranging responses to DO limitation and nitrite toxicity were observed in N. europaea batch cultures. In contrast to our initial hypothesis, exponential phase mRNA concentrations of both amoA and hao increased with decreasing DO concentrations, suggesting a mechanism to metabolize ammonia and hydroxylamine more effectively under DO limitation. Batch growth in the presence of 280 mg nitrite-N/L resulted in elevated exponential phase nirK and norB mRNA concentrations, potentially to promote utilization of nitrite as an electron acceptor and to detoxify nitrite. This response was in keeping with our initial hypothesis and congruent with similar responses in heterotrophic denitrifying bacteria. Stationary phase responses were distinct from exponential phase responses in most cases, suggesting a strong impact of ammonia availability and metabolism on responses to DO limitation and nitrite toxicity. In general, whole-cell responses to DO limitation or nitrite toxicity, such as sOUR or nitrite reduction to nitric oxide (NO) did not parallel the corresponding mRNA (nirK) profiles, suggesting differences between the gene transcription and enzyme translation or activity levels. The results of this study show that N. europaea possesses specific mechanisms to cope with growth under low DO concentrations and high nitrite concentrations. These mechanisms are additionally influenced by the physiological growth state of N. europaea cultures and are possibly geared to enable more efficient substrate utilization or nitrite detoxification.
CRESSWELL, C F; HAGEMAN, R H; HEWITT, E J; HUCKLESBY, D P
1965-01-01
1. Enzyme systems from Cucurbita pepo have been shown to catalyse the reduction of nitrite and hydroxylamine to ammonia in yields about 90-100%. 2. Reduced benzyl viologen serves as an efficient electron donor for both systems. Activity of the nitrite-reductase system is directly related to degree of dye reduction when expressed in terms of the function for oxidation-reduction potentials, but appears to decrease to negligible activity below about 9% dye reduction. 3. NADH and NADPH alone produce negligible nitrite loss, but NADPH can be linked to an endogenous diaphorase system to reduce nitrite to ammonia in the presence of catalytic amounts of benzyl viologen. 4. The NADH- or NADPH-nitrate-reductase system that is also present can accept electrons from reduced benzyl viologen, but shows relationships opposite to that for the nitrite-reductase system with regard to effect of degree of dye reduction on activity. The product of nitrate reduction may be nitrite alone, or nitrite and ammonia, or ammonia alone, according only to the degree of dye reduction. 5. The relative activities of nitrite-reductase and hydroxylamine-reductase systems show different relationships with degree of dye reduction and may become reversed in magnitude when effects of degree of dye reduction are tested over a suitable range. 6. Nitrite severely inhibits the rate of reduction of hydroxylamine without affecting the yield of ammonia as a percentage of total substrate loss, but hydroxylamine has a negligible effect on the activity of the nitrite-reductase system. 7. The apparent K(m) for nitrite (1 mum) is substantially less than that for hydroxylamine, for which variable values between 0.05 and 0.9mm (mean 0.51 mm) have been observed. 8. The apparent K(m) values for reduced benzyl viologen differ for the nitrite-reductase and hydroxylamine-reductase systems: 60 and 7.5 mum respectively. 9. It is concluded that free hydroxylamine may not be an intermediate in the reduction of nitrite to ammonia by plants, and a possible mechanism for reduction of both compounds by the same enzyme system is discussed in the light of current ideas relating to other organisms.
Cresswell, C. F.; Hageman, R. H.; Hewitt, E. J.; Hucklesby, D. P.
1965-01-01
1. Enzyme systems from Cucurbita pepo have been shown to catalyse the reduction of nitrite and hydroxylamine to ammonia in yields about 90–100%. 2. Reduced benzyl viologen serves as an efficient electron donor for both systems. Activity of the nitrite-reductase system is directly related to degree of dye reduction when expressed in terms of the function for oxidation–reduction potentials, but appears to decrease to negligible activity below about 9% dye reduction. 3. NADH and NADPH alone produce negligible nitrite loss, but NADPH can be linked to an endogenous diaphorase system to reduce nitrite to ammonia in the presence of catalytic amounts of benzyl viologen. 4. The NADH– or NADPH–nitrate-reductase system that is also present can accept electrons from reduced benzyl viologen, but shows relationships opposite to that for the nitrite-reductase system with regard to effect of degree of dye reduction on activity. The product of nitrate reduction may be nitrite alone, or nitrite and ammonia, or ammonia alone, according only to the degree of dye reduction. 5. The relative activities of nitrite-reductase and hydroxylamine-reductase systems show different relationships with degree of dye reduction and may become reversed in magnitude when effects of degree of dye reduction are tested over a suitable range. 6. Nitrite severely inhibits the rate of reduction of hydroxylamine without affecting the yield of ammonia as a percentage of total substrate loss, but hydroxylamine has a negligible effect on the activity of the nitrite-reductase system. 7. The apparent Km for nitrite (1 μm) is substantially less than that for hydroxylamine, for which variable values between 0·05 and 0·9mm (mean 0·51 mm) have been observed. 8. The apparent Km values for reduced benzyl viologen differ for the nitrite-reductase and hydroxylamine-reductase systems: 60 and 7·5 μm respectively. 9. It is concluded that free hydroxylamine may not be an intermediate in the reduction of nitrite to ammonia by plants, and a possible mechanism for reduction of both compounds by the same enzyme system is discussed in the light of current ideas relating to other organisms. PMID:14342247
NASA Astrophysics Data System (ADS)
Kane, Steven Ze
A complete system has been simulated using experimentally obtained input parameters for the detection of special nuclear materials (SNM). A variation of the associated particle imaging (API) technique, referred to as reverse associated particle imaging detection (RAPID), has been developed in the context of detecting 5-kg spherical samples of U-235 in cargo containers uniformly filled with wood (low-Z) or iron (high-Z) at densities ranging from 0.1 g/cm3 to 0.4 g/cm3, the maximal density for a uniformly fully loaded 40-ft standard cargo container. In addition, samples were located at the center of a given container to study worst-case scenarios. The RAPID technique allows for the interrogation of containers at neutron production rates between 1x108 neutrons/s and 4x108 neutrons/s, depending on cargo material and density. These rates are low enough to prevent transmutation of materials in cargo and radiation safety hazards are limited. The merit of performance for the system is the time to detect the threat material with 95% probability of detection and 10-4 false positive rate per interrogated voxel of cargo. The detection of 5-kg of U-235 was chosen because this quantity of material is near the lower limit of the amount of special nuclear material that might be used in a nuclear weapon. This is in contrast to the 25-kg suggested sensitivity proposed by the International Atomic Energy Agency (IAEA).
Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks
Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena; ...
2016-10-22
Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less
Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena
Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less
Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks
NASA Astrophysics Data System (ADS)
Poulson, D.; Durham, J. M.; Guardincerri, E.; Morris, C. L.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D.; Hecht, A. A.
2017-01-01
Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ∼ 18 σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Potential detector technologies and geometries are discussed.
Los Alamos RAGE Simulations of the HAIV Mission Concept
NASA Technical Reports Server (NTRS)
Weaver, Robert P.; Barbee, Brent W.; Wie, Bong; Zimmerman, Ben
2015-01-01
The mitigation of potentially hazardous objects (PHOs) can be accomplished by a variety of methods including kinetic impactors, gravity tractors and several nuclear explosion options. Depending on the available lead time prior to Earth impact, non- nuclear options can be very effective at altering a PHOs orbit. However if the warning time is short nuclear options are generally deemed most effective at mitigating the hazard. The NIAC mission concept for a nuclear mission has been presented at several meetings, including the last PDC (2013).We use the adaptive mesh hydrocode RAGE to perform detailed simulations of this Hypervelocity Asteroid Intercept Vehicle (HAIV) mission concept. We use the RAGE code to simulate the crater formation by the kinetic impactor as well as the explosion and energy coupling from the follower nuclear explosive device (NED) timed to detonate below the original surface to enhance the energy coupling. The RAGE code has been well validated for a wide variety of applications. A parametric study will be shown of the energy and momentum transfer to the target 100 m diameter object: 1) the HAIV mission as planned; 2) a surface explosion and 3) a subsurface (contained) explosion; both 2) and 3) use the same source energy as 1).Preliminary RAGE simulations show that the kinetic impactor will carve out a surface crater on the object and the subsequent NED explosion at the bottom of the crater transfers energy and momentum to the target effectively moving it off its Earth crossing orbit. Figure 1 shows the initial (simplified) RAGE 2D setup geometry for this study. Figure 2 shows the crater created by the kinetic impactor and Figure 3 shows the time sequence of the energy transfer to the target by the NED.
Sindelar, J J; Cordray, J C; Sebranek, J G; Love, J A; Ahn, D U
2007-06-01
Uncured, no-nitrate/nitrite-added meat products can be manufactured with vegetable juice powder (VJP) and a starter culture containing Staphylococcus carnosus, resulting in quality and sensory attributes similar to traditional cured products. The 1st objective of this study was to determine the effects of varying concentrations of VJP and incubation times (MIN-HOLD) on quality characteristics, including lipid oxidation, color, and cured meat pigment concentrations, of emulsified-frankfurter-style-cooked (EFSC) sausages over a 90-d storage period. The 2nd objective was to compare residual nitrate and nitrite content resulting from different processing treatments and the 3rd objective was to assess sensory properties of finished products. Four EFSC sausage treatments (TRT) (TRT 1: 0.20% VJP, 30 MIN-HOLD; TRT 2: 0.20% VJP, 120 MIN-HOLD; TRT 3: 0.40% VJP, 30 MIN-HOLD; TRT 4: 0.40% VJP, 120 MIN-HOLD) and a sodium nitrite-added control (C) were used for this study. No differences for lipid oxidation (TBARS) between any TRTs and C or over time were observed. No differences (P > 0.05) for CIE L* values were found between TRTs. CIE a* and reflectance ratio values revealed that TRTs 2, 4, and C were redder than TRTs 1 and 3 at day 0. Trained sensory intensity ratings for cured aroma, cured color, cured flavor, uniform color, and firmness determined that all but TRT 1 were similar to C. These results indicate a longer incubation time (120 compared with 30 min) was found more critical than VJP level (0.20% or 0.40%) to result in products comparable to a sodium nitrite-added control.
Physical and chemical properties of San Francisco Bay, California, 1980
Ota, Allan Y.; Schemel, L.E.; Hager, S.W.
1989-01-01
The U.S. Geological Survey conducted hydrologic investigations in both the deep water channels and the shallow-water regions of the San Francisco Bay estuarine system during 1980. Cruises were conducted regularly, usually at two-week intervals. Physical and chemical properties presented in this report include temperature , salinity, suspended particulate matter, turbidity, extinction coefficient, partial pressure of CO2, partial pressure of oxygen , dissolved organic carbon, particulate organic carbon, discrete chlorophyll a, fluorescence of photosynthetic pigments, dissolved silica, dissolved phosphate, nitrate plus nitrite, nitrite, ammonium, dissolved inorganic nitrogen, dissolved nitrogen, dissolved phosphorus, total nitrogen, and total phosphorus. Analytical methods are described. The body of data contained in this report characterizes hydrologic conditions in San Francisco Bay during a year with an average rate of freshwater inflow to the estuary. Concentrations of dissolved silica (discrete-sample) ranged from 3.8 to 310 micro-M in the northern reach of the bay, whereas the range in the southern reach was limited to 63 to 150 micro-M. Concentrations of phosphate (discrete-sample) ranged from 1.3 to 4.4 micro-M in the northern reach, which was narrow in comparison with that of 2.2 to 19.0 micro-M in the southern reach. Concentrations of nitrate plus nitrite (discrete-sample) ranged from near zero to 53 micro-M in the northern reach, and from 2.3 to 64 micro-M in the southern reach. Concentrations of nitrite (discrete-sample) were low in both reaches, exhibiting a range from nearly zero to approximately 2.3 micro-M. Concentrations of ammonium (discrete-sample) ranged from near zero to 14.2 micro-M in the northern reach, and from near zero to 8.3 micro-M in the southern reach. (USGS)
Sindelar, J J; Cordray, J C; Sebranek, J G; Love, J A; Ahn, D U
2007-08-01
Vegetable juice powder (VJP) and a starter culture containing Staphylococcus carnosus have been identified as necessary ingredients for the manufacture of uncured, no-nitrate/nitrite-added meat products with quality and sensory attributes similar to traditional cured products. The objectives of this study were to determine the effects of varying concentrations of VJP and incubation time (MIN-HOLD) on quality characteristics, including lipid oxidation, color, and cured meat pigment concentrations, of ham over a 90-d storage period, compare residual nitrate and nitrite content, and determine if differences exist in sensory properties of finished products. Four ham treatments (TRT) (TRT 1: 0.20% VJP, 0 MIN-HOLD; TRT 2: 0.20% VJP, 120 MIN-HOLD; TRT 3: 0.35% VJP, 0 MIN-HOLD; TRT 4: 0.35% VJP, 120 MIN-HOLD) and a sodium nitrite-added control (C) were used for this study. No differences (P > 0.05) were observed between TRTs and C for CIE L*, a*, b*, and cured color measured by reflectance ratio. Lipid oxidation (TBARS) for combined TRTs and C revealed little change over time while the C had less (P < 0.05) lipid oxidation than TRTs 2 and 4 for combined days. No differences (P > 0.05) were reported for cured pigment concentration between TRTs and C. Trained sensory panel intensity ratings for ham and vegetable aroma, and flavor, color, and firmness showed that a high concentration (0.35%) of VJP resulted in the highest scores for undesirable vegetable aroma and flavor. Treatment combinations with a low concentration (0.20%) of VJP were comparable to the C for all sensory attributes.
Alefounder, P R; Ferguson, S J
1980-01-01
1. A method is described for preparing spheroplasts from Paracoccus denitrificans that are substantially depleted of dissimilatory nitrate reductase (cytochrome cd) activity. Treatment of cells with lysozyme + EDTA together with a mild osmotic shock, followed by centrifugation, yielded a pellet of spheroplasts and a supernatant that contained d-type cytochrome. The spheroplasts were judged to have retained an intact plasma membrane on the basis that less than 1% of the activity of a cytoplasmic marker protein, malate dehydrogenase, was released from the spheroplasts. In addition to a low activity towards added nitrite, the suspension of spheroplasts accumulated the nitrite that was produced by respiratory chain-linked reduction of nitrate. It is concluded that nitrate reduction occurs at the periplasmic side of the plasma membrane irrespective of whether nitrite is generated by nitrate reduction or is added exogenously. 2. Further evidence for the integrity of the spheroplasts was that nitrate reduction was inhibited by O2, and that chlorate was reduced at a markedly lower rate than nitrate. These data are taken as evidence for an intact plasma membrane because it was shown that cells acquire the capability to reduce nitrate under aerobic conditions after addition of low amounts of Triton X-100 which, with the same titre, also overcame the permeability barrier to chlorate reduction by intact cells. The close relationship between the appearance of chlorate reduction and the loss of the inhibitory effect of O2 on nitrate reduction also suggests that the later feature of nitrate respiration is due to a control on the accessibility of nitrate to its reductase rather than on the flow of electrons to nitrate reductase. PMID:7197918
Genualdi, Susan; Jeong, Nahyun; DeJager, Lowri
2018-04-01
Nitrites and nitrates can be present in dairy products from both endogenous and exogenous sources. In the European Union (EU), 150 mg kg - 1 of nitrates are allowed to be added to the cheese milk during the manufacturing process. The CODEX General Standard for Food Additives has a maximum permitted level of 50 mg kg - 1 residue in cheese, while in the United States (U.S.) nitrates are unapproved for use as food additives in cheese. In order to be able to investigate imported cheeses for nitrates intentionally added as preservatives and the endogenous concentrations of nitrates and nitrites present in cheeses in the U.S. marketplace, a method was developed and validated using ion chromatography with conductivity detection. A market sampling of cheese samples purchased in the Washington DC metro area was performed. In 64 samples of cheese, concentrations ranged from below the method detection limit (MDL) to 26 mg kg - 1 for nitrates and no concentrations of nitrites were found in any of the cheese samples above the MDL of 0.1 mg kg - 1 . A majority of the samples (93%) had concentrations below 10 mg kg - 1 , which indicate the presence of endogenous nitrates. The samples with concentrations above 10 mg kg - 1 were mainly processed cheese spread, which can contain additional ingredients often of plant-based origin. These ingredients are likely the cause of the elevated nitrate concentrations. The analysis of 12 additional cheese samples that are liable to the intentional addition of nitrates, 9 of which were imported, indicated that in this limited study, concentrations of nitrate in the U.S.-produced cheeses did not differ from those in imported samples.
Lea, Unni S; Ten Hoopen, Floor; Provan, Fiona; Kaiser, Werner M; Meyer, Christian; Lillo, Cathrine
2004-05-01
In wild-type Nicotiana plumbaginifolia Viv. and other higher plants, nitrate reductase (NR) is regulated at the post-translational level and is rapidly inactivated in response to, for example, a light-to-dark transition. This inactivation is caused by phosphorylation of a conserved regulatory serine residue, Ser 521 in tobacco, and interaction with divalent cations or polyamines, and 14-3-3 proteins. The physiological importance of the post-translational NR modulation is presently under investigation using a transgenic N. plumbaginifolia line. This line expresses a mutated tobacco NR where Ser 521 has been changed into aspartic acid (Asp) by site-directed mutagenesis, resulting in a permanently active NR enzyme. When cut leaves or roots of this line (S(521)) were placed in darkness in a buffer containing 50 mM KNO(3), nitrite was excreted from the tissue at rates of 0.08-0.2 micromol (g FW)(-1) h(-1) for at least 5 h. For the control transgenic plant (C1), which had the regulatory serine of NR intact, nitrite excretion was low and halted completely after 1-3 h. Without nitrate in the buffer in which the tissue was immersed, nitrite excretion was also low for S(521), although 20-40 micromol (g FW)(-1) nitrate was present inside the tissue. Apparently, stored nitrate was not readily available for reduction in darkness. Leaf tissue and root segments of S(521) also emitted much more nitric oxide (NO) than the control. Importantly, NO emission from leaf tissue of S(521) was higher in the dark than in the light, opposite to what was usually observed when post-translational NR modulation was operating.
Jonvik, Kristin L; Nyakayiru, Jean; Pinckaers, Philippe Jm; Senden, Joan Mg; van Loon, Luc Jc; Verdijk, Lex B
2016-05-01
Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P < 0.001). Peak plasma nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 μmol/L; beetroot juice: 597 ± 23 μmol/L; rocket salad beverage: 584 ± 24 μmol/L; spinach beverage: 584 ± 23 μmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P < 0.001) and rocket salad beverage (from 122 ± 3 to 116 ± 2 mm Hg; P = 0.007) and 300 min after ingestion of spinach beverage (from 118 ± 2 to 111 ± 3 mm Hg; P < 0.001), but did not change with NaNO3 Diastolic blood pressure declined 150 min after ingestion of all beverages (P < 0.05) and remained lower at 300 min after ingestion of rocket salad (P = 0.045) and spinach (P = 0.001) beverages. Ingestion of nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate supplements. This trial was registered at clinicaltrials.gov as NCT02271633. © 2016 American Society for Nutrition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... labeling policy for cured products; special labeling requirements concerning nitrate and nitrite. 317.17..., sodium phosphate, sodium nitrate, and sodium nitrite or other permitted substances which are added to any... nitrate or nitrite is permitted or required to be added may be prepared without nitrate or nitrite and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... labeling policy for cured products; special labeling requirements concerning nitrate and nitrite. 317.17..., sodium phosphate, sodium nitrate, and sodium nitrite or other permitted substances which are added to any... nitrate or nitrite is permitted or required to be added may be prepared without nitrate or nitrite and...
Hydrologic effects of impoundments in Sherburne National Wildlife Refuge, Minnesota
Brown, R.G.
1984-01-01
The hydrologic effects of proposed impoundments in Sherburne National Wildlife Refuge were found to be insignificant with respect to both ground- and surface-water flow patterns and water quality. Monitoring of water levels in 23 observation wells and of discharge in the St. Francis River during 1980 and 1981 has shown that ground water in the surf icial aquifer responds quickly to areal recharge and subsequently discharges to the St. Francis River. The impoundment of surface water in the refuge was not found to affect water levels in the refuge significantly. The impoundments may affect ground-water-flow systems beneath and adjacent to the impoundments. Quality of ground and surface water was found to be similar except ground water contained higher concentrations of dissolved nitrite plus nitrate nitrogen than surface water. Phytoplankton removed dissolved nitrite plus nitrate nitrogen from surface water. The effects of impoundments on water quality are expected to be minor.
Evaluation of coloring efficacy of lac dye in comminuted meat product.
Divya; Singh, R P; Baboo, B; Prasad, K M
2011-06-01
Effect of incorporation of graded levels (4, 6, 8, 10, 25 ppm) of lac dye on coloring efficacy and possible use of this natural color in processed meat products was studied. Inclusion of lac dye at different concentrations did not affect the pH significantly whereas a linear increase in the Lovibond red color unit of chicken nuggets was noted with raising the level of lac dye from 4 to 10 ppm. The sensory rating for color was highest at addition level of 25 ppm of lac dye and it was comparable to color score of the product containing 200 ppm sodium nitrite. Lac dye inclusion in nuggets at all concentrations studied had better antimicrobial properties as compared to 200 ppm sodium nitrite. It was concluded that lac dye from 10 to 25 ppm could be incorporated in comminuted meat products as a natural colorant with antimicrobial action.
NASA Technical Reports Server (NTRS)
Puthoff, R. L.
1971-01-01
An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.
Low NO Concentration Dependence of Reductive Nitrosylation Reaction of Hemoglobin*
Tejero, Jesús; Basu, Swati; Helms, Christine; Hogg, Neil; King, S. Bruce; Kim-Shapiro, Daniel B.; Gladwin, Mark T.
2012-01-01
The reductive nitrosylation of ferric (met)hemoglobin is of considerable interest and remains incompletely explained. We have previously observed that at low NO concentrations the reaction with tetrameric hemoglobin occurs with an observed rate constant that is at least 5 times faster than that observed at higher concentrations. This was ascribed to a faster reaction of NO with a methemoglobin-nitrite complex. We now report detailed studies of this reaction of low NO with methemoglobin. Nitric oxide paradoxically reacts with ferric hemoglobin with faster observed rate constants at the lower NO concentration in a manner that is not affected by changes in nitrite concentration, suggesting that it is not a competition between NO and nitrite, as we previously hypothesized. By evaluation of the fast reaction in the presence of allosteric effectors and isolated β- and α-chains of hemoglobin, it appears that NO reacts with a subpopulation of β-subunit ferric hemes whose population is influenced by quaternary state, redox potential, and hemoglobin dimerization. To further characterize the role of nitrite, we developed a system that oxidizes nitrite to nitrate to eliminate nitrite contamination. Removal of nitrite does not alter reaction kinetics, but modulates reaction products, with a decrease in the formation of S-nitrosothiols. These results are consistent with the formation of NO2/N2O3 in the presence of nitrite. The observed fast reductive nitrosylation observed at low NO concentrations may function to preserve NO bioactivity via primary oxidation of NO to form nitrite or in the presence of nitrite to form N2O3 and S-nitrosothiols. PMID:22493289
Multiple metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South Pacific
NASA Astrophysics Data System (ADS)
Babbin, Andrew R.; Peters, Brian D.; Mordy, Calvin W.; Widner, Brittany; Casciotti, Karen L.; Ward, Bess B.
2017-02-01
The Eastern Tropical South Pacific is one of the three major oxygen deficient zones (ODZs) in the global ocean and is responsible for approximately one third of marine water column nitrogen loss. It is the best studied of the ODZs and, like the others, features a broad nitrite maximum across the low oxygen layer. How the microbial processes that produce and consume nitrite in anoxic waters interact to sustain this feature is unknown. Here we used 15N-tracer experiments to disentangle five of the biologically mediated processes that control the nitrite pool, including a high-resolution profile of nitrogen loss rates. Nitrate reduction to nitrite likely depended on organic matter fluxes, but the organic matter did not drive detectable rates of denitrification to N2. However, multiple lines of evidence show that denitrification is important in shaping the biogeochemistry of this ODZ. Significant rates of anaerobic nitrite oxidation at the ODZ boundaries were also measured. Iodate was a potential oxidant that could support part of this nitrite consumption pathway. We additionally observed N2 production from labeled cyanate and postulate that anammox bacteria have the ability to harness cyanate as another form of reduced nitrogen rather than relying solely on ammonification of complex organic matter. The balance of the five anaerobic rates measured—anammox, denitrification, nitrate reduction, nitrite oxidation, and dissimilatory nitrite reduction to ammonium—is sufficient to reproduce broadly the observed nitrite and nitrate profiles in a simple one-dimensional model but requires an additional source of reduced nitrogen to the deeper ODZ to avoid ammonium overconsumption.
Nitrates and Nitrites in the Treatment of Ischemic Cardiac Disease
Nossaman, Vaughn E.; Nossaman, Bobby D.; Kadowitz, Philip J.
2010-01-01
The organic nitrite, amyl of nitrite, was initially used as a therapeutic agent in the treatment of angina pectoris in 1867, but was replaced over a decade later by the organic nitrate, nitroglycerin (NTG), due to the ease of administration and longer duration of action. The administration of organic nitrate esters, such as NTG, continues to be used in the treatment of angina pectoris and heart failure during the birth of modern pharmacology. The clinical effectiveness is due to vasodilator activity in large veins and arteries through an as yet unidentified method of delivering nitric oxide (NO), or a NO-like compound to vascular smooth muscle cells. The major drawback with NTG administration is the rapid development of tolerance; and with amyl of nitrite, the duration and route of administration. Although amyl of nitrite are no longer used in the treatments of hypertension or ischemic heart disease, the nitrite anion has recently been discovered to possess novel pharmacologic actions such as modulating hypoxic vasodilation and providing cytoprotection in ischemia-reperfusion injury. Although the actions of these two similar chemical classes (nitrites and organic nitrates) have often been considered to be alike, we still do not understand their mechanism of action. However, the recent discovery that the nitrite anion, derived from either sodium nitrite or an intermediate NTG form, may act as a storage form for NO and provides support for investigating the use of these agents in the treatment of ischemic cardiovascular states. We review what is presently known about the use of nitrites and nitrates, the potential uses of these agents, and their mechanisms of action. PMID:20539102
A comparison of organic and inorganic nitrates/nitrites.
Omar, Sami A; Artime, Esther; Webb, Andrew J
2012-05-15
Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.
Bahadoran, Zahra; Mirmiran, Parvin; Ghasemi, Asghar; Kabir, Ali; Azizi, Fereidoun; Hadaegh, Farzad
2015-05-01
The potential effects of inorganic nitrate/nitrite on global health are a much debated issue. In addition to possible methemoglobinemia and carcinogenic properties, anti-thyroid effects of nitrate/nitrite have been suggested. Considering the growing significance of nitrate/nitrite and since there is no comprehensive review in data available, clarifying the effect of nitrate/nitrite on thyroid disorder outcomes is essential. Therefore, we conducted this systematic review of experimental and clinical studies, and a meta-analysis of relevant cohort and cross-sectional studies investigating the association of nitrate/nitrite exposure and thyroid function. Most animal studies show that high exposure (~10-600 times of acceptable daily intake) to nitrate/nitrite induces anti-thyroid effects, including decreased serum level of thyroid hormones and histomorphological changes in thyroid gland; however no similar observations have been documented in humans. Based on our meta-analysis, no significant association was observed between nitrate exposure and the risk of thyroid cancer, hyper- and hypothyroidism; findings from three cohort studies however showed a significant association between higher exposure to nitrite and the risk of thyroid cancer (risk = 1.48, 95% confidence interval = 1.09-2.02, P = 0.012). Additional research is needed to clarify the association between nitrate/nitrite exposures and both thyroid function and cancer. Copyright © 2015 Elsevier Inc. All rights reserved.
Pancreatic cancer and exposure to dietary nitrate and nitrite in the NIH-AARP Diet and Health Study.
Aschebrook-Kilfoy, Briseis; Cross, Amanda J; Stolzenberg-Solomon, Rachael Z; Schatzkin, Arthur; Hollenbeck, Albert R; Sinha, Rashmi; Ward, Mary H
2011-08-01
Nitrate and nitrite are precursors of N-nitroso compounds, which induce tumors of the pancreas in animals. The authors evaluated the relation of dietary nitrate and nitrite to pancreatic cancer risk in the NIH-AARP Diet and Health Study. Nitrate and nitrite intakes were assessed at baseline using a 124-item food frequency questionnaire. During approximately 10 years of follow-up between 1995 and 2006, 1,728 incident pancreatic cancer cases were identified. There was no association between total nitrate or nitrite intake and pancreatic cancer in men or women. However, men in the highest quintile of summed nitrate/nitrite intake from processed meat had a nonsignificantly elevated risk of pancreatic cancer (hazard ratio = 1.18, 95% confidence interval: 0.95, 1.47; P-trend = 0.11). The authors observed a stronger increase in risk among men for nitrate/nitrite intake from processed meat at ages 12-13 years (highest quintile vs. lowest: hazard ratio = 1.32, 95% confidence interval: 0.99, 1.76; P-trend = 0.11), though the relation did not achieve statistical significance. The authors found no associations between adult or adolescent nitrate or nitrite intake from processed meats and pancreatic cancer among women. These results provide modest evidence that processed meat sources of dietary nitrate and nitrite may be associated with pancreatic cancer among men and provide no support for the hypothesis in women.
Effect of Sodium Nitrite on Toxin Production by Clostridium botulinum in bacon
Christiansen, L. N.; Tompkin, R. B.; Shaparis, A. B.; Kueper, T. V.; Johnston, R. W.; Kautter, D. A.; Kolari, O. J.
1974-01-01
Pork bellies were formulated to 0, 30, 60, 120, 170, or 340 μg of nitrite per g of meat and inoculated with Clostridium botulinum via pickle or after processing and slicing. Processed bacon was stored at 7 or 27 C and assayed for nitrite, nitrate, and botulinal toxin at different intervals. Nitrite levels declined during processing and storage. The rate of decrease was more rapid at 27 than at 7 C. Although not added to the system, nitrate was detected in samples during processing and storage at 7 and 27 C. The amount of nitrate found was related to formulated nitrite levels. No toxin was found in samples incubated at 7 C throughout the 84-day test period. At 27 C, via pickle, inoculated samples with low inoculum (210 C. botulinum per g before processing and 52 per g after processing) became toxic if formulated with 120 μg of nitrite per g of meat or less. Toxin was not detected in bacon formulated with 170 or 340 μg of nitrite per g of meat under these same conditions. Toxin was detected at all formulated nitrite levels in bacon inoculated via the pickle with 19,000 C. botulinum per g (4,300 per g after processing) and in samples inoculated after slicing. However, increased levels of formulated nitrite decreased the probability of botulinal toxin formation in bacon inoculated by both methods. PMID:4596753
Effect of sodium nitrite on toxin production by Clostridium botulinum in bacon.
Christiansen, L N; Tompkin, R B; Shaparis, A B; Kueper, T V; Johnston, R W; Kautter, D A; Kolari, O J
1974-04-01
Pork bellies were formulated to 0, 30, 60, 120, 170, or 340 mug of nitrite per g of meat and inoculated with Clostridium botulinum via pickle or after processing and slicing. Processed bacon was stored at 7 or 27 C and assayed for nitrite, nitrate, and botulinal toxin at different intervals. Nitrite levels declined during processing and storage. The rate of decrease was more rapid at 27 than at 7 C. Although not added to the system, nitrate was detected in samples during processing and storage at 7 and 27 C. The amount of nitrate found was related to formulated nitrite levels. No toxin was found in samples incubated at 7 C throughout the 84-day test period. At 27 C, via pickle, inoculated samples with low inoculum (210 C. botulinum per g before processing and 52 per g after processing) became toxic if formulated with 120 mug of nitrite per g of meat or less. Toxin was not detected in bacon formulated with 170 or 340 mug of nitrite per g of meat under these same conditions. Toxin was detected at all formulated nitrite levels in bacon inoculated via the pickle with 19,000 C. botulinum per g (4,300 per g after processing) and in samples inoculated after slicing. However, increased levels of formulated nitrite decreased the probability of botulinal toxin formation in bacon inoculated by both methods.
Gahlaut, Anjum; Hooda, Vinita; Gothwal, Ashish; Hooda, Vikas
2018-05-14
In the present era of rapid international globalization and industrialization, intensive use of nitrite as a fertilizing agent in agriculture, preservative, dyeing agent, food additive and as corrosion inhibitor in industrial sectors is adversely effecting environment, natural habitats and human health. The issue of toxicity and carcinogenicity due to excessive ingestion of nitrites via the dietary intake has led to an imminent need for its efficient real-time monitoring in situ. Nitrite detection employing electrochemical biosensors has been gaining high credibility in the field of clinical research. Nitrite biosensors have emerged as an outstanding choice for portable point of care testing of nitrite quantification owing to the excellent properties, such as rapidity, miniaturization, ultra-low limits of detection, multiplexing and enhanced detection sensitivity. The article is enclosed with an interesting outlook on latest emerging trends in the development of nitrite biosensors utilizing nanomaterials, such as metal nanoparticles, carbon nanotubes, metal oxide nanoparticles, nanocomposites, polymers and biomaterials. The present review embarks on the highlights relevant to the nitrite quantification in real samples, then proceeds with a meticulous description of the most pertinent electrochemical nitrite biosensors, which have been proposed by adopting diverse materials and strategies of fabrication and finally end with the achievements and future outlook signifying the application of these nanoengineered biosensors for environmental surveillance and human safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimaki, Hidekazu; Ozawa, Masashi; Bissonnette, E.
1993-05-01
To evaluate the relationship between atmospheric nitrogen dioxide exposure and the development of allergic diseases, the effects of nitrite as a chemical product of inhaled nitrogen dioxide on mast cell functions were investigated. We have studied nitride-induced histamine release from two functionally distinct mast cell populations, namely peritoneal mast cells (PMC) and intestinal mucosal mast cells (IMMC) of Nippostrongylus brasiliensis-infected rats. High concentrations of nitrite alone (10, 20, and 50 mM) induced histamine release from IMMC, but not from PMC. Moreover, histamine release from PMC and IMMC stimulated with sensitizing antigen was significantly enhanced by pretreatment with 50 mM nitritemore » or nitrate. No differences in histamine release from nitrite-treated and control PMC were seen below 1 mM. To investigate the effect of nitrite on tumor cell cytotoxic activity, PMC were incubated with various concentrations of nitrite. Pretreatment with 5 and 50 mM nitrite markedly depressed tumor necrosis factor (TNF)-[alpha]-dependent natural cytotoxicity of PMC for the tumor target WEHI-164. Thus, high concentrations of nitrite enhanced mast cell histamine release, but depressed TNF-[alpha]-dependent cytotoxicity. However, low concentrations of nitrite (<1 mM) that would normally be produced by short-term atmospheric exposure to nitrogen dioxide may have no significant effects on mast cell functions. 27 refs., 3 figs., 1 tab.« less
HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.
Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is themore » inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.« less
Rassaf, Tienush; Ferdinandy, Peter; Schulz, Rainer
2014-01-01
In the last decade, the nitrate-nitrite-nitric oxide pathway has emerged to therapeutical importance. Modulation of endogenous nitrate and nitrite levels with the subsequent S-nitros(yl)ation of the downstream signalling cascade open the way for novel cytoprotective strategies. In the following, we summarize the actual literature and give a short overview on the potential of nitrite in organ protection. PMID:23826831
Role of nitrite in the photochemical formation of radicals in the snow.
Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf
2014-01-01
Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
Deane, Eddie E; Woo, Norman Y S
2007-05-01
The effects of nitrite, at varying concentrations (0, 25 and 50mg/l), on silver sea bream (Sparus sarba), was assessed after 7 days exposure. Nitrite exposure resulted in an elevated renosomatic index in parallel with increased kidney water content. Measurements of serum thyroid hormones demonstrated that levels of thyroxine (T(4)) were decreased upon nitrite exposure whereas triiodothyronine (T(3)) concentrations remained unchanged. Nitrite did not affect serum K and Na levels but did cause an increase in gill sodium pump (Na(+)-K(+)-ATPase) activity. Using immunoassays, it was found that the abundance of the water channel protein, aquaporin 3 (AQP3) was unchanged in gills but decreased in kidneys of sea bream upon nitrite exposure. Immunoassay analysis also demonstrated that the amount of the heat shock protein 70 (HSP70) family were increased in gills, kidney and liver during nitrite exposure whereas amounts of the heat shock protein 90 (HSP90) family increased in kidneys and liver. Taken together, the findings from this study provide new insights into how nitrite affects osmoregulatory, endocrine processes and heat shock protein expression in a marine fish.
Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow
NASA Technical Reports Server (NTRS)
Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.
1998-01-01
This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.
Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng
2014-05-01
Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun
2015-12-01
Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).
He, Tengxia; Li, Zhenlun; Sun, Quan; Xu, Yi; Ye, Qing
2016-01-01
A hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was found to display high removal capabilities for heterotrophic nitrification with ammonium and for aerobic denitrification with nitrate or nitrite nitrogen. When strain Y-11 was cultivated for 4days at 15°C with the initial ammonium, nitrate and nitrite nitrogen concentrations of 209.62, 204.61 and 204.33mg/L (pH 7.2), the ammonium, nitrate and nitrite removal efficiencies were 93.6%, 93.5% and 81.9% without nitrite accumulation, and the corresponding removal rates reached as high as 2.04, 1.99 and 1.74mg/L/h, respectively. Additionally, ammonium was removed mainly during the simultaneous nitrification and denitrification process. All results demonstrate that P. tolaasii strain Y-11 has the particularity to remove ammonium, nitrate and nitrite nitrogen at low temperatures, which guarantees it for future application in winter wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nitrite-induced anemia in channel catfish, Ictalurus punctatus Rafinesque
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, C.S.; Francis-Floyd, R.; Beleau, M.H.
1989-08-01
Since 1983 numerous cases of anemia have been reported in populations of channel catfish Ictalurus punctatus Rafinesque cultured in the southeastern United States. Environmental nitrite-nitrogen concentrations of 4 mg/L or more occur sporadically in channel catfish culture ponds, and the frequency of occurrence is greatest in the fall and spring. The authors have observed that some cases of anemia in populations of pond-raised channel catfish follow prolonged exposure to high concentrations of environmental nitrite. However, there was no evidence that exposure of channel catfish to environmental nitrite was the cause of the observed anemia. Hemolytic anemia following nitrite exposure hasmore » been described for sea bass Dicentrarchus labrax (L.) and rainbow trout Salmo gairdneri, but not for channel catfish. In the present study the authors show that a variable, but generally mild, anemia develops in channel catfish exposed to nitrite. They also offer a management procedure for preventing the development of anemia during periods of elevated environmental nitrite concentrations.« less
Effect of pH and nitrite concentration on nitrite oxidation rate.
Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J
2011-10-01
The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.
Myers, Kevin; Cannon, Jerry; Montoya, Damian; Dickson, James; Lonergan, Steven; Sebranek, Joseph
2013-05-01
The objective of this study was to determine the effect the source of added nitrite and high hydrostatic pressure (HHP) had on the growth of Listeria monocytogenes on ready-to-eat (RTE) sliced ham. Use of 600MPa HHP for 3min resulted in an immediate 3.9-4.3log CFU/g reduction in L. monocytogenes numbers, while use of 400MPa HHP (3min) provided less than 1log CFU/g reduction. With the 600MPa HHP treatment, sliced ham with a conventional concentration of sodium nitrite (200ppm) was not different in L. monocytogenes growth from use with 50 or 100ppm of sodium nitrite in pre-converted celery powder. Instrumental color values as well as residual nitrite and residual nitrate concentrations for cured (sodium nitrite and nitrite from celery powder) and uncured ham formulations are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid
NASA Astrophysics Data System (ADS)
Lin, Haitao; Ding, Liyun; Zhang, Bingyu; Huang, Jun
2018-05-01
A fluorescent carbon dots probe for the detection of aqueous nitrite was fabricated by a one-pot hydrothermal method, and the transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer were used to study the property of carbon dots. The fluorescent property of carbon dots influenced by the concentration of aqueous nitrite was studied. The interaction between the electron-donating functional groups and the electron-accepting nitrous acid could account for the quenching effect on carbon dots by adding aqueous nitrite. The products of the hydrolysis of aqueous nitrite performed a stronger quenching effect at lower pH. The relationship between the relative fluorescence intensity of carbon dots and the concentration of nitrite was described by the Stern-Volmer equation (I0/I - 1 = 0.046[Q]) with a fine linearity (R2 = 0.99). The carbon dots-based probe provides a convenient method for the detection of nitrite concentration.
NASA Astrophysics Data System (ADS)
Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang
2018-02-01
The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.
Berger, Jason; Upton, Colin; Springer, Elyah
2018-04-23
Visualization of nitrite residues is essential in gunshot distance determination. Current protocols for the detection of nitrites include, among other tests, the Modified Griess Test (MGT). This method is limited as nitrite residues are unstable in the environment and limited to partially burned gunpowder. Previous research demonstrated the ability of alkaline hydrolysis to convert nitrates to nitrites, allowing visualization of unburned gunpowder particles using the MGT. This is referred to as Total Nitrite Pattern Visualization (TNV). TNV techniques were modified and a study conducted to streamline the procedure outlined in the literature to maximize the efficacy of the TNV in casework, while reducing the required time from 1 h to 5 min, and enhancing effectiveness on blood-soiled samples. The TNV method was found to provide significant improvement in the ability to detect significant nitrite residues, without sacrificing efficiency, that would allow for the determination of the muzzle-to-target distance. © 2018 American Academy of Forensic Sciences.
Zhang, Xue; Kong, Baohua; Xiong, Youling L
2007-12-01
Lactobacillus fermentum was substituted for nitrite to produce cured pink color in a Chinese-style sausage. Treatments included inoculations (10(4), 10(6), and 10(8)CFU/g meat) followed by fermentation at 30°C for 8h and then at 4°C for 16h. Control sausage (with sodium nitrite, 60mg/kg meat) was cured at 4°C for 24h without L. fermentum. The UV-Vis spectra of pigment extract from L. fermentum-treated sausage were identical to that of nitrosylmyoglobin (NO-Mb) formed in nitrite-treated control. The NO-Mb concentration and the colorimetric a(∗) value of sausage treated with 10(8)CFU/g meat of L. fermentum essentially replicated those in nitrite-cured meat. Free amino acid content in sausage treated with L. fermentum was greater and the pH slightly lower compared with the nitrite-cured control sample. This study showed that L. fermentum has the potential to substitute for nitrite in the sausage production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less
Ultrafast Photodissociation Dynamics of Nitromethane.
Nelson, Tammie; Bjorgaard, Josiah; Greenfield, Margo; Bolme, Cindy; Brown, Katie; McGrane, Shawn; Scharff, R Jason; Tretiak, Sergei
2016-02-04
Nitromethane (NM), a high explosive (HE) with low sensitivity, is known to undergo photolysis upon ultraviolet (UV) irradiation. The optical transparency, homogeneity, and extensive study of NM make it an ideal system for studying photodissociation mechanisms in conventional HE materials. The photochemical processes involved in the decomposition of NM could be applied to the future design of controllable photoactive HE materials. In this study, the photodecomposition of NM from the nπ* state excited at 266 nm is being investigated on the femtosecond time scale. UV femtosecond transient absorption (TA) spectroscopy and excited state femtosecond stimulated Raman spectroscopy (FSRS) are combined with nonadiabatic excited state molecular dynamics (NA-ESMD) simulations to provide a unified picture of NM photodecomposition. The FSRS spectrum of the photoproduct exhibits peaks in the NO2 region and slightly shifted C-N vibrational peaks pointing to methyl nitrite formation as the dominant photoproduct. A total photolysis quantum yield of 0.27 and an nπ* state lifetime of ∼20 fs were predicted from NA-ESMD simulations. Predicted time scales revealed that NO2 dissociation occurs in 81 ± 4 fs and methyl nitrite formation is much slower having a time scale of 452 ± 9 fs corresponding to the excited state absorption feature with a decay of 480 ± 17 fs observed in the TA spectrum. Although simulations predict C-N bond cleavage as the primary photochemical process, the relative time scales are consistent with isomerization occurring via NO2 dissociation and subsequent rebinding of the methyl radical and nitrogen dioxide.
Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V.; Ajitkumar, Parthasarathi
2017-01-01
The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed. PMID:28377757
Tsai, Fu-Te; Lee, Yu-Ching; Chiang, Ming-Hsi; Liaw, Wen-Feng
2013-01-07
Nitrosylation of high-spin [Fe(κ(2)-O(2)NO)(4)](2-) (1) yields {Fe(NO)}(7) mononitrosyl iron complex (MNIC) [(κ(2)-O(2)NO)(κ(1)-ONO(2))(3)Fe(NO)](2-) (2) displaying an S = 3/2 axial electron paramagnetic resonance (EPR) spectrum (g(⊥) = 3.988 and g(∥) = 2.000). The thermally unstable nitrate-containing {Fe(NO)(2)}(9) dinitrosyl iron complex (DNIC) [(κ(1)-ONO(2))(2)Fe(NO)(2)](-) (3) was exclusively obtained from reaction of HNO(3) and [(OAc)(2)Fe(NO)(2)](-) and was characterized by IR, UV-vis, EPR, superconducting quantum interference device (SQUID), X-ray absorption spectroscopy (XAS), and single-crystal X-ray diffraction (XRD). In contrast to {Fe(NO)(2)}(9) DNIC [(ONO)(2)Fe(NO)(2)](-) constructed by two monodentate O-bound nitrito ligands, the weak interaction between Fe(1) and the distal oxygens O(5)/O(7) of nitrato-coordinated ligands (Fe(1)···O(5) and Fe(1)···O(7) distances of 2.582(2) and 2.583(2) Å, respectively) may play important roles in stabilizing DNIC 3. Transformation of nitrate-containing DNIC 3 into N-bound nitro {Fe(NO)}(6) [(NO)(κ(1)-NO(2))Fe(S(2)CNEt(2))(2)] (7) triggered by bis(diethylthiocarbamoyl) disulfide ((S(2)CNEt(2))(2)) implicates that nitrate-to-nitrite conversion may occur via the intramolecular association of the coordinated nitrate and the adjacent polarized NO-coordinate ligand (nitrosonium) of the proposed {Fe(NO)(2)}(7) intermediate [(NO)(2)(κ(1)-ONO(2))Fe(S(2)CNEt(2))(2)] (A) yielding {Fe(NO)}(7) [(NO)Fe(S(2)CNEt(2))(2)] (6) along with the release of N(2)O(4) (·NO(2)) and the subsequent binding of ·NO(2) to complex 6. The N-bound nitro {Fe(NO)}(6) complex 7 undergoes Me(2)S-promoted O-atom transfer facilitated by imidazole to give {Fe(NO)}(7) complex 6 accompanied by release of nitric oxide. This result demonstrates that nitrate-containing DNIC 3 acts as an active center to modulate nitrate-to-nitrite-to-nitric oxide conversion.
Performance Assessments of Generic Nuclear Waste Repositories in Shale
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.
2017-12-01
Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017- 8305 A
Zhang, Fengyuan; Zhu, Xinyue; Jiao, Zhijuan; Liu, Xiaoyan; Zhang, Haixia
2018-07-05
An uncontrolled increase of nitrite concentration in groundwater, rivers and lakes is a growing threat to public health and environment. It is important to monitor the nitrite levels in water and clinical diagnosis. Herein, we developed a switch-off fluorescence probe (PyI) for the sensitive detection of nitrite ions in the aqueous media. This probe selectively recognizes nitrite ions through a distinct visual color change from colorless to pink with a detection limit of 0.1 μM. This method has been successfully applied to the determination of nitrites in tap water, lake water and Yellow River water with recoveries in the range of 94.8%-105.4%. Copyright © 2018 Elsevier B.V. All rights reserved.
Correlation models for waste tank sludges and slurries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, L.A.; Trent, D.S.
This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This reportmore » presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, C.S.; MacMillan, J.R.; Schwedler, T.E.
1984-06-01
In a previous report, the authors showed that lack of acclimation to nitrite can result in abnormally high levels of methemoglobin in nitrite-exposed channel catfish. They also observed abnormal methemoglobin levels in fish when concurrent bacteremias are present. Enteric Septicemia of Catfish is an acute bacterial disease caused by Edwardsiella ictaluri. Nitrite-induced methemoglobinemia and Enteric Septicemia of Catfish are both economically important diseases of commercially cultured channel catfish. In the present study, the authors investigated the influence of acute infection with E. ictaluri on the level of methemoblobin in nitrite-exposed channel catfish fingerlings.
Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.
Su, Fei; Takaya, Naoki; Shoun, Hirofumi
2004-02-01
Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.
Three Dimensional Simulation of the Baneberry Nuclear Event
NASA Astrophysics Data System (ADS)
Lomov, Ilya N.; Antoun, Tarabay H.; Wagoner, Jeff; Rambo, John T.
2004-07-01
Baneberry, a 10-kiloton nuclear event, was detonated at a depth of 278 m at the Nevada Test Site on December 18, 1970. Shortly after detonation, radioactive gases emanating from the cavity were released into the atmosphere through a shock-induced fissure near surface ground zero. Extensive geophysical investigations, coupled with a series of 1D and 2D computational studies were used to reconstruct the sequence of events that led to the catastrophic failure. However, the geological profile of the Baneberry site is complex and inherently three-dimensional, which meant that some geological features had to be simplified or ignored in the 2D simulations. This left open the possibility that features unaccounted for in the 2D simulations could have had an important influence on the eventual containment failure of the Baneberry event. This paper presents results from a high-fidelity 3D Baneberry simulation based on the most accurate geologic and geophysical data available. The results are compared with available data, and contrasted against the results of the previous 2D computational studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowitt, G.T.; Hanzlick, R.L.
1992-06-01
So-called typical' autoerotic fatalities are the result of asphyxia due to mechanical compression of the neck, chest, or abdomen, whereas atypical' autoeroticism involves sexual self-stimulation by other means. The authors present five atypical autoerotic fatalities that involved the use of dichlorodifluoromethane, nitrous oxide, isobutyl nitrite, cocaine, or compounds containing 1-1-1-trichloroethane. Mechanisms of death are discussed in each case and the pertinent literature is reviewed.
SAFSIM theory manual: A computer program for the engineering simulation of flow systems
NASA Astrophysics Data System (ADS)
Dobranich, Dean
1993-12-01
SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.
Mullaney, John R.; Grady, Stephen J.
1997-01-01
The quality of water along flowpaths in a surficial aquifer system in Manchester, Connecticut, was studied during 1993-95 as part of the National Water Quality Assessment program. The flowpath study examined the relations among hydrogeology, land-use patterns, and the presence of contaminants in a surficial aquifer in an urban area, and evaluated ground water as a source of contamination to surface water. A two-dimensional, finite-difference groundwater- flow model was used to estimate travel distance, which ranged from about 50 to 11,000 feet, from the source areas to the sampled observation wells. Land use, land cover, and population density were determined in the source areas delineated by the ground-water-flow simulation. Source areas to the wells contained either high- or medium-density residential areas, and population density ranged from 629 to 8,895 people per square mile. Concentrations of selected inorganic constituents, including sodium, chloride, and nitrite plus nitrate nitrogen, were higher in the flowpath study wells than in wells in undeveloped areas with similar aquifer materials. One or more of 9 volatile organic compounds were detected at 12 of 14 wells. The three most commonly detected volatile organic compounds were chloroform, methyl-tert-butyl ether, and trichloroethene. Trichloroethene was detected at concentrations greater than the maximum contaminant level for drinking water (5 micrograms per liter) in samples from one well. Four pesticides, including dichloro diphenyl dichloroethylene, dieldrin, dichloroprop, and simazine were detected at low concentrations. Concentrations of sodium and chloride were higher in samples collected from wells screened in the top of the saturated zone than in samples collected from deeper zones. Volatile organic compounds and elevated concentrations of nitrite plus nitrate as nitrogen were detected at depths of as much as 60 feet below the water table, indicating that the effects of human activities on the ground-water quality extends to the bottom of the surficial aquifer. The age of ground water, as determined by tritium and 3helium concentrations, was 0.9 to 22.6 years. pH, alkalinity, and calcium were higher and concentrations of dissolved oxygen were lower in ground-water samples with ages of 10 years or more than in samples younger than 10 years. In addition, concentrations of sodium, chloride, and nitrite plus nitrate nitrogen were low in ground-water samples with ages of 10 years or more, indicating that concentrations of these compounds may be increasing with time or that the recharge areas to these wells may have had less intensive urban land use. Methyl-tert-butyl ether was detected only in wells with ground water ages of less than 11 years, which is consistent with the date of introduction of this compound as a gasoline additive in Connecticut. Analysis of additional samples collected for analysis of stable nitrogen isotopes indicated that the most likely source of elevated concentrations of nitrate nitrogen was lawn and garden fertilizers, but other sources, including wastewater effluents, soil organic nitrogen, and atmospheric deposition, may contribute to the total. Population density was positively correlated (at the 97 percent confidence level) to concentrations of nitrite plus nitrate as nitrogen. Water quality in the Hockanum River aquifer has been degraded by human activities, and, after discharge to surface water, affects the water quality in the Hockanum River. On an annual basis, ground-water discharge from the study area to the river (as measured at a downstream continuous-record gaging station) contributes about 5 percent of the annual load of nitrite plus nitrate nitrogen, but, during low flow, contributes 11 percent of the nitrite plus nitrate nitrogen, 32 percent of the calcium, and 16 percent of the chloride to the river.
Pinheiro, Lucas C; Ferreira, Graziele C; Vilalva, Kelvin H; Toledo, José C; Tanus-Santos, Jose E
2018-04-01
Nitrite reduces blood pressure (BP) in both clinical and experimental hypertension. This effect is attributable to the formation of nitric oxide (NO) and other NO-related species, which may be improved by ascorbate or other antioxidants. However, the BP responses to oral nitrite result, at least in part, of increased gastric S-nitrosothiol formation. This study tested the hypothesis that ascorbate may destroy S-nitrosothiols and therefore not all doses of ascorbate enhance the BP responses to oral nitrite. We assessed the BP responses to oral sodim nitrite (0.2 mmol/kg) in L-NAME hypertensive rats pretreated with ascorbate (0, 0.02, 0.2, or 2 mmol/kg). Plasma and gastric wall concentrations of nitrite and nitroso compounds concentrations were determined using an ozone-based reductive chemiluminescence assay. Nitrate concentrations were determined using the Griess reaction. Free thiol concentrations were determined by a colorimetric assay. The BP responses to nitrite exhibited a bell-shape profile as they were not modified by ascorbate 0.02 mmol/l, whereas the 0.2 mmol/kg dose enhanced and the 2 mmol/kg dose attenuated BP responses. In parallel with BP responses, nitrite-induced increases in plasma nitrite and RSNO species were not modified by ascorbate 0.02 mmol/l, whereas the 0.2 mmol/kg dose enhanced and the 2 mmol/kg dose attenuated them. Similar experiments were carried out with an equimolar dose of S-nitrosogluthathione. Ascorbate dose-dependently impaired the BP responses to S-nitrosogluthathione, and the corresponding increases in plasma RSNO, but not in plasma nitrite concentrations. This is the first study to show that while ascorbate dose-dependently impairs the BP responses to oral S-nitrosogluthathione, there are contrasting effects when low versus high ascorbate doses are compared with respect to its effects on the blood pressure responses to oral nitrite administration. Our findings may have special implications to patients taking ascorbate, as high doses of this vitamin may impair protective mechanisms associated with nitrite or nitrate from dietary sources. Copyright © 2018 Elsevier Inc. All rights reserved.
Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João
2015-05-01
Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.
De Haan, David O; Hawkins, Lelia N; Kononenko, Julia A; Turley, Jacob J; Corrigan, Ashley L; Tolbert, Margaret A; Jimenez, Jose L
2011-02-01
Reactions of methylglyoxal with amino acids, methylamine, and ammonium sulfate can take place in aqueous aerosol and evaporating cloud droplets. These processes are simulated by drying droplets and bulk solutions of these compounds (at low millimolar and 1 M concentrations, respectively) and analyzing the residuals by scanning mobility particle sizing, nuclear magnetic resonance, aerosol mass spectrometry (AMS), and electrospray ionization MS. The results are consistent with imine (but not diimine) formation on a time scale of seconds, followed by the formation of nitrogen-containing oligomers, methylimidazole, and dimethylimidazole products on a time scale of minutes to hours. Measured elemental ratios are consistent with imidazoles and oligomers being major reaction products, while effective aerosol densities suggest extensive reactions take place within minutes. These reactions may be a source of the light-absorbing, nitrogen-containing oligomers observed in urban and biomass-burning aerosol particles.
Hustad, G O; Cerveny, J G; Trenk, H; Deibel, R H; Kautter, D A; Fazio, T; Johnston, R W; Kolari, O E
1973-07-01
Wieners were formulated and processed approximating commercial conditions as closely as possible. Twenty-four batches of product were made with the addition of six levels of sodium nitrite (0, 50, 100, 150, 200, and 300 mug/g), four levels of sodium nitrate (0, 50, 150, and 450 mug/g), and two levels of Clostridium botulinum (0 and 620 spores/g). After formulation, processing, and vacuum packaging, portions of each batch were incubated at 27 C or held for 21 days at 7 C followed by incubation at 27 C for 56 days. The latter storage condition approximated distribution of product through commercial channels and potential temperature abuse at the consumer level. Samples were analyzed for botulinal toxin, nitrite, and nitrate levels after 3, 7, 14, 21, 28, and 56 days of incubation. When nitrite was not added, toxic samples were detected after 14 days of incubation at 27 C. At the lowest level of nitrite added (50 mug/g), no toxic samples were observed until 56 days of incubation. Higher levels of nitrite completely inhibited toxin production throughout the incubation period. Nine uninoculated samples, representing various levels and combinations of nitrite and nitrate, were evaluated organoleptically. The flavor quality of wieners made with nitrite was judged significantly higher (P = 0.05) than of wieners made without nitrite. The nine samples were negative for 14 volatile nitrosamines at a sensitivity level of 10 ng/g. The results indicated that nitrite effectively inhibited botulinal toxin formation at commercially employed levels in wieners and that detectable quantities of nitrosamines were not produced during preparation and processing of the product for consumption.
Hustad, Gerald O.; Cerveny, John G.; Trenk, Hugh; Deibel, Robert H.; Kautter, Donald A.; Fazio, Thomas; Johnston, Ralph W.; Kolari, Olaf E.
1973-01-01
Wieners were formulated and processed approximating commercial conditions as closely as possible. Twenty-four batches of product were made with the addition of six levels of sodium nitrite (0, 50, 100, 150, 200, and 300 μg/g), four levels of sodium nitrate (0, 50, 150, and 450 μg/g), and two levels of Clostridium botulinum (0 and 620 spores/g). After formulation, processing, and vacuum packaging, portions of each batch were incubated at 27 C or held for 21 days at 7 C followed by incubation at 27 C for 56 days. The latter storage condition approximated distribution of product through commercial channels and potential temperature abuse at the consumer level. Samples were analyzed for botulinal toxin, nitrite, and nitrate levels after 3, 7, 14, 21, 28, and 56 days of incubation. When nitrite was not added, toxic samples were detected after 14 days of incubation at 27 C. At the lowest level of nitrite added (50 μg/g), no toxic samples were observed until 56 days of incubation. Higher levels of nitrite completely inhibited toxin production throughout the incubation period. Nine uninoculated samples, representing various levels and combinations of nitrite and nitrate, were evaluated organoleptically. The flavor quality of wieners made with nitrite was judged significantly higher (P = 0.05) than of wieners made without nitrite. The nine samples were negative for 14 volatile nitrosamines at a sensitivity level of 10 ng/g. The results indicated that nitrite effectively inhibited botulinal toxin formation at commercially employed levels in wieners and that detectable quantities of nitrosamines were not produced during preparation and processing of the product for consumption. PMID:4580194
Pride, Christelle Kamga; Mo, Li; Quesnelle, Kelly; Dagda, Ruben K.; Murillo, Daniel; Geary, Lisa; Corey, Catherine; Portella, Rafael; Zharikov, Sergey; St Croix, Claudette; Maniar, Salony; Chu, Charleen T.; K. H. Khoo, Nicholas; Shiva, Sruti
2014-01-01
Aims Nitrite (NO2–), a dietary constituent and nitric oxide (NO) oxidation product, mediates cardioprotection after ischaemia/reperfusion (I/R) in a number of animal models when administered during ischaemia or as a pre-conditioning agent hours to days prior to the ischaemic episode. When present during ischaemia, the reduction of nitrite to bioactive NO by deoxygenated haem proteins accounts for its protective effects. However, the mechanism of nitrite-induced pre-conditioning, a normoxic response which does not appear to require reduction of nitrite to NO, remains unexplored. Methods and results Using a model of hypoxia/reoxygenation (H/R) in cultured rat H9c2 cardiomyocytes, we demonstrate that a transient (30 min) normoxic nitrite treatment significantly attenuates cell death after a hypoxic episode initiated 1 h later. Mechanistically, this protection depends on the activation of protein kinase A, which phosphorylates and inhibits dynamin-related protein 1, the predominant regulator of mitochondrial fission. This results morphologically, in the promotion of mitochondrial fusion and functionally in the augmentation of mitochondrial membrane potential and superoxide production. We identify AMP kinase (AMPK) as a downstream target of the mitochondrial reactive oxygen species (ROS) generated and show that its oxidation and subsequent phosphorylation are essential for cytoprotection, as scavenging of ROS prevents AMPK activation and inhibits nitrite-mediated protection after H/R. The protein kinase A-dependent protection mediated by nitrite is reproduced in an intact isolated rat heart model of I/R. Conclusions These data are the first to demonstrate nitrite-dependent normoxic modulation of both mitochondrial morphology and function and reveal a novel signalling pathway responsible for nitrite-mediated cardioprotection. PMID:24081164
Cantu-Medellin, Nadiezhda; Vitturi, Dario A.; Rodriguez, Cilina; Murphy, Serena; Dorman, Scott; Shiva, Sruti; Zhou, Yipin; Jia, Yiping; Palmer, Andre F.; Patel, Rakesh P.
2011-01-01
Recent data suggest that transitions between the relaxed (R) and tense (T) state of hemoglobin control the reduction of nitrite to nitric oxide (NO) by deoxyhemoglobin. This reaction may play a role in physiologic NO homeostasis and be a novel consideration for the development of the next generation of hemoglobin-based blood oxygen carriers (HBOCs, i.e. artificial blood substitutes). Herein we tested the effects of chemical stabilization of bovine hemoglobin in either the T- (THb) or R-state (RHb) on nitrite reduction kinetics, NO-gas formation and ability to stimulate NO-dependent signaling. These studies were performed over a range of fractional saturations that is expected to mimic biological conditions. The initial rate for nitrite-reduction decreased in the following order RHb > bHb > THb, consistent with the hypothesis that the rate constant for nitrite reduction is faster with R-state Hb and slower with T-state Hb. Moreover, RHb produced more NO-gas and inhibited mitochondrial respiration more potently than both bHb and THb. Interestingly, at low oxygen fractional saturations, THb produced more NO and stimulated nitrite-dependent vasodilation more potently than bHb despite both derivatives having similar initial rates for nitrite reduction and a more negative reduction potential in THb versus bHb. These data suggest that cross-linking of bovine hemoglobin in the T-state conformation leads to a more effective coupling of nitrite reduction to NO-formation. Our results support the model of allosteric regulation of nitrite reduction by deoxyhemoglobin and show that cross-linking hemoglobins in distinct quaternary states can generate products with increased NO yields from nitrite reduction that could be harnessed to promote NO-signaling in vivo. PMID:21277987
Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.
Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang
2015-09-01
Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.
Pancreatic Cancer and Exposure to Dietary Nitrate and Nitrite in the NIH-AARP Diet and Health Study
Aschebrook-Kilfoy, Briseis; Cross, Amanda J.; Stolzenberg-Solomon, Rachael Z.; Schatzkin, Arthur; Hollenbeck, Albert R.; Sinha, Rashmi; Ward, Mary H.
2011-01-01
Nitrate and nitrite are precursors of N-nitroso compounds, which induce tumors of the pancreas in animals. The authors evaluated the relation of dietary nitrate and nitrite to pancreatic cancer risk in the NIH-AARP Diet and Health Study. Nitrate and nitrite intakes were assessed at baseline using a 124-item food frequency questionnaire. During approximately 10 years of follow-up between 1995 and 2006, 1,728 incident pancreatic cancer cases were identified. There was no association between total nitrate or nitrite intake and pancreatic cancer in men or women. However, men in the highest quintile of summed nitrate/nitrite intake from processed meat had a nonsignificantly elevated risk of pancreatic cancer (hazard ratio = 1.18, 95% confidence interval: 0.95, 1.47; P-trend = 0.11). The authors observed a stronger increase in risk among men for nitrate/nitrite intake from processed meat at ages 12–13 years (highest quintile vs. lowest: hazard ratio = 1.32, 95% confidence interval: 0.99, 1.76; P-trend = 0.11), though the relation did not achieve statistical significance. The authors found no associations between adult or adolescent nitrate or nitrite intake from processed meats and pancreatic cancer among women. These results provide modest evidence that processed meat sources of dietary nitrate and nitrite may be associated with pancreatic cancer among men and provide no support for the hypothesis in women. PMID:21685410
Inorganic nitrite supplementation for healthy arterial aging
DeVan, Allison E.; Fleenor, Bradley S.; Seals, Douglas R.
2014-01-01
Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans. PMID:24408999
Erratum to ;Coastal water column ammonium and nitrite oxidation are decoupled in summer;
NASA Astrophysics Data System (ADS)
Heiss, Elise M.; Fulweiler, Robinson W.
2017-07-01
Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen, light, and temperature. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with temperature, light and pH. Multivariate regression analysis revealed that surface (<20 m) ammonium oxidation rates were most strongly predicted by substrate (NH4+), salinity, and light, while deep (>20 m) rates were regulated by temperature, light, and [H+] (i.e. pH). In addition, surface (<20 m) nitrite oxidation rates were best explained by [H+] alone, while [H+], temperature, and dissolved oxygen all played a role in predicting deep (>20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.
ERIC Educational Resources Information Center
Penteado, Jose C.; Angnes, Lucio; Masini, Jorge C.; Oliveira, Paulo C. C.
2005-01-01
This article describes the reaction between nitrite and safranine O. This sensitive reaction is based on the disappearance of color of the reddish-orange azo dye, allowing the determination of nitrite at the mg mL-1 level. A factorial optimization of parameters was carried out and the method was applied for the quantification of nitrite in…
Tompkin, R B; Christiansen, L N; Shaparis, A B
1978-01-01
Addition of sodium isoascorbate to the formulation for perishable canned comminuted cured meat markedly enhanced the efficacy of nitrite against Clostridium botulinum. This effect was reproducible through a series of three tests. In one test it was found that the initial addition of 50 microgram of sodium nitrite per g plus isoascorbate was as effective as 156 microgram of sodium nitrite per g alone. PMID:341810
Short-term effects of a high nitrate diet on nitrate metabolism in healthy individuals.
Bondonno, Catherine P; Liu, Alex H; Croft, Kevin D; Ward, Natalie C; Puddey, Ian B; Woodman, Richard J; Hodgson, Jonathan M
2015-03-12
Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake.
Allen, James W A; Higham, Christopher W; Zajicek, Richard S; Watmough, Nicholas J; Ferguson, Stuart J
2002-01-01
The oxidized form of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase, as isolated, has bis-histidinyl co-ordination of the c haem and His/Tyr co-ordination of the d(1) haem. On reduction, the haem co-ordinations change to His/Met and His/vacant respectively. If the latter form of the enzyme is reoxidized, a conformer is generated in which the ferric c haem is His/Met co-ordinated; this can revert to the 'as isolated' state of the enzyme over approx. 20 min at room temperature. However, addition of nitrite to the enzyme after a cycle of reduction and reoxidation produces a kinetically stable, all-ferric complex with nitrite bound to the d(1) haem and His/Met co-ordination of the c haem. This complex is catalytically active with the physiological electron donor protein pseudoazurin. The effective dissociation constant for nitrite is 2 mM. Evidence is presented that d(1) haem is optimized to bind nitrite, as opposed to other anions that are commonly good ligands to ferric haem. The all-ferric nitrite bound state of the enzyme could not be generated stoichiometrically by mixing nitrite with the 'as isolated' conformer of cytochrome cd(1) without redox cycling. PMID:12086580
Increased nitrite reductase activity of fetal versus adult ovine hemoglobin
Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.
2009-01-01
Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797
Music stimuli lead to increased levels of nitrite in unstimulated mixed saliva.
Jin, Luyuan; Zhang, Mengbi; Xu, Junji; Xia, Dengsheng; Zhang, Chunmei; Wang, Jingsong; Wang, Songlin
2018-06-15
Concentration of salivary nitrate is approximately 10-fold to that of serum. Many circumstances such as acute stress could promote salivary nitrate secretion and nitrite formation. However, whether other conditions can also be used as regulators of salivary nitrate/nitrite has not yet been explored. The present study was designed to determine the influence of exposure to different music on the salivary flow rate and nitrate secretion and nitrite formation. Twenty-four undergraduate students (12 females and 12 males) were exposed to silence, rock music, classical music or white noise respectively on four consecutive mornings. The unstimulated salivary flow rate and stimulated salivary flow rate were measured. Salivary ionic (Na + , Ca 2+ Cl - , and PO 4 3- ) content and nitrate/nitrite levels were detected. The unstimulated salivary flow rate was significantly increased after classical music exposure compared to that after silence. Salivary nitrite levels were significantly higher upon classical music and white noise stimulation than those under silence in females. However, males were more sensitive only to white noise with regard to the nitrite increase. In conclusion, this study demonstrated that classical music stimulation promotes salivary nitrite formation and an increase in saliva volume was observed. These observations may play an important role in regulating oral function.
Cunningham-Bussel, Amy; Zhang, Tuo; Nathan, Carl F.
2013-01-01
In high enough concentrations, such as produced by inducible nitric oxide synthase (iNOS), reactive nitrogen species (RNS) can kill Mycobacterium tuberculosis (Mtb). Lesional macrophages in macaques and humans with tuberculosis express iNOS, and mice need iNOS to avoid succumbing rapidly to tuberculosis. However, Mtb’s own ability to produce RNS is rarely considered, perhaps because nitrate reduction to nitrite is only prominent in axenic Mtb cultures at oxygen tensions ≤1%. Here we found that cultures of Mtb-infected human macrophages cultured at physiologic oxygen tensions produced copious nitrite. Surprisingly, the nitrite arose from the Mtb, not the macrophages. Mtb responded to nitrite by ceasing growth; elevating levels of ATP through reduced consumption; and altering the expression of 120 genes associated with adaptation to acid, hypoxia, nitric oxide, oxidative stress, and iron deprivation. The transcriptomic effect of endogenous nitrite was distinct from that of nitric oxide. Thus, whether or not Mtb is hypoxic, the host expresses iNOS, or hypoxia impairs the action of iNOS, Mtb in vivo is likely to encounter RNS by producing nitrite. Endogenous nitrite may slow Mtb’s growth and prepare it to resist host stresses while the pathogen waits for immunopathology to promote its transmission. PMID:24145454
Delayed signatures of underground nuclear explosions
Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.
2016-01-01
Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288