Science.gov

Sample records for nitroalkenes vinylogous nucleophilicity

  1. An Asymmetric Vinylogous Michael Cascade of Silyl Glyoximide, Vinyl Grignard, and Nitroalkenes via Long Range Stereoinduction

    PubMed Central

    Boyce, Gregory R.; Johnson, Jeffrey S.

    2016-01-01

    A diastereoselective auxiliary-mediated vinylation/[1,2]-Brook rearrangement/vinylogous Michael cascade of silyl glyoximide, vinylmagnesium bromide, and nitroalkenes is described. The reaction occurs with complete regio- and diastereocontrol in good yield. The diastereoselectivity is induced by a rare instance of 1,7-chirality transfer that is hypothesized to arise from a trans-multihetero-decalin transition state. PMID:26833255

  2. Lewis Acid Mediated Vinylogous Additions of Enol Nucleophiles into an α,β-Unsaturated Platinum Carbene

    PubMed Central

    Allegretti, Paul A.; Huynh, Khoi; Ozumerzifon, Tarik J.; Ferreira, Eric M.

    2016-01-01

    A variety of substituted indoles and benzofurans are accessed via a platinum catalyzed annulation and vinylogous addition of enol nucleophiles. Several β-dicarbonyl compounds participate in the reaction, as do α-nitro and α-cyano carbonyl species. Subjecting the indole products to acidic conditions results in the formation of fused heterocycles. PMID:26652926

  3. Rationally designed multifunctional supramolecular iminium catalysis: direct vinylogous Michael addition of unmodified linear dienol substrates.

    PubMed

    Gu, Yun; Wang, Yao; Yu, Tian-Yang; Liang, Yong-Min; Xu, Peng-Fei

    2014-12-15

    The development of a direct vinylogous Michael addition of linear nucleophilic substrates is a long-standing challenge because of the poor reactivity and the considerable difficulty in controlling regioselectivity. By employing a rationally designed multifunctional supramolecular iminium catalysis strategy, the first direct vinylogous Michael addition of unmodified linear substrates to α,β-unsaturated aldehydes, to afford chiral 1,7-dioxo compounds with good yields and excellent regio- as well as enantioselectivity, has been developed.

  4. Enantioselective Vinylogous Organocascade Reactions.

    PubMed

    Hepburn, Hamish B; Dell'Amico, Luca; Melchiorre, Paolo

    2016-08-01

    Cascade reactions are powerful tools for rapidly assembling complex molecular architectures from readily available starting materials in a single synthetic operation. Their marriage with asymmetric organocatalysis has led to the development of novel techniques, which are now recognized as reliable strategies for the one-pot enantioselective synthesis of stereochemically dense molecules. In recent years, even more complex synthetic challenges have been addressed by applying the principle of vinylogy to the realm of organocascade catalysis. The key to the success of vinylogous organocascade reactions is the unique ability of the chiral organocatalyst to transfer reactivity to a distal position without losing control on the stereo-determining events. This approach has greatly expanded the synthetic horizons of the field by providing the possibility of forging multiple stereocenters in remote positions from the catalyst's point of action with high selectivity, while simultaneously constructing multiple new bonds. This article critically describes the developments achieved in the field of enantioselective vinylogous organocascade reactions, charting the ideas, the conceptual advances, and the milestone reactions that have been essential for reaching highly practical levels of synthetic efficiency.

  5. Organocatalytic asymmetric hydrophosphination of nitroalkenes.

    PubMed

    Bartoli, Giuseppe; Bosco, Marcella; Carlone, Armando; Locatelli, Manuela; Mazzanti, Andrea; Sambri, Letizia; Melchiorre, Paolo

    2007-02-21

    The use of a bifunctional Cinchona alkaloid catalyst has provided a new organocatalytic strategy for the enantioselective addition of diphenylphosphine to a range of nitroalkenes, affording optically active beta-nitrophosphines (up to 99% ee after crystallization); this organocatalytic approach, providing a direct route to a new class of potentially useful enantiopure P,N-ligands, constitutes a bridge between the two complementary areas of asymmetric catalysis: organo- and metal-catalyzed transformations.

  6. Equilibrium between a vinylogous ylide and a phosphonium dienolate zwitterion: vinylogous Wittig olefination versus vinylogous aldol-type reaction

    PubMed Central

    Khong, San N.; Tran, Yang S.; Kwon, Ohyun

    2010-01-01

    This paper describes the equilibrium established between a phosphonium dienolate zwitterion and a vinylogous phosphorus ylide, and their reactions with aldehydes. The reactions between ethyl 2-methyl-2,3-butadienoate and various aldehydes occur through either a phosphonium dienolate or a vinylogous ylide intermediate, depending on the presence/absence of a Lewis acid and the nature of the phosphine. We observed a rare vinylogous Wittig olefination from the reaction between ethyl 2-methyl-2,3-butadienoate and an electron-deficient aromatic aldehyde in the presence of a stoichiometric amount of an electron-deficient triarylphosphine and a catalytic amount of a Lewis acid (e.g., BF3·Et2O). On the other hand, the use of triphenylphosphine, in the absence of a Lewis acid, facilitated vinylogous aldol addition, accompanied by a rare 1,2-aryl phosphorus-to-carbon migration. PMID:21359169

  7. Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides.

    PubMed

    Fazzari, Marco; Khoo, Nicholas; Woodcock, Steven R; Li, Lihua; Freeman, Bruce A; Schopfer, Francisco J

    2015-10-01

    Electrophilic fatty acid nitroalkenes (NO(2)-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO(2)-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial β-oxidation, and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO(2)-FA-containing triacylglycerides (NO(2)-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO(2)-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO(2)-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO(2)-OA-supplemented adipocytes. These data revealed that NO(2)-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events.

  8. Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides

    PubMed Central

    Fazzari, Marco; Khoo, Nicholas; Woodcock, Steven R.; Li, Lihua; Freeman, Bruce A.; Schopfer, Francisco J.

    2015-01-01

    Electrophilic fatty acid nitroalkenes (NO2-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO2-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial β–oxidation and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO2-FA-containing triacylglycerides (NO2-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO2-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO2-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO2-OA supplemented adipocytes. These data revealed that NO2-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events. PMID:26066303

  9. Asymmetric Copper-Catalyzed Vinylogous Mukaiyama Michael Addition of Cyclic Dienol Silanes to Unsaturated α-Keto Phosphonates.

    PubMed

    Steinkamp, Anne-Dorothee; Frings, Marcus; Thomé, Isabelle; Schiffers, Ingo; Bolm, Carsten

    2015-05-18

    A highly stereoselective vinylogous Mukaiyama Michael reaction (VMMR) leading to α-keto phosphonate-containing γ-butenolides with two stereogenic centers is described. The presented transformation is catalyzed by a combination of a commercially available C2 -symmetric bisoxazoline (BOX) ligand and a copper salt and tolerates a variety of nucleophiles and electrophiles. The stereoselectivities of the reactions are good to excellent and the products are obtained in moderate to high yields.

  10. Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives.

    PubMed

    Schopfer, F J; Batthyany, C; Baker, P R S; Bonacci, G; Cole, M P; Rudolph, V; Groeger, A L; Rudolph, T K; Nadtochiy, S; Brookes, P S; Freeman, B A

    2009-05-01

    Nitroalkene fatty acid derivatives manifest a strong electrophilic nature, are clinically detectable, and induce multiple transcriptionally regulated anti-inflammatory responses. At present, the characterization and quantification of endogenous electrophilic lipids are compromised by their Michael addition with protein and small-molecule nucleophilic targets. Herein, we report a trans-nitroalkylation reaction of nitro-fatty acids with beta-mercaptoethanol (BME) and apply this reaction to the unbiased identification and quantification of reaction with nucleophilic targets. Trans-nitroalkylation yields are maximal at pH 7 to 8 and occur with physiological concentrations of target nucleophiles. This reaction is also amenable to sensitive mass spectrometry-based quantification of electrophilic fatty acid-protein adducts upon electrophoretic resolution of proteins. In-gel trans-nitroalkylation reactions also permit the identification of protein targets without the bias and lack of sensitivity of current proteomic approaches. Using this approach, it was observed that fatty acid nitroalkenes are rapidly metabolized in vivo by a nitroalkene reductase activity and mitochondrial beta-oxidation, yielding a variety of electrophilic and nonelectrophilic products that could be structurally characterized upon BME-based trans-nitroalkylation reaction. This strategy was applied to the detection and quantification of fatty acid nitration in mitochondria in response to oxidative inflammatory conditions induced by myocardial ischemia-reoxygenation.

  11. Organocatalytic Enantioselective Synthesis of Tetrahydrofluoren-9-ones via Vinylogous Michael Addition/Henry Reaction Cascade of 1,3-Indandione-Derived Pronucleophiles.

    PubMed

    Möhlmann, Lennart; Chang, Geng-Hua; Madhusudhan Reddy, G; Lee, Chia-Jui; Lin, Wenwei

    2016-02-19

    An unprecedented organocatalytic enantioselective vinylogous Michael addition/Henry cyclization cascade is presented for the synthesis of highly substituted tetrahydrofluoren-9-ones 3 employing novel 1,3-indandione-derived pronucleophiles 1a-g and nitroalkenes 2. Following a very simple protocol, a wide range of products were obtained in good to excellent yields and with excellent enantioinduction (43-98% yield, up to 98% ee). The reaction proceeded with excellent diastereocontrol despite the simultaneous generation of four stereogenic centers. Surprisingly, when 2-(1-phenylethylidene)-1H-indandione (1h) was used as a pronucleophile, no cyclization was observed, and only Michael addition adducts 4a-x were furnished in very good yields and excellent enantioselectivities.

  12. Nickel(II)-Catalyzed Cascade Vinylogous Mukaiyama 1,6-Michael/Michael Addition of 2-Silyloxyfuran with N-Sulfonyl-1-aza-1,3-dienes: Access to Fused Piperidine/Butyrolactone Skeletons.

    PubMed

    Liu, Kang; Chang, Xin; Wang, Chun-Jiang

    2016-12-16

    An unprecedented and highly efficient nickel-catalyzed cascade vinylogous Mukaiyama 1,6-Michael/Michael addition of 2-silyloxyfuran with N-sulfonyl-1-aza-1,3-dienes is reported, in which 2-silyloxyfuran was successfully employed as nucleophile and electrophile sequentially. This methodology combined with subsequent reduction provides a facile access to biologically important fused piperidine/butyrolactone skeletons in good yield with exclusive diastereoselectivity under mild reaction conditions.

  13. Alkynoate Synthesis via Vinylogous Reactivity of Rh(II) Carbenoids

    PubMed Central

    Valette, Damien; Lian, Yajing; Haydek, John P.; Hardcastle, Kenneth I.; Davies, Huw M. L.

    2013-01-01

    A new rhodium carbenoid approach to access alkynoates has been developed. This transformation combines the addition of enol ethers at the vinylogous position of β-siloxy-substituted vinyldiazo derivatives and an unprecedented siloxy group migration to yield the products as single diastereomers. PMID:22807172

  14. Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes.

    PubMed

    Delmastro-Greenwood, Meghan; Hughan, Kara S; Vitturi, Dario A; Salvatore, Sonia R; Grimes, George; Potti, Gopal; Shiva, Sruti; Schopfer, Francisco J; Gladwin, Mark T; Freeman, Bruce A; Gelhaus Wendell, Stacy

    2015-12-01

    A gap in our understanding of the beneficial systemic responses to dietary constituents nitrate (NO3(-)), nitrite (NO2(-)) and conjugated linoleic acid (cLA) is the identification of the downstream metabolites that mediate their actions. To examine these reactions in a clinical context, investigational drug preparations of (15)N-labeled NO3(-) and NO2(-) were orally administered to healthy humans with and without cLA. Mass spectrometry analysis of plasma and urine indicated that the nitrating species nitrogen dioxide was formed and reacted with the olefinic carbons of unsaturated fatty acids to yield the electrophilic fatty acid, nitro-cLA (NO2-cLA). These species mediate the post-translational modification (PTM) of proteins via reversible Michael addition with nucleophilic amino acids. The PTM of critical target proteins by electrophilic lipids has been described as a sensing mechanism that regulates adaptive cellular responses, but little is known about the endogenous generation of fatty acid nitroalkenes and their metabolites. We report that healthy humans consuming (15)N-labeled NO3(-) or NO2(-), with and without cLA supplementation, produce (15)NO2-cLA and corresponding metabolites that are detected in plasma and urine. These data support that the dietary constituents NO3(-), NO2(-) and cLA promote the further generation of secondary electrophilic lipid products that are absorbed into the circulation at concentrations sufficient to exert systemic effects before being catabolized or excreted.

  15. Syntheses, structure and properties of vinylogous EDO-TTFs

    NASA Astrophysics Data System (ADS)

    Shirahata, T.; Morikawa, T.; Miyamoto, H.; Nakano, Y.; Yamochi, H.; Misaki, Y.

    2010-06-01

    We synthesized vinylogous 4,5-ethylenedioxy-tetrathiafulvalenes (EDO-TTFs), 4,5-ethylenedioxy-2,2‧-ethanediylidenebis(1,3-dithiole) (EDO-EBDT), 4,5-dimethyl-4‧,5‧-ethylenedioxy-2,2‧-ethanediylidenebis(1,3-dithiole) (DMEDO-EBDT), 4,5-bis(thiomethyl)-4‧,5‧-ethylenedioxy-2,2‧-ethanediylidenebis(1,3-dithiole) (BTMEDO-EBDT), and 4,5-bis(methoxycarbonyl)-4‧,5‧-ethylenedioxy-2,2‧-ethanediylidenebis(1,3-dithiole) (BMCEDO-EBDT). The cyclic voltammograms of the vinylogous EDO-TTFs show two pairs of single-electron redox waves. The first oxidation potentials (E1) of vinylogous EDO-TTFs are lower than those of the related TTFs, indicating that the electron donating abilities of new donors are stronger than those of the corresponding TTFs. The smaller E2-E1 values of new donors compared with those of the related TTFs suggest a decrease in the on-site Coulombic repulsion in the dication state. X-ray crystal structure analysis of BMCEDO-EBDT reveals that the inter-molecular C-H⋯O type hydrogen bond is constructed between the hydrogen atom and the oxygen atom of the ethylenedioxy group. Single crystalline TCNQ complexes of DMEDO-EBDT and BTMEDO-EBDT have been prepared and their conducting properties and crystal structure have been investigated. The TCNQ complexes of DMEDO-EBDT and BTMEDO-EBDT show low electrical conductivities (σrt<10-6 S cm-1 for (DMEDO-EBDT)(TCNQ)(chlorobenzene) and σrt=2.2×10-3 S cm-1 for (BTMEDO-EBDT)(TCNQ)) due to DDAA-type alternate stacking.

  16. Nucleophilic Aromatic Substitution.

    ERIC Educational Resources Information Center

    Avila, Walter B.; And Others

    1990-01-01

    Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)

  17. Facile synthesis of beta-tribromomethyl and dibromomethylenated nitroalkanes via conjugate addition of bromoform to nitroalkenes.

    PubMed

    Sahu, Bichismita; Gururaja, Guddeangadi N; Mobin, Shaikh M; Namboothiri, Irishi N N

    2009-03-20

    Addition of bromoform to conjugated nitroalkenes in the presence of Mg provided beta-tribromomethyl nitroalkanes in good to excellent yields and diastereoselectivity. These novel Michael adducts, formed under radical conditions, underwent elimination of HBr in the same pot under reflux to afford beta-dibromomethylenated nitroalkanes in good yield. Alternatively, a one-pot high yielding synthesis of the dibromides was possible under anionic conditions via LDA mediated addition of bromoform to nitroalkenes.

  18. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    PubMed Central

    Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.

    2017-01-01

    Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties. PMID:28317893

  19. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    NASA Astrophysics Data System (ADS)

    Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.

    2017-03-01

    Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties.

  20. Direct Catalytic Asymmetric Doubly Vinylogous Michael Addition of α,β-Unsaturated γ-Butyrolactams to Dienones.

    PubMed

    Gu, Xiaodong; Guo, Tingting; Dai, Yuanyuan; Franchino, Allegra; Fei, Jie; Zou, Chuncheng; Dixon, Darren J; Ye, Jinxing

    2015-08-24

    An asymmetric doubly vinylogous Michael addition (DVMA) of α,β-unsaturated γ-butyrolactams to sterically congested β-substituted cyclic dienones with high site-, diastereo-, and enantioselectivity has been achieved. An unprecedented DVMA/vinylogous Michael addition/isomerization cascade reaction affords chiral fused tricyclic γ-lactams with four newly formed stereocenters.

  1. Direct Catalytic Asymmetric Doubly Vinylogous Michael Addition of α,β-Unsaturated γ-Butyrolactams to Dienones**

    PubMed Central

    Gu, Xiaodong; Guo, Tingting; Dai, Yuanyuan; Franchino, Allegra; Fei, Jie; Zou, Chuncheng; Dixon, Darren J; Ye, Jinxing

    2015-01-01

    An asymmetric doubly vinylogous Michael addition (DVMA) of α,β-unsaturated γ-butyrolactams to sterically congested β-substituted cyclic dienones with high site-, diastereo-, and enantioselectivity has been achieved. An unprecedented DVMA/vinylogous Michael addition/isomerization cascade reaction affords chiral fused tricyclic γ-lactams with four newly formed stereocenters. PMID:26184079

  2. Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine.

    PubMed

    Salvatore, Sonia R; Vitturi, Dario A; Baker, Paul R S; Bonacci, Gustavo; Koenitzer, Jeffrey R; Woodcock, Steven R; Freeman, Bruce A; Schopfer, Francisco J

    2013-07-01

    The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into mediators that regulate signal transduction. The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary to nitrite disproportionation under the acidic conditions of digestion. Broad anti-inflammatory and tissue-protective responses are mediated by nitro-fatty acids. It is now shown that electrophilic fatty acid nitroalkenes are present in the urine of healthy human volunteers (9.9 ± 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl β-oxidation metabolites. High resolution mass determinations and coelution with isotopically-labeled metabolites support renal excretion of cysteine-nitroalkene conjugates. These products of Michael addition are in equilibrium with the free nitroalkene pool in urine and are displaced by thiol reaction with mercury chloride. This reaction increases the level of free nitroalkene fraction >10-fold and displays a K(D) of 7.5 × 10(-6) M. In aggregate, the data indicates that formation of Michael adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can constitute a sensitive noninvasive index of metabolic and inflammatory status.

  3. 1,4-Addition of TMSCCl₃ to nitroalkenes: efficient reaction conditions and mechanistic understanding.

    PubMed

    Wu, Na; Wahl, Benoit; Woodward, Simon; Lewis, William

    2014-06-16

    Improved synthetic conditions allow preparation of TMSCCl3 in good yield (70%) and excellent purity. Compounds of the type NBu4X [X=Ph3SiF2 (TBAT), F (tetrabutylammonium fluoride, TBAF), OAc, Cl and Br] act as catalytic promoters for 1,4-additions to a range of cyclic and acyclic nitroalkenes, in THF at 0-25 °C, typically in moderate to excellent yields (37-95%). TBAT is the most effective promoter and bromide the least effective. Multinuclear NMR studies ((1)H, (19)F, (13)C and (29)Si) under anaerobic conditions indicate that addition of TMSCCl3 to TBAT (both 0.13 M) at -20 °C, in the absence of nitroalkene, leads immediately to mixtures of Me3SiF, Ph3SiF and NBu4CCl3. The latter is stable to at least 0 °C and does not add nitroalkene from -20 to 0 °C, even after extended periods. Nitroalkene, in the presence of TMSCCl3 (both 0.13 M at -20 °C), when treated with TBAT, leads to immediate formation of the 1,4-addition product, suggesting the reaction proceeds via a transient [Me3Si(alkene)CCl3] species, in which (alkene) indicates an Si⋅⋅⋅O coordinated nitroalkene. The anaerobic catalytic chain is propagated through the kinetic nitronate anion resulting from 1,4 CCl3(-) addition to the nitroalkene. This is demonstrated by the fact that isolated NBu4[CH2=NO2] is an efficient promoter. Use of H2C=CH(CH2)2CH=CHNO2 in air affords radical-derived bicyclic products arising from aerobic oxidation.

  4. 1,4-Addition of TMSCCl3 to Nitroalkenes: Efficient Reaction Conditions and Mechanistic Understanding

    PubMed Central

    Wu, Na; Wahl, Benoit; Woodward, Simon; Lewis, William

    2014-01-01

    Improved synthetic conditions allow preparation of TMSCCl3 in good yield (70 %) and excellent purity. Compounds of the type NBu4X [X=Ph3SiF2 (TBAT), F (tetrabutylammonium fluoride, TBAF), OAc, Cl and Br] act as catalytic promoters for 1,4-additions to a range of cyclic and acyclic nitroalkenes, in THF at 0–25 °C, typically in moderate to excellent yields (37–95 %). TBAT is the most effective promoter and bromide the least effective. Multinuclear NMR studies (1H, 19F, 13C and 29Si) under anaerobic conditions indicate that addition of TMSCCl3 to TBAT (both 0.13 M) at −20 °C, in the absence of nitroalkene, leads immediately to mixtures of Me3SiF, Ph3SiF and NBu4CCl3. The latter is stable to at least 0 °C and does not add nitroalkene from −20 to 0 °C, even after extended periods. Nitroalkene, in the presence of TMSCCl3 (both 0.13 M at −20 °C), when treated with TBAT, leads to immediate formation of the 1,4-addition product, suggesting the reaction proceeds via a transient [Me3Si(alkene)CCl3] species, in which (alkene) indicates an Si⋅⋅⋅O coordinated nitroalkene. The anaerobic catalytic chain is propagated through the kinetic nitronate anion resulting from 1,4 CCl3− addition to the nitroalkene. This is demonstrated by the fact that isolated NBu4[CH2−NO2] is an efficient promoter. Use of H2C−CH(CH2)2CH−CHNO2 in air affords radical-derived bicyclic products arising from aerobic oxidation. PMID:24849249

  5. Asymmetric Friedel-Crafts alkylation of methoxyfuran with nitroalkenes catalyzed by diphenylamine-tethered bis(oxazoline)-Zn(II) complexes.

    PubMed

    Liu, Han; Xu, Jiaxi; Du, Da-Ming

    2007-11-08

    The first catalytic asymmetric Friedel-Crafts reaction of 2-methoxyfuran with nitroalkenes was developed under the catalysis of diphenylamine-tethered bis(oxazoline)-Zn(OTf)2 complexes. The reaction conditions and ligands were optimized, and the scope of the reaction was tested by varying the nitroalkenes. For most of aromatic and heteroaromatic nitroalkenes, good yields and high enantioselectivities (86-96% ee) were obtained. The methoxyfuran group in the product can be transformed to carboxylic acid via oxidative fragmentation with full retention of the configuration.

  6. Structure-activity analysis of vinylogous urea inhibitors of human immunodeficiency virus-encoded ribonuclease H.

    PubMed

    Chung, Suhman; Wendeler, Michaela; Rausch, Jason W; Beilhartz, Greg; Gotte, Matthias; O'Keefe, Barry R; Bermingham, Alun; Beutler, John A; Liu, Shixin; Zhuang, Xiaowei; Le Grice, Stuart F J

    2010-09-01

    Vinylogous ureas 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide and N-[3-(aminocarbonyl)-4,5-dimethyl-2-thienyl]-2-furancarboxamide (compounds 1 and 2, respectively) were recently identified to be modestly potent inhibitors of the RNase H activity of HIV-1 and HIV-2 reverse transcriptase (RT). Both compounds shared a 3-CONH(2)-substituted thiophene ring but were otherwise structurally unrelated, which prevented a precise definition of the pharmacophore. We have therefore examined a larger series of vinylogous ureas carrying amide, amine, and cycloalkane modifications of the thiophene ring of compound 1. While cycloheptane- and cyclohexane-substituted derivatives retained potency, cyclopentane and cyclooctane substitutions eliminated activity. In the presence of a cycloheptane ring, modifying the 2-NH(2) or 3-CONH(2) functions decreased the potency. With respect to compound 2, vinylogous ureas whose dimethylthiophene ring contained modifications of the 2-NH(2) and 3-CONH(2) functions were investigated. 2-NH(2)-modified analogs displayed potency equivalent to or enhanced over that of compound 2, the most active of which, compound 16, reflected intramolecular cyclization of the 2-NH(2) and 3-CONH(2) groups. Molecular modeling was used to define an inhibitor binding site in the p51 thumb subdomain, suggesting that an interaction with the catalytically conserved His539 of the p66 RNase H domain could underlie inhibition of RNase H activity. Collectively, our data indicate that multiple functional groups of vinylogous ureas contribute to their potencies as RNase H inhibitors. Finally, single-molecule spectroscopy indicates that vinylogous ureas have the property of altering the reverse transcriptase orientation on a model RNA-DNA hybrid mimicking initiation plus-strand DNA synthesis.

  7. Chiral squaramide-catalyzed highly diastereo- and enantioselective direct Michael addition of nitroalkanes to nitroalkenes.

    PubMed

    Yang, Wen; Du, Da-Ming

    2011-12-21

    An efficient highly diastereo- and enantioselective direct Michael addition of nitroalkanes to nitroalkenes catalyzed by chiral squaramide catalyst has been developed. This organocatalytic reaction with a low catalyst loading (2 mol%) proceeded well to afford synthetically useful 1,3-dinitro compounds in high yields with high diastereoselectivities (up to 95 : 5 dr) and excellent enantioselectivities (up to 97% ee).

  8. A versatile and efficient approach for the synthesis of chiral 1,3-nitroamines and 1,3-diamines via conjugate addition to new (S,E)-γ-aminated nitroalkenes derived from L-α-amino acids

    PubMed Central

    Moura, André Luiz da Silva; Vieira, Daniel Pais Pires; de Carvalho, Leandro Lara; Torres, Eliz Regina Bueno; Costa, Jeronimo da Silva

    2013-01-01

    Summary New chiral (S,E)-γ-N,N-dibenzylated nitroalkenes 2a–c were synthesized from natural L-(α)-amino acids in five steps with overall yields of 68–88%. The conjugate addition of hydride, methoxide, nitronate and azide nucleophiles to 2a–c led to the corresponding chiral 1,3-nitroamines in 74–90% yield. The conjugate addition of cyanide anion to 2a,b was followed by HNO2 elimination affording chiral aminated acrylonitriles (73–98%). On the other hand, the azide anion reacted with 2a, in acetonitrile, via a [3 + 2]-cycloaddition in which HNO2 was lost, providing the corresponding 1,2,3-triazole derivative. Direct reduction of 1,3-nitroamine derivatives 9a,b produced the corresponding 1,3-diamines in good yields. PMID:23766797

  9. Nucleophilic Substitution by Benzodithioate Anions.

    ERIC Educational Resources Information Center

    Bonnans-Plaisance, Chantal; Gressier, Jean-Claude

    1988-01-01

    Describes a two-session experiment designed to provide a good illustration of, and to improve student knowledge of, the Grignard reaction and nucleophilic substitution. Discusses the procedure, experimental considerations, and conclusion of this experiment. (CW)

  10. Nucleophilic arylation with tetraarylphosphonium salts

    PubMed Central

    Deng, Zuyong; Lin, Jin-Hong; Xiao, Ji-Chang

    2016-01-01

    Organic phosphonium salts have served as important intermediates in synthetic chemistry. But the use of a substituent on the positive phosphorus as a nucleophile to construct C–C bond remains a significant challenge. Here we report an efficient transition-metal-free protocol for the direct nucleophilic arylation of carbonyls and imines with tetraarylphosphonium salts in the presence of caesium carbonate. The aryl nucleophile generated from phosphonium salt shows low basicity and good nucleophilicity, as evidenced by the successful conversion of enolizable aldehydes and ketones. The reaction is not particularly sensitive to water, shows wide substrate scope, and is compatible with a variety of functional groups including cyano and ester groups. Compared with the arylmetallic reagents that are usually moisture sensitive, the phosphonium salts are shelf-stable and can be easily handled. PMID:26822205

  11. Rhodium-Catalyzed Enantioselective Vinylogous Addition of Enol Ethers to Vinyldiazoacetates

    PubMed Central

    Smith, Austin G.; Davies, Huw M. L.

    2012-01-01

    A highly asymmetric vinylogous addition of acyclic silyl enol ethers to siloxyvinyldiazoacetate is described. The reaction features a diastereoselective 1,4-siloxy group migration event. Products are obtained in up to 97% ee. When more sterically crowded silyl enol ethers are employed, an enantioselective formal [3 + 2] cycloaddition becomes the dominant reaction pathway. Control experiments reveal the (Z)-olefin geometry to be critical for high levels of enantiocontrol. PMID:23098215

  12. Highly enantioselective direct vinylogous Michael addition of γ-butenolide to enals.

    PubMed

    Quintard, Adrien; Lefranc, Alice; Alexakis, Alexandre

    2011-03-18

    An unprecedented and simple direct vinylogous addition of deconjugated butenolide to enals has been developed in excellent stereoselectivities (>95% ee), with Aminal-PYrrolidine (APY) catalyst. This methodology allows for the efficient preparation of complex γ-butenolide from readily available renewable resources. Furthermore, preliminary mechanistic investigations have allowed for the better understanding of the origin of both stereoselectivities and of the observed high reactivities.

  13. A General Catalytic Enantioselective Transfer Hydrogenation Reaction of β,β-Disubstituted Nitroalkenes Promoted by a Simple Organocatalyst.

    PubMed

    Bernardi, Luca; Fochi, Mariafrancesca

    2016-07-30

    Given its synthetic relevance, the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes has received a great deal of attention. Several bio-, metal-, and organo-catalytic methods have been developed, which however are usually applicable to single classes of nitroalkene substrates. In this paper, we present an account of our previous work on this transformation, which implemented with new disclosures and mechanistic insights results in a very general protocol for nitroalkene reductions. The proposed methodology is characterized by (i) a remarkably broad scope encompassing various nitroalkene classes; (ii) Hantzsch esters as convenient (on a preparative scale) hydrogen surrogates; (iii) a simple and commercially available thiourea as catalyst; (iv) user-friendly procedures. Overall, the proposed protocol gives a practical dimension to the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes, offering a useful and general platform for the preparation of nitroalkanes bearing a stereogenic center at the β-position in a highly enantioenriched form. A transition state model derived from control kinetic experiments combined with literature data is proposed and discussed. This model accounts and justifies the observed experimental results.

  14. N-Heterocyclic Carbene-Catalyzed Diastereoselective Vinylogous Michael Addition Reaction of γ-Substituted Deconjugated Butenolides.

    PubMed

    Guo, Hao; Xing, Fen; Du, Guang-Fen; Huang, Kuo-Wei; Dai, Bin; He, Lin

    2015-12-18

    An efficient N-heterocyclic carbene (NHC)-catalyzed vinylogous Michael addition of deconjugated butenolides was developed. In the presence of 5 mol % of the NHC catalyst, both γ-alkyl- and aryl-substituted deconjugated butenolides undergo vinylogous Michael addition with various α, β-unsaturated ketones, esters, or nitriles to afford γ,γ-disubstituted butenolides containing adjacent quaternary and tertiary carbon centers in good to excellent yields with excellent diastereoselectivities. In this process, the free carbene is assumed to act as a strong Brønsted base to promote the conjugate addition.

  15. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G.

    1994-01-01

    Soluble polybenzimidazoles (PBI's) synthesized by nucleophilic displacement reaction of di(hydroxyphenyl)-benzimidazole monomers with activated aromatic difluoride compounds in presence of anhydrous potassium carbonate. These polymers exhibit good thermal, thermo-oxidative, and chemical stability, and high mechanical properties. Using benzimidazole monomers, more economical, and new PBI's processed more easily than commercial PBI, without loss of desirable physical properties.

  16. Chiral phosphines in nucleophilic organocatalysis

    PubMed Central

    Xiao, Yumei; Sun, Zhanhu

    2014-01-01

    Summary This review discusses the tertiary phosphines possessing various chiral skeletons that have been used in asymmetric nucleophilic organocatalytic reactions, including annulations of allenes, alkynes, and Morita–Baylis–Hillman (MBH) acetates, carbonates, and ketenes with activated alkenes and imines, allylic substitutions of MBH acetates and carbonates, Michael additions, γ-umpolung additions, and acylations of alcohols. PMID:25246969

  17. Asymmetric synthesis of vinylogous β-amino acids and their incorporation into mixed backbone oligomers.

    PubMed

    Wu, Hao; An, Hongchan; Mo, Shuting Cynthia; Kodadek, Thomas

    2017-03-27

    Chiral vinylogous β-amino acids (VBAA) were synthesized using enantioselective Mannich reactions of aldehydes with in situ generated N-carbamoyl imines followed by a Horner-Wadsworth-Emmons reaction. The efficiency with which these units could be incorporated into oligomers with different moieties on the C- and N-terminal sides was established, as was the feasibility of sequencing oligomers containing VBAAs by tandem mass spectrometry. The data show that VBAAs will be useful building blocks for the construction of combinatorial libraries of peptidomimetic compounds.

  18. Nucleophilic fluorination of aromatic compounds

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R

    2014-03-18

    Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.

  19. Polybenzimidazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)

    1994-01-01

    Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.

  20. Polyphenylquinoxalines via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)

    1990-01-01

    Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents using alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.

  1. Polyphenylquinoxalines via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)

    1991-01-01

    Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents during alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.

  2. An interrupted vinylogous iso-Nazarov reaction: cycloisomerization of conjugated trienones to cyclopenta[b]furan derivatives.

    PubMed

    Riveira, Martín J; Mischne, Mirta P

    2014-09-05

    Iron(III) chloride-catalyzed cyclopentannulation of π-conjugated 1,3-dicarbonyl compounds is described. An interrupted vinylogous iso-Nazarov reaction of trienones was established in which cyclopenta[b]furan derivatives are obtained as single diastereomers.

  3. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.

  4. Pyrrolidinyl-sulfamide derivatives as a new class of bifunctional organocatalysts for direct asymmetric Michael addition of cyclohexanone to nitroalkenes.

    PubMed

    Chen, Jia-Rong; Fu, Liang; Zou, You-Quan; Chang, Ning-Jie; Rong, Jian; Xiao, Wen-Jing

    2011-07-21

    A series of chiral pyrrolidinyl-sulfamide derivatives have been identified as efficient bifunctional organocatalysts for the direct Michael addition of cyclohexanone to a wide range of nitroalkenes. The desired Michael adducts were obtained in high chemical yields and excellent stereoselectivities (up to 99/1 dr and 95% ee).

  5. Development and Application of α-Heteroatom Ketones in Asymmetric Michael Reaction with β-trans-Nitroalkenes.

    PubMed

    Yang, Dongxu; Li, Dan; Wang, Linqing; Zhao, Depeng; Wang, Rui

    2015-05-01

    The successful design and application of a new type of N-phenyl-imidazole-modified α-heteroatom ketones in asymmetric anti-selective Michael reactions with β-trans-nitroalkenes is reported. High yields and enantioselectivities could be obtained, and the corresponding conjugate adducts could be further transformed into related chiral esters and cyclopropane derivatives with excellent enantioselectivities.

  6. Polyphenylquinoxalines via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.; Connell, John W.

    1988-01-01

    Polyphenylquinoxalines are produced by an aromatic nucleophilic displacement reaction involving an activated aromatic dihalide with an appropriate quinoxaline monomer. Polyphenylquinoxalines are high temperature thermoplastics used as adhesives, coatings, films and composite matrices. The novelty of this invention is threefold: (1) some of the quinoxaline monomers are new compositions of matter; (2) the phenylquinoxaline polymers which are the end products of the invention are new compositions of matter; and (3) the method of forming the polymers is novel, replacing a more costly prior art process, which is also limited in the kinds of products prepared therefrom.

  7. Detection of Electrophilic and Nucleophilic Chemical Agents

    SciTech Connect

    McElhanon, James R.; Shepodd, Timothy J.

    2008-11-11

    A "real time" method for detecting electrophilic and nucleophilic species generally by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species.

  8. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1991-01-01

    Polyimidazoles (Pl) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethylacetamide, sulfolane, N-methylpyrroldinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperature under nitrogen. The di(hydroxyphenyl)imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl)imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxyphenyl)imidazole monomer. This synthetic route has provided high molecular weight Pl of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  9. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1992-01-01

    Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  10. Polybenzimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1995-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl) benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl) benzimidazoles are synthesizedby reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  11. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  12. Highly enantioselective direct Michael addition of nitroalkanes to nitroalkenes catalyzed by amine-thiourea bearing multiple hydrogen-bonding donors.

    PubMed

    Dong, Xiu-Qin; Teng, Huai-Long; Wang, Chun-Jiang

    2009-03-19

    A highly diastereoselective and enantioselective Michael addition of nitroalkanes to nitroalkenes has been achieved by chiral bifunctional amine-thiourea catalyst bearing multiple hydrogen-bonding donors. This catalytic system performs well over a broad scope of substrates, furnishing various 1,3-dinitro compounds in high diastereoselectivity (up to 98:2) and excellent enantioselectivity (up to 99% ee) under mild conditions. Multiple hydrogen bonding donors play a significant role in accelerating reactions, improving diastereoselectivities and enantioselectivities.

  13. Ni(II)-Bis[(R,R)-N,N'-dibenzylcyclohexane-1,2-diamine]Br2 catalyzed enantioselective Michael additions of 1,3-dicarbonyl compounds to conjugated nitroalkenes.

    PubMed

    Evans, David A; Seidel, Daniel

    2005-07-20

    A highly enantioselective Michael addition of 1,3-dicarbonyl compounds to nitroalkenes has been developed that employs a newly developed Ni(II)-(bis)diamine based catalyst. The reaction scope includes substituted and unsubstituted malonates, beta-ketoesters, and nitroalkenes bearing aromatic and aliphatic residues. Ease of synthesis of this complex is noteworthy.

  14. Predicting regioselectivity in nucleophilic aromatic substitution.

    PubMed

    Liljenberg, Magnus; Brinck, Tore; Herschend, Björn; Rein, Tobias; Tomasi, Simone; Svensson, Mats

    2012-04-06

    We have investigated practical and computationally efficient methods for the quantitative prediction of regioisomer distribution in kinetically controlled nucleophilic aromatic substitution reactions. One of the methods is based on calculating the relative stabilities of the isomeric σ-complex intermediates using DFT. We show that predictions from this method can be used quantitatively both for anionic nucleophiles with F(-) as leaving group, as well as for neutral nucleophiles with HF as leaving group. The σ-complex approach failed when the leaving group was Cl/HCl or Br/HBr, both for anionic and neutral nucleophiles, because of difficulties in finding relevant σ-complex structures. An approach where we assumed a concerted substitution step and used such transition state structures gave quantitatively useful results. Our results are consistent with other theoretical works, where a stable σ-complex has been identified in some cases, whereas others have been indicated to proceed via a concerted substitution step.

  15. Olives and Olive Oil Are Sources of Electrophilic Fatty Acid Nitroalkenes

    PubMed Central

    Schopfer, Francisco J.; Salvatore, Sonia R.; Sánchez-Calvo, Beatriz; Vitturi, Dario; Valderrama, Raquel; Barroso, Juan B.; Radi, Rafael; Freeman, Bruce A.; Rubbo, Homero

    2014-01-01

    Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO) and nitrite (NO2−)-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine) in fresh olives, especially in the peel. Further nitration of EVOO by NO2− under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA) and nitro-oleic acid (NO2-OA). The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet. PMID:24454759

  16. Detection of electrophilic and nucleophilic chemical agents

    DOEpatents

    McElhanon, James R.; Shepodd, Timothy J.

    2014-08-12

    A "real time" method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.

  17. Arylsulfonate-Based Nucleophile Assisting Leaving Groups

    PubMed Central

    Lepore, Salvatore D.; Bhunia, Anjan K.; Cohn, Pamela

    2013-01-01

    The synthesis and unique reactivity of a series of arylsulfonate-based nucleophile assisting leaving groups (NALG) containing oligomeric ether units (including crown ethers) attached to the arylsulfonyl ring in the ortho orientation are described. The reactions of a variety of these ether-containing alkyl sulfonates with metal halides proceeded at substantially greater rates than electronically similar sulfonates. These ether-containing leaving groups also displayed marked selectivity for lithium halides relative to the corresponding sodium and potassium salts in nucleophilic displacement reactions. PMID:16277337

  18. Synthesis of enantioenriched azo compounds: organocatalytic Michael addition of formaldehyde N-tert-butyl hydrazone to nitroalkenes.

    PubMed

    Monge, David; Daza, Silvia; Bernal, Pablo; Fernández, Rosario; Lassaletta, José M

    2013-01-14

    The unprecedented diaza-ene reaction of formaldehyde N-tert-butyl hydrazone with nitroalkenes can be efficiently catalyzed by an axially chiral bis-thiourea to afford the corresponding diazenes in good to excellent yields (60-96%) and moderate enantioselectivities, up to 84 : 16 er; additional transformation of diazenes into their tautomeric hydrazones proved to be operationally simple and high-yielding, affording bifunctional compounds which represent useful intermediates for the synthesis of enantioenriched β-nitro-nitriles and derivatives thereof.

  19. Diastereo- and enantioselective direct vinylogous Michael addition of γ-substituted butenolides to 2-enoylpyridines catalyzed by chiral bifunctional amine-squaramides.

    PubMed

    Wang, Zhen-Hua; Wu, Zhi-Jun; Huang, Xue-Qun; Yue, Deng-Feng; You, Yong; Xu, Xiao-Ying; Zhang, Xiao-Mei; Yuan, Wei-Cheng

    2015-11-11

    The diastereo- and enantioselective direct vinylogous Michael addition reaction of γ-substituted butenolides to 2-enoylpyridines has been achieved. A range of γ,γ-disubstituted butenolide derivatives, bearing two consecutive tri- and tetrasubstituted stereogenic centers, were readily obtained in good yields with excellent stereoselectivities (up to >99 : 1 dr and >99% ee).

  20. Asymmetric Michael addition of nitroalkanes to nitroalkenes catalyzed by C2-symmetric tridentate bis(oxazoline) and bis(thiazoline) zinc complexes.

    PubMed

    Lu, Shao-Feng; Du, Da-Ming; Xu, Jiaxi; Zhang, Shi-Wei

    2006-06-14

    The first asymmetric synthesis of 1,3-dinitro compounds through Michael addition of nitroalkanes to nitroalkenes catalyzed by C2-symmetric chiral tridentate bis(oxazoline) and bis(thiazoline) zinc complexes was achieved with high enantioselectivities (up to 95% ee).

  1. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    ERIC Educational Resources Information Center

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  2. Transition metal catalysis and nucleophilic fluorination.

    PubMed

    Hollingworth, Charlotte; Gouverneur, Véronique

    2012-03-21

    Transition metal catalyzed transformations using fluorinating reagents have been developed extensively for the preparation of synthetically valuable fluorinated targets. This is a topic of critical importance to facilitate laboratory and industrial chemical synthesis of fluorine containing pharmaceuticals and agrochemicals. Translation to (18)F-radiochemistry is also emerging as a vibrant research field because functional imaging based on Positron Emission Tomography (PET) is increasingly used for both diagnosis and pharmaceutical development. This review summarizes how fluoride sources have been used for the catalytic nucleophilic fluorination of various substrates inclusive of aryl triflates, alkynes, allylic halides, allylic esters, allylic trichloroacetimidates, benzylic halides, tertiary alkyl halides and epoxides. Until recently, progress in this field of research has been slow in part because of the challenges associated with the dual reactivity profile of fluoride (nucleophile or base). Despite these difficulties, some remarkable breakthroughs have emerged. This includes the demonstration that Pd(0)/Pd(II)-catalyzed nucleophilic fluorination to access fluoroarenes from aryl triflates is feasible, and the first examples of Tsuji-Trost allylic alkylation with fluoride using either allyl chlorides or allyl precursors bearing O-leaving groups. More recently, allylic fluorides were also made accessible under iridium catalysis. Another reaction, which has been greatly improved based on careful mechanistic work, is the catalytic asymmetric hydrofluorination of meso epoxides. Notably, each individual transition metal catalyzed nucleophilic fluorination reported to date employs a different F-reagent, an observation indicating that this area of research will benefit from a larger pool of nucleophilic fluoride sources. In this context, a striking recent development is the successful design, synthesis and applications of a fluoride-derived electrophilic late stage

  3. Enantioselective organocatalytic direct Michael addition of nitroalkanes to nitroalkenes promoted by a unique bifunctional DMAP-thiourea.

    PubMed

    Rabalakos, Constantinos; Wulff, William D

    2008-10-15

    A new catalyst is designed, synthesized, and evaluated for the asymmetric Michael addition of nitroalkanes to nitroalkenes. The obdurate nature of this reaction has made this a formidable challenge to subdue by asymmetric catalysis. The catalyst design includes a thiourea function to activate the nitroalkene by a double H-bond and a 4-dimethylaminopyridine unit to deprotonate the nitroalkane and to bind the resulting nitronate anion also by a double H-bond. The chiral scaffold for the catalyst is 2,2'-diamino-1,1'-binaphthalene (BINAM), and a bis-conjugate is prepared by the attachment of the thiourea unit and the dimethylaminopyridine moiety (DMAP) via the two amino groups. The resulting catalyst will effect the reaction of nitroalkanes to a variety of nitrostyrenes and gives excellent asymmetric inductions (91-95% ee) over a range of 10 substrates. Remarkably, the asymmetric induction increases with decreasing catalyst loading with the optimal compromise between rate and induction at a loading of 2 mol %.

  4. Study of quinones reactions with wine nucleophiles by cyclic voltammetry.

    PubMed

    Oliveira, Carla M; Barros, António S; Ferreira, António C S; Silva, Artur M S

    2016-11-15

    Quinones are electrophilic species which can react with various nucleophiles, like wine antioxidants, such as sulfur dioxide or ascorbic acid, thiols, amino acids, and numerous polyphenols. These reactions are very important in wine aging because they mediate oxygen reactions during both production and bottle aging phases. In this work, the major challenge was to determine the interaction between ortho-quinones and wine nucleophiles (amino acids, thiols, and the antioxidants SO2 and ascorbic acid), by cyclic voltammetry. Wine-model solutions with gallic acid, caffeic acid, or (+)-catechin and nucleophilic compounds were used. To understand the effect of nucleophilic addition in wine, a white wine with the same added nucleophiles was also analysed. Cyclic voltammograms were taken with glassy carbon electrode or screen-printed carbon electrodes, respectively, for wine-model and white wines solutions, in the absence and in the presence of nucleophiles. A nucleophilic order profile related to the cathodic current intensity decrease was observed.

  5. Zn-catalyzed enantio- and diastereoselective formal [4 + 2] cycloaddition involving two electron-deficient partners: asymmetric synthesis of piperidines from 1-azadienes and nitro-alkenes.

    PubMed

    Chu, John C K; Dalton, Derek M; Rovis, Tomislav

    2015-04-08

    We report a catalytic asymmetric synthesis of piperidines through [4 + 2] cycloaddition of 1-azadienes and nitro-alkenes. The reaction uses earth abundant Zn as catalyst and is highly diastereo- and regioselective. A novel BOPA ligand (F-BOPA) confers high reactivity and enantioselectivity in the process. The presence of ortho substitution on the arenes adjacent to the bis(oxazolines) was found to be particularly impactful, due to limiting the undesired coordination of 1-azadiene to the Lewis acid and thus allowing the reaction to be carried out at lower temperature. A series of secondary kinetic isotope effect studies using a range of ligands implicates a stepwise mechanism for the transformation, involving an initial Michael-type addition of the imine to the nitro-alkene followed by a cyclization event. The stepwise mechanism obviates the electronic requirement inherent to a concerted mechanism, explaining the successful cycloaddition between two electron-deficient partners.

  6. Nucleophilic Substitution Reactions Using Phosphine Nucleophiles: An Introduction to Phosphorus-31 NMR

    ERIC Educational Resources Information Center

    Sibbald, Paul A.

    2015-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is commonly used in modern synthetic chemistry to monitor the conversion of reactants to products. Since instruction in the use of NMR spectroscopy typically does not occur until after the introduction of nucleophilic substitution reactions, organic chemistry students are not able to take advantage of…

  7. Diastereo- and enantioselective conjugate addition of alpha-ketoesters to nitroalkenes catalyzed by a chiral Ni(OAc)(2) complex under mild conditions.

    PubMed

    Nakamura, Ayako; Lectard, Sylvain; Hashizume, Daisuke; Hamashima, Yoshitaka; Sodeoka, Mikiko

    2010-03-31

    A highly efficient, catalytic, diastereo- and enantioselective conjugate addition of alpha-ketoesters to nitroalkenes has been devised. The reaction was applicable to various substrates. Notably, the combination of endogenous and exogenous bases was effective, allowing a small amount of the catalyst (0.1-1 mol % Ni) to promote the reaction efficiently. The synthetic utility of this reaction was demonstrated in the synthesis of substituted pyrrolidine derivatives, whose stereochemistry is closely related to biologically important natural products such as kainic acid.

  8. Activation of peroxisome proliferator-activated receptor γ (PPARγ) by nitroalkene fatty acids: importance of nitration position and degree of unsaturation

    PubMed Central

    Gorczynski, Michael J.; Smitherman, Pamela K.; Akiyama, Taro E.; Wood, Harold B.; Berger, Joel P.; King, S. Bruce; Morrow, Charles S.

    2009-01-01

    Nitroalkene fatty acids are potent endogenous ligand activators of PPARγ-dependent transcription. Previous studies with the naturally occurring regioisomers of nitrolinoleic acid revealed that the isomers are not equivalent with respect to PPARγ activation. To gain further insight into the structure-activity relationships between nitroalkenes and PPARγ, we examined additional naturally occurring nitroalkenes derived from oleic acid, 9-nitrooleic acid (E-9-NO2-18:1 [1]) and 10-nitrooleic acid (E-10-NO2-18:1 [2]), and several synthetic nitrated enoic fatty acids of variable carbon chain length, double bonds, and nitration site. At submicromolar concentrations, E-12-NO2 derivatives were considerably more potent than isomers nitrated at carbons 5, 6, 9, 10 or 13; and, chain length (16 versus 18) or number of double bonds (one versus two) was of little consequence for PPARγ activation. Interestingly, at higher concentrations (> 2 μM) the nitrated enoic fatty acids (E-9-NO2-18:1 [1], E-9-NO2-16:1 [3], E-10-NO2-18:1 [2], and E-12-NO2-18:1 [7]) deviated significantly from the saturable pattern of PPARγ activation observed for nitrated 1,4-dienoic fatty acids (E-9-NO2-18:2, E-10-NO2-18:2, E-12-NO2-18:2, and E-13-NO2-18:2). PMID:19719236

  9. A Safer, Discovery-Based Nucleophilic Substitution Experiment

    ERIC Educational Resources Information Center

    Horowitz, Gail

    2009-01-01

    A discovery-based nucleophilic substitution experiment is described in which students compare the reactivity of chloride and iodide ions in an S[subscript N]2 reaction. This experiment improves upon the well-known "Competing Nucleophiles" experiment in that it does not involve the generation of hydrogen halide gas. The experiment also introduces…

  10. Synthesis, electronic structure and spectral fluorescent properties of vinylogous merocyanines derived from 1,3-dialkyl-benzimidazole and malononitrile

    NASA Astrophysics Data System (ADS)

    Kulinich, Andrii V.; Mikitenko, Elena K.; Ishchenko, Alexander A.

    2017-01-01

    A vinylogous series of merocyanines were synthesized with 1,3-dibutyl-benzimidazole and malononitrile residues as the donor and acceptor terminal groups. These dyes do not comprise carbonyl groups, which are prone to the strong specific solvation by polar solvents up to hydrogen bond formation, and nevertheless they possess distinct reversed solvatochromism, i.e. their molecules have very high dipolarity. At that, they are soluble in a wide range of solvents from n-hexane to ethanol and do not aggregate readily. They were studied thoroughly by UV/Vis, fluorescence, IR, and NMR spectroscopy methods. Their structure and spectral properties in the ground and excited fluorescent states were modelled at the DFT level both in vacuum and in solvents of various polarities by using the PCM solvent field simulation. The calculations were performed using several hybrid functionals (B3LYP, CAM-B3LYP, and wB97XD) and the split-valence 6-31G (d,p) basis set.

  11. Nucleophilic Aromatic Substitution Between Halogenated Benzene Dopants and Nucleophiles in Atmospheric Pressure Photoionization.

    PubMed

    Kauppila, Tiina J; Haack, Alexander; Kroll, Kai; Kersten, Hendrik; Benter, Thorsten

    2016-03-01

    In a preceding work with dopant assisted-atmospheric pressure photoionization (DA-APPI), an abundant ion at [M + 77](+) was observed in the spectra of pyridine and quinoline with chlorobenzene dopant. This contribution aims to reveal the identity and route of formation of this species, and to systematically investigate structurally related analytes and dopants. Compounds containing N-, O-, and S-lone pairs were investigated with APPI in the presence of fluoro-, chloro-, bromo-, and iodobenzene dopants. Computational calculations on a density functional theory (DFT) level were carried out to study the reaction mechanism for pyridine and the different halobenzenes. The experimental and computational results indicated that the [M + 77](+) ion was formed by nucleophilic aromatic ipso-substitution between the halobenzene radical cation and nucleophilic analytes. The reaction was most efficient for N-heteroaromatic compounds, and it was weakened by sterical effects and enhanced by resonance stabilization. The reaction was most efficient with chloro-, bromo-, and iodobenzenes, whereas with fluorobenzene the reaction was scarcely observed. The calculated Gibbs free energies for the reaction between pyridine and the halobenzenes were shown to increase in the order I < Br < Cl < F. The reaction was found endergonic for fluorobenzene due to the strong C-F bonding, and exergonic for the other halobenzenes. For fluoro- and chlorobenzenes the reaction was shown to proceed through an intermediate state corresponding to [M + dopant](+), which was highly stable for fluorobenzene. For the bulkier bromine and iodine, this intermediate did not exist, but the halogens were shown to detach already during the approach by the nucleophile.

  12. Chiral bis(imidazolidine)pyridine-Cu(OTf)2: catalytic asymmetric endo-selective [3 + 2] cycloaddition of imino esters with nitroalkenes.

    PubMed

    Arai, Takayoshi; Mishiro, Asami; Yokoyama, Naota; Suzuki, Kuniko; Sato, Hiroyasu

    2010-04-21

    The novel C(2)-symmetric bis(imidazolidine)pyridine (PyBidine) ligand was easily synthesized in a single condensation of 2,6-pyridyl aldehyde and optically active (S,S)-diphenylethylenediamine. In the C(2)-symmetric PyBidine-Cu(OTf)(2) complex, imidazolidine rings act as "chiral fences" to shield the first and third quadrants. Use of the PyBidine-Cu(OTf)(2) complex as a catalyst enabled the highly endo-selective reaction of imino esters and nitroalkenes to give the adducts in up to 99% ee.

  13. Nucleophile-Assisted Alkene Activation: Olefins Alone Are Often Incompetent.

    PubMed

    Ashtekar, Kumar Dilip; Vetticatt, Mathew; Yousefi, Roozbeh; Jackson, James E; Borhan, Babak

    2016-07-06

    Emerging work on organocatalytic enantioselective halocyclizations naturally draws on conditions where both new bonds must be formed under delicate control, the reaction regime where the concerted nature of the AdE3 mechanism is of greatest importance. Without assistance, many simple alkene substrates react slowly or not at all with conventional halenium donors under synthetically relevant reaction conditions. As demonstrated earlier by Shilov, Cambie, Williams, Fahey, and others, alkenes can undergo a concerted AdE3-type reaction via nucleophile participation, which sets the configuration of the newly created stereocenters at both ends in one step. Herein, we explore the modulation of alkene reactivity and halocyclization rates by nucleophile proximity and basicity, through detailed analyses of starting material spectroscopy, addition stereopreferences, isotope effects, and nucleophile-alkene interactions, all obtained in a context directly relevant to synthesis reaction conditions. The findings build on the prior work by highlighting the reactivity spectrum of halocyclizations from stepwise to concerted, and suggest strategies for design of new reactions. Alkene reactivity is seen to span the range from the often overgeneralized "sophomore textbook" image of stepwise electrophilic attack on the alkene and subsequent nucleophilic bond formation, to the nucleophile-assisted alkene activation (NAAA) cases where electron donation from the nucleophilic addition partner activates the alkene for electrophilic attack. By highlighting the factors that control reactivity across this range, this study suggests opportunities to explain and control stereo-, regio-, and organocatalytic chemistry in this important class of alkene additions.

  14. Scope and mechanism of enantioselective Michael additions of 1,3-dicarbonyl compounds to nitroalkenes catalyzed by nickel(II)-diamine complexes.

    PubMed

    Evans, David A; Mito, Shizue; Seidel, Daniel

    2007-09-19

    Readily prepared Ni(II)-bis[(R,R)-N,N'-dibenzylcyclohexane-1,2-diamine]Br(2) was shown to catalyze the Michael addition of 1,3-dicarbonyl compounds to nitroalkenes at room temperature in good yields with high enantioselectivities. The two diamine ligands in this system each play a distinct role: one serves as a chiral ligand to provide stereoinduction in the addition step while the other functions as a base for substrate enolization. Ligand modification within the catalyst was also investigated to facilitate the reaction of aliphatic nitroalkenes, 1,3-diketones, and beta-ketoacids. Ni(II)-bis[(R,R)-N,N'-di-p-bromo-benzylcyclohexane-1,2-diamine]Br(2) was found to be an effective catalyst in these instances. Furthermore, monodiamine complex, Ni(II)-[(R,R)-N,N'-dibenzylcyclohexane-1,2-diamine]Br(2), catalyzed the addition reaction in the presence of water. The proposed model for stereochemical induction is shown to be consistent with X-ray structure analysis.

  15. Selective activation/coupling of polyhalogenated nucleophiles in ni/cr-mediated reactions: synthesis of c1-c19 building block of halichondrin bs.

    PubMed

    Yan, Wuming; Li, Zhanjie; Kishi, Yoshito

    2015-05-20

    The C1-C19 building block 46 of halichondrin Bs was synthesized via a selective activation/coupling of β-bromoenone 34 with aldehyde 35 in a Ni/Cr-mediated reaction. The first phase of study was a method development to effect a coupling of a "naked" vinylogous anion with an aldehyde. The study with the coupling of 9 + 10 → 11 revealed: (1) β-bromoenone 9b is a better nucleophile than the corresponding β-iodo- and β-chloroenones 9a,c; (2) (Me)2Phen(OMe)2·NiCl2 13b is a better Ni-catalyst than (Me)2Phen(H)2·NiCl2 13a; and (3) a low Ni-catalyst loading, for example, 0.05-0.1 mol % Ni-catalyst against 10 mol % Cr-catalyst, is crucial for an effective coupling. The second phase of study was a method development to realize a selective activation/coupling of polyhalogenated nucleophiles such as 34. The competition experiment of 10 + 9b over 10 + 31a-c revealed: (1) (Me)2Phen(OMe)2·NiCl2 13b is more effective than (Me)2Phen(H)2·NiCl2 13a for the required selective activation/coupling; (2) a low Ni-catalyst loading, for example, 0.05-0.1 mol % Ni-catalyst against 10 mol % Cr-catalyst, is crucial for discriminating β-bromoenone 9b from the three types of vinyl iodides 31a-c. The third phase of study was an application of the developed method to execute the proposed coupling of 34 + 35 → 36. For this application, a polyether-type Ni-catalyst 37c, readily soluble in the reaction medium, was introduced to achieve the selective activation/coupling with higher efficiency. With use of ion-exchange resin-based device, the coupling product 36 was transformed to the C1-C19 building block 46 of halichondrin Bs without purification/separation of the intermediates.

  16. Highly nucleophilic acetylide, vinyl, and vinylidene complexes. Progress report

    SciTech Connect

    Not Available

    1992-06-15

    The research was divided into the following: studies of nucleophilic and chiral acetylide complex [Cp(CO)(PPh{sub 3})Mn-C{triple_bond}CR]{sup {minus}}; nucleophilic addition of carbene anions to organic ligands on electrophilic complexes; halide-promoted carbonylation of imido ligands; binuclear Fe{sub 2} complexes with bridging organonitrogen ligands; addition and cycloaddition reactions of carbyne complex [Cp(CO){sub 2}Re{triple_bond}CTol]{sup +}; addition and cycloaddition reactions of methylcarbyne complexes [Cp(CO){sub 2}M{triple_bond}CCH{sub 3}]{sup +} and vinylidene complexes Cp(CO){sub 2}M{double_bond}C{double_bond}CH{sub 2} (M=Mn, Re); studies of generation and reactivity of vinylcarbene complexes formed from reaction of manganese carbene anions and aldehydes; and addition of oxo ligands of nucleophilic oxo complexes to organic ligands on electrophilic metal centers.

  17. Analysis of the Nucleophilic Solvation Effects in Isopropyl Chlorothioformate Solvolysis

    PubMed Central

    D’Souza, Malcolm J.; Mahon, Brian P.; Kevill, Dennis N.

    2010-01-01

    Correlation of the solvent effects through application of the extended Grunwald-Winstein equation to the solvolysis of isopropyl chlorothioformate results in a sensitivity value of 0.38 towards changes in solvent nucleophilicity (l) and a sensitivity value of 0.72 towards changes in solvent ionizing power (m). This tangible l value coupled with the negative entropies of activation observed indicates a favorable predisposition towards a modest rear-side nucleophilic solvation of a developing carbocation. Only in 100% ethanol was the bimolecular pathway dominant. These observations are very different from those obtained for the solvolysis of isopropyl chloroformate, where dual reaction channels were proposed, with the addition-elimination reaction favored in the more nucleophilic solvents and a unimolecular fragmentation-ionization mechanism favored in the highly ionizing solvents. PMID:20717524

  18. Nucleophilic substitution reactions of N-chloramines: evidence for a change in mechanism with increasing nucleophile reactivity.

    PubMed

    Calvo, Paula; Crugeiras, Juan; Ríos, Ana; Ríos, Miguel A

    2007-04-27

    Third-order rate constants (kNu)H (M-2 s-1) for the hydronium ion catalyzed reactions of a range of nucleophiles with N-chlorotaurine (1) in water at 25 degrees C and I=0.5 (NaClO4) are reported. The solvent deuterium isotope effects on hydronium ion catalysis of the reaction with 1 of bromide and iodide ion are (kBr)H/(kBr)D=0.30 and (kI)H/(kI)D=0.54, respectively. The inverse nature of these isotope effects and the absence of general acid catalysis are consistent with a stepwise mechanism involving protonation of 1 in a fast preequilibrium step. The appearance of strong catalysis by general acids for the reaction of the more nucleophilic SO(3)2- and HOCH2CH2S- with the chloramine indicates a change to a concerted mechanism, with protonation of the chloramine at nitrogen and chlorine transfer to the nucleophile occurring in a single step. A rough estimate of the lifetime of the protonated chloramine in the presence of the thiolate anion suggests that the concerted mechanism is enforced by the absence of a significant lifetime of the protonated substrate in contact with the nucleophile. Theoretical calculations provide evidence against an electron-transfer mechanism for chlorination of the nucleophiles by protonated 1.

  19. Nucleophilic Tetrafluoroethylation Employing in Situ Formed Organomagnesium Reagents.

    PubMed

    Budinská, Alena; Václavík, Jiří; Matoušek, Václav; Beier, Petr

    2016-11-18

    Tetrafluoroalkyl bromides are metalated with equimolar iPrMgCl·LiCl (Turbo Grignard) to form organomagnesium compounds which are stable at low temperatures and react with various electrophiles (aldehydes, ketones, CO2, cyclic sulfate and sulfamidate, N-sulfonylimines, nitrone, chlorophosphate, nonaflyl azide) to afford novel functionalized tetrafluoroethylene-containing products. Ease of operation, excellent selectivity, high nucleophilicity, and enhanced stability of the reactive species together with a broad substrate scope comprise a highly attractive nucleophilic tetrafluoroethylation protocol affording unique synthetic building blocks.

  20. Nucleophilic aromatic substitution for heteroatoms: an oxidative electrochemical approach.

    PubMed

    Gallardo, Iluminada; Guirado, Gonzalo; Marquet, Jordi

    2002-04-19

    The nucleophilic aromatic substitution for heteroatom through electrochemical oxidation of the intermediate sigma-complexes (Meisenheimer complexes) in simple nitroaromatic compounds is reported for the first time (NASX process). The studies have been carried out with hydride, cyanide, fluoride, methoxy, and ethanethiolate anions and n-butylamine as a nucleophile, at the cyclic voltammetry (CV) and preparative electrolysis level. The cyclic voltammetry experiments allow for detection and characterization of the sigma-complexes and they have led us to a proposal for the mechanism of the oxidation step. Furthermore, the power of the CV technique in the analysis of the reaction mixture throughout the whole chemical and electrochemical process is described.

  1. Co-option of the sphingolipid metabolism for the production of nitroalkene defensive chemicals in termite soldiers.

    PubMed

    Jirošová, Anna; Jančařík, Andrej; Menezes, Riya C; Bazalová, Olga; Dolejšová, Klára; Vogel, Heiko; Jedlička, Pavel; Buček, Aleš; Brabcová, Jana; Majer, Pavel; Hanus, Robert; Svatoš, Aleš

    2017-01-23

    The aliphatic nitroalkene (E)-1-nitropentadec-1-ene (NPD), reported in early seventies in soldiers of the termite genus Prorhinotermes, was the first documented nitro compound produced by insects. Yet, its biosynthetic origin has long remained unknown. Here, we investigated in detail the biosynthesis of NPD in P. simplex soldiers. First, we track the dynamics in major metabolic pathways during soldier ontogeny, with emphasis on likely NPD precursors and intermediates. Second, we propose a hypothesis of NPD formation and verify its individual steps using in vivo incubations of putative precursors and intermediates. Third, we use a de novo assembled RNA-Seq profiles of workers and soldiers to identify putative enzymes underlying NPD formation. And fourth, we describe the caste- and age-specific expression dynamics of candidate initial genes of the proposed biosynthetic pathway. Our observations provide a strong support to the following biosynthetic scenario of NPD formation, representing an analogy of the sphingolipid pathway starting with the condensation of tetradecanoic acid with l-serine and leading to the formation of a C16 sphinganine. The C16 sphinganine is then oxidized at the terminal carbon to give rise to 2-amino-3-hydroxyhexadecanoic acid, further oxidized to 2-amino-3-oxohexadecanoic acid. Subsequent decarboxylation yields 1-aminopentadecan-2-one, which then proceeds through six-electron oxidation of the amino moiety to give rise to 1-nitropentadecan-2-one. Keto group reduction and hydroxyl moiety elimination lead to NPD. The proposed biosynthetic sequence has been constructed from age-related quantitative dynamics of individual intermediates and confirmed by the detection of labeled products downstream of the administered labeled intermediates. Comparative RNA-Seq analyses followed by qRT-PCR validation identified orthologs of serine palmitoyltransferase and 3-ketodihydrosphingosine reductase genes as highly expressed in the NPD production site, i

  2. Pd-catalyzed C-H fluorination with nucleophilic fluoride.

    PubMed

    McMurtrey, Kate B; Racowski, Joy M; Sanford, Melanie S

    2012-08-17

    The palladium-catalyzed C-H fluorination of 8-methylquinoline derivatives with nucleophilic fluoride is reported. This transformation involves the use of AgF as the fluoride source in combination with a hypervalent iodine oxidant. Both the scope and mechanism of the reaction are discussed.

  3. Nucleophilicity-periodic trends and connection to basicity.

    PubMed

    Uggerud, Einar

    2006-01-23

    The potential energy profiles of 18 identity S(N)2 reactions have been estimated by using G2-type quantum-chemical calculations. The reactions are: X- + CH3-X --> X-CH3 + X- and XH + CH3-XH+ --> +HX-CH3 + XH (X = NH2, OH, F, PH2, SH, Cl, AsH2, SeH, Br). Despite the charge difference, the barrier heights and the geometrical requirements upon going from the reactant to the transition structure are surprisingly similar for X- and XH. The barrier heights decrease on going from left to right in the periodic table, and increasing ionization energy (of X- and XH) is correlated with decreasing barrier. The observed trends are explained in terms of substrates with stronger electrostatic character giving rise to lower energetic barriers due to decreased electron repulsion in the transition structure. On the basis of this study, the relationship between the kinetic concept of nucleophilicity and the thermodynamic concept of basicity has been analyzed and clarified. Since the trends in intrinsic nucleophilicity (only defined for identity reactions) and basicity are opposite, overall nucleophilicity (defined for any reaction) will be determined by the relative contribution of the two factors. Only for strongly exothermic reactions will basicity and nucleophilicity be matching.

  4. Concerted nucleophilic aromatic substitution with 19F- and 18F-

    NASA Astrophysics Data System (ADS)

    Neumann, Constanze N.; Hooker, Jacob M.; Ritter, Tobias

    2016-06-01

    Nucleophilic aromatic substitution (SNAr) is widely used by organic chemists to functionalize aromatic molecules, and it is the most commonly used method to generate arenes that contain 18F for use in positron-emission tomography (PET) imaging. A wide range of nucleophiles exhibit SNAr reactivity, and the operational simplicity of the reaction means that the transformation can be conducted reliably and on large scales. During SNAr, attack of a nucleophile at a carbon atom bearing a ‘leaving group’ leads to a negatively charged intermediate called a Meisenheimer complex. Only arenes with electron-withdrawing substituents can sufficiently stabilize the resulting build-up of negative charge during Meisenheimer complex formation, limiting the scope of SNAr reactions: the most common SNAr substrates contain strong π-acceptors in the ortho and/or para position(s). Here we present an unusual concerted nucleophilic aromatic substitution reaction (CSNAr) that is not limited to electron-poor arenes, because it does not proceed via a Meisenheimer intermediate. We show a phenol deoxyfluorination reaction for which CSNAr is favoured over a stepwise displacement. Mechanistic insights enabled us to develop a functional-group-tolerant 18F-deoxyfluorination reaction of phenols, which can be used to synthesize 18F-PET probes. Selective 18F introduction, without the need for the common, but cumbersome, azeotropic drying of 18F, can now be accomplished from phenols as starting materials, and provides access to 18F-labelled compounds not accessible through conventional chemistry.

  5. Nucleophilic substitution reaction for post-functionalization of polyoxometalates

    DOE PAGES

    Yin, Panchao; Li, Qiang; Zhang, Jin; ...

    2015-07-06

    In this study, a hexamolybdate-based organic inorganic hybrid molecule containing a chloralkane fragment is synthesized and its Cl atom can be substituted by iodine and nitrate through nucleophilic substitution reactions in high yields, which provide a post-functionalization protocol to bring in various additional functional groups into polyoxometalate-based hybrid materials under mild conditions.

  6. Dynamic Origin of the Stereoselectivity of a Nucleophilic Substitution Reaction

    PubMed Central

    Bogle, Xavier S.; Singleton, Daniel A.

    2012-01-01

    A nucleophilic substitution on a dichlorovinyl ketone was studied experimentally and computationally. A mixture of products is observed experimentally, but a conventional computational analysis does not account for the formation of the minor stereoisomer. Instead, the product mixture is predicted accurately from a dynamic trajectory study on a bifurcating energy surface. The dynamic origin of the stereoselectivity of the reaction is discussed. PMID:22540965

  7. Concerted nucleophilic aromatic substitution with 19F− and 18F−

    PubMed Central

    Neumann, Constanze N.; Hooker, Jacob M.; Ritter, Tobias

    2016-01-01

    Nucleophilic aromatic substitution (SNAr) is widely used by organic chemists to functionalize aromatic molecules, and it is the most commonly used method to generate arenes that contain a 18F for use in PET imaging.1 A wide range of nucleophiles exhibit SNAr reactivity, and the operational simplicity of the reaction means that the transformation can be conducted reliably and on large scales.2 During SNAr, attack of a nucleophile at a carbon atom bearing a ‘leaving group’ leads to a negatively charged intermediate called a Meisenheimer complex. Only arenes with electron-withdrawing substituents can sufficiently stabilize the resulting build-up of negative charge during Meisenheimer complex formation, limiting the scope of SNAr reactions: the most common SNAr substrates contain strong π-acceptors in the ortho and/or para position(s).3 In this manuscript, we present an unusual concerted nucleophilic aromatic substitution reaction (CSNAr) that is not limited to electron-poor arenes, because it does not proceed via a Meisenheimer intermediate. We show a phenol deoxyfluorination reaction for which CSNAr is favored over a stepwise displacement. Mechanistic insights enabled us to develop a functional group–tolerant 18F-deoxyfluorination reaction of phenols, which can be used to synthesize 18F-PET probes. Selective 18F introduction, without the need for the common, but cumbersome, azeotropic drying of 18F, can now be accomplished from phenols as starting materials, and provides access to 18F-labeled compounds not accessible through conventional chemistry. PMID:27281221

  8. Reactivity of the insecticide fenitrothion toward O and N nucleophiles.

    PubMed

    Rougier, Natalia M; Vico, Raquel V; de Rossi, Rita H; Buján, Elba I

    2010-05-21

    The reactivity of Fenitrothion (1) toward several O- and N-based nucleophiles, including ambident and alpha-nucleophiles, was investigated in basic media at 25 degrees C in water containing 2% 1,4-dioxane. In the reactions with HO(-) and HOO(-) quantitative formation of 3-methyl-4-nitrophenoxide (2) was observed indicating a S(N)2(P) pathway. In the reactions with NH(2)OH, NH(2)O(-), and BuNH(2), demethylfenitrothion (4) was formed along with 2, indicating competition between the S(N)2(P) and S(N)2(C) pathways; no evidence of a S(N)Ar pathway was observed in any case. The observed rate constants were dissected into the values corresponding to the S(N)2(P) and S(N)2(C) pathways. The yield of 4 depends on the nucleophile and on the pH of the reaction, being the main product in the case of BuNH(2). With HOO(-), NH(2)OH, and NH(2)O(-) a significant alpha-effect was observed, confirming the participation of the nucleophile in the rate-limiting step of the reaction.

  9. A general phosphoric acid-catalyzed desymmetrization of meso-aziridines with silylated selenium nucleophiles.

    PubMed

    Senatore, Matilde; Lattanzi, Alessandra; Santoro, Stefano; Santi, Claudio; Della Sala, Giorgio

    2011-09-21

    The first example of meso-aziridine desymmetrization with selenium nucleophiles is reported. The reaction, promoted by VAPOL-hydrogen phosphate using (phenylseleno)trimethylsilane as the nucleophile, proves to be very general and highly enantioselective (84-99% ee).

  10. Diastereodivergent Asymmetric Michael Addition of Cyclic Azomethine Ylides to Nitroalkenes: Direct Approach for the Synthesis of 1,7-Diazaspiro[4.4]nonane Diastereoisomers.

    PubMed

    Li, Chun-Yan; Yang, Wu-Lin; Luo, Xiaoyan; Deng, Wei-Ping

    2015-12-21

    The first highly diastereoselective and enantioselective catalytic asymmetric Michael addition of cyclic azomethine ylides with nitroalkenes have been developed to diastereodivergently generate either the syn or anti adducts by employing N,O-ligand/Cu(OAc)2 and N,P-ligand/Cu(OAc)2 catalytic systems. Both catalytic systems exhibit broad substrate applicability to afford the corresponding Michael adducts in good to excellent yields, with excellent levels of diastereo- (up to 99:1 diastereomeric ratio) and enantioselectivities (up to >99% enantiomeric excess). Importantly, the chiral 1,7-diazaspiro[4.4]nonane diastereomer derivatives can be easily obtained in good yields through facile NaBH4 reduction of the Michael adducts.

  11. Pd-Catalyzed Nucleophilic Fluorination of Aryl Bromides

    PubMed Central

    2015-01-01

    On the basis of mechanism-driven reaction design, a Pd-catalyzed nucleophilic fluorination of aryl bromides and iodides has been developed. The method exhibits a broad substrate scope, especially with respect to nitrogen-containing heteroaryl bromides, and proceeds with minimal formation of the corresponding reduction products. A facilitated ligand modification process was shown to be critical to the success of the reaction. PMID:24559304

  12. HBF4-Catalysed Nucleophilic Substitutions of Propargylic Alcohols

    PubMed Central

    Barreiro, Elena; Sanz-Vidal, Alvaro; Tan, Eric; Lau, Shing-Hing; Sheppard, Tom D; Díez-González, Silvia

    2015-01-01

    The activity of HBF4 (aqueous solution) as a catalyst in propargylation reactions is presented. Diverse types of nucleophiles were employed in order to form new C–O, C–N and C–C bonds in technical acetone and in air. Good to excellent yields and good chemoselectivities were obtained using low acid loading (typically 1 mol-%) under simple reaction conditions. PMID:26693210

  13. General allylic C-H alkylation with tertiary nucleophiles.

    PubMed

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  14. Nucleotides as nucleophiles: reactions of nucleotides with phosphoimidazolide activated guanosine

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.; Hurley, T. B.

    1991-01-01

    An earlier study of the reaction of phosphoimidazolide activated nucleosides (ImpN) in aqueous phosphate buffers indicated two modes of reaction of the phosphate monoanion and dianion. The first mode is catalysis of the hydrolysis of the P-N bond in ImpN's which leads to imidazole and nucleoside 5'-monophosphate. The second represents a nucleophilic substitution of the imidazole to yield the nucleoside 5'-diphosphate. This earlier study thus served as a model for the reaction of ImpN with nucleoside monophosphates (pN) because the latter can be regarded as phosphate derivatives. In the present study we investigated the reaction of guanosine 5'-phosphate-2-methylimidazolide, 2-MeImpG, in the presence of pN (N = guanosine, adenosine and uridine) in the range 6.9 less than or equal to pH less than or equal to 7.7. We observed that pN's do act as nucleophiles to form NppG, and as general base to enhance the hydrolysis of the P-N bond in 2-MeImpG, i.e. pN show the same behavior as inorganic phosphate. The kinetic analysis yields the following rate constants for the dianion pN2-: knpN = 0.17 +/- 0.02 M-1 h-1 for nucleophilic attack and khpN = 0.11 +/- 0.07 M-1 h-1 for general base catalysis of the hydrolysis. These rate constants which are independent of the nucleobase compare with kp.2 = 0.415 M-1 h-1 and khp2. = 0.217 M-1 h-1 for the reactions of HPO4(2-). In addition, this study shows that under conditions where pN presumably form stacks, the reaction mechanism remains unchanged although in quantitative terms stacked pN are somewhat less reactive. Attack by the 2'-OH and 3'-OH groups of the ribose moiety in amounts greater than or equal to 1% is not observed; this is attributed to the large difference in nucleophilicity in the neutral pH range between the phosphate group and the ribose hydroxyls. This nucleophilicity rank is not altered by stacking.

  15. The efficiency of the metal catalysts in the nucleophilic substitution of alcohols is dependent on the nucleophile and not on the electrophile.

    PubMed

    Biswas, Srijit; Samec, Joseph S M

    2013-05-01

    In this study, we investigate the effect of the electrophiles and the nucleophiles for eight catalysts in the catalytic SN 1 type substitution of alcohols with different degree of activation by sulfur-, carbon-, oxygen-, and nitrogen-centered nucleophiles. The catalysts do not show any general variance in efficiency or selectivity with respect to the alcohols and follow the trend of alcohol reactivity. However, when it comes to the nucleophile, the eight catalysts show general and specific variances in the efficiency and selectivity to perform the desired substitution. Interestingly, the selectivity of the alcohols to produce the desired substitution products was found to be independent of the electrophilicity of the generated carbocations but highly dependent on the ease of formation of the cation. Catalysts based on iron(III), bismuth(III), and gold(III) show higher conversions for S-, C-, and N-centered nucleophiles, and Bi(III) was the most efficient catalyst in all combinations. Catalysts based on rhenium(I) or rhenium(VII), palladium(II), and lanthanum(III) were the most efficient in performing the nucleophilic substitution on the various alcohols with the O-centered nucleophiles. These catalysts generate the symmetrical ether as a by-product from the reactions of S-, C-, and N-centered nucleophiles as well, resulting in lower chemoselectivity.

  16. Synthesis and nucleophilic aromatic substitution of 3-fluoro-5-nitro-1-(pentafluorosulfanyl)benzene

    PubMed Central

    Ajenjo, Javier; Greenhall, Martin; Zarantonello, Camillo

    2016-01-01

    Summary 3-Fluoro-5-nitro-1-(pentafluorosulfanyl)benzene was prepared by three different ways: as a byproduct of direct fluorination of 1,2-bis(3-nitrophenyl)disulfane, by direct fluorination of 4-nitro-1-(pentafluorosulfanyl)benzene, and by fluorodenitration of 3,5-dinitro-1-(pentafluorosulfanyl)benzene. The title compound was subjected to a nucleophilic aromatic substitution of the fluorine atom with oxygen, sulfur and nitrogen nucleophiles affording novel (pentafluorosulfanyl)benzenes with 3,5-disubstitution pattern. Vicarious nucleophilic substitution of the title compound with carbon, oxygen, and nitrogen nucleophiles provided 3-fluoro-5-nitro-1-(pentafluorosulfanyl)benzenes substituted in position four. PMID:26977178

  17. Structure-Based Insight into the Asymmetric Bioreduction of the C=C Double Bond of α,β-Unsaturated Nitroalkenes by Pentaerythritol Tetranitrate Reductase

    PubMed Central

    Toogood, Helen S.; Fryszkowska, Anna; Hare, Victoria; Fisher, Karl; Roujeinikova, Anna; Leys, David; Gardiner, John M.; Stephens, Gill M.; Scrutton, Nigel S.

    2009-01-01

    Biocatalytic reduction of α- or β-alkyl-β-arylnitroalkenes provides a convenient and efficient method to prepare chiral substituted nitroalkanes. Pentaerythritol tetranitrate reductase (PETN reductase) from Enterobacter cloacae st. PB2 catalyses the reduction of nitroolefins such as 1-nitrocyclohexene (1) with steady state and rapid reaction kinetics comparable to other old yellow enzyme homologues. Furthermore, it reduces 2-aryl-1-nitropropenes (4a-d) to their equivalent (S)-nitropropanes 9a-d. The enzyme shows a preference for the (Z)-isomer of substrates 4a-d, providing almost pure enantiomeric products 9a-d (ees up to > 99%) in quantitative yield, whereas the respective (E)-isomers are reduced with lower enantioselectivity (63-89% ee) and lower product yields. 1-Aryl-2-nitropropenes (5a, b) are also reduced efficiently, but the products (R)-10 have lower optical purities. The structure of the enzyme complex with 1-nitrocyclohexene (1) was determined by X-ray crystallography, revealing two substrate-binding modes, with only one compatible with hydride transfer. Models of nitropropenes 4 and 5 in the active site of PETN reductase predicted that the enantioselectivity of the reaction was dependent on the orientation of binding of the (E)- and (Z)-substrates. This work provides a structural basis for understanding the mechanism of asymmetric bioreduction of nitroalkenes by PETN reductase. PMID:20396603

  18. Reactions of (chloroethynyl)phosphonates with neutral nucleophiles

    SciTech Connect

    Garibina, V.A.; Leonov, A.A.; Dogadina, A.V.; Ionin, B.I.; Petrov, A.A.

    1987-12-20

    The authors studied reactions of (chloroethynyl)phosphonates with a number of neutral nucleophiles containing a primary amino group together with a second nucleophilic center. The phosphorylated benzimidazoles are crystalline substances. The chemical shift of phosphorus in these compounds, delta/sub p/ +22.0 ppm, is characteristic for compounds containing an sp/sup 3/-hybridized carbon atom attached to phosphorus. The PMR spectra of the compounds contain a characteristic signal of the protons of a methylene group attached to phosphorus, delta 2.8, /sup 2/J/sub HP/ 22.0 Hz. The /sup 13/C NMR spectrum of the compounds contain the signals of a methoxy group on phosphorus delta/sub C/(CH/sub 3/O) 49.50 ppm, J/sub CP/ 6.9 Hz; and a doublet signal of the carbon atom of the methylene group delta/sub C/ 23.16 ppm, J/sub CP/ 138.8 Hz; and a doublet of carbon of the benzimidazole ring delta/sub C/ 141.6 ppm, J/sub CP/ 8.7 Hz; the carbon atoms of the benzene ring resonate in the weak field.

  19. Functionalization of metallabenzenes through nucleophilic aromatic substitution of hydrogen.

    PubMed

    Clark, George R; Ferguson, Lauren A; McIntosh, Amy E; Söhnel, Tilo; Wright, L James

    2010-09-29

    The cationic metallabenzenes [Ir(C(5)H(4){SMe-1})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (1) and [Os(C(5)H(4){SMe-1})(CO)(2)(PPh(3))(2)][CF(3)SO(3)] (2) undergo regioselective nucleophilic aromatic substitution of hydrogen at the metallabenzene ring position γ to the metal in a two-step process that first involves treatment with appropriate nucleophiles and then oxidation. Thus, reaction between compound 1 and NaBH(4), MeLi, or NaOEt gives the corresponding neutral iridacyclohexa-1,4-diene complexes Ir(C(5)H(3){SMe-1}{H-3}{Nu-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2) (Nu = H (3), Me (4), OEt (5)). Similarly, reaction between 2 and NaBH(4) or MeLi gives the corresponding osmacyclohexa-1,4-diene complexes Os(C(5)H(3){SMe-1}{H-3}{Nu-3})(CO)(2)(PPh(3))(2) (Nu = H (8), Me (9)). The metallacyclohexa-1,4-diene rings in all these compounds are rearomatized on treatment with the oxidizing agent O(2), CuCl(2), or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Accordingly, the cationic metallabenzene 1 or 2 is returned after reaction between 3 and DDQ/NEt(4)PF(6) or between 8 and DDQ/NaO(3)SCF(3), respectively. The substituted cationic iridabenzene [Ir(C(5)H(3){SMe-1}{Me-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (6) or [Ir(C(5)H(4){SMe-1}{OEt-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (7) is produced in a similar manner through reaction between 4 or 5, respectively, and DDQ/NEt(4)PF(6), and the substituted cationic osmabenzene [Os(C(5)H(3){SMe-1}{Me-3})(CO)(2)(PPh(3))(2)]Cl (10) is formed in good yield on treatment of 9 with CuCl(2). The starting cationic iridabenzene 1 is conveniently prepared by treatment of the neutral iridabenzene Ir(C(5)H(4){SMe-1})Cl(2)(PPh(3))(2) with NaS(2)CNEt(2) and NEt(4)PF(6), and the related starting cationic osmabenzene 2 is obtained by treatment of Os(C(5)H(4){S-1})(CO)(PPh(3))(2) with CF(3)SO(3)CH(3) and CO. The stepwise transformations of 1 into 6 or 7 as well as 2 into 10 provide the first examples in metallabenzene chemistry of regioselective

  20. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid.

    PubMed

    Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P

    2016-05-10

    The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD.

  1. Amino acids as novel nucleophiles for silver nanoparticle-luminol chemiluminescence.

    PubMed

    Li, Na; Ni, Shubiao

    2014-12-01

    The use of noble metal nanoparticles (NPs) as reductants in chemiluminescence (CL) has been reported only rarely owing to their high oxidation potentials. Interestingly, nucleophiles could dramatically lower the oxidation potential of Ag NPs, such that in the presence of nucleophiles Ag NPS could be used as reductants to induce the CL emission of luminol, an important CL reagent widely used in forensic analysis for the detection of trace amounts of blood. Although nucleophiles are indispensible in Ag NP-luminol CL, only inorganic nucleophiles such as Cl(-), Br(-), I(-) and S2O3 (2-) have been shown to be efficient. The effects of organic nucleophiles on CL remain unexplored. In this study, 20 standard amino acids were evaluated as novel organic nucleophiles in Ag NP-luminol CL. Histidine, lysine and arginine could initiate CL emission; the others could not. It is proposed that the different behaviors of 20 standard amino acids in the CL reactions derive from the interface chemistry between Ag NPs and these amino acids. UV/vis absorption spectra were studied to validate the interface chemistry. In addition, imidazole and histidine were chosen as a model pair to compare the behavior of the monodentate nucleophile with that of the corresponding multidentate nucleophile in Ag NP-luminol CL.

  2. Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution

    SciTech Connect

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    2000-01-01

    The present invention relates to a process to aminate electrophilic aromatic compounds by vicarious nucleophilic substitution of hydrogen using quaternary hydrazinium salts. The use of trialkylhydrazinium halide, e.g., trimethylhydrazinium iodide, as well as hydroxylamine, alkoxylamines, and 4-amino-1,2,4-triazole to produce aminated aromatic structures, such as 1,3-diamino-2,4,6-trinitrobenzene (DATB), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 3,5-diamino-2,4,6-trinitrotoluene (DATNT), is described. DATB and TATB are useful insensitive high explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  3. Poly(N-arylenebenzimidazole)s via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)

    1996-01-01

    Novel poly(N-arylenebenzimidazole)s (PNABls) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl-N-arylenebenzimidazole) monomers are synthesized by reacting phenyl-4-hydroxybenzoate with bis(2-aminoanilino)arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyI-N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.

  4. Poly(1,3,4-oxadiazoles) via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Wolf, Peter (Inventor)

    1992-01-01

    Poly(1,3,4-oxadiazoles) (POX) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) 1,3,4-oxadiazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as sulfolane or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) 1,3,4-oxadiazole monomers are synthesized by reacting 4-hydroxybenzoic hydrazide with phenyl 4-hydrobenzoate in the melt and also by reacting aromatic dihydrazides with two moles of phenyl 4-hydroxybenzoate in the melt. This synthetic route has provided high molecular weight POX of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the large variety of activated aromatic dihalides which are available.

  5. Electrophilic and nucleophilic enzymatic cascade reactions in biosynthesis.

    PubMed

    Ueberbacher, Barbara T; Hall, Mélanie; Faber, Kurt

    2012-03-01

    The biosynthesis of cyclic terpenoids and polyethers involves enzyme-initiated cascade reactions for ring formation. While the former are obtained by electrophilic cascades through carbenium ions as intermediates, cyclic polyethers are formed by nucleophilic cascade reactions of (poly)epoxide precursors. These mechanistically complementary pathways follow common principles via (i) triggering of the cascade by forming a reactive intermediate ('initiation'), (ii) sequential 'proliferation' of the cyclization and finally (iii) 'termination' of the cascade. As analyzed in this concept paper, the multiplicity of precursors, combined with various initiation and termination routes and kinetically favored or disfavored cyclization modes accounts for the enormous diversity in cyclic terpenoid and polyether scaffolds. Although the essential role of enzymes in the triggering of these cascades is reasonably well understood, remarkably little is known about their influence in proliferation reactions, especially those implying kinetically disfavored (anti-Markovnikov and anti-Baldwin) routes. Mechanistic analysis of enzymatic cascade reactions provides biomimetic strategies for natural product synthesis.

  6. Poly(N-arylenbenzimidazoles) via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1995-01-01

    Novel poly(N-arylenebenzimidazole)s (PNABIs) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl N-arylenebenzimidazole) monomers are synthesized by reacting phenyl 4-hydroxybenzoate with bis(2-aminoanilino) arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyl N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.

  7. Nucleophilic activation by positioning in phosphoryl transfer catalyzed by nucleoside diphosphate kinase.

    PubMed

    Admiraal, S J; Schneider, B; Meyer, P; Janin, J; Véron, M; Deville-Bonne, D; Herschlag, D

    1999-04-13

    The nonenzymatic reaction of ATP with a nucleophile to generate ADP and a phosphorylated product proceeds via a dissociative transition state with little bond formation to the nucleophile. Consideration of the dissociative nature of the nonenzymatic transition state leads to the following question: To what extent can the nucleophile be activated in enzymatic phosphoryl transfer? We have addressed this question for the NDP kinase reaction. A mutant form of the enzyme lacking the nucleophilic histidine (H122G) can be chemically rescued for ATP attack by imidazole or other exogenous small nucleophiles. The ATP reaction is 50-fold faster with the wild-type enzyme, which has an imidazole nucleophile positioned for reaction by a covalent bond, than with H122G, which employs a noncovalently bound imidazole nucleophile [(kcat/KM)ATP]. Further, a 4-fold advantage for imidazole positioned in the nucleophile binding pocket created by the mutation is suggested from comparison of the reaction of H122G and ATP with an imidazole versus a water nucleophile, after correction for the intrinsic reactivities of imidazole and water toward ATP in solution. X-ray structural analysis shows no detectable rearrangement of the residues surrounding His 122 upon mutation to Gly 122. The overall rate effect of approximately 10(2)-fold for the covalent imidazole nucleophile relative to water is therefore attributed to positioning of the nucleophile with respect to the reactive phosphoryl group. This is underscored by the more deleterious effect of replacing ATP with AlphaTauPgammaS in the wild-type reaction than in the imidazole-rescued mutant reaction, as follows. For the wild-type, AlphaTauPgammaS presumably disrupts positioning between nucleophile and substrate, resulting in a large thio effect of 300-fold, whereas precise alignment is already disrupted in the mutant because there is no covalent bond to the nucleophile, resulting in a smaller thio effect of 10-fold. In summary, the results

  8. The syn/anti-Dichotomy in the Palladium-Catalyzed Addition of Nucleophiles to Alkenes

    PubMed Central

    Kočovský, Pavel; Bäckvall, Jan-E

    2015-01-01

    In this review the stereochemistry of palladium-catalyzed addition of nucleophiles to alkenes is discussed, and examples of these reactions in organic synthesis are given. Most of the reactions discussed involve oxygen and nitrogen nucleophiles; the Wacker oxidation of ethylene has been reviewed in detail. An anti-hydroxypalladation in the Wacker oxidation has strong support from both experimental and computational studies. From the reviewed material it is clear that anti-addition of oxygen and nitrogen nucleophiles is strongly favored in intermolecular addition to olefin–palladium complexes even if the nucleophile is coordinated to the metal. On the other hand, syn-addition is common in the case of intramolecular oxy- and amidopalladation as a result of the initial coordination of the internal nucleophile to the metal. PMID:25378278

  9. Nucleophilic 1,4-additions for natural product discovery.

    PubMed

    Cox, Courtney L; Tietz, Jonathan I; Sokolowski, Karol; Melby, Joel O; Doroghazi, James R; Mitchell, Douglas A

    2014-09-19

    Natural products remain an important source of drug candidates, but the difficulties inherent to traditional isolation, coupled with unacceptably high rates of compound rediscovery, limit the pace of natural product detection. Here we describe a reactivity-based screening method to rapidly identify exported bacterial metabolites that contain dehydrated amino acids (i.e., carbonyl- or imine-activated alkenes), a common motif in several classes of natural products. Our strategy entails the use of a commercially available thiol, dithiothreitol, for the covalent labeling of activated alkenes by nucleophilic 1,4-addition. Modification is easily discerned by comparing mass spectra of reacted and unreacted cell surface extracts. When combined with bioinformatic analysis of putative natural product gene clusters, targeted screening and isolation can be performed on a prioritized list of strains. Moreover, known compounds are easily dereplicated, effectively eliminating superfluous isolation and characterization. As a proof of principle, this labeling method was used to identify known natural products belonging to the thiopeptide, lanthipeptide, and linaridin classes. Further, upon screening a panel of only 23 actinomycetes, we discovered and characterized a novel thiopeptide antibiotic, cyclothiazomycin C.

  10. Nucleophilic Addition of Nitrogen to Aryl Cations: Mimicking Titan Chemistry

    NASA Astrophysics Data System (ADS)

    Li, Anyin; Jjunju, Fred P. M.; Cooks, R. Graham

    2013-11-01

    The reactivity of aryl cations toward molecular nitrogen is studied systematically in an ion trap mass spectrometer at 102 Pascal of nitrogen, the pressure of the Titan main haze layer. Nucleophilic addition of dinitrogen occurs and the nature of aryl group has a significant influence on the reactivity, through inductive effects and by changing the ground state spin multiplicity. The products of nitrogen activation, aryldiazonium ions, react with typical nitriles, aromatic amines, and alkynes (compounds that are relevant as possible Titan atmosphere constituents) to form covalently bonded heterocyclic products. Theoretical calculations at the level [DFT(B3LYP)/6-311++G(d,p)] indicate that the N2 addition reaction is exothermic for the singlet aryl cations but endothermic for their triplet spin isomers. The -OH and -NH2 substituted aryl ions are calculated to have triplet ground states, which is consistent with their decreased nitrogen addition reactivity. The energy needed for the generation of the aryl cations from their protonated precursors (ca. 340 kJ/mol starting with protonated aniline) is far less than that required to directly activate the nitrogen triple bond (the lowest energy excited state of N2 lies ca. 600 kJ/mol above the ground state). The formation of aza-aromatics via arene ionization and subsequent reactions provide a conceivable route to the genesis of nitrogen-containing organic molecules in the interstellar medium and Titan haze layers.

  11. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.

    PubMed

    Cassano, Adam G; Anderson, Vernon E; Harris, Michael E

    2004-08-17

    Heavy atom isotope effects are a valuable tool for probing chemical and enzymatic reaction mechanisms; yet, they are not widely applied to examine mechanisms of nucleophilic activation. We developed approaches for analyzing solvent (18)O nucleophile isotope effects ((18)k(nuc)) that allow, for the first time, their application to hydrolysis reactions of nucleotides and nucleic acids. Here, we report (18)k(nuc) for phosphodiester hydrolysis catalyzed by Mg(2+) and by the Mg(2+)-dependent RNase P ribozyme and deamination by the Zn(2+)-dependent protein enzyme adenosine deaminase (ADA). Because ADA incorporates a single solvent molecule into the product inosine, this reaction can be used to monitor solvent (18)O/(16)O ratios in complex reaction mixtures. This approach, combined with new methods for analysis of isotope ratios of nucleotide phosphates by whole molecule mass spectrometry, permitted determination of (18)k(nuc) for hydrolysis of thymidine 5'-p-nitrophenyl phosphate and RNA cleavage by the RNase P ribozyme. For ADA, an inverse (18)k(nuc) of 0.986 +/- 0.001 is observed, reflecting coordination of the nucleophile by an active site Zn(2+) ion and a stepwise mechanism. In contrast, the observed (18)k(nuc) for phosphodiester reactions were normal: 1.027 +/- 0.013 and 1.030 +/- 0.012 for the Mg(2+)- and ribozyme-catalyzed reactions, respectively. Such normal effects indicate that nucleophilic attack occurs in the rate-limiting step for these reactions, consistent with concerted mechanisms. However, these magnitudes are significantly less than the (18)k(nuc) observed for nucleophilic attack by hydroxide (1.068 +/- 0.007), indicating a "stiffer" bonding environment for the nucleophile in the transition state. Kinetic analysis of the Mg(2+)-catalyzed reaction indicates that a Mg(2+)-hydroxide complex is the catalytic species; thus, the lower (18)k(nuc), in large part, reflects direct metal ion coordination of the nucleophilic oxygen. A similar value for the RNase P

  12. Palladium-Catalyzed Cross Coupling of Secondary and Tertiary Alkyl Bromides with a Nitrogen Nucleophile

    PubMed Central

    2016-01-01

    We report a new class of catalytic reaction: the thermal substitution of a secondary and or tertiary alkyl halide with a nitrogen nucleophile. The alkylation of a nitrogen nucleophile with an alkyl halide is a classical method for the construction of C–N bonds, but traditional substitution reactions are challenging to achieve with a secondary and or tertiary alkyl electrophile due to competing elimination reactions. A catalytic process could address this limitation, but thermal, catalytic coupling of alkyl halides with a nitrogen nucleophile and any type of catalytic coupling of an unactivated tertiary alkyl halide with a nitrogen nucleophile are unknown. We report the coupling of unactivated secondary and tertiary alkyl bromides with benzophenone imines to produce protected primary amines in the presence of palladium ligated by the hindered trialkylphosphine Cy2t-BuP. Mechanistic studies indicate that this amination of alkyl halides occurs by a reversible reaction to form a free alkyl radical. PMID:27725963

  13. REVISITING NUCLEOPHILIC SUBSTITUTION REACTIONS: MICROWAVE-ASSISTED SYNTHESIS OF AZIDES, THIOCYANATES AND SULFONES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A practical, rapid and efficient microwave (MW) promoted synthesis of various azides, thiocyanates and sulfones, is described in aqueous medium. This general and expeditious MW-enhanced nucleophilic substitution approach uses easily accessible starting materials such as halides o...

  14. Effects of electron acceptors and radical scavengers on nonchain radical nucleophilic substitution reactions

    SciTech Connect

    Xianman Zhang; Dilun Yang; Youcheng Liu )

    1993-01-01

    The yields of reaction products from thermal nucleophilic substitution reactions in dimethyl sulfoxide (DMSO) of six o- and p-nitrohalobenzenes with the sodium salt of ethyl [alpha]-cyanoacetate carbanion [Na[sup +][sup [minus

  15. Dehalogenation of arenes via SN2 reactions at bromine: competition with nucleophilic aromatic substitution.

    PubMed

    Gronert, Scott; Garver, John M; Nichols, Charles M; Worker, Benjamin B; Bierbaum, Veronica M

    2014-11-21

    The gas-phase reactions of carbon- and nitrogen-centered nucleophiles with polyfluorobromobenzenes were examined in a selected-ion flow tube (SIFT) and modeled computationally at the MP2/6-31+G(d,p)//MP2/6-31+G(d) level. In the gas-phase experiments, rate constants and branching ratios were determined. The carbon nucleophiles produce expected nucleophilic aromatic substitution (SNAr) and proton transfer products along with unexpected products that result from SN2 reactions at the bromine center (polyfluorophenide leaving group). With nitrogen nucleophiles, the SN2 at bromine channel is suppressed. In the SNAr channels, the "element effect" is observed, and fluoride loss competes with bromide loss. The computational modeling indicates that all the substitution barriers are well below the entrance channel and that entropy and dynamics effects control the product distributions.

  16. Sulfur isotope fractionation during incorporation of sulfur nucleophiles into organic compounds.

    PubMed

    Amrani, Alon; Ma, Qisheng; Ahmad, Ward Said; Aizenshtat, Zeev; Tang, Yongchun

    2008-03-21

    (34)S enrichment is shown to occur during sulfurization reactions and for the first time conclusively attributed to an isotope equilibrium effect rather than selective addition of (34)S enriched nucleophiles.

  17. Nucleophilic substitution at centers other than carbon: reaction at the chlorine of N-chloroacetanilides with triethylamine as the nucleophile

    SciTech Connect

    Underwood, G.R.; Dietze, P.E.

    1984-12-28

    The reaction between triethylamine (TEA) and a series of para-substituted N-chloroacetanilides has been studied in aqueous solution buffered to pHs between 1 and 5. The exclusive product derived from the aromatic moiety is the corresponding acetanilide. The reaction occurs via two parallel pseudo-second-order paths, one acid catalyzed (the Orton-like mechanism), the other uncatalyzed. The uncatalyzed reaction is accelerated by the presence of electron-withdrawing substituents on the aromatic ring and can best be represented as nucleophilic displacement at chlorine. It therefore appears to be the prototype of a convenient class of reactions for the study of displacement reactions at chlorine. The rho value for this reaction is 3.87, indicating substantial negative charge buildup in the aromatic ring during of the transition state. The acid-catalyzed reaction is more complex, presumable involving a protonation equilibrium for the N-chloroacetanilide prior to the rate-determining step similar to that in the Orton reaction. 15 references, 2 figures, 3 tables.

  18. REACTIONS OF ELECTROPHILES WITH NUCLEOPHILIC THIOLATE SITES: RELEVANCE TO PATHOPHYSIOLOGICAL MECHANISMS AND REMEDIATION

    PubMed Central

    LoPachin, Richard M.; Gavin, Terrence

    2016-01-01

    Electrophiles are electron deficient species that form covalent bonds with electron rich nucleophiles. In biological systems, reversible electrophile-nucleophile interactions mediate basal cytophysiological functions (e.g., enzyme regulation through S-nitrosylation), whereas irreversible electrophilic adduction of cellular macromolecules is involved in pathogenic processes that underlie many disease and injury states. The nucleophiles most often targeted by electrophiles are side chains on protein amino acids (e.g., Cys, His and Lys) and aromatic nitrogen sites on DNA bases (e.g., guanine N7). The sulfhydryl thiol (RSH) side-chain of cysteine residues is a weak nucleophile that can be ionized in specific conditions to a more reactive nucleophilic thiolate (RS−). This review will focus on electrophile interactions with cysteine thiolates and the pathophysiological consequences that result from irreversible electrophile modification of this anionic sulfur. According to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson, electrophiles and nucleophiles can be classified as either soft or hard depending on their relative polarizability. HSAB theory suggests that electrophiles will preferentially and more rapidly form covalent adducts with nucleophiles of comparable softness or hardness. Application of HSAB principles, in conjunction with in vitro and proteomic studies, have indicated that soft electrophiles of broad chemical classes selectively form covalent Michael-type adducts with soft, highly reactive cysteine thiolate nucleophiles. Therefore, these electrophiles exhibit a common mechanism of cytotoxicity. As we will discuss, this level of detailed mechanistic understanding is a necessary prerequisite for the rational development of effective prevention and treatment strategies for electrophile-based pathogenic states. PMID:26559119

  19. Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation.

    PubMed

    LoPachin, Richard M; Gavin, Terrence

    2016-01-01

    Electrophiles are electron-deficient species that form covalent bonds with electron-rich nucleophiles. In biological systems, reversible electrophile-nucleophile interactions mediate basal cytophysiological functions (e.g. enzyme regulation through S-nitrosylation), whereas irreversible electrophilic adduction of cellular macromolecules is involved in pathogenic processes that underlie many disease and injury states. The nucleophiles most often targeted by electrophiles are side chains on protein amino acids (e.g. Cys, His, and Lys) and aromatic nitrogen sites on DNA bases (e.g. guanine N7). The sulfhydryl thiol (RSH) side chain of cysteine residues is a weak nucleophile that can be ionized in specific conditions to a more reactive nucleophilic thiolate (RS(-)). This review will focus on electrophile interactions with cysteine thiolates and the pathophysiological consequences that result from irreversible electrophile modification of this anionic sulfur. According to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson, electrophiles and nucleophiles can be classified as either soft or hard depending on their relative polarizability. HSAB theory suggests that electrophiles will preferentially and more rapidly form covalent adducts with nucleophiles of comparable softness or hardness. Application of HSAB principles, in conjunction with in vitro and proteomic studies, have indicated that soft electrophiles of broad chemical classes selectively form covalent Michael-type adducts with soft, highly reactive cysteine thiolate nucleophiles. Therefore, these electrophiles exhibit a common mechanism of cytotoxicity. As we will discuss, this level of detailed mechanistic understanding is a necessary prerequisite for the rational development of effective prevention and treatment strategies for electrophile-based pathogenic states.

  20. Alkylidene malonates and α,β-unsaturated α'-hydroxyketones as practical substrates for vinylogous Friedel-Crafts alkylations in water catalysed by scandium(III) triflate/SDS.

    PubMed

    Oelerich, Jens; Roelfes, Gerard

    2015-03-07

    Alkylidene malonates and α,β-unsaturated α'-hydroxyketones are demonstrated to be efficient classes of electrophiles for the scandium(III) triflate/sodium dodecyl sulphate (SDS) catalysed vinylogous Friedel-Crafts alkylation of indoles and pyrroles in water. These substrates contain an easily removable auxiliary group that increases affinity for the catalytic metal ion in such a way that they can compete with water for binding to the catalytic metal ion. Thus, alkylidene malonates and α,β-unsaturated α'-hydroxyketones are attractive substitutes for, e.g., α,β-unsaturated carboxylic acids and -esters, which in aqueous media are not reactive enough in these reactions. The combination of Lewis acid and SDS in catalysis results in considerable acceleration of the reaction in water compared to organic solvents. The method presented is attractive because the reactions are fast, experimentally straightforward and give rise to high yields of products.

  1. Theoretical exploration of the mechanism of riboflavin formation from 6,7-dimethyl-8-ribityllumazine: nucleophilic catalysis, hydride transfer, hydrogen atom transfer, or nucleophilic addition?

    PubMed

    Breugst, Martin; Eschenmoser, Albert; Houk, K N

    2013-05-01

    The cofactor riboflavin is biochemically synthesized by a constitutionally intricate process in which two molecules of 6,7-dimethyl-8-ribityllumazine react with each other to form one molecule of the cofactor and one molecule of 5-amino-6-(ribitylamino)uracil. Remarkably, this complex molecular transformation also proceeds non-enzymatically in boiling aqueous solution at pH 7.3. Four different mechanistic pathways for this transformation (nucleophilic catalysis, hydride transfer, hydrogen atom transfer, and a nucleophilic addition mechanism) have now been analyzed by density functional theory [M06-2X/def2-TZVPP/CPCM//M06-2X/6-31+G(d,p)/IEFPCM]. On the basis of these computational results, a so far unpublished nucleophilic addition mechanism is the lowest energy pathway yielding riboflavin. The previously proposed mechanism involving nucleophilic catalysis is higher in energy but is still a viable alternative for an enzyme-catalyzed process assisted by suitably positioned catalytic groups. Pathways involving the transfer of a hydride ion or of a hydrogen atom are predicted to proceed through higher energy transition states and intermediates.

  2. Kinetic isotope effects for RNA cleavage by 2'-O- transphosphorylation: Nucleophilic activation by specific base

    PubMed Central

    Harris, Michael E; Dai, Qing; Gu, Hong; Kellerman, Dan; Piccirilli, Joseph A; Anderson, Vernon E

    2010-01-01

    To better understand the interactions between catalysts and transition states during RNA strand cleavage, primary 18O kinetic isotope effects and solvent D2O isotope effects were measured to probe the mechanism of base-catalyzed 2'-O-transphosphorylation of the RNA dinucleotide 5'-UpG-3'. The observed 18O KIEs for the nucleophilic 2'-O and in the 5'-O leaving group at pH 14 are both large relative to reactions of phosphodiesters with good leaving groups, indicating that the reaction catalyzed by hydroxide has a transition state (TS) with advanced phosphorus-oxygen bond fission to the leaving group (18kLG = 1.034 ± 0.004) and phosphorous-nucleophile bond formation (18kNUC = 0.984 ± 0.004). A breakpoint in the pH dependence of the 2'-O-transphosphorylation rate to a pH independent phase above pH 13 has been attributed to the pKa of the 2'-OH nucleophile. A smaller nucleophile KIE is observed at pH 12 (18kNUC = 0.995 ± 0.004) that is interpreted as the combined effect of the equilibrium isotope effect (~1.02) on deprotonation of the 2′-hydroxyl nucleophile and the intrinsic KIE on the nucleophilic addition step (ca. 0.981). An alternative mechanism in which the hydroxide ion acts as a general base is considered unlikely given the lack of a solvent deuterium isotope effect above the breakpoint in the pH versus rate profile. These results represent the first direct analysis of the transition state for RNA strand cleavage. The primary 18O KIE results and the lack of a kinetic solvent deuterium isotope effect together provide strong evidence for a late transition state and 2'-O nucleophile activation by specific base catalysis. PMID:20669950

  3. Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence.

    PubMed

    Du, Eun Jo; Ahn, Tae Jung; Wen, Xianlan; Seo, Dae-Won; Na, Duk L; Kwon, Jae Young; Choi, Myunghwan; Kim, Hyung-Wook; Cho, Hana; Kang, KyeongJin

    2016-09-22

    Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila.

  4. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

    NASA Astrophysics Data System (ADS)

    You, Hengzhi; Rideau, Emeline; Sidera, Mireia; Fletcher, Stephen P.

    2015-01-01

    The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of >=50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

  5. Carbonylmetallates--A Special Family of Nucleophiles in Aromatic and Vinylic Substitution Reactions.

    PubMed

    Sazonov, Petr K; Beletskaya, Irina P

    2016-03-07

    Carbonylmetallates, [M(CO)(n)L](-), anionic transition-metal carbonyl complexes, represent a large family of metal-centered nucleophiles, and studying carbonylmetallates allows us to understand the differences in the behavior of the metal-centered complexes versus heteroatom-based nucleophiles. The mechanisms of carbonylmetallate reactions with aryl- and alkenyl halides have been examined by employing radical and, especially, carbanion trapping techniques. Carbonylmetallates show a marked preference for halogenophilic attack, and nucleophilic substitution with carbonylmetallates is often not a direct process, but proceeds through the initial attack at halogen with subsequent coupling of carbanion and HalM(CO)(n)L intermediates. Factors governing the competition between the halogenophilic and more common "carbophilic" reaction pathways, as well as the means of predicting the actual course of reaction are discussed. The review also considers other aspects of carbonylmetallate reactivity, including ion-pairing effects, radical-mediated nucleophilic substitution pathways, and the carbonylmetallate nucleophilicity scale in the reactions with π-electrophiles.

  6. Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence

    PubMed Central

    Du, Eun Jo; Ahn, Tae Jung; Wen, Xianlan; Seo, Dae-Won; Na, Duk L; Kwon, Jae Young; Choi, Myunghwan; Kim, Hyung-Wook; Cho, Hana; Kang, KyeongJin

    2016-01-01

    Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.18425.001 PMID:27656903

  7. EXAFS structural study of platinum-based anticancer drugs degradation in presence of sulfur nucleophilic species.

    PubMed

    Provost, Karine; Bouvet-Muller, Diane; Crauste-Manciet, Sylvie; Moscovici, Jacques; Olivi, Luca; Vlaic, Gilberto; Michalowicz, Alain

    2009-10-01

    Three platinum complexes, cisplatin, carboplatin and oxaliplatin are currently used worldwide. Investigation of their main structural modifications in presence of sulfur nucleophiles is of particular interest because of the implication of thiol and thioether groups in biochemical mechanism of action, resistance mechanism and in vivo or in vitro detoxification. We present the main structural results we have obtained concerning the reaction of these drugs with diverse sulfur nucleophiles (cysteine, glutathione, methionine, thiosulfate and thiocyanate), monitored in solution or as precipitates by EXAFS spectroscopy. The reactivities of the carboxylate and amine ligands of both carboplatin and oxaliplatin are compared, on the basis of first-coordination sphere modeling. Among the new results of this EXAFS study, we present the first observation of oxaliplatin diaminocyclohexane ligand displacement by sulfur nucleophiles.

  8. Alternative nucleophilic substrates for the endonuclease activities of human immunodeficiency virus type 1 integrase

    SciTech Connect

    Ealy, Julie B.; Sudol, Malgorzata; Krzeminski, Jacek; Amin, Shantu; Katzman, Michael

    2012-11-10

    Retroviral integrase can use water or some small alcohols as the attacking nucleophile to nick DNA. To characterize the range of compounds that human immunodeficiency virus type 1 integrase can accommodate for its endonuclease activities, we tested 45 potential electron donors (having varied size and number or spacing of nucleophilic groups) as substrates during site-specific nicking at viral DNA ends and during nonspecific nicking reactions. We found that integrase used 22 of the 45 compounds to nick DNA, but not all active compounds were used for both activities. In particular, 13 compounds were used for site-specific and nonspecific nicking, 5 only for site-specific nicking, and 4 only for nonspecific nicking; 23 other compounds were not used for either activity. Thus, integrase can accommodate a large number of nucleophilic substrates but has selective requirements for its different activities, underscoring its dynamic properties and providing new information for modeling and understanding integrase.

  9. The role of intramolecular hydrogen bonds in nucleophilic addition reactions of ketenaminals

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2012-08-01

    Quantum-chemical calculations of the geometries and electronic structures of molecules of ketenaminals 3-(diaminomethylene)-2,4-pentanedione and dimethyl-2-(diaminomethylene)-malonate and calculations of the structures of intermediates in the reaction of the nucleophilic addition of the ketenaminals to the acetonitrile molecule are performed by B3LYP/6-31+G** method. Two possible scenarios of the process are shown, depending on the mutual orientation of reacting molecules. The nucleophilic addition proceeds in two stages. It is found that the rate-limiting stage of the process is the transfer of the proton of the intramolecular hydrogen bond in a ketenaminal molecule. The experimentally observed faster reaction of pyrimidine formation for the 3-(diaminomethylene)-2,4-pentanedione molecule relative to that for dimethyl-2-(diaminomethylene)-malonate is explained by the hydrogen bond being stronger and the barrier of proton transfer from the aminogroup to the ketogroup oxygen falling upon nucleophilic attack in the former molecule.

  10. Identification of the nucleophile catalytic residue of GH51 α-l-arabinofuranosidase from Pleurotus ostreatus

    DOE PAGES

    Amore, Antonella; Iadonisi, Alfonso; Vincent, Florence; ...

    2015-12-21

    In this paper, the recombinant α-l-arabinofuranosidase from the fungus Pleurotus ostreatus (rPoAbf) was subjected to site-directed mutagenesis in order to identify the catalytic nucleophile residue. Based on bioinformatics and homology modelling analyses, E449 was revealed to be the potential nucleophilic residue. Thus, the mutant E449G of PoAbf was recombinantly expressed in Pichia pastoris and its recombinant expression level and reactivity were investigated in comparison to the wild-type. The design of a suitable set of hydrolysis experiments in the presence or absence of alcoholic arabinosyl acceptors and/or formate salts allowed to unambiguously identify the residue E449 as the nucleophile residue involvedmore » in the retaining mechanism of this GH51 arabinofuranosidase. 1H NMR analysis was applied for the identification of the products and the assignement of their anomeric configuration.« less

  11. Profiling the Reactivity of Cyclic C-Nucleophiles towards Electrophilic Sulfur in Cysteine Sulfenic Acid

    PubMed Central

    Gupta, Vinayak; Carroll, Kate S.

    2015-01-01

    Oxidation of a protein cysteine thiol to sulfenic acid, termed S-sulfenylation, is a reversible post-translational modification that plays a crucial role in regulating protein function and is correlated with disease states. The majority of reaction-based small molecule and immunochemical probes used for detecting sulfenic acids are based on the 5,5-dimethyl-1,3-cyclohexanedione (dimedone) scaffold, which is selective, but suffers from low reactivity. In addition, mechanistic details and features that diminish or enhance nucleophile reactivity remain largely unknown. A significant hurdle to resolving the aforementioned issues has been the chemically unstable nature of small-molecule sulfenic acid models. Herein, we report a facile mass spectrometry-based assay and repurposed dipeptide-based model to screen a library of cyclic C-nucleophiles for reactivity with sulfenic acid under aqueous conditions. Observed rate constants for ~100 cyclic C-nucleophiles were obtained and, from this collection, we have identified novel compounds with more than 200-fold enhanced reactivity, as compared to dimedone. The increase in reactivity and retention of selectivity of these C-nucleophiles were validated in secondary assays, including a protein model for sulfenic acid. Together, this work represents a significant step toward developing new chemical reporters for detecting protein S-sulfenylation with superior kinetic resolution. The enhanced rates and varied composition of the C-nucleophiles should enable more comprehensive analyses of the sulfenome and serve as the foundation for reversible or irreversible nucleophilic covalent inhibitors that target oxidized cysteine residues in therapeutically important proteins. PMID:26819701

  12. Advances in Nucleophilic Phosphine Catalysis of Alkenes, Allenes, Alkynes, and MBHADs

    PubMed Central

    Fan, Yi Chiao

    2014-01-01

    In nucleophilic phosphine catalysis, tertiary phosphines undergo conjugate additions to activated carbon–carbon multiple bonds to form β-phosphonium enolates, β-phosphonium dienolates, β-phosphonium enoates, and vinyl phosphonium ylides as intermediates. When these reactive zwitterionic species react with nucleophiles and electrophiles, they may generate carbo- and heterocycles with multifarious molecular architectures. This Article describes the reactivities of these phosphonium zwitterions, the applications of phosphine catalysis in the syntheses of biologically active compounds and natural products, and recent developments in the enantioselective phosphine catalysis. PMID:24196409

  13. Utilizing the σ-complex stability for quantifying reactivity in nucleophilic substitution of aromatic fluorides

    PubMed Central

    Rein, Tobias; Svensson, Mats

    2013-01-01

    Summary A computational approach using density functional theory to compute the energies of the possible σ-complex reaction intermediates, the “σ-complex approach”, has been shown to be very useful in predicting regioselectivity, in electrophilic as well as nucleophilic aromatic substitution. In this article we give a short overview of the background for these investigations and the general requirements for predictive reactivity models for the pharmaceutical industry. We also present new results regarding the reaction rates and regioselectivities in nucleophilic substitution of fluorinated aromatics. They were rationalized by investigating linear correlations between experimental rate constants (k) from the literature with a theoretical quantity, which we call the sigma stability (SS). The SS is the energy change associated with formation of the intermediate σ-complex by attachment of the nucleophile to the aromatic ring. The correlations, which include both neutral (NH3) and anionic (MeO−) nucleophiles are quite satisfactory (r = 0.93 to r = 0.99), and SS is thus useful for quantifying both global (substrate) and local (positional) reactivity in SNAr reactions of fluorinated aromatic substrates. A mechanistic analysis shows that the geometric structure of the σ-complex resembles the rate-limiting transition state and that this provides a rationale for the observed correlations between the SS and the reaction rate. PMID:23766792

  14. Nucleophilic Aromatic Substitution Reactions Described by the Local Electron Attachment Energy.

    PubMed

    Stenlid, Joakim H; Brinck, Tore

    2017-03-17

    A local multiorbital electrophilicity descriptor, the local electron attachment energy [E(r)], is used to study the nucleophilic aromatic substitution reactions of SNAr and VNS (vicarious nucleophilic substitution). E(r) considers all virtual orbitals below the free electron limit and is determined on the molecular isodensity contour of 0.004 atomic units. Good (R(2) = 0.83) to excellent (R(2) = 0.98) correlations are found between descriptor values and experimental reactivity data for six series of electron deficient arenes. These include homo- and heteroarenes, rings of five to six atoms, and a variety of fluorine, bromine, and hydride leaving groups. The solvent, temperature, and nucleophile are in addition varied across the series. The surface E(r) [ES(r)] is shown to provide reactivity predictions better than those of transition-state calculations for a concerted SNAr reaction with a bromine nucleofug, gives correlations substantially stronger than those of LUMO energies, and is overall more reliable than the molecular electrostatic potential. With the use of ES(r), one can identify the various electrophilic sites within a molecule and correctly predict isomeric distributions. Since the calculations of ES(r) are computationally inexpensive, the descriptor offers fast but accurate reactivity predictions for the important nucleophilic aromatic substitution class of reactions. Applications in, e.g., drug discovery, synthesis, and toxicology studies are envisaged.

  15. Utilizing the σ-complex stability for quantifying reactivity in nucleophilic substitution of aromatic fluorides.

    PubMed

    Liljenberg, Magnus; Brinck, Tore; Rein, Tobias; Svensson, Mats

    2013-01-01

    A computational approach using density functional theory to compute the energies of the possible σ-complex reaction intermediates, the "σ-complex approach", has been shown to be very useful in predicting regioselectivity, in electrophilic as well as nucleophilic aromatic substitution. In this article we give a short overview of the background for these investigations and the general requirements for predictive reactivity models for the pharmaceutical industry. We also present new results regarding the reaction rates and regioselectivities in nucleophilic substitution of fluorinated aromatics. They were rationalized by investigating linear correlations between experimental rate constants (k) from the literature with a theoretical quantity, which we call the sigma stability (SS). The SS is the energy change associated with formation of the intermediate σ-complex by attachment of the nucleophile to the aromatic ring. The correlations, which include both neutral (NH3) and anionic (MeO(-)) nucleophiles are quite satisfactory (r = 0.93 to r = 0.99), and SS is thus useful for quantifying both global (substrate) and local (positional) reactivity in SNAr reactions of fluorinated aromatic substrates. A mechanistic analysis shows that the geometric structure of the σ-complex resembles the rate-limiting transition state and that this provides a rationale for the observed correlations between the SS and the reaction rate.

  16. Nucleophilic substitutions of 1-alkenylcyclopropyl esters and 1-alkynylcyclopropyl chlorides catalyzed by palladium (0)

    SciTech Connect

    Stolle, A. |; Ollivier, J.; Salauen, J.

    1992-05-20

    The 1-ethenylcyclopropylsulfonates 2e,f and 2-cyclopropylideneethyl esters 10b,c, readily available from cyclopropanone hemiacetal 1, undergo regioselective Pd(0) catalyzed nucleophilic substitution via the unsymmetric 1,1-dimethylene-{pi}-allyl complex 23. With stabilized anions (enolates of malonic ester, {beta}-dicarbonyl compounds, {beta}-sulfonyl ester, and Schiff bases as well as acetate anion, sulfonamide anion, etc.) the nucleophilic substitution occurs at the terminal vinylic position exclusively, providing cyclopropylideneethyl derivatives as building blocks of high synthetic potential. Competition experiments have disclosed that 1-ethenylcyclopropyl tosylate (2e) and cyclopropylideneethyl acetate (10b) are more reactive than dimethylallyl acetates 19 and 22, respectively. Use of chiral phosphines as ligands in the palladium catalyst can provide optically active methylenecyclopropane derivatives. With phenyl-, methyl-, and even n-butylzinc chloride as nucleophiles, the reaction apparently proceeds with initial transfer of the organic residue to palladium, followed by reductive elimination entailing tertiary substitution on the cyclopropane ring exclusively; the same type of product is obtained with azide and bis(trimethylsilyl)amide. But the site of hydride attack to yield reduction products depends on the hydride source. 1-Alkynylcyclopropyl chlorides 12, 13, and 14 react only with organozinc chlorides (nonstabilized nucleophiles) to provide mixtures of ethenylidenecyclopropanes 65 and alkynylcyclopropanes 66, via the {sigma}-palladium complexes 69 and 70, while chloride 15 undergoes mainly reduction. Other transition metal catalysts (Ni, Mo) also induce substitutions, but with poorer regioselectivity. 81 refs., 9 figs., 3 tabs.

  17. REVISITING CLASSICAL NUCLEOPHILIC SUBSTITUTIONS IN AQUEOUS MEDIUM: MICROWAVE-ASSISTED SYNTHESIS OF ALKYL AZIDES

    EPA Science Inventory

    An efficient and clean synthesis of alkyl azides using microwave (MW) radiation is described in aqueous medium by reacting alkyl halides or tosylates with alkali azides. This general and expeditious MW-enhanced approach to nucleophilic substitution reactions is applicable to the ...

  18. Synthesis of a Fluorescent Acridone Using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence

    ERIC Educational Resources Information Center

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R.

    2015-01-01

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the…

  19. Palladium-catalyzed allylation of acidic and less nucleophilic anilines using allylic alcohols directly.

    PubMed

    Hsu, Yi-Chun; Gan, Kim-Hong; Yang, Shyh-Chyun

    2005-10-01

    The direct activation of C-O bonds in allylic alcohols by palladium complexes has been accelerated by carrying out the reactions in the presence of titanium(IV) isoproxide and 4 A molecular sieves. The acidic and less nucleophilic anilines such as diphenylamine, phenothiazine, 4-cyanoaniline, and nitroanilines are efficiently allylated under palladium catalysis using allylic alcohols as allylating reagents.

  20. Highly diastereoselective nucleophilic addition to myrtenal. Straightforward synthesis of an enantiopure scorpionate ligand.

    PubMed

    Otero, Antonio; Fernandez-Baeza, Juan; Antiñolo, Antonio; Tejeda, Juan; Lara-Sanchez, Agustín; Sanchez-Barba, Luis F; Sanchez-Molina, Margarita; Franco, Sonia; López-Solera, Maria I; Rodríguez, Ana M

    2007-10-15

    The work described here represents the first example in which an efficient and highly diastereoselective nucleophilic 1,2-addition of an organolithium reagent has been performed on a carbonylic prostereogenic center to give an enantiopure scorpionate ligand in only one step.

  1. Preparation of 6-substituted quinoxaline JSP-1 inhibitors by microwave accelerated nucleophilic substitution.

    PubMed

    Zhang, Li; Qiu, Beiying; Li, Xin; Wang, Xin; Li, Jingya; Zhang, Yongliang; Liu, Jian; Li, Jia; Shen, Jingkang

    2006-12-21

    A small library of 6-aminoquinoxalines has been prepared by nucleophilic substitution of 6-fluoroquinoxaline with amines and nitrogen-containing heterocycles under computer-controlled microwave irradiation. Some compounds were found to be potent inhibitors of JNK Stimulatory Phosphatase-1 (JSP-1) in an in vitro biological assay.

  2. Gold(I)-catalyzed amination of allylic alcohols with cyclic ureas and related nucleophiles.

    PubMed

    Mukherjee, Paramita; Widenhoefer, Ross A

    2010-03-19

    A 1:1 mixture of [P(t-Bu)(2)-o-biphenyl]AuCl and AgSbF(6) catalyzes the intermolecular amination of allylic alcohols with 1-methylimidazolidin-2-one and related nucleophiles that, in the case of gamma-unsubstituted or gamma-methyl-substituted allylic alcohols, occurs with high gamma-regioselectivity and syn-stereoselectivity.

  3. Organic Chemistry Students' Ideas about Nucleophiles and Electrophiles: The Role of Charges and Mechanisms

    ERIC Educational Resources Information Center

    Anzovino, Mary E.; Bretz, Stacey Lowery

    2015-01-01

    Organic chemistry students struggle with reaction mechanisms and the electron-pushing formalism (EPF) used by practicing organic chemists. Faculty have identified an understanding of nucleophiles and electrophiles as one conceptual prerequisite to mastery of the EPF, but little is known about organic chemistry students' knowledge of nucleophiles…

  4. Quantitative Structure-Activity Relationships for the Nucleophilicity of Trivalent Boron Compounds.

    PubMed

    García-López, Diego; Cid, Jessica; Marqués, Ruben; Fernández, Elena; Carbó, Jorge J

    2017-04-11

    We describe herein the development of quantitative structure-activity relationships (QSAR) for the nucleophilicity of trivalent boron compounds covering boryl fragments bonded to alkali and alkaline-earth metals, to transition metals, and to sp(3) boron units in diboron reagents. We used the charge of the boryl fragment (q[B]) and the boron p/s population ratio (p/s) to describe the electronic structures of boryl moieties, whereas the distance-weighted volume (Vw ) descriptor was used to evaluate the steric effects. The three-term easy-to-interpret QSAR model showed statistical significance and predictive ability (r(2) =0.88, q(2) =0.83). The use of chemically meaningful descriptors has allowed identification of the factors governing the boron nucleophilicity and indicates that the most efficient nucleophiles are those with enhanced the polarization of the B-X bond towards the boron atom and reduced steric bulk. A detailed analysis of the potential energy surfaces of different types of boron substituents has provided insight into the mechanism and established an order of nucleophilicity for boron in B-X: X=Li>Cu>B(sp(3) )>Pd. Finally, we used the QSAR model to make a priori predictions of experimentally untested compounds.

  5. Transition metal-catalyzed/mediated reaction of allenes with a nucleophilic functionality connected to the alpha-carbon atom.

    PubMed

    Ma, Shengming

    2003-09-01

    Allenes with a nucleophilic functionality connected to the alpha-carbon atom have been shown to be versatile building blocks for the syn-thesis of gamma-butenolides, gamma-lactams, gamma-iminolactones, vinylic epoxides, 4-amino-2-alkenols, 2-amino-3-alkenols, 2,5-dihydrofurans, furans, vinylic cyclopropanes, and cyclopentenes, depending on the nature of the nucleophilic centers. The reaction may proceed via the carbometalation-nucleophilic attack mechanism or nucleometallation-reductive elimination. The stereochemical outcomes by these two pathways are different.

  6. Breaking the dogma of aldolase specificity: Simple aliphatic ketones and aldehyde are nucleophiles for fructose-6-phosphate aldolase.

    PubMed

    Roldán, Raquel; Sanchez-Moreno, Israel; Scheidt, Thomas; Hélaine, Virgil; Lemaire, Marielle; Parella, Teodor; Clapés, Pere; Fessner, Wolf-Dieter; Guérard-Hélaine, Christine

    2017-03-07

    D-Fructose-6-phosphate aldolase (FSA) was probed for extended nucleophile promiscuity by using a series of fluorogenic substrates to reveal retro-aldol activity. Four nucleophiles ethanal, propanone, butanone and cyclopentanone were subsequently confirmed to be non-natural substrates in the synthesis direction using the wild type enzyme and its D6H variant. This exceptional widening of the nucleophile substrate scope offers a rapid entry, in good yields and high stereoselectivity, to less oxygenated alkyl ketones and aldehydes, which was hitherto impossible.

  7. Frustrated Lewis pair-like reactions of nucleophilic palladium carbenes with B(C6F5)3.

    PubMed

    Cui, Peng; Comanescu, Cezar C; Iluc, Vlad M

    2015-04-11

    The reactions of two nucleophilic palladium carbene complexes with the strong Lewis acid B(C6F5)3 afforded two zwitterionic products. One of them features a remote nucleophilic attack at the para-carbon of the supporting ligand, while the other indicates C-F activation of B(C6F5)3. Both behaviours are reminiscent of the reactivity of frustrated Lewis pairs due to the steric inaccessibility of the nucleophilic carbon center, but are unprecedented for transition metal carbene complexes. Furthermore, when those reactions are carried out in the presence of H2, products resulting from H2 splitting are observed.

  8. Asymmetric Friedel-Crafts alkylation of electron-rich N-heterocycles with nitroalkenes catalyzed by diphenylamine-tethered bis(oxazoline) and bis(thiazoline) Zn(II) complexes.

    PubMed

    Liu, Han; Lu, Shao-Feng; Xu, Jiaxi; Du, Da-Ming

    2008-07-07

    The asymmetric Friedel-Crafts alkylation of electron-rich N-containing heterocycles with nitroalkenes under catalysis of diphenylamine-tethered bis(oxazoline) and bis(thiazoline)-Zn(II) complexes was investigated. In the reaction of indole derivatives, the complex of ligand 4 f with trans-diphenyl substitutions afforded better results than previously published ligand 4 e with cis-diphenyl substitutions. Excellent yields (up to greater than 99 %) and enantioselectivities (up to 97 %) were achieved in most cases. The complex of ligand 4 d bearing tert-butyl groups gave the best results in the reactions of pyrrole. Moderate to good yields (up to 91 %) and enantioselectivities (up to 91 %) were achieved in most cases. The origin of the enantioselectivity was attributed to the NH-pi interaction between the catalyst and the incoming aromatic system in the transition state. Such an interaction was confirmed through comparison of the enantioselectivity and the absolute configuration of the products in the reactions catalyzed by designed ligands.

  9. Chemoselective nucleophilic fluorination induced by selective solvation of the SN2 transition state.

    PubMed

    Pliego, Josefredo R; Piló-Veloso, Dorila

    2007-02-22

    Reaction of the fluoride ion with secondary alkyl halides leads to 90% of elimination reaction and only 10% of nucleophilic substitution in dipolar aprotic solvents. Adding water to the organic phase, the SN2 yield increases in the cost of decreased reactivity. Using ab initio calculations, we have shown that it is possible to increase the reaction rate and the selectivity toward the SN2 process through supramolecular organocatalysis. The catalytic concept is based on selective solvation of the transition state through two hydrogen bonds provided by the 1,4-benzenedimethanol. The two hydrogen bonds between the catalyst and the SN2 transition state favor this pathway while just one strong hydrogen bond between the catalyst and the fluoride ion leads to a lower stabilization of the nucleophile, resulting in a higher reaction rate. Our calculations predict that the substitution product increases to 40% yield because of the selective catalysis provided by the 1,4-benzenedimethanol.

  10. Specific anion binding to sulfobetaine micelles and kinetics of nucleophilic reactions.

    PubMed

    Marte, Luisa; Beber, Rosane C; Farrukh, M Akhyar; Micke, Gustavo A; Costa, Ana C O; Gillitt, Nicholas D; Bunton, Clifford A; Di Profio, Pietro; Savelli, Gianfranco; Nome, Faruk

    2007-08-23

    With fully micellar bound substrates reactions of OH- with benzoic anhydride, Bz(2)O, and of Br- with methyl naphthalene-2-sulfonate, MeONs, in micellized sulfobetaines are strongly inhibited by NaClO4 which displaces the nucleophilic anions from the micellar pseudophases. Micellar incorporations of ClO4- and Br- are estimated with an ion-selective electrode and by electrophoresis, and partitioning of Br- between water and micelles is related to changes in NMR spectral (79)Br- line widths. Extents of inhibition by ClO4- of these nucleophilic reactions in the micellar pseudophase are related to quantitative displacement of the reactive anions from the micelles by ClO4-. The kinetic data are correlated with physical evidence on the strong interactions between sulfobetaines and ClO4-, which turn sulfobetaine micelles anionic and effectively provoke displacement of OH- and Br-.

  11. Biological matching of chemical reactivity: pairing indole nucleophilicity with electrophilic isoprenoids.

    PubMed

    Walsh, Christopher T

    2014-12-19

    The indole side chain of tryptophan has latent nucleophilic reactivity at both N1 and all six (nonbridgehead) carbons, which is not generally manifested in post-translational reactions of proteins. On the other hand, all seven positions can be prenylated by the primary metabolite Δ(2)-isopentenyl diphosphate by dimethyallyl transferase (DMATs) family members as initial steps in biosynthetic pathways to bioactive fungal alkaloids including ergots and tremorgens. These are formulated as regioselective capture of isopentenyl allylic cationic transition states by the indole side chain as a nucleophile. The balance of regiospecificity and promiscuity among these indole prenyltransferases continues to raise questions about possible Cope and azaCope rearrangements of nascent products. In addition to these two electron reaction manifolds, there is evidence for one electron reaction manifolds in indole ring biosynthetic functionalization.

  12. Organolithium compounds in the nucleophilic substitution of hydrogen in arenes and hetarenes

    NASA Astrophysics Data System (ADS)

    Kovalev, I. S.; Kopchuk, D. S.; Zyryanov, G. V.; Rusinov, V. L.; Chupakhin, O. N.; Charushin, V. N.

    2015-12-01

    The review considers the most typical examples of the direct non-activated non-catalytic C-C bond formation in arenes and their metal complexes activated by electron-withdrawing substituents in the aromatic nucleus and in hetarenes (azines and their N-oxides, porphyrins, etc.) upon the reactions with aliphatic and (hetero)aromatic (hetero)organolithium nucleophiles. Particular attention is given to the direct introduction of nitroxide radicals and (hetero)organic moieties into mono-, di- and triazines and their N-oxides. The influence of the structures of the (hetero)aromatic substrate and the (hetero)organolithium nucleophile on the reaction pathway and rate and on the structure of the reaction product is analyzed. The bibliography includes 237 references. Dedicated to Academician N S Zefirov on the occasion of 80th birthday.

  13. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    PubMed

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst.

  14. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    PubMed Central

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  15. Nucleophilic Additions to Coordinated 1,10-Phenanthroline: Intramolecular, Intermolecular, Reversible, and Irreversible.

    PubMed

    Arévalo, Rebeca; Menéndez, M Isabel; López, Ramón; Merino, Isabel; Riera, Lucía; Pérez, Julio

    2016-12-12

    KN(SiMe3 )2 reacts with [Re(CO)3 (phen)(PMe3 )]OTf via reversible addition to the phen ligand and irreversible deprotonation of the PMe3 ligand followed by intramolecular attack to phen by the deprotonated phosphane, whereas MeLi irreversibly adds to phen. The addition of MeLi has been shown to be intermolecular, unlike previously known nucleophilic additions to pyridines.

  16. Transition-Metal-Free Stereospecific Cross-Coupling with Alkenylboronic Acids as Nucleophiles.

    PubMed

    Li, Chengxi; Zhang, Yuanyuan; Sun, Qi; Gu, Tongnian; Peng, Henian; Tang, Wenjun

    2016-08-31

    We herein report a transition-metal-free cross-coupling between secondary alkyl halides/mesylates and aryl/alkenylboronic acid, providing expedited access to a series of nonchiral/chiral coupling products in moderate to good yields. Stereospecific SN2-type coupling is developed for the first time with alkenylboronic acids as pure nucleophiles, offering an attractive alternative to the stereospecific transition-metal-catalyzed C(sp(2))-C(sp(3)) cross-coupling.

  17. ortho-Lithium/magnesium carboxylate-driven aromatic nucleophilic substitution reactions on unprotected naphthoic acids.

    PubMed

    Aissaoui, Regadia; Nourry, Arnaud; Coquel, Ariane; Dao, Thi Thanh Hà; Derdour, Aicha; Helesbeux, Jean-Jacques; Duval, Olivier; Castanet, Anne-Sophie; Mortier, Jacques

    2012-01-06

    Substitution of an ortho-fluoro or methoxy group in 1- and 2-naphthoic acids furnishing substituted naphthoic acids occurs in good to excellent yields upon reaction with alkyl/vinyl/aryl organolithium and Grignard reagents, in the absence of a metal catalyst without the need to protect the carboxyl (CO(2)H) group. This novel nucleophilic aromatic substitution is presumed to proceed via a precoordination of the organometallic with the substrate, followed by an addition/elimination.

  18. Asymmetric catalysis for the construction of quaternary carbon centres: nucleophilic addition on ketones and ketimines.

    PubMed

    Riant, Olivier; Hannedouche, Jérôme

    2007-03-21

    There is a growing need in organic synthesis for efficient methodologies for the asymmetric synthesis of quaternary carbon centres. One of the most attractive and straightforward methods focuses on the use of asymmetric catalysis for the addition of various types of nucleophiles on prochiral ketones and ketimines. A view of the literature from this growing area of research will be presented in this review, with an emphasis on the pioneer works and milestones brought by the main players in this field.

  19. Interrupting Nazarov Reaction with Different Trapping Modality: Utilizing Potassium Alkynyltrifluoroborate as a σ-Nucleophile.

    PubMed

    William, Ronny; Wang, Siming; Mallick, Asadulla; Liu, Xue-Wei

    2016-09-16

    The putative oxyallyl cation intermediate generated following Nazarov cyclization of dienone has been successfully intercepted with potassium alkynyltrifluoroborates which act as σ-nucleophiles in the presence of BF3·Et2O. This new trapping modality allowed unprecedented introduction of an alkynyl moiety to the cyclopentanone framework by means of an interrupted Nazarov reaction. The α-alkynyl cyclopentanone product can be further transformed into an array of densely functionalized cyclic compounds.

  20. Nucleophilic aromatic substitution on aryl-amido ligands promoted by oxidizing osmium(IV) centers.

    PubMed

    Soper, Jake D; Saganic, Erik; Weinberg, David; Hrovat, David A; Benedict, Jason B; Kaminsky, Werner; Mayer, James M

    2004-09-20

    Addition of amine nucleophiles to acetonitrile solutions of the OsIV anilido complex TpOs(NHPh)Cl2 (1) [Tp = hydrotris(1-pyrazolyl)borate] gives products with derivatized anilido ligands, i.e., TpOs[NH-p-C6H4(N(CH2)5)]Cl2 (2) from piperidine and TpOs[NH-p-C6H4N(CH2)4]Cl2 (3) from pyrrolidine. These materials are formed in approximately 30% yield under anaerobic conditions, together with approximately 60% yields of the OsIII aniline complex TpOs(NH2Ph)Cl2 (5). Formation of the para-substituted materials 2 or 3 from 1 involves oxidative removal of two hydrogen atoms (two H+ and two e-). The oxidation can be accomplished by 1, forming 5, or by O2. Related reactions have been observed with other amines and with the 2-naphthylamido derivative, which gives an ortho-substituted product. Kinetic studies indicate an addition-elimination mechanism involving initial attack of the amine nucleophile on the anilido ligand. These are unusual examples of nucleophilic aromatic substitution of hydrogen. Ab initio calculations on 1 show that the LUMO has significant density at the ortho and para positions of the anilido ligand, resembling the LUMO of nitrobenzene. By analogy with nucleophilic aromatic substitution, 2 is quantitatively formed from piperidine and the p-chloroanilide TpOs(NH-p-C6H4Cl)Cl2 (7). Binding the anilide ligands to an oxidizing OsIV center thus causes a remarkable umpolung or inversion of chemical character from a typically electron-rich anilido to an electron-deficient aromatic functionality. This occurs because of the coupling of redox changes at the TpOsIV center with bond formation at the coordinated ligand.

  1. Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes.

    PubMed

    Das, Siva Prasad; Ganguly, Rakesh; Li, Yongxin; Soo, Han Sen

    2016-09-14

    A growing number of halogenated organic compounds have been identified as hazardous pollutants. Although numerous advanced oxidative processes have been developed to degrade organohalide compounds, reductive and nucleophilic molecular approaches to dehalogenate organic compounds have rarely been reported. In this manuscript, we employ nickel(ii)-ate complexes bearing the o-phenylenebis(N-methyloxamide) (Me2opba) tetraanionic ligand as nucleophilic reagents that can react with alkyl halides (methyl up to the bulky isobutyl) by O-alkylation to give their respective imidate products. Four new nickel(ii) complexes have been characterized by X-ray crystallography, and the salient structural parameters and FT-IR vibrational bands (∼1655 cm(-1)) concur with their assignment as the imidate tautomeric form. To the best of our knowledge, this is the first report on the nucleophilic reactivity of Ni(II)(Me2opba) with halogenated organic compounds. The parent nickel(ii) Me2opba complex exhibits reversible electrochemical oxidation and reduction behavior. As a proof of concept, Ni(II)(Me2opba) and its alkylated congeners were utilized for the electrocatalytic reduction of chloroform, as a representative, simple polyhalogenated organic molecule that could arise from the oxidative treatment of organic compounds by chlorination. Modest turnover numbers of up to 6 were recorded, with dichloromethane identified as one of the possible products. Future efforts are directed towards bulkier -ate complexes that possess metal-centered instead of ligand-centered nucleophilic activity to create more effective electrocatalysts for the reduction of halogenated organic compounds.

  2. Novel nucleophiles enhance the human serum paraoxonase 1 (PON1)-mediated detoxication of organophosphates.

    PubMed

    Chambers, Janice E; Chambers, Howard W; Meek, Edward C; Funck, Kristen E; Bhavaraju, Manikanthan H; Gwaltney, Steven R; Pringle, Ronald B

    2015-01-01

    Paraoxonase 1 (PON1) is a calcium-dependent hydrolase associated with serum high-density lipoprotein particles. PON1 hydrolyzes some organophosphates (OPs), including some nerve agents, through nucleophilic attack of hydroxide ion (from water) in the active site. Most OPs are hydrolyzed inefficiently. This project seeks to identify nucleophiles that can enhance PON1-mediated OP degradation. A series of novel nucleophiles, substituted phenoxyalkyl pyridinium oximes, has been synthesized which enhance the degradation of surrogates of sarin (nitrophenyl isopropyl methylphosphonate; NIMP) and VX (nitrophenyl ethyl methylphosphonate; NEMP). Two types of in vitro assays have been conducted, a direct assay using millimolar concentrations of substrate with direct spectrophotometric quantitation of a hydrolysis product (4-nitrophenol) and an indirect assay using submicromolar concentrations of substrate with quantitation by the level of inhibition of an exogenous source of acetylcholinesterase from non-hydrolyzed substrate. Neither NIMP nor NEMP is hydrolyzed effectively by PON1 if one of these novel oximes is absent. However, in the presence of eight novel oximes, PON1-mediated degradation of both surrogates occurs. Computational modeling has created a model of PON1 embedded in phospholipid and has indicated general agreement of the binding enthalpies with the relative efficacy as PON1 enhancers. PON1 enhancement of degradation of OPs could be a unique and unprecedented mechanism of antidotal action.

  3. Detoxication of sulfur half-mustards by nucleophilic scavengers: robust activity of thiopurines

    PubMed Central

    Liu, Jinyun; Powell, K. Leslie; Thames, Howard D.; MacLeod, Michael C.

    2010-01-01

    Sulfur mustard (bis-(2-chloroethyl)sulfide) has been used in chemical warfare since World War I, and is well known as an acutely toxic vesicant. It has been implicated as a carcinogen after chronic low-level exposure, and is known to form inter-strand crosslinks in DNA. Sulfur and nitrogen mustards are currently of interest as potential chemical threat agents for terrorists due to ease of synthesis. Sulfur mustard and monofunctional analogs (half-mustards, 2-[chloroethyl] alkyl sulfides) react as electrophiles, damaging cellular macromolecules, and thus are potentially subject to scavenging by nucleophilic agents. We have determined rate constants for the reaction of four purine derivatives that contain nucleophilic thiol moieties with several sulfur-half-mustards. Three of these compounds, 2,6-dithiopurine, 2,6-dithiouric acid, and 9-methyl-6-mercaptopurine, exhibit facile reaction with the electrophilic mustard compounds. At near neutral pH, these thiopurines are much better nucleophilic scavengers of mustard electrophiles than other low molecular weight thiols such as N-acetyl cysteine and glutathione. Progress curves calculated by numerical integration techniques indicate that equimolar concentrations of thiopurine provide significant reductions in the overall exposure to the episulfonium ions, which are the major reactive, electrophiles produced when sulfur mustards are dissolved in aqueous solution. PMID:20050632

  4. Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding.

    PubMed

    Brinck, Tore; Carlqvist, Peter; Stenlid, Joakim H

    2016-12-22

    A new local property, the local electron attachment energy [E(r)], is introduced and is demonstrated to be a useful guide to predict intermolecular interactions and chemical reactivity. The E(r) is analogous to the average local ionization energy but indicates susceptibility toward interactions with nucleophiles rather than electrophiles. The functional form E(r) is motivated based on Janak's theorem and the piecewise linear energy dependence of electron addition to atomic and molecular systems. Within the generalized Kohn-Sham method (GKS-DFT), only the virtual orbitals with negative eigenvalues contribute to E(r). In the present study, E(r) has been computed from orbitals obtained from GKS-DFT computations with a hybrid exchange-correlation functional. It is shown that E(r) computed on a molecular isodensity surface, ES(r), reflects the regioselectivity and relative reactivity for nucleophilic aromatic substitution, nucleophilic addition to activated double bonds, and formation of halogen bonds. Good to excellent correlations between experimental or theoretical measures of interaction strengths and minima in ES(r) (ES,min) are demonstrated.

  5. 4-Trifluoromethyl-p-quinols as dielectrophiles: three-component, double nucleophilic addition/aromatization reactions.

    PubMed

    Dong, Jinhuan; Shi, Lou; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2016-06-01

    In recent years, numerous methods have emerged for the synthesis of trifluoromethylated arenes based on the late-stage introduction of a trifluoromethyl group onto an aryl ring. In sharp comparison, the synthesis of trifluoromethylated arenes based on the pre-introduction of a trifluoromethyl group onto an "aromatic to be" carbon has rarely been addressed. It has been found that 4-trifluoromethyl-p-quinol silyl ethers, the readily available and relatively stable compounds, can act as dielectrophiles to be applied to multi-component reactions for the synthesis of various trifluoromethylated arenes. Catalyzed by In(OTf)3, 4-trifluoromethyl-p-quinol silyl ethers react with C-, N-, and S-nucleophiles, respectively, in a regiospecific 1,2-addition manner to generate the corresponding highly reactive electrophilic intermediates. Further reaction of the in-situ generated electrophiles with a C-nucleophile followed by spontaneous aromatization enables the construction of functionalized trifluoromethyl arenes. This three-component, double nucleophilic addition/aromatization reaction based on the pre-introduction of a trifluoromethyl group onto an "aromatic to be" carbon provides a divergent strategy for the synthesis of trifluoromethylated arenes under mild reaction conditions in a single operation.

  6. 4-Trifluoromethyl-p-quinols as dielectrophiles: three-component, double nucleophilic addition/aromatization reactions

    PubMed Central

    Dong, Jinhuan; Shi, Lou; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2016-01-01

    In recent years, numerous methods have emerged for the synthesis of trifluoromethylated arenes based on the late-stage introduction of a trifluoromethyl group onto an aryl ring. In sharp comparison, the synthesis of trifluoromethylated arenes based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon has rarely been addressed. It has been found that 4-trifluoromethyl-p-quinol silyl ethers, the readily available and relatively stable compounds, can act as dielectrophiles to be applied to multi-component reactions for the synthesis of various trifluoromethylated arenes. Catalyzed by In(OTf)3, 4-trifluoromethyl-p-quinol silyl ethers react with C-, N-, and S-nucleophiles, respectively, in a regiospecific 1,2-addition manner to generate the corresponding highly reactive electrophilic intermediates. Further reaction of the in-situ generated electrophiles with a C-nucleophile followed by spontaneous aromatization enables the construction of functionalized trifluoromethyl arenes. This three-component, double nucleophilic addition/aromatization reaction based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon provides a divergent strategy for the synthesis of trifluoromethylated arenes under mild reaction conditions in a single operation. PMID:27246540

  7. Detoxication of sulfur half-mustards by nucleophilic scavengers: robust activity of thiopurines.

    PubMed

    Liu, Jinyun; Powell, K Leslie; Thames, Howard D; MacLeod, Michael C

    2010-03-15

    Sulfur mustard (bis-(2-chloroethyl)sulfide) has been used in chemical warfare since World War I and is well known as an acutely toxic vesicant. It has been implicated as a carcinogen after chronic low-level exposure and is known to form interstrand cross-links in DNA. Sulfur and nitrogen mustards are currently of interest as potential chemical threat agents for terrorists because of ease of synthesis. Sulfur mustard and monofunctional analogues (half-mustards, 2-[chloroethyl] alkyl sulfides) react as electrophiles, damaging cellular macromolecules, and thus are potentially subject to scavenging by nucleophilic agents. We have determined rate constants for the reaction of four purine derivatives that contain nucleophilic thiol moieties with several sulfur-half-mustards. Three of these compounds, 2,6-dithiopurine, 2,6-dithiouric acid, and 9-methyl-6-mercaptopurine, exhibit facile reaction with the electrophilic mustard compounds. At near neutral pH, these thiopurines are much better nucleophilic scavengers of mustard electrophiles than other low molecular weight thiols such as N-acetyl cysteine and glutathione. Progress curves calculated by numerical integration techniques indicate that equimolar concentrations of thiopurine provide significant reductions in the overall exposure to the episulfonium ions, which are the major reactive, electrophiles produced when sulfur mustards are dissolved in aqueous solution.

  8. Nucleophile Assisting Leaving Groups: A Strategy for Aliphatic 18F-Fluorination

    PubMed Central

    Lu, Shuiyu; Lepore, Salvatore D.; Li, Song Ye; Mondal, Deboprosad; Cohn, Pamela C.; Bhunia, Anjan K.; Pike, Victor W.

    2009-01-01

    A series of arylsulfonate nucleophile assisting leaving groups (NALGs) were prepared in which the metal chelating unit is attached to the aryl ring via an ether linker. These NALGs exhibited significant rate enhancements in halogenation reactions using metal halides. Studies with a NALG containing a macrocyclic ether unit suggest that rate enhancements of these nucleophilic halogenation reactions are facilitated by stabilization of charge in the transition state rather than through strong pre-complexation with metal cation. In several cases, a primary substrate containing one of the new leaving groups rivaled or surpassed the reactivity of triflates when exposed to nucleophile but was otherwise highly stable and isolable. These and previously disclosed chelating leaving groups were used in 18F-fluorination reactions using no-carrier-added [18F]fluoride ion (t1/2 = 109.7 min, β+ = 97%) in CH3CN. Under microwave irradiation and without the assistance of a cryptand, such as K2.2.2, primary substrates with select NALGs led to a substantial improvement (2 to 3 fold) in radiofluorination yields over traditional leaving groups. PMID:19572583

  9. Reactivity of Aziridinomitosene Derivatives Related to FK317 in the Presence of Protic Nucleophiles

    PubMed Central

    Wiedner, Susan D.; Vedejs, Edwin

    2012-01-01

    The syntheses and reactivity of N-TBDPS and N-trityl protected derivatives of an aziridinomitosene corresponding to FK317 are described. New reactivity patterns were observed for these highly sensitive and functionally dense heterocycles under mild nucleophilic conditions approaching the threshold for degradation. Thus, the silyl or trityl protected aziridinomitosene reacted with Cs2CO3/CD3OD to give isomeric products where substitution occurred at C(10) and C(9a) (mitomycin numbering) providing a CD3 ether and a CD3 hemiaminal respectively. These findings show that heterolysis at C(10) is faster than at aziridine C(1), in contrast to the behavior of typical aziridinomitosenes in the mitomycin series. The labile N-TBDPS hemiaminal and the more stable N-trityl hemiaminal resemble the mitomycin K substitution pattern. A reagent consisting of CsF in CF3CH2OH/CH3CN desilylated a simple N-TBDPS aziridine, but caused nucleophilic cleavage at C(1) as well as C(10) without cleavage of the N-TBPDS group in the fully functionalized penultimate aziridinomitosene. The high reactivity of the C(10) carbamate with nucleophiles precludes the use of deprotection methodology that requires N-protonation for fully functionalized aziridinomitosenes in the FK317 series. PMID:22208619

  10. Applications of helical-chiral pyridines as organocatalysts in asymmetric synthesis.

    PubMed

    Peng, Zhili; Takenaka, Norito

    2013-02-01

    A new family of chiral pyridines has been designed and synthesized for use in asymmetric organocatalysis. Thus, helical-chiral pyridines induce high enantioselectivity in a range of mechanistically unrelated, synthetically significant transformations, including Friedel-Crafts alkylation with nitroalkenes, periselective Diels-Alder reactions with nitroalkenes, the ring-opening of epoxides with a chloride nucleophile, and the propargylation of aldehydes.

  11. 1,1,1-Trimethylhydrazinium iodide: A novel, highly reactive reagent for aromatic amination via vicarious nucleophilic substitution of hydrogen

    SciTech Connect

    Pagoria, P.F.; Mitchell, A.R.; Schmidt, R.D.

    1996-05-03

    1,1,1-Trimethylhydrazinium iodide, TMHI, has been shown to be a novel vicarious nucleophilic substitution aminating reagent. It can be used to obtain isomers not produced by reaction with other nucleophilic aminating reagents. It is easily prepared from 1,1-dimethylhydrazine, or directly from hydrazine. Further studies on the use of TMHI and related quaternary hydrazines as nucleophlic aminating reagents are in progress. 1 tab.

  12. Nucleophilic Polymers and Gels in Hydrolytic Degradation of Chemical Warfare Agents.

    PubMed

    Bromberg, Lev; Creasy, William R; McGarvey, David J; Wilusz, Eugene; Hatton, T Alan

    2015-10-07

    Water- and solvent-soluble polymeric materials based on polyalkylamines modified with nucleophilic groups are introduced as catalysts of chemical warfare agent (CWA) hydrolysis. A comparative study conducted at constant pH and based on the criteria of the synthetic route simplicity, aqueous solubility, and rate of hydrolysis of CWA mimic, diisopropylfluorophosphate (DFP), indicated that 4-aminopyridine-substituted polyallylamine (PAAm-APy) and polyvinylamine substituted with 4-aminopyridine (PVAm-APy) were advantageous over 4-pyridinealdoxime-modified PVAm and PAAm, poly(butadiene-co-pyrrolidinopyridine), and PAAm modified with bipyridine and its complex with Cu(II). The synthesis of PVAm-APy and PAAm-APy involved generation of a betaine derivative of acrylamide and its covalent attachment onto the polyalkylamine chain followed by basic hydrolysis. Hydrogel particles of PAAm-APy and PVAm-APy cross-linked by epichlorohydrin exhibited pH-dependent swelling and ionization patterns that affected the rate constants of DFP nucleophilic hydrolysis. Deprotonation of the aminopyridine and amine groups increased the rates of the nucleophilic hydrolysis. The second-order rate of nucleophilic hydrolysis was 5.5- to 10-fold higher with the nucleophile-modified gels compared to those obtained by cross-linking of unmodified PAAm, throughout the pH range. Testing of VX and soman (GD) was conducted in 2.5-3.7 wt % PVAm-APy suspensions or gels swollen in water or DMSO/water mixtures. The half-lives of GD in aqueous PVAm-APy were 12 and 770 min at pH 8.5 and 5, respectively. Addition of VX into 3.5-3.7 wt % suspensions of PVAm-APy in DMSO-d6 and D2O at initial VX concentration of 0.2 vol % resulted in 100% VX degradation in less than 20 min. The unmodified PVAm and PAAm were 2 orders of magnitude less active than PVAm-APy and PAAm-APy, with VX half-lives in the range of 24 h. Furthermore, the PVAm-APy and PAAm-APy gels facilitated the dehydrochlorination reaction of sulfur mustard

  13. Nucleophilic reactions at a vinylic center. XVI. Investigation of the nucleophilic exchange of fluorine in. beta. -fluoroacrylonitriles by the MINDO/3 method

    SciTech Connect

    Shainyan, B.A.

    1986-01-10

    The potential energy surfaces of the reactions of F/sup -/ with cis- and trans-..beta..-fluoroacrylonitriles were calculated by the MINDO/3 method. It was shown that three reaction paths can be realized in the system, i.e., attack by the nucleophile at the ..beta..-carbon atom, the elimination of a proton from the ..cap alpha.. position, and the elimination of a proton from the ..beta.. position. All three reaction paths are exothermic in the gas phase, and the elimination of the proton from the ..cap alpha.. position is 70 kJ/mole more favorable than from the ..beta.. position. Allowance for the effect of the medium in terms of an unconcerted solvation model modes not lead to the appearance of an activation barrier, in contrast to the reactions of anions with ethylene.

  14. Enhanced Reactivity in Nucleophilic Acyl Substitution Ion/Ion Reactions Using Triazole-Ester Reagents

    NASA Astrophysics Data System (ADS)

    Bu, Jiexun; Peng, Zhou; Zhao, Feifei; McLuckey, Scott A.

    2017-02-01

    The acyl substitution reactions between 1-hydroxy-7-aza-benzotriazole (HOAt)/1-hydroxy-benzotriazole (HOBt) ester reagents and nucleophilic side chains on peptides have been demonstrated in the gas phase via ion/ion reactions. The HOAt/HOBt ester reagents were synthesized in solution and ionized via negative nano-electrospray ionization. The anionic reagents were then reacted with doubly protonated model peptides containing amines, guanidines, and imidazoles in the gas phase. The complexes formed in the reaction cell were further probed with ion trap collision induced dissociation (CID) yielding either a covalently modified analyte ion or a proton transfer product ion. The covalent reaction yield of HOAt/HOBt ester reagents was demonstrated to be higher than the yield with N-hydroxysuccinimide (NHS) ester reagents over a range of equivalent conditions. Density functional theory (DFT) calculations were performed with a primary amine model system for both triazole-ester and NHS-ester reactants, which indicated a lower transition state barrier for the former reagent, consistent with experiments. The work herein demonstrates that the triazole-ester reagents are more reactive, and therefore less selective, than the analogous NHS-ester reagent. As a consequence, the triazole-ester reagents are the first to show efficient reactivity with unprotonated histidine residues in the gas phase. For all nucleophilic sites and all reagents, covalent reactions are favored under long time, low amplitude activation conditions. This work presents a novel class of reagents capable of gas-phase conjugation to nucleophilic sites in analyte ions via ion/ion chemistry.

  15. Nucleophilic displacement reactions of 5′-derivatised nucleosides in a vibration ball mill

    PubMed Central

    Eguaogie, Olga; Conlon, Patrick F; Ravalico, Francesco; Sweet, Jamie S T; Elder, Thomas B; Conway, Louis P; Lennon, Marc E; Hodgson, David R W

    2017-01-01

    Vibration ball-milling in a zirconia-lined vessel afforded clean and quantitative nucleophilic displacement reactions between 4-methoxybenzylthiolate salts and nucleoside 5′-halides or 5′-tosylates in five to 60 minutes. Under these conditions, commonly-encountered nucleoside cyclisation byproducts (especially of purine nucleosides) were not observed. Liquid-assisted grinding of the same 5'-iodide and 5′-tosylate substrates with potassium selenocyanate in the presence of DMF produced the corresponding 5′-selenocyanates in variable yields over the course of between one and eleven hours thereby avoiding the preparation and use of hygroscopic tetrabutylammonium salts. PMID:28179952

  16. Recent Developments in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and Alkynes

    NASA Astrophysics Data System (ADS)

    Hintermann, Lukas

    Progress in the field of metal-catalyzed redox-neutral additions of oxygen nucleophiles (water, alcohols, carboxylic acids, and others) to alkenes, alkynes, and allenes between 2001 and 2009 is critically reviewed. Major advances in reaction chemistry include development of chiral Lewis acid catalyzed asymmetric oxa-Michael additions and Lewis-acid catalyzed hydro-alkoxylations of nonactivated olefins, as well as further development of Markovnikov-selective cationic gold complex-catalyzed additions of alcohols or water to alkynes and allenes.

  17. Synthesis of Allenamides by Copper-Catalyzed Coupling of Propargylic Bromides and Nitrogen Nucleophiles.

    PubMed

    Demmer, Charles S; Benoit, Emeline; Evano, Gwilherm

    2016-03-18

    An efficient and general synthesis of allenamides derived from oxazolidinones and hydantoins is reported. Upon activation with a combination of a copper catalyst and a 2,2'-bipyridine derivative in the presence of an inorganic base, propargylic bromides were found to be suitable reagents for the direct allenylation of nitrogen nucleophiles by a formal copper-catalyzed S(N)2' reaction. Besides the availability of the starting materials, notable features of this route to allenamides are its mild reaction conditions, the reaction being performed at room temperature in most cases, and its applicability to the preparation of mono-, di-, as well as trisubstituted allenamides.

  18. Bicyclo[3.2.1]octane synthons from cyclopropenes: functionalization of cycloadducts by nucleophilic additions.

    PubMed

    Orugunty, Ravi S; Wright, Dennis L; Battiste, Merle A; Helmich, Richard J; Abboud, Khalil

    2004-01-23

    It has been known for several decades that a highly functionalized family of tetrahalobicyclo[3.2.1]octadienes are readily available through the cycloaddition of furan or cyclopentadiene with either tetrachloro- or tetrabromocyclopropene. However, the application of these highly functionalized building blocks in synthesis has remained relatively unexplored in relation to their better-known counterparts derived through oxyallyl cation additions. As a first step toward utilizing these highly versatile intermediates in synthesis, a study of the addition of various nucleophiles to the halogenated nucleus has been conducted. It has been found that these halogenated systems are amenable to a wide range of functionalizations in high yields and with good selectivities.

  19. Highly efficient "on water" catalyst-free nucleophilic addition reactions using difluoroenoxysilanes: dramatic fluorine effects.

    PubMed

    Yu, Jin-Sheng; Liu, Yun-Lin; Tang, Jing; Wang, Xin; Zhou, Jian

    2014-09-01

    A remarkable fluorine effect on "on water" reactions is reported. The CF⋅⋅⋅HO interactions between suitably fluorinated nucleophiles and the hydrogen-bond network at the phase boundary of oil droplets enable the formation of a unique microstructure to facilitate on water catalyst-free reactions, which are difficult to realize using nonfluorinated substrates. Accordingly, a highly efficient on water, catalyst-free reaction of difluoroenoxysilanes with aldehydes, activated ketones, and isatylidene malononitriles was developed, thus leading to the highly efficient synthesis of a variety of α,α-difluoro-β-hydroxy ketones and quaternary oxindoles.

  20. Synthesis of a Fluorescent Acridone using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence.

    PubMed

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R

    2015-07-14

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the acridone product of the synthesis are analyzed by common techniques available in most undergraduate chemistry laboratories, such as melting point, TLC, IR spectroscopy, UV-Vis spectroscopy, and fluorescence spectroscopy. Yields for each transformation in the synthesis are generally moderately low to good (20-90%) and nearly all of the students (>90%) who attempted the synthesis were able to produce the final acridone product.

  1. Nucleophilic substitution at silicon (SN2@Si) via a central reaction barrier.

    PubMed

    Bento, A Patrícia; Bickelhaupt, F Matthias

    2007-03-16

    It is textbook knowledge that nucleophilic substitution at carbon (SN2@C) proceeds via a central reaction barrier which disappears in the corresponding nucleophilic substitution reaction at silicon (SN2@Si). Here, we address the question why the central barrier disappears from SN2@C to SN2@Si despite the fact that these processes are isostructural and isoelectronic. To this end, we have explored and analyzed the potential energy surfaces (PES) of various Cl-+CR3Cl (R=H, CH3) and Cl-+SiR3Cl model reactions (R=H, CH3, C2H5, and OCH3). Our results show that the nature of the SN2 reaction barrier is in essence steric, but that it can be modulated by electronic factors. Thus, simply by increasing the steric demand of the substituents R around the silicon atom, the SN2@Si mechanism changes from its regular single-well PES (with a stable intermediate transition complex, TC), via a triple-well PES (with a pre- and a post-TS before and after the central TC), to a double-well PES (with a TS; R=OCH3), which is normally encountered for SN2@C reactions.

  2. Mechanism of SN2 disulfide bond cleavage by phosphorus nucleophiles. Implications for biochemical disulfide reducing agents.

    PubMed

    Dmitrenko, Olga; Thorpe, Colin; Bach, Robert D

    2007-10-26

    The B3LYP variant of DFT has been used to study the mechanism of S-S bond scission in dimethyl disulfide by a phosphorus nucleophile, trimethylphospine (TMP). The reaction is highly endothermic in the gas phase and requires significant external stabilization of the charged products. DFT calculations (B3LYP) were performed with explicit (water molecules added) and implicit solvent corrections (COSMO model). The transition structures for this SN2 displacement reaction in a number of model systems have been located and fully characterized. The reaction barriers calculated with different approaches for different systems are quite close (around 11 kcal/mol). Remarkably, the calculations suggest that the reaction is almost barrierless with respect to the preorganized reaction complex and that most of the activation energy is required to rearrange the disulfide and TMP to its most effective orientation for the SMe group transfer way. Different reactivities of different phosphorus nucleophiles were suggested to be the result of steric effects, as manifested largely by varying amounts of hindrance to solvation of the initial product phosphonium ion. These data indicate that the gas-phase addition of a phosphine to the disulfide moiety will most likely form a phosphonium cation-thiolate anion salt, in the presence of four or more water molecules, that provide sufficient H-bonding stabilization to allow displacement of the thiolate anion, a normal uncomplicated SN2 transition state is to be expected.

  3. The active site sulfenic acid ligand in nitrile hydratases can function as a nucleophile.

    PubMed

    Martinez, Salette; Wu, Rui; Sanishvili, Ruslan; Liu, Dali; Holz, Richard

    2014-01-29

    Nitrile hydratase (NHase) catalyzes the hydration of nitriles to their corresponding commercially valuable amides at ambient temperatures and physiological pH. Several reaction mechanisms have been proposed for NHase enzymes; however, the source of the nucleophile remains a mystery. Boronic acids have been shown to be potent inhibitors of numerous hydrolytic enzymes due to the open shell of boron, which allows it to expand from a trigonal planar (sp(2)) form to a tetrahedral form (sp(3)). Therefore, we examined the inhibition of the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) by boronic acids via kinetics and X-ray crystallography. Both 1-butaneboronic acid (BuBA) and phenylboronic acid (PBA) function as potent competitive inhibitors of PtNHase. X-ray crystal structures for BuBA and PBA complexed to PtNHase were solved and refined at 1.5, 1.6, and 1.2 Å resolution. The resulting PtNHase-boronic acid complexes represent a "snapshot" of reaction intermediates and implicate the cysteine-sulfenic acid ligand as the catalytic nucleophile, a heretofore unknown role for the αCys(113)-OH sulfenic acid ligand. Based on these data, a new mechanism of action for the hydration of nitriles by NHase is presented.

  4. Synthesis, Structure, and Reactivity of Anionic sp(2) -sp(3) Diboron Compounds: Readily Accessible Boryl Nucleophiles.

    PubMed

    Pietsch, Sabrina; Neeve, Emily C; Apperley, David C; Bertermann, Rüdiger; Mo, Fanyang; Qiu, Di; Cheung, Man Sing; Dang, Li; Wang, Jianbo; Radius, Udo; Lin, Zhenyang; Kleeberg, Christian; Marder, Todd B

    2015-05-04

    Lewis base adducts of tetra-alkoxy diboron compounds, in particular bis(pinacolato)diboron (B2 pin2 ), have been proposed as the active source of nucleophilic boryl species in metal-free borylation reactions. We report the isolation and detailed structural characterization (by solid-state and solution NMR spectroscopy and X-ray crystallography) of a series of anionic adducts of B2 pin2 with hard Lewis bases, such as alkoxides and fluoride. The study was extended to alternative Lewis bases, such as acetate, and other diboron reagents. The B(sp(2) )-B(sp(3) ) adducts exhibit two distinct boron environments in the solid-state and solution NMR spectra, except for [(4-tBuC6 H4 O)B2 pin2 ](-) , which shows rapid site exchange in solution. DFT calculations were performed to analyze the stability of the adducts with respect to dissociation. Stoichiometric reaction of the isolated adducts with two representative series of organic electrophiles-namely, aryl halides and diazonium salts-demonstrate the relative reactivities of the anionic diboron compounds as nucleophilic boryl anion sources.

  5. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  6. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate.

    PubMed

    Stone, Everett M; Chantranupong, Lynne; Georgiou, George

    2010-12-14

    The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.

  7. Surprising unreactivity of cholesterol-5,6-epoxides towards nucleophiles[S

    PubMed Central

    Paillasse, Michael R.; Saffon, Nathalie; Gornitzka, Heinz; Silvente-Poirot, Sandrine; Poirot, Marc; de Medina, Philippe

    2012-01-01

    We recently established that drugs used for the treatment and the prophylaxis of breast cancers, such as tamoxifen, were potent inhibitors of cholesterol-5,6-epoxide hydrolase (ChEH), which led to the accumulation of 5,6α-epoxy-cholesterol (5,6α-EC) and 5,6β-epoxy-cholesterol (5,6β-EC). This could be considered a paradox because epoxides are known as alkylating agents with putative carcinogenic properties. We report here that, as opposed to the carcinogen styrene-oxide, neither of the ECs reacted spontaneously with nucleophiles. Under catalytic conditions, 5,6β-EC remains unreactive whereas 5,6α-EC gives cholestan-3β,5α-diol-6β-substituted compounds. These data showed that 5,6-ECs are stable epoxides and unreactive toward nucleophiles in the absence of a catalyst, which contrasts with the well-known reactivity of aromatic and aliphatic epoxides. These data rule out 5,6-EC acting as spontaneous alkylating agents. In addition, these data support the existence of a stereoselective metabolism of 5,6α-EC. PMID:22285872

  8. Reduced Reactivity of Amines against Nucleophilic Substitution via Reversible Reaction with Carbon Dioxide.

    PubMed

    Mohammed, Fiaz S; Kitchens, Christopher L

    2015-12-23

    The reversible reaction of carbon dioxide (CO₂) with primary amines to form alkyl-ammonium carbamates is demonstrated in this work to reduce amine reactivity against nucleophilic substitution reactions with benzophenone and phenyl isocyanate. The reversible formation of carbamates has been recently exploited for a number of unique applications including the formation of reversible ionic liquids and surfactants. For these applications, reduced reactivity of the carbamate is imperative, particularly for applications in reactions and separations. In this work, carbamate formation resulted in a 67% reduction in yield for urea synthesis and 55% reduction for imine synthesis. Furthermore, the amine reactivity can be recovered upon reversal of the carbamate reaction, demonstrating reversibility. The strong nucleophilic properties of amines often require protection/de-protection schemes during bi-functional coupling reactions. This typically requires three separate reaction steps to achieve a single transformation, which is the motivation behind Green Chemistry Principle #8: Reduce Derivatives. Based upon the reduced reactivity, there is potential to employ the reversible carbamate reaction as an alternative method for amine protection in the presence of competing reactions. For the context of this work, CO₂ is envisioned as a green protecting agent to suppress formation of n-phenyl benzophenoneimine and various n-phenyl-n-alky ureas.

  9. Identification of the nucleophile catalytic residue of GH51 α-l-arabinofuranosidase from Pleurotus ostreatus

    SciTech Connect

    Amore, Antonella; Iadonisi, Alfonso; Vincent, Florence; Faraco, Vincenza

    2015-12-21

    In this paper, the recombinant α-l-arabinofuranosidase from the fungus Pleurotus ostreatus (rPoAbf) was subjected to site-directed mutagenesis in order to identify the catalytic nucleophile residue. Based on bioinformatics and homology modelling analyses, E449 was revealed to be the potential nucleophilic residue. Thus, the mutant E449G of PoAbf was recombinantly expressed in Pichia pastoris and its recombinant expression level and reactivity were investigated in comparison to the wild-type. The design of a suitable set of hydrolysis experiments in the presence or absence of alcoholic arabinosyl acceptors and/or formate salts allowed to unambiguously identify the residue E449 as the nucleophile residue involved in the retaining mechanism of this GH51 arabinofuranosidase. 1H NMR analysis was applied for the identification of the products and the assignement of their anomeric configuration.

  10. Highly Enantioselective Nucleophilic Dearomatization of Pyridines by Anion-Binding Catalysis.

    PubMed

    García Mancheño, Olga; Asmus, Sören; Zurro, Mercedes; Fischer, Theresa

    2015-07-20

    The asymmetric dearomatization of N-heterocycles is an important synthetic method to gain bioactive and synthetically valuable chiral heterocycles. However, the catalytic enantio- and regioselective dearomatization of the simplest six-membered-ring N-heteroarenes, the pyridines, is still very challenging. The first anion-binding-catalyzed, highly enantioselective nucleophilic dearomatization of pyridines with triazole-based H-bond donor catalysts is presented. Contrary to other more common NH-based H-bond donors, this type of organocatalyst shows a prominent higher C2-regioselectivity and is able to promote high enantioinductions via formation of a close chiral anion-pair complex with a preformed N-acyl pyridinium ionic intermediate. This method offers a straightforward and useful synthetic approach to chiral N-heterocycles from abundant and readily available pyridines.

  11. Mechanism of Oxidative Amidation of Nitroalkanes with Oxygen and Amine Nucleophiles by Using Electrophilic Iodine.

    PubMed

    Li, Jing; Lear, Martin J; Kwon, Eunsang; Hayashi, Yujiro

    2016-04-11

    Recently, we developed a direct method to oxidatively convert primary nitroalkanes into amides that entailed mixing an iodonium source with an amine, base, and oxygen. Herein, we systematically investigated the mechanism and likely intermediates of such methods. We conclude that an amine-iodonium complex first forms through N-halogen bonding. This complex reacts with aci-nitronates to give both α-iodo- and α,α-diiodonitroalkanes, which can act as alternative sources of electrophilic iodine and also generate an extra equimolar amount of I(+) under O2. In particular, evidence supports α,α-diiodonitroalkane intermediates reacting with molecular oxygen to form a peroxy adduct; alternatively, these tetrahedral intermediates rearrange anaerobically to form a cleavable nitrite ester. In either case, activated esters are proposed to form that eventually reacts with nucleophilic amines in a traditional fashion.

  12. Nucleophilic addition/double cyclization cascade processes between enynyl Fischer carbene complexes and alkynyl malonates.

    PubMed

    Álvarez-Fernández, Ana; Suárez-Rodríguez, Tatiana; Suárez-Sobrino, Ángel L

    2014-07-18

    Two new selective cascade processes for enynyl Fischer carbene complexes 1 are described in their reaction with alkynyl malonates. When carbene complexes 1 react with the sodium enolate of homopropargyl malonates 3 a consecutive Michael-type addition/cyclopentannulation/6-exo cyclization takes place leading, in a regio- and stereoselective way, to n/5/6 angular tricyclic compounds 5. Furthermore, when propargylic malonates are used, a delayed protonation of the reaction mixture allows intermediate 1,4-addition adduct Ia to evolve through a 5-exo cyclization, consisting of an intramolecular nucleophilic attack from the central carbon of the allenylmetallate over the triple C-C bond. Further spontaneous cyclopentannulation of the resulting metallatriene gives rise to bicyclic and linear polycyclic compounds 6 and 7, some of them bearing a polyquinane framework.

  13. Diverse Reactivity of an Electrophilic Phosphasilene towards Anionic Nucleophiles: Substitution or Metal-Amino Exchange.

    PubMed

    Willmes, Philipp; Junk, Lukas; Huch, Volker; Yildiz, Cem B; Scheschkewitz, David

    2016-08-26

    The reaction of MesLi (Mes=2,4,6-trimethylphenyl) with the electrophilic phosphasilene R2 (NMe2 )Si-RSi=PNMe2 (2, R=Tip=2,4,6-triisopropylphenyl) cleanly affords R2 (NMe2 )Si-RSi=PMes and thus provides the first example of a substitution reaction at an unperturbed Si=P bond. In toluene, the reaction of 2 with lithium disilenide, R2 Si=Si(R)Li (1), apparently proceeds via an initial nucleophilic substitution step as well (as suggested by DFT calculations), but affords a saturated bicyclo[1.1.0]butane analogue as the final product, which was further characterized as its Fe(CO)4 complex. In contrast, in 1,2-dimethoxyethane the reaction of 1 with 2 results in an unprecedented metal-amino exchange reaction.

  14. Conversion of the rocket propellant UDMH to a reagent useful in vicarious nucleophilic substitution reactions

    SciTech Connect

    Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.

    1995-11-10

    The objective of our program is to develop novel, innovative solutions for the disposal of surplus energetic materials resulting from the demilitarization of conventional and nuclear munitions. In this report we describe the use of surplus propellant (UDMH) and explosives (TNT, Explosive D) as chemical precursors for higher value products. The conversion of UDMH to 1,1,1-trimethylhydrazinium iodide (TMHI) provides a new aminating reagent for use in Vicarious Nucleophilic Substitution (VNS) reactions. When TMHI is reacted with various nitroarenes the amino functionality is introduced in good to excellent yields. Thus, 2,4,6-trinitroaniline (picramide) reacts with TMHI to give 1,3,5-triamino-2,4,6-trinitroaniline (TATB) while 2,4,6-trinitrotoluene (TNT) reacts with TMHI to give 3,5-diamino-2,4,6-trinitrotoluene (DATNT). The advantages, scope and limitations of the VNS approach and the use of TMHI are discussed.

  15. Taming of fluoroform: direct nucleophilic trifluoromethylation of Si, B, S, and C centers.

    PubMed

    Prakash, G K Surya; Jog, Parag V; Batamack, Patrice T D; Olah, George A

    2012-12-07

    Fluoroform (CF(3)H), a large-volume by-product of the manufacture of Teflon, refrigerants, polyvinylidene fluoride (PVDF), fire-extinguishing agents, and foams, is a potent and stable greenhouse gas that has found little practical use despite the growing importance of trifluoromethyl (CF3) functionality in more structurally elaborate pharmaceuticals, agrochemicals, and materials. Direct nucleophilic trifluoromethylation using CF(3)H has been a challenge. Here, we report on a direct trifluoromethylation protocol using close to stoichiometric amounts of CF(3)H in common organic solvents such as tetrahydrofuran (THF), diethyl ether, and toluene. The methodology is widely applicable to a variety of silicon, boron, and sulfur-based electrophiles, as well as carbon-based electrophiles.

  16. Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides

    PubMed Central

    2012-01-01

    A general method is presented for the synthesis of alkylated arenes by the chemoselective combination of two electrophilic carbons. Under the optimized conditions, a variety of aryl and vinyl bromides are reductively coupled with alkyl bromides in high yields. Under similar conditions, activated aryl chlorides can also be coupled with bromoalkanes. The protocols are highly functional-group tolerant (−OH, −NHTs, −OAc, −OTs, −OTf, −COMe, −NHBoc, −NHCbz, −CN, −SO2Me), and the reactions are assembled on the benchtop with no special precautions to exclude air or moisture. The reaction displays different chemoselectivity than conventional cross-coupling reactions, such as the Suzuki–Miyaura, Stille, and Hiyama–Denmark reactions. Substrates bearing both an electrophilic and nucleophilic carbon result in selective coupling at the electrophilic carbon (R–X) and no reaction at the nucleophilic carbon (R–[M]) for organoboron (−Bpin), organotin (−SnMe3), and organosilicon (−SiMe2OH) containing organic halides (X–R–[M]). A Hammett study showed a linear correlation of σ and σ(−) parameters with the relative rate of reaction of substituted aryl bromides with bromoalkanes. The small ρ values for these correlations (1.2–1.7) indicate that oxidative addition of the bromoarene is not the turnover-frequency determining step. The rate of reaction has a positive dependence on the concentration of alkyl bromide and catalyst, no dependence upon the amount of zinc (reducing agent), and an inverse dependence upon aryl halide concentration. These results and studies with an organic reductant (TDAE) argue against the intermediacy of organozinc reagents. PMID:22463689

  17. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide.

    PubMed

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R; Alvarez, Beatriz

    2015-11-06

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS(-), is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS(-) toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS(-) is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes.

  18. The development of catalytic nucleophilic additions of terminal alkynes in water.

    PubMed

    Li, Chao-Jun

    2010-04-20

    One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in

  19. Use of phosphoimidazolide-activated guanosine to investigate the nucleophilicity of spermine and spermidine

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Baird, E. E.; Smith, P. J.

    1995-01-01

    Guanosine 5'-phosphate 2-methylimidazolide (2-MeImpG), a labile phosphoimidazolide analog of guanosine triphosphate, was used to test the reactivity of the natural polyamines (PAs), spermine (spm) and spermidine (spd). The products are the guanosine 5'-phosphate-polyamine derivatives (PA-pG: spd-pG and spm-pG) which are quite stable in the range 4 < pH < 11. Our study is the first of which we are aware that reports on the nucleophilicity of these amines. The main findings are as follows. (i) HPLC analysis of the products indicates the formation of only two of the three possible spd products and only one of the two possible spm products. These results can be explained if only the primary amino groups of the two polyamines are reactive, while the secondary amino groups are rendered unreactive by a steric effect. The reactions of 2-MeImpG and other phosphoimidazolide derivatives of nucleosides (ImpNs) with primary and secondary monoamines support this interpretation (Kanavarioti et al. J. Org. Chem. 1995, 60, 632). (ii) The product ratio of the two spd-pG adducts derived from the primary amino groups varies between 2.40 and 0.71 in the range 6.1 < or equal to pH < or equal to 11.9. Such small variation in the product ratio can only be rationalized by the similar, but not identical, basicity of the two primary amino groups and provides strong support for a previously reported model for polyamine ionization (Onasch et. al. Biophys. Chem. 1984, 19, 245). (iii) On the basis of our kinetic determinations conditions at which the nucleophilicity of these amines is at a minimum and at which other interactions with ImpNs could be tested can be chosen.

  20. Steric, hydrogen-bonding and structural heterogeneity effects on the nucleophilic substitution of N-(p-fluorophenyldiphenylmethyl)-4-picolinium chloride in ionic liquids.

    PubMed

    Weber, Cameron C; Masters, Anthony F; Maschmeyer, Thomas

    2013-04-21

    The nucleophilic substitution of N-(p-fluorophenyldiphenylmethyl)-4-picolinium chloride was investigated using water and a range of alcoholic nucleophiles in ionic liquid solvents. The reactivity patterns across the nucleophiles examined could be attributed to steric factors, which mediated the relative nucleophilicities. Reducing the hydrogen-bond acidity of the ionic liquid cation was found to generally increase the rate of reaction, however, the magnitude of this rate effect could be influenced by the steric bulk of the nucleophile and the structural heterogeneity of the ionic liquid. Preferential solvation phenomena in binary mixtures of ionic liquids were examined and suggest that the mechanism behind the hydrogen-bond solvation phenomenon arises from direct cation-mediated, rather than indirect anion-mediated, effects.

  1. Mechanism of phenol oxidation by heterodinuclear Ni Cu bis(μ-oxo) complexes involving nucleophilic oxo groups

    PubMed Central

    Kundu, Subrata; Miceli, Enrico; Farquhar, Erik R.

    2014-01-01

    Oxidation of phenols by heterodinuclear CuIII(μ-O)2NiIII complexes containing nucleophilic oxo groups occurs by both proton coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms; the exact mechanism depends on the nature of the phenol as well as the substitution pattern of the ligand bound to Cu. PMID:24362244

  2. Activation of dinitrogen-derived hafnium nitrides for nucleophilic N-C bond formation with a terminal isocyanate.

    PubMed

    Semproni, Scott P; Chirik, Paul J

    2013-12-02

    Better by Hf: Anion coordination to a bridging hafnocene nitride complex, prepared from CO-induced N2 cleavage, increases the nucleophilicity of the nitrogen atom, thus promoting additional NC bond formation with a typically inert terminal isocyanate ligand. This cascade sequence allows synthesis of otherwise challenging mono-substituted ureas using N2 , CO, and an appropriate electrophile.

  3. Determination of gas-phase nucleophilicities and electrophilicities using B⋯HX bond critical point properties of AIM analysis

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Roohi, Hosein; Habibi, Mostafa; Hasannejad, Mehdi

    2006-09-01

    The values of nucleophilicity and electrophilicity have been established in gas phase for some nucleophiles (B = CH 3CN, CO, H 2O, H 2S, HCN, N 2, NH 3, PH 3) and electrophiles (HX = HF, HCl, HBr, HCN HCF 3) from properties of bond critical points of atoms in molecules (AIM) analysis. On the basis of the meaningful relationship, the recent method has been applied to electron density ( ρ), Laplacian of electron density (∇ρ2), and electronic kinetic energy density ( G), of B⋯HX bond critical point. AIM analysis has been performed on the obtained wave functions at MP2/6-311++G(d,p) level of theory. The correlation between averaged calculated values of nucleophilicity (or electrophilicity), using different properties of B⋯HX bond critical points, and complexation energies (Δ Ecomp) is satisfactory. The best correlation coefficient between nucleophilicity and Δ Ecomp is related to ρ values of bond critical points. But, the best correlation coefficient between electrophilicity and Δ Ecomp is allied to ∇ρ2 and G values of bond critical points.

  4. ortho-Quinol Acetate Chemistry - Reactivity towards Aryl-Based Nucleophiles and Applications to the Synthesis of Natural Products.

    PubMed

    Companys, Simon; Pouységu, Laurent; Peixoto, Philippe A; Chassaing, Stefan; Quideau, Stephane

    2017-03-10

    Two model ortho-quinol acetates were easily prepared by iodane-mediated acetoxylative phenol dearomatization and evaluated for their reactivity towards various aryl-based nucleophiles, i.e., aryl metallic reagents and phenolic derivatives. Novel modes of reactivity, allowing the formation of biaryl linkages, were revealed and here exploited for the synthesis of two natural phenolics.

  5. Reaction of 6H-6-oxo-3(5)-halogenoanthra(1,9-cd)isoxazoles with inorganic nucleophiles

    SciTech Connect

    Gornostaev, L.M.; Zeibert, G.F.

    1986-11-20

    The reaction of 6H-6-oxo-3(5)-halogenoanthral(1,9-cd)isoxazoles with sodium azide in DMFA and also the potassium fluoride in acetonitrile in the presence of crown ethers leads to nucleophilic substitution of the halogen by the azide and fluoride ion respectively.

  6. Catalytic Nucleophilic Fluorination of Secondary and Tertiary Propargylic Electrophiles with a Copper–N-Heterocyclic Carbene Complex

    PubMed Central

    Cheng, Li-Jie; Cordier, Christopher J

    2015-01-01

    A catalytic method for the nucleophilic fluorination of propargylic electrophiles is described. Our protocol involves the use of a Cu(NHC) complex as the catalyst and is suitable for the preparation of secondary and tertiary propargylic fluorides without the formation of isomeric fluoroallenes. Preliminary mechanistic investigations suggest that fluorination proceeds via copper acetylides and that cationic species are involved. PMID:26403935

  7. 1,2,3,4-Tetrahydro-8-hydroxyquinoline-promoted copper-catalyzed coupling of nitrogen nucleophiles and aryl bromides.

    PubMed

    Wang, Huifeng; Li, Yaming; Sun, Fangfang; Feng, Yang; Jin, Kun; Wang, Xiuna

    2008-11-07

    Based on the dramatic accelerating effect of 2-aminophenol, three ligands derived from 2-aminophenol were developed. Copper-catalyzed coupling reaction of nitrogen-containing nucleophiles with aryl bromides was efficiently carried out under mild conditions using 1,2,3,4-tetrahydro-8-hydroxyquinoline as a novel, simple, and versatile ligand.

  8. Direct sp(3)C-H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis.

    PubMed

    Feng, Zhu-Jia; Xuan, Jun; Xia, Xu-Dong; Ding, Wei; Guo, Wei; Chen, Jia-Rong; Zou, You-Quan; Lu, Liang-Qiu; Xiao, Wen-Jing

    2014-04-07

    Sequence catalysis merging photoredox catalysis (PC) and nucleophilic catalysis (NC) has been realized for the direct sp(3) C-H acroleination of N-aryl-tetrahydroisoquinoline (THIQ). The reaction was performed under very mild conditions and afforded products in 50-91% yields. A catalytic asymmetric variant was proved to be successful with moderate enantioselectivities (up to 83 : 17 er).

  9. Citrus Peel Additives for One-Pot Triazole Formation by Decarboxylation, Nucleophilic Substitution, and Azide-Alkyne Cycloaddition Reactions

    ERIC Educational Resources Information Center

    Mendes, Desiree E.; Schoffstall, Allen M.

    2011-01-01

    This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…

  10. Organic Chemistry Students' Fragmented Ideas about the Structure and Function of Nucleophiles and Electrophiles: A Concept Map Analysis

    ERIC Educational Resources Information Center

    Anzovino, Mary E.; Bretz, Stacey Lowery

    2016-01-01

    Organic chemistry students struggle with multiple aspects of reaction mechanisms and the curved arrow notation used by organic chemists. Many faculty believe that an understanding of nucleophiles and electrophiles, among other concepts, is required before students can develop fluency with the electronpushing formalism (EPF). An expert concept map…

  11. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase.

    PubMed

    Nicoll, Andrew J; Allemann, Rudolf K

    2004-08-07

    A 31-residue peptide (Art-Est) was designed to catalyse the hydrolysis of p-nitrophenyl esters through histidine catalysis on the solvent exposed face of the alpha-helix of bovine pancreatic polypeptide. NMR spectroscopy indicated that Art-Est adopted a stable 3-dimensional structure in solution. Art-Est was an efficient catalyst with second order rate constants of up to 0.050 M(-1) s(-1). The activity of Art-Est was a consequence of the increased nucleophilicity of His-22, which had a reduced pK(a) value of 5.5 as a consequence of its interaction with His-18 and the positively charged Arg-25 and Arg-26. Mass spectrometry and NMR spectroscopy confirmed that the Art-Est catalysed hydrolysis of p-nitrophenyl esters proceeded through an acyl-enzyme intermediate. A solvent kinetic isotope effect of 1.8 indicated that the transition state preceding the acyl intermediate was stabilised through interaction with the protonated side-chain of His-18 and indicated a reaction mechanism similar to that generally observed for natural esterases. The involvement in the reaction of two histidine residues with different pK(a) values led to a bell-shaped dependence of the reaction rate on the pH of the solution. The catalytic behaviour of Art-Est indicated that designed miniature enzymes can act in a transparent mechanism based fashion with enzyme-like behaviour through the interplay of several amino acid residues.

  12. Detoxification of biomass hydrolysates with nucleophilic amino acids enhances alcoholic fermentation.

    PubMed

    Xie, Rui; Tu, Maobing; Carvin, Jamarius; Wu, Yonnie

    2015-06-01

    Carbonyl compounds generated in biomass pretreatment hinder the biochemical conversion of biomass hydrolysates to biofuels. A novel approach of detoxifying hydrolysates with amino acids for ethanol production was developed. Among the 20 amino acids assessed for their detoxification efficiency and nucleophilicity, cysteine was the most effective one. It increased both ethanol productivity and final yield of biomass hydrolysates from 0.18 (untreated) to 1.77 g/L/h and from 0.02 to 0.42 g/g, respectively. Detoxification efficiency was followed by histidine and it increased the final yield to 0.42 g/g, then by lysine, tryptophan and asparagine. It was observed all five effective amino acids contained reactive side-chain functional groups, which played important roles in the amino acid detoxification reaction. The study further showed cysteine and glycine detoxifications were temperature and pH dependent. The mechanistic study using mass spectrometry revealed thiazolidine carboxylic acid, a Schiff base, was formed by condensation of aldehyde and cysteine.

  13. Fluorescent "turn-on" detecting CN- by nucleophilic addition induced Schiff-base hydrolysis

    NASA Astrophysics Data System (ADS)

    Lin, Qi; Cai, Yi; Li, Qiao; Shi, Bing-Bing; Yao, Hong; Zhang, You-Ming; Wei, Tai-Bao

    2015-04-01

    A new chemosensor Sz based on Schiff-base group as recognition site and naphthalene as the fluorescence signal group was designed and synthesised. It could fluorescent "turn-on" detect cyanide (CN-) via a novel mechanism of nucleophilic addition induced Schiff-base hydrolysis. Adding the CN- into the solution of Sz could induce Sz to emit blue fluorescence at 435 nm instantly. Moreover, Sz could also colorimetric detect CN-. Upon the addition of CN-, the Sz showed dramatic color change from yellow to colorless. These sensing procedures could not be interfered by other coexistent competitive anions such as F-, AcO-, H2PO4- and SCN-. In addition, Sz showed high sensitivity for CN-, the detection limits is 3.42 × 10-8 M of CN-, which is far lower than the WHO guideline of CN- in drinking water (less than 1.9 × 10-6 M). The CN- test strips based on Sz could act as a convenient CN- test kits.

  14. 1,3,2,5-Diazadiborinine featuring nucleophilic and electrophilic boron centres

    PubMed Central

    Wu, Di; Kong, Lingbing; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2015-01-01

    The seminal discovery in 1865 by Kekulé that benzene nucleus exists with cyclic skeleton is considered to be the beginning of aromatic chemistry. Since then, a myriad of cyclic molecules displaying aromatic property have been synthesized. Meanwhile, borazine (B3N3H6), despite the isostructural and isoelectronic relationships with benzene, exhibits little aromaticity. Herein, we report the synthesis of a 1,3,2,5-diazadiborinine (B2C2N2R6) derivative, a hybrid inorganic/organic benzene, and we present experimental and computational evidence for its aromaticity. In marked contrast to the reactivity of benzene, borazine, and even azaborinines previously reported, 1,3,2,5-diazadiborinine readily forms the adducts with methyl trifluoromethanesulfonate and phenylacetylene without any catalysts. Moreover, 1,3,2,5-diazadiborine activates carbon dioxide giving rise to a bicycle[2,2,2] product, and the binding process was found to be reversible. These results, thus, demonstrate that 1,3,2,5-diazadiborinine features both nucleophilic and electrophilic boron centres, with a formal B(+I)/B(+III) mixed valence system, in the aromatic six-membered B2C2N2 ring. PMID:26073993

  15. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    NASA Astrophysics Data System (ADS)

    Gadea, C.; Marani, D.; Esposito, V.

    2017-02-01

    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolamine (MDEA) used as nucleophilic ligand. The function of the ligand is to control the fast hydrolysis/condensation reactions in water for the metal alkoxide before deposition, leading to formation of the TiO2 only after the jet process. The evolution of the titanium-ligand interactions at increasing amount of MDEA is here elucidated in terms of long term stability. The ink printability parameter (Z) is optimized, resulting in a reactive solution with printability, Z, >1, and chemical stability up to 600 h. Thin titanium oxide films (<500 nm) are proved on different substrates. Pure anatase phase is obtained after annealing at low temperature (ca. 400 °C).

  16. S(N)2 reaction of sulfur nucleophiles with hindered sulfamidates: enantioselective synthesis of alpha-methylisocysteine.

    PubMed

    Avenoza, Alberto; Busto, Jesús H; Jiménez-Osés, Gonzalo; Peregrina, Jesús M

    2006-02-17

    The work described here demonstrates that the five-membered cyclic alpha-methylisoserine-derived sulfamidate, (R)-1, behaves as an excellent chiral building block for the ring-opening reaction by S(N)2 attack with sulfur nucleophiles at the quaternary carbon. As a synthetic application of this methodology, and to show that this sulfamidate is a valuable starting material, the synthesis of two new alpha-methylisocysteine derivatives has been carried out to cover the lack of alpha- and beta-methylated amino acids that incorporate the cysteine or isocysteine skeleton. These compounds are two new alpha,alpha-disubstituted beta-amino acids (beta(2,2)-amino acids), and the synthetic routes involve nucleophilic ring opening followed by acid hydrolysis.

  17. sp(2)-sp(3) diboranes: astounding structural variability and mild sources of nucleophilic boron for organic synthesis.

    PubMed

    Dewhurst, Rian D; Neeve, Emily C; Braunschweig, Holger; Marder, Todd B

    2015-06-14

    Despite the widespread use of organoborane reagents in organic synthesis and catalysis, a major challenge still remains: very few boron-centered nucleophiles exist for the direct construction of B-C bonds. Perhaps the most promising emerging solution to this problem is the use of sp(2)-sp(3) diboranes, in which one boron atom of a conventional diborane(4) is quaternised by either a neutral or anionic nucleophile. These compounds, either isolated or generated in situ, serve as relatively mild and convenient sources of the boryl anion [BR2](-) for use in organic synthesis and have already proven their efficacy in metal-free as well as metal-catalysed borylation reactions. This Feature article documents the history of sp(2)-sp(3) diborane synthesis, their properties and surprising structural variability, and their burgeoning utility in organic synthesis.

  18. The Wacker process: inner- or outer-sphere nucleophilic addition? New insights from ab initio molecular dynamics.

    PubMed

    Comas-Vives, Aleix; Stirling, András; Lledós, Agustí; Ujaque, Gregori

    2010-08-02

    The Wacker process consists of the oxidation of ethylene catalyzed by a Pd(II) complex. The reaction mechanism has been largely debated in the literature; two modes for the nucleophilic addition of water to a Pd-coordinated alkene have been proposed: syn-inner- and anti-outer-sphere mechanisms. These reaction steps have been theoretically evaluated by means of ab initio molecular dynamics combined with metadynamics by placing the [Pd(C(2)H(4))Cl(2)(H(2)O)] complex in a box of water molecules, thereby resembling experimental conditions at low [Cl(-)]. The nucleophilic addition has also been evaluated for the [Pd(C(2)H(4))Cl(3)](-) complex, thus revealing that the water by chloride ligand substitution trans to ethene is kinetically favored over the generally assumed cis species in water. Hence, the resulting trans species can only directly undertake the outer-sphere nucleophilic addition, whereas the inner-sphere mechanism is hindered since the attacking water is located trans to ethene. In addition, all the simulations from the [Pd(C(2)H(4))Cl(2)(H(2)O)] species (either cis or trans) support an outer-sphere mechanism with a free-energy barrier compatible with that obtained experimentally, whereas that for the inner-sphere mechanism is significantly higher. Moreover, additional processes for a global understanding of the Wacker process in solution have also been identified, such as ligand substitutions, proton transfers that involve the aquo ligand, and the importance of the trans effect of the ethylene in the nucleophilic addition attack.

  19. Trimethylsilyl chloride promoted synthesis of α-branched amines by nucleophilic addition of organozinc halides to nitrones.

    PubMed

    Fu, Ying; Liu, Yanhua; Chen, Yaojuan; Hügel, Helmut M; Wang, Minzhu; Huang, Danfeng; Hu, Yulai

    2012-10-14

    A general procedure for the nucleophilic addition of organozinc halides with nitrones in the presence of trimethylsilyl chloride has been developed. Trimethylsilyl chloride was found to be both an indispensable reaction promoter and a ready hydroxylamine protective agent in these reactions. The produced O-(trimethylsilyl)hydroxylamines can be easily reduced into corresponding amines just by a zinc-copper couple in saturated aqueous NH(4)Cl solution.

  20. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).

  1. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    SciTech Connect

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  2. Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)).

    PubMed

    Bryantsev, Vyacheslav S; Giordani, Vincent; Walker, Wesley; Blanco, Mario; Zecevic, Strahinja; Sasaki, Kenji; Uddin, Jasim; Addison, Dan; Chase, Gregory V

    2011-11-10

    There is increasing evidence that cyclic and linear carbonates, commonly used solvents in Li ion battery electrolytes, are unstable in the presence of superoxide and thus are not suitable for use in rechargeable Li-air batteries employing aprotic electrolytes. A detailed understanding of related decomposition mechanisms provides an important basis for the selection and design of stable electrolyte materials. In this article, we use density functional theory calculations with a Poisson-Boltzmann continuum solvent model to investigate the reactivity of several classes of aprotic solvents in nucleophilic substitution reactions with superoxide. We find that nucleophilic attack by O(2)(•-) at the O-alkyl carbon is a common mechanism of decomposition of organic carbonates, sulfonates, aliphatic carboxylic esters, lactones, phosphinates, phosphonates, phosphates, and sulfones. In contrast, nucleophilic reactions of O(2)(•-) with phenol esters of carboxylic acids and O-alkyl fluorinated aliphatic lactones proceed via attack at the carbonyl carbon. Chemical functionalities stable against nucleophilic substitution by superoxide include N-alkyl substituted amides, lactams, nitriles, and ethers. The results establish that solvent reactivity is strongly related to the basicity of the organic anion displaced in the reaction with superoxide. Theoretical calculations are complemented by cyclic voltammetry to study the electrochemical reversibility of the O(2)/O(2)(•-) couple containing tetrabutylammonium salt and GCMS measurements to monitor solvent stability in the presence of KO(2)(•) and a Li salt. These experimental methods provide efficient means for qualitatively screening solvent stability in Li-air batteries. A clear correlation between the computational and experimental results is established. The combination of theoretical and experimental techniques provides a powerful means for identifying and designing stable solvents for rechargeable Li-air batteries.

  3. Laboratory determination of the carbon kinetic isotope effects (KIEs) for reactions of methyl halides with various nucleophiles in solution

    USGS Publications Warehouse

    Baesman, S.M.; Miller, L.G.

    2005-01-01

    Large carbon kinetic isotope effects (KIEs) were measured for reactions of methyl bromide (MeBr), methyl chloride (MeCl), and methyl iodide (MeI) with various nucleophiles at 287 and 306 K in aqueous solutions. Rates of reaction of MeBr and MeI with H2O (neutral hydrolysis) or Cl- (halide substitution) were consistent with previous measurements. Hydrolysis rates increased with increasing temperature or pH (base hydrolysis). KIEs for hydrolysis were 51 ?? 6??? for MeBr and 38 ?? 8??? for MeI. Rates of halide substitution increased with increasing temperature and greater reactivity of the attacking nucleophile, with the fastest reaction being that of MeI with Br-. KIEs for halide substitution were independent of temperature but varied with the reactant methyl halide and the attacking nucleophile. KIEs were similar for MeBr substitution with Cl- and MeCl substitution with Br- (57 ?? 5 and 60 ?? 9??? respectively). The KIE for halide exchange of MeI was lower overall (33 ?? 8??? and was greater for substitution with Br- (46 ?? 6???) than with Cl- (29 ?? 6???). ?? Springer Science + Business Media, Inc. 2005.

  4. Nucleophilic reactivities of hydrazines and amines: the futile search for the α-effect in hydrazine reactivities.

    PubMed

    Nigst, Tobias A; Antipova, Anna; Mayr, Herbert

    2012-09-21

    The kinetics of the reactions of amines, hydrazines, hydrazides, and hydroxylamines with benzhydrylium ions and quinone methides were studied in acetonitrile and water by UV-vis spectroscopy, using conventional spectrometers and stopped-flow and laser-flash techniques. From the second-order rate constants k(2) of these reactions, the nucleophilicity parameters N and s(N) were determined according to the linear free energy relationship log k(2) = s(N)(N + E). While methyl groups increase the reactivities of the α-position of hydrazines, they decrease the reactivities of the β-position. Despite the 10(2) times lower reactivities of amines and hydrazines in water than in acetonitrile, the relative reactivities of differently substituted amines and hydrazines are almost identical in the two solvents. In both solvents hydrazine has a reactivity similar to that of methylamine. This observation implies that replacement of one hydrogen in ammonia by Me increases the nucleophilicity more than introduction of an amino group, if one takes into account that hydrazine has two reactive centers. Plots of log k(2) versus the corresponding equilibrium constants (log K) or Brønsted basicities (pK(aH)) do not show enhanced nucleophilicities (α-effect) for either hydrazines or hydroxylamine relative to alkylamines.

  5. Nucleophilic selectivity of alkylating agents and their hypermutability in Drosophila as predictors of carcinogenic potency in rodents.

    PubMed

    Vogel, E W; Barbin, A; Nivard, M J; Bartsch, H

    1990-12-01

    The nucleophilic selectivity (Swain-Scott s constant or initial 7-alkylguanine/O6-alkylguanine ratio in DNA) of 60 alkylating agents, mostly monofunctional or cross-linking was compared to their carcinogenic potency in rodents (median TD50 estimates) and to two genotoxicity indices in Drosophila: (i) hypermutability, measured by the increased frequency of induced sex-linked recessive lethal mutations (SLRL) in a strain defective in DNA excision repair (exr-), as compared to the wild-type (exr+); (ii) relative clastogenic efficiency, expressed by the ratio of chromosomal aberrations (ring-X loss) to SLRL determined in the exr+ strain. For a subset of direct-acting, monofunctional alkylating agents, nucleophilic selectivity and TD50 values or hypermutability indices were linearly correlated. In addition, the hypermutability indices in Drosophila by methylating or ethylating procarcinogens were similar to the corresponding values of their ultimate metabolites. In contrast, cross-linking agents, including antitumour drugs, did not show these positive correlations. The relative clastogenic efficiencies in Drosophila of 26 direct-acting, alkylating carcinogens increased with both their cross-linking activity and nucleophilic selectivity. By analyzing mutational spectra in Drosophila induced in the vermilion gene by four monofunctional alkylating agents with contrasting s values, critical DNA lesions, i.e. type of base pair substitution mutations, deletions, insertions, involved in genotoxicity were pinpointed. Thus, these multi-endpoint analyses should, as a new approach, assist in the quantitative risk evaluation of genotoxic agents.

  6. Intramolecular long-distance nucleophilic reactions as a rapid fluorogenic switch applicable to the detection of enzymatic activity.

    PubMed

    Baba, Reisuke; Hori, Yuichiro; Kikuchi, Kazuya

    2015-03-16

    Long-distance intramolecular nucleophilic reactions are promising strategies for the design of fluorogenic probes to detect enzymatic activity involved in lysine modifications. However, such reactions have been challenging and hence have not been established. In this study, we have prepared fluorogenic peptides that induce intramolecular reactions between lysine nucleophiles and electrophiles in distal positions. These peptides contain a lysine and fluorescence-quenched fluorophore with a carbonate ester, which triggers nucleophilic transesterification resulting in fluorogenic response. Transesterification occurred under mild aqueous conditions despite the presence of a long nine-amino-acid spacer between the lysine and fluorophore. In addition, one of the peptides showed the fastest reaction kinetics with a half-life time of 3.7 min. Furthermore, the incorporation of this fluorogenic switch into the probes allowed rapid fluorogenic detection of histone deacetylase (HDAC) activity. These results indicate that the transesterification reaction has great potential for use as a general fluorogenic switch to monitor the activity of lysine-targeting enzymes.

  7. Nucleophilic substitution reactions of alcohols with use of montmorillonite catalysts as solid Brønsted acids.

    PubMed

    Motokura, Ken; Nakagiri, Nobuaki; Mizugaki, Tomoo; Ebitani, Kohki; Kaneda, Kiyotomi

    2007-08-03

    We have developed an environmentally benign synthetic approach to nucleophilic substitution reactions of alcohols that minimizes or eliminates the formation of byproducts, resulting in a highly atom-efficient chemical process. Proton- and metal-exchanged montmorillonites (H- and Mn+-mont) were prepared easily by treating Na+-mont with an aqueous solution of hydrogen chloride or metal salt, respectively. The H-mont possessed outstanding catalytic activity for nucleophilic substitution reactions of a variety of alcohols with anilines, because the unique acidity of the H-mont catalyst effectively prevents the neutralization by the basic anilines. In addition, amides, indoles, 1,3-dicarbonyl compounds, and allylsilane act as nucleophiles for the H-mont-catalyzed substitutions of alcohols, which allowed efficient formation of various C-N and C-C bonds. The solid H-mont was reusable without any appreciable loss in its catalytic activity and selectivity. Especially, an Al3+-mont showed high catalytic activity for the alpha-benzylation of 1,3-dicarbonyl compounds with primary alcohols due to cooperative catalysis between a protonic acid site and a Lewis acidic Al3+ species in its interlayer spaces.

  8. Ring-opening reactions of 1,4-diazabicyclo[2.2.2]octane (DABCO) derived quaternary ammonium salts with phenols and related nucleophiles.

    PubMed

    Maraš, Nenad; Polanc, Slovenko; Kočevar, Marijan

    2012-02-14

    1,4-Diazabicyclo[2.2.2]octane (DABCO) has been evaluated as a starting material for the synthesis of 1-alkyl-4-(2-phenoxyethyl)piperazines and related derivatives. We found that 1-alkyl-1,4-diazabicyclo[2.2.2]octan-1-ium salts, resulting from the alkylation of DABCO, efficiently react with a variety of nucleophiles in polyethyleneglycol (PEG) or diglyme at high temperatures to give piperazine products resulting from the nucleophilic ring-opening reaction. The benzylation side reaction was found to be relevant with softer nucleophiles when using 1-benzyl-1,4-diazabicyclo[2.2.2]octan-1-ium salts, while other types of alkylations were not observed. One-pot methodologies allow for the synthesis of piperazines directly from primary alcohols, alkyl halides or sulfonates, using phenols, or other nucleophile sources, and DABCO.

  9. Modifications of substituted seryl and threonyl residues in phosphopeptides and a polysialoglycoprotein by beta-elimination and nucleophile additions.

    PubMed

    Mega, T; Nakamura, N; Ikenaka, T

    1990-01-01

    The beta-elimination and nucleophile addition reactions of the substituted serine and threonine residues were studied using several synthesized fluorescence-labeled phosphopeptides and a salmon egg polysialoglycoprotein (PSGP). The reagents used were 1 M CH3SH-0.43 M NaOH, 1 M NaBH4-0.1 M NaOH, 1 M CH3NH2-0.1 M NaOH, and 1 M Na2SO3-0.1 M NaOH. The beta-elimination reaction of a phosphoserine peptide, Gly-Ser(PO4)-Glu-AEAP, was about 20 times faster than that of the corresponding phosphothreonine peptide. The carboxyl-side amino acid of the phosphoamino acids in peptides greatly affected the beta-elimination rate. The beta-elimination reaction rates of O-glycosyl serine and threonine in the polysialoglycoprotein were similar and were about a half of that of the phosphoserine peptide. The rates of addition of the three nucleophiles and hydrogen to alpha-aminoacrylic acid (beta-elimination product of substituted serine) in the peptide decreased in the order of CH3SH, Na2SO3, CH3NH2, and H2(NaBH4), and the addition to alpha-aminocrotonic acid (beta-elimination product of substituted threonine) in the order of Na2SO3, CH3NH2, CH3SH, and H2. These results indicated that sulfite is the most recommended nucleophile because of its high addition rate. If sulfite addition is carried out in the presence of NaBH4, sugar chains can be released as alditols, converting the sugar-attaching amino acids to beta-sulfoamino acids.

  10. Tandem SN2' nucleophilic substitution/oxidative radical cyclization of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds.

    PubMed

    Zhang, Zhen; Li, Cheng; Wang, Shao-Hua; Zhang, Fu-Min; Han, Xue; Tu, Yong-Qiang; Zhang, Xiao-Ming

    2017-03-23

    A novel and efficient tandem SN2' nucleophilic substitution/oxidative radical cyclization reaction of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds has been developed by using Mn(OAc)3 as an oxidant, which enables the expeditious synthesis of polysubstituted dihydrofuran (DHF) derivatives in moderate to high yields. The use of weakly acidic hexafluoroisopropanol (HFIP) as the solvent rather than AcOH has successfully improved the yields and expanded the substrate scope of this type of radical cyclization reactions. Mechanistic studies confirmed the cascade reaction process involving a final radical cyclization.

  11. Revisiting the Dielectric Constant Effect on the Nucleophile and Leaving Group of Prototypical Backside Sn2 Reactions: a Reaction Force and Atomic Contribution Analysis.

    PubMed

    Pedraza-González, Laura Milena; Galindo, Johan Fabian; Gonzalez, Ronald; Reyes, Andrés

    2016-10-09

    The solvent effect on the nucleophile and leaving group atoms of the prototypical F(-) + CH3Cl → CH3F + Cl(-) backside bimolecular nucleophilic substitution reaction (SN2) is analyzed employing the reaction force and the atomic contributions methods on the intrinsic reaction coordinate (IRC). Solvent effects were accounted for using the polarizable continuum solvent model. Calculations were performed employing eleven dielectric constants, ε, ranging from 1.0 to 78.5, to cover a wide spectrum of solvents. The reaction force data reveals that the solvent mainly influences the region of the IRC preceding the energy barrier, where the structural rearrangement to reach the transition state occurs. A detailed analysis of the atomic role in the reaction as a function of ε reveals that the nucleophile and the carbon atom are the ones that contribute the most to the energy barrier. In addition, we investigated the effect of the choice of nucleophile and leaving group on the ΔE0 and ΔE(↕) of Y(-) + CH3X → YCH3 + X(-) (X,Y= F, Cl, Br, I) in aqueous solution. Our analysis allowed us to find relationships between the atomic contributions to the activation energy and leaving group ability and nucleophilicity.

  12. Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: significantly enhanced reactivity of alkali metal fluorides and improved selectivity.

    PubMed

    Kim, Dong Wook; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Katzenellenbogen, John A; Chi, Dae Yoon

    2008-02-01

    Although protic solvents are generally not preferred for nucleophilic displacement reactions because of their partial positive charge and hydrogen-bonding capacity that solvate the nucleophile and reduce its reactivity, we recently reported a remarkably beneficial effect of using tertiary alcohols as a reaction media for nucleophilic fluorination with alkali metal fluorides, as well as fluorine-18 radiolabeling with [18F]fluoride ion for the preparation of PET radiopharmaceuticals. In this work, we investigate further the influence of the tert-alcohol reaction medium for nucleophilic fluorination with alkali metal fluorides by studying various interactions among tert-alcohols, the alkali metal fluoride (CsF), and the sulfonyloxy substrate. Factors such as hydrogen bonding between CsF and the tert-alcohol solvent, the formation of a tert-alcohol solvated fluoride, and hydrogen bonding between the sulfonate leaving group and the tert-alcohol appear to contribute to the dramatic increase in the rate of the nucleophilic fluorination reaction in the absence of any kind of catalyst. We found that fluorination of 1-(2-mesyloxyethyl)naphthalene (5) and N-5-bromopentanoyl-3,4-dimethoxyaniline (8) with Bu(4)N(+)F(-) in a tert-alcohol afforded the corresponding fluoro products in much higher yield than obtained by the conventional methods using dipolar aprotic solvents. The protic medium also suppresses formation of byproducts, such as alkenes, ethers, and cyclic adducts.

  13. Synthesis of high specific activity (+)- and (-)-6-( sup 18 F)fluoronorepinephrine via the nucleophilic aromatic substitution reaction

    SciTech Connect

    Ding, Y.S.; Fowler, J.S.; Gatley, S.J.; Dewey, S.L.; Wolf, A.P. )

    1991-02-01

    The first example of a no-carrier-added {sup 18}F-labeled catecholamine, 6-({sup 18}F)fluoronorepinephrine (6-({sup 18}F)FNE), has been synthesized via nucleophilic aromatic substitution. The racemic mixture was resolved on a chiral HPLC column to obtain pure samples of (-)-6-({sup 18}F)FNE and (+)6-({sup 18}F)FNE. Radiochemical yields of 20% at the end of bombardment (EOB) for the racemic mixture (synthesis time 93 min), 6% for each enantiomer (synthesis time 128 min) with a specific activity of 2-5 Ci/mumol at EOB were obtained. Chiral HPLC peak assignment for the resolved enantiomers was achieved by using two independent methods: polarimetric determination and reaction with dopamine beta-hydroxylase. Positron emission tomography (PET) studies with racemic 6-({sup 18}F)FNE show high uptake and retention in the baboon heart. This work demonstrates that nucleophilic aromatic substitution by ({sup 18}F)fluoride ion is applicable to systems having electron-rich aromatic rings, leading to high specific activity radiopharmaceuticals. Furthermore, the suitably protected dihydroxynitrobenzaldehyde 1 may serve as a useful synthetic precursor for the radiosynthesis of other complex {sup 18}F-labeled radiotracers.

  14. Porous coordination polymers of diverse topologies based on a twisted tetrapyridylbiaryl: application as nucleophilic catalysts for acetylation of phenols.

    PubMed

    Seth, Saona; Venugopalan, Paloth; Moorthy, Jarugu Narasimha

    2015-01-26

    Porous coordination polymers (CPs) with partially uncoordinated pyridyl rings based on rationally designed polypyridyl linkers are appealing from the point of view of their application as nucleophilic catalysts. A D2d -symmetric tetradentate organic linker L, that is, 2,2',6,6'-tetramethoxy-3,3',5,5'-tetrakis(4-pyridyl)biphenyl, was designed and synthesized for metal-assisted self-assembly aimed at porous CPs. Depending on the nature of the metal ion and the counter anion, the ligand L is found to function as a 3- or 4-connecting building block leading to porous CPs of diverse topologies. The reaction of L with Zn(NO3 )2 and Cd(NO3 )2 yields porous 2 D CPs of "fes" topology, in which the tetrapyridyl linker L serves as a 3-connecting unit with its free pyridyl rings well exposed into the pores. The functional utility of these porous CPs containing uncoordinated pyridyl rings is demonstrated by employing them as efficient heterogeneous nucleophilic catalysts for acetylation of a number of phenols with varying electronic properties and reactivities.

  15. How Do Nutritional Antioxidants Really Work: Nucleophilic Tone and Para-Hormesis Versus Free Radical Scavenging in vivo

    PubMed Central

    Forman, Henry Jay; Davies, Kelvin J. A.; Ursini, Fulvio

    2013-01-01

    We present arguments for an evolution in our understanding of how antioxidants in fruits and vegetables exert their health-protective effects. There is much epidemiological evidence for disease prevention by dietary antioxidants and chemical evidence that such compounds react in one-electron reactions with free radicals in vitro. Nonetheless, kinetic constraints indicate that in vivo scavenging of radicals is ineffective in antioxidant defense. Instead, enzymatic removal of non-radical electrophiles, such as hydroperoxides, in two-electron redox reactions is the major antioxidant mechanism. Furthermore, we propose that a major mechanism of action for nutritional antioxidants is the paradoxical oxidative activation of the Nrf2 (NF-E2-related factor 2) signaling pathway, which maintains protective oxidoreductases and their nucleophilic substrates. This maintenance of ‘Nucleophilic Tone,’ by a mechanism that can be called ‘Para-Hormesis,’ provides a means for regulating physiological non-toxic concentrations of the non-radical oxidant electrophiles that boost antioxidant enzymes, and damage removal and repair systems (for proteins, lipids, and DNA), at the optimal levels consistent with good health. PMID:23747930

  16. Electrochemical nucleophilic synthesis of di-tert-butyl-(4-[18F]fluoro-1,2-phenylene)-dicarbonate.

    PubMed

    He, Qinggang; Wang, Ying; Alfeazi, Ines; Sadeghi, Saman

    2014-09-01

    An electrochemical method with the ability to conduct (18)F-fluorination of aromatic molecules through direct nucleophilic fluorination of cationic intermediates is presented in this paper. The reaction was performed on a remote-controlled automatic platform. Nucleophilic electrochemical fluorination of tert-butyloxycarbonyl (Boc) protected catechol, an intermediate model molecule for the positron emission tomography (PET) probe (3,4-dihydroxy-6-[(18)F]fluoro-L-phenylalanine), was performed. Fluorination was achieved under potentiostatic anodic oxidation in acetonitrile containing Et3N·3HF and other supporting electrolytes. Radiofluorination efficiency was influenced by a number of variables, including the concentration of the precursor, concentration of Et3N·3HF, type of supporting electrolyte, temperature and time, as well as applied potentials. Radio-fluorination efficiency of 10.4±0.6% (n=4) and specific activity of up to 43GBq/mmol was obtained after 1h electrolysis of 0.1M of 4-tert-butyl-diboc-catechol in the acetonitrile solution of Et3N·3HF (0.033M) and NBu4PF6 (0.05M). Density functional theory (DFT) was employed to explain the tert-butyl functional group facilitation of electrochemical oxidation and subsequent fluorination.

  17. A colorimetric detection of acrylamide in potato chips based on nucleophile-initiated thiol-ene Michael addition.

    PubMed

    Hu, Qinqin; Fu, Yingchun; Xu, Xiahong; Qiao, Zhaohui; Wang, Ronghui; Zhang, Ying; Li, Yanbin

    2016-02-07

    Acrylamide (AA), a neurotoxin and a potential carcinogen, has been found in various thermally processed foods such as potato chips, biscuits, and coffee. Simple, cost-effective, and sensitive methods for the rapid detection of AA are needed to ensure food safety. Herein, a novel colorimetric method was proposed for the visual detection of AA based on a nucleophile-initiated thiol-ene Michael addition reaction. Gold nanoparticles (AuNPs) were aggregated by glutathione (GSH) because of a ligand-replacement, accompanied by a color change from red to purple. In the presence of AA, after the thiol-ene Michael addition reaction between GSH and AA with the catalysis of a nucleophile, the sulfhydryl group of GSH was consumed by AA, which hindered the subsequent ligand-replacement and the aggregation of AuNPs. Therefore, the concentration of AA could be determined by the visible color change caused by dispersion/aggregation of AuNPs. This new method showed high sensitivity with a linear range from 0.1 μmol L(-1) to 80 μmol L(-1) and a detection limit of 28.6 nmol L(-1), and especially revealed better selectivity than the fluorescence sensing method reported previously. Moreover, this new method was used to detect AA in potato chips with a satisfactory result in comparison with the standard methods based on chromatography, which indicated that the colorimetric method can be expanded for the rapid detection of AA in thermally processed foods.

  18. Stereoselectivity of Michael Addition of P(X)-H-Type Nucleophiles to Cyclohexen-1-ylphosphine Oxide: The Case of Base-Selective Transformation.

    PubMed

    Jaklińska, Magdalena; Cordier, Marie; Stankevič, Marek

    2016-02-19

    Michael addition of phosphorus nucleophiles to the unsymmetrically substituted tert-butyl(1,4-cyclohexadien-3-yl)phosphine oxide and its derivatives has been described. The addition proceeds with the formation of the mixture of two isomeric products with good yield and diastereoselectivity. The reaction of tert-butyl(cyclohexen-1-yl)methylphosphine oxide with phosphorus nucleophiles is base sensitive and might afford two epimers which differ at one chirality center. The absolute configuration of the products has been assigned on the basis of conformational and (1)H NMR analysis, and the mechanism of the reaction has been discussed. The Michael addition of phosphorus nucleophiles is postulated to proceed with or without consecutive epimerization of two α-carbanions.

  19. The Identity of the Nucleophile Substitution may Influence Metal Interactions with the Cleavage Site of the Minimal Hammerhead Ribozyme

    PubMed Central

    Osborne, Edith M.; Ward, W. Luke; Ruehle, Max Z.; DeRose, Victoria J.

    2010-01-01

    Potential metal interactions with the cleavage site of a minimal hammerhead ribozyme (mHHRz) were probed using 31P NMR-detected Cd2+ titration studies of HHRz constructs containing a phosphorothioate (PS) modification at the cleavage site. The mHHRz nucleophile position was replaced by either a 2′-F or a 2′-NH2 in order to block cleavage activity during the study. The 2′-F/PS cleavage site mHHRz construct, in which the 2′-F should closely imitate the atom size and electronegativity of a 2′OH, demonstrates low levels of metal ion association (<1 ppm 31P chemical shift changes). This observation indicates that having an atom size and electrostatic properties that are similar to the 2′-OH are not the governing factors in allowing metal interactions with the scissile phosphate of the mHHRz. With a 2′-NH2 substitution, a large upfield change in 31P NMR chemical shift of the phosphorothioate peak (Δ~3 ppm with 6 equivalents added Cd2+) indicates observable Cd2+ interactions with the substituted site. Since a 2′-NH2, but not a 2′-F, can serve as a metal ligand, these data suggest that a metal ion interaction with the HHRz cleavage site may include both the scissile phosphate and the 2′ nucleophile. Control samples in which the 2′-NH2/PS unit is placed either next to the mHHRz cleavage site (at U16.1), in a duplex, or in a amUPSU dinucleotide, show much weaker interactions with Cd2+. Results with these control samples indicate that simply the presence of a 2′-NH2/PS unit does not create a strong metal binding site, reinforcing the possibility that the 2′-NH2-moderated Cd-PS interaction is specific to the mHHRz cleavage site. Upfield chemical shifts of both 31P and H2′ 1H resonances in amUPSU are observed with addition of Cd2+, consistent with the predicted metal coordination to both 2′-NH2 and phosphorothioate ligands. These data suggest that metal ion association with the HHRz cleavage site may include an interaction with the 2

  20. A transitional hydrolase to glycosynthase mutant by Glu to Asp substitution at the catalytic nucleophile in a retaining glycosidase.

    PubMed

    Aragunde, Hugo; Castilla, Estela; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2014-05-07

    Glycosynthases from more than 16 glycosidase families have been developed for the efficient synthesis of oligosaccharides and glycoconjugates. β-1,3-1,4-Glucan oligo- and polysaccharides with defined sequences can be quantitatively achieved with the glycosynthases derived from Bacillus licheniformis β-1,3-1,4-glucanase. The screening of a nucleophile saturation library of this enzyme yielded the unexpected E134D mutant which has high glycosynthase efficiency (25% higher kcat than the best glycosynthase to date, E134S) but also retains some hydrolase activity (2% relative to the wild-type enzyme). Here, we report the biochemical and structural analyses of this mutant compared to E134S and wild-type enzymes. E134D shows a pH profile of general base catalysis for the glycosynthase activity, with a kinetic pKa (on kcat/KM) assigned to Glu138 of 5.8, whereas the same residue acts as a general acid in the hydrolase activity with the same pKa value. The pKa of Glu138 in the wt enzyme was 7.0, a high value due to the presence of the catalytic nucleophile Glu134 which destabilizes the conjugate base of Glu138. Thus, the pKa of Glu138 drops 1.1 pH units in the mutant relative to the wild-type enzyme meaning that the larger distance between carboxylates in positions 138 and 134 (5.6Å for wt, 7.0Å for E134D) and/or a new hydrogen bonding interaction with a third Asp residue (Asp136) in the mutant reduces the effect of the negatively charged Asp134. In consequence, the pKa of Glu138 has a similar pKa value in the E134D mutant than in the other glycosynthase mutants having a neutral residue in position 134. The behavior of the E134D mutant shows that shortening the side chain of the nucleophile, despite maintaining a carboxylate group, confers glycosynthase activity. Therefore E134D is a transitional hydrolase to glycosynthase mutation.

  1. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.

    PubMed

    Li, Ling; Li, Zhimin; Wang, Canhui; Xu, Dingguo; Mariano, Patrick S; Guo, Hua; Dunaway-Mariano, Debra

    2008-04-22

    L-arginine deiminase (ADI) catalyzes the hydrolysis of L-arginine to form L-citrulline and ammonia via two partial reactions. A working model of the ADI catalytic mechanism assumes nucleophilic catalysis by a stringently conserved active site Cys and general acid-general base catalysis by a stringently conserved active site His. Accordingly, in the first partial reaction, the Cys attacks the substrate guanidino C zeta atom to form a tetrahedral covalent adduct, which is protonated by the His at the departing ammonia group to facilitate the formation of the Cys- S-alkylthiouronium intermediate. In the second partial reaction, the His activates a water molecule for nucleophilic addition at the thiouronium C zeta atom to form the second tetrahedral intermediate, which eliminates the Cys in formation of the L-citrulline product. The absence of a basic residue near the Cys thiol suggested that the electrostatic environment of the Cys thiol, in the enzyme-substrate complex, stabilizes the Cys thiolate anion. The studies described in this paper explore the mechanism of stabilization of the Cys thiolate. First, the log(k(cat)/K(m)) and log k(cat) pH rate profiles were measured for several structurally divergent ADIs to establish the pH range for ADI catalysis. All ADIs were optimally active at pH 5, which suggested that the Cys pKa is strongly perturbed by the prevailing electrostatics of the ADI active site. The p K a of the Bacillus cereus ADI (BcADI) was determined by UV-pH titration to be 9.6. In contrast, the pKa determined by iodoacetamide Cys alkylation is 6.9. These results suggest that the negative electrostatic field from the two opposing Asp carboxylates perturbs the Cys pKa upward in the apoenzyme and that the binding of the iodoacetamide (a truncated analogue of the citrulline product) between the Cys thiol and the two Asp carboxylates shields the Cys thiol, thereby reducing its pKa. It is hypothesized that the bound positively charged guanidinium group of the

  2. A new approach to cyclic hydroxamic acids: Intramolecular cyclization of N-benzyloxy carbamates with carbon nucleophiles

    PubMed Central

    Liu, Yuan; Jacobs, Hollie K.

    2011-01-01

    N-Alkyl-N-benzyloxy carbamates, 2, undergo facile intramolecular cyclization with a variety of carbon nucleophiles to give functionalized 5- and 6-membered protected cyclic hydroxamic acids, 3, in good to excellent yields. This method can be extended to prepare seven-membered cyclic hydroxamic acids in moderate yields. The sulfone intermediates 3 from this study can be alkylated while the corresponding phosphonates have been shown to undergo HWE reaction. The α,β-unsaturated synthon, 8, prepared by thermal elimination of sulfoxide 3m, undergoes Michael addition with secondary amines. The usefulness of this approach to prepare polydentate chelators has been demonstrated by the synthesis of bis cyclic hydroxamic acids 12, 14, and 15. PMID:21499514

  3. Iminoboronate Formation Leads to Fast and Reversible Conjugation Chemistry of α-Nucleophiles at Neutral pH.

    PubMed

    Bandyopadhyay, Anupam; Gao, Jianmin

    2015-10-12

    Bioorthogonal reactions that are fast and reversible under physiological conditions are in high demand for biological applications. Herein, it is shown that an ortho boronic acid substituent makes aryl ketones rapidly conjugate with α-nucleophiles at neutral pH. Specifically, 2-acetylphenylboronic acid and derivatives were found to conjugate with phenylhydrazine with rate constants of 10(2) to 10(3) M(-1) s(-1) , comparable to the fastest bioorthogonal conjugations known to date. (11) B NMR analysis revealed the varied extent of iminoboronate formation of the conjugates, in which the imine nitrogen forms a dative bond with boron. The iminoboronate formation activates the imines for hydrolysis and exchange, rendering these oxime/hydrazone conjugations reversible and dynamic under physiological conditions. The fast and dynamic nature of the iminoboronate chemistry should find wide applications in biology.

  4. Synthesis of enantiopure trifluoromethyl building blocks via a highly chemo- and diastereoselective nucleophilic trifluoromethylation of tartaric acid-derived diketones.

    PubMed

    Massicot, Fabien; Monnier-Benoit, Nicolas; Deka, Naba; Plantier-Royon, Richard; Portella, Charles

    2007-02-16

    A highly diastereoselective nucleophilic mono(trifluoromethylation) of a tartaric acid-based diketone, using trifluoromethyl(trimethyl)silane, afforded the corresponding gamma-keto trifluoromethylcarbinol. The scope and limitation of this reaction was studied. The acidic removal of the acetonide moiety protecting the two hydroxyl groups of the adducts was unsuccessful. Bis(O-methylation) of the aromatic derivatives under basic conditions, followed by acidic hydrolysis and oxidative cleavage, led to two different enantiopure products: an alpha-aryl-alpha-methoxy-alpha-trifluoromethyl ethanal and an alpha-aryl-alpha-methoxycarboxylic acid. The overall process is eventually an interesting way to convert one natural chiral raw material into two functionalized enantiopure building blocks including a trifluoromethyl one.

  5. 5(6)-anti-Substituted-2-azabicyclo[2.1.1]hexanes. A Nucleophilic Displacement Route

    PubMed Central

    Krow, Grant R.; Edupuganti, Ram; Gandla, Deepa; Choudhary, Amit; Lin, Guoliang; Sonnet, Philip E.; DeBrosse, Charles; Ross, Charles W.; Cannon, Kevin C.; Raines, Ronald T.

    2012-01-01

    Nucleophilic displacements of 5(6)-anti-bromo substituents in 2-azabicyclo[2.1.1]hexanes (methanopyrrolidines) have been accomplished. These displacements have produced 5-anti-X-6-anti-Y-difunctionalized-2-azabicyclo[2.1.1]hexanes containing bromo, fluoro, acetoxy, hydroxy, azido, imidazole, thiophenyl, and iodo substituents. Such displacements of anti-bromide ions require an amine nitrogen and are a function of the solvent and the choice of metal salt. Reaction rates were faster and product yields were higher in DMSO when compared to DMF and with CsOAc compared to NaOAc. Sodium or lithium salts gave products, except with NaF, where silver fluoride in nitromethane was best for substitution by fluoride. The presence of electron-withdrawing F, OAc, N3, Br, or SPh substituents in the 6-anti-position slows bromide displacements at the 5-anti-position. PMID:19799411

  6. Assignment of sweet almond beta-glucosidase as a family 1 glycosidase and identification of its active site nucleophile.

    PubMed

    He, S; Withers, S G

    1997-10-03

    Sweet almond beta-glucosidase is a well studied glycosidase, having been subjected to numerous kinetic analyses and inhibition studies. However, it is not known to which glycosidase family it belongs, nor is the identity of the active site nucleophile known with certainty. It can be inactivated using the specific, mechanism-based enzyme inactivator 2-deoxy-2-fluoro-beta-D-glucopyranosyl fluoride, which functions by forming a stable 2-deoxy-2-fluoro-alpha-D-glucopyranosyl-enzyme intermediate. The glycosylated peptide present in a peptic digest of this trapped glycosyl-enzyme intermediate was identified by use of neutral loss scans on an electrospray ionization triple quadrupole mass spectrometer. Comparative liquid chromatographic/mass spectrometric analysis of peptic digests of labeled and unlabeled enzyme samples confirmed the unique presence of this peptide of m/z = 1041 in the labeled sample. The sequence of this peptide was determined to be Ile-Thr-Glu-Gln-Gly-Val-Asp-Glu by further tandem mass spectrometric analysis in the daughter ion scan mode in conjunction with Edman degradation of the purified peptide. The identity of the labeled side chain was determined by further tandem mass spectrometric analysis in the daughter ion scan mode of a partially purified sample of the labeled peptide subjected to methyl esterification, the fragmentation pattern being consistent only with the first Glu in the sequence being labeled. The sequence around this residue is identical to that surrounding the catalytic nucleophile in many members of glycosidase Family 1, confirming the assignment of this enzyme to that family. The residue labeled is, however, different from that (Asp) identified previously in the enzyme from bitter almonds by use of conduritol epoxide affinity labels, although apparently close in the primary sequence.

  7. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide*♦

    PubMed Central

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E. Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R.; Alvarez, Beatriz

    2015-01-01

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS−, is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS− toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS− is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes. PMID:26269587

  8. Dechlorination of chloropicrin and 1,3-dichloropropene by hydrogen sulfide species: redox and nucleophilic substitution reactions.

    PubMed

    Zheng, Wei; Yates, Scott R; Papiernik, Sharon K; Guo, Mingxin; Gan, Jianying

    2006-03-22

    The chlorinated fumigants chloropicrin (trichloronitromethane) and 1,3-dichloropropene (1,3-D) are extensively used in agricultural production for the control of soilborne pests. The reaction of these two fumigants with hydrogen sulfide species (H2S and HS-) was examined in well-defined anoxic aqueous solutions. Chloropicrin underwent an extremely rapid redox reaction in the hydrogen sulfide solution. Transformation products indicated reductive dechlorination of chloropicrin by hydrogen sulfide species to produce dichloro- and chloronitromethane. The transformation of chloropicrin in hydrogen sulfide solution significantly increased with increasing pH, indicating that H2S is less reactive toward chloropicrin than HS- is. For both 1,3-D isomers, kinetics and transformation products analysis revealed that the reaction between 1,3-D and hydrogen sulfide species is an S(N)2 nucleophilic substitution process, in which the chlorine at C3 of 1,3-D is substituted by the sulfur nucleophile to form corresponding mercaptans. The 50% disappearance time (DT50) of 1,3-D decreased with increasing hydrogen sulfide species concentration at a constant pH. Transformation of 1,3-D was more rapid at high pH, suggesting that the reactivity of hydrogen sulfide species in the experimental system stems primarily from HS-. Because of the relatively low smell threshold values and potential environmental persistence of organic sulfur products yielded by the reaction of 1,3-D and HS-, the effects of reduced sulfide species should be considered in the development of alternative fumigation practices, especially in the integrated application of sulfur-containing fertilizers.

  9. Dramatic effects of halogen substitution and solvent on the rates and mechanisms of nucleophilic substitution reactions of aziridines.

    PubMed

    Banks, Harold D

    2008-04-04

    In a previous study we reported that fluorine substitution at the carbon positions of aziridine results in profound enhancements of the rate of reaction with ammonia, a typical nucleophile, in the gas phase. In this study the investigation is extended to include chloro- and bromoaziridines. Because syntheses are largely performed in the condensed phase, the present computational investigation [(MP2(Full)/6-311++G(d,p)//MP2(Full)/6-31+G(d) level] was conducted with three typical solvents that cover a wide range of polarity: THF, CH3CN, and H2O. Nucleophiles can react with haloaziridines 1 by displacing a substituted amide ion by means of an SN2 mechanism (pathway a), producing 1,2-diaminohaloethanes (from the initially formed dipolar species 2). Alternatively, a rearrangement mechanism involving rate-determining departure of a halide ion (pathway b) to form an imidoyl halide, 3, is possible. Transition-state theory was used to compute relative reaction rates of these mechanistic possibilities and to assess the role of the halogen substituents and the reaction solvent. Gas-phase results provided the basis of mechanistic insights that were more apparent in the absence of intermolecular interactions. Fluoroaziridines were found to react at accelerated rates relative to aziridine exclusively by means of the a Menshutkin-type mechanism (SN2) in each solvent tested, while the reactions of the chloro- and bromoaziridines could be directed toward 2 in the highly nonpolar solvent, cyclohexane, or toward 3 in the more polar solvents. An assessment is made of the feasibility of using this chemistry of the haloazirdines in the synthetic laboratory.

  10. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.

    PubMed

    Li, Qiang-Gen; Xu, Ke; Ren, Yi

    2015-04-30

    In a kinetic experiment on the SN2 reaction of sodium p-nitrophenoxide with iodomethane in acetone-water mixed solvent, Humeres et al. (J. Org. Chem. 2001, 66, 1163) found that the reaction depends strongly on the medium, and the fastest rate constant was observed in pure acetone. The present work tries to explore why acetone can enhance the reactivity of the title reactions. Accordingly, we make a mechanistic study on the reactions of sodium p-nitrophenoxide with halomethanes (CH3X, X = Cl, Br, I) in acetone by using a supramolecular/continuum model at the PCM-MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level, in which the ion pair nucleophile is microsolvated by one to three acetone molecules. We compared the reactivity of the microsolvated ion pair nucleophiles with solvent-free ion pair and anionic ones. Our results clearly reveal that the microsolvated ion pair nucleophile is favorable for the SN2 reactions; meanwhile, the origin of the enhanced reactivity induced by microsolvation of the nucleophile is discussed in terms of the geometries of transition state (TS) structures and activation strain model, suggesting that lower deformation energies and stronger interaction energies between the deformed reactants in the TS lead to the lower overall reaction barriers for the SN2 reaction of microsolvated sodium p-nitrophenoxide toward halomethanes in acetone.

  11. Synthesis of Aryl-Substituted 2,4-Dinitrophenylamines: Nucleophilic Aromatic Substitution as a Problem-Solving and Collaborative-Learning Approach

    ERIC Educational Resources Information Center

    Santos, Elvira Santos; Garcia, Irma Cruz Gavilan; Gomez, Eva Florencia Lejarazo; Vilchis-Reyes, Miguel Angel

    2010-01-01

    A series of experiments based on problem-solving and collaborative-learning pedagogies are described that encourage students to interpret results and draw conclusions from data. Different approaches including parallel library synthesis, solvent variation, and leaving group variation are used to study a nucleophilic aromatic substitution of…

  12. Oxidative photoredox-catalytic activation of aliphatic nucleophiles for C(sp(3))-C(sp(2)) cross-coupling reactions.

    PubMed

    Jahn, Emanuela; Jahn, Ullrich

    2014-12-01

    In the light you will find the road (Led Zeppelin): Visible-light photoredox catalysis leads the way in overcoming the reactivity limitations of alkyl nucleophiles in cross-coupling reactions. Iridium-triggered oxidative photoredox activation of alkyltrifluoroborate or carboxylic acids affords alkyl radicals, which undergo nickel-catalyzed cross-coupling reactions.

  13. Probing the reactivation process of sarin-inhibited acetylcholinesterase with α-nucleophiles: hydroxylamine anion is predicted to be a better antidote with DFT calculations.

    PubMed

    Khan, Md Abdul Shafeeuulla; Lo, Rabindranath; Bandyopadhyay, Tusar; Ganguly, Bishwajit

    2011-08-01

    Inactivation of acetylcholinesterase (AChE) due to inhibition by organophosphorus (OP) compounds is a major threat to human since AChE is a key enzyme in neurotransmission process. Oximes are used as potential reactivators of OP-inhibited AChE due to their α-effect nucleophilic reactivity. In search of more effective reactivating agents, model studies have shown that α-effect is not so important for dephosphylation reactions. We report the importance of α-effect of nucleophilic reactivity towards the reactivation of OP-inhibited AChE with hydroxylamine anion. We have demonstrated with DFT [B3LYP/6-311G(d,p)] calculations that the reactivation process of sarin-serine adduct 2 with hydroxylamine anion is more efficient than the other nucleophiles reported. The superiority of hydroxylamine anion to reactivate the sarin-inhibited AChE with sarin-serine adducts 3 and 4 compared to formoximate anion was observed in the presence and absence of hydrogen bonding interactions of Gly121 and Gly122. The calculated results show that the rates of reactivation process of adduct 4 with hydroxylamine anion are 261 and 223 times faster than the formoximate anion in the absence and presence of such hydrogen bonding interactions. The DFT calculated results shed light on the importance of the adjacent carbonyl group of Glu202 for the reactivation of sarin-serine adduct, in particular with formoximate anion. The reverse reactivation reaction between hydroxylamine anion and sarin-serine adduct was found to be higher in energy compared to the other nucleophiles, which suggests that this α-nucleophile can be a good antidote agent for the reactivation process.

  14. Anionic polymerization of oxadiazole-containing 2-vinylpyridine by precisely tuning nucleophilicity and the polyelectrolyte characteristics of the resulting polymers

    DOE PAGES

    Goodwin, Andrew; Goodwin, Kimberly M.; Wang, Weiyu; ...

    2016-09-01

    Anionic polymerization is one of the most powerful techniques for preparation of well-defined polymers. However, this well-known and widely employed polymerization technique encounters major limitations for the polymerization of functional monomers containing heteroatoms. This work presents the anionic polymerization of 2-phenyl-5-(6-vinylpyridin-3-yl)-1,3,4-oxadiazole (VPyOzP), a heteroatom monomer that contains both oxadiazole and pyridine substituents within the same pendant group, using various initiating systems based on diphenylmethyl potassium (DPM-K) and triphenylmethyl potassium (TPM-K). Remarkably, well-defined poly(2-phenyl-5-(6-vinylpyridin-3-yl)-1,3,4-oxadiazole) (PVPyOzP) polymers having predicted molecular weights (MW) ranging from 2200 to 21 100 g/mol and polydispersity indices (PDI) ranging from 1.11 to 1.15 were prepared with TPM-K,more » without any additional additives, at –78 °C. The effect of temperature on the polymerization of PVPyOzP was also studied at –78, –45, 0, and 25 °C, and it was observed that increasing the polymerization temperature produced materials with unpredictable MW’s and broader molecular weight distributions. Furthermore, the nucleophilicity of PVPyOzP was investigated through copolymerization with methyl methacrylate and acrylonitrile, where only living poly(methyl methacrylate) (PMMA) prepared by DPM-K/VPPy and in the absence of additives such as lithium chloride (LiCl) and diethyl zinc (ZnEt2) could be used to produce the well-defined block copolymer of PMMA-b-PVPyOzP. It was also demonstrated by sequential monomer addition that the nucleophilicity of living PVPyOzP is located between that of living PMMA and polyacrylonitrile (PAN). Here, the pyridine moiety of the pendant group also allowed for quaternization and produced PQVPyOzP homopolymer using methyl iodide (CH3I) and bis(trifluoromethylsulfonyl)amide [Tf2N–]. The resulting charged polymer and counterion complexes were manipulated and investigated

  15. Anionic polymerization of oxadiazole-containing 2-vinylpyridine by precisely tuning nucleophilicity and the polyelectrolyte characteristics of the resulting polymers

    SciTech Connect

    Goodwin, Andrew; Goodwin, Kimberly M.; Wang, Weiyu; Yu, Yong -Guen; Lee, Jae -Suk; Mahurin, Shannon M.; Dai, Sheng; Mays, Jimmy W.; Kang, Nam -Goo

    2016-09-01

    Anionic polymerization is one of the most powerful techniques for preparation of well-defined polymers. However, this well-known and widely employed polymerization technique encounters major limitations for the polymerization of functional monomers containing heteroatoms. This work presents the anionic polymerization of 2-phenyl-5-(6-vinylpyridin-3-yl)-1,3,4-oxadiazole (VPyOzP), a heteroatom monomer that contains both oxadiazole and pyridine substituents within the same pendant group, using various initiating systems based on diphenylmethyl potassium (DPM-K) and triphenylmethyl potassium (TPM-K). Remarkably, well-defined poly(2-phenyl-5-(6-vinylpyridin-3-yl)-1,3,4-oxadiazole) (PVPyOzP) polymers having predicted molecular weights (MW) ranging from 2200 to 21 100 g/mol and polydispersity indices (PDI) ranging from 1.11 to 1.15 were prepared with TPM-K, without any additional additives, at –78 °C. The effect of temperature on the polymerization of PVPyOzP was also studied at –78, –45, 0, and 25 °C, and it was observed that increasing the polymerization temperature produced materials with unpredictable MW’s and broader molecular weight distributions. Furthermore, the nucleophilicity of PVPyOzP was investigated through copolymerization with methyl methacrylate and acrylonitrile, where only living poly(methyl methacrylate) (PMMA) prepared by DPM-K/VPPy and in the absence of additives such as lithium chloride (LiCl) and diethyl zinc (ZnEt2) could be used to produce the well-defined block copolymer of PMMA-b-PVPyOzP. It was also demonstrated by sequential monomer addition that the nucleophilicity of living PVPyOzP is located between that of living PMMA and polyacrylonitrile (PAN). Here, the pyridine moiety of the pendant group also allowed for quaternization and produced PQVPyOzP homopolymer using methyl iodide (CH3I) and bis(trifluoromethylsulfonyl)amide [Tf2N]. The resulting charged polymer and counterion complexes

  16. Enantioselective Nucleophile-Catalyzed Synthesis of Tertiary Alkyl Fluorides via the α-Fluorination of Ketenes: Synthetic and Mechanistic Studies

    PubMed Central

    2015-01-01

    The catalytic asymmetric synthesis of alkyl fluorides, particularly α-fluorocarbonyl compounds, has been the focus of substantial effort in recent years. While significant progress has been described in the formation of enantioenriched secondary alkyl fluorides, advances in the generation of tertiary alkyl fluorides have been more limited. Here, we describe a method for the catalytic asymmetric coupling of aryl alkyl ketenes with commercially available N-fluorodibenzenesulfonimide (NFSI) and C6F5ONa to furnish tertiary α-fluoroesters. Mechanistic studies are consistent with the hypothesis that the addition of an external nucleophile (C6F5ONa) is critical for turnover, releasing the catalyst (PPY*) from an N-acylated intermediate. The available data can be explained by a reaction pathway wherein the enantioselectivity is determined in the turnover-limiting transfer of fluorine from NFSI to a chiral enolate derived from the addition of PPY* to the ketene. The structure and the reactivity of the product of this proposed elementary step, an α-fluoro-N-acylpyridinium salt, have been examined. PMID:24922581

  17. Rapid determination of trace semicarbazide in flour products by high-performance liquid chromatography based on a nucleophilic substitution reaction.

    PubMed

    Wei, Tianfu; Li, Gongke; Zhang, Zhuomin

    2017-02-28

    Semicarbazide, a toxic food contaminant, widely exists in food products and it originates from the thermal degradation of a food additive of azodicarbonamide or a metabolite of nitrofurazone abused in meat specimens. Many previous methods for semicarbazide determination usually required expensive instruments, difficult-to-prepare monoclonal antibodies, and a long operation time. In this study, a high-performance liquid chromatography method was developed for the rapid determination of trace semicarbazide coupling with a nucleophilic substitution reaction firstly using 4-nitrobenzoyl chloride as derivatization reagent. The derivatization reaction was mild at room temperature for 1 min in neutral solution. Then, semicarbazide derivative was separated and quantified by high-performance liquid chromatography with ultraviolet detection under optimal separation conditions at λmax = 261 nm. The proposed method offered the detection limit of 1.8 μg/L and was successfully applied for the rapid determination of trace semicarbazide in flour products. Semicarbazide in positive real samples could be actually found and quantified in the range of 0.47-7.53 mg/kg. The recoveries were 76.6-119% with relative standard deviations of 0.5-9.1% (n = 3). This developed method was rapid, reliable, and convenient for the determination of trace semicarbazide in food.

  18. Theoretical estimation of kinetic parameters for nucleophilic substitution reactions in solution: an application of a solution translational entropy model.

    PubMed

    Han, Ling-Li; Li, Shi-Jun; Fang, De-Cai

    2016-02-17

    The kinetic parameters, such as activation entropy, activation enthalpy, activation free-energy, and reaction rate constant, for a series of nucleophilic substitution (SN) reactions in solution, are investigated using both a solution-phase translational entropy model and an ideal gas-phase translational entropy model. The results obtained from the solution translational entropy model are in excellent agreement with the experimental values, while the overestimation of activation free-energy from the ideal gas-phase translational entropy model is as large as 6.9 kcal mol(-1). For some of the reactions studied, such as and in methanol, and and in aqueous solution, the explicit + implicit model, namely, a cluster-continuum type model, should be employed to account for the strong solvent-solute interactions. In addition, the explicit + implicit models have also been applied to the DMSO-H2O mixtures, which would open up a door to investigate the reactions in a mixed solvent using density functional theory (DFT) methods.

  19. Preparation and characterization of poly (arylene ether isoxazole)s by fluoride ion-mediated aromatic nucleophilic displacement reactions

    NASA Technical Reports Server (NTRS)

    Herbert, C. G.; Bass, R. G.

    1994-01-01

    As part of a continuing effort to prepare novel thermally stable high-performance polymers, poly(arylene ether isoxazole)s have been prepared by fluoride ion-catalyzed aromatic nucleophilic substitution reactions with bis(trimethylsiloxyphenyl) isoxazoles and activated bisarylhalides in diphenyl sulfone. Initial investigation involving the preparation of these materials with isoxazole bisphenols and activated bisarylhalides in the presence of potassium carbonate indicated that, under reaction conditions necessary to prepare high-molecular-weight materials, the isoxazole monomer was converted to an enamino ketone. This side reaction was avoided by using fluoride as a base. However, trimethylsilyl ether derivatives of the isoxazole bisphenols were required in these polymerizations for the preparation of high-molecular-weight materials. Moderate to high inherent viscosity eta(sub inh): 0.43-0.87 dl/g) materials with good thermal stability (air: 409-477 C, helium: 435-512 C) can be prepared by the silyl ether method. Glass transition temperatures ranged from 182 to 225 C for polymers with phenyl pendants and from 170 to 214 C for those without. Molecular weight control by 2% endcapping and the incorporation of a phenyl pendant at the 4 position of the isoxazole is necessary to yield polymers soluble in polar aprotic solvents at room temperature. There is evidence, however, indicating the existence of crosslinks between the polymer chains when the silyl ether approach is utilized.

  20. Matrix isolation infrared and DFT study of the trimethyl phosphite-hydrogen chloride interaction: hydrogen bonding versus nucleophilic substitution.

    PubMed

    Ramanathan, N; Kar, Bishnu Prasad; Sundararajan, K; Viswanathan, K S

    2012-12-13

    Trimethyl phosphite (TMPhite) and hydrogen chloride (HCl), when separately codeposited in a N(2) matrix, yielded a hydrogen bonded adduct, which was evidenced by shifts in the vibrational frequencies of the TMPhite and HCl submolecules. The structure and energy of the adducts were computed at the B3LYP level using 6-31++G** and aug-cc-pVDZ basis sets. While our computations indicated four minima for the TMPhite-HCl adducts, only one adduct was experimentally identified in the matrix at low temperatures, which interestingly was not the structure corresponding to the global minimum, but was the structure corresponding to the first higher energy local minimum. The Onsager self-consistent reaction field model was used to explain this observation. In an attempt to prepare the hydrogen bonded adduct in the gas phase and then trap it in the matrix, TMPhite and HCl were premixed prior to deposition. However, in these experiments, no hydrogen bonded adduct was observed; on the contrary, TMPhite reacted with HCl to yield CH(3)Cl, following a nucleophilic substitution, a reaction that is apparently frustrated in the matrix.

  1. Enhanced nucleophilicity and depressed electrophilicity of peroxide by zinc(II), aluminum(III) and lanthanum(III) ions.

    PubMed

    Nishino, S; Kobayashi, T; Matsushima, H; Tokii, T; Nishida, Y

    2001-01-01

    The binuclear zinc(II) complex, [Zn2(HPTP)(CH3COO)]2+ was found highly active to cleave DNA (double-strand super-coiled DNA, pBR322 and phix174) in the presence of hydrogen peroxide. However, no TBARS (2-thiobarbituric acid reactive substance) formation was detected in a solution containing 2-deoxyribose (or 2'-deoxyguanosine, etc); where (HPTP) represents N,N,N'-N'-tetrakis(2-pyridylmethyl)-1,3-diamino-2-propanol. These facts imply that DNA cleavage reaction by the binuclear Zn(II)/H2O2 system should be due to a hydrolytic mechanism, which may be attributed to the enhanced nucleophilicity but depressed electrophilicity of the peroxide ion coordinated to the zinc(II) ion. DFT (density-functional theory) calculations on the peroxide adduct of monomeric zinc(II) have supported the above consideration. Similar DFT calculations on the peroxide adducts of the Al(III) and La(III) compounds have revealed that electrophilicity of the peroxide ion in these compounds is strongly reduced. This gives an important information to elucidate the fact that La3+ can enhance the growth of plants under certain conditions.

  2. Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne-Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid.

    PubMed

    Terada, Masahiro; Ota, Yusuke; Li, Feng; Toda, Yasunori; Kondoh, Azusa

    2016-08-31

    Catalytic enantioselective syntheses enable a practical approach to enantioenriched molecules. While most of these syntheses have been accomplished by reaction at the prochiral sp(2)-hybridized carbon atom, little attention has been paid to enantioselective nucleophilic substitution at the sp(3)-hybridized carbon atom. In particular, substitution at the chiral sp(3)-hybridized carbon atom of racemic electrophiles has been rarely exploited. To establish an unprecedented enantioselective substitution reaction of racemic electrophiles, enantioconvergent Nicholas reaction of an alkyne-dicobalt complex derived from racemic propargylic alcohol was developed using a chiral phosphoric acid catalyst. In the present enantioconvergent process, both enantiomers of the racemic alcohol were transformed efficiently to a variety of thioethers with high enantioselectivity. The key to achieving success is dynamic kinetic asymmetric transformation (DYKAT) of enantiomeric cationic intermediates generated via dehydroxylation of the starting racemic alcohol under the influence of the chiral phosphoric acid catalyst. The present fascinating DYKAT involves the efficient racemization of these enantiomeric intermediates and effective resolution of these enantiomers through utilization of the chiral conjugate base of the phosphoric acid.

  3. Theoretical Design and Calculation of a Crown Ether Phase-Transfer-Catalyst Scaffold for Nucleophilic Fluorination Merging Two Catalytic Concepts.

    PubMed

    Carvalho, Nathália F; Pliego, Josefredo R

    2016-09-16

    Fluorinated organic molecules are playing an increased role in the area of pharmaceuticals and agrochemicals. This fact demands the development of efficient catalytic fluorination processes. In this paper, we have designed a new crown ether with four hydroxyl groups strategically positioned. The catalytic activity of this basic scaffold was investigated with high levels of electronic structure theory, such as the ONIOM approach combining MP4 and MP2 methods. On the basis of the calculations, this new structure is able to solubilize potassium fluoride in toluene solution much more efficiently than 18-crown-6 (18C6). In addition, the strong interaction of the new catalyst with the SN2 transition state leads to a very important catalytic effect, with a predicted free energy barrier of 23.3 kcal mol(-1) for potassium fluoride plus ethyl bromide reaction model. Compared with experimental data and previous theoretical studies, this new catalyst is 10(4) times more efficient than 18C6 for nucleophilic fluorination of alkyl halides. The catalysis is predicted to be selective, leading to 97% of fluorination and only 3% of elimination. Catalytic fluorination of the aromatic ring has also been investigated, and although the catalyst is less efficient in this case, our analysis has indicated further development of this strategy can lead to more efficient catalysis.

  4. Highly nucleophilic acetylide, vinyl, and vinylidene complexes. Final progress report, 1 January 1991--31 March 1994

    SciTech Connect

    Geoffroy, G.L.

    1994-10-04

    In the course of this research the authors found that the anionic alkynyl complex [Cp{prime}(CO)(PPh{sub 3})Mn-C{triple_bond}C-CH{sub 3}]{sup {minus}} can be generated in situ by the addition of two equivalents of n-BuLi to a solution of the carbene complex Cp{prime}(CO)(PPh{sub 3})Mn{double_bond}C(OMe)CH{sub 2}CH{sub 3}. It was also found that the highly nucleophilic propynyl complex [Cp(CO)(PPh{sub 3})Mn-C{triple_bond}C-Me]{sup {minus}} reacts with a variety of aldehydes and ketones in the presence of BF{sub 3}{center_dot}Et{sub 2}O to give, after quenching with MeOH, a series of cationic vinylcarbyne complexes of the general form [Cp(CO)(PPh{sub 3})Mn{triple_bond}C-C(Me){double_bond}C(R)(R{prime})]BF{sub 4}. The cationic alkylidyne complexes [Cp(CO){sub 2}M{triple_bond}C-CH{sub 2}R]{sup +} [M = Re, R = H, M = Mn, R = H, Me, Ph] have been found to undergo facile deprotonation to give the corresponding neutral vinylidene complexes Cp(CO){sub 2}M{double_bond}C{double_bond}C(H)R. The authors have also investigated reactions relevant to the halide promoted Fe and Ru catalyzed carbonylation of nitroaromatics. The final part of this work has involved investigations of metal-oxo complexes.

  5. In situ nucleophilic substitution reaction of N,N-dialkylaminoethyl-2-chlorides monitored by gas chromatography/mass spectrometry.

    PubMed

    Lakshmi, V V S; Reddy, T Jagadeshwar; Murty, M R V S; Prabhakar, S; Vairamani, M

    2006-01-01

    The detection and identification of degradation products of scheduled chemicals, which are characteristic markers of Chemical Warfare agents (CWAs), plays a key role in verification analysis. Identification of such non-scheduled but specific markers of CWAs helps in deciphering the kind of agent that was present in the sample submitted for off-site analysis. This paper describes the stability of N,N-dialkylaminoethyl-2-chlorides, which are precursors for highly toxic chemicals like VX, in different solvents. These compounds are stable in chloroform, acetonitrile, hexane and dichloromethane but tend to undergo in situ nucleophilic substitution reaction in the presence of alcohols giving the corresponding alkyl ether. The study shows that N,N-dialkylaminoethyl alkyl ethers can be used as markers of N,N-dialkylaminoethyl-2-chlorides. A detailed degradation study of these compounds in the presence of alcohols was carried out and it was found that the reaction follows pseudo-first order kinetics. Electron ionization mass spectral data for the methyl ethers of all the compounds are briefly discussed.

  6. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    PubMed

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  7. Design and synthesis of a new type of ferrocene-based planar chiral DMAP analogues. A new catalyst system for asymmetric nucleophilic catalysis.

    PubMed

    Seitzberg, Jimmi Gerner; Dissing, Carsten; Søtofte, Inger; Norrby, Per-Ola; Johannsen, Mogens

    2005-10-14

    A new first-generation catalyst system for nucleophilic catalysis has been developed. It is based on a planar chiral ferrocene skeleton with either the potent nucleophile 4-(dimethylamino)pyridine (DMAP) or the related 4-nitropyridine N-oxide attached in either the 2- or the 3-position. The syntheses are short, efficient, and enantioselective and X-ray crystal structures of both DMAP-derived catalysts are presented. The DMAP-based catalysts were tested in asymmetric reactions and the 3-derivative 14 showed good activity and a moderate level of enantioselectivity. The sense of induction (selectivity) was studied using molecular modeling and the results pointed at new directions for future generations of catalysts based on this design.

  8. The diverse behaviour of the P-Cl bonds in the spiro-cis-ansa spermidine derivative cyclotriphosphazene towards mono-functional nucleophilic reagents

    NASA Astrophysics Data System (ADS)

    İbişoğlu, Hanife; Temur, Başak; Ün, İlker

    2009-10-01

    A number of new spiro-ansa spermidine derivative cyclotriphosphazenes ( 2- 10) is synthesized in order to provide insight into the reaction mechanism for nucleophilic substitution. The structures of the compounds were determined by elemental analysis, mass (MS), 1H, 19F (for 9) and 31P NMR spectroscopies. Compounds ( 2- 8) and 9, 10 can be formed by a proton abstraction-chloride elimination and both the SN1 and SN2 reaction mechanisms, respectively.

  9. Inorganic base-catalyzed formation of antivirally active N-substituted benzamides from α-amido sulfones and N-nucleophile

    PubMed Central

    2011-01-01

    Background Heteronucleophiles as well as carbanionic reagents can be used to react with α-amido sulfones, thus giving the opportunity to prepare a large array of amino derivatives. Since, novel 1,3,4-oxadiazole-2-thiol derivatives can serve as potent nucleophiles, we employed 5-subsititued phenyl-1,3,4-oxadiazole-2-thiols as the nucleophilic source of nitrogen in the reaction with α-amido sulfones. Results A series of N-substituted benzamides bearing 1,3,4-oxadiazol unit were prepared for the first time by the reaction of in situ generated protected imine from α-amido sulfones with 5-subsititued phenyl-1,3,4-oxadiazole-2-thiols as the source of nitrogen nucleophile. Some of the synthesized products displayed favourable antiviral activity against cucumber mosaic virus (CMV) in preliminary antiviral activity tests. The title compounds 5c, 5o and 5r revealed curative activity of 42.2%, 48.7% and 40.5%, respectively against CMV (inhibitory rate) compared to the commercial standard Ningnanmycin (53.4%) at 500 μg/mL. Conclusion A practical synthetic route to N-benzoyl-α-amido sulfones by the reaction of 5-subsititued phenyl-1,3,4-oxadiazole-2-thiols as the source of nitrogen nucleophiles with in situ generated protected imine from N-benzoyl-α-amido sulfones is presented. The reaction catalyzed by an inorganic base has considerable significance to exploit the potential of α-amido sulfones in organic synthesis. PMID:21545729

  10. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa.

    PubMed

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH=7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol-gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more--NH2 reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N=3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility.

  11. Straightforward synthetic protocol for the introduction of stabilized C nucleophiles in the BODIPY core for advanced sensing and photonic applications.

    PubMed

    Gutiérrez-Ramos, Brenda D; Bañuelos, Jorge; Arbeloa, Teresa; López Arbeloa, Iñigo; González-Navarro, Paulina E; Wrobel, Kazimierz; Cerdán, Luis; García-Moreno, Inmaculada; Costela, Angel; Peña-Cabrera, Eduardo

    2015-01-19

    A straightforward synthetic protocol to directly incorporate stabilized 1,3-dicarbonyl C nucleophiles to the meso position of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) is reported. Soft nucleophiles generated by deprotonation of 1,3-dicarbonyl derivatives smoothly displace the 8-methylthio group from 8-(methylthio)BODIPY analogues in the presence of Cu(I) thiophenecarboxylate in stoichiometric amounts at room temperature. Seven highly fluorescent new derivatives are prepared with varying yields (20-92%) in short reaction times (5-30 min). The excellent photophysical properties of the new dyes allow focusing on applications never analyzed before for BODIPYs substituted with stabilized C nucleophiles such as pH sensors and lasers in liquid and solid state, highlighting the relevance of the synthetic protocol described in the present work. The attainment of these dyes, with strong UV absorption and highly efficient and stable laser emission in the green spectral region, concerns to one of the greatest challenges in the ongoing development of advanced photonic materials with relevant applications. In fact, organic dyes with emission in the green are the only ones that allow, by frequency-doubling processes, the generation of tunable ultraviolet (250-350 nm) radiation, with ultra-short pulses.

  12. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective and Sensitive Detection of H2S: Synthesis, Spectra and Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhang, Changyu; Wang, Runyu; Cheng, Longhuai; Li, Bingjie; Xi, Zhen; Yi, Long

    2016-07-01

    Hydrogen sulfide (H2S) is an important signalling molecule with multiple biological functions. The reported H2S fluorescent probes are majorly based on redox or nucleophilic reactions. The combination usage of both redox and nucleophilic reactions could improve the probe’s selectivity, sensitivity and stability. Herein we report a new dual-reactable probe with yellow turn-on fluorescence for H2S detection. The sensing mechanism of the dual-reactable probe was based on thiolysis of NBD (7-nitro-1,2,3-benzoxadiazole) amine (a nucleophilic reaction) and reduction of azide to amine (a redox reaction). Compared with its corresponding single-reactable probes, the dual-reactable probe has higher selectivity and fluorescence turn-on fold with magnitude of multiplication from that of each single-reactable probe. The highly selective and sensitive properties enabled the dual-reactable probe as a useful tool for efficiently sensing H2S in aqueous buffer and in living cells.

  13. Nucleophilic addition to olefins. 19. Abnormally high intrinsic barrier in the reaction of piperidine and morpholine with benzylideneacetylacetone

    SciTech Connect

    Bernasconi, C.F.; Kanavarioti, A.

    1986-11-26

    The title reaction leads to the formation of the zwitterionic Michael adduct T/sup +/-/ (PhCH(R/sub 2/NH/sup +/)C(COCH/sub 3/)/sub 2//sup -/) which is in rapid acid-base equilibrium with its anionic form T/sup -/ (PhCH(R/sub 2/N)C(COCH/sub 3/)/sub 2//sup -/). Rate (K/sub 1/, k/sub -1/) and equilibrium constants (K/sub 1/) for nucleophilic addition and the pK/sub a/ of the T/sup +/-/-adducts were determined in 50% Me/sub 2/SO-50% water at 20/sup 0/C. From an interpolation of the rate constants to K/sub 1/ = 1 an intrinsic rate constant, log k/sub 0/ = 0.3, was determined. This value deviates negatively by approximately 2.5 log units from a correlation of log k/sub 0/ for amine addition to five olefins of the type PhCH=CXY, with log k/sub 0/ for the deprotonation of the corresponding carbon acids CH/sub 2/XY. Two major factors are believed to contribute to this depressed intrinsic rate constant or enhanced intrinsic barrier: (1) steric inhibition of resonance in T/sup +/-/ with the steric effect developing ahead of C-N bond formation (this conclusion is supported by an X-ray crystallographic study of p-methoxybenzylideneacetylacetone which shows that steric hindrance to optimal ..pi..-overlap in the adduct T/sup+/-/ is already present in the substrate); (2) intramolecular hydrogen bonding in T/sup +/-/, which is inferred from abnormally high pK/sub a/ values and whose development lags behind C-N bond formation. These effects are shown to be manifestations of the Principle of Nonperfect Synchronization.

  14. Reaction profiles of the interaction between sarin and acetylcholinesterase and the S203C mutant: model nucleophiles and QM/MM potential energy surfaces.

    PubMed

    Beck, Jeremy M; Hadad, Christopher M

    2010-09-06

    The phosphonylation mechanism of AChE and the S203C mutation by sarin (GB) is evaluated using two reaction schemes: a small model nucleophile (ethoxide, CH(3)CH(2)O(-)) and quantum mechanical/molecular mechanical (QM/MM) simulations. Calculations utilizing small model nucleophiles indicate that the reaction barrier for addition to GB is the rate-limiting step for both ethoxide and ethyl thiolate (CH(3)CH(2)S(-)); moreover, the activation barrier for addition to the phosphorus center of GB by ethyl thiolate is significantly larger (13.2 kcal/mol) than for ethoxide (8.3 kcal/mol). The decomposition transition state for both nucleophiles was determined to be approximately 1 kcal/mol. QM/MM simulations for AChE suggest a similar reaction mechanism for phosphonylation of the catalytic S203; however, the relative energetics are altered significantly compared to the isolated system. QM/MM results indicate that formation of the penta-coordinate intermediate is the rate-limiting step in the enzymatic system, with an activation barrier of 3.6 kcal/mol. Hydrogen-bonding interactions between the fluoride leaving group of GB with Y124 in AChE are observed throughout the reaction profile. The S203C mutation alters the relative energetics of the reaction, increasing the energy barrier for formation of the penta-coordinate intermediate to a value of 4.5 kcal/mol; moreover, the penta-coordinate intermediate (as product) is stabilized by an additional 6 kcal/mol when compared to wild-type AChE.

  15. Reaction Profiles of the Interaction between Sarin and Acetylcholinesterase and the S203C Mutant: Model Nucleophiles and QM/MM Potential Energy Surfaces

    PubMed Central

    Beck, Jeremy M.; Hadad, Christopher M.

    2010-01-01

    The phosphonylation mechanism of AChE and the S203C mutation by sarin (GB) is evaluated using two reaction schemes: a small model nucleophile (ethoxide, CH3CH2O−) and quantum mechanical/molecular mechanical (QM/MM) simulations. Calculations utilizing small model nucleophiles indicate that the reaction barrier for addition to GB is the rate-limiting step for both ethoxide and ethyl thiolate (CH3CH2S−); moreover, the activation barrier for addition to the phosphorus center of GB by ethyl thiolate is significantly larger (13.2 kcal/mol) than for ethoxide (8.3 kcal/mol). The decomposition transition state for both nucleophiles was determined to be ~1 kcal/mol. QM/MM simulations for AChE suggest a similar reaction mechanism for phosphonylation of the catalytic S203; however, the relative energetics are altered significantly compared to the isolated system. QM/MM results indicate that formation of the penta-coordinate intermediate is the rate–limiting step in the enzymatic system, with an activation barrier of 3.6 kcal/mol. Hydrogen-bonding interactions between the fluoride leaving group of GB with Y124 in AChE are observed throughout the reaction profile. The S203C mutation alters the relative energetics of the reaction, increasing the energy barrier for formation of the penta-coordinate intermediate to a value of 4.7 kcal/mol; moreover, the penta-coordinate intermediate (as product) is stabilized by an additional 6 kcal/mol when compared to wild-type AChE. PMID:20156428

  16. Nucleophilic selectivity as a determinant of carcinogenic potency (TD50) in rodents: a comparison of mono- and bi-functional alkylating agents and vinyl chloride metabolites.

    PubMed

    Barbin, A; Bartsch, H

    1989-11-01

    Using published data, the carcinogenic potency (TD50) in rodents of a series of monofunctional alkylating agents, bifunctional antitumor drugs and the vinyl chloride (VC) metabolites chloroethylene oxide (CEO) and chloroacetaldehyde (CAA) was compared to their nucleophilic selectivity (Swain and Scott's constant s or initial ratio of 7-/O6-alkylguanine in DNA). A positive correlation between the log of TD50 estimates and the s values for a series of 14, mostly monofunctional, alkylating agents was observed. This linear relationship also included 2 bifunctional chloroethylnitrosoureas, although their carcinogenic potency was compared to their initial 7-/O6-alkylguanine ratio rather than their s values (n = 16, r = 0.91, p less than 0.005). In addition, the carcinogenic potency of 2 alkyl sulfates, which is not yet known accurately, may correlate with their nucleophilic selectivity through the same relationship. By contrast, 2 methyl halides and 5 bifunctional antitumor drugs (nitrogen mustards and azyridinyl derivatives) did not follow this linear relationship: at similar nucleophilic selectivity, they were more potent carcinogens than the above 18 alkylating agents; this may hold true for CEO and CAA too, although further carcinogenicity experiments are needed to calculate their precise TD50 values. The possible molecular mechanisms involved in tumor induction by these agents are discussed on the basis of these findings. Comparison of the estimated TD50 for CEO, CAA and VC in rodents confirms that CEO is the ultimate carcinogenic metabolite of VC and suggests that only a very small proportion of metabolically generated CEO is available for DNA alkylation in vivo.

  17. Iron(II) Active Species in Iron-Bisphosphine Catalyzed Kumada and Suzuki-Miyaura Cross-Couplings of Phenyl Nucleophiles and Secondary Alkyl Halides.

    PubMed

    Daifuku, Stephanie L; Kneebone, Jared L; Snyder, Benjamin E R; Neidig, Michael L

    2015-09-09

    While previous studies have identified FeMes2(SciOPP) as the active catalyst species in iron-SciOPP catalyzed Kumada cross-coupling of mesitylmagnesium bromide and primary alkyl halides, the active catalyst species in cross-couplings with phenyl nucleophiles, where low valent iron species might be prevalent due to accessible reductive elimination pathways, remains undefined. In the present study, in situ Mössbauer and magnetic circular dichroism spectroscopic studies combined with inorganic syntheses and reaction studies are employed to evaluate the in situ formed iron species and identify the active catalytic species in iron-SciOPP catalyzed Suzuki-Miyaura and Kumada cross-couplings of phenyl nucleophiles and secondary alkyl halides. While reductive elimination to form Fe(η(6)-biphenyl)(SciOPP) occurs upon reaction of FeCl2(SciOPP) with phenyl nucleophiles, this iron(0) species is not found to be kinetically competent for catalysis. Importantly, mono- and bis-phenylated iron(II)-SciOPP species that form prior to reductive elimination are identified, where both species are found to be reactive toward electrophile at catalytically relevant rates. The higher selectivity toward the formation of cross-coupled product observed for the monophenylated species combined with the undertransmetalated nature of the in situ iron species in both Kumada and Suzuki-Miyaura reactions indicates that Fe(Ph)X(SciOPP) (X = Br, Cl) is the predominant reactive species in cross-coupling. Overall, these studies demonstrate that low-valent iron is not required for the generation of highly reactive species for effective aryl-alkyl cross-couplings.

  18. Construction of All-Carbon Quaternary Centers through Cu-Catalyzed Sequential Carbene Migratory Insertion and Nucleophilic Substitution/Michael Addition.

    PubMed

    Wang, Chengpeng; Ye, Fei; Wu, Chenggui; Zhang, Yan; Wang, Jianbo

    2015-09-04

    A Cu-catalyzed three-component cross-coupling reaction of terminal alkyne, α-diazo ester, and alkyl halide has been developed. This transformation involves sequent migratory insertion of copper-carbene and nucleophilic substitution, in which a C(sp)-C(sp(3)) bond and a C(sp(3))-C(sp(3)) bond are formed successively on a carbenic center. Michael addition acceptors can also be employed instead of alkyl halides that enable Michael addition to be an alternative way to build C(sp(3))-C(sp(3)) bond. This transformation represents a highly efficient method for the construction of all-carbon quaternary centers.

  19. Unusual reaction paths of SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-: Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Minyaev, Ruslan M.; Quapp, Wolfgang; Schmidt, Benjamin; Getmanskii, Ilya V.; Koval, Vitaliy V.

    2013-11-01

    Quantum chemical (CCSD(full)/6-311++G(3df,3pd), CCSD(T)(full)/6-311++G(3df,3pd)) and density function theory (B3LYP/6-311++G(3df,3pd)) calculations were performed for the SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-. The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual stationary point of index 2 lies on the gradient reaction path. Using Newton trajectories for the reaction path, we can detect VRI point at which the reaction path branches.

  20. Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte

    NASA Astrophysics Data System (ADS)

    Vinayan, B. P.; Zhao-Karger, Zhirong; Diemant, Thomas; Chakravadhanula, Venkata Sai Kiran; Schwarzburger, Nele I.; Cambaz, Musa Ali; Behm, R. Jürgen; Kübel, Christian; Fichtner, Maximilian

    2016-02-01

    Here we report for the first time the development of a Mg rechargeable battery using a graphene-sulfur nanocomposite as the cathode, a Mg-carbon composite as the anode and a non-nucleophilic Mg based complex in tetraglyme solvent as the electrolyte. The graphene-sulfur nanocomposites are prepared through a new pathway by the combination of thermal and chemical precipitation methods. The Mg/S cell delivers a higher reversible capacity (448 mA h g-1), a longer cyclability (236 mA h g-1 at the end of the 50th cycle) and a better rate capability than previously described cells. The dissolution of Mg polysulfides to the anode side was studied by X-ray photoelectron spectroscopy. The use of a graphene-sulfur composite cathode electrode, with the properties of a high surface area, a porous morphology, a very good electronic conductivity and the presence of oxygen functional groups, along with a non-nucleophilic Mg electrolyte gives an improved battery performance.Here we report for the first time the development of a Mg rechargeable battery using a graphene-sulfur nanocomposite as the cathode, a Mg-carbon composite as the anode and a non-nucleophilic Mg based complex in tetraglyme solvent as the electrolyte. The graphene-sulfur nanocomposites are prepared through a new pathway by the combination of thermal and chemical precipitation methods. The Mg/S cell delivers a higher reversible capacity (448 mA h g-1), a longer cyclability (236 mA h g-1 at the end of the 50th cycle) and a better rate capability than previously described cells. The dissolution of Mg polysulfides to the anode side was studied by X-ray photoelectron spectroscopy. The use of a graphene-sulfur composite cathode electrode, with the properties of a high surface area, a porous morphology, a very good electronic conductivity and the presence of oxygen functional groups, along with a non-nucleophilic Mg electrolyte gives an improved battery performance. Electronic supplementary information (ESI) available

  1. No-carrier-added nucleophilic 18F-labelling in an electrochemical cell exemplified by the routine production of [18F]altanserin.

    PubMed

    Hamacher, K; Coenen, H H

    2006-09-01

    A new type of electrochemical cell with anodic deposition of no-carrier-added [(18)F]fluoride and variable reaction volume has been developed. The reactor is designed for small reaction volumes and non-thermal drying of [(18)F]fluoride. The implementation of this reactor into a complete remotely controlled synthesis device is described for the routine production of [(18)F]altanserin. A radiochemical yield of 23+/-5% was obtained via cryptate-mediated nucleophilic (18)F-fluorination. Batches of up to 6 GBq [(18)F]altanserin, suitable for human application, with a molar activity of >500 GBq/micromol were obtained within 75 min.

  2. Modulation of Nitro-fatty Acid Signaling

    PubMed Central

    Vitturi, Dario A.; Chen, Chen-Shan; Woodcock, Steven R.; Salvatore, Sonia R.; Bonacci, Gustavo; Koenitzer, Jeffrey R.; Stewart, Nicolas A.; Wakabayashi, Nobunao; Kensler, Thomas W.; Freeman, Bruce A.; Schopfer, Francisco J.

    2013-01-01

    Inflammation, characterized by the activation of both resident and infiltrated immune cells, is accompanied by increased production of oxidizing and nitrating species. Nitrogen dioxide, the proximal nitrating species formed under these conditions, reacts with unsaturated fatty acids to yield nitroalkene derivatives. These electrophilic products modulate protein function via post-translational modification of susceptible nucleophilic amino acids. Nitroalkenes react with Keap1 to instigate Nrf2 signaling, activate heat shock response gene expression, and inhibit NF-κB-mediated signaling, inducing net anti-inflammatory and tissue-protective metabolic responses. We report the purification and characterization of a NADPH-dependent liver enzyme that reduces the nitroalkene moiety of nitro-oleic acid, yielding the inactive product nitro-stearic acid. Prostaglandin reductase-1 (PtGR-1) was identified as a nitroalkene reductase by protein purification and proteomic studies. Kinetic measurements, inhibition studies, immunological and molecular biology approaches as well as clinical analyses confirmed this identification. Overexpression of PtGR-1 in HEK293T cells promoted nitroalkene metabolism to inactive nitroalkanes, an effect that abrogated the Nrf2-dependent induction of heme oxygenase-1 expression by nitro-oleic acid. These results situate PtGR-1 as a critical modulator of both the steady state levels and signaling activities of fatty acid nitroalkenes in vivo. PMID:23878198

  3. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum.

    PubMed

    Jonas, Stefanie; van Loo, Bert; Hyvönen, Marko; Hollfelder, Florian

    2008-12-05

    The alkaline phosphatase superfamily comprises a large number of hydrolytic metalloenzymes such as phosphatases and sulfatases. We have characterised a new member of this superfamily, a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum (R/PMH) both structurally and kinetically. The 1.42 A crystal structure shows structural homology to arylsulfatases with conservation of the core alpha/beta-fold, the mononuclear active site and most of the active-site residues. Sulfatases use a unique formylglycine nucleophile, formed by posttranslational modification of a cysteine/serine embedded in a signature sequence (C/S)XPXR. We provide mass spectrometric and mutational evidence that R/PMH is the first non-sulfatase enzyme shown to use a formylglycine as the catalytic nucleophile. R/PMH hydrolyses phosphonate monoesters and phosphate diesters with similar efficiency. Burst kinetics suggest that substrate hydrolysis proceeds via a double-displacement mechanism. Kinetic characterisation of active-site mutations establishes the catalytic contributions of individual residues. A mechanism for substrate hydrolysis is proposed on the basis of the kinetic data and structural comparisons with E. coli alkaline phosphatase and Pseudomonas aeruginosa arylsulfatase. R/PMH represents a further example of conservation of the overall structure and mechanism within the alkaline phosphatase superfamily.

  4. Application of ionic liquid halide nucleophilicity for the cleavage of ethers: a green protocol for the regeneration of phenols from ethers.

    PubMed

    Boovanahalli, Shanthaveerappa K; Kim, Dong Wook; Chi, Dae Yoon

    2004-05-14

    We have used the high nucleophilicity of bromide ion in the form of the ionic liquid, 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]), for the nucleophilic displacement of an alkyl group to regenerate a phenol from the corresponding aryl alkyl ether. Using 2-methoxynaphthalene (1) as a model compound, we found that the combination of ionic liquid [bmim][Br] and p-toluenesulfonic acid with warming effected demethylation in 14 h, affording the desired product 2-naphthol (2) in good yield (97%). Various other protic acids (MsOH, hydrochloric acid (35%), dilute sulfuric acid (50%)) could be used as a proton source in this demethylation reaction. Under the same conditions, cleavage of alkyl alkyl ether 2-(3-methoxypropyl)naphthalene yielded mixture of corresponding 2-(3-bromopropyl)naphthalene and 2-(3-hydroxypropyl)naphthalene. Dealkylation of various aryl alkyl ethers could also be achieved using significantly reduced (i.e., stoichiometric) amounts of concentrated hydrobromic acid (47%) in the ionic liquid. Both procedures afforded the desired products in moderate to good yield; however, cleavage of aryl alkyl cyclic ether, 2,3-dihydrobenzofuran, resulted in low yield of the desired product o-2-bromoethylphenol. The convenience of this method for ether cleavage and its effectiveness using only a moderate excess of hydrobromic acid make it attractive as a green chemical method.

  5. A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents

    NASA Astrophysics Data System (ADS)

    Alencar Filho, Edilson B.; Santos, Aline A.; Oliveira, Boaz G.

    2017-04-01

    The proposal of this work includes the use of quantum chemical methods and cheminformatics strategies in order to understand the structural profile and reactivity of α-nucleophiles compounds such as oximes, amidoximes and hydroxamic acids, related to hydrolysis rate of organophosphates. Theoretical conformational study of 41 compounds were carried out through the PM3 semiempirical Hamiltonian, followed by the geometry optimization at the B3LYP/6-31+G(d,p) level of theory, complemented by Polarized Continuum Model (PCM) to simulate the aqueous environment. In line with the experimental hypothesis about hydrolytic power, the strength of the Intramolecular Hydrogen Bonds (IHBs) at light of the Bader's Quantum Theory of Atoms in Molecules (QTAIM) is related to the preferential conformations of α-nucleophiles. A set of E-Dragon descriptors (1,666) were submitted to a variable selection through Ordered Predictor Selection (OPS) algorithm. Five descriptors, including atomic charges obtained from the Natural Bond Orbitals (NBO) protocol jointly with a fragment index associated to the presence/absence of IHBs, provided a Quantitative Structure-Property Relationship (QSPR) model via Multiple Linear Regression (MLR). This model showed good validation parameters (R2 = 0.80, Qloo2 = 0.67 and Qext2 = 0.81) and allowed the identification of significant physicochemical features on the molecular scaffold in order to design compounds potentially more active against organophosphorus poisoning.

  6. Assessment of metal-assisted nucleophile activation in the hepatitis delta virus ribozyme from molecular simulation and 3D-RISM

    PubMed Central

    Radak, Brian K.; Lee, Tai-Sung; Harris, Michael E.

    2015-01-01

    The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2′-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg2+ ion facilitates deprotonation of the O2′ nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5′ leaving group as noted in a previous study. This model assumes that the active site Mg2+ ion forms an inner-sphere coordination with the O2′ nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg2+ ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg2+ are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg2+ is simply replaced with Na+ is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg2+-bound starting state, which has not yet been definitively verified experimentally

  7. Aliphatic C-C Bond Cleavage in α-Hydroxy Ketones by a Dioxygen-Derived Nucleophilic Iron-Oxygen Oxidant.

    PubMed

    Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K

    2017-03-17

    A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1).

  8. Long-lived glycosyl-enzyme intermediate mimic produced by formate re-activation of a mutant endoglucanase lacking its catalytic nucleophile.

    PubMed Central

    Viladot, J L; Canals, F; Batllori, X; Planas, A

    2001-01-01

    The mutant E134A 1,3-1,4-beta-glucanase from Bacillus licheniformis, in which the catalytic nucleophilic residue has been removed by mutation to alanine, has its hydrolytic activity rescued by exogenous formate in a concentration-dependent manner. A long-lived alpha-glycosyl formate is detected and identified by (1)H-NMR and matrix-assisted laser desorption ionization-time-of-flight-MS. The intermediate is kinetically competent, since it is, at least partially, enzymically hydrolysed, and able to act as a glycosyl donor in transglycosylation reactions. This transient compound represents a true covalent glycosyl-enzyme intermediate mimic of the proposed covalent intermediate in the reaction mechanism of retaining glycosidases. PMID:11256951

  9. Comprehensive theoretical studies on the gas phase SN2 reactions of anionic nucleophiles toward chloroamine and N-chlorodimethylamine with inversion and retention mechanisms.

    PubMed

    Ren, Yi; Geng, Song; Wei, Xi-Guang; Wong, Ning-Bew; Li, Wai-Kee

    2011-12-01

    The anionic S(N)2 reactions at neutral nitrogen, Nu(-) + NR(2)Cl → NR(2)Nu + Cl(-) (R = H, Me; Nu = F, Cl, Br, OH, SH, SeH, NH(2), PH(2), AsH(2)) have been systematically studied computationally at the modified G2(+) level. Two reaction mechanisms, inversion and retention of configuration, have been investigated. The main purposes of this work are to explore the reactivity trend of anions toward NR(2)Cl (R = H, Me), the steric effect on the potential energy surfaces, and the leaving ability of the anion in S(N)2@N reactions. Our calculations indicate that the complexation energies are determined by the gas basicity (GB) of the nucleophile and the electronegativity (EN) of the attacking atom, and the overall reaction barrier in the inversion pathway is basically controlled by the GB value of the nucleophile. The retention pathway in the reactions of NR(2)Cl with Nu(-) (Nu = F, Cl, Br, OH, SH, SeH) is energetically unfavorable due to the barriers being larger than those in the inversion pathway by more than 120 kJ mol(-1). Activation strain model analyses show that a higher deformation energy and a weaker interaction between deformed reactants lead to higher overall barriers in the reactions of NMe(2)Cl than those in the reactions of NH(2)Cl. Our studies on the reverse process of the title reactions suggest that the leaving ability of the anion in the gas phase anionic S(N)2@N reactions is mainly determined by the strength of the N-LG bond, which is related to the negative hyperconjugation inherent in NR(2)Nu (R = H, Me; Nu = HO, HS, HSe, NH(2), PH(2), AsH(2)).

  10. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.

    PubMed Central

    Amara, Amro A; Rehm, Bernd H A

    2003-01-01

    The class II PHA (polyhydroxyalkanoate) synthases [PHA(MCL) synthases (medium-chain-length PHA synthases)] are mainly found in pseudomonads and catalyse synthesis of PHA(MCL)s using CoA thioesters of medium-chain-length 3-hydroxy fatty acids (C6-C14) as a substrate. Only recently PHA(MCL) synthases from Pseudomonas oleovorans and Pseudomonas aeruginosa were purified and in vitro activity was achieved. A threading model of the P. aeruginosa PHA(MCL) synthase PhaC1 was developed based on the homology to the epoxide hydrolase (1ek1) from mouse which belongs to the alpha/beta-hydrolase superfamily. The putative catalytic residues Cys-296, Asp-452, His-453 and His-480 were replaced by site-specific mutagenesis. In contrast to class I and III PHA synthases, the replacement of His-480, which aligns with the conserved base catalyst of the alpha/beta-hydrolases, with Gln did not affect in vivo enzyme activity and only slightly in vitro enzyme activity. The second conserved histidine His-453 was then replaced by Gln, and the modified enzyme showed only 24% of wild-type in vivo activity, which indicated that His-453 might functionally replace His-480 in class II PHA synthases. Replacement of the postulated catalytic nucleophile Cys-296 by Ser only reduced in vivo enzyme activity to 30% of wild-type enzyme activity and drastically changed substrate specificity. Moreover, the C296S mutation turned the enzyme sensitive towards PMSF inhibition. The replacement of Asp-452 by Asn, which is supposed to be required as general base catalyst for elongation reaction, did abolish enzyme activity as was found for the respective amino acid residue of class I and III enzymes. In the threading model residues Cys-296, Asp-452, His-453 and His-480 reside in the core structure with the putative catalytic nucleophile Cys-296 localized at the highly conserved gamma-turns of the alpha/beta-hydrolases. Inhibitor studies indicated that catalytic histidines reside in the active site. The conserved

  11. Reactivity of electrophilic chlorine atoms due to σ-holes: a mechanistic assessment of the chemical reduction of a trichloromethyl group by sulfur nucleophiles.

    PubMed

    Caballero-García, Guillermo; Romero-Ortega, Moisés; Barroso-Flores, Joaquín

    2016-10-05

    σ-Holes are shown to promote the electrophilic behavior of chlorine atoms in a trichloromethyl group when bound to an electron-withdrawing moiety. A halogen bond-type non-covalent interaction between a chlorine atom and a negatively charged sulfur atom takes place, causing the abstraction of such a chlorine atom while leaving a carbanion, subsequently driving the chemical reduction of the trichloromethyl group to a sulfide in a stepwise process. The mechanism for the model reaction of trichloromethyl pyrimidine 1 with thiophenolate and thiophenol to yield phenylsulfide 4 was followed through (1)H-NMR and studied using DFT transition state calculations, and the energy profile for this transformation is fully discussed. MP2 calculations of the electrostatic potential were performed for a series of trichloromethyl compounds in order to assess the presence of σ-holes and quantify them by means of the maximum surface electrostatic potential. Such calculations showed that the chlorine atoms behave as electrophilic leaving groups toward a nucleophilic attack, opening a new possibility in the synthetic chemistry of the trichloromethyl group.

  12. Thiol-ene "click" reaction triggered by neutral ionic liquid: the "ambiphilic" character of [hmim]Br in the regioselective nucleophilic hydrothiolation.

    PubMed

    Kumar, Rajesh; Saima; Shard, Amit; Andhare, Nitin H; Richa; Sinha, Arun K

    2015-01-12

    Thiol-ene "click" chemistry has emerged as a powerful strategy to construct carbon-heteroatom (C-S) bonds, which generally results in the formation of two regioisomers. To this end, the neutral ionic liquid [hmim]Br has been explored as a solvent cum catalyst for the synthesis of linear thioethers from activated and inactivated styrene derivatives or secondary benzyl alcohols and thiols without the requirement of using a metal complex, base, or free radical initiator. Furthermore, detailed mechanistic investigations using (1)H NMR spectroscopy and quadrupole time-of-flight electrospray ionization mass spectrometry (Q-TOF ESI-MS) revealed that the "ambiphilic" character of the ionic liquid promotes the nucleophilic addition of thiol to styrene through an anti-Markovnikov pathway. The catalyst recyclability and the extension of the methodology for thiol-yne click chemistry are additional benefits. A competitive study among thiophenol, styrene, and phenyl acetylene revealed that the rate of reaction is in the order of thiol-yne>thiol-ene>dimerization of thiol in [hmim]Br.

  13. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto. A novel nucleophilic catalytic mechanism for nattokinase.

    PubMed

    Zheng, Zhong-liang; Zuo, Zhen-yu; Liu, Zhi-gang; Tsai, Keng-chang; Liu, Ai-fu; Zou, Guo-lin

    2005-01-01

    A three-dimensional structural model of nattokinase (NK) from Bacillus natto was constructed by homology modeling. High-resolution X-ray structures of Subtilisin BPN' (SB), Subtilisin Carlsberg (SC), Subtilisin E (SE) and Subtilisin Savinase (SS), four proteins with sequential, structural and functional homology were used as templates. Initial models of NK were built by MODELLER and analyzed by the PROCHECK programs. The best quality model was chosen for further refinement by constrained molecular dynamics simulations. The overall quality of the refined model was evaluated. The refined model NKC1 was analyzed by different protein analysis programs including PROCHECK for the evaluation of Ramachandran plot quality, PROSA for testing interaction energies and WHATIF for the calculation of packing quality. This structure was found to be satisfactory and also stable at room temperature as demonstrated by a 300ps long unconstrained molecular dynamics (MD) simulation. Further docking analysis promoted the coming of a new nucleophilic catalytic mechanism for NK, which is induced by attacking of hydroxyl rich in catalytic environment and locating of S221.

  14. 3,4,5,6-tetramethylphenanthrene 9,10-oxide: a step on the way to the transition state for nucleophilic ring opening of arene oxides

    SciTech Connect

    Darnow, J.N.; Armstrong, R.N.

    1987-05-01

    Force field calculations (MM2) and studies of the parent hydrocarbons suggest that 3,4,5,6-tetramethylphenanthrene 9,10-oxide (TMPO) should exist as two kinetically stable enantiomers. Stereoelectronic considerations indicate that the axial chirality of each enantiomer should direct nucleophilic attack to the diastereotopic oxirane carbon that most closely approaches the geometry of the transition state. The two enantiomers of TMPO can be synthesized from the chiral hydrocarbons by direct oxidation. The half-life for racemization of TMPO is 30 min at 25/sup 0/C. The two enantiomers are found to be substrates for glutathione (GSH) transferase and epoxide hydrolase. Isozyme 4-4 of GSH transferase which normally catalyzes addition of GSH to oxirane carbons of R absolute configuration, catalyzes addition to the oxirane carbon of S configuration in the M-isomer of TMPO and of R configuration in the P-isomer. Analogous results are obtained with the epoxide hydrolase catalyzed addition of water. The results suggest that TMPO should be an interesting stereochemical probe of both spontaneous and enzyme catalyzed ring opening reactions of arene oxides.

  15. A Novel Strategy for Biomass Upgrade: Cascade Approach to the Synthesis of Useful Compounds via C-C Bond Formation Using Biomass-Derived Sugars as Carbon Nucleophiles.

    PubMed

    Yamaguchi, Sho; Baba, Toshihide

    2016-07-20

    Due to the depletion of fossil fuels, biomass-derived sugars have attracted increasing attention in recent years as an alternative carbon source. Although significant advances have been reported in the development of catalysts for the conversion of carbohydrates into key chemicals (e.g., degradation approaches based on the dehydration of hydroxyl groups or cleavage of C-C bonds via retro-aldol reactions), only a limited range of products can be obtained through such processes. Thus, the development of a novel and efficient strategy targeted towards the preparation of a range of compounds from biomass-derived sugars is required. We herein describe the highly-selective cascade syntheses of a range of useful compounds using biomass-derived sugars as carbon nucleophiles. We focus on the upgrade of C2 and C3 oxygenates generated from glucose to yield useful compounds via C-C bond formation. The establishment of this novel synthetic methodology to generate valuable chemical products from monosaccharides and their decomposed oxygenated materials renders carbohydrates a potential alternative carbon resource to fossil fuels.

  16. No-carrier-added (NCA) aryl [{sup 18}F]fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    SciTech Connect

    Ding, Yu-Shin; Fowler, J.S.; Wolf, A.P.

    1991-12-31

    A method for synthesizing no-carrier-added (NCA) aryl [{sup 18}F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substituent on an electron rich ring. The reaction is carried out by nucleophilic aromatic substitution with a no-carrier-added (NCA) [{sup 18}F]fluoride ion. The method can be used to synthesize various no-carrier-added aryl [{sup 18}F]fluoride compositions, including 6-[{sup 18}F]fluoro-L-DOPA, 2-[{sup 18}F]fluorotyrosine, 6-[{sup 18}F]fluoronorepinephrine, and 6-[{sup 18}F]fluorodopamine. In those instances when a racemic mixture of enantiomers is produced by the present invention, such as in the synthesis of 6-[{sup 18}F]fluoronorepinephrine, a preferred method also includes resolution of the racemic mixture on a chiral HPLC column. This procedure results in a high yield of enantiomerically pure [{sup 18}F] labeled isomers, for example [-]-6-[{sup 18}F]fluoronorepinephrine and [+]-6-[{sup 18}F]fluoronorepinephrine.

  17. Acidic-functionalized ionic liquid as an efficient, green and reusable catalyst for hetero-Michael addition of nitrogen, sulfur and oxygen nucleophiles to α,β-unsaturated ketones.

    PubMed

    Han, Feng; Yang, Lei; Li, Zhen; Xia, Chungu

    2012-01-14

    A series of acidic-functionalized ionic liquids were synthesized and applied to the hetero-Michael addition of nitrogen, sulfur and oxygen nucleophiles to α,β-unsaturated ketones under solvent-free conditions. Notably, 1-methylimidazolium p-toluenesulfonic ([Hmim]OTs) was found to be the most efficient catalyst and could realize "homogeneous catalysis, two-phase separation". Additionally, the catalytic system has wide substrate scope and good to excellent yields (up to 99%) could be obtained at room temperature.

  18. Nucleophilic additions of primary and secondary amines to pentacyclo[5.4.0.0{sup 2,6}.0{sup 3,10}.0{sup 5,9}]undecane-8,11-dione

    SciTech Connect

    Bott, S.G.; Marchand, A.P.; Kumar, K.A.

    1995-10-01

    The crystal structures of three compounds formed via nucleophilic attack of a heterocyclic secondary amine on PCU-8,11-dione, with the concomitant intramolecular attack of one keto oxygen on the carbon of the other ketone, are presented. In all three compounds, the bridging oxygen contains substantial p-character, and the bonds to the {open_quotes}attacking{close_quotes} nitrogen are significantly shorter than would be expected.

  19. Chemical modification of the RTEM-1 thiol beta-lactamase by thiol-selective reagents: evidence for activation of the primary nucleophile of the beta-lactamase active site by adjacent functional groups.

    PubMed

    Knap, A K; Pratt, R F

    1989-01-01

    The RTEM-1 thiol beta-lactamase (Sigal, I.S., Harwood, B.G., Arentzen, R., Proc. Natl. Acad. Sci. U.S.A. 79:7157-7160, 1982) is inactivated by thiol-selective reagents such as iodoacetamide, methyl methanethiosulfonate, and 4,4'-dipyridyldisulfide, which modify the active site thiol group. The pH-rate profiles of these inactivation reactions show that there are two nucleophilic forms of the enzyme, EH2 and EH, both of which, by analogy with the situation with cysteine proteinases, probably contain the active site nucleophile in the thiolate form. The pKa of the active site thiol is therefore shown by the data to be below 4.0. This low pKa is thought to reflect the presence of adjacent functionality which stabilizes the thiolate anion. The low nucleophilicity of the thiolate in both EH2 and EH, with respect to that of cysteine proteinases and model compounds, suggests that the thiolate of the thiol beta-lactamase is stabilized by two hydrogen-bond donors. One of these, of pKa greater than 9.0, is suggested to be the conserved and essential Lys-73 ammonium group, while the identity of the other group, of pKa around 6.7, is less clear, but may be the conserved Glu-166 carboxylic acid. beta-Lactamase activity is associated with the EH2 form, and thus the beta-lactamase active site is proposed to contain one basic or nucleophilic group (the thiolate in the thiol beta-lactamase) and two acidic (hydrogen-bond donor) groups (one of which is likely to be the above-mentioned lysine ammonium group).

  20. Lack of nucleophilic addition in the isoxazole and pyrazole diketone modified analogs of curcumin; implications for their antitumor and chemosensitizing activities.

    PubMed

    Labbozzetta, Manuela; Baruchello, Riccardo; Marchetti, Paolo; Gueli, Maria C; Poma, Paola; Notarbartolo, Monica; Simoni, Daniele; D'Alessandro, Natale

    2009-09-14

    Curcumin (CUR) can be considered as a good lead compound for the design of new anticancer drugs. Further, structure-activity relationship studies may clarify the importance of the redox activities in the antitumor effects of the drug. We have elaborated the alpha,beta-unsaturated 1,3-diketone moiety of CUR into the isoxazole (ISO) and pyrazole (PYR) derivatives. These derivatives should be much less prone to nucleophilic addition than CUR and benzyl mercaptan addition analyses showed that indeed they do not form isolable conjugated products. When compared with CUR, ISO and PYR exhibited increased cell growth inhibitory and pro-apoptotic effects in liver cancer HA22T/VGH cells as well as in other tumor cell types; in contrast to CUR, the antitumor effects of ISO or PYR were not influenced by concomitant administration of N-acetylcysteine, as a source of -SH groups, or buthionine sulfoximine, as an inhibitor of glutathione synthesis. Further, treatment with CUR, but not with ISO or PYR, significantly decreased the content of reduced glutathione in the HA22T/VGH cells. Finally, ISO and PYR lacked the ability of the parent compound to sensitize the HA22T/VGH cells to cisplatin (CIS), an effect which appeared to occur through an interaction of CUR and CIS at the level of the -SH groups. Thus, the ability of interacting with cell thiols might not be requested for the more potent antitumor activities of new diketone modified CUR derivatives, which might rely on other mechanisms, though possibly devoid of chemosensitization capabilities.

  1. An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE PAGES

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; ...

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1-11C]acetonitrile ([11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1-11C]propanenitrile ([11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2-11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening of basicity, temperature and stoichiometry was required tomore » overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2-11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  2. An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    SciTech Connect

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; Schueller, Michael; Kim, Dohyun; Nauth, Alexander; Weber, Carina; Kim, Sung Won; Hooker, Jacob M.; Ma, Ling; Qu, Wenchao

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1-11C]acetonitrile ([11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1-11C]propanenitrile ([11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2-11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening of basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2-11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.

  3. Oxygen-Atom Transfer Reactivity of Axially Ligated Mn(V)–Oxo Complexes: Evidence for Enhanced Electrophilic and Nucleophilic Pathways

    PubMed Central

    2015-01-01

    Addition of anionic donors to the manganese(V)–oxo corrolazine complex MnV(O)(TBP8Cz) has a dramatic influence on oxygen-atom transfer (OAT) reactivity with thioether substrates. The six-coordinate anionic [MnV(O)(TBP8Cz)(X)]− complexes (X = F–, N3–, OCN–) exhibit a ∼5 cm–1 downshift of the Mn–O vibrational mode relative to the parent MnV(O)(TBP8Cz) complex as seen by resonance Raman spectroscopy. Product analysis shows that the oxidation of thioether substrates gives sulfoxide product, consistent with single OAT. A wide range of OAT reactivity is seen for the different axial ligands, with the following trend determined from a comparison of their second-order rate constants for sulfoxidation: five-coordinate ≈ thiocyanate ≈ nitrate < cyanate < azide < fluoride ≪ cyanide. This trend correlates with DFT calculations on the binding of the axial donors to the parent MnV(O)(TBP8Cz) complex. A Hammett study was performed with p-X-C6H4SCH3 derivatives and [MnV(O)(TBP8Cz)(X)]− (X = CN– or F–) as the oxidant, and unusual “V-shaped” Hammett plots were obtained. These results are rationalized based upon a change in mechanism that hinges on the ability of the [MnV(O)(TBP8Cz)(X)]− complexes to function as either an electrophilic or weak nucleophilic oxidant depending upon the nature of the para-X substituents. For comparison, the one-electron-oxidized cationic MnV(O)(TBP8Cz•+) complex yielded a linear Hammett relationship for all substrates (ρ = −1.40), consistent with a straightforward electrophilic mechanism. This study provides new, fundamental insights regarding the influence of axial donors on high-valent MnV(O) porphyrinoid complexes. PMID:25238495

  4. An Effective Hamiltonian Molecular Orbital-Valence Bond (MOVB) Approach for Chemical Reactions Applied to the Nucleophilic Substitution Reaction of Hydrosulfide Ion and Chloromethane.

    PubMed

    Song, Lingchun; Mo, Yirong; Gao, Jiali

    2009-01-01

    An effective Hamiltonian mixed molecular orbital and valence bond (EH-MOVB) method is described to obtain an accurate potential energy surface for chemical reactions. Building upon previous results on the construction of diabatic and adiabatic potential surfaces using ab initio MOVB theory, we introduce a diabatic-coupling scaling factor to uniformly scale the ab initio off-diagonal matrix element H(12) such that the computed energy of reaction from the EH-MOVB method is in agreement with the target value. The scaling factor is very close to unity, resulting in minimal alteration of the potential energy surface of the original MOVB model. Furthermore, the relative energy between the reactant and product diabatic states in the EH-MOVB method can be improved to match the experimental energy of reaction. A key ingredient in the EH-MOVB theory is that the off-diagonal matrix elements are functions of all degrees of freedom of the system and the overlap matrix is explicitly evaluated. The EH-MOVB method has been applied to the nucleophilic substitution reaction between hydrosulfide and chloromethane to illustrate the methodology and the results were matched to reproduce the results from ab initio valence bond self-consistent valence bond (VBSCF) calculations. The diabatic coupling (the off-diagonal matrix element in the generalized secular equation) has small variations along the minimum energy reaction path in the EH-MOVB model, whereas it shows a maximum value at the transition state and has nearly zero values in the regions of the ion-dipole complexes from VBSCF calculations. The difference in the diabatic coupling stabilization is attributed to the large overlap integral in the computationally efficient MOVB method.

  5. Polybenzoxazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1993-01-01

    Polybenzoxazoles (PBO) are heterocyclic macromolecules which were first synthesized in a two-step process by the initial formation of aromatic diacid chlorides with bis(o-aminophenol)s through solution condensation of aromatic diacid chlorides with bis(o-aminophenol)s followed by thermal cyclodehydration. Since then several methods were utilized in their synthesis. The most common synthetic method for PBO involves a polycondensation of bis(o-aminophenol)s with aromatic diacid diphenyl esters. Another preparative route involves the solution polycondensation of the hydrochloride salts of bis(o-amino phenol)s with aromatic diacids in polyphosphoric acid. Another synthetic method involves the initial formation of poly(o-hydroxy amide)s from silylated bis(o-aminophenol)s with aromatic diacid chlorides followed by thermal cyclodehydration to PBO. A recent preparative route involves the reaction of aromatic bisphenols with bis(fluorophenyl) benzoxazoles by the displacement reaction to form PBO. The novelty of the present invention is that high molecular weight PBO of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  6. On the effect of cellular nucleophiles on the binding of metabolites of 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene and 9-hydroxybenzo(a)pyrene to nuclear DNA.

    PubMed

    Guenthner, T M; Jernström, B; Orrenius, S

    1980-05-01

    The binding to DNA of products resulting from the further activation of trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene and 9-hydroxybenzo(a)pyrene was studied in several incubation systems. In a system containing purified DNA and rat liver microsomes, products of 9-hydroxybenzo(a)pyrene were the predominant binding species. In a system containing isolated rat hepatocytes, the total binding was much lower, and products of trans-7,8-dihydroxy-7, 8-dihydrobenzo(a)pyrene predominated. Both the total amounts and the ratios of the bound species were altered by the addition of various soluble nucleophiles to the incubation system. The binding of 9-hydroxybenzo(a)pyrene to both nuclear and purified DNA was decreased in the presence of "non-specific" protein in the incubate. A decrease in the binding of trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene to either purified or nuclear DNA was seen after the addition of active cytosol, but not with protein alone. Either denaturation of the cytosol, or depletion of glutathione by diethylmaleate treatment, partially negated this effect. We conclude that the binding of benzo(a)pyrene metabolites to DNA in the cell is decreased by soluble nucleophiles, and that this trapping of metabolites is selective. 9-Hydroxybenzo(a)pyrene metabolites are removed by non-specific protein binding, whereas removal of trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene metabolites requires higher affinity binding or enzymatic conjugation.

  7. Brønsted acid-controlled [3 + 2] coupling reaction of quinone monoacetals with alkene nucleophiles: a catalytic system of perfluorinated acids and hydrogen bond donor for the construction of benzofurans.

    PubMed

    Hu, Yinjun; Kamitanaka, Tohru; Mishima, Yusuke; Dohi, Toshifumi; Kita, Yasuyuki

    2013-06-07

    We have developed an efficient Brønsted acid-controlled strategy for the [3 + 2] coupling reaction of quinone monoacetals (QMAs) with nucleophilic alkenes, which is triggered by the particular use of a specific acid promoter, perfluorinated acid, and a solvent, fluoroalcohol. This new coupling reaction smoothly proceeded with high regiospecificity in regard with QMAs for introducing π-nucleophiles to only the carbon α to the carbonyl group, thereby providing diverse dihydrobenzofurans and derivatives with high yields, up to quantitative, under mild conditions in short reaction times. The choice of Brønsted acid enabled us to avoid hydrolysis of the QMAs, which gives quinones, and the formation of discrete cationic species from the QMAs. Notably, further investigations in this study with regard to the acid have led to the findings that the originally stoichiometrically used acid could be reduced to a catalytic amount of 5 mol % loading or less and that the stoichiometry of the alkenes could be significantly improved down to only 1.2 equiv. The facts that only a minimal loading (5 mol %) of perfluoroterephthalic acid is required, readily available substrates can be used, and the regioselectivity can be controlled by the acid used make this coupling reaction very fascinating from a practical viewpoint.

  8. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  9. Reversible post-translational modification of proteins by nitrated fatty acids in vivo.

    PubMed

    Batthyany, Carlos; Schopfer, Francisco J; Baker, Paul R S; Durán, Rosario; Baker, Laura M S; Huang, Yingying; Cerveñansky, Carlos; Branchaud, Bruce P; Freeman, Bruce A

    2006-07-21

    Nitric oxide ((*)NO)-derived reactive species nitrate unsaturated fatty acids, yielding nitroalkene derivatives, including the clinically abundant nitrated oleic and linoleic acids. The olefinic nitro group renders these derivatives electrophilic at the carbon beta to the nitro group, thus competent for Michael addition reactions with cysteine and histidine. By using chromatographic and mass spectrometric approaches, we characterized this reactivity by using in vitro reaction systems, and we demonstrated that nitroalkene-protein and GSH adducts are present in vivo under basal conditions in healthy human red cells. Nitro-linoleic acid (9-, 10-, 12-, and 13-nitro-9,12-octadecadienoic acids) (m/z 324.2) and nitro-oleic acid (9- and 10-nitro-9-octadecaenoic acids) (m/z 326.2) reacted with GSH (m/z 306.1), yielding adducts with m/z of 631.3 and 633.3, respectively. At physiological concentrations, nitroalkenes inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which contains a critical catalytic Cys (Cys-149). GAPDH inhibition displayed an IC(50) of approximately 3 microM for both nitroalkenes, an IC(50) equivalent to the potent thiol oxidant peroxynitrite (ONOO(-)) and an IC(50) 30-fold less than H(2)O(2), indicating that nitroalkenes are potent thiol-reactive species. Liquid chromatography-mass spectrometry analysis revealed covalent adducts between fatty acid nitroalkene derivatives and GAPDH, including at the catalytic Cys-149. Liquid chromatography-mass spectrometry-based proteomic analysis of human red cells confirmed that nitroalkenes readily undergo covalent, thiol-reversible post-translational modification of nucleophilic amino acids in GSH and GAPDH in vivo. The adduction of GAPDH and GSH by nitroalkenes significantly increased the hydrophobicity of these molecules, both inducing translocation to membranes and suggesting why these abundant derivatives had not been detected previously via traditional high pressure liquid chromatography analysis. The

  10. Spectroscopic Evidence for Covalent Binding of Sulfadiazine to Natural Soils via 1,4-nucleophilic addition (Michael Type Addition) studied by Spin Labeling ESR

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga

    2015-04-01

    with different polarity. As shown by the spin labeling ESR experiment, molecules modeling SDZ were promptly bound to non-hydrolysable network of soil organic matter only via the aromatic amines that was accompanied by a prompt enlargement of humic particles binding aromatic amines, whereas binding of decomposition products of SDZ to humic acids of soil via the aliphatic amines was not observable. The ESR spectra obviously showed a single-phase process of covalent binding of the aromatic amines. Repeated washouts of labeled soil samples using distil water and ultrafiltration through the membrane of 5000 MWCO PES confirmed irreversible binding of the aromatic amines, and showed that via the aliphatic amines, binding of SDZ or decomposition products of SDZ to soil might also occur but reversibly and only to small soil molecules, which don't enter into the composition of non-hydrolysable part of soil organic matter. SL ESR experiments of different soils at the presence of Laccase highlighted that covalent binding of the aromatic amines to humic particles occurred in the specific hydrophobic areas of soil found as depleted in oxygen. All measured data evidenced that first, SDZ might be decomposed that allowed for measuring the same change of a paramagnetic signal of soil organic matter influenced by both aromatic and aliphatic amines as in the experiment of the interaction of soil with SDZ. Second, a decomposition product of SDZ with the aromatic amine might be bound to non-hydrolysable parts of soil organic matter under specific anaerobic conditions only via 1,4 - nucleophilic addition, Michael-type addition. Gulkowska, A., Thalmann, B., D., Hollender, J., & Krauss, M. (2014). Chemosphere, 107, 366 - 372. Müller, T., Rosendahl, I., Focks, A., Siemens, J., Klasmeier, J., & Matthies. (2013). Environmental Pollution, 172,180 - 185. Nowak, K.M., Miltner, A., Gehre, M., Schaeffer, A., & Kaestner, M. (2011). Environmental Science & Technology 45, 999 - 1006. Weber, E.J., Spidle

  11. Nucleophilic substitution by amide nitrogen in the aromatic rings of [zn - H]˙⁺ ions; the structures of the [b₂ - H - 17]˙⁺ and [c1 - 17]⁺ ions.

    PubMed

    Mu, Xiaoyan; Lau, Justin Kai-Chi; Lai, Cheuk-Kuen; Siu, K W Michael; Hopkinson, Alan C; Chu, Ivan K

    2016-04-28

    Peptide radical cations that contain an aromatic amino acid residue cleave to give [zn - H]˙⁺ ions with [b2 - H - 17]˙⁺ and [c1 - 17](+) ions, the dominant products in the dissociation of [zn - H]˙⁺, also present in lower abundance in the CID spectra. Isotopic labeling in the aromatic ring of [Yπ˙GG](+) establishes that in the formation of [b2 - H - 17]˙⁺ ions a hydrogen from the δ-position of the Y residue is lost, indicating that nucleophilic substitution on the aromatic ring has occurred. A preliminary DFT investigation of nine plausible structures for the [c1 - 17](+) ion derived from [Y(π)˙GG](+) shows that two structures resulting from attack on the aromatic ring by oxygen and nitrogen atoms from the peptide backbone have significantly better energies than other isomers. A detailed study of [Y(π)˙GG](+) using two density functionals, B3LYP and M06-2X, with a 6-31++G(d,p) basis set gives a higher barrier for attack on the aromatic ring of the [zn - H]˙⁺ ion by nitrogen than by the carbonyl oxygen. However, subsequent rearrangements involving proton transfers are much higher in energy for the oxygen-substituted isomer leading to the conclusion that the [c1 - 17](+) ions are the products of nucleophilic attack by nitrogen, protonated 2,7-dihydroxyquinoline ions. The [b2 - H - 17]˙⁺ ions are formed by loss of glycine from the same intermediates involved in the formation of the [c1 - 17](+) ions.

  12. Competitive reaction pathways for o-anilide aryl radicals: 1,5- or 1,6-hydrogen transfer versus nucleophilic coupling reactions. A novel rearrangement to afford an amidyl radical.

    PubMed

    Rey, Valentina; Pierini, Adriana B; Peñéñory, Alicia B

    2009-02-06

    The photoinduced reactions of o-iodoanilides (o-IC6H4N(Me)COR, 4a-d) with sulfur nucleophiles such as thiourea anion (1, -SCNH(NH2)), thioacetate anion (2, MeCOS-), and sulfide anion (3, S(2-)) follow different reaction channels, giving the sulfides by a radical nucleophilic substitution or the dehalogenated products by hydrogen atom transfer pathways. After an initial photoinduced electron transfer (PET) from 1 to iodide 4, the o-amide aryl radicals 12 are generated. These aryl radicals 12 afford alternative reaction pathways depending on the structure of the alpha-carbonyl moiety: (a) 12b (R = Me) adds to 1 to render the methylthio-substituted compounds by quenching the thiolate anion intermediate with MeI after irradiation; (b) 12c (R = -CH2Ph) follows a 1,5-hydrogen transfer to give a stabilized alpha-carbonyl radical (17); and (c) 12d (R = t-Bu) affords 1,6-hydrogen transfer, followed by a 1,4-aryl migration to render an amidyl radical (20), which is reduced to the N-benzyl-N,2-dimethylpropanamide (10). Together with this last rearranged product, the ipso substitution derivative was also observed. Similar results were obtained in the PET reactions of 4d (R = t-Bu) with anions 2 and 3 under entrainment conditions with the enolate anion from cyclohexenone (5) or the tert-butoxide anion (6). From this novel rearrangement, and only under reductive conditions by PET reaction with anion 5, iodide 4d (R = t-Bu) affords quantitatively the propanamide 10. The energetic of the intramolecular rearrangements followed by radicals 12b-d were rationalized by B3LYP/6-31+G* calculations.

  13. Unexpected Reactivity of [(η(5) -1,2,4-tBu3 C5 H2 )Ni(η(3) -P3 )] towards Main Group Nucleophiles and by Reduction.

    PubMed

    Mädl, Eric; Balázs, Gábor; Peresypkina, Eugenia V; Scheer, Manfred

    2016-06-27

    The reduction of [Cp'''Ni(η(3) -P3 )] (1; Cp'''=η(5) -1,2,4-tBu3 C5 H2 ) with potassium produces the complex anion [(Cp'''Ni)2 (μ,η(2:2) -P8 )](2-) (2), which contains a realgar-like P8 unit. The anionic triple-decker sandwich complex [(Cp'''Ni)2 (μ,η(3:3) -P3 )](-) (3) with a cyclo-P3 middle deck is obtained when 1 is treated with NaNH2 as a nucleophile. Na[3] can subsequently be oxidized with AgOTf to the neutral triple-decker complex [(Cp'''Ni)2 (μ,η(3:3) -P3 )] (4). In contrast, 1 reacts with LiPPh2 to give the anionic compound [(Cp'''Ni)2 (μ,η(2:2) -P6 PPh2 )](-) (5), a complex containing a bicyclic P7 fragment capped by two Cp'''Ni units. Protonation of Li[5] with HBF4 leads to the neutral complex [(Cp'''Ni)2 (μ,η(2:2) -(HP6 PPh2 )] (6). Adding LiNMe2 to 1 results in [Cp'''Ni(η(2) -P3 NMe2 )](-) (7) becoming accessible, a complex which forms as a result of nucleophilic attack at the cyclo-P3 ring of 1. The complexes K2 [2], Na[3], 4, 6, and Li[7] were fully characterized and their structures determined by single-crystal X-ray diffraction.

  14. An entry to the azocino[4,3-b]indole framework through a dehydrogenative activation of 1,2,3,4-tetrahydrocarbazoles mediated by DDQ: formal synthesis of (±)-uleine.

    PubMed

    Patir, Süleyman; Ertürk, Erkan

    2011-01-07

    It is presented that hexahydro-1,5-methano[4,3-b]indoles were efficiently synthesized in high yields (up to 89% yield) through the cyclization reaction of starting tetrahydrocarbazoles bearing a monoalkylaminocarbonylmethyl moiety at the C-2 position mediated by 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ). A mechanistic proposal is also given that mainly includes two cascade reactions: (i) formation of a vinylogous iminium cation via DDQ-mediated dehydrogenation of tetrahydrocarbazole functionality and (ii) intra-molecular and syn-selective addition of the amide functionality as the nucleophile to the vinylogous iminium cation. Furthermore, this cyclization reaction was successfully utilized in the formal total synthesis of (±)-uleine, an Aspidospermatan skeletal type alkaloid.

  15. A generalized operational formula based on total electronic densities to obtain 3D pictures of the dual descriptor to reveal nucleophilic and electrophilic sites accurately on closed-shell molecules.

    PubMed

    Martínez-Araya, Jorge I

    2016-09-30

    By means of the conceptual density functional theory, the so-called dual descriptor (DD) has been adapted to be used in any closed-shell molecule that presents degeneracy in its frontier molecular orbitals. The latter is of paramount importance because a correct description of local reactivity will allow to predict the most favorable sites on a molecule to undergo nucleophilic or electrophilic attacks; on the contrary, an incomplete description of local reactivity might have serio us consequences, particularly for those experimental chemists that have the need of getting an insight about reactivity of chemical reagents before using them in synthesis to obtain a new compound. In the present work, the old approach based only on electronic densities of frontier molecular orbitals is replaced by the most accurate procedure that implies the use of total electronic densities thus keeping consistency with the essential principle of the DFT in which the electronic density is the fundamental variable and not the molecular orbitals. As a result of the present work, the DD will be able to properly describe local reactivities only in terms of total electronic densities. To test the proposed operational formula, 12 very common molecules were selected as the original definition of the DD was not able to describe their local reactivities properly. The ethylene molecule was additionally used to test the capability of the proposed operational formula to reveal a correct local reactivity even in absence of degeneracy in frontier molecular orbitals. © 2016 Wiley Periodicals, Inc.

  16. Understanding thio-effects in simple phosphoryl systems: role of solvent effects and nucleophile charge† †Electronic supplementary information (ESI) available: A breakdown of calculated activation free energies shown in Table 1, as well as absolute energies and Cartesian coordinates of all key species in this work are presented as ESI. See DOI: 10.1039/c5ob00309a Click here for additional data file.

    PubMed Central

    Carvalho, Alexandra T. P.; O'Donoghue, AnnMarie C.; Hodgson, David R. W.

    2015-01-01

    Recent experimental work (J. Org. Chem., 2012, 77, 5829) demonstrated pronounced differences in measured thio-effects for the hydrolysis of (thio)phosphodichloridates by water and hydroxide nucleophiles. In the present work, we have performed detailed quantum chemical calculations of these reactions, with the aim of rationalizing the molecular bases for this discrimination. The calculations highlight the interplay between nucleophile charge and transition state solvation in SN2(P) mechanisms as the basis of these differences, rather than a change in mechanism. PMID:25797408

  17. Photo- and thermochromic spirans. XVII. Tautomerism and photoinduced isomerizations of aldonitrone vinylogs

    SciTech Connect

    Metelitsa, A.V.; Lyashik, O.T.; Volbushko, N.V.; Andreeva, I.M.; Knyazhanskii, M.I.; Medyantseva, E.A.; Minkin, V.I.

    1986-12-10

    Nitrones of o-hydroxycinnamaldehyde and its benzoannelated derivatives were prepared. A benzoid-quinoid tautomeric equilibrium was observed for 3-(1-hydroxy-4-methyl-2-naphthyl)propenal and 3-(1-hydroxy-4-naphthyl)-propenal nitrones in a polar solvent. On irradiation of o-cetyl derivatives (77-293/sup 0/K), oxaziranes are formed and reversible cis-trans-isomerization reactions with respect to the CH=CH bond are recorded. In the case of hydroxynitrones, the phototransformations are due to a proton transfer from the hydroxylic group to the nitrogen oxide group, followed by cyclization, leading to isomers with a cyclic 2H-chromene structure.

  18. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  19. Synthesis and reactivity of [(silox)2Mo=NR]2Hg (R=tBu, tAmyl; silox=OSitBu3): unusual thermal stability and ready nucleophilic cleavage rationalized by electronic factors.

    PubMed

    Rosenfeld, Devon C; Wolczanski, Peter T; Barakat, Khaldoon A; Buda, Corneliu; Cundari, Thomas R; Schroeder, Frank C; Lobkovsky, Emil B

    2007-11-12

    Treatment of (DME)Cl2Mo(=NR)2 (R=tBu, (1-tBu), tAmyl (1-tAmyl)) with 2 equiv of tBu3SiOH (siloxH) and 1 equiv of HCl produced (silox)2Cl2Mo=NR (R=tBu, (3-tBu), tAmyl (3-tAmyl)); subsequent reduction by Na/Hg afforded the Mo(V) chloride, (silox)2ClMo=NtBu (4-tBu), and the Mo(IV) mercury derivatives, [(silox)2Mo=NR]2Hg (R=tBu ((5-tBu)2Hg), tAmyl ((5-tAmyl)2Hg)). Reductions of 3-tBu and 3-tAmyl in the presence of L (L=PMe3, pyridine, 4-picoline) led to the isolation of adducts (silox)2(Me3P)Mo=NR (R=tBu (6-tBu), tAmyl (6-tAmyl)) and (silox)2L2Mo=NtBu (L=py (7-py), 4-pic (7-4-pic)). Single-crystal X-ray structural investigations of pseudo-tetrahedral 4-tBu, Hg-capped, pseudo-trigonal planar (5-tBu)2Hg, pseudo-tetrahedral 6-tBu, and trigonal bipyramidal 7-4-pic reveal that all possess a closed O-Mo-O angle when compared to the N=Mo-O angles. A molecular orbital rationale and supporting calculations suggest that this is a manifestation of the greater pi-donating ability of the imido relative to that of the siloxides. While the D(Mo-Hg) of [(HO)2Mo=NH]2Hg ((5')2Hg) was calculated to be 22.4 kcal/mol, (5-R)2Hg (R=tBu, tAmyl) are remarkably stable; (5-tBu)2Hg degraded in a first-order fashion with DeltaG=31.9(1) kcal/mol. In the presence of strong (L=PMe, pyridine, S8) or weak (L=2-butyne, ethylene, N2O, 1,4,7,10-tetrathiacyclododecane, 1,4,7,10,13,16-hexathiacyclooctadecane) nucleophiles, an enhanced rate of Mo-Hg bond cleavage was noted, with some of the former group generating adducts in <5 min; the products were 6-tBu, 7-py, (silox)2(S)Mo=NtBu (10-tBu), (silox)2Mo=NtBu(C2Me2) (8-tBu), (silox)2(C2H4)Mo=NtBu (11-tBu), (silox)2(O)Mo=NtBu (9-tBu), and a mixture of 10-tBu and 11-tBu, respectively. Some of these were independently prepared via substitution of 6-tBu. According to calculations and a molecular orbital rationale, dissociation of the Mo-Hg bond in (5-R)2Hg (R=tBu, tAmyl) is orbitally forbidden, and the addition of a nucleophile to the terminus of the Mo

  20. Trifunctional metal ion-catalyzed solvolysis: Cu(II)-promoted methanolysis of N,N-bis(2-picolyl) benzamides involves unusual Lewis acid activation of substrate, delivery of coordinated nucleophile, powerful assistance of the leaving group departure.

    PubMed

    Raycroft, Mark A R; Maxwell, Christopher I; Oldham, Robyn A A; Andrea, Areen Saffouri; Neverov, Alexei A; Brown, R Stan

    2012-10-01

    The methanolyses of Cu(II) complexes of a series of N,N-bis(2-picolyl) benzamides (4a-g) bearing substituents X on the aromatic ring were studied under (s)(s)pH-controlled conditions at 25 °C. The active form of the complexes at neutral (s)(s)pH has a stoichiometry of 4:Cu(II):((-)OCH(3))(HOCH(3)) and decomposes unimolecularly with a rate constant k(x). A Hammett plot of log(k(x)) vs σ(x) values has a ρ(x) of 0.80 ± 0.05. Solvent deuterium kinetic isotope effects of 1.12 and 1.20 were determined for decomposition of the 4-nitro and 4-methoxy derivatives, 4b:Cu(II):((-)OCH(3))(HOCH(3)) and 4g:Cu(II):((-)OCH(3))(HOCH(3)), in the plateau region of the (s)(s)pH/log(k(x)) profiles in both CH(3)OH and CH(3)OD. Activation parameters for decomposition of these complexes are ΔH(++) = 19.1 and 21.3 kcal mol(-1) respectively and ΔS(++) = -5.1 and -2 cal K(-1) mol(-1). Density functional theory (DFT) calculations for the reactions of the Cu(II):((-)OCH(3))(HOCH(3)) complexes of 4a,b and g (4a, X = 3,5-dinitro) were conducted to probe the relative transition state energies and geometries of the different states. The experimental and computational data support a mechanism where the metal ion is coordinated to the N,N-bis(2-picolyl) amide unit and positioned so that it permits delivery of a coordinated Cu(II):((-)OCH(3)) nucleophile to the C═O in the rate-limiting transition state (TS) of the reaction. This proceeds to a tetrahedral intermediate INT, occupying a shallow minimum on the free energy surface with the Cu(II) coordinated to both the methoxide and the amidic N. Breakdown of INT is a virtually barrierless process, involving a Cu(II)-assisted departure of the bis(2-picolyl)amide anion. The analysis of the data points to a trifunctional role for the metal ion in the solvolysis mechanism where it activates intramolecular nucleophilic attack on the C═O group by coordination to an amidic N in the first step of the reaction and subsequently assists leaving group

  1. Palladium and platinum complexes of tellurium-containing imidodiphosphinate ligands: nucleophilic attack of Li[(P(i)Pr2)(TeP(i)Pr2)N] on coordinated 1,5-cyclooctadiene.

    PubMed

    Robertson, Stuart D; Ritch, Jamie S; Chivers, Tristram

    2009-10-28

    Homoleptic group 10 complexes of ditellurido PNP (PNP = imidodiphosphinate), heterodichalcogenido PNP and monotellurido PNP ligands, M[(TeP(i)Pr2)2N]2 (1: M = Pd; 2: M = Pt), M[(EP(i)Pr2)(TeP(i)Pr2)N]2 (3: M = Pd, E = Se; 4: M = Pt, E = Se; 5: M = Pd, E = S; 6: M = Pt, E = S) and M[(P(i)Pr2)(TeP(i)Pr2)N]2 (7: M = Pd; 8: M = Pt), respectively, were prepared by metathesis between alkali-metal derivatives of the appropriate ligand and MCl2(COD) in THF. Complexes 1-8 were characterised in solution by multinuclear (31P, 77Se, 125Te and 195Pt) NMR spectroscopy and, in the case of 1, 2, trans-7, cis-7 and trans-8, in the solid state by X-ray crystallography. The square-planar complexes 3-6 are formed as a mixture of cis- and trans-isomers on the basis of NMR data. The cis and trans isomers of 7 were separated by crystallisation from different solvents. In addition to trans-8, the reaction of Li[(P(i)Pr2)(TeP(i)Pr2)N] with MCl2(COD) produced the heteroleptic complex Pt[(P(i)Pr2)(TeP(i)Pr2)N][sigma:eta2-C8H12(P(i)Pr2NP(i)Pr2Te)] (9) resulting from nucleophilic attack on coordinated 1,5-cyclooctadiene. Complex 9 was identified by multinuclear (13C, 31P, 125Te and 195Pt) NMR spectroscopy, which revealed a mixture of geometric isomers, and by X-ray crystallography.

  2. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    PubMed Central

    Koenitzer, Jeffrey R.; Bonacci, Gustavo; Woodcock, Steven R.; Chen, Chen-Shan; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Schopfer, Francisco J.

    2015-01-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval. PMID:26722838

  3. Dual and Simultaneous Roles of Nucleophillic Delivery.

    DTIC Science & Technology

    2007-11-02

    reactions with DNA studied. Such information is particularly important to those interested in the catalysis of hydrolysis of DNA and RNA. 14. SUBJECT...34. Catalysis of the hydrolysis of phosphate diesters by various functional groups were studied as intramolecular reactions with single turnovers. One and...displacement reaction at the phosphate linkage. The same La3+ which ligates the HO" also interacts with one of the two -(P02)- oxygens. The second

  4. Highly nucleophilic acetylide, vinyl, and vinylidene complexes

    SciTech Connect

    Not Available

    1991-08-01

    In the past year we have completed our studies of the halide-promoted carbonylation of imido ligands, extended our explorations of Cp(CO)(L)Mn-X complexes which possess highly reactive acetylide, vinylidene, carbyne, and vinylcarbyne ligands, and have briefly investigated the formation of bimetallic complexes using anionic carbene complexes. 5 figs.

  5. Platinum-mediated coupling of methane and small nucleophiles (H{sub 2}O, PH{sub 3}, H{sub 2}S, CH{sub 3}NH{sub 2}) as a model for C-N, C-O, C-P, and C-S bond formation in the gas phase

    SciTech Connect

    Broenstrup, M.; Schroeder, D.; Schwarz, H.

    1999-05-10

    The reactions of Pt{sup +} and PtCH{sub 2}{sup +} with the nucleophiles H{sub 2}O, PH{sub 3}, H{sub 2}S, HCl, CH{sub 3}NH{sub 2}, and CH{sub 3}OH are studied by Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry. In the reactions of PtCH{sub 2}{sup +}, carbon-heteroatom bond formation can be accomplished for all substrates except CH{sub 3}OH and HCl. The reaction of PtCH{sub 2}{sup +} with two molecules of water yields Pt(CO)(H{sub 2}O){sup +} and constitutes a gas-phase model for the platinum-mediated generation of water gas according to CH{sub 4} + H{sub 2}O {r_arrow} CO + 3H{sub 2}. In the reactions with PH{sub 3} and H{sub 2}S, carbon-phosphorus and carbon-sulfur bond formation to PtCPH{sup +} and PtCS{sup +} competes with demethanation and dehydrogenation of the substrates to yield PtS{sub n}{sup +} (n = 1--4) and PtP{sub n}H{sub m}{sup +} (n = 1--6; m = 0--3) compounds, respectively. For organic nucleophiles such as CH{sub 3}NH{sub 2} and CH{sub 3}OH, C-N and C-O coupling is much less efficient than platinum-mediated C-H bond activation of the substrates.

  6. An Asymmetric Organocatalytic Quadruple Domino Reaction Employing a Vinylogous Friedel-Crafts/Michael/Michael/Aldol Condensation Sequence.

    PubMed

    Philipps, Arne R; Fritze, Lars; Erdmann, Nico; Enders, Dieter

    2015-04-02

    An organocatalytic quadruple cascade initiated by a Friedel-Crafts-type reaction is described. The (S)-diphenylprolinol trimethylsilyl ether catalyzed reaction yields highly functionalized cyclohexenecarbaldehydes bearing a 1,1-bis[4-(dialkylamino)phenyl]ethene moiety and three contiguous stereogenic centers. The reaction tolerates various functional groups and all products are obtained with very good diastereoselectivity and with virtually complete enantiomeric excess.

  7. Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes.

    PubMed

    Nagaraj, Anbu; Amarajothi, Dhakshinamoorthy

    2017-05-15

    In the present work, Friedel-Crafts alkylation reaction of indole with β-nitrostyrene is examined using a readily available copper based metal-organic frameworks (MOFs) namely, Cu3(BTC)2 (BTC: 1,3,5-benzenetricarboxylic acid) as solid catalyst under mild reaction conditions. Among the various catalysts screened for this reaction, Cu3(BTC)2 exhibits higher activity under the optimized reaction conditions. Besides the absence of leaching of active sites, it is also observed that the catalyst can be reused for four cycles with a minimal decrease in its activity. Cu3(BTC)2 is used as a catalyst to synthesise a series of heterocyclic compounds with different indole and β-nitrostyrene derivatives in moderate to high yields. The present catalytic system shows comparable activity against to recent reports but the advantage of Cu3(BTC)2 is that it does not require any post-functionalization and above all it can be readily synthesised, thus contributing to the synthesis of heterocyclic compounds with high biological interest.

  8. Ru(II)/Organo Relay Catalytic Three-Component Reaction of 3-Diazooxindoles, Amines, and Nitroalkene: Formal Synthesis of (-)-Psychotrimine.

    PubMed

    Lian, Xiao-Lei; Meng, Jing; Han, Zhi-Yong

    2016-09-02

    A highly enantioselective carbenoid-associated N-H functionalization/Michael addition cascade reaction is developed by virtue of Ru(II)/chiral organo bifunctional catalyst relay catalysis. In this way, a variety of optically pure 3-amino-3-alkyloxindoles can be easily achieved. Moreover, on the basis of this metal/organo relay catalytic three-component protocol, a key intermediate for the formal synthesis of (-)-psychotrimine could be obtained in six steps with 25% overall yield.

  9. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions† †Electronic supplementary information (ESI) available: Formulae for calculating aggregation parameters and fitting of kinetic constants and copies of NMR spectra. See DOI: 10.1039/c6cp00493h Click here for additional data file.

    PubMed Central

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian

    2016-01-01

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  10. Iron(III) oxidized nucleophilic coupling of catechol with o-tolidine/p-toluidine followed by 1,10-phenanthroline as new and sensitivity improved spectrophotometric methods for iron present in chemicals, pharmaceutical, edible green leaves, nuts and lake water samples.

    PubMed

    Shyla, B; Bhaskar, C Vijaya; Nagendrappa, G

    2012-02-01

    A nucleophile formed from iron(III) oxidized catechol in 0.1M hydrochloric acid couple with o-tolidine, system 1/p-toluidine, system 2 to produce dye product, λ max 520 nm. The system 1/2 obeys Beer's law in the range 0.08-8.0 μg ml(-1) with molar absorptivity, Sandell sensitivity and regression coefficient values, 4.225 × 10(3)/3.140 × 10(3) l mol(-1) cm(-1), 0.0132/0.0178 μg cm(-2) and 0.9987/0.9981. Iron(II) formed from iron(III) in system 1/2 reacts with 1,10-phenanthroline, λ max 510 nm, will constitute sensitivity improved iron determinations with values 0.08-1.6 μg ml(-1), 2.4136 × 10(4)/2.2511 × 10(4) l mol(-1) cm(-1), 0.0023/0.0025 μg cm(-2) and 0.9980/0.9997 corresponding to range, molar absorptivity, Sandell sensitivity and regression coefficient. The results of the systems for iron present in chemicals, pharmaceutical, edible green leaves, nuts and lake water samples are satisfactory since they are comparable with the results of iron determined separately from 1,10-phenanthroline method.

  11. Iron(III) oxidized nucleophilic coupling of catechol with o-tolidine/p-toluidine followed by 1,10-phenanthroline as new and sensitivity improved spectrophotometric methods for iron present in chemicals, pharmaceutical, edible green leaves, nuts and lake water samples

    NASA Astrophysics Data System (ADS)

    Shyla, B.; Bhaskar, C. Vijaya; Nagendrappa, G.

    2012-02-01

    A nucleophile formed from iron(III) oxidized catechol in 0.1 M hydrochloric acid couple with o-tolidine, system 1/p-toluidine, system 2 to produce dye product, λ max 520 nm. The system 1/2 obeys Beer's law in the range 0.08-8.0 μg ml -1 with molar absorptivity, Sandell sensitivity and regression coefficient values, 4.225 × 10 3/3.140 × 10 3 l mol -1 cm -1, 0.0132/0.0178 μg cm -2 and 0.9987/0.9981. Iron(II) formed from iron(III) in system 1/2 reacts with 1,10-phenanthroline, λ max 510 nm, will constitute sensitivity improved iron determinations with values 0.08-1.6 μg ml -1, 2.4136 × 10 4/2.2511 × 10 4 l mol -1 cm -1, 0.0023/0.0025 μg cm -2 and 0.9980/0.9997 corresponding to range, molar absorptivity, Sandell sensitivity and regression coefficient. The results of the systems for iron present in chemicals, pharmaceutical, edible green leaves, nuts and lake water samples are satisfactory since they are comparable with the results of iron determined separately from 1,10-phenanthroline method.

  12. Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction.

    PubMed

    Baker, Laura M S; Baker, Paul R S; Golin-Bisello, Franca; Schopfer, Francisco J; Fink, Mitchell; Woodcock, Steven R; Branchaud, Bruce P; Radi, Rafael; Freeman, Bruce A

    2007-10-19

    Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.

  13. Old tricks, new dogs: organocatalytic dienamine activation of α,β-unsaturated aldehydes

    PubMed Central

    2016-01-01

    Chiral secondary amines are some of the most commonly used kinds of catalysts. They have become a reliable tool for the α- and β-activation of carbonyl compounds, via HOMO, SOMO or LUMO activation pathways. Recently, chemists have turned their attention to the development of novel organocatalytic strategies for remote functionalisation, targeting stereocentres even more distant from the catalyst-activation site, through dienamine, trienamine, and vinylogous iminium ion pathways (γ-, ε- and δ-positions, respectively). Here we outline and discuss the state-of-the-art in dienamine activation, classifying examples according to the different reactive activation pathways followed by the formed dienamine intermediate (1,3-, 1,5-, 2,5- and 4,5-functionalisation) and the reaction type developed, as determined by the structure and the nature of electrophiles and nucleophiles. PMID:27805198

  14. Mechanism of alkoxy groups substitution by Grignard reagents on aromatic rings and experimental verification of theoretical predictions of anomalous reactions.

    PubMed

    Jiménez-Osés, Gonzalo; Brockway, Anthony J; Shaw, Jared T; Houk, K N

    2013-05-01

    The mechanism of direct displacement of alkoxy groups in vinylogous and aromatic esters by Grignard reagents, a reaction that is not observed with expectedly better tosyloxy leaving groups, is elucidated computationally. The mechanism of this reaction has been determined to proceed through the inner-sphere attack of nucleophilic alkyl groups from magnesium to the reacting carbons via a metalaoxetane transition state. The formation of a strong magnesium chelate with the reacting alkoxy and carbonyl groups dictates the observed reactivity and selectivity. The influence of ester, ketone, and aldehyde substituents was investigated. In some cases, the calculations predicted the formation of products different than those previously reported; these predictions were then verified experimentally. The importance of studying the actual system, and not simplified models as computational systems, is demonstrated.

  15. Highly nucleophilic acetylide, vinyl, and vinylidene complexes. Progress report

    SciTech Connect

    Not Available

    1991-08-01

    In the past year we have completed our studies of the halide-promoted carbonylation of imido ligands, extended our explorations of Cp(CO)(L)Mn-X complexes which possess highly reactive acetylide, vinylidene, carbyne, and vinylcarbyne ligands, and have briefly investigated the formation of bimetallic complexes using anionic carbene complexes. 5 figs.

  16. Nucleophilic substitution rates and solubilities for methyl halides in seawater

    SciTech Connect

    Elliott, S. ); Rowland, S. )

    1993-06-07

    With the present rules limiting the usage of long lived chlorofluorocarbon compounds because of their cumulative impact on ozone depletion in place, emphasis has shifted to studying other compounds which are known to deplete ozone, but also to have much shorter lifetimes. Methyl bromide is one such compound. It is highly reactive with ozone, but is known to have an atmospheric lifetime less than 2 years. Little is known about sources and sinks for this compound, in particular in the oceans. In some ocean areas surface levels are known to be saturated. This paper presents information on some chemical properties of methyl bromide in an oceanographic environment which will be useful in studying the flux of this gas into and out of the oceans, and its dispersal in surface waters.

  17. Characterization of Anionic Cluster Nucleophilic Substitution Reaction Intermediates

    NASA Astrophysics Data System (ADS)

    Cyr, Donna Marie

    Recent theoretical and experimental developments in the arena of the gas phase S_{rm N}2 reaction (X^- + RY to RX + Y^-) has rekindled interest in this classic chemical reaction. Consideration of the gas phase S_{rm N} 2 double minima potential surface from a valence bond perspective, advocated by Shaik et. al., predicts the presence of a low lying excited electronic state corresponding to electron transfer. In this work we take advantage of long range ion-molecule induced forces to stabilize the S_{rm N}2 reactants in a complex, X^-cdot RY, allowing us to search for this charge transfer excited state from the well defined location on the potential energy surface. Photoelectron spectroscopy of X^ - cdot RY confirms the identification of the species as essentially charge-localized. Vibrational fine structure observed in the case of I^- cdot CH_3I is found to be consistent with small distortions of the CH_3I neutral upon complexation to form a stable intermediate in the S_{rm N}2 identity reaction. A narrow photofragmentation band lies just below the vertical electron detachment energy and is assigned to the X^- cdot RY to X cdotcdot (RY) ^- charge transfer excited state. More detailed study of the photofragmentation band reveals the photoexcitation mechanism is not direct charge transfer but is mediated by a weakly bound negative ion state. The excited state photochemistry of the X ^- cdot RY reaction intermediates is characterized by the formation of the endothermic halide abstraction product XY^-. Trends in the formation of the dihalide product are strongly dependent of the nature of the R group and these results are consistent with a preferential ion binding site in the complex. Search for the XY^- dihalide product in the bimolecular ground state reaction at supra-thermal collision energies revealed halide abstraction as a competitive product channel to the well known Walden inversion mechanism. All of these results are integrated in the development a picture of the X^- cdot RY photofragmentation dynamics in the context of the diabatic (charge-localized) states invoked to interpret the structure of the (ground state) S_{rm N}2 potential surface.

  18. Nucleophilic Chiral Phosphines: Powerful and Versatile Catalysts for Asymmetric Annulations

    PubMed Central

    Xiao, Yumei; Guo, Hongchao; Kwon, Ohyun

    2016-01-01

    Recent advances in chiral-phosphine-catalyzed asymmetric annulation reactions; including annulations of allenes, alkynes, Morita–Baylis–Hillman (MBH) carbonates, and ketenes; and their applications in the synthesis of bioactive molecules and natural products are reviewed. PMID:28077882

  19. Nucleophilic Addition of Organozinc Reagents to 2-Sulfonyl Cyclic Ethers

    PubMed Central

    Kim, Hyoungsu; Kasper, Amanda C.; Moon, Eui Jung; Park, Yongho; Wooten, Ceshea M.; Dewhirst, Mark W.; Hong, Jiyong

    2009-01-01

    A convergent route to the synthesis of manassantins A and B, potent inhibitors of HIF-1, is described. Central to the synthesis is a stereoselective addition of an organozinc reagent to a 2-benzenesulfonyl cyclic ether to achieve the 2,3-cis-3,4-trans-4,5-cis-tetrahydrofuran of the natural products. Preliminary structure—activity relationships suggested that the (R)-configuration at C-7 and C-7″′ is not critical for HIF-1 inhibition. In addition, the hydroxyl group at C-7 and C-7″′ can be replaced with carbonyl group without loss of activity. PMID:19111058

  20. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  1. Synthesis of alpha-phosphorylated alpha,beta-unsaturated imines and their selective reduction to vinylogous and saturated alpha-aminophosphonates.

    PubMed

    Palacios, Francisco; Vicario, Javier; Maliszewska, Agnieszka; Aparicio, Domitila

    2007-03-30

    An efficient synthesis of alpha,beta-unsaturated imines derived from alpha-aminophosphonates is achieved through aza-Wittig reaction of P-trimethyl phosphazenes with beta,gamma-unsaturated alpha-ketophosphonates. Selective 1,2-reduction of such 1-azadienes affords beta,gamma-unsaturated alpha-aminophosphonates, phosphorylated analogs of vinylglycines, which are hydrogenated to yield saturated alpha-aminophosphonate derivatives.

  2. Inhibition of Mycobacterium tuberculosis PknG by non-catalytic rubredoxin domain specific modification: reaction of an electrophilic nitro-fatty acid with the Fe-S center.

    PubMed

    Gil, Magdalena; Graña, Martín; Schopfer, Francisco J; Wagner, Tristan; Denicola, Ana; Freeman, Bruce A; Alzari, Pedro M; Batthyány, Carlos; Durán, Rosario

    2013-12-01

    PknG from Mycobacterium tuberculosis is a Ser/Thr protein kinase that regulates key metabolic processes within the bacterial cell as well as signaling pathways from the infected host cell. This multidomain protein has a conserved canonical kinase domain with N- and C-terminal flanking regions of unclear functional roles. The N-terminus harbors a rubredoxin-like domain (Rbx), a bacterial protein module characterized by an iron ion coordinated by four cysteine residues. Disruption of the Rbx-metal binding site by simultaneous mutations of all the key cysteine residues significantly impairs PknG activity. This encouraged us to evaluate the effect of a nitro-fatty acid (9- and 10-nitro-octadeca-9-cis-enoic acid; OA-NO2) on PknG activity. Fatty acid nitroalkenes are electrophilic species produced during inflammation and metabolism that react with nucleophilic residues of target proteins (i.e., Cys and His), modulating protein function and subcellular distribution in a reversible manner. Here, we show that OA-NO2 inhibits kinase activity by covalently adducting PknG remote from the catalytic domain. Mass spectrometry-based analysis established that cysteines located at Rbx are the specific targets of the nitroalkene. Cys-nitroalkylation is a Michael addition reaction typically reverted by thiols. However, the reversible OA-NO2-mediated nitroalkylation of the kinase results in an irreversible inhibition of PknG. Cys adduction by OA-NO2 induced iron release from the Rbx domain, revealing a new strategy for the specific inhibition of PknG. These results affirm the relevance of the Rbx domain as a target for PknG inhibition and support that electrophilic lipid reactions of Rbx-Cys may represent a new drug strategy for specific PknG inhibition.

  3. Inhibition of Mycobacterium tuberculosis PknG by non-catalytic rubredoxin domain specific modification: reaction of an electrophilic nitro-fatty acid with the Fe–S center

    PubMed Central

    Gil, Magdalena; Graña, Martín; Schopfer, Francisco J.; Wagner, Tristan; Denicola, Ana; Freeman, Bruce A.; Alzari, Pedro M.; Batthyány, Carlos; Durán, Rosario

    2014-01-01

    PknG from Mycobacterium tuberculosis is a Ser/Thr protein kinase that regulates key metabolic processes within the bacterial cell as well as signaling pathways from the infected host cell. This multidomain protein has a conserved canonical kinase domain with N- and C-terminal flanking regions of unclear functional roles. The N-terminus harbors a rubredoxin-like domain (Rbx), a bacterial protein module characterized by an iron ion coordinated by four cysteine residues. Disruption of the Rbx-metal binding site by simultaneous mutations of all the key cysteine residues significantly impairs PknG activity. This encouraged us to evaluate the effect of a nitro-fatty acid (9- and 10-nitro-octadeca-9-cis-enoic acid; OA-NO2) on PknG activity. Fatty acid nitroalkenes are electrophilic species produced during inflammation and metabolism that react with nucleophilic residues of target proteins (i.e., Cys and His), modulating protein function and subcellular distribution in a reversible manner. Here, we show that OA-NO2 inhibits kinase activity by covalently adducting PknG remote from the catalytic domain. Mass spectrometry-based analysis established that cysteines located at Rbx are the specific targets of the nitroalkene. Cys-nitroalkylation is a Michael addition reaction typically reverted by thiols. However, the reversible OA-NO2-mediated nitroalkylation of the kinase results in an irreversible inhibition of PknG. Cys adduction by OA-NO2 induced iron release from the Rbx domain, revealing a new strategy for the specific inhibition of PknG. These results affirm the relevance of the Rbx domain as a target for PknG inhibition and support that electrophilic lipid reactions of Rbx-Cys may represent a new drug strategy for specific PknG inhibition. PMID:23792274

  4. β-Lactamase Inhibition by 7-Alkylidenecephalosporin Sulfones: Allylic Transposition and Formation of an Unprecedented Stabilized Acyl-Enzyme

    PubMed Central

    Rodkey, Elizabeth A.; McLeod, David C.; Bethel, Christopher R.; Smith, Kerri M.; Xu, Yan; Chai, Weirui; Che, Tao; Carey, Paul R.; Bonomo, Robert A.; van den Akker, Focco; Buynak, John D.

    2014-01-01

    The inhibition of the class A SHV-1 β-lactamase by 7-(tert-butoxycarbonyl)methylidenecephalosporin sulfone was examined kinetically, spectroscopically, and crystallographically. An 1.14Å X-ray crystal structure shows that the stable acyl-enzyme, which incorporates an eight-membered ring, is a covalent derivative of Ser70 linked to the 7-carboxy group of 2-H-5,8-dihydro-1,1-dioxo-1,5-thiazocine-4,7-dicarboxylic acid. A cephalosporin-derived enzyme complex of this type is unprecedented and the rearrangement leading to its formation may offer new possibilities for inhibitor design. The observed acyl-enzyme derives its stability from the resonance stabilization conveyed by the β-aminoacrylate (i.e. vinylogous urethane) functionality as there is relatively little interaction of the eight-membered ring with active site residues. Two mechanistic schemes are proposed, differing in whether, subsequent to acylation of the active site serine and opening of the β-lactam, the resultant dihydrothiazine fragments on its own, or is assisted by an adjacent nucleophilic atom, in the form of the carbonyl oxygen of the C7 tert-butyloxycarbonyl group. This compound was also found to be a submicromolar inhibitor of the class C ADC-7 and PDC-3 β-lactamases. PMID:24219313

  5. Fabricating Complex Culture Substrates Using Robotic Microcontact Printing (R-µCP) and Sequential Nucleophilic Substitution

    PubMed Central

    McNulty, Jason D.; Ashton, Randolph S.

    2014-01-01

    In tissue engineering, it is desirable to exhibit spatial control of tissue morphology and cell fate in culture on the micron scale. Culture substrates presenting grafted poly(ethylene glycol) (PEG) brushes can be used to achieve this task by creating microscale, non-fouling and cell adhesion resistant regions as well as regions where cells participate in biospecific interactions with covalently tethered ligands. To engineer complex tissues using such substrates, it will be necessary to sequentially pattern multiple PEG brushes functionalized to confer differential bioactivities and aligned in microscale orientations that mimic in vivo niches. Microcontact printing (μCP) is a versatile technique to pattern such grafted PEG brushes, but manual μCP cannot be performed with microscale precision. Thus, we combined advanced robotics with soft-lithography techniques and emerging surface chemistry reactions to develop a robotic microcontact printing (R-μCP)-assisted method for fabricating culture substrates with complex, microscale, and highly ordered patterns of PEG brushes presenting orthogonal ‘click’ chemistries. Here, we describe in detail the workflow to manufacture such substrates. PMID:25407245

  6. Hydroxylamine as an oxygen nucleophile: substitution of sulfonamide by a hydroxyl group in benzothiazole-2-sulfonamides.

    PubMed

    Kamps, Jos J A G; Belle, Roman; Mecinović, Jasmin

    2013-02-21

    Benzothiazole-2-sulfonamides react with an excess of hydroxylamine in aqueous solutions to form 2-hydroxybenzothiazole, sulfur dioxide, and the corresponding amine. Mechanistic studies that employ a combination of structure-reactivity relationships, oxygen labeling experiments, and (in)direct detection of intermediates and products reveal that the reaction proceeds via oxygen attack, and that oxygen incorporated in the 2-hydroxybenzothiazole product derives from hydroxylamine. The reaction, which is performed under mild conditions, can be used as a deprotection method for cleavage of benzothiazole-2-sulfonyl-protected amino acids.

  7. Sodium tetramethoxyborate: an efficient catalyst for Michael additions of stabilized carbon nucleophiles.

    PubMed

    Campaña, Araceli G; Fuentes, Noelia; Gómez-Bengoa, Enrique; Mateo, Cristina; Oltra, J Enrique; Echavarren, Antonio M; Cuerva, Juan M

    2007-10-12

    Sodium tetramethoxyborate, easily prepared by reaction of inexpensive sodium borohydride with methanol, possesses a suitable combination of a Lewis base and a Lewis acid to catalyze Michael reactions at room temperature under practically neutral conditions. This reaction provides good to excellent yields of Michael addition products from a broad scope of Michael donor and Michael acceptor reagents.

  8. The picornaviral 3C proteinases: cysteine nucleophiles in serine proteinase folds.

    PubMed

    Malcolm, B A

    1995-08-01

    The 3C proteinases are a novel group of cysteine proteinases with a serine proteinase-like fold that are responsible for the bulk of polyprotein processing in the Picornaviridae. Because members of this viral family are to blame for several ongoing global pandemic problems (rhinovirus, hepatitis A virus) as well as sporadic outbreaks of more serious pathologies (poliovirus), there has been continuing interest over the last two decades in the development of antiviral therapies. The recent determination of the structure of two of the 3C proteinases by X-ray crystallography opens the door for the application of the latest advances in computer-assisted identification and design of anti-proteinase therapeutic/chemoprophylactic agents.

  9. Generating site-specifically modified proteins via a versatile and stable nucleophilic carbon ligation.

    PubMed

    Kudirka, Romas; Barfield, Robyn M; McFarland, Jesse; Albers, Aaron E; de Hart, Gregory W; Drake, Penelope M; Holder, Patrick G; Banas, Stefanie; Jones, Lesley C; Garofalo, Albert W; Rabuka, David

    2015-02-19

    There is a need for facile chemistries that allow for chemo- and regioselectivity in bioconjugation reactions. To address this need, we are pioneering site-specific bioconjugation methods that use formylglycine as a bioorthogonal handle on a protein surface. Here we introduce aldehyde-specific bioconjugation chemistry, the trapped-Knoevenagel ligation. The speed and stability of the trapped-Knoevenagel ligation further advances the repertoire of aldehyde-based bioconjugations and expands the toolbox for site-specific protein modifications. The trapped-Knoevenagel ligation reaction can be run at near neutral pH in the absence of catalysts to produce conjugates that are stable under physiological conditions. Using this new ligation, we generated an antibody-drug conjugate that demonstrates excellent efficacy in vitro and in vivo.

  10. Theoretical Studies on F(-) + NH2Cl Reaction: Nucleophilic Substitution at Neutral Nitrogen.

    PubMed

    Liu, Xu; Zhang, Jiaxu; Yang, Li; Sun, Rui

    2016-05-26

    The SN2 reactions at N center, denoted as SN2@N, has been recognized to play a significant role in carcinogenesis, although they are less studied and less understood. The potential energy profile for the model reaction of SN2@N, chloramine (NH2Cl) with fluorine anion (F(-)), has been characterized by extensive electronic structure calculations. The back-side SN2 channel dominates the reaction with the front-side SN2 channel becoming feasible at higher energies. The minimum energy pathway shows a resemblance to the well-known double-well potential model for SN2 reactions at carbon. However, the complexes involving nitrogen on both sides of the reaction barrier are characterized by NH---X (X = F or Cl) hydrogen bond and possess C1 symmetry, in contrast to the more symmetric ion-dipole carbon analogues. In the F(-) + NH2Cl system, the proton transfer pathway is found to become more competitive with the SN2 pathway than in the F(-) + CH3Cl system. The calculations reported here indicate that stationary point properties on the F(-) + NH2Cl potential energy surface are slightly perturbed by the theories employed. The MP2 and CAM-B3LYP, as well as M06-2X and MPW1K functionals give overall best agreement with the benchmark CCSD(T)/CBS energies for the major SN2 reaction channel, and are recommended as the preferred methods for the direct dynamics simulations to uncover the dynamic behaviors of the title reaction.

  11. Unexpected Behavior of the Heaviest Halogen Astatine in the Nucleophilic Substitution of Aryliodonium Salts.

    PubMed

    Guérard, François; Lee, Yong-Sok; Baidoo, Kwamena; Gestin, Jean-François; Brechbiel, Martin W

    2016-08-22

    Aryliodonium salts have become precursors of choice for the synthesis of (18) F-labeled tracers for nuclear imaging. However, little is known on the reactivity of these compounds with heavy halides, that is, radioiodide and astatide, at the radiotracer scale. In the first comparative study of radiohalogenation of aryliodonium salts with (125) I(-) and (211) At(-) , initial experiments on a model compound highlight the higher reactivity of astatide compared to iodide, which could not be anticipated from the trends previously observed within the halogen series. Kinetic studies indicate a significant difference in activation energy (Ea =23.5 and 17.1 kcal mol(-1) with (125) I(-) and (211) At(-) , respectively). Quantum chemical calculations suggest that astatination occurs via the monomeric form of an iodonium complex whereas iodination occurs via a heterodimeric iodonium intermediate. The good to excellent regioselectivity of halogenation and high yields achieved with diversely substituted aryliodonium salts indicate that this class of compounds is a promising alternative to the stannane chemistry currently used for heavy radiohalogen labeling of tracers in nuclear medicine.

  12. Nucleophilic ring opening of bridging thietane ligands in trirhenium carbonyl cluster complexes

    SciTech Connect

    Adams, R.D.; Cortopassi, J.E.; Falloon, S.B.

    1992-11-01

    The reactions of 3,3-dimethylthietane, SCH{sub 2}CMe{sub 2}CH{sub 2} (3,3-DMT), and thietane, SCH{sub 2}CH{sub 2}CH{sub 2}, with Re{sub 3}(CO){sub 10}[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}]({mu}-H){sub 3}, 2b. Compound 2a was characterized crystallographically and was found to consist of a trirhenium cluster with three bridging hydride ligands and a bridging thietane ligand coordinated through its sulfur atom. 2a and 2b react with halide ions by ring-opening additions to the 3,3-DMT ligand to yield the complex anions [Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}x)({mu}-h){sub 3}]{sup -} 3A-6A, X = F (71%), Cl(71%), Br(84%), I(87%) and [Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CH{sub 2}CH{sub 2}Cl)({mu}-H){sub 3}]{sup -}, 4b (67%). Similarly, addition of NMe{sub 3} to 2a and 2b yielded the ring-opened zwitterions Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}NMe{sub 3})({mu}-H){sub 3}, 7 a crystographically. They are zwitterions positively charged at the nitrogen atoms and negatively charged on the trirhenium clusters. Complex 7b was also obtained in a 48% yield from the reaction of Re{sub 3}(C){sub 12}({mu}-H){sub 3} with Me{sub 3}NO in the presence of thietane, but the corresponding reaction using 3,3-DMT yielded only 2a and Re{sub 3}(CO){sub 11}(SCH{sub 2}CMe{sub 2}CH{sub 2})({mu}-H){sub 3}, 8. Attempts to obtain a ring-opening addition to 2a by reaction with PMe{sub 2}Ph yielded only Re{sub 3}(CO){sub 10}(PMe{sub 2}PH){sub 2}({mu}-H){sub 3} by ligand substitution. Attempts to obtain ring opening addition to 8 by reaction with I{sup -} yielded only [Re{sub 3}(CO){sub 11}I({mu}-H){sub 3}]{sup -} by ligand substitution. 20 refs., 3 figs., 10 tabs.

  13. Nucleophilic ring opening of bridging thietanes in open triosmium cluster complexes

    SciTech Connect

    Adams, R.D.; Belinski, J.A.

    1992-07-01

    The complexes Os{sub 3}(CO){sub 9}({mu}{sub 3}-S)[{mu}-SCH{sub 2}CMe{sub 2}CMe{sub 2}CH{sub 2}] (1) and Os{sub 3}(CO){sub 9}({mu}{sub 3}-S)[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}] (2) were obtained from the reactions of Os{sub 3}(CO){sub 10}({mu}{sub 3}-S) with 3,3-dimethylthietane (DMT) and thietane, respectively, at -42 {degree}C in the presence of Me{sub 3}NO. Compound 1 was characterized by a single-crystal X-ray diffraction analysis and was found to contain a DMT group bridging two of the nonbonded metal atoms in the open cluster of three metal atoms by using both lone pairs of electrons on the sulfur atom. Compound 1 reacted with bis(triphenylphosphine)nitrogen(1+) chloride ([PPN]Cl) at 25 {degrees}C to yield the salt [PPN][Os{sub 3}-(CO){sub 9}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}Cl)({mu}{sub 3}-S)] (3; 76%), in which the chloride ion was added to one of the methylene groups of the DMT ring in a process that caused the ring to open by cleavage of one of the carbon-sulfur bonds. A 4-chloro-3,3-dimethylpropanethiolate ligand bridges the open edge of the anionic triosmium cluster. Compound 3 was converted to the neutral complex Os{sub 3}(CO){sub 9}[{mu}-SCH{sub 2}CMe{sub 2}CMe{sub 2}CH{sub 2}Cl]({mu}{sub 3}-S)({mu}-H) (4) by reaction with HCl at 25 {degrees}C. Compound 4 is structurally similar to 3, except that is contains a hydride ligand bridging one of the two metal-metal bonds. Compounds 1 and 2 react with HCl in CH{sub 2}Cl{sub 2} solvent to yield the neutral compounds 4 and Os{sub 3}(CO){sub 9}[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}Cl]({mu}{sub 3}-S)({mu}-H) (5) in 89% and 90% yields, respectively, in one step. 11 refs., 3 figs., 10 tabs.

  14. Unexpected ring-opening reactions of aziridines with aldehydes catalyzed by nucleophilic carbenes under aerobic conditions.

    PubMed

    Liu, Yan-Kai; Li, Rui; Yue, Lei; Li, Bang-Jing; Chen, Ying-Chun; Wu, Yong; Ding, Li-Sheng

    2006-04-13

    [reaction: see text] The chemoselective ring opening of N-tosyl aziridines with aldehydes catalyzed by an N-heterocyclic carbene was investigated under aerobic conditions. Unexpected carboxylates of 1,2-amino alcohols from the corresponding aldehydes, rather than the acyl anion ring-opened beta-amino ketones, were exclusively obtained. A plausible mechanism for this unprecedented carbene-mediated reaction was also proposed.

  15. Mechanistic aspects of the nucleophilic substitution of pectin. On the formation of chloromethane.

    PubMed

    Sailaukhanuly, Yerbolat; Sárossy, Zsuzsa; Carlsen, Lars; Egsgaard, Helge

    2014-09-01

    Chloromethane, accounting for approximately 16% of the tropospheric chlorine, is mainly coming from natural sources. However anthropogenic activities, such as combustion of biomass may contribute significantly as well. The present study focuses on the thermal solid state reaction between pectin, an important constituent of biomass, and chloride ions as found in alkali metal chlorides. The formation of chloromethane is evident with the amount formed being linear with respect to chloride if pectin is in great excess. Thus the reaction is explained as a pseudo first order SN2 reaction between the chloride ion and the methyl ester moiety in pectin. It is suggested that the polymeric nature of pectin plays an active role by an enhanced transport of halides along the carbohydrate chain. Optimal reaction temperature is around 210°C. At higher temperatures the yield of chloromethane decreases due to a thermal decomposition of the pectin. The possible influence of the type of cation is discussed.

  16. A study of diazonium couplings with aromatic nucleophiles both in solution and on a polymer surface

    NASA Astrophysics Data System (ADS)

    Chng, Shuyun; Parker, Emily M.; Griffiths, Jon-Paul; Moloney, Mark G.; Wu, Linda Y. L.

    2017-04-01

    Diazonium coupling is a technique finding wider application to materials and biological science, for hybridization and linking processes, and for the construction of responsive surface functionality. For this reason, detailed examination of solution and surface processes was warranted, and results of such a study are reported here. The modification of polystyrene surfaces was examined as a model, and the process compared to a solution mimic using N,N-dimethylaniline. It was confirmed that solution and solid surface reactions proceed in a similar manner in terms of the chemical functionality generated, but with lower chemical efficiency and reaction times slower for the latter, in a reaction which was pH dependent. The solution process was shown to give only the trans-azo para- coupled products. Whilst there are clear similarities between the solution and surface chemistry, the efficiency of coupling at a surface is not necessarily replicated in the chemical yield of the mimicking solution processes, but nonetheless provides an alternative to other Click-type surface modifications. It should not be assumed that such couplings occur with quantitative efficiency at the surface.

  17. Modeling the nucleophilic reactivity of small organochlorine electrophiles: A mechanistically based quantitative structure-activity relationship

    SciTech Connect

    Verhaar, H.J.M.; Seinen, W.; Hermens, J.L.M.; Rorije, E.; Borkent, H.

    1996-06-01

    Environmental pollutants can be divided into four broad categories, narcosis-type chemicals, less inert (polar narcosis) chemicals, reactive chemicals, and specifically acting chemicals. For narcosis-type, or baseline, chemicals and for less inert chemicals, adequate quantitative structure-activity relationships (QSARs) are available for estimation of toxicity to aquatic species. This is not the case for reactive chemicals and specifically acting chemicals. A possible approach to develop aquatic toxicity QSARs for reactive chemicals based on simple considerations regarding their reactivity is given. It is shown that quantum chemical calculations on reaction transition states can be used to quantitatively predict the reactivity of sets of reactive chemicals. These predictions can then be used to develop aquatic toxicity QSARs.

  18. Poly(ether-imide-benzoxazole) via Nucleophilic Aromatic Substitution with Fluorophenyl/phenolic Precursor

    DTIC Science & Technology

    1992-05-29

    mixture cooled, and 1 equivalent of HCI Polyimides and polybenzoxazoles have good mechanical and added to give 3b; 255-257*C. Ammonium formate was reacted...synthesis and 2a: 216T0, 3a: 225- 227CC and 4a: 325- 3270C. 4-Fluorobenzoyl processing. For these reasons, polybenzoxazoles have only recently chloride...Characterization and Applications: Pie .jm Press: New York, 1989. 3. Yang, H. H., Aromatic High Strength Fibers : Wiley- lnterscience: New York, 1989

  19. A Nucleophilic Strategy for Enantioselective Intermolecular α-Amination: Access to Enantioenriched α-Arylamino Ketones

    PubMed Central

    Miles, Dillon H.; Guasch, Joan; Toste, F. Dean

    2016-01-01

    The enantioselective addition of anilines to azoalkenes was accomplished through the use of a chiral phosphoric acid catalyst. The resulting α-arylamino hydrazones were obtained in good yields and excellent enantioselectivities and provide access to enantioenriched α-arylamino ketones. A serendipitous kinetic resolution of racemic α-arylamino hydrazones is also described. PMID:26066512

  20. Properties of Polyurethane Anionomers: Ionization via Bimolecular Nucleophilic Displacement of the Urethane Hydrogen.

    DTIC Science & Technology

    1984-02-01

    I NOV 65 IS OBSOLETE (cont.) S N 0102. LF- 01. 6601 SECURITY CLASSIFICATION OF THIS P04GE ("OIn Do#a Entered) .. 20. Abstract (cont.) 4iechanical...properties of other polyurethane ionomers reported in the literature. ZA 2A .4- -4.# ’ 3° ...,....-." :’ 2 , . 󈧚? .". , ’. .’,.2. .:.2 *OFFICE OFNAVAL...incorporation of-ionic functionality into the hard sgement units of polyurethane block copolymers produces materials known as polyurethane ionomers

  1. Iridium-Catalyzed Asymmetric Ring-Opening of Oxabenzonorbornadienes with N-Substituted Piperazine Nucleophiles.

    PubMed

    Yang, Wen; Luo, Renshi; Yang, Dingqiao

    2015-11-27

    Iridium-catalyzed asymmetric ring-opening of oxabenzonorbornadienes with N-substituted piperazines was described. The reaction afforded the corresponding ring-opening products in high yields and moderate enantioselectivities in the presence of 2.5 mol % [Ir(COD)Cl]₂ and 5.0 mol % (S)-p-Tol-BINAP. The effects of various chiral bidentate ligands, catalyst loading, solvent, and temperature on the yield and enantioselectivity were also investigated. A plausible mechanism was proposed to account for the formation of the corresponding trans-ring opened products based on the X-ray structure of product 2i.

  2. Use of microemulsions as vehicles for nucleophilic reagents in cosmetic formulations.

    PubMed

    Parra, J L; García Domínguez, J J; Comelles, F; Sänchez, J; Solans, C; Pelejero, C; Balaguer, F

    1985-06-01

    Synopsis The modifications of chemical reactivity induced in the human hair during its treatment with oxidative (H(2)O(2)) or reductive (HSO(3)Na) agents via a micellar or a microemulsion system have been investigated. For this purpose, phase diagrams of micellar solutions and microcmulsions with H(2)O(2) or NaSO(3)H have been made in order to find out the corresponding areas of solubility. The properties of conductivity, surface tension and light scattering of various monophasic compositions as a function of their water content, have been studied. As a result of the chemical reactivity data of human hair obtained through the reaction of H(2)O(2) or HSO(3)Na via a micellar or a microemulsion system, it appears reasonable to predict a more effective reaction of such agents with cystine residues existing in keratinic substrates, particularly when they are applied via a microemulsion. The decrease of the water content of the compositions considered, increases chemical reactivity of the keratinic proteins favouring the formation of cysteine and of cysteic acid in the reductive or oxidative treatments respectively.

  3. Photochemical activation of extremely weak nucleophiles: highly fluorinated urethanes and polyurethanes from polyfluoro alcohols.

    PubMed

    Soto, Marc; Sebastián, Rosa María; Marquet, Jordi

    2014-06-06

    An efficient and environmentally friendly photoreaction between phenyl isocyanate or pentafluorophenyl isocyanate and polyfluorinated alcohols and diols is described for the first time. New highly fluorinated urethanes and diurethanes, derived from aromatic isocyanates, are produced in good yields in a photoreaction that is apparently governed by the acidic properties of the polyfluoro alcohols and diols. The wettability properties of the new polyfluorinated diurethanes have been tested, some of them showing significantly high values of hydrophobicity and oleophobicity. This new photoreaction has also been tested in the production of a model polyfluorinated polyurethane, establishing the influence of the irradiation power in the outcome of the process, and directly achieving a molecular weight distribution corresponding to a number-average DP(n) = 12 and a highest DP(n) = 20 after 4 h of irradiation (DP(n): "number-average degree of polymerization").

  4. Stereoselective synthesis of cyclohexanones via phase transfer catalyzed double addition of nucleophiles to divinyl ketones.

    PubMed

    Silvanus, Andrew C; Groombridge, Benjamin J; Andrews, Benjamin I; Kociok-Köhn, Gabriele; Carbery, David R

    2010-11-05

    Functionalized cyclohexanones are formed in excellent yield and diastereoselectivity from a phase transfer catalyzed double addition of active methylene pronucleophiles to nonsymmetrical divinyl ketones.

  5. Structure-activity relations between alkyl nucleophilic chemicals causing duodenal ulcer and adrenocortical necrosis

    SciTech Connect

    Szabo, S.; Reynolds, E.S.; Unger, S.H.

    1982-10-01

    Structure-activity relationships were qualitatively and quantitatively examined for 56 chemicals (e.g., derivatives of propionitrile, acrylonitrile and cysteamine) which caused duodenal ulcer and/or adrenocortical necrosis in rats. For the first time the duodenal ulcerogenic property of numerous chemicals has been studied in a rational and predictive manner. Ulcerogenic activity was most intense in the carbonitriles attached to two or three carbon backbones and diminished by shortening, lengthening, branching, unsaturating, halogenating or hydroxylating the carbon chains. Different modes of action are implied. Adrenocorticolytic potency was associated with unsaturation of the carbon chain and substitution of the nitrile by thiol or amine radicals. An action of these chemicals on the central nervous system has been suggested.

  6. Pyridoxylamine reactivity kinetics as an amine based nucleophile for screening electrophilic dermal sensitizers

    PubMed Central

    Chipinda, Itai; Mbiya, Wilbes; Adigun, Risikat Ajibola; Morakinyo, Moshood K.; Law, Brandon F.; Simoyi, Reuben H.; Siegel, Paul D.

    2015-01-01

    Chemical allergens bind directly, or after metabolic or abiotic activation, to endogenous proteins to become allergenic. Assessment of this initial binding has been suggested as a target for development of assays to screen chemicals for their allergenic potential. Recently we reported a nitrobenzenethiol (NBT) based method for screening thiol reactive skin sensitizers, however, amine selective sensitizers are not detected by this assay. In the present study we describe an amine (pyridoxylamine (PDA)) based kinetic assay to complement the NBT assay for identification of amine-selective and non-selective skin sensitizers. UV-Vis spectrophotometry and fluorescence were used to measure PDA reactivity for 57 chemicals including anhydrides, aldehydes, and quinones where reaction rates ranged from 116 to 6.2 × 10−6 M−1 s−1 for extreme to weak sensitizers, respectively. No reactivity towards PDA was observed with the thiol-selective sensitizers, non-sensitizers and prohaptens. The PDA rate constants correlated significantly with their respective murine local lymph node assay (LLNA) threshold EC3 values (R2 = 0.76). The use of PDA serves as a simple, inexpensive amine based method that shows promise as a preliminary screening tool for electrophilic, amine-selective skin sensitizers. PMID:24333919

  7. Solvent isotope effects on the kinetics of nucleophilic addition of water to a. beta. -nitrostyrene

    SciTech Connect

    Crowell, T.I.

    1983-09-23

    The hydrolysis rate of 3,4-(methylenedioxy)-..beta..-nitrostyrene (S) has been measured in H/sub 2/O and in 99% D/sub 2/O buffer solutions from pH -0.9 to 10.6. The kinetic solvent isotope effect (KSIE), k(H/sub 2/O)/k(D/sub 2/O), is 6.2 at pH 2.5, where k is independent of pH in both solvents and attains a higher value, approximately 22, at about pH 6.2. The isotope effects k/sub i/(H/sub 2/O)/k/sub i/(D/sub 2/O) on the rate constants for the individual steps of the mechanism have been determined and their contributions to the overall KSIE evaluated. Accordingly, the KSIE on the pH-rate plateau at pH 1-4 can be separated into two factors: 5.0 for K/sub 12/, the ionization constant of S as a pseudo-base in water; and 1.4 for k/sub 3//sup H/, the rate constant for rate-controlling protonation of the resulting anion by H/sub 3/O/sup +/. At pH 6.2, the higher KSIE (7.6) on k/sub 3//sup H/sub 2/O/ becomes important while the uncatalyzed addition of water to the double bond is partly rate controlling. The rate at the midpoint of a proton-inventory plot (49.5% D/sub 2/O) shows a negative deviation from linearity of 18%. 2 figures, 2 tables.

  8. Fabricating complex culture substrates using robotic microcontact printing (R-µCP) and sequential nucleophilic substitution.

    PubMed

    Knight, Gavin T; Klann, Tyler; McNulty, Jason D; Ashton, Randolph S

    2014-10-31

    In tissue engineering, it is desirable to exhibit spatial control of tissue morphology and cell fate in culture on the micron scale. Culture substrates presenting grafted poly(ethylene glycol) (PEG) brushes can be used to achieve this task by creating microscale, non-fouling and cell adhesion resistant regions as well as regions where cells participate in biospecific interactions with covalently tethered ligands. To engineer complex tissues using such substrates, it will be necessary to sequentially pattern multiple PEG brushes functionalized to confer differential bioactivities and aligned in microscale orientations that mimic in vivo niches. Microcontact printing (μCP) is a versatile technique to pattern such grafted PEG brushes, but manual μCP cannot be performed with microscale precision. Thus, we combined advanced robotics with soft-lithography techniques and emerging surface chemistry reactions to develop a robotic microcontact printing (R-μCP)-assisted method for fabricating culture substrates with complex, microscale, and highly ordered patterns of PEG brushes presenting orthogonal 'click' chemistries. Here, we describe in detail the workflow to manufacture such substrates.

  9. Competition between planar and central chiral control elements in nucleophilic addition to ferrocenyl imine derivatives.

    PubMed

    Joly, Kévin M; Wilson, Claire; Blake, Alexander J; Tucker, James H R; Moody, Christopher J

    2008-11-07

    Planar chirality associated with the ferrocene in ferrocenyl oximes and hydrazones bearing chiral auxiliaries effectively competes with or overrides the normally excellent stereocontrol afforded by the auxiliary in determining the diastereoselectivity of addition to the C=N bond.

  10. Cascade Synthesis of Five-Membered Lactones using Biomass-Derived Sugars as Carbon Nucleophiles.

    PubMed

    Yamaguchi, Sho; Matsuo, Takeaki; Motokura, Ken; Miyaji, Akimitsu; Baba, Toshihide

    2016-06-06

    We report the cascade synthesis of five-membered lactones from a biomass-derived triose sugar, 1,3-dihydroxyacetone, and various aldehydes. This achievement provides a new synthetic strategy to generate a wide range of valuable compounds from a single biomass-derived sugar. Among several examined Lewis acid catalysts, homogeneous tin chloride catalysts exhibited the best performance to form carbon-carbon bonds. The scope and limitations of the synthesis of five-membered lactones using aldehyde compounds are investigated. The cascade reaction led to high product selectivity as well as diastereoselectivity, and the mechanism leading to the diastereoselectivity was discussed based on isomerization experiments and density functional theory (DFT) calculations. The present results are expected to support new approaches for the efficient utilization of biomass-derived sugars.

  11. Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase.

    PubMed

    Poddar, Harshwardhan; Rahimi, Mehran; Geertsema, Edzard M; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-03-23

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which has a catalytic N-terminal proline residue (Pro1), can promiscuously catalyze various carbon-carbon bond-forming reactions, including aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde, and Michael-type addition of acetaldehyde to a wide variety of nitroalkenes to yield valuable γ-nitroaldehydes. To gain insight into how 4-OT catalyzes these unnatural reactions, we carried out exchange studies in D2 O, and X-ray crystallography studies. The former established that H-D exchange within acetaldehyde is catalyzed by 4-OT and that the Pro1 residue is crucial for this activity. The latter showed that Pro1 of 4-OT had reacted with acetaldehyde to give an enamine species. These results provide evidence of the mechanism of the 4-OT-catalyzed aldol and Michael-type addition reactions in which acetaldehyde is activated for nucleophilic addition by Pro1-dependent formation of an enamine intermediate.

  12. Metal-free transannulation reaction of indoles with nitrostyrenes: a simple practical synthesis of 3-substituted 2-quinolones.

    PubMed

    Aksenov, Alexander V; Smirnov, Alexander N; Aksenov, Nicolai A; Aksenova, Inna V; Frolova, Liliya V; Kornienko, Alexander; Magedov, Igor V; Rubin, Michael

    2013-10-18

    3-Substituted 2-quinolones are obtained via a novel, metal-free transannulation reaction of 2-substituted indoles with 2-nitroalkenes in polyphosphoric acid. The reaction can be used in conjunction with the Fisher indole synthesis offering a practical three-component heteroannulation methodology to produce 2-quinolones from arylhydrazines, 2-nitroalkenes and acetophenone.

  13. Metal-free transannulation reaction of indoles with nitrostyrenes: a simple practical synthesis of 3-substituted 2-quinolones†

    PubMed Central

    Aksenov, Alexander V.; Smirnov, Alexander N.; Aksenov, Nicolai A.; Aksenova, Inna V.; Frolova, Liliya V.; Kornienko, Alexander; Magedov, Igor V.; Rubin, Michael

    2016-01-01

    3-Substituted 2-quinolones are obtained via a novel, metal-free transannulation reaction of 2-substituted indoles with 2-nitroalkenes in polyphosphoric acid. The reaction can be used in conjunction with the Fisher indole synthesis offering a practical three-component heteroannulation methodology to produce 2-quinolones from arylhydrazines, 2-nitroalkenes and acetophenone. PMID:23999797

  14. Concentration effects in the nucleophilic reactions of tertiary amines in aqueous solutions: Alkylation of amines with chloroacetic acid

    NASA Astrophysics Data System (ADS)

    Kazantsev, O. A.; Baruta, D. S.; Shirshin, K. V.; Sivokhin, A. P.; Kamorin, D. M.

    2011-03-01

    In alkylations of tertiary amines with chloroacetic acid in aqueous solutions, an increase in the initial concentrations of reagents to a certain level led to an abrupt increase in the initial rates and conversions attained during the control time. Viscosimetric and refractometric data showed that association with reagents occurred in these systems. The structures of associates that determine the character of the concentration effects of the Menschutkin reaction in water were suggested.

  15. Simulation studies of the Cl- + CH3I SN2 nucleophilic substitution reaction: Comparison with ion imaging experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxu; Lourderaj, Upakarasamy; Sun, Rui; Mikosch, Jochen; Wester, Roland; Hase, William L.

    2013-03-01

    In the previous work of Mikosch et al. [Science 319, 183 (2008)], 10.1126/science.1150238, ion imaging experiments were used to study the Cl- + CH3I → ClCH3 + I- reaction at collision energies Erel of 0.39, 0.76, 1.07, and 1.9 eV. For the work reported here MP2(fc)/ECP/d direct dynamics simulations were performed to obtain an atomistic understanding of the experiments. There is good agreement with the experimental product energy and scattering angle distributions for the highest three Erel, and at these energies 80% or more of the reaction is direct, primarily occurring by a rebound mechanism with backward scattering. At 0.76 eV there is a small indirect component, with isotropic scattering, involving formation of the pre- and post-reaction complexes. All of the reaction is direct at 1.07 eV. Increasing Erel to 1.9 eV opens up a new indirect pathway, the roundabout mechanism. The product energy is primarily partitioned into relative translation for the direct reactions, but to CH3Cl internal energy for the indirect reactions. The roundabout mechanism transfers substantial energy to CH3Cl rotation. At Erel = 0.39 eV both the experimental product energy partitioning and scattering are statistical, suggesting the reaction is primarily indirect with formation of the pre- and post-reaction complexes. However, neither MP2 nor BhandH/ECP/d simulations agree with experiment and, instead, give reaction dominated by direct processes as found for the higher collision energies. Decreasing the simulation Erel to 0.20 eV results in product energy partitioning and scattering which agree with the 0.39 eV experiment. The sharp transition from a dominant direct to indirect reaction as Erel is lowered from 0.39 to 0.20 eV is striking. The lack of agreement between the simulations and experiment for Erel = 0.39 eV may result from a distribution of collision energies in the experiment and/or a shortcoming in both the MP2 and BhandH simulations. Increasing the reactant rotational temperature from 75 to 300 K for the 1.9 eV collisions, results in more rotational energy in the CH3Cl product and a larger fraction of roundabout trajectories. Even though a ClCH3-I- post-reaction complex is not formed and the mechanistic dynamics are not statistical, the roundabout mechanism gives product energy partitioning in approximate agreement with phase space theory.

  16. Simulation studies of the Cl- + CH3I SN2 nucleophilic substitution reaction: comparison with ion imaging experiments.

    PubMed

    Zhang, Jiaxu; Lourderaj, Upakarasamy; Sun, Rui; Mikosch, Jochen; Wester, Roland; Hase, William L

    2013-03-21

    In the previous work of Mikosch et al. [Science 319, 183 (2008)], ion imaging experiments were used to study the Cl(-) + CH3I → ClCH3 + I(-) reaction at collision energies E(rel) of 0.39, 0.76, 1.07, and 1.9 eV. For the work reported here MP2(fc)/ECP/d direct dynamics simulations were performed to obtain an atomistic understanding of the experiments. There is good agreement with the experimental product energy and scattering angle distributions for the highest three E(rel), and at these energies 80% or more of the reaction is direct, primarily occurring by a rebound mechanism with backward scattering. At 0.76 eV there is a small indirect component, with isotropic scattering, involving formation of the pre- and post-reaction complexes. All of the reaction is direct at 1.07 eV. Increasing E(rel) to 1.9 eV opens up a new indirect pathway, the roundabout mechanism. The product energy is primarily partitioned into relative translation for the direct reactions, but to CH3Cl internal energy for the indirect reactions. The roundabout mechanism transfers substantial energy to CH3Cl rotation. At E(rel) = 0.39 eV both the experimental product energy partitioning and scattering are statistical, suggesting the reaction is primarily indirect with formation of the pre- and post-reaction complexes. However, neither MP2 nor BhandH/ECP/d simulations agree with experiment and, instead, give reaction dominated by direct processes as found for the higher collision energies. Decreasing the simulation E(rel) to 0.20 eV results in product energy partitioning and scattering which agree with the 0.39 eV experiment. The sharp transition from a dominant direct to indirect reaction as E(rel) is lowered from 0.39 to 0.20 eV is striking. The lack of agreement between the simulations and experiment for E(rel) = 0.39 eV may result from a distribution of collision energies in the experiment and/or a shortcoming in both the MP2 and BhandH simulations. Increasing the reactant rotational temperature from 75 to 300 K for the 1.9 eV collisions, results in more rotational energy in the CH3Cl product and a larger fraction of roundabout trajectories. Even though a ClCH3-I(-) post-reaction complex is not formed and the mechanistic dynamics are not statistical, the roundabout mechanism gives product energy partitioning in approximate agreement with phase space theory.

  17. Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions.

    PubMed

    Chadha, Geetika; Zhao, Yan

    2013-10-21

    Cross-linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide by 1,4-diazidobutane-2,3-diol in the presence of azide-functionalized imidazole derivatives yielded surface-cross-linked micelles (SCMs) with imidazole groups on the surface. The resulting water-soluble nanoparticles were found, by fluorescence spectroscopy, to contain hydrophobic binding sites. The imidazole groups promoted the photo-deprotonation of 2-naphthol at pH 6 and catalyzed the hydrolysis of p-nitrophenylacetate (PNPA) in aqueous solution at pH ≥ 4. Although the overall hydrolysis rate slowed down with decreasing solution pH, the catalytic effect of the imidazole became stronger because the reactions catalyzed by unfunctionalized SCMs slowed down much more. The unusual ability of the imidazole–SCMs to catalyze the hydrolysis of PNPA under acidic conditions was attributed to the local hydrophobicity and the positive nature of the SCMs.

  18. A Specific Nucleophilic Ring-Opening Reaction of Aziridines as a Unique Platform for the Construction of Hydrogen Polysulfides Sensors

    DOE PAGES

    Chen, Wei; Rosser, Ethan W.; Zhang, Di; ...

    2015-05-11

    Hydrogen polysulfides (H2Sn, n>1) have been recently suggested to be the actual signalling molecules that involved in sulfur-related redox biology. However the exact mechanisms of H2Sn are still poorly understood and a major hurdle in this field is the lack of reliable and convenient methods for H2Sn detection. In this work we report a unique ring-opening reaction of N-sulfonylaziridine by Na2S2 under mild conditions. Based on this reaction a novel H2Sn-specific fluorescent probe (AP) was developed. The probe showed high sensitivity and selectivity for H2Sn. Notably, the fluorescent turn-on product, i.e. compound 1, exhibited excellent two-photon photophysical properties and amore » large Stokes shift. Moreover, the high solid state luminescent efficiency of compound 1 makes it a potential candidate for organic emitters and solid-state lighting devices.« less

  19. Assessing the reactivity of sodium alkyl-magnesiates towards quinoxaline: single electron transfer (SET) vs. nucleophilic alkylation processes.

    PubMed

    Livingstone, Zoe; Hernán-Gómez, Alberto; Baillie, Sharon E; Armstrong, David R; Carrella, Luca M; Clegg, William; Harrington, Ross W; Kennedy, Alan R; Rentschler, Eva; Hevia, Eva

    2016-04-14

    By exploring the reactivity of sodium butyl-magnesiate (1) supported by the bulky chelating silyl(bisamido) ligand {Ph2Si(NAr*)2}(2-) (Ar* = 2,6-iPr2-C6H3) towards Quinoxaline (Qx), the ability of this bimetallic system to effectively promote SET processes has been disclosed. Thus 1 executes the single-electron reduction of Qx affording complex (2) whose structure in the solid state contains two quinaxolyl radical anions Qx˙ stabilised within a dimeric magnesiate framework. Combining multinuclear NMR and EPR measurements with DFT calculations, new insights into the constitution of 2 in solution and its magnetic behaviour have been gained. Further evidence on the SET reactivity of 1 was found when it was reacted with nitroxyl radical TEMPO which furnished contacted ion pair sodium magnesiate [(Ph2Si(NAr*)2)Mg(TEMPO(-))Na(THF)3] (4) where both metals are connected by an alkoxide bridge, resulting from reduction of TEMPO. The role that the different ligands present in 1 can play in these new SET reactions has also been assessed. Using an amination approach, the Bu group in 1 can be replaced by the more basic amide TMP allowing the isolation of (3) which was characterised by multinuclear NMR and X-ray crystallography. (1)H NMR monitoring of the reaction of 3 with Qx showed its conversion to 2, leaving the hydrogen atoms of the heterocycle untouched. Contrastingly, using sodium homoalkyl magnesiate [NaMg(CH2SiMe3)3] (5) led to the chemoselective C2 alkylation of this heterocycle, suggesting that the presence of the steric stabiliser {Ph2Si(NAr*)2}(2-) on the mixed-metal reagent is required in order to facilitate the Qx reduction.

  20. A nucleophilic catalysis step is involved in the hydrolysis of aryl phosphate monoesters by human CT acylphosphatase.

    PubMed

    Paoli, Paolo; Pazzagli, Luigia; Giannoni, Elisa; Caselli, Anna; Manao, Giampaolo; Camici, Guido; Ramponi, Giampietro

    2003-01-03

    Acylphosphatase, one of the smallest enzymes, is expressed in all organisms. It displays hydrolytic activity on acyl phosphates, nucleoside di- and triphosphates, aryl phosphate monoesters, and polynucleotides, with acyl phosphates being the most specific substrates in vitro. The mechanism of catalysis for human acylphosphatase (the organ-common type isoenzyme) was investigated using both aryl phosphate monoesters and acyl phosphates as substrates. The enzyme is able to catalyze phosphotransfer from p-nitrophenyl phosphate to glycerol (but not from benzoyl phosphate to glycerol), as well as the inorganic phosphate-H(2)18O oxygen exchange reaction in the absence of carboxylic acids or phenols. In short, our findings point to two different catalytic pathways for aryl phosphate monoesters and acyl phosphates. In particular, in the aryl phosphate monoester hydrolysis pathway, an enzyme-phosphate covalent intermediate is formed, whereas the hydrolysis of acyl phosphates seems a more simple process in which the Michaelis complex is attacked directly by a water molecule generating the reaction products. The formation of an enzyme-phosphate covalent complex is consistent with the experiments of isotope exchange and transphosphorylation from substrates to glycerol, as well as with the measurements of the Brønsted free energy relationships using a panel of aryl phosphates with different structures. His-25 involvement in the formation of the enzyme-phosphate covalent complex during the hydrolysis of aryl phosphate monoesters finds significant confirmation in experiments performed with the H25Q mutated enzyme.

  1. High-Pressure Freezing and Crystal Structure Studies of TMSCF3: Understanding Nucleophillic-CF3 Transferring Ability (Preprint)

    DTIC Science & Technology

    2008-09-12

    bond polarizability of trimethyl(trifluoromethyl) silane (Preprint) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Anna Olejniczak...Andrzej Katrusiak (Faculty of Chemistry , Adam Mickiewicz University, 5d. PROJECT NUMBER Poland), Ashwani Vij (AFRL/RZSP) 5e. TASK NUMBER 5f...08440A). 13. SUPPLEMENTARY NOTES For publication in Journal of Fluorine Chemistry , 129 (2008) 1090-1095. 14. ABSTRACT Trimethyl(trifluoromethyl

  2. No-carrier-added (NCA) aryl ([sup 18]F) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Yushin Ding; Fowler, J.S.; Wolf, A.P.

    1993-10-19

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  3. Nucleophilic Dearomatization of Pyridines under Enamine Catalysis: Regio-, Diastereo-, and Enantioselective Addition of Aldehydes to Activated N-Alkylpyridinium Salts.

    PubMed

    Bertuzzi, Giulio; Sinisi, Alessandro; Pecorari, Daniel; Caruana, Lorenzo; Mazzanti, Andrea; Bernardi, Luca; Fochi, Mariafrancesca

    2017-02-17

    Catalytic addition of chiral enamines to azinium salts is a powerful tool for the synthesis of enantioenriched heterocycles. An unprecedented asymmetric dearomative addition of aldehydes to activated N-alkylpyridinium salts is presented. The process exhibits complete C-4 regioselectivity along with high levels of diastereo- and enantiocontrol, achieving a high-yielding synthesis of a broad range of optically active 1,4-dihydropyridines. Moreover, the presented methodology enables the synthesis of functionalized octahydropyrrolo[2,3-c]pyridines, the core structure of anticancer peptidomimetics.

  4. A Fluorogenic Aromatic Nucleophilic Substitution Reaction for Demonstrating Normal-Phase Chromatography and Isolation of Nitrobenzoxadiazole Chromophores

    ERIC Educational Resources Information Center

    Key, Jessie A.; Li, Matthew D.; Cairo, Christopher W.

    2011-01-01

    Normal-phase chromatography is an essential technique for monitoring chemical reactions, identifying the presence of specific components, as well as the purification of organic compounds. An experiment to facilitate the instruction and understanding of the concepts behind normal-phase chromatography at the introductory and intermediate…

  5. No-carrier-added (NCA) aryl (18E) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Ding, Yu-Shin; Fowler, Joanna S.; Wolf, Alfred P.

    1993-01-01

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  6. Dithizone as novel and efficient chromogenic probe for cyanide detection in aqueous media through nucleophilic addition into diazenylthione moiety.

    PubMed

    Tavallali, Hossein; Deilamy-Rad, Gohar; Parhami, Abolfath; Kiyani, Sajede

    2014-01-01

    A new selective chemodosimeter probe was developed by the introduction of dithizone (DTZ) as a simple and available dye for detection of cyanide in aqueous media which enables recognition of cyanide over other competing anions such as acetate, dihydrogen phosphate, fluoride and benzoate through covalent bonding. The sensing properties of DTZ were investigated in DMSO/H2O (1:9) and have demonstrated a very high selectivity toward the cyanide anions. A reasonable recognition mechanism was suggested using UV-Vis, (1)H NMR and FTIR spectroscopy techniques. Time dependent density function theory (TDDFT) computations of UV-Vis excitation for DTZ2-CN adduct agreed well with our experimental findings. The detection limit of the new chromogenic probe was measured to be 0.48 μmol L(-1) which is much lower than most recently reported chromogenic probes for cyanide determination. The analytical utility of the method for the analysis of cyanide ions in electroplating wastewater (EPWW), human serum, tap and mineral water samples was demonstrated and the results were compared successfully with the conventional reference method. The short time response and the detection by the naked eye make the method available for the detection and quantitative determination of cyanide in a variety of real samples.

  7. An Unprecedented Combination of Serine and Cysteine Nucleophiles in a Split Intein with an Atypical Split Site*

    PubMed Central

    Bachmann, Anne-Lena; Mootz, Henning D.

    2015-01-01

    Protein splicing mediated by inteins is a self-processive reaction leading to the excision of the internal intein domain from a precursor protein and the concomitant ligation of the flanking sequences, the extein-N and extein-C parts, thereby reconstituting the host protein. Most inteins employ a splicing pathway in which the upstream scissile peptide bond is consecutively rearranged into two thioester or oxoester intermediates before intein excision and rearrangement into the new peptide bond occurs. The catalytically critical amino acids involved at the two splice junctions are cysteine, serine, or threonine. Notably, the only potential combination not observed so far in any of the known or engineered inteins corresponds to the transesterification from an oxoester to a thioester, which suggested that this formal uphill reaction with regard to the thermodynamic stability might be incompatible with intein-mediated catalysis. We show that corresponding mutations also led to inactive gp41-1 and AceL-TerL inteins. We report the novel GOS-TerL split intein identified from metagenomic databases as the first intein harboring the combination of Ser1 and Cys+1 residues. Mutational analysis showed that its efficient splicing reaction indeed follows the shift from oxoester to thioester and thus represents a rare diversion from the canonical pathway. Furthermore, the GOS-TerL intein has an atypical split site close to the N terminus. The IntN fragment could be shortened from 37 to 28 amino acids and exchanged with the 25-amino acid IntN fragment from the AceL-TerL intein, indicating a high degree of promiscuity of the IntC fragment of the GOS-TerL intein. PMID:26453311

  8. Why Is Ring Strain Alone Unable to Fully Explain the Rate Accelerations of Oxirane and Thiirane in Nucleophilic Substitution

    DTIC Science & Technology

    2003-07-01

    m ol c ol e- o K In c al / m R ea ct an ts Tr an si tio n St at e Ea TC...ul lik an A IM C H EL PG N B O M ul lik an A IM C H EL PG N B O C 1 0. 27...41 -0 .1 93 2 1 2 O 1 2 S 2 3 O1 2 3 S1 1 2 S 3 1 2 O 3 a H yd ro ge ns

  9. Nucleophilic addition of organozinc reagents to 2-sulfonyl cyclic ethers: stereoselective synthesis of manassantins A and B.

    PubMed

    Kim, Hyoungsu; Kasper, Amanda C; Moon, Eui Jung; Park, Yongho; Wooten, Ceshea M; Dewhirst, Mark W; Hong, Jiyong

    2009-01-01

    A convergent route to the synthesis of manassantins A and B, potent inhibitors of HIF-1, is described. Central to the synthesis is a stereoselective addition of an organozinc reagent to a 2-benzenesulfonyl cyclic ether to achieve the 2,3-cis-3,4-trans-4,5-cis-tetrahydrofuran of the natural products. Preliminary structure-activity relationships suggested that the (R)-configuration at C-7 and C-7''' is not critical for HIF-1 inhibition. In addition, the hydroxyl group at C-7 and C-7''' can be replaced with a carbonyl group without loss of activity.

  10. Reaction of carbon nucleophiles with alkylideneindazolium and alkylideneindolium ions generated from their 3-(1-arylsulfonylalkyl) indazole and indole precursors.

    PubMed

    Marsili, Laura; Palmieri, Alessandro; Petrini, Marino

    2010-02-07

    Lewis acid promoted elimination of p-toluenesulfinc acid from sulfonyl indazoles and sulfonyl indoles generates the corresponding iminium ion that reacts with allyltin reagents, silyl enol ethers, silyl ketene acetals and electron-rich aromatics leading to functionalized indazole and indole derivatives.

  11. Intramolecular nucleophilic activation promoting efficient hydrolytic cleavage of DNA by (aqua)bis(dipyridoquinoxaline)copper(II) complex.

    PubMed

    Dhar, Shanta; Reddy, Pattubala A N; Chakravarty, Akhil R

    2004-03-07

    The axial aqua bound copper(II) complex [Cu(dpq)2(H2O)](ClO4)2, having a planar NN-donor heterocyclic base dipyridoquinoxaline (dpq) as the DNA minor groove binder, shows efficient hydrolytic cleavage of supercoiled DNA in the dark and in the absence of any external reagents, as evidenced from T4 ligase experiments, with a rate of 5.58 +/- 0.4 h(-1) and a rate enhancement of 1.55 x 10(8).

  12. A Specific Nucleophilic Ring-Opening Reaction of Aziridines as a Unique Platform for the Construction of Hydrogen Polysulfides Sensors

    SciTech Connect

    Chen, Wei; Rosser, Ethan W.; Zhang, Di; Shi, Wen; Li, Yilin; Dong, Wen-Ji; Ma, Huimin; Hu, Dehong; Xian, Ming

    2015-05-11

    Hydrogen polysulfides (H2Sn, n>1) have been recently suggested to be the actual signalling molecules that involved in sulfur-related redox biology. However the exact mechanisms of H2Sn are still poorly understood and a major hurdle in this field is the lack of reliable and convenient methods for H2Sn detection. In this work we report a unique ring-opening reaction of N-sulfonylaziridine by Na2S2 under mild conditions. Based on this reaction a novel H2Sn-specific fluorescent probe (AP) was developed. The probe showed high sensitivity and selectivity for H2Sn. Notably, the fluorescent turn-on product, i.e. compound 1, exhibited excellent two-photon photophysical properties and a large Stokes shift. Moreover, the high solid state luminescent efficiency of compound 1 makes it a potential candidate for organic emitters and solid-state lighting devices.

  13. EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...

  14. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    SciTech Connect

    Boulware, Stephen; Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L.; Vasquez, Karen M.; MacLeod, Michael C.

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.

  15. The Comparative Nucleophilicity of Naphthoxide Derivatives in Reactions with a Fast-Red TR Dye: A Discovery-Oriented Capstone Project for the Second-Year Organic Laboratory

    ERIC Educational Resources Information Center

    Mascarenhas, Cheryl M.

    2008-01-01

    In this experiment, organic chemistry students perform reactions between three naphthyl acetate derivatives and the diazonium salt Fast-Red TR, under basic conditions. The three naphthyl acetate derivatives used in this study are 2-naphthyl acetate (1a), 6-bromo-2-naphthyl acetate (1b) and 1,6-dibromo-2-naphthyl acetate (1c). The two-step, one-pot…

  16. Thermochemistry of Lewis Adducts of BH3 and Nucleophilic Substitution of Triethylamine on NH3BH3 in Tetrahydrofuran

    SciTech Connect

    Potter, Robert G.; Camaioni, Donald M.; Vasiliu, Monica; Dixon, David A.

    2010-11-15

    The thermochemistry of the formation of Lewis base adducts of BH3 in tetrahydrofuran (THF) solution and the gas phase and the kinetics of substitution on ammonia borane by triethylamine are reported. The dative bond energy of Lewis adducts were predicted using density functional theory at the B3LYP/DZVP2 and B3LYP/6-311+G** levels and correlated ab initio molecular orbital theories, including MP2, G3(MP2), and G3(MP2)B3LYP, and compared with available experimental data and accurate CCSD(T)/CBS theory results. The analysis showed that the G3 methods using either the MP2 or the B3LYP geometries reproduce the benchmark results usually to within ~1 kcal/mol. Energies calculated at the MP2/aug-cc-pVTZ level for geometries optimized at the B3LYP/DZVP2 or B3LYP/6-311+G** levels give dative bond energies 2-4 kcal/mol larger than benchmark values. The enthalpies for forming adducts in THF were determined by calorimetry and compared with the calculated energies for the gas phase reaction: THFBH3 + L → LBH3 + THF. The formation of NH3BH3 in THF was observed to yield significantly more heat than gas phase dative bond energies predict, consistent with strong solvation of NH3BH3. Substitution of NEt3 on NH3BH3 is an equilibrium process in THF solution (K ≈ 0.2 at 25 °C). The reaction obeys a reversible bimolecular kinetic rate law with the Arrhenius parameters: log A = 14.7 ± 1.1 and Ea = 28.1 ± 1.5 kcal/mol. Finally, simulation of the mechanism using the SM8 continuum solvation model shows the reaction most likely proceeds primarily by a classical SN2 mechanism.

  17. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog.

    PubMed

    Boulware, Stephen; Fields, Tammy; McIvor, Elizabeth; Powell, K Leslie; Abel, Erika L; Vasquez, Karen M; MacLeod, Michael C

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM.

  18. Vicarious nucleophilic substitution to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    1996-01-01

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,-trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0.degree. and 50.degree. C. for between about 0.1 and 24 hr, a trinitroaromatic compound of structure V: ##STR1## wherein X, Y, and Z are each independently selected from --H, or --NH.sub.2, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen, with an amount effective to produce DATB or TATB of 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide. in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulphoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present primarily DATB and picramide is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are useful specialty explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  19. Vicarious nucleophilic substitution to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.

    1996-10-29

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0 and 50 C for between about 0.1 and 24 hr, a trinitroaromatic compound of the structure shown within where X, Y, and Z are each independently selected from --H, or --NH{sub 2}, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen, with an amount effective to produce DATB or TATB, or 1,1,1-trialkylhydrazinium halide wherein alkyl is selected from methyl, ethyl, propyl or butyl and halide is selected from chloride, bromide or iodide, in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulfoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present primarily DATB and picramide is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are useful specialty explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  20. Lithium-stabilized nucleophilic addition of thiamin to a ketone provides an efficient route to mandelylthiamin, a critical pre-decarboxylation intermediate.

    PubMed

    Bielecki, Michael; Howe, Graeme W; Kluger, Ronald

    2015-10-01

    Mandelylthiamin (MTh) is an accurate model of the covalent intermediate derived from the condensation of thiamin diphosphate and benzoylformate in benzoylformate decarboxylase. The properties and catalytic susceptibilities of mandelylthiamin are the subjects of considerable interest. However, the existing synthesis gives only trace amounts of the precursor to MTh as it is conducted under reversible conditions. An improved approach derives from the unique ability of lithium ions to drive to completion the otherwise unfavorable condensation of the conjugate base of thiamin and methyl benzoylformate. The unique efficiency of the condensation reaction in the presence of lithium ions is established in contrast to the effects of other Lewis acids. Interpretation of the pattern of the results indicates that the condensation of the ketone and thiamin is thermodynamically controlled. It is proposed that the addition of lithium ions displaces the equilibrium toward the product through formation of a stable lithium-alkoxide.

  1. Synthetic and theoretical investigation on the one-pot halogenation of β-amino alcohols and nucleophilic ring opening of aziridinium ions.

    PubMed

    Chen, Yunwei; Sun, Xiang; Wu, Ningjie; Li, Jingbai; Jin, Shengnan; Zhong, Yongliang; Liu, Zirui; Rogachev, Andrey; Chong, Hyun-Soon

    2016-01-21

    Aziridinium ions are useful reactive intermediates for the synthesis of enantiomerically enriched building blocks. However, N,N-dialkyl aziridinium ions are relatively underutilized in the synthesis of optically active molecules as compared to other three-membered ring cogeners, aziridines and epoxides. The characterization of both optically active aziridinium ions and secondary β-halo amines as the precursor molecules of aziridinium ions has been scarcely reported and is often unclear. In this paper, we report for the first time the preparation and experimental and theoretical characterization of optically active aziridinium ions and secondary β-halo amines. Optically active secondary N,N-substituted β-halo amines were efficiently synthesized from N,N-substituted alaninol via formation and ring opening at the more hindered carbon of aziridinium ions by halides. Optically active β-halo amines and aziridinium ions were characterized by NMR and computational analyses. The structure of an optically active β-chloro amine was confirmed via X-ray crystallographic analysis. The aziridinium ions derived from N,N-dibenzyl alaniol remained stable only for several hours, which was long enough for analyses of NMR and optical activity. The stereospecific ring opening of aziridinium ions by halides was computationally studied using DFT and highly-accurate DLPNO-CCSD(T) methods. The highly regioselective and stereoselective ring opening of aziridinium ions was applied for efficient one-pot conversion of β-alaninols to enantiomerically enriched β-amino alcohols, β-amino nitriles, and vicinal diamine derivatives.

  2. Synthesis of 1,5-Dioxocanes via the Two-Fold C-O Bond Forming Nucleophilic 4+4-Cyclodimerization of Cycloprop-2-en-1-ylmethanols

    PubMed Central

    Edwards, Andrew; Bennin, Trevor; Rubina, Marina; Rubin, Michael

    2015-01-01

    An efficient [4+4] cyclodimerization of cyclopropenemethanols operating via a two-fold strain release-driven addition of alkoxides across the double bond of cyclopropenes was investigated. This chemo- and diastereoselective transformation provided previously unknown 2,7-dioxatricyclo[7.1.0.04,6]decane scaffolds. PMID:26594355

  3. Nucleophilic attack of hydroxide on a Mn(V) oxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II.

    PubMed

    Gao, Yan; Akermark, Torbjörn; Liu, Jianhui; Sun, Licheng; Akermark, Björn

    2009-07-01

    A manganese(III) corrole complex, 1, has been synthesized and used to study a potential mechanism for oxidation of water to molecular oxygen. Oxidation by t-BuOOH gave the Mn(V)=O complex 2. Addition of hydroxide led to release of oxygen via the Mn(IV) complex 4 and regeneration of complex 1. It could be shown that the oxygen from (18)O-labeled water was incorporated in both the formed molecular oxygen and the peroxy intermediate 4.

  4. Alkali metal ion catalysis and inhibition in nucleophilic displacement reactions at phosphorus centers: ethyl and methyl paraoxon and ethyl and methyl parathion.

    PubMed

    Um, Ik-Hwan; Shin, Young-Hee; Lee, Seung-Eun; Yang, Kiyull; Buncel, Erwin

    2008-02-01

    We report on the ethanolysis of the P=O and P=S compounds ethyl and methyl paraoxon (1a and 1b) and ethyl and methyl parathion (2a and 2b). Plots of spectrophotometrically measured rate constants, kobsd versus [MOEt], the alkali ethoxide concentration, show distinct upward and downward curvatures, pointing to the importance of ion-pairing phenomena and a differential reactivity of free ions and ion pairs. Three types of reactivity and selectivity patterns have been discerned: (1) For the P=O compounds 1a and 1b, LiOEt > NaOEt > KOEt > EtO-; (2) for the P=S compound 2a, KOEt > EtO- > NaOEt > LiOEt; (3) for P=S, 2b, 18C6-crown-complexed KOEt > KOEt = EtO(-) > NaOEt > LiOEt. These selectivity patterns are characteristic of both catalysis and inhibition by alkali-metal cations depending on the nature of the electrophilic center, P=O vs P=S, and the metal cation. Ground-state (GS) vs transition-state (TS) stabilization energies shed light on the catalytic and inhibitory tendencies. The unprecedented catalytic behavior of crowned-K(+) for the reaction of 2b is noteworthy. Modeling reveals an extreme steric interaction for the reaction of 2a with crowned-K(+), which is responsible for the absence of catalysis in this system. Overall, P=O exhibits greater reactivity than P=S, increasing from 50- to 60-fold with free EtO(-) and up to 2000-fold with LiOEt, reflecting an intrinsic P=O vs P=S reactivity difference (thio effect). The origin of reactivity and selectivity differences in these systems is discussed on the basis of competing electrostatic effects and solvational requirements as function of anionic electric field strength and cation size (Eisenman's theory).

  5. Transition states and energetics of nucleophilic additions of thiols to substituted α,β-unsaturated ketones: substituent effects involve enone stabilization, product branching, and solvation.

    PubMed

    Krenske, Elizabeth H; Petter, Russell C; Zhu, Zhendong; Houk, K N

    2011-06-17

    CBS-QB3 enthalpies of reaction have been computed for the conjugate additions of MeSH to six α,β-unsaturated ketones. Compared with addition to methyl vinyl ketone, the reaction becomes 1-3 kcal mol(-1) less exothermic when an α-Me, β-Me, or β-Ph substituent is present on the C=C bond. The lower exothermicity for the substituted enones occurs because the substituted reactant is stabilized more by hyperconjugation or conjugation than the product is stabilized by branching. Substituent effects on the activation energies for the rate-determining step of the thiol addition (reaction of the enone with MeS(-)) were also computed. Loss of reactant stabilization, and not steric hindrance, is the main factor responsible for controlling the relative activation energies in the gas phase. The substituent effects are further magnified in solution; in water (simulated by CPCM calculations), the addition of MeS(-) to an enone is disfavored by 2-6 kcal mol(-1) when one or two methyl groups are present on the C=C bond (ΔΔG(‡)). The use of CBS-QB3 gas-phase energies in conjunction with CPCM solvation corrections provides kinetic data in good agreement with experimental substituent effects. When the energetics of the thiol additions were calculated with several popular density functional theory and ab initio methods (B3LYP, MPW1PW91, B1B95, PBE0, B2PLYP, and MP2), some substantial inaccuracies were noted. However, M06-2X (with a large basis set), B2PLYP-D, and SCS-MP2 gave results within 1 kcal mol(-1) of the CBS-QB3 benchmark values.

  6. Double nucleophilic 1,2-addition of silylated dialkyl phosphites to 4-phosphono-1-aza-1,3-dienes: synthesis of gamma-phosphono-alpha-aminobisphosphonates.

    PubMed

    Masschelein, Kurt G R; Stevens, Christian V

    2007-11-23

    gamma-Phosphono-alpha-aminobisphosphonates were synthesized from a new class of 4-phosphono-1-aza-1,3-dienes by the addition of dialkyl trimethylsilyl phosphites to these azadienes in the presence of acid. Depending on the steric demand of the group on nitrogen, double 1,2-addition or tandem 1,4-1,2-addition occurred.

  7. Reactions of aromatic hydrocarbons with nucleophilic reagents in liquid ammonia. VII. Direction of hydroxylation of 3-substituted (Cl, Br, I, NO/sub 2/) nitrobenzenes with potassium hydroxide

    SciTech Connect

    Malykhin, E.V.; Kolesnichenko, G.A.; Shteingarts, V.D.

    1986-09-20

    The reaction of 3-chloro-, 3-bromo-, and 3-iodonitrobenzenes with potassium hydroxide and oxygen in liquid ammonia (-33/sup 0/C) leads to the formation of nitrohalogenophenols, corresponding to substitution of the hydrogen atom at the ortho and para positions of the ring in relation to the nitro group by a hydroxy group. In the case of the last two substrates it also leads to the corresponding 2-halo-geno-3',4'-dinitrodiphenylamines. In view of the fact that substituted diphenylamines are formed under the same conditions as a result of the reaction of 3-nitro-aniline with 3-halogenonitrobenzenes it is suggested that 3-bromo- and 3-iodonitrobenzenes are partly converted into 3-nitroaniline through the intermediate formation of 3-nitrodehydrobenzene. During dehydroxylation in the absence of oxygen the proportion of the phenols corresponding to substitution of the hydrogen atom at the para position to the nitro group by the hydroxy group increases, and the degree of transformation of the initial compounds decreases. 2,4-dinitrophenol is formed with a low yield during the reaction of 1,3-nitrobenzene and potassium hydroxide in the presence of oxygen or in an atmosphere of argon.

  8. Benzoylation of Ergosterol through Nucleophilic Acyl Substitution and Subsequent Formation of Ergosterol Benzoate Endoperoxide by Reaction with Singlet Oxygen Generated by Photosensitization

    ERIC Educational Resources Information Center

    Roslaniec, Mary C.; Sanford, Elizabeth M.

    2011-01-01

    Reactive oxygen species such as singlet oxygen have been a major focus of research in medicine. The effect of singlet oxygen on sterols within biological membranes is becoming increasingly more important. Ergosterol, a vitamin D precursor, is one such sterol. The benzoylation of ergosterol and subsequent reaction with singlet oxygen to form an…

  9. Catalytic, nucleophilic allylation of aldehydes with 2-substituted allylic acetates: carbon-carbon bond formation driven by the water-gas shift reaction.

    PubMed

    Denmark, Scott E; Matesich, Zachery D

    2014-07-03

    The ruthenium-catalyzed allylation of aldehydes with allylic acetates has been expanded to incorporate substituents at the 2-position of the allylic components. Allylic acetates bearing a variety of substituents (CO2-t-Bu, COMe, Ph, CH(OEt)2, and Me) undergo high-yielding additions with aromatic, α,β-unsaturated, and aliphatic aldehydes. The conditions of the reaction were found to be mild (75 °C, 24-48 h) and only required the use of 2-3 mol % of the triruthenium dodecacarbonyl catalyst under 40-80 psi of CO. The stoichiometries of water and allylic acetate employed were found to be critical to reaction efficiency.

  10. Regioselective nucleophilic addition of triphenylphosphine to the nitrosylruthenium alkynyl complexes having a hydrotris(pyrazol-1-yl)borate: formation of phosphonio-alkenyl, alkynyl, and allenyl species.

    PubMed

    Nishimura, Yoshimasa; Arikawa, Yasuhiro; Inoue, Takanori; Onishi, Masayoshi

    2005-03-07

    A nitrosylruthenium alkynyl complex of TpRuCl(C[triple bond]CPh)(NO)(1a) was reacted with PPh3 in the presence of HBF4.Et2O at room temperature to give a beta-phosphonio-alkenyl complex (E)-[TpRuCl{CH=C(PPh3)Ph}(NO)]BF4(2.BF4). On the other hand, for gamma-hydroxyalkynyl complexes TpRuCl{C[triple bond]CC(R)2OH}(NO)(R = Me (1b), Ph (1c), H (1d)), similar treatments with PPh3 were found to give gamma-phosphonio-alkynyl [TpRuCl{C[triple bond]CC(Me)2PPh3}(NO)]BF4(3.BF4),alpha-phosphonio-allenyl [TpRuCl{C(PPh3)=C=CPh2}(NO)]BF4(4.BF4), and a novel product of gamma-hydroxy-beta-phosphonio-alkenyl (E)-[TpRuCl{CH=C(PPh3)CH2OH}(NO)]BF4(5.BF4), respectively. Dominant factors for the selectivity in affording 3-5 were associated with the steric congestion and electronic properties at the gamma-carbons, along with those around the metal fragment. From the bis(alkynyl) complex TpRu(C[triple bond]CPh)2(NO)6, a bis(beta-phosphonio-alkenyl)(E,E)-[TpRu{CH=C(PPh3)Ph}2(NO)](BF4)2{7.(BF4)2} was produced at room temperature. However, similar reactions at 0 degrees C gave an alkynyl beta-phosphonio-alkenyl complex (E)-[TpRu(C[triple bondCPh){CH=C(PPh3)Ph}(NO)]BF4(8.BF4) as a sole product, of which additional hydration in the presence of HBF4.Et2O afforded a [small beta]-phosphonio-alkenyl ketonyl (E)-[TpRu{CH2C(O)Ph}{CH=C(PPh3)Ph}(NO)]BF(.9BF4). Five complexes, 2-5 and 7 were crystallographically characterized.

  11. Nitro-fatty Acid Metabolome: Saturation, Desaturation, β-Oxidation, and Protein Adduction*

    PubMed Central

    Rudolph, Volker; Schopfer, Francisco J.; Khoo, Nicholas K. H.; Rudolph, Tanja K.; Cole, Marsha P.; Woodcock, Steven R.; Bonacci, Gustavo; Groeger, Alison L.; Golin-Bisello, Franca; Chen, Chen-Shan; Baker, Paul R. S.; Freeman, Bruce A.

    2009-01-01

    identified. In aggregate, these findings show that electrophilic FA nitroalkene derivatives (a) acquire an extended half-life by undergoing reversible and exchangeable electrophilic reactions with nucleophilic targets and (b) are metabolized predominantly via saturation of the double bond and β-oxidation reactions that terminate at the site of acyl-chain nitration. PMID:19015269

  12. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes

    PubMed Central

    2016-01-01

    Conspectus The development of catalytic enantioselective transformations has been the focus of many research groups over the past half century and is of paramount importance to the pharmaceutical and agrochemical industries. Since the award of the Nobel Prize in 2001, the field of enantioselective transition metal catalysis has soared to new heights, with the development of more efficient catalysts and new catalytic transformations at increasing frequency. Furthermore, catalytic reactions that allow higher levels of redox- and step-economy are being developed. Thus, alternatives to asymmetric alkene dihydroxylation and the enantioselective reduction of α,β-unsaturated ketones can invoke more strategic C–C bond forming reactions, such as asymmetric aldol reactions of an aldehyde with α-hydroxyketone donors or enantioselective alkynylation of an aldehyde, respectively. To facilitate catalytic enantioselective addition reactions, including the aforementioned aldol and alkynylation reactions, our lab has developed the ProPhenol ligand. In this Account, we describe the development and application of the ProPhenol ligand for asymmetric additions of both carbon- and heteroatom-based nucleophiles to various electrophiles. The ProPhenol ligand spontaneously forms chiral dinuclear metal complexes when treated with an alkyl metal reagent, such as Et2Zn or Bu2Mg. The resulting complex contains both a Lewis acidic site to activate an electrophile and a Brønsted basic site to deprotonate a pronucleophile. Initially, our research focused on the use of Zn-ProPhenol complexes to facilitate the direct aldol reaction. Fine tuning of the reaction through ligand modification and the use of additives enabled the direct aldol reaction to proceed in high yields and stereoselectivities with a broad range of donor substrates, including acetophenones, methyl ynones, methyl vinyl ketone, acetone, α-hydroxy carbonyl compounds, and glycine Schiff bases. Additionally, an analogous

  13. Rh2 (S-biTISP)2-Catalyzed Asymmetric Functionalization of Indoles and Pyrroles with Vinylcarbenoids

    PubMed Central

    Lian, Yajing; Davies, Huw M. L.

    2012-01-01

    Asymmetric functionalization of N-heterocycles by vinylcarbenoids in the presence of catalytic amounts of Rh2 (S-biTISP)2 has been successfully developed. This bridged dirhodium catalyst not only selectively enforces the reaction to occur at the vinylogous position of the carbenoid, but also, affords high levels of asymmetric induction. PMID:22452332

  14. Highly Enantioselective Dearomatizing Formal [3+3]-Cycloaddition Reactions of N-Acyliminopyridinium Ylides with Electrophilic Enolcarbene Intermediates

    PubMed Central

    Xu, Xinfang; Zavalij, Peter Y.; Doyle, Michael P.

    2013-01-01

    A effective dearomatizing formal [3+3]-cycloaddition reaction triggered by Rh(II)-catalyzed dinitrogen extrusion of enoldiazoacetates followed by vinylogous addition of metal enolcarbenes to N-acyliminopyridinium ylides that produces highly substituted 1,2,3,6-tetrahydropyridazines in up to 98% ee and in high yield has been developed. PMID:24123489

  15. High-pressure Diels-Alder approach to natural kainic acid.

    PubMed

    Pandey, Sushil K; Orellana, Arturo; Greene, Andrew E; Poisson, Jean-François

    2006-11-23

    The first Diels-Alder based synthesis of (-)-kainic acid is described. Danishefsky's diene and a vinylogous malonate derived from 4-hydroxyproline combine under high pressure to afford a key bicyclic intermediate with virtually no loss of enantiopurity. This adduct can be converted into the natural product with complete stereocontrol. [reaction: see text].

  16. “On-Water” Catalyst-Free Ecofriendly Synthesis of the Hantzsch Dihydropyridines

    PubMed Central

    Pramanik, Amit; Saha, Manabendra; Bhar, Sanjay

    2012-01-01

    An eco-friendly “on-water” protocol for efficient catalyst-free synthesis of the Hantzsch dihydropyridines from aryl, heteroaryl, alkyl, and vinylogous aldehydes has been developed with minimum auxiliary substances, toxic reagents, organic solvents, and disposal problems. PMID:24052841

  17. Intermolecular cross-double-michael addition between nitro and carbonyl activated olefins as a new approach in C-C bond formation.

    PubMed

    Sun, Xiaohua; Sengupta, Sujata; Petersen, Jeffrey L; Wang, Hong; Lewis, James P; Shi, Xiaodong

    2007-10-25

    A novel intermolecular cross-double-Michael addition between nitro and carbonyl activated olefins has been developed through Lewis base catalysis. The reaction took place with a large group of beta-alkyl nitroalkenes and alpha,beta-unsaturated ketone/esters, producing an allylic nitro compound in good to excellent yields.

  18. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis.

    PubMed

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter

    2016-01-26

    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments.

  19. Gas-Phase Fragmentation Analysis of Nitro-Fatty Acids

    PubMed Central

    Bonacci, Gustavo; Asciutto, Eliana K.; Woodcock, Steven R.; Salvatore, Sonia R.; Freeman, Bruce A.; Schopfer, Francisco J.

    2012-01-01

    Nitro-fatty acids are electrophilic signaling mediators formed in increased amounts during inflammation by nitric oxide and nitrite-dependent redox reactions. A more rigorous characterization of endogenously-generated species requires additional understanding of their gas-phase induced fragmentation. Thus, collision induced dissociation (CID) of nitroalkane and nitroalkene groups in fatty acids were studied in the negative ion mode to provide mass spectrometric tools for their structural characterization. Fragmentation of nitroalkanes occurred mainly through loss of the NO2− anion or neutral loss of HNO2. The CID of nitroalkenes proceeds via a more complex cyclization, followed by fragmentation to nitrile and aldehyde products. Gas-phase fragmentation of nitroalkene functional groups with additional γ or δ unsaturation occurred through a multiple step cyclization reaction process, leading to 5 and 6 member ring heterocyclic products and carbon chain fragmentation. Cyclization products were not obtained during nitroalkane fragmentation, highlighting the role of double bond π electrons during NO2− rearrangements, stabilization and heterocycle formation. The proposed structures, mechanisms and products of fragmentation are supported by analysis of 13C and 15N labeled parent molecules, 6 different nitroalkene positional isomers, 6 nitroalkane positional isomers, accurate mass determinations at high resolution and quantum mechanics calculations. Multiple key diagnostic ion fragments were obtained through this analysis, allowing for the precise placement of double bonds and sites of fatty acid nitration, thus supporting an ability to predict nitro positions in biological samples. PMID:21953257

  20. Catalytic Asymmetric Synthesis of Chiral 2-Vinylindole Scaffolds by Friedel-Crafts Reaction.

    PubMed

    Arai, Takayoshi; Tsuchida, Akiko; Miyazaki, Tomoya; Awata, Atsuko

    2017-02-17

    A chiral bis(imidazolidine)pyridine (PyBidine)-Ni(OTf)2 complex smoothly catalyzed an asymmetric Friedel-Crafts reaction of 2-vinylindoles with nitroalkenes to give chiral indoles in a highly enantioselective manner while maintaining the 2-vinyl functionality. The chiral 2-vinylindoles offer unique chiral scaffolds for diverse transformations.

  1. Enantioselective Friedel-Crafts Alkylation Reactions of 3-Substituted Indoles with Electron-Deficient Alkenes.

    PubMed

    Weng, Jian-Quan; Fan, Ren-Jie; Deng, Qiao-Man; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-04-01

    Highly enantioselective Friedel-Crafts C2-alkylation reactions of 3-substituted indoles with α,β-unsaturated esters and nitroalkenes were developed using chiral Lewis acids as catalysts, which afforded chiral indole derivatives bearing C2-benzylic stereogenic centers in good to excellent yields (up to 99%) and enantioselectivities (up to 96% ee).

  2. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis

    PubMed Central

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter

    2016-01-01

    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. PMID:26676875

  3. The [3 + 3]-Cycloaddition Alternative for Heterocycle Syntheses: Catalytically Generated Metalloenolcarbenes as Dipolar Adducts

    PubMed Central

    2015-01-01

    Conspectus The combination of two or more unsaturated structural units to form cyclic organic compounds is commonly referred to as cycloaddition, and the combination of two unsaturated structural units that forms a six-membered ring is formally either a [5 + 1]-, [4 + 2]-, [2 + 2 + 2]-, or [3 + 3]-cycloaddition. Occurring as concerted or stepwise processes, cycloaddition reactions are among the most useful synthetic constructions in organic chemistry. Of these transformations, the concerted [4 + 2]-cycloaddition, the Diels–Alder reaction, is by far the best known and most widely applied. However, although symmetry disallowed as a concerted process and lacking certifiable examples until recently, stepwise [3 + 3]-cycloadditions offer advantages for the synthesis of a substantial variety of heterocyclic compounds, and they are receiving considerable attention. In this Account, we present the development of stepwise [3 + 3]-cycloaddition reactions from virtual invisibility in the 1990s to a rapidly growing synthetic methodology today, involving organocatalysis or transition metal catalysis. With origins in organometallic or vinyliminium ion chemistry, this area has blossomed into a viable synthetic transformation for the construction of six-membered heterocyclic compounds containing one or more heteroatoms. The development of [3 + 3]-cycloaddition transformations has been achieved through identification of suitable and compatible reactive dipolar adducts and stable dipoles. The reactive dipolar species is an energetic dipolar intermediate that is optimally formed catalytically in the reaction. The stepwise process occurs with the reactive dipolar adduct reacting as an electrophile or as a nucleophile to form the first covalent bond, and this association provides entropic assistance for the construction of the second covalent bond and the overall formal [3 + 3]-cycloaddition. Organocatalysis is well developed for both inter- and intramolecular synthetic

  4. The [3 + 3]-cycloaddition alternative for heterocycle syntheses: catalytically generated metalloenolcarbenes as dipolar adducts.

    PubMed

    Xu, Xinfang; Doyle, Michael P

    2014-04-15

    The combination of two or more unsaturated structural units to form cyclic organic compounds is commonly referred to as cycloaddition, and the combination of two unsaturated structural units that forms a six-membered ring is formally either a [5 + 1]-, [4 + 2]-, [2 + 2 + 2]-, or [3 + 3]-cycloaddition. Occurring as concerted or stepwise processes, cycloaddition reactions are among the most useful synthetic constructions in organic chemistry. Of these transformations, the concerted [4 + 2]-cycloaddition, the Diels-Alder reaction, is by far the best known and most widely applied. However, although symmetry disallowed as a concerted process and lacking certifiable examples until recently, stepwise [3 + 3]-cycloadditions offer advantages for the synthesis of a substantial variety of heterocyclic compounds, and they are receiving considerable attention. In this Account, we present the development of stepwise [3 + 3]-cycloaddition reactions from virtual invisibility in the 1990s to a rapidly growing synthetic methodology today, involving organocatalysis or transition metal catalysis. With origins in organometallic or vinyliminium ion chemistry, this area has blossomed into a viable synthetic transformation for the construction of six-membered heterocyclic compounds containing one or more heteroatoms. The development of [3 + 3]-cycloaddition transformations has been achieved through identification of suitable and compatible reactive dipolar adducts and stable dipoles. The reactive dipolar species is an energetic dipolar intermediate that is optimally formed catalytically in the reaction. The stepwise process occurs with the reactive dipolar adduct reacting as an electrophile or as a nucleophile to form the first covalent bond, and this association provides entropic assistance for the construction of the second covalent bond and the overall formal [3 + 3]-cycloaddition. Organocatalysis is well developed for both inter- and intramolecular synthetic transformations, but the

  5. Addition of nucleophiles on cyanoacetylene N≡CCH=CH-X (X = NH2, OH, SH, …). Synthesis and Physico-chemical Properties of Potential Prebiotic Compounds or Interstellar Molecules.

    NASA Astrophysics Data System (ADS)

    Guillemin, Jean-Claude

    Among the molecules detected to date in the interstellar medium (ISM), cyanopolyynes constitute a rich and important subset. These robust compounds exhibit special properties with respect to their reactivity and kinetic stability, and some have been found in other astrochemical environments, such as comets or in lab simulations of planetary atmospheres.[1] These systems are supposed to be good starting materials for the formation of new, more complex, astrochemical species, or amino acids on primitive Earth. The formal addition of water, hydrogen sulfur or ammonia on cyanoacetylene (H-C≡C-C≡N) gives the corresponding heterosubstitued acrylonitriles. We have extensively investigated the study of such adducts. With water, the formed cyanovinylalcohol (NC-CH=CH-OH) is in a tautomeric equilibrium with the kinetically more stable cyanoacetaldehyde (NC-CH2 CH(=O)). Isolation of these compounds in pure form is challenging but the gas phase infrared spectrum has been recorded. Reaction of ammonia with cyanoacetylene gives aminoacrylonitrile (H2 N-CH=CH-CN), a stable enamine; microwave and infrared spectra were obtained.[2] Similarly the MW spectrum of 3-mercapto-2-propenenitrile (HS-CH=CH-CN) has been recorded.[3] Attempts to detect both species in the ISM have been performed. A combined experimental and theoretical study on the gas-phase basicity and acidity of a series of cyanovinyl derivatives is also presented.[4] We will demonstrate that many particular physicochemical properties are associated to these simple adducts of cyanoacetylene, compounds often proposed as prebiotic molecules or components of the ISM. 1] S. W. Fow, K. Dose, Molecular Evolution and the Origin of Life, Marcel Dekker, Stateplace- New York, metricconverterProductID1977. A1977. A. Coustenis, T. Encrenaz, B. BJzard, B. Bjoraker, G. Graner, G. Dang-Nhu, E. AriJ, Icarus 1993, 102, 240 - 269. [2] Benidar, A. ; Guillemin, J.-C. ; M—, O. ; Y‡-ez, M. J. Phys. Chem. A. 2005, 109, 4705-4712. E. Askeland, H. Møllendal, E. Uggerud, J.-C. Guillemin, J.-R. Aviles Moreno, J. Demaison, T. R. Huet, J. Phys. Chem. A, 2006, 110, 12572-12584. [3] Cole, G. C. ; M¨llendal, H. ; Khater, B. ; Guillemin, J.-C. J. Phys. Chem. A 2007; 111, o 1259 - 1264 [4] A. Luna, O. M—, M. Y‡-ez, Jean-Fraņois Gal, P.-C. Maria, J.-C. Guillemin Chemistry, c Eur. J. 2006, 12, 9254-9261. Luna, A.; Ḿ, O.; Ýnez, M.; Guillemin, J.-C.; Gal, J.-F.; Maria, o ã P.-C. Int. J. Mass. Spectrom., 2007, 267, 125-133.

  6. Vicarious nucleophilic substitution using 4-amino-1,2,4-triazole, hydroxylamine or O-alkylhydroxylamine to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.

    1997-05-27

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0 and 50 C for between about 0.1 and 24 hr, a trinitroaromatic compound of the structure shown where X, Y, and Z are each independently selected from the group consisting of -H and -NH{sub 2}, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen; with an effective amount of 1-amino-1,2,4-triazole, hydroxylamine or O-alkylhydroxamine to produce DATB or TATB; in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulphoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present or when hydroxylamine or its O-alkyl derivatives replace ATA primarily DATB is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are important and useful specialty explosives and intermediates for other materials.

  7. Vicarious nucleophilic substitution using 4-amino-1,2,4-triazole, hydroxylamine or O-alkylhydroxylamine to prepare 1,3-diamino-2,4,6-trinitrobenzene or 1,3,5-triamino-2,4,6-trinitrobenzene

    DOEpatents

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    1997-01-01

    The present invention relates to a process to produce 1,3-diamino-2,4,6-trinitrobenzene (DATB) or 1,3,5-triamino-2,4,6,-trinitrobenzene (TATB) by: (a) reacting at ambient pressure and a temperature of between about 0.degree. and 50.degree. C. for between about 0.1 and 24 hr, a trinitroaromatic compound of structure V: ##STR1## wherein X, Y, and Z are each independently selected from the group consisting of --H and --NH.sub.2, with the proviso that at least 1 or 2 of X, Y, and Z are hydrogen; with an effective amount of 1-amino-1,2,4-triazole, hydroxylamine or O-alkylhydroxamine to produce DATB or TATB; in the presence of a strong base selected from sodium butoxide, potassium butoxide, potassium propoxide, sodium propoxide, sodium ethoxide, potassium ethoxide, sodium methoxide, potassium methoxide, and combinations thereof; in a solvent selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylsulphoxide, N-methylpyrrolidone, hexamethylphosphoramide, dimethylformide, dimethylacetamide and mixtures thereof, provided that when alcohols are present or when hydroxylamine or its O-alkyl derivatives replace ATA primarily DATB is formed; and (b) isolating the DATB or TATB produced. DATB and TATB are important and useful specialty explosives and intermediates for other materials.

  8. Gold(I)-catalyzed asymmetric induction of planar chirality by intramolecular nucleophilic addition to chromium-complexed alkynylarenes: asymmetric synthesis of planar chiral (1H-isochromene and 1,2-dihydroisoquinoline)chromium complexes.

    PubMed

    Murai, Masato; Sota, Yumi; Onohara, Yuki; Uenishi, Jun'ichi; Uemura, Motokazu

    2013-11-01

    Gold(I)-catalyzed asymmetric intramolecular cyclization of prochiral 1,3-dihydroxymethyl-2-alkynylbenzene or 1,3-bis(carbamate)-2-alkynylbenzene tricarbonylchromium complexes with axially chiral diphosphine ligand gave planar chiral tricarbonylchromium complexes of 1H-isochromene or 1,2-dihydroisoquinoline with high enantioselectivity. An enantiomeric excess of the planar chiral arene chromium complexes was largely affected by a combination of axially chiral diphosphine(AuCl)2 precatalysts and silver salts. In the case of 1,3-dihydroxymethyl-2-alkynylbenzene chromium complexes, a system of segphos(AuCl)2 with AgBF4 resulted in the formation of the corresponding antipode.

  9. Chiral magnesium(II) binaphtholates as cooperative Brønsted/Lewis acid-base catalysts for the highly enantioselective addition of phosphorus nucleophiles to α,β-unsaturated esters and ketones.

    PubMed

    Hatano, Manabu; Horibe, Takahiro; Ishihara, Kazuaki

    2013-04-22

    A little cooperation goes a long way: The cooperative Brønsted/Lewis acid-base supramolecular catalysts formed in situ from simple chiral magnesium(II) binaphtholate aqua complexes promoted the highly enantioselective 1,4-hydrophosphinylation of α,β-unsaturated esters with diaryl phosphine oxides and 1,2-hydrophosphonylation of α,β-unsaturated ketones with dialkyl phosphites (see scheme).

  10. Reaction of aromatic compounds with nucleophilic reagents in liquid ammonia. VIII. The origin of the oxygen atom of the hydroxy group in the products from the hydroxylation of 1-nitronaphthalene with alkali and molecular oxygen

    SciTech Connect

    Malykhin, E.V.; Shteingarts, V.D.

    1987-10-20

    In the reaction of 1-nitronaphthalene with K/sup 18/OH and /sup 16/O/sub 2/ in liquid ammonia 1-nitro-2- and 4-nitro-1-naphthols labeled with the /sup 18/O isotope in the hydroxyl group are formed. The ratio of the isomers and the content of the /sup 18/O isotope depend on the ratio of 1-nitronaphthalene and alkali, on the temperature, and on the presence of moisture in the ammonia. The amount of the /sup 18/O isotope in the hydroxylation products indicates that in contrast to the analogous reaction of nitrobenzene and its derivatives the hydroxy function of the products in this case is formed not only from the alkali but also to a significant degree form the oxygen of the O/sub 2/.

  11. Nucleophilic reactions at a Vinylic Center. XVII. formation of derivatives of 1,3,4-thiadiazole and 1,3,4-oxadiazole in the reaction of 2,2-dichlorovinyl Sulfones with thiosemicarbazide and Semicarbazide

    SciTech Connect

    Shainyan, B.A.; Indyukova, L.N.; Kalikmann, I.D.; Mirskova, A.N.

    1986-08-01

    The reaction of 2,2-dichlorovinyl sulfones with thiosemicarbazide and semicarbazide, leading to the formation of 2-alkyl(aryl)sulfonylmethyl-5-amino-1,3,4-thiadiazoles and 2-alkyl(aryl)sulfonylmethyl-5-amino-1,3,4-oxadiazoles respectively, was investigated. In contrast, the reactions of sulfonylacetic esters with thiosemicarbazide and semicarbazide lead to the formation of 3-sulfonyl-methyl-5-mercapto-1,2,4-triazoles and 3-sulfonylmethyl-5-hydroxy-1,2,4-triazoles respectively. The derivatives of 1,3,4-thiadiazole and 1,3,4-oxadiazole are formed from the 2,2-dichlorovinyl sulfones by substitution of the two chlorine atoms with subsequent cyclization of the intermediately formed salts.

  12. Catalytic reaction of pi-allyl complexes of palladium with allyl O and N nucleophiles, a new promising route for synthesis of C/sub 16/ amines and ethers

    SciTech Connect

    Fakhretdinov, R.N.; Telin, A.G.; Dzhemilev, U.M.

    1986-06-20

    To develop efficient and promising methods for synthesis of scarce higher unsaturated amines and ethers, they investigated the reaction of tertiary 2,7-octadienylamines, butenyl amines of different structures, and 2,7-octadienyl ethers of aliphatic alcohols and esters of carboxylic acids with butadiene in the presence of Pd catalysts activated by electron-donor and electron-acceptor ligands. A new one-step method was developed for synthesis of polyunsaturated C/sub 16/ amines, ethers, and hydrocarbons with readily available reagents.

  13. Nucleophilic behaviour of dioxo- and thiooxophosphorane complexes [MoCp(CO)2{E,P-EP(O)(2,4,6-C6H2(t)Bu3)}](-) (E = O, S).

    PubMed

    Alonso, María; Alvarez, M Angeles; García, M Esther; García-Vivó, Daniel; Ruiz, Miguel A

    2014-11-14

    The title anions were prepared as (DBU-H)(+) salts upon reaction of the oxophosphinidene complex (H-DBU)[MoCp(CO)2{P(O)R*}] with either dimethyldioxirane or elemental sulphur (R* = 2,4,6-C6H2(t)Bu3; Cp = η(5)-C5H5, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene). The dioxophosphorane complex failed to react with MeI at room temperature, but reacted readily with (Me3O)BF4 to give the phosphonite complex [MoCp{O,P-OP(OMe)R*}(CO)2]. In contrast, the thiooxophosphorane complex reacted with MeI to give the thiolophosphinide derivative [MoCp{S,P-(MeS)P(O)R*}(CO)2], whereas its reaction with (Me3O)BF4 gave a mixture of the latter complex and the phosphonothiolate isomer [MoCp{S,P-SP(OMe)R*}(CO)2] in similar amounts. Other electrophiles were added selectively to the terminal O atom of the R*POS ligand. Thus the thiooxophosphorane complex reacted with ClC(O)C2H3, [NH4]PF6, ClSiMe3, ClSnMe3 and [ZrCp2Cl2] to give the corresponding derivatives [MoCp{S,P-SP(OX)R*}(CO)2] (X = C(O)C2H3, H, SiMe3, SnMe3, ZrCp2Cl). The structure of two of these products (X = C(O)C2H3, SiMe3) was determined by single-crystal X-ray diffraction studies. Density functional theory (DFT) calculations of the title anions and some of their derivatives indicated that attachment of an external electrophile to the terminal O atom of the thiooxophosphorane ligand is favoured under the conditions of charge control, while the sulphur atom is the favoured site under the conditions of orbital control, although it leads to less stable products.

  14. Indolizinones as synthetic scaffolds: fundamental reactivity and the relay of stereochemical information†

    PubMed Central

    Hardin Narayan, Alison R.

    2012-01-01

    Indolizinones are under-explored N-heterocycles that react with exquisite chemo- and stereoselectivity. An exploration of the fundamental reactivity of these azabicycles demonstrates the potential to relay stereochemical information from the ring-fusion to newly formed stereocenters on the bicyclic core. The indolizinone diene undergoes selective hydrogenation and readily participates in Diels–Alder cycloadditions as well as ene reactions. The vinylogous amide embedded in the five-membered ring is resistant to reaction when the diene is in place. However, removal of the diene allows for diastereoselective hydrogenation of, and 1,4-additions to, the vinylogous amide. These fundamental reactions with indolizinones have provided a structurally diverse array of products that hold promise in the context of natural product synthesis. PMID:22072189

  15. Rh2(R-TPCP)4-Catalyzed Enantioselective [3+2]-Cycloaddition between Nitrones and Vinyldiazoacetates

    PubMed Central

    Qin, Changming; Davies, Huw M. L.

    2013-01-01

    Rhodium-catalyzed reaction of vinyldiazoacetates with nitrones results in a formal [3+2]-cycloaddition to generate 2,5-dihydroisoxazoles with high levels of asymmetric induction. The cascade reaction begins with a vinylogous addition event, followed by an iminium addition ring-closure/hydride migration/alkene isomerization cascade. Dirhodium tetrakis(triarylcyclopropane carboxylates) are the optimum catalysts for this process. PMID:24025195

  16. Enantioselective total synthesis of callipeltoside A: two approaches to the macrolactone fragment

    PubMed Central

    Evans, David A.; Burch, Jason D.; Hu, Essa; Jaeschke, Georg

    2012-01-01

    The enantioselective total synthesis of callipeltoside A is described. Two syntheses of the macrolactone subunit are included: the first relies upon an Ireland–Claisen rearrangement to generate the trisubstituted olefin geometry and the second utilizes an enantioselective vinylogous aldol reaction for this purpose. Enantioselective syntheses of the sugar and chlorocyclopropane side chain fragments are also disclosed. The relative and absolute stereochemistry of this natural product was determined by fragment coupling with the two enantiomers of the side chain fragment. PMID:22859865

  17. Enantio- and diastereoselective synthesis of piperidines by coupling of four components in a "one-pot" sequence involving diphenylprolinol silyl ether mediated Michael reaction.

    PubMed

    Urushima, Tatsuya; Sakamoto, Daisuke; Ishikawa, Hayato; Hayashi, Yujiro

    2010-10-15

    An efficient, asymmetric, four-component, one-pot synthesis of highly substituted piperidines with excellent diastereo- and enantioselectivity was established through the diphenylprolinol silyl ether mediated Michael reaction of aldehyde and nitroalkene, followed by the domino aza-Henry reaction/hemiaminalization reaction and a Lewis acid mediated allylation or cyanation reaction. All carbons of the piperidine ring are substituted with different groups, and its five contiguous stereocenters are completely controlled in both relative and absolute senses.

  18. Syntheses of Thienylamphetamine Derivatives via Borane Chemistry

    DTIC Science & Technology

    1988-08-01

    Carlsen and Andresen 17 reported a new synthetic method for IMP in 1982. Phenylacetic acid was first iodinated with sodium nitrate/iodine in sulfuric...hydrides. They noted that the work of Shechter et al. 3 2 showed that using sodium borohydride to reduce a,-unsaturated nitro- alkenes would produce the...alkylamines in borane-tetrahydrofuran is catalyzed by sodium borohydride at room temperature. An acinitro salt of a nitroalkene is formed using a metal

  19. The Preparation of Lucigenin.

    ERIC Educational Resources Information Center

    Amiet, R. G.

    1982-01-01

    Outlines and discusses procedures for the preparation of lucigenin, a powerfully chemiluminescent compound. Major techniques (requiring three 4-hour sessions) involving nucleophilic and electrophilic aromatic substitution, nucleophilic aliphatic substitution, reductive coupling, and oxidation reactions include steam distillation, decolorization…

  20. Systematic Mustard Gas Scavengers

    DTIC Science & Technology

    1991-04-17

    afforded by such compounds is due to a direct nucleophilic reaction of nucleophile with HD which produces nontoxic products and that this reaction can...AND APPROACH The mechanistic aspects of the reaction of HD and related ß-chloroethyl Sulfides with nucleophiles are fairly complex. However...and that two reaction pathways for nucleophilic attack are possible—both leading to the same product 3. Ion 2 is considerably more reactive as an

  1. New Developments in Chiral Cooperative Ion Pairing Organocatalysis by Means of Ammonium Oxyanions and Fluorides: From Protonation to Deprotonation Reactions.

    PubMed

    Legros, Fabien; Oudeyer, Sylvain; Levacher, Vincent

    2016-10-13

    This personal account summarizes our contribution to the ion pairing organocatalysis mainly by use of chiral quaternary or tertiary ammonium fluorides, aryloxides and carboxylates. Starting from an experimental observation, we were able to develop several approaches for the enantioselective protonation of silyl enolates and enol esters giving rise to chiral carbonyl compounds bearing a stereogenic center at the α-position. Moving from protonation to deprotonation reactions, chiral ammonium ion pair catalysts were successfully applied to several asymmetric transformations such as an Henry reaction or a direct vinylogous aldol reaction to cite a few. An outlook of further possible developments in this field of research will also be discussed.

  2. Synthesis of Amino Acid-Derived Cyclic Acyl Amidines for Use in β-Strand Peptidomimetics

    PubMed Central

    Hammond, Ming C.; Bartlett, Paul A.

    2008-01-01

    The acyl amidine represented by the 4,5-dihydro-2(3H)-pyrazinone ring system 2 is isosteric to the vinylogous amide of the 1,2-dihydro-3(6H)-pyridinone 1, but its assembly from separate amine and amide components enables ready incorporation of an amino acid side chain with correct regio- and stereochemistry. β-Strand peptidomimetics incorporating amino acid analogues based on 2 have recently been shown to be potent, protease-resistant ligands to a PDZ protein-interaction domain. Two routes to the protected dipeptide analogue 3 are described. PMID:17371075

  3. A Simple Tetraminocalix[4]arene as a Highly Efficient Catalyst Under "on-Water Conditions" Through Hydrophobic Amplification of Weak Hydrogen-Bonds.

    PubMed

    De Rosa, Margherita; La Manna, Pellegrino; Soriente, Annunziata; Gaeta, Carmine; Talotta, Carmen; Hickey, Neal; Geremia, Silvano; Neri, Placido

    2017-03-27

    The simple tetraminocalix[4]arene 1, bearing weak H-bond donor NH2 groups, is a highly efficient organocatalyst for the Vinylogous Mukaiyama Aldol Reaction (VMAR) of 2-(trimethylsilyloxy)furan 5 with α-ketoesters 6a-l under "on-water conditions", thanks to the hydrophobic amplification of weak interactions. The catalytic efficiency of calixarene catalyst 1 is closely related to its recognition abilities toward the reactants 5 and 6 through a multipoint recognition model. The proposed model provides good explanations for the differences on the reaction rate acceleration and on the stereoselectivity observed with different substrates.

  4. Highly Torquoselective Electrocyclizations and Competing 1,7-Hydrogen Shifts of 1-Azatrienes with Silyl-Substitution at the Allylic Carbon

    PubMed Central

    Ma, Zhi-Xiong; Patel, Ashay; Houk, K. N.; Hsung, Richard P.

    2015-01-01

    Highly torquoselective electrocyclizations of chiral 1-azatrienes are described. These 1-azatrienes contain an allylic stereocenter that is substituted with a silyl group and are derived in situ from condensation of γ-silyl-substituted enals with vinylogous amides. The ensuing stereoselective ring-closures are part of a tandem sequence that constitutes an aza-[3 + 3] annulation method for constructing 1,2-dihydropyridines. Several mechanisms for the formal 1,7-hydrogen shift of these 1-azatrienes were evaluated computationally. PMID:25859907

  5. Enantioselective Cycloaddition Reactions Catalyzed by BINOL-Derived Phosphoric Acids and N-Triflyl Phosphoramides: Recent Advances.

    PubMed

    Held, Felix E; Grau, Dominik; Tsogoeva, Svetlana B

    2015-09-03

    Over the last several years there has been a huge increase in the development and applications of new efficient organocatalysts for enantioselective pericyclic reactions, which represent one of the most powerful types of organic transformations. Among these processes are cycloaddition reactions (e.g., [3+2]; formal [3+3]; [4+2]; vinylogous [4+2] and 1,3-dipolar cycloadditions), which belong to the most utilized reactions in organic synthesis of complex nitrogen- and oxygen-containing heterocyclic molecules. This review presents the breakthrough realized in this field using chiral BINOL-derived phosphoric acids and N-triflyl phosphoramide organocatalysts.

  6. Bifunctional Brønsted Base Catalyst Enables Regio-, Diastereo-, and Enantioselective Cα -Alkylation of β-Tetralones and Related Aromatic-Ring-Fused Cycloalkanones.

    PubMed

    Urruzuno, Iñaki; Mugica, Odei; Oiarbide, Mikel; Palomo, Claudio

    2017-02-13

    The catalytic asymmetric synthesis of both α-substituted and α,α-disubstituted (quaternary) β-tetralones through direct α-functionalization of the corresponding β-tetralone precursor remains elusive. A designed Brønsted base-squaramide bifunctional catalyst promotes the conjugate addition of either unsubstituted or α-monosubstituted β-tetralones to nitroalkenes. Under these reaction conditions, not only enolization, and thus functionalization, occurs at the α-carbon atom of the β-tetralone exclusively, but adducts including all-carbon quaternary centers are also formed in highly diastereo- and enantioselective manner.

  7. Squaramide-catalysed asymmetric cascade aza-Michael/Michael addition reaction for the synthesis of chiral trisubstituted pyrrolidines.

    PubMed

    Zhao, Bo-Liang; Lin, Ye; Yan, Hao-Hao; Du, Da-Ming

    2015-12-14

    A bifunctional squaramide catalysed aza-Michael/Michael cascade reaction between nitroalkenes and tosylaminomethyl enones or enoates has been developed. This organocatalytic cascade reaction provides easy access to highly functionalized chiral pyrrolidines with a broad substrate scope, giving the desired products in good yields (up to 99%) with good diastereoselectivities (up to 91 : 9 dr) and excellent enantioselectivities (up to >99% ee) under mild conditions. This protocol provides a straightforward entry to highly functionalized chiral trisubstituted pyrrolidine derivatives from simple starting materials.

  8. Enantioselective synthesis of bicylco[3.2.1]octan-8-ones using a tandem Michael-Henry reaction

    PubMed Central

    Ding, Derong; Zhao, Cong-Gui; Guo, Qunsheng; Arman, Hadi

    2010-01-01

    Bicyclo[3.2.1]octan-8-ones have been prepared from a tandem Michael-Henry reaction between cyclohexane-1,2-diones and nitroalkenes using a quinine-derived thiourea as the catalyst. Although four stereogenic centers were created during the reaction, only two diastereomers were obtained in good diastereoselectivity and high enantioselectivity (92-99% ee). When 3-methylcyclohexane-1,2-dione (R1 = Me) was used as the substrate, only the regioisomeric product of the corresponding thermodynamic enolate was obtained. PMID:20532185

  9. β-Amino acid catalyzed asymmetric Michael additions: design of organocatalysts with catalytic acid/base dyad inspired by serine proteases.

    PubMed

    Yang, Hui; Wong, Ming Wah

    2011-09-16

    A new type of chiral β-amino acid catalyst has been computationally designed, mimicking the enzyme catalysis of serine proteases. Our catalyst approach is based on the bioinspired catalytic acid/base dyad, namely, a carboxyl and imidazole pair. DFT calculations predict that this designed organocatalyst catalyzes Michael additions of aldehydes to nitroalkenes with excellent enantioselectivities and remarkably high anti diastereoselectivities. The unusual stacked geometry of the enamine intermediate, hydrogen bonding network, and the adoption of an exo transition state are the keys to understand the stereoselectivity.

  10. Toward efficient asymmetric carbon-carbon bond formation: continuous flow with chiral heterogeneous catalysts.

    PubMed

    Tsubogo, Tetsu; Yamashita, Yasuhiro; Kobayashi, Shū

    2012-10-22

    A chiral Ca catalyst based on CaCl(2) with a chiral ligand was developed and applied to the asymmetric 1,4-addition of 1,3-dicarbonyl compounds to nitroalkenes as a model system. To address product inhibition issues, the Ca catalyst was applied to continuous flow with a chiral heterogeneous catalyst. The continuous flow system using a newly synthesized, polymer-supported Pybox was successfully employed, and the TON was improved 25-fold compared with those of the previous Ca(OR)(2) catalysts.

  11. Asymmetric Michael addition of ketones to nitroolefins: pyrrolidinyl-oxazole-carboxamides as new efficient organocatalysts.

    PubMed

    Kamal, Ahmed; Sathish, Manda; Srinivasulu, Vunnam; Chetna, Jadala; Chandra Shekar, Kunta; Nekkanti, Shalini; Tangella, Yellaiah; Shankaraiah, Nagula

    2014-10-28

    Chiral pyrrolidinyl-oxazole-carboxamides were synthesized and used as efficient new organocatalysts for the asymmetric Michael addition of ketones with nitroalkenes under solvent-free conditions. Gratifyingly, the corresponding Michael adducts were obtained in higher yields (up to 99%) and excellent stereoselectivities (up to >99/1 dr and 99% ee). Transition state models have been proposed to account for the high enantio- and diastereoselectivity of these Michael addition reactions and also the energetics have been investigated using density functional methods. These results support the preferential formation of syn-products by the approach of trans-β-nitrostyrene through the re-face of anti-enamine.

  12. Efficient synthesis of 1,3,5-trisubstituted (pyrrol-2-yl)acetic acid esters via dual nucleophilic reactions of sulfonamides or carbamate with 4-trimethyl-siloxy-(5E)-hexen-2-ynoates: Lewis acid catalyzed SN1 and intramolecular Michael addition.

    PubMed

    Ishikawa, Teruhiko; Aikawa, Toshiaki; Watanabe, Shinichiro; Saito, Seiki

    2006-08-17

    [reaction: see text] Carbamates or sulfonamides have proven to regioselectively attack 2-propynyl-allyl hybrid cations, generated by the action of TMSOTf on 4-(trimethylsioxy)hex-5-en-2-ynoates, to afford conjugated 6-aminohex-4-en-2-ynoates in which an intramolecular amino-Michael reaction took place, leading to pyrrole frameworks. In particular, the sulfonamides gave 1-sulfonylpyrroles in one pot.

  13. C-Terminal Modification of Fully Unprotected Peptide Hydrazides via in Situ Generation of Isocyanates.

    PubMed

    Vinogradov, Alexander A; Simon, Mark D; Pentelute, Bradley L

    2016-03-18

    A method for chemo- and regioselective conjugation of nucleophiles to fully unprotected peptides and proteins via in situ generation of C-terminal isocyanates is reported. Oxidation of C-terminal peptide hydrazides in aqueous media followed by Curtius rearrangement of acyl azides reliably generates isocyanates, which react with a variety of external nucleophiles, such as hydrazines, hydrazides, aromatic thiols, and hydroxylamines. Multiple peptides and a 53 kDa protein hydrazide were conjugated to different nucleophiles using this reaction.

  14. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights.

    PubMed

    Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou; Bellomo, Ana; Jeong, Soo A; Walsh, Patrick J

    2016-01-18

    Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising.

  15. Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor.

    PubMed

    Schopfer, Francisco J; Baker, Paul R S; Giles, Gregory; Chumley, Phil; Batthyany, Carlos; Crawford, Jack; Patel, Rakesh P; Hogg, Neil; Branchaud, Bruce P; Lancaster, Jack R; Freeman, Bruce A

    2005-05-13

    The aqueous decay and concomitant release of nitric oxide (*NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of *NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and *NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of *NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of *NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.

  16. Gold-catalyzed three-component coupling: oxidative oxyarylation of alkenes.

    PubMed

    Melhado, Asa D; Brenzovich, William E; Lackner, Aaron D; Toste, F Dean

    2010-07-07

    The three-component coupling of terminal alkenes with arylboronic acids and oxygen nucleophiles is described. The reaction employs a binuclear gold(I) bromide as a catalyst and Selectfluor reagent as the stoichiometric oxidant. Alcohols, carboxylic acids, and water can be employed as oxygen nucleophiles, thus providing an efficient entry into beta-aryl ethers, esters, and alcohols from alkenes.

  17. Tele-substitutions in Heterocyclic Chemistry.

    PubMed

    Tišler, Miha

    2011-03-01

    Particular and rare examples of aromatic nucleophilic substitution are described as tele-substitution. Usually strong nucleophiles are involved and the entering group is introduced at a position distant from the expected leaving group. Examples of tele-substitution in various heteroaromatic systems are presented.

  18. Umpolung of Michael acceptors catalyzed by N-heterocyclic carbenes.

    PubMed

    Fischer, Christian; Smith, Sean W; Powell, David A; Fu, Gregory C

    2006-02-08

    N-Heterocyclic carbenes can catalyze beta-alkylations of a range of alpha,beta-unsaturated esters, amides, and nitriles that bear pendant leaving groups to form a variety of ring sizes. In this process, the nucleophilic catalyst transiently transforms the normally electrophilic beta carbon into a nucleophilic site through an unanticipated addition-tautomerization sequence.

  19. Development of the University Center for Disaster Preparedness and Emergency Response (UCDPER)

    DTIC Science & Technology

    2011-09-30

    protection against oxidative stress. HN2 contains two electrophilic chloroethyl side chains that can react with nucleophilic amino acids in proteins...stress. Nitrogen mustards, including mechlorethamine (HN2), contain two electrophilic chloroethyl side chains which can readily react with nucleophilic... Fluorine . ERG Guide #: 125 Use water spray to keep fire exposed containers cool. Hazard Class: 8 (Corrosive) Hydrogen Fluoride reacts violently with

  20. Regio- and stereoselective 1,2-dihydropyridine alkylation/addition sequence for the synthesis of piperidines with quaternary centers.

    PubMed

    Duttwyler, Simon; Chen, Shuming; Lu, Colin; Mercado, Brandon Q; Bergman, Robert G; Ellman, Jonathan A

    2014-04-07

    The first example of C alkylation of 1,2-dihydropyridines with alkyl triflates and Michael acceptors was developed to introduce quaternary carbon centers with high regio- and diastereoselectivity. Hydride or carbon nucleophile addition to the resultant iminium ion also proceeded with high diastereoselectivity. Carbon nucleophile addition results in an unprecedented level of substitution to provide piperidine rings with adjacent tetrasubstituted carbon atoms.

  1. Low Level Exposure to Sulfur Mustard: Development of a SOP for Analysis of Albumin Adducts and of a System for Non-Invasive Diagnosis on Skin

    DTIC Science & Technology

    2005-12-01

    Phenylethanethiol, Fluka - 3-(2-Aminoethylamino)propylamine, Fluka - N-Biotinylated cysteamin , Fluka - 1,4 Bis-(3-aminopropylamino)butane, - 2(3...SAGAAS was used to evaluate the use of nucleophiles other than ethanethiol. See Figure 26 for a list of nucleophiles that were used. The cysteamine

  2. Low Level Exposure to Sulfur Mustard: Development of a SOP for Analysis of Albumin Adducts and of a System for Non-Invasive Diagnosis on Skin

    DTIC Science & Technology

    2007-08-01

    Fluka - 3-(2-Aminoethylamino)propylamine, Fluka - N-Biotinylated cysteamin , Fluka - 1,4 Bis-(3-aminopropylamino)butane, - 2(3-Aminopropyl...use of nucleophiles other than ethanethiol. See Figure 34 for a list of nucleophiles that were used. The cysteamine derivatives were prepared in our

  3. Magnesium-based energy storage systems and methods having improved electrolytes

    DOEpatents

    Liu, Tianbiao; Li, Guosheng; Liu, Jun; Shao, Yuyan

    2016-12-20

    Electrolytes for Mg-based energy storage devices can be formed from non-nucleophilic Mg.sup.2+ sources to provide outstanding electrochemical performance and improved electrophilic susceptibility compared to electrolytes employing nucleophilic sources. The instant electrolytes are characterized by high oxidation stability (up to 3.4 V vs Mg), improved electrophile compatibility and electrochemical reversibility (up to 100% coulombic efficiency). Synthesis of the Mg.sup.2+ electrolytes utilizes inexpensive and safe magnesium dihalides as non-nucleophilic Mg.sup.2+ sources in combination with Lewis acids, MR.sub.aX.sub.3-a (for 3.gtoreq.a.gtoreq.1). Furthermore, addition of free-halide-anion donors can improve the coulombic efficiency of Mg electrolytes from nucleophilic or non-nucleophilic Mg.sup.2+ sources.

  4. Synthesis, structure and inhibitory activity of a stereoisomer of oseltamivir carboxylate.

    PubMed

    Sartori, Andrea; Dell'Amico, Luca; Battistini, Lucia; Curti, Claudio; Rivara, Silvia; Pala, Daniele; Kerry, Philip S; Pelosi, Giorgio; Casiraghi, Giovanni; Rassu, Gloria; Zanardi, Franca

    2014-03-14

    A stereodivergent plan is presented leading to all eight stereoisomers of oseltamivir carboxylate (OC). Key chemical manoeuvers are (1) a three-component vinylogous Mukaiyama-Mannich reaction, which sets the whole carbon skeleton and heteroatom substituents, and (2) an intramolecular, silylative Mukaiyama aldol reaction, which creates the targeted carbocycle. The viability of the plan was demonstrated by the first total synthesis of 4-epi-oseltamivir carboxylate (6), accessed in 15 steps from glyceraldehyde, o-anisidine and pyrrole siloxydiene precursors. Compound 6 inhibits influenza A virus strains H1N1 and H3N2 at the μM level, about 150 000-fold less than the OC reference, testifying that the stereodisposition of the C4 acetamido function is key for enzyme recognition. Guided by in-depth structural evaluation including NMR solution studies, molecular mechanics simulations, docking analyses and X-ray crystallography, rationalization of the biological verdict was established.

  5. Slow-onset, long-duration, alkyl analogues of methylphenidate with enhanced selectivity for the dopamine transporter.

    PubMed

    Froimowitz, Mark; Gu, Yonghong; Dakin, Les A; Nagafuji, Pamela M; Kelley, Charles J; Parrish, Damon; Deschamps, Jeffrey R; Janowsky, Aaron

    2007-01-25

    Methylphenidate analogues, in which the carbomethoxy has been replaced by an alkyl group and with different phenyl substituents, have been synthesized and tested in monoamine transporter assays. As predicted from a pharmacophore model, most of the RR/SS diastereomers showed high potency as dopamine reuptake inhibitors. Analogues with a 4-chlorophenyl group and an unbranched initial alkyl atom had consistently enhanced selectivity for the dopamine transporter. The most potent compounds were those with a three- or four-carbon chain. The "inactive" RS/SR diastereomers showed substantial activity when the phenyl substituent was 3,4-dichloro. On a locomotor assay, one compound was found to have a slow onset and a long duration of action. The activity of these compounds provides additional evidence for a conformational/superposition model of methylphenidate with cocaine-like structures. A ketone analogue, obtained by hydrogenating a previously described vinylogous amide, had activity similar to that of methylphenidate.

  6. Studies Toward the Syntheses of Pluramycin Natural Products. The First Total Synthesis of Isokidamycin.

    PubMed Central

    O'Keefe, B. Michael; Mans, Douglas M.; Kaelin, David E.; Martin, Stephen F.

    2011-01-01

    We report the first total synthesis of the complex C-aryl glycoside isokidamycin, the epimer of the naturally-occurring pluramycin antibiotic kidamycin. The synthesis features a highly efficientDiels-Alder reaction between a substituted naphthyne and a glycosylatedfuran to form the anthracene core bearing a pendant angolosamine C-glycoside. The regiochemical outcome of the Diels-Alder reaction was controlled by employing a disposable silicon-tether to link the reactive napthyne and the glycosyl furan, rendering the cycloaddition intramolecular. The benzopyranone moietyof the aromatic nucleus was appended by cyclization of a functionalized vinylogous amide onto an advanced anthrol intermediate. The vancosamine amino glycoside was introduced by an O→C-glycoside rearrangement that produced the β-anomer. Subsequent refunctionalizations then led to isokidamycin. PMID:21804649

  7. The chemical behavior of terminally tert-butylated polyolefins.

    PubMed

    Klein, Dagmar; Hopf, Henning; Jones, Peter G; Dix, Ina; Hänel, Ralf

    2015-01-01

    The chemical behavior of various oligoenes 2 has been studied. The catalytic hydrogenation of diene 3 yielded monoene 4. Triene 7 was hydrogenated to diene 8, monoene 9 and saturated hydrocarbon 10. Bromine addition to 3 and 7 yielded the dibromides 17 and 18, respectively, i.e., the oligoene system has been attacked at its terminal olefinic carbon atoms. Analogously, the higher vinylogs 19 and 20 yielded the 1,8- and 1,10-bromine adduts 23 and 24, respectively, when less than 1 equivalent of bromine was employed. Treatment of tetraene 19 with excess bromine provided tetrabromide 25. In epoxidation reactions, both with meta-chloroperbenzoic acid (MCPBA) and dimethyldioxirane (DMDO) two model oligoenes were studied: triene 7 and tetraene 19. Whereas 7 furnished the rearrangement product 31 with MCPBA, it yielded the symmetrical epoxide 32 with DMDO. Analogously, 19 was converted to mono-epoxide 33 with MCPBA and to 34 with DMDO. Diels-Alder addition of 7 with N-phenyltriazolinedione (PTAD) did not take place. Extension of the conjugated π-system to the next higher vinylog, 19, caused NPTD-addition to the symmetrical adduct 37 in good yield. Comparable results were observed on adding NPTD (equivalent amount) to pentaene 20 and hexaene 21. Using 36 in excess provided the 2:1-adduct 40 from 21 and led to a complex mixture of adducts from heptaene 22. With tetracyanoethylene (TCNE) as the dienophile, tetraolefin 19 yielded the symmetrical adduct 43, although the reaction temperature had to be increased. Pentaene 20 and hexaene 21 led to corresponding results, adducts 44 and 45 being produced in acceptable yields. With nonaene 42 and TCNE the 2:1-adduct 48 was generated according to its spectroscopic data. Exploratory photochemical studies were carried out with tetraene 19 as the model compound. On irradiation this reacted with oxygen to the stable endo-peroxide 52.

  8. The chemical behavior of terminally tert-butylated polyolefins

    PubMed Central

    Klein, Dagmar; Jones, Peter G; Dix, Ina; Hänel, Ralf

    2015-01-01

    Summary The chemical behavior of various oligoenes 2 has been studied. The catalytic hydrogenation of diene 3 yielded monoene 4. Triene 7 was hydrogenated to diene 8, monoene 9 and saturated hydrocarbon 10. Bromine addition to 3 and 7 yielded the dibromides 17 and 18, respectively, i.e., the oligoene system has been attacked at its terminal olefinic carbon atoms. Analogously, the higher vinylogs 19 and 20 yielded the 1,8- and 1,10-bromine adduts 23 and 24, respectively, when less than 1 equivalent of bromine was employed. Treatment of tetraene 19 with excess bromine provided tetrabromide 25. In epoxidation reactions, both with meta-chloroperbenzoic acid (MCPBA) and dimethyldioxirane (DMDO) two model oligoenes were studied: triene 7 and tetraene 19. Whereas 7 furnished the rearrangement product 31 with MCPBA, it yielded the symmetrical epoxide 32 with DMDO. Analogously, 19 was converted to mono-epoxide 33 with MCPBA and to 34 with DMDO. Diels–Alder addition of 7 with N-phenyltriazolinedione (PTAD) did not take place. Extension of the conjugated π-system to the next higher vinylog, 19, caused NPTD-addition to the symmetrical adduct 37 in good yield. Comparable results were observed on adding NPTD (equivalent amount) to pentaene 20 and hexaene 21. Using 36 in excess provided the 2:1-adduct 40 from 21 and led to a complex mixture of adducts from heptaene 22. With tetracyanoethylene (TCNE) as the dienophile, tetraolefin 19 yielded the symmetrical adduct 43, although the reaction temperature had to be increased. Pentaene 20 and hexaene 21 led to corresponding results, adducts 44 and 45 being produced in acceptable yields. With nonaene 42 and TCNE the 2:1-adduct 48 was generated according to its spectroscopic data. Exploratory photochemical studies were carried out with tetraene 19 as the model compound. On irradiation this reacted with oxygen to the stable endo-peroxide 52. PMID:26425183

  9. Mechanistic Insights into the Mode of Action of Bifunctional Pyrrolidine-Squaramide-Derived Organocatalysts.

    PubMed

    Roca-López, David; Uria, Uxue; Reyes, Efraim; Carrillo, Luisa; Jørgensen, Karl Anker; Vicario, Jose L; Merino, Pedro

    2016-01-18

    The catalytic modes of action of three squaramide-derived bifunctional organocatalysts have been investigated using DFT methods. The [5+2] cycloaddition between oxidopyrylium ylides and enals was used as the model reaction. Two primary modes were possible for the different catalysts studied. The preference for one mode over the other was due to the possibility of additional favorable π-π interactions between the hydrogen-bond activated pyrylium ylide and an electron-deficient aromatic ring bonded to the squaramide NH group. The model can be extended to other reactions catalyzed by the same catalysts, such as formal [2+2] cycloadditions between nitroalkenes and α,β-unsaturated aldehydes. The computational results were in excellent concurrence with the available experimental reports on the observed total enantioselectivity and differences in diastereoselectivity depending on the substrate and the reaction.

  10. Dietary nitrates, nitrites, and cardiovascular disease.

    PubMed

    Hord, Norman G

    2011-12-01

    Dietary nitrate (NO(3)), nitrite (NO(2)), and arginine can serve as sources for production of NO(x) (a diverse group of metabolites including nitric oxide, nitrosothiols, and nitroalkenes) via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, and nitric oxide synthase enzymes, respectively. NO(x) are responsible for the hypotensive, antiplatelet, and cytoprotective effects of dietary nitrates and nitrites. Current regulatory limits on nitrate intakes, based on concerns regarding potential risk of carcinogenicity and methemoglobinemia, are exceeded by normal daily intakes of single foods, such as soya milk and spinach, as well as by some recommended dietary patterns such as the Dietary Approaches to Stop Hypertension diet. This review includes a call for regulatory bodies to consider all available data on the beneficial physiologic roles of nitrate and nitrite in order to derive rational bases for dietary recommendations.

  11. Brønsted Acid Catalyzed Oxygenative Bimolecular Friedel-Crafts-type Coupling of Ynamides.

    PubMed

    Patil, Dilip V; Kim, Seung Woo; Nguyen, Quynh H; Kim, Hanbyul; Wang, Shan; Hoang, Tuan; Shin, Seunghoon

    2017-03-20

    A non-metal approach for accessing α-oxo carbene surrogates for a C-C bond-forming bimolecular coupling between ynamides and nucleophilic arenes was developed. This acid-catalyzed coupling features mild temperature, which is critical for the required temporal chemoselectivity among nucleophiles. The scope of nucleophiles includes indoles, pyrroles, anilines, phenols and silyl enolethers. Furthermore, a direct test of SN 2' mechanism has been provided by employing chiral N,N'-dioxides which also enlightens the nature of the intermediates in related metal-catalyzed processes.

  12. Arylazoindazole Photoswitches: Facile Synthesis and Functionalization via SNAr Substitution

    PubMed Central

    2017-01-01

    A straightforward synthetic route to arylazoindazoles via nucleophilic aromatic substitution is presented. Upon deprotonation of the NH group, a C6F5-substituted formazan undergoes facile cyclization as a result of intermolecular nucleophilic substitution (SNAr). This new class of azo photoswitches containing an indazole five-membered heterocycle shows photochemical isomerization with high fatigue resistance. In addition, the Z-isomers have long thermal half-lives in the dark of up to several days at room temperature. The fluorinated indazole group offers a handle for further functionalization and tuning of its properties, as it is shown to be susceptible to a subsequent, highly selective nucleophilic displacement reaction. PMID:28218846

  13. Presidential Green Chemistry Challenge: 1998 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1998 award winner, Flexsys America, developed nucleophilic aromatic substitution for hydrogen to eliminate waste from a common reaction and to produce 4-ADPA, a high-volume chemical.

  14. Tuning reactivity of glycosyl imidinium intermediate for 2-azido-2-deoxyglycosyl donors in α-glycosidic bond formation.

    PubMed

    Ingle, Arun B; Chao, Chin-Sheng; Hung, Wei-Cheng; Mong, Kwok-Kong Tony

    2013-10-18

    The chemical properties of nucleophile additives were investigated in a modulated glycosylation context. N-Formylmorpholine (NFM) was found to be an effective modulator for glycosylation with less reactive 2-azido-2-deoxythioglucosyl and thiogalactosyl donors.

  15. Synthesis of gamma,delta-unsaturated glycolic acids via sequenced brook and Ireland--claisen rearrangements.

    PubMed

    Schmitt, Daniel C; Johnson, Jeffrey S

    2010-03-05

    Organozinc, -magnesium, and -lithium nucleophiles initiate a Brook/Ireland-Claisen rearrangement sequence of allylic silyl glyoxylates resulting in the formation of gamma,delta-unsaturated alpha-silyloxy acids.

  16. Novel, short, stereospecific synthesis of lyxo-(2R,3R,4R)-phytosphingosine and erythro-(2R,3S)-sphingosine.

    PubMed

    Raghavan, Sadagopan; Rajender, A

    2003-09-05

    Lyxo-phytosphingosine and erythro-sphingosine have been elaborated from a common intermediate. The key step in the reaction sequence involves stereo- and regiospecific functionalization of an olefin by intramolecular nucleophilic sulfinyl group participation.

  17. Reaction of vicinal dihalopolyfluoroalkanes with sodium azide

    SciTech Connect

    Postovoi, S.A.; Zeifman, Yu.V.; Knunyants, I.L.

    1986-12-10

    Vicinal dihalopolyfluoroalkanes react readily with nucleophilic reagents to form the products of the replacement of one halogen by a nucleophilic residue. These reactions have been studied with F/sup -/ anion and C-, O-, and S-nucleophiles as examples. The present work studies the analogous reaction with the azide anion. When vicinal dibromopolyfluoroalkanes and related compounds react with NaN/sub 3/ in DMF, N-methylpyrrolidone, or hexametapol, halogen is replaced by an azide group, and ..beta..-halopolyfluoroalkyl azides form. The reaction of vicinal dihalopolyfluoroalkanes and related compounds with sodium azide causes replacement of halogen by an azide group probably by an ionic cleavage-addition chain mechanism. Nucleophilic azidobromination of fluoroolefins has been carried out by the action of sodium azide and bromine. These reactions were used to synthesize new ..beta..-halopolyfluoroalkyl azides.

  18. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    PubMed Central

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ε-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas-phase, where they are shown to be reactive, and the solution-phase, where they are not regarded as reactive with NHS esters. PMID:25338221

  19. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas-phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ɛ-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas phase, where they are shown to be reactive, and the solution phase, where they are not regarded as reactive with NHS esters.

  20. The bioremediator glycerophosphodiesterase employs a non-processive mechanism for hydrolysis.

    PubMed

    Hadler, Kieran S; Gahan, Lawrence R; Ollis, David L; Schenk, Gerhard

    2010-02-01

    Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase that catalyzes the breakdown of a broad range of phosphate ester substrates, and it is of interest for its potential application in the destruction of organophosphate nerve agents and pesticides. The reaction mechanism of GpdQ has been proposed to involve a nucleophilic attack by a terminally bound hydroxide molecule. The hydroxide species bridging the two metal ions is suggested to activate the nucleophile, thus favoring a sequential rather than a processive mechanism of action. Here, the hydrolysis of the two ester bonds in the substrate bis(para-nitrophenyl) phosphate (bpNPP) is probed using (31)P NMR. The kinetic rates measured compare well with those determined spectrophotometrically. Furthermore, the data indicate that the diester bonds are cleaved in two separate (non-processive) reactions, indicating that only a single nucleophile (the terminal hydroxide molecule) is likely to be employed as a nucleophile for GpdQ.

  1. Eco-friendly polyethylene glycol promoted Michael addition reactions of α,β-unsaturated carbonyl compounds

    EPA Science Inventory

    Abstract- Intra- and inter-nucleophilic addition reactions of different unsaturated compounds were found to be highly effective without any additives in PEG-400 as a recyclable reaction medium under neutral conditions.

  2. Classification of the Electrophilic Addition Reactions of Olefins and Acetylenes

    ERIC Educational Resources Information Center

    Wilson, Michael A.

    1975-01-01

    Divides addition reactions into molecular, stepwise, or termolecular, depending on whether the reaction is synchronous or multistep; and further into nucleophilic, electrophilic, or concerted, depending on how the electrons are transferred in the initiation step. (MLH)

  3. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT

    EPA Science Inventory

    The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...

  4. β-Functionalization of carboxylic anhydrides with β-alkyl substituents through carbene organocatalysis.

    PubMed

    Jin, Zhichao; Chen, Shaojin; Wang, Yuhuang; Zheng, Pengcheng; Yang, Song; Chi, Yonggui Robin

    2014-12-01

    The first NHC-catalyzed functionalization of carboxylic anhydrides is described. In this reaction, the β carbon behaves as a nucleophilic carbon and undergoes asymmetric reactions with electrophiles. Anhydrides with challenging β-alkyl substituents work effectively.

  5. Phosphine Catalysis of Allenes with Electrophiles

    PubMed Central

    Wang, Zhiming; Xu, Xingzhu; Kwon, Ohyun

    2014-01-01

    Nucleophilic phosphine catalysis of allenes with electrophiles is one of the most powerful and straightforward synthetic strategies for the generation of highly functionalized carbocycle or heterocycle structural motifs, which are present in a wide range of bioactive natural products and medicinally important substances. The reaction topologies can be controlled through judicious choice of the phosphine catalyst and the structural variations of starting materials. This Tutorial Review presents selected examples of nucleophilic phosphine catalysis using allenes and electrophiles. PMID:24663290

  6. Efficient asymmetric synthesis of N-protected-β-aryloxyamino acids via regioselective ring opening of serine sulfamidate carboxylic acid.

    PubMed

    Malhotra, Rajesh; Dey, Tushar K; Dutta, Swarup; Basu, Sourav; Hajra, Saumen

    2014-09-07

    First regioselective ring opening of serine derived cyclic sulfamidate by hard nucleophiles like ArONa is developed, where β-elimination of serine sulfamidate ester by stronger nucleophiles is overcome by reversal of the electronic effect of the carboxylate anion. This method provides easy and direct access to a variety of N-Boc- and N-PMB protected β-aryloxy-α-amino acids with complete retention of enantiopurity in moderate to high yields.

  7. Diastereoselective Synthesis of γ-Substituted 2-Butenolides via (CDC)-Rh-Catalyzed Intermolecular Hydroalkylation of Dienes with Silyloxyfurans.

    PubMed

    Goldfogel, Matthew J; Roberts, Courtney C; Manan, Rajith S; Meek, Simon J

    2017-01-06

    Catalytic intermolecular hydroalkylation of dienes with silyloxyfuran nucleophiles is reported. Reactions are catalyzed by 5 mol % of a (CDC)-Rh complex and proceed in up to 87% yield and 6:1 dr (syn/anti) to provide allylic butenolides bearing vicinal stereocenters. Reactions proceed with terminal aryl and alkyl dienes and with modified silyl enol ether nucleophiles including a thiophenone variant. Utility of the products is demonstrated in the synthesis of a polypropionate anti,syn-stereotriad.

  8. Iron-catalyzed cross-coupling reactions of alkyl Grignards with aryl sulfamates and tosylates.

    PubMed

    Agrawal, Toolika; Cook, Silas P

    2013-01-04

    The iron-catalyzed cross-coupling of aryl sulfamates and tosylates has been achieved with primary and secondary alkyl Grignards. This study of iron-catalyzed cross-coupling reactions also examines the isomerization and β-hydride elimination problems that are associated with the use of isopropyl nucleophiles. While a variety of iron sources were competent in the reaction, the use of FeF(3)•3H(2)O was critical to minimize nucleophile isomerization.

  9. The solid-phase Nicholas reaction: scope and limitations.

    PubMed

    Gachkova, Natalie; Cassel, Johan; Leue, Stefanie; Kann, Nina

    2005-01-01

    Two libraries of alpha-substituted alkynes has been prepared on solid phase using a sequential Sonogashira/Nicholas reaction approach. The scope of nucleophiles in the Nicholas reaction on solid phase has been investigated, including carbon, oxygen, nitrogen, sulfur, fluoride, and hydride nucleophiles. The conditions for the reaction sequence have been optimized in terms of Lewis acid, catalyst for the Sonogashira step, temperature, reaction time, and decomplexation method, enabling the five-step sequence to be performed in 1 day.

  10. An Altered Transition State for the Reaction of an RNA Model Catalyzed by a Dinuclear Zinc(II) Catalyst

    PubMed Central

    Humphry, Tim; Iyer, Subashree; Iranzo, Olga; Morrow, Janet R.; Richard, John P.; Paneth, Piotr

    2009-01-01

    The cyclization of 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) catalyzed by the dinuclear zinc complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (1) proceeds by a transition state that is different from that of the uncatalyzed reaction. Kinetic isotope effects (KIEs) measured in the nucleophilic atom and in the leaving group show that the uncatalyzed cyclization has a transition state (TS) with little phosphorus-oxygen bond fission to the leaving group (18klg = 1.0064 ± 0.0009 and 15k = 1.0002 ± 0.0002), and that nucleophilic bond formation occurs in the rate-determining step (18knuc = 1.0326 ± 0.0008). In the catalyzed reaction, larger leaving group isotope effects (18klg = 1.0113 ± 0.0005 and 15k = 1.0015 ± 0.0005) and a smaller nucleophile isotope effect (18knuc = 1.0116 ± 0.0010) indicate a later TS with greater leaving group bond fission, and greater nucleophilic bond formation. These observed nucleophile KIEs are the combined effect of the equilibrium effect on deprotonation of the 2’-hydroxyl nucleophile and the KIE on the nucleophilic step. An EIE of 1.0245 for deprotonation of the hydroxyl group of HPpNP was obtained computationally. The different KIEs for the two reactions indicate that the effective catalysis by 1 is accompanied by selection for an altered transition state, presumably arising from the preferential stabilization by the catalyst of charge away from the nucleophile and toward the leaving group. These results demonstrate the potential for a catalyst using biologically relevant metal ions to select for an altered transition state for phosphoryl transfer. PMID:19053445

  11. Recent Advances in Understanding the Reactivity of Energetic Ionic Liquids in Propulsion Applications

    DTIC Science & Technology

    2014-08-12

    enabled the investigation of anion properties such as basicity and nucleophilicity in the condensed phase. Both the basicity and nucleophilicity of the... anion influence the thermal decomposition of ionic liquids and understanding basicity of the anion is important in interpreting hypergolic ignition...Low flammability. – C+A- : 1018 possible combinations of cations and anions . • Hypergolic Ignition involves: – Pre-ignition chemistry- “chemical

  12. Altered transition state for the reaction of an RNA model catalyzed by a dinuclear zinc(II) catalyst.

    PubMed

    Humphry, Tim; Iyer, Subashree; Iranzo, Olga; Morrow, Janet R; Richard, John P; Paneth, Piotr; Hengge, Alvan C

    2008-12-31

    The cyclization of 2-(hydroxypropyl)-4-nitrophenyl phosphate (HpPNP) catalyzed by the dinuclear zinc complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (1) proceeds by a transition state that is different from that of the uncatalyzed reaction. Kinetic isotope effects (KIEs) measured in the nucleophilic atom and in the leaving group show that the uncatalyzed cyclization has a transition state (TS) with little phosphorus-oxygen bond fission to the leaving group ((18)k(lg) = 1.0064 +/- 0.0009 and (15)k = 1.0002 +/- 0.0002) and that nucleophilic bond formation occurs in the rate-determining step ((18)k(nuc) = 1.0326 +/- 0.0008). In the catalyzed reaction, larger leaving group isotope effects ((18)k(lg) = 1.0113 +/- 0.0005 and (15)k = 1.0015 +/- 0.0005) and a smaller nucleophile isotope effect ((18)k(nuc) = 1.0116 +/- 0.0010) indicate a later TS with greater leaving group bond fission and greater nucleophilic bond formation. These observed nucleophile KIEs are the combined effect of the equilibrium effect on deprotonation of the 2'-hydroxyl nucleophile and the KIE on the nucleophilic step. An EIE of 1.0245 for deprotonation of the hydroxyl group of HPpNP was obtained computationally. The different KIEs for the two reactions indicate that the effective catalysis by 1 is accompanied by selection for an altered transition state, presumably arising from the preferential stabilization by the catalyst of charge away from the nucleophile and toward the leaving group. These results demonstrate the potential for a catalyst using biologically relevant metal ions to select for an altered transition state for phosphoryl transfer.

  13. Reaction of allenyl esters with sodium azide: an efficient synthesis of e-vinyl azides and polysubstituted pyrroles.

    PubMed

    Huang, Xian; Shen, Ruwei; Zhang, Tiexin

    2007-02-16

    The nucleophilic addition of sodium azide to 1,2-allenyl esters can generate vinyl azides in excellent yields with excellent regio- and stereoselectivities. Moreover, pyrroles are synthesized using 1-allyllic 1,2-allenyl esters as substrates in t-BuOH at 65 degrees C. The sequential reaction for pyrroles is developed on the basis of a novel domino process involving nucleophilic addition, cycloaddition, denitrogenation, and aromatization.

  14. Studies on the Mechanism-of-Action of Prekinamycin, a Member of the Diazoparaquinone Family of Natural Products: Evidence for both sp2 Radical and Orthoquinonemethide Intermediates

    PubMed Central

    Feldman, Ken S.; Eastman, Kyle J.

    2008-01-01

    The putative reductive activation chemistry of the diazoparaquinone antibiotics was modeled with Bu3Sn–H and prekinamycin dimethyl ether along with prekinamycin itself. Reaction in various combinations of aromatic solvents, with and without the nucleophile benzylmercaptan present, led to isolation of both radical trapping arene adducts and nucleophilic capture benzyl thioether products. Based upon these product distribution studies, the intermediacy of first, a cyclopentenyl radical, and next, an orthoquinonemethide electrophile, is postulated. PMID:16984207

  15. Preparation of Peptide p-Nitroanilides using an Aryl Hydrazine Solid Support

    SciTech Connect

    Kwon, Y; Welsh, K; Mitchell, A R; Camarero, J A

    2004-08-05

    Peptide p-nitroanilides are useful compounds for studying protease activity, however the poor nucleophilicity of p-nitroaniline makes their preparation difficult. We describe a new efficient approach for the Fmoc-based synthesis of peptide p-nitroanilides using an aryl hydrazine resin. Mild oxidation of the peptide hydrazide resin yields a highly reactive acyl diazene, which efficiently reacts with weak nucleophiles. We have prepared several peptide p-nitroanilides, including substrates for the Lethal Factor protease from B. anthracis.

  16. Conjugate addition-enantioselective protonation reactions.

    PubMed

    Phelan, James P; Ellman, Jonathan A

    2016-01-01

    The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals.

  17. Methodology for the preparation of 2-argininylbenzothiazole.

    PubMed

    Kenney, Birdella D; Breslav, Michael; Chang, Rosie; Glaser, Roland; Harris, Bruce D; Maryanoff, Cynthia A; Mills, John; Roessler, Armin; Segmuller, Brigitte; Villani, Frank J

    2007-12-07

    An efficient process to produce kilogram quantities of a key argininylbenzo[d]thiazole intermediate was developed for the preparation of the tryptase inhibitor RWJ-56423. A variety of activated arginine esters and benzo[d]thiazole nucleophiles were evaluated as coupling partners. Our work led to the selection and optimization of an argininyl imidazolide ester and benzothiazol-2-yl MgCl nucleophile. This paper focuses on the preparation, use, and stability of the benzothiazol-2-yl Grignard reagents.

  18. Next Generation of Electrospun Textiles for Chemical and Biological Protection and Air Filtration

    DTIC Science & Technology

    2009-09-01

    irreversibility of the phosphorylation process. The electrophilicity of phosphorus atom in OPs is critical to the lethality of OPs. The presence of the electron...adjacent atom. During the nucleophilic attack, a lone pair on the nucleophilic atom is shared partially with the electrophilic target atom. This...cleavage of the electrophilic P-S bond (Figure 2.16). In solids, 60-63 ppm has been observed for protonated VX. 2 9 -3 1 On concrete, the chemical shift of

  19. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.

    PubMed

    Domingo, Luis R; Ríos-Gutiérrez, Mar; Pérez, Patricia

    2016-06-09

    Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic P k + and nucleophilic P k - Parr functions, as the most relevant indices for the study of organic reactivity, are discussed.

  20. Domino transformation of D-glucal to racemic alpha-substituted alpha-hydroxymethyl furfuryl derivatives.

    PubMed

    Mukherjee, Debaraj; Yousuf, Syed Khalid; Taneja, Subhash Chandra

    2008-11-06

    Lewis acid mediated one-pot transformation of D-glucal in the presence of nucleophiles leads to the formation of racemic alpha-substituted alpha-hydroxymethyl furfuryl derivatives, versatile synthons for biologically active molecules. Transformations using O-, S-, C-, and N-nucleophiles could be achieved readily under mild and scalable conditions. Indium triflate proved to be the catalyst of choice in terms of conversion and regioselectivity.