Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin
2014-07-01
A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high nitrogen utilization efficiency had a strong ability of dry matter production and nitrogen accumulation. It could synergistically improve yield and nitrogen utilization efficiency by enhancing the ability of nitrogen uptake and dry matter formation before jointing stage in barley.
Zhou, Wei; Lyu, Teng Fei; Yang, Zhi Ping; Sun, Hong; Yang, Liang Jie; Chen, Yong; Ren, Wan Jun
2016-09-01
Unreasonable application of nitrogen fertilizer to cropland decreases nitrogen use efficiency of crop. A large amount of nitrogen loss to environment through runoff, leaching, ammonia volati-lization, nitrification-denitrification, etc., causes water and atmospheric pollution, poses serious environmental problems and threatens human health. The type of nitrogen fertilizer and its application rate, time, and method have significant effects on nitrogen loss. The primary reason for nitrogen loss is attributed to the supersaturated soil nitrogen concentration. Making full use of environmental nitrogen sources, reducing the application rate of chemical nitrogen fertilizers, applying deep placement fertilizing method, and applying organic fertilizers with chemical nitrogen fertilizers, are effective practices for reducing nitrogen loss and improving nitrogen use efficiency. It is suggested that deve-loping new high efficiency nitrogen fertilizers, enhancing nitrogen management, and strengthening the monitoring and use of environmental nitrogen sources are the powerful tools to decrease nitrogen application rate and increase efficiency of cropland.
Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei
2015-03-01
A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.
21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine...
21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine...
[Nitrogen balance in dairy farm: research progress].
Lü, Chao; Qin, Wen-Xiao; Gao, Teng-Yun; Wang, Xiao-Xiao; Han, Zhi-Guo; Li, Jia
2013-01-01
Large dairy farm with intensive management has high stocking density, but generally does not have enough space and normative feces disposal system, resulting in the discharged nitrogen surpassed the environmental carrying capacity of unit area land. Dairy farm is one of the major emission sources of nitrogen discharges in agriculture, where the nitrogen balance has being aroused attention by the experts abroad. The research on the nitrogen flow and nitrogen balance in dairy farm is the basis of the dairy farm nitrogen cycling and management study, as well as the basis for the construction of environmental laws, regulations and policies. The most reliable indicators to evaluate the nitrogen flow and nitrogen balance in dairy farm are nitrogen surplus and nitrogen use efficiency. This paper introduced the concept of nitrogen balance on farm-scale and the nitrogen flow within farm, compared the application scope of nitrogen surplus and nitrogen use efficiency, analyzed the factors affecting the nitrogen balance in dairy farm, and summarized the effective strategies to reduce the nitrogen discharges from dairy farm, aimed to provide references for the nitrogen management of dairy farm in China.
Successful slush nitrogen vitrification of human ovarian tissue.
Talevi, Riccardo; Barbato, Vincenza; Fiorentino, Ilaria; Braun, Sabrina; De Stefano, Cristofaro; Ferraro, Raffaele; Sudhakaran, Sam; Gualtieri, Roberto
2016-06-01
To study whether slush nitrogen vitrification improves the preservation of human ovarian tissue. Control vs. treatment study. University research laboratory. Ovarian biopsies collected from nine women (aged 14-35 years) during laparoscopic surgery for benign gynecologic conditions. None. Ovarian cortical strips of 2 × 5 × 1 mm were vitrified with liquid or slush nitrogen. Fresh and vitrified cortical strips were analyzed for cryodamage and viability under light, confocal, and transmission electron microscopy. Compared with liquid nitrogen, vitrification with slush nitrogen preserves [1] follicle quality (grade 1 follicles: fresh control, 50%; liquid nitrogen, 27%; slush nitrogen, 48%); [2] granulosa cell ultrastructure (intact cells: fresh control, 92%; liquid nitrogen, 45%; slush nitrogen, 73%), stromal cell ultrastructure (intact cells: fresh control, 59.8%; liquid nitrogen, 24%; slush nitrogen, 48.7%), and DNA integrity (TUNEL-positive cells: fresh control, 0.5%; liquid nitrogen, 2.3%; slush nitrogen, 0.4%); and [3] oocyte, granulosa, and stromal cell viability (oocyte: fresh control, 90%; liquid nitrogen, 63%; slush nitrogen, 87%; granulosa cells: fresh control, 93%; liquid nitrogen, 53%; slush nitrogen, 81%; stromal cells: fresh control, 63%; liquid nitrogen, 30%; slush nitrogen, 52%). The histology, ultrastructure, and viability of follicles and stromal cells are better preserved after vitrification with slush nitrogen compared with liquid nitrogen. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
[Vertical Distribution Characteristics of Typical Forest Soil Organic Nitrogen in Dawei Mountain].
Ding, Xian-qing; Ma, Hui-jing; Zhu, Xiao-long; Chen, Shan; Hou, Hong-bo; Peng, Pei-qin
2015-10-01
To clarify altitudinal gradient of subtropical forest soil total nitrogen and organic nitrogen, soil samples were collected per 10 cm on soil profile (0-100 cm) in Dawei Mountain, researched the variation of soil organic nitrogen and correlation with soil physical and chemical properties. The results showed that: (1) Total nitrogen, acid hydrolysable organic nitrogen and soluble organic nitrogen decreased with the increase of depth, content of each component in mountain granite yellow-brown soils was much higher affected by altitude; (2) The average percentage of soil organic nitrogen to total nitrogen was 97.39% ± 1.17%, and soil acid hydrolysable organic nitrogen was 64.38% ± 10.68%, each component decreased with the increase of soil depth; (3) Soil soluble organic nitrogen content was 9.92- 23.45 mg x kg(-1), free amino acids (1.62 - 12.02 mg x kg(-1)) accounted for about 27.36% ± 9.95% of soluble organic nitrogen; (4) Soil acid hydrolysable organic nitrogen and soluble organic nitrogen were significantly positively correlated with total nitrogen, total soluble nitrogen and inorganic nitrogen (P < 0.05), were highly significantly correlated with soil bulk density, organic carbon, and total phosphorus (P < 0.01). Organic nitrogen was the main body of soil nitrogen in typical subtropical forest, each component showed a downward trend increase with soil depth affected by altitude and soil physical and chemical properties. There was a close conversion relationship between soil organic nitrogen and other nitrogen forms, the characteristics of soil organic nitrogen will have profound impact on nitrogen cycling of forest ecological system.
Karagatzides, Jim D; Butler, Jessica L; Ellison, Aaron M
2009-07-07
Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition. At sites in Canada (low nitrogen deposition) and the United States (high nitrogen deposition), individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake. By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant's reliance for nitrogen mineralization on a seasonally reconstructed food web operating on infrequent and irregular prey capture.
Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko
2011-01-01
Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608
NASA Astrophysics Data System (ADS)
Hattori, Toshihiro; Takamatsu, Rieko
We calculated nitrogen balances on farm gate and soil surface on large-scale stock farms and discussed methods for reducing environmental nitrogen loads. Four different types of public stock farms (organic beef, calf supply and daily cows) were surveyed in Aomori Prefecture. (1) Farm gate and soil surface nitrogen inflows were both larger than the respective outflows on all types of farms. Farm gate nitrogen balance for beef farms were worse than that for dairy farms. (2) Soil surface nitrogen outflows and soil nitrogen retention were in proportion to soil surface nitrogen inflows. (3) Reductions in soil surface nitrogen retention were influenced by soil surface nitrogen inflows. (4) In order to reduce farm gate nitrogen retention, inflows of formula feed and chemical fertilizer need to be reduced. (5) In order to reduce soil surface nitrogen retention, inflows of fertilizer need to be reduced and nitrogen balance needs to be controlled.
Karagatzides, Jim D.; Butler, Jessica L.; Ellison, Aaron M.
2009-01-01
Background Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition. Methodology and Principal Findings At sites in Canada (low nitrogen deposition) and the United States (high nitrogen deposition), individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake. Conclusions and Significance By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant's reliance for nitrogen mineralization on a seasonally reconstructed food web operating on infrequent and irregular prey capture. PMID:19582167
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Bonan, G. B.; Goodale, C. L.
2012-12-01
In many forest ecosystems, nitrogen deposition is increasing carbon storage and reducing climate warming from fossil fuel emissions. Accurately modeling the forest carbon sequestration response to elevated nitrogen deposition using global biogeochemical models coupled to climate models is therefore important. Here, we use observations of the forest carbon response to both nitrogen fertilization experiments and nitrogen deposition gradients to test and improve a global biogeochemical model (CLM-CN 4.0). We introduce a series of model modifications to the CLM-CN that 1) creates a more closed nitrogen cycle with reduced nitrogen fixation and N gas loss and 2) includes buffering of plant nitrogen uptake and buffering of soil nitrogen available for plants and microbial processes. Overall, the modifications improved the comparison of the model predictions to the observational data by increasing the carbon storage response to historical nitrogen deposition (1850-2004) in temperate forest ecosystems by 144% and reducing the response to nitrogen fertilization. The increased sensitivity to nitrogen deposition was primarily attributable to greater retention of nitrogen deposition in the ecosystem and a greater role of synergy between nitrogen deposition and rising atmospheric CO2. Based on our results, we suggest that nitrogen retention should be an important attribute investigated in model inter-comparisons. To understand the specific ecosystem processes that contribute to the sensitivity of carbon storage to nitrogen deposition, we examined sensitivity to nitrogen deposition in a set of intermediary models that isolate the key differences in model structure between the CLM-CN 4.0 and the modified version. We demonstrate that the nitrogen deposition response was most sensitive to the implementation of a more closed nitrogen cycle and buffered plant uptake of soil mineral nitrogen, and less sensitive to modifications of the canopy scaling of photosynthesis, soil buffering of available nitrogen, and plant buffering of labile nitrogen. By comparing carbon storage sensitivity to observational data from both nitrogen deposition gradients and nitrogen fertilization experiments, we show different observed estimates of sensitivity between these two approaches could be explained by differences in the magnitude and time-scale of nitrogen additions.
Nitrogen in rock: Occurrences and biogeochemical implications
Holloway, J.M.; Dahlgren, R.A.
2002-01-01
There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.
Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils
NASA Astrophysics Data System (ADS)
Huygens, Dries; Boeckx, Pascal; Templer, Pamela; Paulino, Leandro; van Cleemput, Oswald; Oyarzún, Carlos; Müller, Christoph; Godoy, Roberto
2008-08-01
Nitrogen cycling is an important aspect of forest ecosystem functioning. Pristine temperate rainforests have been shown to produce large amounts of bioavailable nitrogen, but despite high nitrogen turnover rates, loss of bioavailable nitrogen is minimal in these ecosystems. This tight nitrogen coupling is achieved through fierce competition for bioavailable nitrogen by abiotic processes, soil microbes and plant roots, all of which transfer bioavailable nitrogen to stable nitrogen sinks, such as soil organic matter and above-ground forest vegetation. Here, we use a combination of in situ 15N isotope dilution and 15N tracer techniques in volcanic soils of a temperate evergreen rainforest in southern Chile to further unravel retention mechanisms for bioavailable nitrogen. We find three processes that contribute significantly to nitrogen bioavailability in rainforest soils: heterotrophic nitrate production, nitrate turnover into ammonium and into a pool of dissolved organic nitrogen that is not prone to leaching loss, and finally, the decoupling of dissolved inorganic nitrogen turnover and leaching losses of dissolved organic nitrogen. Identification of these biogeochemical processes helps explain the retention of bioavailable nitrogen in pristine temperate rainforests.
Columbus, Daniel A; Lapierre, Hélène; Htoo, John K; de Lange, Cornelis F M
2014-05-01
Nitrogen absorption from the large intestine, largely as ammonia and possibly as amino acids (AAs), is generally thought to be of little nutritional value to nonruminant animals and humans. Ammonia-nitrogen absorbed from the large intestine, however, may be recycled into the small intestine as urea and incorporated into microbial AAs, which may then be used by the host. A cecal infusion study was performed to determine the form in which nitrogen is absorbed from the large intestine and the impact of large intestine nitrogen supply on nitrogen balance in growing pigs. Eighteen cecally cannulated barrows (initial body weight: 22.4 ± 1.2 kg) were used to determine the effect of supplying nitrogen into the large intestine from either casein or urea on whole-body nitrogen retention and urea kinetics. Treatments were cecal infusions of saline (control), casein, or urea with nitrogen infused at a rate of 40% of nitrogen intake. In a subsample of 9 pigs, (15)N(15)N-urea was infused via i.v. during the nitrogen-balance period to determine urea kinetics. All pigs were fed a valine-limiting cornstarch-soybean meal-based diet. More than 80% of infused nitrogen was apparently absorbed. Urea flux and urinary nitrogen excretion increased (P ≤ 0.05) by the same amount for both nitrogen sources, but this increase did not fully account for the increase in nitrogen absorption from the large intestine. Whole-body nitrogen retention improved with nitrogen infusions (129 vs. 114 g/d; P < 0.01) and did not differ (P > 0.05) between nitrogen sources. Absorption of nitrogen from the large intestine appears to be in the form of nonprotein nitrogen, which appears to be returned to the small intestine via urea and used there for microbial AA production and should therefore be considered when determining nitrogen and AA supply and requirements.
Nutrient co-limited Trichodesmium as nitrogen source or sink in a future ocean.
Walworth, Nathan G; Fu, Fei-Xue; Lee, Michael D; Cai, Xiaoni; Saito, Mak A; Webb, Eric A; Hutchins, David A
2017-11-27
Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen-fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally-important N 2 -fixer Trichodesmium fundamentally shifts nitrogen metabolism towards organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)-limitation. Global shifts in transcripts and proteins under high CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically-important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation towards organic nitrogen scavenging and away from N 2 -fixation may reduce new-nitrogen inputs by Trichodesmium , while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open ocean ecosystems. Importance Trichodesmium is among the most biogeochemically-significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open ocean food webs. We used Trichodesmium cultures adapted to high CO 2 for 7 years followed by additional exposure to iron and/or phosphorus (co)-limitation. We show that 'future ocean' conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation, and instead towards upregulation of organic-nitrogen scavenging pathways. We show that Trichodesmium's responses to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes, coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift towards organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO 2 ocean, with potential global implications for ocean carbon and nitrogen cycling. Copyright © 2017 American Society for Microbiology.
Hall, D.W.; Risser, D.W.
1993-01-01
Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1,25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year, 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987-1990.
Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing
2015-09-01
In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in < 0. 25 mm. The content of nitrogen fractions for all aggregate-classes followed in the order of abandoned land < grass land < brush land < brush-arbor land < arbor land in different sample plots. Artificial forest lands had more effects on the improvement of the soil nitrogen than honeysuckle land. In this study it also showed the nitrogen stockpiling quantity of each aggregate-size class was differed in all aggregate-size classes, in which the content of nitrogen fraction in 5-10 mm and 2-5 mm classes of soil aggregate-size were the highest. And it meant that soil nutrient mainly was stored in large size aggregates. Large size aggregates were significant to the storage of soil nutrient. For each class of soil aggregate-size, the contribution of the nitrogen stockpiling quantity of 0. 25-1 mm class to soil net nitrogen mineralization quantity was the biggest, and following >5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.
Gupta, Nidhi; Gupta, Atul K; Gaur, Vikram S; Kumar, Anil
2012-01-01
Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content.
QTL and QTL x environment effects on agronomic and nitrogen acquisition traits in rice.
Senthilvel, Senapathy; Vinod, Kunnummal Kurungara; Malarvizhi, Palaniappan; Maheswaran, Marappa
2008-09-01
Agricultural environments deteriorate due to excess nitrogen application. Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input. Rice genotypes respond variably to soil available nitrogen. The present study attempted quantification of genotype x nitrogen level interaction and mapping of quantitative trait loci (QTLs) associated with nitrogen use efficiency (NUE) and other associated agronomic traits. Twelve parameters were observed across a set of 82 double haploid (DH) lines derived from IR64/Azucena. Three nitrogen regimes namely, native (0 kg/ha; no nitrogen applied), optimum (100 kg/ha) and high (200 kg/ha) replicated thrice were the environments. The parents and DH lines were significantly varying for all traits under different nitrogen regimes. All traits except plant height recorded significant genotype x environment interaction. Individual plant yield was positively correlated with nitrogen use efficiency and nitrogen uptake. Sixteen QTLs were detected by composite interval mapping. Eleven QTLs showed significant QTL x environment interactions. On chromosome 3, seven QTLs were detected associated with nitrogen use, plant yield and associated traits. A QTL region between markers RZ678, RZ574 and RZ284 was associated with nitrogen use and yield. This chromosomal region was enriched with expressed gene sequences of known key nitrogen assimilation genes.
Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin
2016-06-13
Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement.
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Zaehle, S.; Templer, P. H.; Goodale, C. L.
2011-12-01
Predictions of climate change depend on accurately modeling the feedbacks among the carbon cycle, nitrogen cycle, and climate system. Several global land surface models have shown that nitrogen limitation determines how land carbon fluxes respond to rising CO2, nitrogen deposition, and climate change, thereby influencing predictions of climate change. However, the magnitude of the carbon-nitrogen-climate feedbacks varies considerably by model, leading to critical and timely questions of why they differ and how they compare to field observations. To address these questions, we initiated a model inter-comparison of spatial patterns and drivers of nitrogen limitation. The experiment assessed the regional consequences of sustained nitrogen additions in a set of 25-year global nitrogen fertilization simulations. The model experiments were designed to cover effects from small changes in nitrogen inputs associated with plausible increases in nitrogen deposition to large changes associated with field-based nitrogen fertilization experiments. The analyses of model simulations included assessing the geographically varying degree of nitrogen limitation on plant and soil carbon cycling and the mechanisms underlying model differences. Here, we present results from two global land-surface models (CLM-CN and O-CN) with differing approaches to modeling carbon-nitrogen interactions. The predictions from each model were compared to a set of globally distributed observational data that includes nitrogen fertilization experiments, 15N tracer studies, small catchment nitrogen input-output studies, and syntheses across nitrogen deposition gradients. Together these datasets test many aspects of carbon-nitrogen coupling and are able to differentiate between the two models. Overall, this study is the first to explicitly benchmark carbon and nitrogen interactions in Earth System Models using a range of observations and is a foundation for future inter-comparisons.
Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils
NASA Astrophysics Data System (ADS)
Thorp, N. R.; Wieder, R. K.; Vile, M. A.
2015-12-01
Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that diazotroph-mediated 15N labeling is a viable technique for tracking nitrogen flow without altering form and concentration of native nitrogen pools in a nitrogen limited ecosystem.
Smith, Aaron D; Holtzapple, Mark T
2010-12-01
The MixAlco process is a biorefinery based on the production of carboxylic acids via mixed-culture fermentation. Nitrogen is essential for microbial growth and metabolism, and may exist in soluble (e.g., ammonia) or insoluble forms (e.g., cells). Understanding the dynamics of nitrogen flow in a countercurrent fermentation is necessary to develop control strategies to maximize performance. To estimate nitrogen concentration profiles in a four-stage fermentation train, a mass balance-based segregated-nitrogen model was developed, which uses separate balances for solid- and liquid-phase nitrogen with nitrogen reaction flux between phases assumed to be zero. Comparison of predictions with measured nitrogen profiles from five trains, each with a different nutrient contacting pattern, shows the segregated-nitrogen model captures basic behavior and is a reasonable tool for estimating nitrogen profiles. The segregated-nitrogen model may be used to (1) estimate optimal nitrogen loading patterns, (2) develop a reaction-based model, (3) understand influence of model inputs (e.g., operating parameters, feedstock properties, nutrient loading pattern) on the steady-state nitrogen profile, and (4) determine the direction of the nitrogen reaction flux between liquid and solid phases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hestrin, R.; Harrison, M. J.; Lehmann, J.
2016-12-01
Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.
Solubilities of nitrogen and noble gases in basalt melt
NASA Technical Reports Server (NTRS)
Miyazaki, A.; Hiyagon, H.; Sugiura, N.
1994-01-01
Nitrogen and noble gases are important tracers in geochemistry and chosmochemistry. Compared to noble gases, however, physicochemical properties of nitrogen, such as solubility in melt or melt/silicate partition, are not well known. Solubility of nitrogen in basalt melt depends on redox condition of the atmosphere. For example, solubility of nitrogen in E chondrite melt under reducing conditions is as high as 2 mol percent at 1500 C, suggesting that nitrogen is chemically dissolved in silicate melts, i.e., being dissolved as free anions or replacing oxygen sites in silicate network. However, the solubility and the dissolution mechanism of nitrogen under oxidizing conditions are not well investigated. To obtain nitrogen solubility in silicate melts under various redox conditions and to understand its mechanism, we are conducting experiments by using (15)N(15)N-labeled nitrogen gas. This makes it easy to distinguish dissolved nitrogen from later contamination of atmospheric nitrogen, and hence enables us to measure the nitrogen solubility accurately. As a preliminary experiment, we have measured solubility of nitrogen in basalt melt under the atmospheric oxygen pressure.
[Effects of grafting and nitrogen fertilization on melon yield and nitrogen uptake and utilization].
Xue, Liang; Ma, Zhong Ming; DU, Shao Ping
2017-06-18
A split-field design experiment was carried out using two main methods of cultivation (grafting and self-rooted cultivation) and subplots with different nitrogen application levels (0, 120, 240, and 360 kg N·hm -2 ) to investigate the effects of cultivation method and nitrogen application levels on the yield and quality of melons, nitrogen transfer, nitrogen distribution, and nitrogen utilization rate. The results showed that melons produced by grafting cultivation had a 7.3% increase in yield and a 0.16%-3.28% decrease in soluble solid content, compared to those produced by self-rooted cultivation. The amount of nitrogen accumulated in melons grafted in the early growth phase was lower than that in self-rooted melons, and higher after fruiting. During harvest, nitrogen accumulation amount in grafted melon plants was 5.2% higher than that in self-rooted plants and nitrogen accumulation amount in fruits was 10.3% higher. Grafting cultivation increased the amount of nitrogen transfer from plants to fruits by 20.9% compared to self-rooted cultivation. Nitrogen distribution in fruits was >80% in grafted melons, whereas that in self-rooted melons was <80%. Under the same level of nitrogen fertilization, melons cultivated by grafting showed 1.3%-4.2% increase in nitrogen absorption and utilization rate, 2.73-5.56 kg·kg -1 increase in nitrogen agronomic efficiency, and 7.39-16.18 kg·kg -1 increase in nitrogen physiological efficiency, compared to self-rooted cultivation. On the basis of the combined perspective of commercial melon yield, and nitrogen absorption and utilization rate, an applied nitrogen amount of 240 kg·hm -2 is most suitable for graf-ting cultivation in this region.
Bertheloot, Jessica; Wu, Qiongli; Cournède, Paul-Henry; Andrieu, Bruno
2011-10-01
Simulating nitrogen economy in crop plants requires formalizing the interactions between soil nitrogen availability, root nitrogen acquisition, distribution between vegetative organs and remobilization towards grains. This study evaluates and analyses the functional-structural and mechanistic model of nitrogen economy, NEMA (Nitrogen Economy Model within plant Architecture), developed for winter wheat (Triticum aestivum) after flowering. NEMA was calibrated for field plants under three nitrogen fertilization treatments at flowering. Model behaviour was investigated and sensitivity to parameter values was analysed. Nitrogen content of all photosynthetic organs and in particular nitrogen vertical distribution along the stem and remobilization patterns in response to fertilization were simulated accurately by the model, from Rubisco turnover modulated by light intercepted by the organ and a mobile nitrogen pool. This pool proved to be a reliable indicator of plant nitrogen status, allowing efficient regulation of nitrogen acquisition by roots, remobilization from vegetative organs and accumulation in grains in response to nitrogen treatments. In our simulations, root capacity to import carbon, rather than carbon availability, limited nitrogen acquisition and ultimately nitrogen accumulation in grains, while Rubisco turnover intensity mostly affected dry matter accumulation in grains. NEMA enabled interpretation of several key patterns usually observed in field conditions and the identification of plausible processes limiting for grain yield, protein content and root nitrogen acquisition that could be targets for plant breeding; however, further understanding requires more mechanistic formalization of carbon metabolism. Its strong physiological basis and its realistic behaviour support its use to gain insights into nitrogen economy after flowering.
Investigating Nitrogen Pollution: Activities and Models.
ERIC Educational Resources Information Center
Green Teacher, 2000
2000-01-01
Introduces activities on nitrogen, nitrogen pollution from school commuters, nitrogen response in native and introduced species, and nutrient loading models. These activities help students determine the nitrogen contribution from their parents' cars, test native plant responses to nitrogen, and experiment with the results of removing water from…
Wang, Jianfeng; Nan, Zhibiao; Christensen, Michael J; Zhang, Xingxu; Tian, Pei; Zhang, Zhixin; Niu, Xueli; Gao, Peng; Chen, Tao; Ma, Lixia
2018-04-25
The systemic fungal endophyte of the grass Achnatherum inebrians, Epichloë gansuensis, has important roles in enhancing resistance to biotic and abiotic stresses. In this work, we first evaluated the effects of E. gansuensis on nitrogen metabolism, nitrogen use efficiency, and stoichiometry of A. inebrians under varying nitrogen concentrations. The results demonstrated that E. gansuensis significantly improved the growth of A. inebrians under low nitrogen conditions. The fresh and dry weights, nitrogen reductase, nitrite reductase, and glutamine synthetase activity, NO 3 - , NH 4 + , N, and P content, and also the total N accumulation, N utilization efficiency, and N uptake efficiency were all higher in leaves of A. inebrians with E. ganusensis (E+) plants than A. inebrians plants without this endophyte (E-) under low nitrogen availability. In conclusion, E. gansuensis has positive effects on improving the growth of A. inebrians under low-nitrogen conditions by modulating the enzymes of nitrogen metabolism and enhancing nitrogen use efficiency.
Eighth international congress on nitrogen fixation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.
Eighth international congress on nitrogen fixation. Final program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-31
This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.
Goss, Richard L.
1987-01-01
As part of the statistical summaries, trend tests were conducted. Several small uptrends were detected for total nitrogen, total organic nitrogen, total ammonia nitrogen, total nitrite nitrogen, total nitrate nitrogen, total organic plus ammonia nitrogen, total nitrite plus nitrate nitrogen, and total phosphorus. Small downtrends were detected for biochemical oxygen demand and dissolved magnesium.
Du, Shao-ping; Ma, Zhong-ming; Xue, Liang
2015-12-01
In order to develop the optimal coupling model of water and nitrogen of watermelon under limited irrigation in gravel-mulched field, a field experiment with split-plot design was conducted to study the effects of supplementary irrigation volume, nitrogen fertilization, and their interactions on the growth, yield, quality and water and nitrogen use efficiency of watermelon with 4 supplementary irrigation levels (W: 0, 35, 70, and 105 m³ · hm⁻²) in main plots and 3 nitrogen fertilization levels (N: 0, 120, and 200 kg N · hm⁻²) in sub-plots. The results showed that the photosynthetic rate, yield, and water and nitrogen use efficiency of watermelon increased with the increasing supplementary irrigation, but the nitrogen partial productivity and nitrogen use efficiency decreased with increasing nitrogen fertilization level. The photosynthetic rate and quality indicators increased with increasing nitrogen fertilization level as the nitrogen rate changed from 0 to 120 kg N · hm⁻², but no further significant increase as the nitrogen rate exceeded 120 kg · hm⁻². The interactive effects between water and nitrogen was significant for yield and water and nitrogen use efficiency of watermelon, supplementary irrigation volume was a key factor for the increase yield compared with the nitrogen fertilizer, and the yield reached the highest for the W₇₀N₂₀₀ and W₁₀₅ N₁₂₀ treatments, for which the yield increased by 42.4% and 40.4% compared to CK. Water use efficiency (WUE) was improved by supplementary irrigation and nitrogen rate, the WUE of all nitrogen fertilizer treatments were more than 26 kg · m⁻³ under supplemental irrigation levels 70 m³ · hm⁻² and 105 m³ · hm⁻². The nitrogen partial productivity and nitrogen use efficiency reached the highest in the treatment of W₁₀₅N₁₂₀. It was considered that under the experimental condition, 105 m³ · hm⁻² of supplementary irrigation plus 120 kg · hm⁻² of nitrogen fertilization was the optimal combination of obtaining the high yield and high efficiency.
Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela
2018-01-01
Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants. PMID:29320529
Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng
2014-11-01
A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.
Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun
2018-01-01
Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.
International food trade reduces environmental effects of nitrogen pollution in China.
Shi, Yaxing; Wu, Shaohua; Zhou, Shenglu; Wang, Chunhui; Chen, Hao
2016-09-01
The globalization of agricultural trade has dramatically altered global nitrogen flows by changing the spatial pattern of nitrogen utilization and emissions at a global scale. As a major trading country, China uses a large amount of nitrogen, which has a profound impact on global nitrogen flows. Using data on food production and trade between China and 26 other countries and regions, we calculated nitrogen inputs and outputs in food production ecosystem in each country. We estimated nitrogen flows in international food trade and analyzed their impact on nitrogen pollution in China. We divided nitrogen flows into embodied and virtual nitrogen flows. Embodied nitrogen is taken up by the plant and incorporated into the final food product, whereas virtual nitrogen is lost to the environment throughout the food production process and is not contained in the final food product. Our results show that China mainly imports food products from America and Asia, accounting for 95 % of all imported food. Asia (mainly Japan) and Europe are the main exporters of food from China, with Japan and the EU accounting for 17 and 10 % of all exported food, respectively. Total nitrogen inputs and outputs in food production in China were 55,400 and 61,000 Gg respectively, which were much higher than in other countries. About 1440 and 950 Gg of embodied and virtual nitrogen respectively flow into China through the food trade, mainly from food-exporting countries such as the USA, Argentina, and Brazil. Meanwhile, 177 and 160 Gg of embodied and virtual nitrogen respectively flow out of China from the export of food products, mainly to Japan. China's net food imports have reduced 720 and 458 Gg for nitrogen utilization and outputs, respectively, which accounted for 1.3 and 0.78 % of total nitrogen inputs and outputs in China. These results suggest that food trade in China has a profound effect on nitrogen flows and has greatly reduced environmental impacts on nitrogen pollution in China.
NASA Technical Reports Server (NTRS)
Henry, L. T.; Raper, C. D. Jr
1991-01-01
Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.
NITROGEN CONCENTRATION OF STOMACH CONTENTS AS AN INDEX OF DIETARY NITROGEN FOR HISPID COTTON RATS
We examined the reliability of using nitrogen concentration of stomach contents from hispid cotton rats (Sigmodon hispidus) as an index of diet nitrogen. Stomach contents of cotton rats fed diets varying in nitrogen concentration were analyzed for stomach nitrogen. Regression a...
We examined the reliability of using nitrogen concentration of stomach contents from hispid cotton rats (Sigmodon hispidus) as an index of diet nitrogen. Stomach contents of cotton rats fed diets varying in nitrogen concentration were analyzed for stomach nitrogen. Regression a...
Nitrogen Bsalance for a Plantation Forest Drainage Canal on the North Carolina Coastal Plain
USDA-ARS?s Scientific Manuscript database
Human alteration of the nitrogen cycle has led to increased riverine nitrogen loads, contributing to the eutrophication of lakes, streams, estuaries, and near-coastal oceans. These riverine nitrogen loads are usually less than the total nitrogen inputs to the system, indicating nitrogen removal duri...
Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment
NASA Astrophysics Data System (ADS)
Houlton, B. Z.; Morford, S. L.; Dahlgren, R. A.
2018-04-01
Nitrogen availability is a pivotal control on terrestrial carbon sequestration and global climate change. Historical and contemporary views assume that nitrogen enters Earth’s land-surface ecosystems from the atmosphere. Here we demonstrate that bedrock is a nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global terrestrial environment. Evidence drawn from the planet’s nitrogen balance, geochemical proxies, and our spatial weathering model reveal that ~19 to 31 teragrams of nitrogen are mobilized from near-surface rocks annually. About 11 to 18 teragrams of this nitrogen are chemically weathered in situ, thereby increasing the unmanaged (preindustrial) terrestrial nitrogen balance from 8 to 26%. These findings provide a global perspective to reconcile Earth’s nitrogen budget, with implications for nutrient-driven controls over the terrestrial carbon sink.
Li, Jinmei; Yan, Gonghong; Liu, Sichi; Jiang, Tong; Zhong, Mingming; Yuan, Wenjie; Chen, Shaoxian; Zheng, Yin; Jiang, Yong; Jiang, Yu
2017-12-01
In yeast target of rapamycin complex 1 (TORC1) and Tap42-associated phosphatases regulate expression of genes involved in nitrogen limitation response and the nitrogen discrimination pathway. However, it remains unclear whether TORC1 and the phosphatases are required for sensing nitrogen conditions. Utilizing temperature sensitive mutants of tor2 and tap42, we examined the role of TORC1 and Tap42 in nuclear entry of Gln3, a key transcription factor in yeast nitrogen metabolism, in response to changes in nitrogen conditions. Our data show that TORC1 is essential for Gln3 nuclear entry upon nitrogen limitation and downshift in nitrogen quality. However, Tap42-associated phosphatases are required only under nitrogen limitation condition. In cells grown in poor nitrogen medium, the nitrogen permease reactivator kinase (Npr1) inhibits TORC1 activity and alters its association with Tap42, rendering Tap42-associated phosphatases unresponsive to nitrogen limitation. These findings demonstrate a direct role for TORC1 and Tap42-associated phosphatases in sensing nitrogen conditions and unveil an Npr1-dependent mechanism that controls TORC1 and the phosphatases in response to changes in nitrogen quality. © 2017 John Wiley & Sons Ltd.
The Vegetation Nitrogen Content and its Latitudinal Patterns in China
NASA Astrophysics Data System (ADS)
Zhao, Hang; He, Nianpeng; Yu, Guirui; Wang, Qiufeng
2017-04-01
Nitrogen is an essential nutrient element in biological life activities, and plays an important role in plant production and growth. Vegetation nitrogen content can be used as an important component in estimating ecosystem nitrogen storage. In the present study, we used a large amount of data from the database of north-south transects of eastern China and published literatures. We explored the nitrogen content of different components of China terrestrial ecosystems and its latitude pattern at the scales of the plots and of 8 eco-regions. The average nitrogen content of the forest ecosystem was 1.797% in the tree leaves, 0.663% in the tree branch, 0.586% in the tree stem, 0.755% in the tree root. In the shrub layer, the average leaf nitrogen content is 1.845%, the average branch content is 0.968% and the average root nitrogen content is 0.995%. In the herb layer, the average nitrogen content of aboveground is 2.463% and 1.279% for underground. The average nitrogen content of aboveground in grassland ecosystem is 2.006% and 0.994% for underground. The average aboveground nitrogen content in desert ecosystem is 1.911%. The average nitrogen contents of the leaves, stems and roots in wetland ecosystem were 1.669%, 0.741% and 0.659%. There were significant differences in nitrogen content among different organs, and it showed that the nitrogen content of leaves > roots > branches > trunks and aboveground component > underground component. The nitrogen content of different components in China terrestrial ecosystems increased with increasing latitude, especially in leaf. These results demonstrated latitudinal patterns of nitrogen content in Chinese terrestrial ecosystems, based on field-measured data, and provided a reference or standard for regional vegetation nitrogen allocation and storage estimations.
A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation
NASA Astrophysics Data System (ADS)
Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.
2008-12-01
Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).
Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei
2015-11-01
In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that under the ambient CO2- (360 µmol · mol(-1)) treatment. The order of nitrogen accumulation content in organs was bud > leaf > stem > root. Soil urease activity of both layers increased significantly with the elevation of CO2 concentration in all the nitrogen treatments. Under each CO2 concentration treatment, the soil urease activity in the upper layer (0-20 cm) increased significantly with nitrogen application, while the urease activity under the application of 300 kg · hm(-2) nitrogen was highest in the lower layer (20- 40 cm). The average soil urease activity in the upper layer (0-20 cm) was significantly higher than that in the lower layer (20-40 cm). This study suggested that the cotton dry matter accumulation and nitrogen absorption content were significantly increased in response to the elevated CO2 concentration (540 µmol · mol(-1)) and higher nitrogen addition (300 kg · hm(-2)).
NASA Astrophysics Data System (ADS)
Hou, Lijun; Wang, Rong; Yin, Guoyu; Liu, Min; Zheng, Yanling
2018-03-01
Nitrogen fixation is a microbial-mediated process converting atmospheric dinitrogen gas to biologically available ammonia or other molecules, and it plays an important role in regulating nitrogen budgets in coastal marine ecosystems. In this study, nitrogen fixation in the intertidal sediments of the Yangtze Estuary was investigated using nitrogen isotope tracing technique. The abundance of nitrogen fixation functional gene (nifH) was also quantified. The measured rates of sediment nitrogen fixation ranged from 0.37 to 7.91 nmol N g-1 hr-1, while the abundance of nifH gene varied from 2.28 × 106 to 1.28 × 108 copies g-1 in the study area. The benthic nitrogen fixation was correlated closely to the abundance of nifH gene and was affected significantly by salinity, pH, and availability of sediment organic carbon and ammonium. It is estimated that sediment nitrogen fixation contributed approximately 9.3% of the total terrigenous inorganic nitrogen transported annually into the Yangtze estuarine and coastal environment. This result implies that the occurrence of benthic nitrogen fixation acts as an important internal source of reactive nitrogen and to some extent exacerbates nitrogen pollution in this aquatic ecosystem.
Airoldi, Edoardo M.; Miller, Darach; Athanasiadou, Rodoniki; Brandt, Nathan; Abdul-Rahman, Farah; Neymotin, Benjamin; Hashimoto, Tatsu; Bahmani, Tayebeh; Gresham, David
2016-01-01
Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. In Saccharomyces cerevisiae (budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen source that supports a fast growth rate, such as glutamine, that are otherwise expressed in the presence of a nonpreferred nitrogen source, such as proline, which supports a slower growth rate. Differential expression of the NCR regulon and additional nitrogen-responsive genes results in >500 transcripts that are differentially expressed in cells growing in the presence of different nitrogen sources in batch cultures. Here we find that in growth rate–controlled cultures using nitrogen-limited chemostats, gene expression programs are strikingly similar regardless of nitrogen source. NCR expression is derepressed in all nitrogen-limiting chemostat conditions regardless of nitrogen source, and in these conditions, only 34 transcripts exhibit nitrogen source–specific differential gene expression. Addition of either the preferred nitrogen source, glutamine, or the nonpreferred nitrogen source, proline, to cells growing in nitrogen-limited chemostats results in rapid, dose-dependent repression of the NCR regulon. Using a novel means of computational normalization to compare global gene expression programs in steady-state and dynamic conditions, we find evidence that the addition of nitrogen to nitrogen-limited cells results in the transient overproduction of transcripts required for protein translation. Simultaneously, we find that that accelerated mRNA degradation underlies the rapid clearing of a subset of transcripts, which is most pronounced for the highly expressed NCR-regulated permease genes GAP1, MEP2, DAL5, PUT4, and DIP5. Our results reveal novel aspects of nitrogen-regulated gene expression and highlight the need for a quantitative approach to study how the cell coordinates protein translation and nitrogen assimilation to optimize cell growth in different environments. PMID:26941329
Are Visceral Proteins Valid Markers for Nutritional Status in the Burn Intensive Care Unit?
2015-05-01
serum CRP, haptoglobin, and α-1-antitrypsin) were measured weekly. Serum creatinine was measured daily. Urinary urea nitrogen (UUN) was measured weekly...using 24-hour urine col- lections. Nitrogen losses were calculated weekly (using UUN × 1.25) to estimate the total urinary nitrogen excretion.16...Subject Weeks Nitrogen Intake Wound Losses per Waxman Equation Urinary Urea Nitrogen Total Nitrogen Loss Nitrogen Balance % of Weeks in
The nitrogen isotopic composition in soils and plants: Its use in environmental studies (A Review)
NASA Astrophysics Data System (ADS)
Makarov, M. I.
2009-12-01
The results of studying the isotopic composition of the nitrogen in soils and plants and its use for characterizing the nitrogen cycle in ecosystems, the transformation of nitrogen compounds in soils, the sources of nitrogen nutrition for plants, and the assessment of the symbiotic nitrogen fixation’s contribution to the nitrogen budget of ecosystems were considered for a wide variety of natural and agricultural ecosystems.
USDA-ARS?s Scientific Manuscript database
The anaerobic potentially mineralizable nitrogen (PMNan) test is a tool that can improve estimations of mineralizable nitrogen (N) and enhance nitrogen use efficiency. This tool may also help improve predictions of N uptake, grain yield, and the economic optimum nitrogen rate (EONR) of corn (Zea ma...
Nitrogen oxides from burning forest fuels examined by thermogravimetry and evolved gas analysis
H.B. Clements; Charles K. McMahon
1980-01-01
Abstract. Twelve forest fuels that varied widely in nitrogen content were burned in a thermogravimetric system, and nitrogen oxide production was analyzed by chemiluminescence. The effects of fuel nitrogen concentration, available oxygen, flow rate, and heating rate on nitrogen oxide production were examined.Results show that fuel nitrogen is an...
21 CFR 862.1770 - Urea nitrogen test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...
21 CFR 862.1770 - Urea nitrogen test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...
21 CFR 862.1770 - Urea nitrogen test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...
21 CFR 862.1770 - Urea nitrogen test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...
21 CFR 862.1770 - Urea nitrogen test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...
Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture
Kiba, Takatoshi; Krapp, Anne
2016-01-01
Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887
Insects as a Nitrogen Source for Plants
Behie, Scott W.; Bidochka, Michael J.
2013-01-01
Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427
Scott, D.; Harvey, J.; Alexander, R.; Schwarz, G.
2007-01-01
The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.
NASA Astrophysics Data System (ADS)
Scott, Durelle; Harvey, Judson; Alexander, Richard; Schwarz, Gregory
2007-03-01
The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.
Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.
1997-01-01
A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.
Fodder Resource Uses and Assessment of Nitrogen Flows on Livestock Farming with Crop Production
NASA Astrophysics Data System (ADS)
Shirahase, Kyoko; Kobayashi, Hisashi
With understanding the livestock farming on cattle breeding practiced increasing of self-production of fodders by the farmland's operation as “Livestock Farming with crop production”, we investigated the utilizations of actual fodder resources and farmland for two selected different types of livestock farming systems: “Multiple Type” which practices cattle raising with fodder cultivation, and “Grazing Type” which practices grazing and fodder cultivation with similar feed self-sufficiency rates. We also prepared and compared material and nitrogen flow of both livestock farming systems. The amount of nitrogen flow is clearly different between the two types though feed self-sufficiency rates are at similar level. Moreover, we defined “Internal Nitrogen Rate (INR)” which indicates the rate of internal nitrogen use to total nitrogen use in cattle raising, “Internal Nitrogen Circulation Rate (NCR)” which indicates the ratio of nitrogen amount in internal circulation to the nitrogen amount introduced from outside, and Nitrogen Outflow Potential (Op), which is the balance of nitrogen amount between input to farmlands and uptake by plants, and analyzed the balance of the amounts of nitrogen flows in both livestock farming type. It is suggested that “Grazing type”, which had the values of relatively high NCR and absolutely low Op, was the livestock farming type with high rates of nitrogen procurement from the interregional farming and low risk of nitrogen outflow.
Ambient Ammonium Contribution to total Nitrogen Deposition ...
There has been a wealth of evidence over the last decade illustrating the rising importance of reduced inorganic nitrogen (NHx = ammonia gas, NH3, plus particulate ammonium, p-NH4) in the overall atmospheric mass balance and deposition of nitrogen as emissions of oxidized nitrogen have decreased throughout a period of stable or increasing NH3 emissions. In addition, the fraction of ambient ammonia relative to p-NH4 generally has risen as a result of decreases in both oxides of nitrogen and sulfur emissions. EPA plans to consider ecological effects related to deposition of nitrogen, of which NHx is a contributing component, in the review of secondary National Ambient Air Quality Standards (NAAQS) for oxides of nitrogen and sulfur (NOx/SOx standard). Although these ecological effects are associated with total nitrogen deposition, it will be important to understand the emissions sources contributing to the total nitrogen deposition and to understand how much of the total nitrogen deposition is from deposition of NHx versus other nitrogen species. Because p-NH4 contributes to nitrogen deposition and can also be a significant component of particulate matter, there is a potential overlap in addressing nitrogen based deposition effects in the secondary PM and NOx/SOx NAAQS. Consequently, there is a policy interest in quantifying the contribution of p-NH4 to total nitrogen deposition. While dry deposition of p-NH4 is calculated through a variety of modeling app
Mean age distribution of inorganic soil-nitrogen
NASA Astrophysics Data System (ADS)
Woo, Dong K.; Kumar, Praveen
2016-07-01
Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion (ppb...
Code of Federal Regulations, 2012 CFR
2012-07-01
... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion (ppb...
Code of Federal Regulations, 2013 CFR
2013-07-01
... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion (ppb...
Nitrogen solubility in the deep mantle and the origin of Earth's primordial nitrogen budget
NASA Astrophysics Data System (ADS)
Yoshioka, Takahiro; Wiedenbeck, Michael; Shcheka, Svyatoslav; Keppler, Hans
2018-04-01
The solubility of nitrogen in the major minerals of the Earth's transition zone and lower mantle (wadsleyite, ringwoodite, bridgmanite, and Ca-silicate perovskite) coexisting with a reduced, nitrogen-rich fluid phase was measured. Experiments were carried out in multi-anvil presses at 14 to 24 GPa and 1100 to 1800 °C close to the Fe-FeO buffer. Starting materials were enriched in 15N and the nitrogen concentrations in run products were measured by secondary ion mass spectrometry. Observed nitrogen (15N) solubilities in wadsleyite and ringwoodite typically range from 10 to 250 μg/g and strongly increase with temperature. Nitrogen solubility in bridgmanite is about 20 μg/g, while Ca-silicate perovskite incorporates about 30 μg/g under comparable conditions. Partition coefficients of nitrogen derived from coexisting phases are DNwadsleyite/olivine = 5.1 ± 2.1, DNringwoodite/wadsleyite = 0.49 ± 0.29, and DNbridgmanite/ringwoodite = 0.24 (+ 0.30 / - 0.19). Nitrogen solubility in the solid, iron-rich metal phase coexisting with the silicates was also measured and reached a maximum of nearly 1 wt.% 15N at 23 GPa and 1400 °C. These data yield a partition coefficient of nitrogen between iron metal and bridgmanite of DNmetal/bridgmanite ∼ 98, implying that in a lower mantle containing about 1% of iron metal, about half of the nitrogen still resides in the silicates. The high nitrogen solubility in wadsleyite and ringwoodite may be responsible for the low nitrogen concentrations often observed in ultradeep diamonds from the transition zone. Overall, the solubility data suggest that the transition zone and the lower mantle have the capacity to store at least 33 times the mass of nitrogen presently residing in the atmosphere. By combining the nitrogen solubility data in minerals with data on nitrogen solubility in silicate melts, mineral/melt partition coefficients of nitrogen can be estimated, from which the behavior of nitrogen during magma ocean crystallization can be modeled. Such models show that if the magma ocean coexisted with a primordial atmosphere having a nitrogen partial pressure of just a few bars, several times the current atmospheric mass of nitrogen must have been trapped in the deep mantle. It is therefore plausible that the apparent depletion of nitrogen relative to other volatiles in the near-surface reservoirs reflects the storage of a larger reservoir of nitrogen in the solid Earth. Dynamic exchange between these reservoirs may have induced major fluctuations of bulk atmospheric pressure over Earth's history.
Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.
Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G
2012-01-01
Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.
Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics
Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.
2012-01-01
Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models. PMID:22649564
Liu, Yi-Ren; Li, Xiang; Yu, Jie; Shen, Qi-Rong; Xu, Yang-Chun
2012-01-01
A pot experiment was conducted to study the effects of combined application of organic and inorganic fertilizers on the nitrogen uptake by rice and the nitrogen supply by soil in a wheat-rice rotation system, and approach the mechanisms for the increased fertilizer nitrogen use efficiency of rice under the combined fertilization from the viewpoint of microbiology. Comparing with applying inorganic fertilizers, combined application of organic and inorganic fertilizers decreased the soil microbial biomass carbon and nitrogen and soil mineral nitrogen contents before tillering stage, but increased them significantly from heading to filling stage. Under the combined fertilization, the dynamics of soil nitrogen supply matched best the dynamics of rice nitrogen uptake and utilization, which promoted the nitrogen accumulation in rice plant and the increase of rice yield and biomass, and increased the fertilizer nitrogen use efficiency of rice significantly. Combined application of inorganic and organic fertilizers also promoted the propagation of soil microbes, and consequently, more mineral nitrogen in soil was immobilized by the microbes at rice early growth stage, and the immobilized nitrogen was gradually released at the mid and late growth stages of rice, being able to better satisfy the nitrogen demand of rice in its various growth and development stages.
Bell, Sally-Jean; Francis, I Leigh
2013-08-15
With increased prevalence of saline irrigation water applied to vines worldwide, the issue of appropriate nitrogen management is of concern. Different rates of nitrogen per vine as urea were applied to Shiraz vines on own roots over four seasons in a low-rainfall, saline growing environment. Application of nitrogen in the vineyard early in the season not only altered the vine nitrogen status but also increased some other elements in the petioles, notably chloride and sodium but also manganese and magnesium. In contrast, nitrogen application decreased petiole phosphorus. In comparison with the majority of nitrogen studies on non-saline sites, nitrogen-induced growth responses were restricted under the saline conditions in this study. While some changes in canopy density in response to nitrogen were observed, this did not affect light interception in the fruit zone. Yield responses were varied and could be related to the nutritional conditions under which bud development and flowering took place. This study demonstrated that current best practice guidelines, in terms of rate of nitrogen applied, for correcting a nitrogen deficiency on a non-saline site may not be appropriate for saline sites and that application of nitrogen can increase the potential for salt toxicity in vines. © 2013 Society of Chemical Industry.
The Nitrogen Balancing Act: Tracking the Environmental Performance of Food Production
McLellan, Eileen L; Cassman, Kenneth G; Eagle, Alison J; Woodbury, Peter B; Sela, Shai; Tonitto, Christina; Marjerison, Rebecca D; van Es, Harold M
2018-01-01
Abstract Farmers, food supply-chain entities, and policymakers need a simple but robust indicator to demonstrate progress toward reducing nitrogen pollution associated with food production. We show that nitrogen balance—the difference between nitrogen inputs and nitrogen outputs in an agricultural production system—is a robust measure of nitrogen losses that is simple to calculate, easily understood, and based on readily available farm data. Nitrogen balance provides farmers with a means of demonstrating to an increasingly concerned public that they are succeeding in reducing nitrogen losses while also improving the overall sustainability of their farming operation. Likewise, supply-chain companies and policymakers can use nitrogen balance to track progress toward sustainability goals. We describe the value of nitrogen balance in translating environmental targets into actionable goals for farmers and illustrate the potential roles of science, policy, and agricultural support networks in helping farmers achieve them. PMID:29662247
Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.
Kiba, Takatoshi; Krapp, Anne
2016-04-01
Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Nitrogen removal from landfill leachate using single or combined processes.
He, P J; Shao, L M; Guo, H D; Li, G J; Lee, D J
2005-04-01
The municipal solids waste (MSW) collected at Shanghai includes a high proportion of food waste, which is easily hydrolyzed to generate ammonia-nitrogen in leachate. This study investigated the efficiency of nitrogen removal from landfill leachate employing four different treatment processes. The simulated rainfall and direct leachate recycling produced strong leachate with high ammonia-nitrogen content, and resulted in the removal of only a small amount of nitrogen. Although pretreating the leachate using an aerobic reactor removed some nitrogen, most of which was transformed to biomass because of the high organic loading applied. Using the three-compartment system, which comprises a landfill column with fresh MSW, a column with well-decomposed refuse layer as the methane generator, and a nitrifier, the ammonia-nitrogen was converted into nitrogen gas and hence removed. Experimental results demonstrated the feasibility of adopting the three-compartment system for managing nitrogen in landfill leachate generated from high-nitrogen-content MSW.
Convergent evidence for widespread rock nitrogen sources in Earth's surface environment.
Houlton, B Z; Morford, S L; Dahlgren, R A
2018-04-06
Nitrogen availability is a pivotal control on terrestrial carbon sequestration and global climate change. Historical and contemporary views assume that nitrogen enters Earth's land-surface ecosystems from the atmosphere. Here we demonstrate that bedrock is a nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global terrestrial environment. Evidence drawn from the planet's nitrogen balance, geochemical proxies, and our spatial weathering model reveal that ~19 to 31 teragrams of nitrogen are mobilized from near-surface rocks annually. About 11 to 18 teragrams of this nitrogen are chemically weathered in situ, thereby increasing the unmanaged (preindustrial) terrestrial nitrogen balance from 8 to 26%. These findings provide a global perspective to reconcile Earth's nitrogen budget, with implications for nutrient-driven controls over the terrestrial carbon sink. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Aqueous phase removal of nitrogen from nitrogen compounds
Fassbender, Alex G.
1993-01-01
A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.
Formation of the nitrogen aggregates in annealed diamond by neutron irradiation
NASA Astrophysics Data System (ADS)
Mita, Y.; Nisida, Y.; Okada, M.
2018-02-01
Neutron heavy irradiation was performed on synthetic diamonds contain nitrogen atoms in isolated substitutional form (called "type Ib diamond") and they were annealed under a pressure of 6 GPa. A large number of nitrogen B-aggregate which consists of four substitutional nitrogen atoms symmetrically surrounding a vacancy was formed within 30 m from single nitrogen atoms. Furthermore it is observed that, in these diamonds, single nitrogen atoms coexist with the B-aggregates, which is unexplainable by the simple nitrogen aggregation model.
Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize
2018-02-01
Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Charles Rhoades; Dan Binkley; Hlynur Oskarsson; Robert Stottlemyer
2008-01-01
Nitrogen enters terrestrial ecosystems through multiple pathways during primary succession. We measured accumulation of total soil nitrogen and changes in inorganic nitrogen (N) pools across a 300-y sequence of river terraces in northwest Alaska and assessed the contribution of the nitrogen-fixing shrub Shepherdia canadensis. Our work compared 5...
Abiotic gas formation drives nitrogen loss from a desert ecosystem.
McCalley, Carmody K; Sparks, Jed P
2009-11-06
In arid environments such as deserts, nitrogen is often the most limiting nutrient for biological activity. The majority of the ecosystem nitrogen flux is typically thought to be driven by production and loss of reactive nitrogen species by microorganisms in the soil. We found that high soil-surface temperatures (greater than 50 degrees C), driven by solar radiation, are the primary cause of nitrogen loss in Mojave Desert soils. This abiotic pathway not only enables the balancing of arid ecosystem nitrogen budgets, but also changes our view of global nitrogen cycling and the predicted impact of climate change and increased temperatures on nitrogen bioavailability.
NASA Astrophysics Data System (ADS)
Battye, William; Aneja, Viney P.; Schlesinger, William H.
2017-09-01
Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.
Mansilla, Wilfredo D; Silva, Kayla E; Zhu, Cuilan L; Nyachoti, Charles M; Htoo, John K; Cant, John P; de Lange, Cornelis Fm
2017-12-01
Background: Including ammonia in low-crude protein (CP) diets deficient in dispensable amino acid (DAAs) increases nitrogen retention in growing pigs. Objective: We investigated the absorption and metabolism of dietary ammonia nitrogen in the portal-drained viscera (PDV) and liver of pigs fed a diet deficient in DAA nitrogen. Methods: Eight pigs with an initial mean ± SD body weight (BW) of 26.5 ± 1.4 kg were surgically fitted with 4 catheters each (portal, hepatic and mesenteric veins, and carotid artery). The pigs were fed (2.8 × 191 kcal/kg BW 0.60 ), for 7 d and every 8 h, a diet deficient in DAA nitrogen supplemented with increasing amounts of ammonia nitrogen (CP: 7.76%, 9.27%, and 10.77%; indispensable amino acid nitrogen:total nitrogen ratio: 0.71, 0.59, and 0.50 for control and low- and high-ammonia diets, respectively). The treatment sequence was based on a Latin square design with 3 consecutive periods. On the last day of each period, blood flows in the portal and hepatic veins were determined with a continuous infusion of ρ-amino hippuric acid into the mesenteric vein. Serial blood samples were taken to determine ammonia and urea nitrogen concentration. Net balances of ammonia and urea nitrogen were calculated for the PDV and liver. Results: Cumulative (8 h) ammonia nitrogen appearance in the portal vein increased ( P ≤ 0.05) with ammonia intake (433, 958, and 1629 ± 60 mg ammonia nitrogen/meal for control and low- and high-ammonia diets, respectively). The cumulative hepatic uptake of ammonia nitrogen increased ( P ≤ 0.05) with ammonia nitrogen supply. The cumulative urea nitrogen appearance in the hepatic vein tended to increase ( P ≤ 0.10) only in high-ammonia treatment (-92.5, -59.4, and 209.7 ± 92 mg urea nitrogen/meal for control and low- and high-ammonia diets, respectively) and, relative to the control diet, represented -6.0% and 11% of ammonia nitrogen intake. Conclusion: Dietary ammonia nitrogen is poorly utilized for urea production across splanchnic organs when pigs are fed diets deficient in DAA nitrogen. © 2017 American Society for Nutrition.
Ma, Zhong-ming; Du, Shao-ping; Xue, Liang
2015-11-01
The effects of nitrogen management on yield, quality, nitrogen and dry matter accumulation and transportation of watermelon in sand field were studied based on a field experiment. The results showed that too low or too high basal nitrogen fertilzation was unfavorable to seedling growth of watermelon in sand field, and no nitrogen application at vine extension or fruiting stages limited the formation of 'source' or 'sink'. At the same nitrogen rate, compared with the traditional T1 treatment (30% basal N fertilizer + 70% N fertilizer in vine extension), the nitrogen and dry matter accumulation of vegetative organs of T4 treatment (30% basal N fertilizer + 30% N fertilizer in vine extension + 40% N fertilizer in fruiting) and T6 treatment (100% basal N fertilizer + NAM) were reduced significantly, but the nitrogen and dry matter accumulation of fruit were increased significantly in the flushing period. The nitrogen transportation ratio and nitrogen contribution ratio of T4 were 33.6% and 12.0%, respectively. Compared to T1, the nitrogen harvest index, nitrogen fertilizer partial factor productivity and nitrogen fertilizer recovery efficiency of T4 and T6 treatments increased by 14.1% and 12.7%, 11.6% and 12.5%, 5.3% and 8.7%, respectively, and yield of watermelon increased by 11.6% and 12.5%, the soluble sugar, effective acid, the ratio of sugar and acid, Vc content increased by 16.5% and 11.7%, 4.5% and 2.8%, 19.4% and 13.4%, 35.6% and 19.0%, respectively. Therefore, T4 and T6 treatments were the optimal nitrogen fertilizer management mode which could not only achieve high yield and quality but also obtain high nitrogen fertilizer use efficiency in sand field. T6 treatment was the best nitrogen fertilizer management mode considering reduction of fertilizing labor intensity and extending service time of gravel-mulched field.
Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon
NASA Astrophysics Data System (ADS)
Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri
2001-07-01
Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.
Kaufman, Matthew I.; Dysart, J.E.
1978-01-01
Water samples were collected during spring and autumn 1972 from about 100 surface-water sites in Florida. The samples were analyzed for the plant nutrients, nitrogen and phosphorus. In most waters, nitrogen concentrations are less than 2.0 milligrams per liter as nitrogen, and organic nitrogen is dominant. Median total nitrogen concentration for Florida surface waters is between 1.2 and 2.0 milligrams per liter as nitrogen. In samples from 85 percent of the sites, total nitrogen exceeded 0.6 milligrams per liter. Median total phosphorus concentration as phosphorus for Florida surface waters is between 0.05 and 0.1 milligrams per liter. The information will form a base useful to agencies concerned with setting concentration limits for nitrogen and phosphorus in industrial and sewage plant outfalls. (Woodard-USGS)
Herrera M, L Gerardo; Ramirez P, Nicte; Miron M, Leticia
2006-01-01
We determined the effect of water and nitrogen intake on nitrogenous waste composition in the nectarivorous Pallas's long-tongued bat Glossophaga soricina (Phyllostomidae) to test the hypothesis that bats reduce excretion of urea nitrogen and increase the excretion of ammonia nitrogen as nitrogen intake decreases and water intake decreases. Because changes in urine nitrogen composition are expected only in animals whose natural diets are low in nitrogen and high in water content, we also measured maintenance nitrogen requirements (MNR). We hypothesized that, similar to other plant-eating vertebrates, nectarivorous bats have low MNR. Our nitrogen excretion hypothesis was partly proved correct. There was an increase in the proportion of N excreted as ammonia and a decrease in the proportion excreted as urea in low-nitrogen diets. The proportion of N excreted as ammonia and urea was independent of water intake. Most individuals were ureotelic (n = 28), and only a few were ureo-ammonotelic (n = 3) or ammonotelic (n = 2). According to our nitrogen requirement hypothesis, apparent MNR (60 mg kg(-0.75) d(-1)) and truly digestible MNR (54 mg N kg(-0.75) d(-1)) were low. A decrease in urea excretion in low-nitrogen diets may result from urea recycling from liver to the gut functioning as a nitrogen salvage system in nectarivorous bats. This mechanism probably contributes to the low MNR found in Pallas's long-tongued bats.
Brice, Claire; Sanchez, Isabelle; Tesnière, Catherine
2014-01-01
Nitrogen is an essential nutrient for Saccharomyces cerevisiae wine yeasts during alcoholic fermentation, and its abundance determines the fermentation rate and duration. The capacity to ferment under conditions of nitrogen deficiency differs between yeasts. A characterization of the nitrogen requirements of a set of 23 strains revealed large differences in their fermentative performances under nitrogen deficiency, and these differences reflect the nitrogen requirements of the strains. We selected and compared two groups of strains, one with low nitrogen requirements (LNRs) and the other with high nitrogen requirements (HNRs). A comparison of various physiological traits indicated that the differences are not related to the ability to store nitrogen or the protein content. No differences in protein synthesis activity were detected between strains with different nitrogen requirements. Transcriptomic analysis revealed expression patterns specific to each of the two groups of strains, with an overexpression of stress genes in HNR strains and a stronger expression of biosynthetic genes in LNR strains. Our data suggest that differences in glycolytic flux may originate from variations in nitrogen sensing and signaling under conditions of starvation. PMID:24334661
Mechanisms of nitrogen retention in forest ecosystems - A field experiment
NASA Technical Reports Server (NTRS)
Vitousek, P. M.; Matson, P. A.
1984-01-01
Intensive forest management led to elevated losses of nitrogen from a recently harvested loblolly pine plantation in North Carolina. Measurements of nitrogen-15 retention in the field demonstrated that microbial uptake of nitrogen during the decomposition of residual organic material was the most important process retaining nitrogen. Management practices that remove this material cause increased losses of nitrogen to aquatic ecosystems and the atmosphere.
The Nitrogen Footprint Tool Network: A Multi-Institution Program To Reduce Nitrogen Pollution
Leach, Allison M.; Leary, Neil; Baron, Jill; Compton, Jana E.; Galloway, James N.; Hastings, Meredith G.; Kimiecik, Jacob; Lantz-Trissel, Jonathan; de la Reguera, Elizabeth; Ryals, Rebecca
2017-01-01
Abstract Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This article uses the Nitrogen Footprint Tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this article, the first seven completed institution nitrogen footprint results are presented. The Nitrogen Footprint Tool Network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive nitrogen released to the environment. Energy use and food purchases are the two largest sectors contributing to institution nitrogen footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the nitrogen footprint, but the impact of food production on nitrogen pollution has not been directly addressed by the higher education sustainability community. The Nitrogen Footprint Tool Network found that institutions could reduce their nitrogen footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as by reducing dependence on fossil fuels for energy. PMID:29350216
Zhang, Shan; Shi, Zu-liang; Yang, Si-jun; Gu, Ke-jun; Dai, Ting-bo; Wang, Fei; Li, Xiang; Sun, Ren-hua
2015-09-01
Field experiments were conducted to study the effects of nitrogen application rates and straw returning on grain yield, nutrient accumulation, nutrient release from straw and nutrient balance in late sowing wheat. The results showed that straw returning together with appropriate application of nitrogen fertilizer improved the grain yield. Dry matter, nitrogen, phosphorus and potassium accumulation increased significantly as the nitrogen application rate increased. At the same nitrogen application rate (270 kg N · hm(-2)), the dry matter, phosphorus and potassium accumulation of the treatment with straw returning were higher than that without straw returning, but the nitrogen accumulation was lower. Higher-rate nitrogen application promoted straw decomposition and nutrient release, and decreased the proportion of the nutrient released from straw after jointing. The dry matter, phosphorus and potassium release from straw showed a reverse 'N' type change with the wheat growing, while nitrogen release showed a 'V' type change. The nutrient surplus increased significantly with the nitrogen application rate. At the nitrogen application rate for the highest grain yield, nitrogen and potassium were surplus significantly, and phosphorus input could keep balance. It could be concluded that as to late sowing wheat with straw returning, applying nitrogen at 257 kg · hm(-2) and reducing potassium fertilizer application could improve grain yield and reduce nutrients loss.
Leaf nitrogen remobilisation for plant development and grain filling.
Masclaux-Daubresse, C; Reisdorf-Cren, M; Orsel, M
2008-09-01
A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.
Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie
2017-12-19
The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and production.
NASA Astrophysics Data System (ADS)
Carroll, M.; Shepson, P. B.; Bertman, S. B.; Sparks, J. P.; Holland, E. A.
2002-12-01
Atmosphere-Forest Exchange: Important Questions Regarding the Atmosphere's Role in the Delivery of Nutrient Nitrogen and Impacts on Nitrogen and Carbon Cycling Atmospheric composition and chemistry directly affect ecosystem nitrogen cycling and indirectly affect ecosystem carbon cycling and storage. Current understanding of atmosphere-forest nitrogen exchange and subsequent impacts is based almost exclusively on nitrogen deposition data obtained from networks using buckets placed in open areas, studies involving inorganic nitrogen, frequently with enhanced N deposition inputs applied only to soils, and that ignore multiple stresses (e.g., the combined effects of aerosols, ozone exposure, elevated CO2, and drought). Current models of nitrogen cycling treat deposited nitrogen (e.g., HNO3 and NO3-) as a permanent sink whereas data appear to indicate that photolytic and heterogeneous chemical processes occurring on surfaces and in dew can result in the re-evolution of gaseous species such as NO and HONO. Similarly, the direct uptake of gaseous nitrogen compounds by foliage has been neglected, compromising conclusions drawn from deposition experiments and ignoring a mechanism that may significantly affect nitrogen cycling and carbon storage, one that may become more significant with future atmospheric and climate change. We hypothesize that the atmosphere plays a significant role in the delivery of nutrient nitrogen to the N-limited mixed hardwood forest at the PROPHET research site at the University of Michigan Biological Station. We assert that a complete understanding of atmosphere- biosphere interactions and feedbacks is required to develop a predictive capability regarding forest response to increasing atmospheric CO2, reactive nitrogen, oxidants, and aerosols, increasing nitrogen and acidic deposition, and anticipated climate change. We further assert that conclusions drawn from studies that are limited to inorganic nitrogen, fertilization of soils, and/or that neglect the role of the canopy (in N uptake and/or remobilization) may not produce a complete understanding of N and C cycling in terrestrial ecosystems, including atmosphere-biosphere interactions and feedbacks. Here, as part of a new PROPHET focus on Biosphere Exchange of Atmospheric Carbon and Odd Nitrogen (BEACON), we identify a number of issues associated with nitrogen limited forest ecosystems and nitrogen saturation and important science questions that require collaborative studies involving the atmospheric and biospheric science communities.
Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun
2013-01-01
Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water.
Isotopic constraints on the source of Pluto's nitrogen and the history of atmospheric escape
NASA Astrophysics Data System (ADS)
Mandt, Kathleen E.; Mousis, Olivier; Luspay-Kuti, Adrienn
2016-10-01
The origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen. After evaluating the potential impact of escape and photochemistry on Pluto's nitrogen isotope ratio (14N/15N), we find that if Pluto's nitrogen originated as N2 the current ratio in Pluto's atmosphere would be greater than 324 while it would be less than 157 if the source of Pluto's nitrogen were NH3. The New Horizons spacecraft successfully visited the Pluto system in July 2015 providing a potential opportunity to measure 14N/15N in N2.
Bareha, Y; Girault, R; Jimenez, J; Trémier, A
2018-04-26
Prediction of organic nitrogen mineralization into ammonium during anaerobic digestion is required for optimizing substitution of mineral fertilizer by digestates. The aim of this study was to understand organic nitrogen biodegradability and to investigate how it can be predicted from carbon biodegradability, and nitrogen bioaccessibility, respectively. Bioaccessibility was assessed using fractionation methods based on sequential extractions. Results showed that organic nitrogen was present in fractions whose bioaccessibility levels differed. Organic nitrogen and carbon biodegradability were also determined and compared. Results highlighted two groups of substrates: the first with an initial NH 4 + /TKN < 30%, whose carbon and nitrogen biodegradability are similar; the second with an initial NH 4 + /TKN > 30%, whose carbon and nitrogen biodegradability differ significantly. To enable prediction on all substrates, partial least square (PLS) regressions were carried out to link organic nitrogen bioaccessibility indicators to biodegradability. The models successfully predicted organic nitrogen biodegradability with a maximum prediction error of 10%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; García-Escudero, Enrique; Martínez-Vidaurre, José María
2017-06-01
Nitrogen affects grapevine growth and also yeast metabolism, which have a direct influence on fermentation kinetics and the formation of different volatile compounds. Throughout the grapevine cycle, soil nitrogen availability and grape nitrogen composition can vary because of different factors. Nitrogen foliar applications can contribute toward enhancing grapevine nitrogen status and minimize the problem of leaching that traditional nitrogen-soil applications can provoke. The present study aimed to evaluate the influence of urea foliar applications on grapevine nitrogen status and grape amino acid content. Accordingly, two different doses of urea were applied over the leaves of a 'Tempranillo' vineyard. The highest urea doses affected nitrogen content on blade leaf tissues after veraison. Must amino acid profiles were modified by urea application and some of the compounds increased their concentrations. The effect of year on the increase of must total amino acid concentrations was more important than the effect of the doses applied. Urea foliar applications can be an interesting tool for decreasing grapevine nitrogen deficiencies. This method of nitrogen implementation in the vineyard could avoid sluggish fermentation problems during winemaking, enhance must nitrogen composition, and contribute to improving wine quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghimire, Bardan; Riley, William J.; Koven, Charles D.
In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis ratesmore » are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO 2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.« less
Ghimire, Bardan; Riley, William J.; Koven, Charles D.; ...
2016-05-01
In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis ratesmore » are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO 2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.« less
Zheng, Mengmeng; Zheng, Hua; Wu, Yingxia; Xiao, Yi; Du, Yihua; Xu, Weihua; Lu, Fei; Wang, Xiaoke; Ouyang, Zhiyun
2015-02-01
The nitrogen balance can serve as an indicator of the risk to the environment of nitrogen loss from agricultural land. To investigate the temporal and spatial changes in agricultural nitrogen application and its potential threat to the environment of the Haihe Basin in China, we used a database of county-level agricultural statistics to calculate agricultural nitrogen input, output, surplus intensity, and use efficiency. Chemical fertilizer nitrogen input increased by 51.7% from 1990 to 2000 and by 37.2% from 2000 to 2010, concomitant with increasing crop yields. Simultaneously, the nitrogen surplus intensity increased by 53.5% from 1990 to 2000 and by 16.5% from 2000 to 2010, presenting a continuously increased environmental risk. Nitrogen use efficiency decreased from 0.46 in 1990 to 0.42 in 2000 and remained constant at 0.42 in 2010, partly due to fertilizer composition and type improvement. This level indicates that more than half of nitrogen inputs are lost in agroecosystems. Our results suggest that although the improvement in fertilizer composition and types has partially offset the decrease in nitrogen use efficiency, the environmental risk has still increased gradually over the past 20 years, along with the increase in crop yields and nitrogen application. It is important to achieve a better nitrogen balance through more effective management to significantly reduce the environmental risk, decrease nitrogen surplus intensity, and increase nitrogen use efficiency without sacrificing crop yields. Copyright © 2014. Published by Elsevier B.V.
Gutiérrez, Alicia; Chiva, Rosana; Sancho, Marta; Beltran, Gemma; Arroyo-López, Francisco Noé; Guillamon, José Manuel
2012-08-01
Nitrogen deficiencies in grape musts are one of the main causes of stuck or sluggish wine fermentations. Currently, the most common method for dealing with nitrogen-deficient fermentations is adding supplementary nitrogen (usually ammonium phosphate). However, it is important to know the specific nitrogen requirement of each strain, to avoid excessive addition that can lead to microbial instability and ethyl carbamate accumulation. In this study, we aimed to determine the effect of increasing nitrogen concentrations of three different nitrogen sources on growth and fermentation performance in four industrial wine yeast strains. This task was carried out using statistical modeling techniques. The strains PDM and RVA showed higher growth-rate and maximum population size and consumed nitrogen much more quickly than strains ARM and TTA. Likewise, the strains PDM and RVA were also the greatest nitrogen demanders. Thus, we can conclude that these differences in nitrogen demand positively correlated with higher growth rate and higher nitrogen uptake rate. The most direct effect of employing an adequate nitrogen concentration is the increase in biomass, which involves a higher fermentation rate. However, the impact of nitrogen on fermentation rate is not exclusively due to the increase in biomass because the strain TTA, which showed the worst growth behavior, had the best fermentation activity. Some strains may adapt a strategy whereby fewer cells with higher metabolic activity are produced. Regarding the nitrogen source used, all the strains showed the better and worse fermentation performance with arginine and ammonium, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.
2016-06-01
In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.
Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.
Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O
2015-11-23
Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.
Feng, Yang; Friedrichs, Marjorie A M; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E; Wiggert, Jerry D; Hood, Raleigh R
2015-08-01
The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 10 9 g N yr -1 ) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 10 9 g N yr -1 ) and buried (46 × 10 9 g N yr -1 ) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 10 9 g N yr -1 ) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.
Friedrichs, Marjorie A. M.; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E.; Wiggert, Jerry D.; Hood, Raleigh R.
2015-01-01
Abstract The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land‐estuarine‐ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within‐estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite‐derived data, and a simulation using environmental conditions for 2001–2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr−1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr−1) and buried (46 × 109 g N yr−1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr−1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50–60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf. PMID:27668137
Zhang, Lei; Shao, Yu Hang; Gu, Shi Lu; Hu, Hang; Zhang, Wei Wei; Tian, Zhong Wei; Jiang, Dong; Dai, Ting Bo
2016-12-01
Excessive nitrogen (N) fertilizer application has led to a reduction of nitrogen use efficiency and environmental problems. It was of great significance for high-yield and high-efficiency cultivation to reduce N fertilizer application with modified application strategies. A two-year field experiment was conducted to study effects of different N application rates at basal and seedling application stages on grain yield and nitrogen use efficiency. Taking the conventional nitrogen application practice (240 kg N·hm -2 with application at basal, jointing, and booting stages at ratios of 5:3:2, respectively) as control, a field trial was conducted at different N application rates (240, 180 and 150 kg N·hm -2 , N 240 , N 180 and N 150 , respectively) and different application times [basal (L 0 ), fourth (L 4 ) and sixth leaf stage (L 6 )] to investigate the effects on grain yield and nitrogen use efficiency. The results indicated that grain yield decreased along with reducing the N application rate, but it had no significant difference between N 240 and N 180 while decreased significantly under N 150 . Nitrogen agronomy and recovery efficiency were all highest under N 180 . Among different N application stages, grain yield and nitrogen use efficiency were highest under L 4 . N 180 L 4 had no signifi-cant difference with control in grain yield, but its nitrogen use efficiency was significantly higher. The leaf area index, flag leaf photosynthesis rate, leaf nitrogen content, activity of nitrogen reductase and glutamine synthase in flag leaf, dry matter and N accumulation after jointing of N 180 L 4 had no significant difference with control. In an overall view, postponing basal N fertilizer application at reduced nitrogen rate could maintain high yield and improve nitrogen use efficiency through improving photosynthetic production capacity and promoting nitrogen uptake and assimilation.
We describe results obtained with a simple model that uses loading rates of total nitrogen (TN), defined as dissolved inorganic nitrogen plus dissolved and particulate organic nitrogen, to calculate annually and spatially averaged concentrations of TN in coastal embayments. We al...
NITROGEN OUTPUTS FROM FECAL AND URINE DEPOSITION OF SMALL MAMMALS: IMPLICATIONS FOR NITROGEN CYCLING
The contribution of small mammals to nitrogen cycling is poorly understood, but it could have reverberations back to the producer community by maintaining or perhaps magnifying nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) of ...
21 CFR 868.2385 - Nitrogen dioxide analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...
21 CFR 868.2385 - Nitrogen dioxide analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...
21 CFR 868.2385 - Nitrogen dioxide analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...
21 CFR 868.2385 - Nitrogen dioxide analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...
49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Nitrogen dioxide, liquefied, or dinitrogen....336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied... with nitrogen dioxide. Each valve opening must be closed by a solid metal plug with tapered thread...
49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Nitrogen dioxide, liquefied, or dinitrogen....336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied... with nitrogen dioxide. Each valve opening must be closed by a solid metal plug with tapered thread...
49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Nitrogen dioxide, liquefied, or dinitrogen....336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied... with nitrogen dioxide. Each valve opening must be closed by a solid metal plug with tapered thread...
21 CFR 868.2385 - Nitrogen dioxide analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...
NITROGEN OUTPUTS OF SMALL MAMMALS FROM FECAL AND URINE DEPOSITION: IMPLICATIONS FOR NITROGEN CYCLING
The contribution of small mammals in nitrogen cycling is poorly understood and could have reverberations back to the producer community by maintaining or even magnifying increased nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) ...
New, national bottom-up estimate for tree-based biological nitrogen fixation in the US
Nitrogen is a limiting nutrient in many ecosystems, but is also a chief pollutant from human activity. Quantifying human impacts on the nitrogen cycle and investigating natural ecosystem nitrogen cycling both require an understanding of the magnitude of nitrogen inputs from biolo...
Bioavailable nitrogen is a limiting nutrient throughout the Eastern United States. Research demonstrates that exposure to large doses of nitrogen leads to deleterious environmental impacts. However, effects of chronic exposure to lower doses of nitrogen are not well known. Since...
Bioavailable nitrogen is a limiting nutrient throughout the Eastern United States. Research demonstrates that exposure to large doses of nitrogen leads to deleterious environmental impacts. However, effects of chronic exposure to lower doses of nitrogen are under-appreciated. ...
21 CFR 868.1690 - Nitrogen gas analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...
21 CFR 868.1690 - Nitrogen gas analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...
21 CFR 868.1690 - Nitrogen gas analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...
The nitrogen footprint tool network: a multi-institution program to reduce nitrogen pollution
Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional...
Nitrogen Oxide Emission, Economic Growth and Urbanization in China: a Spatial Econometric Analysis
NASA Astrophysics Data System (ADS)
Zhou, Zhimin; Zhou, Yanli; Ge, Xiangyu
2018-01-01
This research studies the nexus of nitrogen oxide emissions and economic development/urbanization. Under the environmental Kuznets curve (EKC) hypothesis, we apply the analysis technique of spatial panel data in the STIRPAT framework, and thus obtain the estimated impacts of income/urbanization on nitrogen oxide emission systematically. The empirical findings suggest that spatial dependence on nitrogen oxide emission distribution exist at provincial level, and the inverse N-shape EKC describes both income-nitrogen oxide and urbanization-nitrogen oxide nexuses. In addition, some well-directed policy advices are made to reduce the nitrogen oxide emission in future.
NASA Technical Reports Server (NTRS)
MacElroy, R. D.; Smernoff, D. T.
1996-01-01
A Workshop on "Nitrogen Dynamics in Controlled Systems" was held September 26-28, 1995 at the Lawrence Berkeley National Laboratory. The meetings were sponsored by the NASA Advanced Life Support program and the Lawrence Berkeley National Laboratory, and hosted by Prof. Lester Packer of the University of California at Berkeley, and of the Lawrence Berkeley National Laboratory. The Workshop participants were asked to: 1. summarize current knowledge on the cycling of nitrogen in closed systems; 2. identify the needs that closed systems may have for specific forms of nitrogen; 3. identify possible ways of generating and maintaining (or avoiding) specific forms and concentrations of nitrogen; 4. compare biological and physical/chemical methods of transforming nitrogen.
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua
2013-03-19
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.
NASA Astrophysics Data System (ADS)
Saito, Mitsuyo; Onodera, Shin-ichi; Jin, Guangzhe; Shimizu, Yuta; Taniguchi, Masanobu
2018-12-01
In this study, we examined the nitrogen dynamics of a highly urbanized coastal area, focusing on the impacts of sewage-derived nitrogen. High levels of dissolved inorganic nitrogen were detected in seawater near treated sewage effluent (TSE) discharge points before decreasing in the offshore direction, suggesting that the impact zone of sewage effluent is about 1-2 km from the discharge point. The stable isotope ratios of nitrate and particulate organic nitrogen suggest nitrogen uptake by phytoplankton as well as dilution by offshore seawater, which contributed to a decrease in sewage-derived nitrogen levels. However, the extent of the impact zone was controlled by tidal variations and differences in temperature between the TSE and seawater. Our results also identify nitrogen transport processes, through exchange between seawater and sediment pore water, as an additional important source of nitrogen in the study area.
Sekar, Ramanujam R.; Hoppie, Lyle O.
1996-01-01
A method of reducing oxides of nitrogen (NO.sub.X) in the exhaust of an internal combustion engine includes producing oxygen enriched air and nitrogen enriched air by an oxygen enrichment device. The oxygen enriched air may be provided to the intake of the internal combustion engine for mixing with fuel. In order to reduce the amount of NO.sub.X in the exhaust of the internal combustion engine, the molecular nitrogen in the nitrogen enriched air produced by the oxygen enrichment device is subjected to a corona or arc discharge so as to create a plasma and as a result, atomic nitrogen. The resulting atomic nitrogen then is injected into the exhaust of the internal combustion engine causing the oxides of nitrogen in the exhaust to be reduced into nitrogen and oxygen. In one embodiment of the present invention, the oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.
Jeon, Ju-Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W; Schaef, Herbert T; Lutkenhaus, Jodie L; Lemmon, John P; Thallapally, Praveen K; Nandasiri, Manjula I; McGrail, Benard Peter; Nune, Satish K
2014-05-28
A hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid. Nitrogen content and surface area are easily controlled by the carbonization temperature. The nitrogen content decreases from 7 to 3.3 at % as carbonization temperature increases from 600 to 950 °C. There is a distinct trade-off between nitrogen content, porosity, and defects in the carbon structure. Carbonized IRMOFs are evaluated as supercapacitor electrodes. For a carbonization temperature of 950 °C, the nitrogen-doped porous carbon has an exceptionally high capacitance of 239 F g(-1). In comparison, an analogous nitrogen-free carbon bears a low capacitance of 24 F g(-1), demonstrating the importance of nitrogen dopants in the charge storage process. The route is scalable in that multi-gram quantities of nitrogen-doped porous carbons are easily produced.
NASA Astrophysics Data System (ADS)
Tseng, C.; Lin, Y.
2013-12-01
Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.
Soil nitrogen patterns induced by colonization of Polygonum cuspidatum on Mt. Fuji.
Hirose, T; Tateno, M
1984-02-01
The spatial pattern of soil nitrogen was analyzed for a patchy vegetation formed by the colonization of Polygonum cuspidatum in a volcanic "desert" on Mt. Fuji. Soils were sampled radially from the bare ground to the center of the patch, and analyses were done for bulk density, water content, soil acidity, organic matter, organic nitrogen, and ammonium and nitrate nitrogen. The soils matured with succession from the bare ground through P. cuspidatum to Miscanthus oligostachyus and Aster ageratoides sites: bulk density decreased, and water content, organic matter, organic nitrogen, and ammonium nitrogen increased. Nitrate nitrogen showed the highest values at the P. cuspidatum site. Application of principal component analysis to the soil data discriminated two component factors which control the variation of soil characteristics: the first factor is related to soil formation and the second factor to nitrogen mineralization and nitrification. The effect of soil formation on nitrogen mineralization and nitrification was analyzed with a first-order kinetic model. The decreasing trends with soil formation in the ratios of mineral to organic nitrogen and of nitrate to ammonium nitrogen could be accounted for by the higher activity of immobilization by microorganisms and uptake by plants in the more mature ecosystem.
Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue
2018-02-06
A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.
Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary
Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu
2016-01-01
Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904
Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing
2017-06-18
A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the treatments of 40%-80% CRF, 100% CRF reduced the soil nitrate content of 20-40 cm soil layer in wheat significantly suggesting it could reduce the loss of nitrogen.
Yu, Yi; Yang, Qi-chang; Liu, Wen-ke
2015-11-01
Purple lettuce was grown hydroponically under six different nitrogen nutrition conditions, with NO(3-)-N:NH(4+)-N at 1:0, 4:1 and 1:1 combined with nitrogen application levels of 10 and 15 mmol · L(-1), for 25 days in solar greenhouse, then treated with short-term continuous lighting (SCL) before harvest to study the changes in contents of nutrients and analyze the effects of nitrogen nutrition conditions on the changes. Results showed that the shoot dry mass of all six nitrogen nutrition conditions were significantly improved under SCL treatment, by 35.1% at least, and the root dry mass increased greatly except for NO(3-)-N:NH(4+)-N 1:1 combined with nitrogen application level 15 mmol · L(-1) treatment and NO(3-)-N:NH(4+)-N 1:0 combined with nitrogen application level 10 mmol · L(-1) treatment. The relative contents of total phenols and flavonoid of different nitrogen nutrition conditions turned significantly different after treatment with SCL. The relative contents of total phenols and flavonoid were enhanced with the improvement of ammonium nitrogen ratio, while the relative content of anthocyanin increased and then decreased with the improvement of ammonium nitrogen ratio. The lighting treatment reduced the nitrate content of leaf blade of all six nitrogen nutrition conditions remarkably by 23.2% at least. The contents of ascorbic acid, soluble sugar and soluble protein rose significantly under SCL treatments. The study showed that the reduction of nitrate content speeded up with the enhancement of nitrogen application level and ammonium nitrogen ratio, and the advancement of ascorbic acid content slowed down with the increasing nitrogen application level. The soluble sugar improvement speed increased with the increasing ammonium nitrogen ratio, and SCL lifted the dry mass of the lettuce greatly. The results showed that SCL with LED lamps improved significantly the dry matter of lettuce under different nitrogen nutrition conditions, reduced the nitrate content and increased the ascorbic acid, soluble sugar and soluble protein contents greatly. In addition, nitrogen nutrition conditions affected the effectiveness of short-term continuous lighting on quality improvement rate of hydroponic lettuce remarkably.
Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001).
Prasad, V Krishna; Badarinath, K V S; Yonemura, S; Tsuruta, H
2004-11-01
Nitrogen regulates several ecological and biogeochemical processes and excess reactive nitrogen in the environment can lead to pollution problems, including the deterioration of air quality, disruption of forest processes, acidification of lakes and streams, and degradation of coastal waters. Much of the excess nitrogen inputs are related to food and energy production. An important step to understanding the sources of nitrogen and ultimately defining solutions to excess nitrogen is to describe the geographic distribution of agricultural nitrogen contributions from different regions. In this study, soil surface nitrogen loads were quantified for different states of India for the period 2000-2001. Nearly 35.4 Tg of nitrogen has been estimated as inputs from different sources, with output nitrogen from harvested crops of about 21.20 Tg. The soil surface nitrogen balance, estimated as inputs minus outputs, is found to be about 14.4 Tg surplus from the agricultural land of India. Livestock manure constituted a major percentage of total inputs (44.06%), followed by inorganic fertilizer (32.48%), atmospheric deposition (11.86%) and nitrogen fixation (11.58%). Nitrogen balance varied from deficit to surplus for different states. The highest nitrogen surplus was found in Uttar Pradesh (2.50 Tg) followed by Madhya Pradesh (1.83 Tg), Andhra Pradesh (1.79 Tg), etc. A negative nitrogen balance was found in Orissa (-0.01 Tg), Andaman Nicobar Islands (-0.32 Tg) and for some of the northeastern states. Major fertilizer consumption states were found to be Tamilnadu (204 kg/ha), Haryana (132 kg/ha), Punjab (148 kg/ha), followed by others. Similarly, nitrogen inputs from total livestock excretions were found to be high for Kerala (616 kg/ha), Jammu and Kashmir (389 kg/ha), Tamil Nadu (338 kg/ha), etc. The average nitrogen surplus of about 54 kg/ha observed for the agricultural land of the entire country of India is comparatively higher than the average surplus of about 31 kg/ha reported for European countries. These results, obtained from nutrient mass balance calculations, will be useful to formulate nutrient management plans relating to fertilizer usage, livestock management and for adopting some best management strategies at a state level in India.
Nakamura, Hidehiro; Kawamata, Yasuko; Kuwahara, Tomomi; Sakai, Ryosei
2017-08-01
Background: Although previous growth studies in rodents have indicated the importance of dietary nonessential amino acids (NEAAs) as nitrogen sources, individual NEAAs have different growth-promoting activities. This phenomenon might be attributable to differences in the nitrogen metabolism of individual NEAAs. Objective: The aim of this study was to compare nitrogen metabolism across dietary NEAAs with the use of their 15 N isotopologues. Methods: Male Fischer rats (8 wk old) were given 1.0 g amino acid-defined diets containing either 15 N-labeled glutamate, glutamine (amino or amide), aspartate, alanine, proline, glycine, or serine hourly for 5-6 h. Then, steady-state amino acid concentrations and their 15 N enrichments in the gut and in portal and arterial plasma were measured by an amino acid analyzer and LC tandem mass spectrometry, respectively. Results: The intestinal 15 N distribution and portal-arterial balance of 15 N metabolites indicated that most dietary glutamate nitrogen (>90% of dietary input) was incorporated into various amino acids, including alanine, proline, and citrulline, in the gut. Dietary aspartate nitrogen, alanine nitrogen, and amino nitrogen of glutamine were distributed similarly to other amino acids both in the gut and in the circulation. In contrast, incorporation of the nitrogen moieties of dietary proline, serine, and glycine into other amino acids was less than that of other NEAAs, although interconversion between serine and glycine was very active. Cluster analysis of 15 N enrichment data also indicated that dietary glutamate nitrogen, aspartate nitrogen, alanine nitrogen, and the amino nitrogen of glutamine were distributed similarly to intestinal and circulating amino acids. Further, the analysis revealed close relations between intestinal and arterial 15 N enrichment for each amino acid. The steady-state 15 N enrichment of arterial amino acids indicated that substantial amounts of circulating amino acid nitrogen are derived from dietary NEAAs. Conclusions: The present results revealed similarities and differences among NEAAs in terms of their intestinal nitrogen metabolism in rats and indicated substantial entry of dietary NEAA nitrogen into circulating amino acid nitrogen, presumably primarily through metabolism in the gut. © 2017 American Society for Nutrition.
[Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].
Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun
2013-04-01
The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.
Numerical study on the flow and heat transfer characteristics of slush nitrogen in a corrugated pipe
NASA Astrophysics Data System (ADS)
Li, Y. J.; Wu, S. Q.; Jin, T.
2017-12-01
Slush nitrogen has lower temperature, higher density and higher heat capacity than that of liquid nitrogen at normal boiling point. It is considered to be a potential coolant for high-temperature superconductive cables (HTS) that would decrease nitrogen consumption and storage cost. The corrugated pipe can help with the enhancement of heat transfer and flexibility of the coolants for HTS cables. In this paper, a 3-D Euler-Euler two-fluid model has been developed to study the flow and heat transfer characteristics of slush nitrogen in a horizontal helically corrugated pipe. By comparing with the empirical formula for pressure drop, the numerical model is confirmed to be effective for the prediction of slush nitrogen flow in corrugated pipes. The flow and heat transfer characteristics of slush nitrogen in a horizontal pipe at various working conditions (inlet solid fraction of 0-20%, inlet velocity of 0-3 m/s, heat flux of 0-12 kW/m2) have been analyzed. The friction factor of slush nitrogen is lower than that of subcooled liquid nitrogen when the slush Reynolds number is higher than 4.2×104. Moreover, the heat transfer coefficient of slush nitrogen flow in the corrugated pipe is higher than that of subcooled liquid nitrogen at velocities which is higher than that 1.76 m/s, 0.91 m/s and 0.55 m/s for slush nitrogen with solid fraction of 5%, 10% and 20%, respectively. The slush nitrogen has been confirmed to have better heat transfer performance and lower pressure drop instead of using liquid nitrogen flowing through a helically corrugated pipe.
THE EFFECTS OF INITIAL ABUNDANCES ON NITROGEN IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Kamber R.; Bergin, Edwin A.
2014-12-20
The dominant form of nitrogen provided to most solar system bodies is currently unknown, though available measurements show that the detected nitrogen in solar system rocks and ices is depleted with respect to solar abundances and the interstellar medium. We use a detailed chemical/physical model of the chemical evolution of a protoplanetary disk to explore the evolution and abundance of nitrogen-bearing molecules. Based on this model, we analyze how initial chemical abundances provided as either gas or ice during the early stages of disk formation influence which species become the dominant nitrogen bearers at later stages. We find that amore » disk with the majority of its initial nitrogen in either atomic or molecular nitrogen is later dominated by atomic and molecular nitrogen as well as NH{sub 3} and HCN ices, where the dominant species varies with disk radius. When nitrogen is initially in gaseous ammonia, it later becomes trapped in ammonia ice except in the outer disk where atomic nitrogen dominates. For a disk with the initial nitrogen in the form of ammonia ice, the nitrogen remains trapped in the ice as NH{sub 3} at later stages. The model in which most of the initial nitrogen is placed in atomic N best matches the ammonia abundances observed in comets. Furthermore, the initial state of nitrogen influences the abundance of N{sub 2}H{sup +}, which has been detected in protoplanetary disks. Strong N{sub 2}H{sup +} emission is found to be indicative of an N{sub 2} abundance greater than n{sub N{sub 2}}/n{sub H{sub 2}}>10{sup −6} in addition to tracing the CO snow line. Our models also indicate that NO is potentially detectable, with lower N gas abundances leading to higher NO abundances.« less
Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong
2015-11-01
Studies of nitrogen mineralization and diagenetic status of organic matter evaluated by total hydrolysable amino acids (THAAs) were designed to test the hypothesis that nitrogen mineralization in sediments was a potential source of ammonium in strongly artificially disturbed rivers such as the Ziya River watershed. Ammonium and organic nitrogen in both water and sediment samples were the major forms of nitrogen in the watershed. NH3-N was significantly correlated with organic nitrogen in both water (R = 0.823, P < 0.01) and sediments (R = 0.787, P < 0.01). Organic nitrogen with an average content of 3,275.21 ± 1,476.10 mg · kg(-1), accounted for 82.73 % of total nitrogen (TN) in sediments. Organic nitrogen was a potential source of ammonia release into overlying water. Nitrogen mineralization experiments showed that accumulated dissolved inorganic nitrogen ranged from 326.15 to 545.72 mg · kg(-1) and accumulated NH3-N ranged from 320.95 to 533.93 mg · kg(-1). Most of the mineralized nitrogen was NH3-N ( approximately 98.17%) and mineralized nitrogen in sediments ranged from 6.20 to 22.10% of TN. Twenty amino acids were detected, accounting for 45.70 % of organic nitrogen. Protein amino acids, accounting for 89.22% of THAAs, were the dominant THAAs in sediments. The ratio of L-glutamic acid to γ-aminobutyric acid and degradation index showed that the organic matter was poorly degraded and presented a high potential risk of ammonium mineralization.
Estimated global nitrogen deposition using NO2 column density
Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao
2013-01-01
Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.
McLellan, Eileen; Robertson, Dale M.; Schilling, Keith; Tomer, Mark; Kostel, Jill; Smith, Douglas G.; King, Kevin
2015-01-01
SPAtially Referenced Regression on Watershed models developed for the Upper Midwest were used to help evaluate the nitrogen-load reductions likely to be achieved by a variety of agricultural conservation practices in the Upper Mississippi-Ohio River Basin (UMORB) and to compare these reductions to the 45% nitrogen-load reduction proposed to remediate hypoxia in the Gulf of Mexico (GoM). Our results indicate that nitrogen-management practices (improved fertilizer management and cover crops) fall short of achieving this goal, even if adopted on all cropland in the region. The goal of a 45% decrease in loads to the GoM can only be achieved through the coupling of nitrogen-management practices with innovative nitrogen-removal practices such as tile-drainage treatment wetlands, drainage–ditch enhancements, stream-channel restoration, and floodplain reconnection. Combining nitrogen-management practices with nitrogen-removal practices can dramatically reduce nutrient export from agricultural landscapes while minimizing impacts to agricultural production. With this approach, it may be possible to meet the 45% nutrient reduction goal while converting less than 1% of cropland in the UMORB to nitrogen-removal practices. Conservationists, policy makers, and agricultural producers seeking a workable strategy to reduce nitrogen export from the Corn Belt will need to consider a combination of nitrogen-management practices at the field scale and diverse nitrogen-removal practices at the landscape scale.
Nitrogen dynamics in an Alaskan salt marsh following spring use by geese
Zacheis, Amy B.; Ruess, Roger W.; Hupp, Jerry W.
2002-01-01
Lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) use several salt marshes in Cook Inlet, Alaska, as stopover areas for brief periods during spring migration. We investigated the effects of geese on nitrogen cycling processes in Susitna Flats, one of the marshes. We compared net nitrogen mineralization, organic nitrogen pools and production in buried bags, nitrogen fixation by cyanobacteria, and soil and litter characteristics on grazed plots versus paired plots that had been exclosed from grazing for 3 years. Grazed areas had higher rates of net nitrogen mineralization in the spring and there was no effect of grazing on organic nitrogen availability. The increased mineralization rates in grazed plots could not be accounted for by alteration of litter quality, litter quantity, microclimate, or root biomass, which were not different between grazed and exclosed plots. In addition, fecal input was very slight in the year that we studied nitrogen cycling. We propose that trampling had two effects that could account for greater nitrogen availability in grazed areas: litter incorporation into soil, resulting in increased rates of decomposition and mineralization of litter material, and greater rates of nitrogen fixation by cyanobacteria on bare, trampled soils. A path analysis indicated that litter incorporation by trampling played a primary role in the nitrogen dynamics of the system, with nitrogen fixation secondary, and that fecal input was of little importance.
Singh, Rajesh K; Kumar, Sahil; Prasad, D N; Bhardwaj, T R
2018-05-10
Cancer is considered as one of the most serious health problems today. The discovery of nitrogen mustard as an alkylating agent in 1942, opened a new era in the cancer chemotherapy. This valuable class of alkylating agent exerts its biological activity by binding to DNA, cross linking two strands, preventing DNA replication and ultimate cell death. At the molecular level, nitrogen lone pairs of nitrogen mustard generate a strained intermediate "aziridinium ion" which is very reactive towards DNA of tumor cell as well as normal cell resulting in various adverse side effects alogwith therapeutic implications. Over the last 75 years, due to its high reactivity and peripheral cytotoxicity, numerous modifications have been made in the area of nitrogen mustard to improve its efficacy as well as enhancing drug delivery specifically to tumor cells. This review mainly discusses the medicinal chemistry aspects in the development of various classes of nitrogen mustards (mechlorethamine, chlorambucil, melphalan, cyclophosphamide and steroidal based nitrogen mustards). The literature collection includes the historical and the latest developments in these areas. This comprehensive review also attempted to showcase the recent progress in the targeted delivery of nitrogen mustards that includes DNA directed nitrogen mustards, antibody directed enzyme prodrug therapy (ADEPT), gene directed enzyme prodrug therapy (GDEPT), nitrogen mustard activated by glutathione transferase, peptide based nitrogen mustards and CNS targeted nitrogen mustards. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Isotopic signals of summer denitrification in a northern hardwood forested catchment
Sarah K. Wexler; Christine L. Goodale; Kevin J. McGuire; Scott W. Bailey; Peter M. Groffman
2014-01-01
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide...
We use a simple nitrogen budget model to analyze concentrations of total nitrogen (TN) in estuaries for which both nitrogen inputs and water residence time are correlated with freshwater inflow rates. While the nitrogen concentration of an estuary varies linearly with TN loading ...
21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515 Section 862.1515 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...
21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515 Section 862.1515 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...
Delta nitrogen tetroxide fueling operations
NASA Technical Reports Server (NTRS)
Grigsby, R. B.; Cross, T. M.; Rucci, T. D.
1978-01-01
The development of the Delta second stage nitrogen tetroxide fueling system is briefly summarized. The nitrogen tetroxide fueling system and the equipment used to protect the spacecraft environment from the toxic nitrogen tetroxide fumes are described. Topics covered include: the nitrogen tetroxide transfer system; loading operations; safety precautions; and chemical treatment of all toxic vapors.
40 CFR 86.318-79 - Oxides of nitrogen analyzer specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer... Procedures § 86.318-79 Oxides of nitrogen analyzer specifications. (a) Oxides of nitrogen are to be measured....327. (b) Option. The oxides of nitrogen may be measured with an NDIR analyzer system that meets the...
40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer... Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.523-78 Oxides of nitrogen... nitrogen are measured, the chemiluminescent oxides of nitrogen analyzer must be checked for NO2 to NO...
40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Oxides of nitrogen analyzer... Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.523-78 Oxides of nitrogen... nitrogen are measured, the chemiluminescent oxides of nitrogen analyzer must be checked for NO2 to NO...
40 CFR 52.1876 - Control strategy: Nitrogen dioxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan... change to the flow control date in the oxides of nitrogen budget trading SIP. (b) [Reserved] [69 FR 13234...
40 CFR 52.1876 - Control strategy: Nitrogen dioxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan... change to the flow control date in the oxides of nitrogen budget trading SIP. (b) [Reserved] [69 FR 13234...
40 CFR 52.1876 - Control strategy: Nitrogen dioxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan... change to the flow control date in the oxides of nitrogen budget trading SIP. (b) [Reserved] [69 FR 13234...
40 CFR 86.318-79 - Oxides of nitrogen analyzer specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer... Procedures § 86.318-79 Oxides of nitrogen analyzer specifications. (a) Oxides of nitrogen are to be measured....327. (b) Option. The oxides of nitrogen may be measured with an NDIR analyzer system that meets the...
40 CFR 86.318-79 - Oxides of nitrogen analyzer specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Oxides of nitrogen analyzer... Procedures § 86.318-79 Oxides of nitrogen analyzer specifications. (a) Oxides of nitrogen are to be measured....327. (b) Option. The oxides of nitrogen may be measured with an NDIR analyzer system that meets the...
40 CFR 52.1876 - Control strategy: Nitrogen dioxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan... change to the flow control date in the oxides of nitrogen budget trading SIP. (b) [Reserved] [69 FR 13234...
Titanium-nitrogen reaction investigated for application to gettering systems
NASA Technical Reports Server (NTRS)
Arntzen, J. D.; Coleman, L. F.; Kyle, M. L.; Pierce, R. D.
1968-01-01
Titanium is one of several gettering materials available for removing nitrogen from inert gases. The reaction rate of titanium-metal sponge and nitrogen in argon-nitrogen mixtures was studied at 900 degrees C. The rate was found to depend upon the partial pressure of nitrogen in the gas phase. Mathematical relationships simulate titanium systems.
QTL analysis of symbiotic nitrogen fixation in a black bean RIL population
USDA-ARS?s Scientific Manuscript database
Dry bean (Phaseolus vulgaris L) acquires nitrogen (N) from the atmosphere through symbiotic nitrogen fixation (SNF) but it has a low efficiency to fix nitrogen. The objective of this study is to map the genes controlling nitrogen fixation in common bean. A mapping population consisting of 122 recomb...
Nitrogen composition in urban runoff--implications for stormwater management.
Taylor, Geoff D; Fletcher, Tim D; Wong, Tony H F; Breen, Peter F; Duncan, Hugh P
2005-05-01
A study was conducted to characterise the composition of nitrogen in urban stormwater in Melbourne, Australia, during baseflows and storm events, and to compare the results with international data. Nitrogen in Melbourne stormwater was predominantly dissolved (approximately 80%), with ammonia the least-abundant form (approximately 11%). Concentrations of nitrogen species did not vary significantly between baseflow and storms, although the proportion of nitrogen in particulate form was higher during storm events (p = 0.04). Whilst the composition of nitrogen in Melbourne was broadly consistent with international data, the level of dissolved inorganic nitrogen was higher in Melbourne (mu = 48% during baseflows and 49% during storms) than in the international literature (mu = 29%). Limitations in the international dataset precluded comparison of total dissolved nitrogen. The results have implications for stormwater management. Whilst nitrogen species concentrations are variable, they are not strongly related to flow conditions, so treatment systems must be designed to cope with stochastic inflow concentrations at all times. To optimise their performance, stormwater treatments should be designed to improve dissolved nitrogen removal. Further research is needed to improve the ability of treatment systems to achieve this aim.
NASA Astrophysics Data System (ADS)
Jia, Junjun; Torigoshi, Yoshifumi; Suko, Ayaka; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Shigesato, Yuzo
2017-02-01
Indium-tin-zinc oxide (ITZO) films were deposited at various nitrogen flow ratios using magnetron sputtering. At a nitrogen flow ratio of 40%, the structure of ITZO film changed from amorphous, with a short-range-ordered In2O3 phase, to a c-axis oriented InN polycrystalline phase, where InN starts to nucleate from an amorphous In2O3 matrix. Whereas, nitrogen addition had no obvious effect on the structure of indium-gallium-zinc oxide (IGZO) films even at a nitrogen flow ratio of 100%. Nitrogen addition also suppressed the formation of oxygen-related vacancies in ITZO films when the nitrogen flow ratio was less than 20%, and higher nitrogen addition led to an increase in carrier density. Moreover, a red-shift in the optical band edge was observed as the nitrogen flow ratio increased, which could be attributed to the generation of InN crystallites. We anticipate that the present findings demonstrating nitrogen-addition induced structural changes can help to understand the environment-dependent instability in amorphous IGZO or ITZO based thin-film transistors (TFTs).
Yasumura, Yuko; Ishida, Atsushi
2011-01-01
We examined temporal changes in the amount of nitrogenous compounds in leaves from the outer and inner parts of the crown of Quercus myrsinaefolia growing in a seasonal climate. Throughout the leaf life span, metabolic protein and Rubisco content closely correlated with total nitrogen content, while structural protein content was relatively stable after full leaf expansion. Chlorophyll content was affected by shading as well as total nitrogen content in outer leaves that were overtopped by new shoots in the second year. Outer leaves showed a large seasonal variation in photosynthetic nitrogen-use efficiency (PNUE; the light-saturated photosynthetic rate per unit leaf nitrogen content) during the first year of their life, with PNUE decreasing from the peak in summer towards winter. Outer and inner leaves both showed age-related decline in PNUE in the second year. There were no such drastic changes in leaf nitrogen partitioning that could explain seasonal and yearly variations in PNUE. Nitrogen resorption occurred in overwintering leaves in spring. Metabolic protein explained the majority of nitrogen being resorbed, whereas structural protein, which was low in degradability, contributed little to nitrogen resorption.
The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China.
Gu, Baojing; Dong, Xiaoli; Peng, Changhui; Luo, Weidong; Chang, Jie; Ge, Ying
2012-12-01
Urbanization is an important process that alters the regional and global nitrogen biogeochemistry. In this study, we test how long-term urbanization (1952-2004) affects the nitrogen flows, emissions and drivers in the Greater Shanghai Area (GSA) based on the coupled human and natural systems (CHANS) approach. Results show that: (1) total nitrogen input to the GSA increased from 57.7 to 587.9 Gg N yr(-1) during the period 1952-2004, mainly attributing to fossil fuel combustion (43%), Haber-Bosch nitrogen fixation (31%), and food/feed import (26%); (2) per capita nitrogen input increased from 13.5 to 45.7 kg N yr(-1), while per gross domestic product (GDP) nitrogen input reduced from 22.2 to 0.9 g N per Chinese Yuan, decoupling of nitrogen with GDP; (3) emissions of reactive nitrogen to the environment transformed from agriculture dominated to industry and human living dominated, especially for air pollution. This study provides decision-makers a novel view of nitrogen management. Copyright © 2012 Elsevier Ltd. All rights reserved.
Carfrae, J A; Skene, K R; Sheppard, L J; Ingleby, K; Crossley, A
2006-05-01
This preliminary study investigated the effects of enhanced nitrogen (NH4NO3 at 48 kg ha(-1) y(-1)), sulphur (Na2SO4 at 50 kg ha(-1) y(-1)), acidified nitrogen and sulphur (H2SO4 + NH4NO3) at pre-stated doses (pH 2.5), and acidified nitrogen and sulphur deposition at double these doses on the ectomycorrhizal community associated with a 13-year-old Sitka spruce (Picea sitchensis) forest. Sulphur deposition had little impact on below ground ectomycorrhizal diversity, but stimulated sporocarp production. Nitrogen inputs increased below ground colonisation compared to acidified nitrogen and sulphur, largely due to an increase in Tylospora fibrillosa colonisation. Sporocarp production and ectomycorrhizal root colonisation by Lactarius rufus were reduced in the nitrogen treated plots. These observations suggest that nitrogen deposition to a young plantation may suppress ectomycorrhizal fungi producing large sporocarps. It is proposed that enhanced nitrogen deposition increases ectomycorrhizal nitrogen assimilation, consuming more carbon and leaving less for extrametrical mycelium and sporocarp development.
Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji
2017-09-01
Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.
Reitsma, Joshua; Murphy, Diane C; Archer, Abigail F; York, Richard H
2017-03-15
As nitrogen entering coastal waters continues to be an issue, much attention has been generated to identify potential options that may help alleviate this stressor to estuaries, including the propagation of bivalves to remove excess nitrogen. Oysters (Crassostrea virginica) and quahogs (Mercenaria mercenaria) from numerous Cape Cod, MA, (USA) sources were analyzed for nitrogen content stored in tissues that would represent a net removal of nitrogen from a water body if harvested. Results showed local oysters average 0.69% nitrogen by total dry weight (mean 0.28gN/animal) and quahogs average 0.67% nitrogen by total dry weight (mean 0.22gN/animal); however, these values did vary by season and to a lesser extent by location or grow-out method. The differences in nitrogen content were largely related to the mass of shell or soft tissue. Nitrogen isotope data indicate shellfish from certain water bodies in the region are incorporating significant amounts of nitrogen from anthropogenic sources. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang
2017-12-01
A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil NO 3 - -N accumulation layer moved downward. By comprehensively considering above-ground biomass, seed cotton yield, water and nitrogen uptake and utilization, and soil NO 3 - -N accumulation in the soil profile, the treatment N 3 I 1 could be recommended as the optimal water and nitrogen application pattern for summer cotton production in the experimental region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guardia, A. de, E-mail: amaury.de-guardia@cemagref.f; Universite Europeenne de Bretagne, F-35000 Rennes; Mallard, P.
This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates andmore » in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and nitrification of total ammoniacal nitrogen. Separated pig solids were characterised by a high ability to accumulate total ammoniacal nitrogen. Whatever the waste, the striping rate depended mostly on the aeration rate and on the pool concentration in biofilm. The nitrification rate was observed as all the higher as the concentration in total ammoniacal nitrogen in the initial waste was low. Thus, household waste and green algae exhibited the highest nitrification rates. This result could mean that in case of low concentrations in total ammoniacal nitrogen, a nitrifying biomass was already developed and that this biomass consumed it. In contrast, in case of high concentrations, this could traduce some difficulties for nitrifying microorganisms to develop.« less
Electrochemical process for the preparation of nitrogen fertilizers
Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V
2015-04-14
Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.
Nitrogen metabolism and nitrogen control in corynebacteria: variations of a common theme.
Walter, Britta; Hänssler, Eva; Kalinowski, Jörn; Burkovski, Andreas
2007-01-01
The published genome sequences of Corynebacterium diphtheriae, Corynebacterium efficiens, Corynebacterium glutamicum and Corynebacterium jeikeium were screened for genes encoding central components of nitrogen source uptake, nitrogen assimilation and nitrogen control systems. Interestingly, the soil-living species C. efficiens and C. glutamicum exhibit a broader spectrum of genes for nitrogen transport and metabolism than the pathogenic species C. diphtheriae and C. jeikeium. The latter are characterized by gene decay and loss of functions like urea metabolism and nitrogen-dependent transcription control. The global regulator of nitrogen regulation AmtR and its DNA-binding motif are conserved in C. diphtheriae, C. efficiens and C. glutamicum, while in C. jeikeium, an AmtR-encoding gene as well as putative AmtR-binding motifs are missing. Copyright (c) 2007 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Kicklighter, D. W.; Melillo, J. M.; Monier, E.; Sokolov, A. P.; Lu, X.; Zhuang, Q.
2015-12-01
Atmospheric nitrogen deposition, nitrogen fixation, and the application of nitrogen fertilizers provide subsidies to land ecosystems that can increase nitrogen availability for vegetation production and thereby influence land carbon dynamics. In addition, enhanced decomposition of soil organic matter (SOM) from warming soils and permafrost degradation may also increase nitrogen availability in Northern Eurasia. Here, we examine how changes in nitrogen availability may influence land carbon dynamics in Northern Eurasia during the 21st century by comparing results for a "business as usual" scenario (the IPCC Representative Concentration Pathways or RCP 8.5) and a stabilization scenario (RCP 4.5) between a version of the Terrestrial Ecosystem Model that does not consider the effects of atmospheric nitrogen deposition, nitrogen fixation and soil thermal dynamics on land carbon dynamics (TEM 4.4) and a version that does consider these dynamics (TEM 6.0). In these simulations, atmospheric nitrogen deposition, nitrogen fixation, and fertilizer applications provide an additional 3.3 Pg N (RCP 4.5) to 3.9 Pg N (RCP 8.5) to Northern Eurasian ecosystems over the 21st century. Land ecosystems retain about 38% (RCP4.5) to 48% (RCP 8.5) of this nitrogen subsidy. Net nitrogen mineralization estimated by TEM 6.0 provide an additional 1.0 Pg N to vegetation than estimated by TEM 4.4 over the 21st century from enhanced decomposition of SOM including SOM formerly protected by permafrost. The enhanced nitrogen availability in TEM 6.0 allows Northern Eurasian ecosystems to sequester 1.8x (RCP 8.5) to 2.4x (RCP 4.5) more carbon over the 21st century than estimated by TEM 4.4. Our results indicate that consideration of nitrogen subsidies and soil thermal dynamics have a large influence on how simulated land carbon dynamics in Northern Eurasia will respond to future changes in climate, atmospheric chemistry, and disturbances.
Synthesis and review: Tackling the nitrogen management challenge: from global to local scales
NASA Astrophysics Data System (ADS)
Reis, Stefan; Bekunda, Mateete; Howard, Clare M.; Karanja, Nancy; Winiwarter, Wilfried; Yan, Xiaoyuan; Bleeker, Albert; Sutton, Mark A.
2016-12-01
One of the ‘grand challenges’ of this age is the anthropogenic impact exerted on the nitrogen cycle. Issues of concern range from an excess of fixed nitrogen resulting in environmental pressures for some regions, while for other regions insufficient fixed nitrogen affects food security and may lead to health risks. To address these issues, nitrogen needs to be managed in an integrated fashion, at a variety of scales (from global to local). Such management has to be based on a thorough understanding of the sources of reactive nitrogen released into the environment, its deposition and effects. This requires a comprehensive assessment of the key drivers of changes in the nitrogen cycle both spatially, at the field, regional and global scale and over time. In this focus issue, we address the challenges of managing reactive nitrogen in the context of food production and its impacts on human and ecosystem health. In addition, we discuss the scope for and design of management approaches in regions with too much and too little nitrogen. This focus issue includes several contributions from authors who participated at the N2013 conference in Kampala in November 2013, where delegates compiled and agreed upon the ‘Kampala Statement-for-Action on Reactive Nitrogen in Africa and Globally’. These contributions further underline scientifically the claims of the ‘Kampala Statement’, that simultaneously reducing pollution and increasing nitrogen available in the food system, by improved nitrogen management offers win-wins for environment, health and food security in both developing and developed economies. The specific messages conveyed in the Kampala Statement focus on improving nitrogen management (I), including the reduction of nitrogen losses from agriculture, industry, transport and energy sectors, as well as improving waste treatment and informing individuals and institutions (II). Highlighting the need for innovation and increased awareness among stakeholders (III) and the identification of policy and technology solutions to tackle global nitrogen management issues (IV), this will enable countries to fulfil their regional and global commitments.
Behavior and Release of Nitrogen at Mines and Quarries in Nordic Conditions
NASA Astrophysics Data System (ADS)
Karlsson, Teemu; Neitola, Raisa; Jermakka, Johannes; Merta, Elina; Mroueh, Ulla-Maija
2015-04-01
The increased extraction of mineral resources and mining activities creates added pressure on the environmental issues and a proper water management in mining areas in Finland. Among others, nitrogen compounds released from explosives or from mining processes can have a detrimental effect on the environment. Thus, this project aimed at comprehensive understanding on the nitrogen issue in the extractive industry. The project collected essential data on nitrogen compounds present in the environments of mines and quarries, and generated better understanding of the discharge and behaviour of nitrogen compounds in mining areas. The sources and balances of explosives-originated nitrogen compounds at mines and quarries of different sizes were investigated and compared. Additionally, the focus was in 'nitrogen smudging' problem of waste rocks and the intensity, as well as evolution and chemical characteristics of their nitrogen contamination. According to the results, the total load of potential nitrogen to the environment depends on the scale and type of the activity as well as the type of explosives used. The main emission sources of nitrogen are process and dewatering waters. A lysimeter study showed that the explosives originated nitrogen content of left over stones from natural stone quarrying is relatively low and ca. half of the nitrogen is leached within the first weeks after detonation. The "nitrogen smudging" of natural stone quarrying left over stones is relatively low to begin with and enhanced by the rapid flushing by rainwater, thus the residues of explosives should not be considered to prevent the utilization of otherwise mineralogically inert waste rocks of good technical quality. The overall nitrogen management should take into account the background concentrations and sensitivity of the local ecosystem. The research project "Solution for Control of Nitrogen Discharges at Mines and Quarries, (MINIMAN)" was realized during years 2012-2014 as a cooperative project with GTK, VTT and TTY together with several industrial and international partners and financed by Tekes Green Mining Programme.
NASA Astrophysics Data System (ADS)
Thuss, E.; English, M. C.; Spoelstra, J.
2009-05-01
When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface water requires a better understanding of nitrogen fate in the soil zone, and will result in more effective agricultural nutrient management.
Virtual Nitrogen Losses from Organic Food Production
NASA Astrophysics Data System (ADS)
Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.
2015-12-01
Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local scale, nitrogen losses from organic production are comparable to conventional production, but that organic production introduces less new reactive nitrogen to the global pool.
Efficient assimilation of cyanobacterial nitrogen by water hyacinth.
Qin, Hongjie; Zhang, Zhiyong; Liu, Minhui; Wang, Yan; Wen, Xuezheng; Yan, Shaohua; Zhang, Yingying; Liu, Haiqin
2017-10-01
A 15 N labeling technique was used to study nitrogen transfer from cyanobacterium Microcystis aeruginosa to water hyacinth. 15 N atom abundance in M. aeruginosa peaked (15.52%) after cultivation in 15 N-labeled medium for 3weeks. Over 87% of algal nitrogen was transferred into water hyacinth after the 4-week co-cultivation period. The nitrogen quickly super-accumulated in the water hyacinth roots, and the labeled nitrogen was re-distributed to different organs (i.e., roots, stalks, and leaves). This study provides a new strategy for further research on cyanobacterial bloom control, nitrogen migration, and nitrogen cycle in eutrophic waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transformation of the nitrogen cycle: recent trends, questions, and potential solutions.
Galloway, James N; Townsend, Alan R; Erisman, Jan Willem; Bekunda, Mateete; Cai, Zucong; Freney, John R; Martinelli, Luiz A; Seitzinger, Sybil P; Sutton, Mark A
2008-05-16
Humans continue to transform the global nitrogen cycle at a record pace, reflecting an increased combustion of fossil fuels, growing demand for nitrogen in agriculture and industry, and pervasive inefficiencies in its use. Much anthropogenic nitrogen is lost to air, water, and land to cause a cascade of environmental and human health problems. Simultaneously, food production in some parts of the world is nitrogen-deficient, highlighting inequities in the distribution of nitrogen-containing fertilizers. Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.
A 25-Year Retrospective Analysis of River Nitrogen Fluxes in the Atchafalaya
NASA Astrophysics Data System (ADS)
Xu, Y.
2005-05-01
Nitrogen enrichment from the upper Mississippi River Basin has been attributed to be the major cause for the hypoxia in the Northern Gulf of Mexico. The hypoxia threatens not only the aquatic ecosystem health but Louisiana's fishery industry directly among other problems. Although fresh water diversion from the lower Mississippi River into the region's wetlands has been considered an alternative means for reducing nitrogen loading, it is largely uncertain how much nitrogen can actually be retained from the overflowing waters in these natural wetlands. Generally, there is a knowledge gap in what tools are available for accurate assessment of nitrogen inflow, outflow and removal potential for the complex and diverse coastal floodplain systems. This study is to seek answers to three critical questions: (1) Does the Atchafalaya River Swamp remove a significant amount of nitrogen from the overflowing water or release more nitrogen into the Gulf than removing it? (2) How seasonally and annually do the nitrogen removal or release rates fluctuate? (3) What are the relationships between the nitrogen removal capacity and the basin's hydrologic conditions such as river stage and discharge? By utilizing river's long-term discharge and water quality data (1978-2002), monthly and annual nitrogen fluxes were quantified, and their relationships with the basin's hydrologic conditions were investigated. A total Kjeldahl nitrogen (TKN) mass input-output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the organic nitrogen removal potential for this largest freshwater swamp basin in North America. The results showed that on average, TKN input into the Atchafalaya was 200,323 Mg yr-1 and TKN output leaving the basin was 145,917 Mg yr-1, resulting in a 27% removal rate of nitrogen. Monthly nitrogen input and output in the basin were highest from March to June (input vs. output: 25,000 vs. 18,000 Mg mon-1) and lowest from August to November (8,000 vs. 6,000 Mg mon-1). There was a large variation in both annual and inter-annual nitrogen removals, and the variability was positively correlated with the amount of inflow water at Simmesport. However, no close relationship between the river inflow and percentage nitrogen removal rate was found. The results gained from this study suggest that regulating the river's inflow will help reduce nitrogen loading of the Mississippi River to the Gulf of Mexico. The in-stream loss of nitrogen indicates that previous studies may have overestimated nitrogen discharge from the Mississippi-Atchafalaya River system. Furthermore, the study found that knowledge on spatial hydrological conditions in the basin is needed to understand nitrogen dynamics in the Atchafalaya River Swamp.
Haggard, Brian E.; Masoner, Jason R.; Becker, Carol J.
2003-01-01
Nutrients are one of the primary causes of water-quality impairments in streams, lakes, reservoirs, and estuaries in the United States. The U.S. Environmental Protection Agency has developed regional-based nutrient criteria using ecoregions to protect streams in the United States from impairment. However, nutrient criteria were based on nutrient concentrations measured in large aggregated nutrient ecoregions with little relevance to local environmental conditions in states. The Oklahoma Water Resources Board is using a dichotomous process known as Use Support Assessment Protocols to define nutrient criteria in Oklahoma streams. The Oklahoma Water Resources Board is modifying the Use Support Assessment Protocols to reflect nutrient informa-tion and environmental characteristics relevant to Oklahoma streams, while considering nutrient information grouped by geographic regions based on level III ecoregions and state boundaries. Percentile distributions of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorous concentrations were calculated from 563 sites in Oklahoma and 4 sites in Arkansas near the Oklahoma and Arkansas border to facilitate development of nutrient criteria for Oklahoma streams. Sites were grouped into four geographic regions and were categorized into eight stream categories by stream slope and stream order. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations were greater in the Ozark Highland ecoregion and were less in the Ouachita Mountains ecoregion when compared to other geographic areas used to group sites. The 50th percentiles of median concentrations of nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus were least in first, second, and third order streams. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen and total phosphorus concentrations in the Ozark Highland and Ouachita Mountains ecoregions were least in first, second, and third order streams with streams slopes greater than 17 feet per mile. Nitrite plus nitrate as nitrogen and total nitrogen criteria determined by the U.S. Environmental Protection Agency for the Ozark Highland ecoregion were less than the 25th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations in the Ozark Highland ecoregion calculated for this report. Nitrite plus nitrate as nitrogen and total nitrogen criteria developed by the U.S. Environmental Protection Agency for the Ouachita Mountains ecoregion were similar to the 25th percentiles of median nitrite plus nitrate as nitrogen and total nitrogen concentrations in the Ouachita Mountains ecoregion calculated for this report. Nitrate as nitrogen and total phosphorus concentrations currently (2002) used in the Use Support Assessment Protocols for Oklahoma were greater than the 75th percentiles of median nitrite plus nitrate as nitrogen and total phosphorus concentrations calculated for this report.
Tanahashi, Masahiko; Ikeda, Hiroshi; Kubota, Kôhei
2018-05-03
Wood degradation by insects plays important roles for the forest matter cycling. Since wood is deficient in nitrogen compared to the insect body, wood-feeding insects need to assimilate the nitrogen selectively and discard an excess carbon. Such a stoichiometric imbalance between food and body will cause high metabolic cost; therefore, wood-feeding insects may somehow alleviate the stoichiometric imbalance. Here, we investigated the carbon and nitrogen budgets of the larvae of stag beetle, Dorcus rectus, which feed on decaying wood. Assimilation efficiency of ingested wood was 22%, and those values based on the carbon and nitrogen were 27 and 45%, respectively, suggesting the selective digestion of nitrogen in wood. Element-based gross growth efficiency was much higher for nitrogen (45%) than for carbon (3%). As a result, the larvae released 24% of the ingested carbon as volatile, whereas almost no gaseous exchange was observed for nitrogen. Moreover, solubility-based elementary analysis revealed that the larvae mainly utilized alkaline-soluble-water-insoluble fraction of wood, which is rich in nitrogen. Actually, the midgut of the larvae was highly alkaline (pH 10.3). Stag beetle larvae are known to exhibit coprophagy, and here we also confirmed that alkaline-soluble-water-insoluble nitrogen increased again from fresh feces to old feces in the field. Stable isotope analysis suggested the utilization of aerial nitrogen by larvae; however, its actual contribution is still disputable. Those results suggest that D. rectus larvae selectively utilize alkaline-soluble nitrogenous substrates by using their highly alkaline midgut, and perhaps associate with microbes that enhance the nitrogen recycling in feces.
NASA Astrophysics Data System (ADS)
Musat, N.; Kuypers, M. M. M.
2009-04-01
Nitrogen is a primary productivity-limiting nutrient in the ocean. The nitrogen limitation of productivity may be overcome by organisms capable of converting dissolved N2 into fixed nitrogen available to the ecosystem. In many oceanic regions, growth of phytoplankton is nitrogen limited because fixation of N2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, NO3-) by anaerobic microbial processes. The amount of available fixed nitrogen in the ocean can be changed by the biological processes of heterotrophic denitrification, anaerobic ammonium oxidation and nitrogen fixation. For a complete understanding of nitrogen cycling in the ocean a link between the microbial and biogeochemical processes at the single cell level and their role in global biogeochemical cycles is essential. Here we report a recently developed method, Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS) and its potential application to study the nitrogen-cycle processes in the ocean. The method allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. It uses horseradish-peroxidase-labeled oligonucleotide probes and fluorine-containing tyramides for the identification of microorganisms in combination with stable-isotope-labeling experiments for analyzing the metabolic function of single microbial cells. HISH-SIMS was successfully used to study nitrogen assimilation and nitrogen fixation by anaerobic phototrophs in a meromictic alpine lake. The HISH-SIMS method enables studies of the ecophysiology of individual, phylogenetically identified microorganisms involved in the N-cycle and allows us to track the flow of nitrogen within microbial communities.
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Goodale, C. L.; Bonan, G. B.; Mahowald, N. M.; Ricciuto, D. M.; Thornton, P. E.
2010-12-01
Recent research from global land surface models emphasizes the important role of nitrogen cycling on global climate, via its control on the terrestrial carbon balance. Despite the implications of nitrogen cycling on global climate predictions, the research community has not performed a systematic evaluation of nitrogen cycling in global models. Here, we present such an evaluation for one global land model, CLM-CN. In the evaluation we simulated 45 plot-scale nitrogen-fertilization experiments distributed across 33 temperate and boreal forest sites. Model predictions were evaluated against field observations by comparing the vegetation and soil carbon responses to the additional nitrogen. Aggregated across all experiments, the model predicted a larger vegetation carbon response and a smaller soil carbon response than observed; the responses partially offset each other, leading to a slightly larger total ecosystem carbon response than observed. However, the model-observation agreement improved for vegetation carbon when the sites with observed negative carbon responses to nitrogen were excluded, which may be because the model lacks mechanisms whereby nitrogen additions increase tree mortality. Among experiments, younger forests and boreal forests’ vegetation carbon responses were less than predicted and mature forests (> 40 years old) were greater than predicted. Specific to the CLM-CN, this study used a systematic evaluation to identify key areas to focus model development, especially soil carbon- nitrogen interactions and boreal forest nitrogen cycling. Applicable to the modeling community, this study demonstrates a standardized protocol for comparing carbon-nitrogen interactions among global land models.
Tracking historical increases in nitrogen-driven crop production possibilities
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Lassaletta, L.; Billen, G.; Garnier, J.; Gerber, J. S.
2015-12-01
The environmental costs of nitrogen use have prompted a focus on improving the efficiency of nitrogen use in the global food system, the primary source of nitrogen pollution. Typical approaches to improving agricultural nitrogen use efficiency include more targeted field-level use (timing, placement, and rate) and modification of the crop mix. However, global efficiency gains can also be achieved by improving the spatial allocation of nitrogen between regions or countries, due to consistent diminishing returns at high nitrogen use. This concept is examined by constructing a tradeoff frontier (or production possibilities frontier) describing global crop protein yield as a function of applied nitrogen from all sources, given optimal spatial allocation. Yearly variation in country-level input-output nitrogen budgets are utilized to parameterize country-specific hyperbolic yield-response models. Response functions are further characterized for three ~15-year eras beginning in 1961, and series of calculations uses these curves to simulate optimal spatial allocation in each era and determine the frontier. The analyses reveal that excess nitrogen (in recent years) could be reduced by ~40% given optimal spatial allocation. Over time, we find that gains in yield potential and in-country nitrogen use efficiency have led to increases in the global nitrogen production possibilities frontier. However, this promising shift has been accompanied by an actual spatial distribution of nitrogen use that has become less optimal, in an absolute sense, relative to the frontier. We conclude that examination of global production possibilities is a promising approach to understanding production constraints and efficiency opportunities in the global food system.
Nielsen, Niklas; Nielsen, Jorgen G.; Horsley, Alex R.
2013-01-01
Background A large body of evidence has now accumulated describing the advantages of multiple breath washout tests over conventional spirometry in cystic fibrosis (CF). Although the majority of studies have used exogenous sulphur hexafluoride (SF6) as the tracer gas this has also led to an increased interest in nitrogen washout tests, despite the differences between these methods. The impact of body nitrogen excreted across the alveoli has previously been ignored. Methods A two-compartment lung model was developed that included ventilation heterogeneity and dead space (DS) effects, but also incorporated experimental data on nitrogen excretion. The model was used to assess the impact of nitrogen excretion on washout progress and accuracy of functional residual capacity (FRC) and lung clearance index (LCI) measurements. Results Excreted nitrogen had a small effect on accuracy of FRC (1.8%) in the healthy adult model. The error in LCI calculated with true FRC was greater (6.3%), and excreted nitrogen contributed 21% of the total nitrogen concentration at the end of the washout. Increasing DS and ventilation heterogeneity both caused further increase in measurement error. LCI was increased by 6–13% in a CF child model, and excreted nitrogen increased the end of washout nitrogen concentration by 24–49%. Conclusions Excreted nitrogen appears to have complex but clinically significant effects on washout progress, particularly in the presence of abnormal gas mixing. This may explain much of the previously described differences in washout outcomes between SF6 and nitrogen. PMID:24039916
Titan's past and future: 3D modeling of a pure nitrogen atmosphere and geological implications
NASA Astrophysics Data System (ADS)
Charnay, Benjamin; Forget, François; Tobie, Gabriel; Sotin, Christophe; Wordsworth, Robin
2014-10-01
Several clues indicate that Titan's atmosphere has been depleted in methane during some period of its history, possibly as recently as 0.5-1 billion years ago. It could also happen in the future. Under these conditions, the atmosphere becomes only composed of nitrogen with a range of temperature and pressure allowing liquid or solid nitrogen to condense. Here, we explore these exotic climates throughout Titan's history with a 3D Global Climate Model (GCM) including the nitrogen cycle and the radiative effect of nitrogen clouds. We show that for the last billion years, only small polar nitrogen lakes should have formed. Yet, before 1 Ga, a significant part of the atmosphere could have condensed, forming deep nitrogen polar seas, which could have flowed and flooded the equatorial regions. Alternatively, nitrogen could be frozen on the surface like on Triton, but this would require an initial surface albedo higher than 0.65 at 4 Ga. Such a state could be stable even today if nitrogen ice albedo is higher than this value. According to our model, nitrogen flows and rain may have been efficient to erode the surface. Thus, we can speculate that a paleo-nitrogen cycle may explain the erosion and the age of Titan's surface, and may have produced some of the present valley networks and shorelines. Moreover, by diffusion of liquid nitrogen in the crust, a paleo-nitrogen cycle could be responsible of the flattening of the polar regions and be at the origin of the methane outgassing on Titan.
NASA Astrophysics Data System (ADS)
Tanahashi, Masahiko; Ikeda, Hiroshi; Kubota, Kôhei
2018-06-01
Wood degradation by insects plays important roles for the forest matter cycling. Since wood is deficient in nitrogen compared to the insect body, wood-feeding insects need to assimilate the nitrogen selectively and discard an excess carbon. Such a stoichiometric imbalance between food and body will cause high metabolic cost; therefore, wood-feeding insects may somehow alleviate the stoichiometric imbalance. Here, we investigated the carbon and nitrogen budgets of the larvae of stag beetle, Dorcus rectus, which feed on decaying wood. Assimilation efficiency of ingested wood was 22%, and those values based on the carbon and nitrogen were 27 and 45%, respectively, suggesting the selective digestion of nitrogen in wood. Element-based gross growth efficiency was much higher for nitrogen (45%) than for carbon (3%). As a result, the larvae released 24% of the ingested carbon as volatile, whereas almost no gaseous exchange was observed for nitrogen. Moreover, solubility-based elementary analysis revealed that the larvae mainly utilized alkaline-soluble-water-insoluble fraction of wood, which is rich in nitrogen. Actually, the midgut of the larvae was highly alkaline (pH 10.3). Stag beetle larvae are known to exhibit coprophagy, and here we also confirmed that alkaline-soluble-water-insoluble nitrogen increased again from fresh feces to old feces in the field. Stable isotope analysis suggested the utilization of aerial nitrogen by larvae; however, its actual contribution is still disputable. Those results suggest that D. rectus larvae selectively utilize alkaline-soluble nitrogenous substrates by using their highly alkaline midgut, and perhaps associate with microbes that enhance the nitrogen recycling in feces.
NASA Astrophysics Data System (ADS)
Jenkins, B. D.; Spinette, R.; Jones, A.; Puggioni, G.; Ehrlich, A.; Brown, S. M.
2016-02-01
Coastal sediments are typically zones of nitrogen removal via coupled nitrification-denitrification pathways. Increasingly, there are reports of nitrogen fixation in anthropogenically impacted sediments containing ample combined nitrogen. In previous work in the estuarine sediments of Narragansett Bay, we found that anaerobes related to Desulfovibrio spp. and in the Desulfuromonadales express genes for nitrogen fixation (nifH). We also determined that nitrogen fixation rates and gene expression are elevated during periods of seasonal hypoxia. Statistical modeling shows that a combination of elevated phytoplankton biomass as with a duration of hypoxia for a week or longer lead to conditions that promote nitrogen fixation as measured by acetylene reduction. Interestingly, diazotrophs closely related to those identified in Narragansett Bay are present and active in other low oxygen systems, suggesting that expansion of hypoxic events may lead to unanticipated consequences for the benthic nitrogen cycle in many ecosystems. To determine controls on diazotrophy on the organismal level, we isolated and sequenced the genomes of two Narragansett Bay members of the Desulfovibrio. We found that these organisms are insensitive to nitrate and urea, as they are missing the genes to assimilate these nitrogen sources. However, their nitrogen fixation is suppressed by increasing concentrations of ammonium, indicating that they may be sensitive to this nitrogen source in the environment. The paradox of detectable nitrogen fixation in the background of measurable ammonium in estuarine systems is a newly emergent theme and suggests that there are complex microbial interactions and/or structure to the nutrient regimes allowing for fixation.
Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha
2017-01-01
A pot experiment was conducted to study soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the rhizosphere and non-rhizosphere of Bothriochloa ischaemum in loess hilly-gully region under the different treatments of CO 2 concentrations (400 and 800 μmol·mol -1 ) and nitrogen addition (0, 2.5, 5.0 g N·m -2 ·a -1 ). The results showed that eleva-ted CO 2 treatments had no significant effect on the contents of DOC, dissolved total nitrogen (DTN), DON, dissolved ammonium nitrogen (NH 4 + -N) and dissolved nitrate nitrogen (NO 3 - -N) in the soil of rhizosphere and non-rhizosphere of B. ischaemum. The contents of DTN, DON, and NO 3 - -N in the rhizosphere soil were significantly increased with the nitrogen application and the similar results of DTN and NO 3 - -N also were observed in the non-rhizosphere of B. ischaemum. Nitrogen application significantly decreased DOC/DON in the rhizosphere of B. ischaemum. The contents of DTN, NO 3 - -N and DON in the soil of rhizosphere were significantly lower than that in the non-rhizosphere soil, and DOC/DON was significantly higher in the rhizosphere soil than that in the non-rhizosphere soil. It indicated that short-term elevated CO 2 concentration had no significant influence on the contents of soil dissolved organic carbon and nitrogen. Simulated nitrogen deposition, to some extent, increased the content of soil dissolved nitrogen, but it was still insufficient to meet the demand of dissolved nitrogen for plant growing.
Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation
NASA Technical Reports Server (NTRS)
Whitney, R. Roy (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin (Inventor)
2015-01-01
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.
NASA Technical Reports Server (NTRS)
Kaiser, E.
1977-01-01
The amount of nitrogen oxides introduced into the atmosphere by gas turbines is very significant in relation to the total amount of nitrogen oxide emissions produced by chemical installations and combustion engines. Turbine manufacturers are therefore working to develop combustion chambers with sufficiently low nitrogen oxide emission concentrations. Attention is given to aspects of nitrogen oxide formation in gas turbines, the parameters which determine this formation, and suitable approaches to reducing nitrogen oxide emissions.
Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States
Puckett, Larry J.
1994-01-01
Estimates of nonpoint and point sources of nitrogen were made for 107 watersheds located in the U.S. Geological Survey's National Water-Quality Assessment Program study units throughout the conterminous United States. The proportions of nitrogen originating from fertilizer, manure, atmospheric deposition, sewage, and industrial sources were found to vary with climate, hydrologic conditions, land use, population, and physiography. Fertilizer sources of nitrogen are proportionally greater in agricultural areas of the West and the Midwest than in other parts of the Nation. Animal manure contributes large proportions of nitrogen in the South and parts of the Northeast. Atmospheric deposition of nitrogen is generally greatest in areas of greatest precipitation, such as the Northeast. Point sources (sewage and industrial) generally are predominant in watersheds near cities, where they may account for large proportions of the nitrogen in streams. The transport of nitrogen in streams increases as amounts of precipitation and runoff increase and is greatest in the Northeastern United States. Because no single nonpoint nitrogen source is dominant everywhere, approaches to control nitrogen must vary throughout the Nation. Watershed-based approaches to understanding nonpoint and point sources of contamination, as used by the National Water-Quality Assessment Program, will aid water-quality and environmental managers to devise methods to reduce nitrogen pollution.
Food, Feed and Fuel: a Story About Nitrogen
NASA Astrophysics Data System (ADS)
Galloway, J. N.; Burke, M. B.; Mooney, H. A.; Steinfeld, H.
2008-12-01
Humans obtain metabolic energy by eating food. Nitrogen is required to grow food, but natural supplies of N for human purposes have been inadequate since the beginning of the twentieth century. The Haber-Bosch process now provides a virtually inexhaustible supply of nitrogen, limited primarily by the cost of energy. However, most nitrogen used in food production is lost to the environment, where it cascades through environmental reservoirs contributing to many of the major environmental issues of the day. Furthermore, growing international trade in nitrogen-containing commodities is increasingly replacing wind and water as an important international transporter of nitrogen around the globe. Finally, the rapid growth in crop-based biofuels, and its attendant effects on the global production and trade of all agricultural commodities, could greatly affect global patterns of N use and loss. In the light of the findings above, this paper examines the role of nitrogen in food, feed and fuel production. It describes the beneficial consequences for food production and the negative consequences associated with the commodity nitrogen cascade and the environmental nitrogen cascade. The paper reviews estimates of future projections of nitrogen demands for food and fuel, including the impact of changing diets in the developing world. The paper concludes by presenting the potential interactions among global change, agricultural production and the nitrogen and carbon cycles.
Fast chemical and isotopic exchange of nitrogen during reaction with hot molybdenum
NASA Astrophysics Data System (ADS)
Yokochi, Reika; Marty, Bernard
2006-07-01
Molybdenum crucibles are commonly used to extract nitrogen from geological samples by induction heating. Because nitrogen is known to be reactive with certain metals (e.g., Ti and Fe), we have tested the reactivity of gaseous nitrogen with a Mo crucible held at 1800°C. The consumption of nitrogen, determined by monitoring the N2/40Ar ratio of the gas phase, varied between 25 and 100%, depending on the reaction duration. Nitrogen of the reacted gas was found to be systematically enriched in 15N relative to 14N by 10‰ compared to the initial isotopic composition, without any correlation with nitrogen consumption. We propose that a rapid isotopic exchange occurs between nitrogen originally trapped in the crucible and nitrogen from the gas phase, which modifies the isotopic composition of the reacted gas. This process can significantly bias the isotopic determination of nitrogen in rocks and minerals when a Mo furnace is used for gas extraction. Meanwhile, the rate of N-Mo chemical bonding may be controlled by the formation of nitride (rather than solid solution), a process slower than the isotopic exchange. The use of a Mo furnace for the extraction of trace nitrogen from rocks and minerals should therefore be avoided.
Increasing importance of deposition of reduced nitrogen in the United States
Li, Yi; Schichtel, Bret A.; Walker, John T.; Schwede, Donna B.; Chen, Xi; Lehmann, Christopher M. B.; Puchalski, Melissa A.; Gay, David A.; Collett, Jeffrey L.
2016-01-01
Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions. PMID:27162336
Effect of salinity on the critical nitrogen concentration of Spartina alterniflora Loisel
Bradley, P.M.; Morris, J.T.
1992-01-01
Nitrogen was withheld from the salt marsh grass Spartina alterniflora Loisel., in order to determine the effect of salinity (sea salts) on critical tissue nitrogen concentrations (defined here as the minimum tissue concentration required to sustain biomass accumulation). The critical nitrogen concentration per kilogram dry weight of above-ground tissue increased non-linearly from a mean of 8.2 g kg-1 at 5 g l-1 and 20 g l-1 salinity to 13.6 g kg-1 and 22.9 g kg-1 at salinities of 40 g l-1 and 50 g l-1, respectively. Below-ground tissue nitrogen concentrations averaged 62% of the above-ground values irrespective of salinity treatment. These results suggest that the critical nitrogen concentration is a function of salinity and indicate that the internal nitrogen supply required in support of growth increases with salinity. Above-ground tissue nitrogen concentrations reported in the literature and the relationship between salinity and critical nitrogen concentration observed in this study were used to evaluate the nitrogen status of S. alterniflora over a wide range of geographical locations. Comparisons suggest that both short and tall forms of S. alterniflora are nitrogen limited in the majority of marshes along the Gulf and Atlantic Coasts of the US. ?? 1992.
[Effect of DMPP on inorganic nitrogen runoff loss from vegetable soil].
Yu, Qiao-Gang; Fu, Jian-Rong; Ma, Jun-Wei; Ye, Jing; Ye, Xue-Zhu
2009-03-15
The effect of urea with 1% 3,4-dimethyl pyrazole phosphate (DMPP) on inorganic nitrogen runoff loss from agriculture field was determined in an undisturbed vegetable soil by using the simulated artificial rainfall method. The results show that, during the three simulated artificial rainfall period, the ammonium nitrogen content in the runoff water is increased 1.42, 2.82 and 1.95 times with the DMPP application treatment compared to regular urea treatment, respectively. In the urea with DMPP addition treatment, the nitrate nitrogen content is decreased 70.2%, 59.7% and 52.1% in the three simulated artificial rainfall runoff water, respectively. The nitrite nitrogen content is also decreased 98.7%, 90.6% and 85.6% in the three simulated artificial rainfall runoff water, respectively. The nitrate nitrogen and nitrite nitrogen runoff loss are greatly declined with the DMPP addition in the urea. Especially the nitrite nitrogen is in a significant low level and is near to the treatment with no fertilizer application. The inorganic nitrogen runoff loss is declined by 39.0% to 44.8% in the urea with DMPP addition treatment. So DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation, decline the nitrogen runoff loss, lower the nitrogen transformation risk to the waterbody and be beneficial for the ecological environment.
Climate-mediated nitrogen and carbon dynamics in a tropical watershed
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Baker, P. A.; Fritz, S. C.; Poulter, B.
2011-06-01
Climate variability affects the capacity of the biosphere to assimilate and store important elements, such as nitrogen and carbon. Here we present biogeochemical evidence from the sediments of tropical Lake Titicaca indicating that large hydrologic changes in response to global glacial cycles during the Quaternary were accompanied by major shifts in ecosystem state. During prolonged glacial intervals, lake level was high and the lake was in a stable nitrogen-limited state. In contrast, during warm dry interglacials lake level fell and rates of nitrogen concentrations increased by a factor of 4-12, resulting in a fivefold to 24-fold increase in organic carbon concentrations in the sediments due to increased primary productivity. Observed periods of increased primary productivity were also associated with an apparent increase in denitrification. However, the net accumulation of nitrogen during interglacial intervals indicates that increased nitrogen supply exceeded nitrogen losses due to denitrification, thereby causing increases in primary productivity. Although primary productivity in tropical ecosystems, especially freshwater ecosystems, tends to be nitrogen limited, our results indicate that climate variability may lead to changes in nitrogen availability and thus changes in primary productivity. Therefore some tropical ecosystems may shift between a stable state of nitrogen limitation and a stable state of nitrogen saturation in response to varying climatic conditions.
Herman, R P; Provencio, K R; Torrez, R J; Seager, G M
1993-01-01
In this study we measured changes in population levels of free-living N2-fixing bacteria in the root zones of potted Bouteloua eriopoda and Sporobolus flexuosus plants as well as the photosynthetic indices of the plants in response to added nitrogen, added water, and added water plus nitrogen treatments. In addition, N2 fixer population changes in response to added carbon source and nitrogen were measured in plant-free soil columns. There were significant increases in the numbers of N2 fixers associated with both plant species in the water and the water plus nitrogen treatments. Both treatments increased the photosynthetic index, suggesting that plant exudates were driving N2 fixer population changes. Population increases were greatest in the water plus nitrogen treatments, indicating that added nitrogen was synergistic with added water and suggesting that nitrogen addition spared bacteria the metabolic cost of N2 fixation, allowing greater reproduction. Plant-free column studies demonstrated a synergistic carbon-nitrogen effect when carbon levels were limiting (low malate addition) but not when carbon was abundant (high malate), further supporting this hypothesis. The results of this study indicate the presence of N2 fixer populations which interact with plants and which may play a role in the nitrogen balance of desert grasslands. PMID:8215373
Molecular Biology of Nitrogen Fixation
ERIC Educational Resources Information Center
Shanmugam, K. T.; Valentine, Raymond C.
1975-01-01
Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)
Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.
ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells weremore » growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCENitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeastY. lipolyticato determine how the nitrogen source regulates lipid metabolism. We show that disruption of both activators and repressors of nitrogen catabolite repression leads to increased lipid accumulation via activation of carbon catabolite repression through an as yet uncharacterized method.« less
Stream denitrification across biomes and its response to anthropogenic nitrate loading
Patrick J Mulholland; Ashely M. Helton; Geoffrey C. Poole; Robert O. Hall; Stephen K. Hamilton; Bruce J. Peterson; Jennifer L. Tank; Linda R. Ashkenas; Lee W. Cooper; Clifford N. Dahm; Walter K. Dodds; Stuart E.G. Findlay; Stanley V. Gregory; Nancy B. Grimm; Sherri L. Johnson; William H. McDowell; Judy L. Meyer; H. Maurice Valett; Jackson R. Webster; Clay P. Arango; Jake J. Beaulieu; Melody J. Bernot; Amy J. Burgin; Chelsea L. Crenshaw; Laura T. Johnson; B.R. Niederlehner; Jonathan M. O' Brien; Jody D. Potter; Richard W. Sheibley; Daniel J. Sobota; Suzanne M. Thomas
2008-01-01
Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing, and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20 to 25 percent of the nitrogen added to the biosphere is exported from rivers to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 2 2011-07-01 2011-07-01 false National primary and secondary ambient air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the...
USDA-ARS?s Scientific Manuscript database
Average nitrogen (N) use efficiencies are approximately fifty percent and can be even lower for shallower rooted systems grown on irrigated sandy soils. These low N use efficiencies need to be increased if reactive N losses to the environmental are to be reduced. Recently, USDA-NRCS identified Adapt...
Do lichens have "memory" of their native nitrogen environment?
Munzi, Silvana; Loppi, Stefano; Cruz, Cristina; Branquinho, Cristina
2011-02-01
This study aimed to deepen the knowledge about intraspecific mechanisms regulating nitrogen tolerance in lichens to wet nitrogen deposition. Thalli of the nitrophilous lichen Xanthoria parietina were collected from environments with different nitrogen availabilities and immersed in 80 mL of ammonium sulphate (NH₄)₂SO₄ solutions with distinct concentrations (0, 0.025, 0.05 and 0.25 M) for 5 h per day during 3 days in a week. After each soaking event, lichens were air dried. After each treatment, maximal PSII efficiency, localization of ammonium ions, concentrations of K+ and Mg²+ and thalli buffer capacity were determined. Our results show that lichens are marked by their native nitrogen environment, since there were important differences between the physiological responses of X. parietina thalli previously grown in an area with high nitrogen deposition (nitrogen emissions of ca. 13,000 t/year) and those previously grown in an unpolluted area (nitrogen emissions of ca. 500 t/year). Greater N availability seems to enable X. parietina to cope better with the effects of nitrogen pollution.
Fujii, Hidemichi; Nakagawa, Kei; Kagabu, Makoto
2016-11-01
Groundwater nitrate pollution is one of the most prevalent water-related environmental problems worldwide. The objective of this study is to identify the determinants of nitrogen pollutant changes with a focus on the nitrogen generation process. The novelty of our research framework is to cost-effectively identify the factors involved in nitrogen pollutant generation using public data. This study focuses on three determinant factors: (1) nitrogen intensity changes, (2) structural changes, and (3) scale changes. This study empirically analyses three sectors, including crop production, farm animals, and the household, on the Shimabara Peninsula in Japan. Our results show that the nitrogen supply from crop production sectors has decreased because the production has been scaled down and shifted towards lower nitrogen intensive crops. In the farm animal sector, the nitrogen supply has also been successfully reduced due to scaling-down efforts. Households have decreased the nitrogen supply by diffusion of integrated septic tank and sewerage systems.
Beneficial effects of aluminum enrichment on nitrogen-fixing cyanobacteria in the South China Sea.
Liu, Jiaxing; Zhou, Linbin; Ke, Zhixin; Li, Gang; Shi, Rongjun; Tan, Yehui
2018-04-01
Few studies focus on the effects of aluminum (Al) on marine nitrogen-fixing cyanobacteria, which play important roles in the ocean nitrogen cycling. To examine the effects of Al on the nitrogen-fixing cyanobacteria, bioassay experiments in the oligotrophic South China Sea (SCS) and culture of Crocosphaera watsonii in the laboratory were conducted. Field data showed that 200 nM Al stimulated the growth and the nitrogenase gene expression of Trichodesmium and unicellular diazotrophic cyanobacterium group A, and the nitrogen fixation rates of the whole community. Laboratory experiments demonstrated that Al stimulated the growth and nitrogen fixation of C. watsonii under phosphorus limited conditions. Both field and laboratory results indicated that Al could stimulate the growth of diazotrophs and nitrogen fixation in oligotrophic oceans such as the SCS, which is likely related to the utilization of phosphorus, implying that Al plays an important role in the ocean nitrogen and carbon cycles by influencing nitrogen fixation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat
2013-10-01
Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.
Mustonen, Kati; Deviatkin, Ivan; Havukainen, Jouni; Horttanainen, Mika
2018-04-01
An ongoing call to implement a circular economy is underway in the European Union, and a specific attention has been placed on the forest industry, which seeks additional recycling routes for its side streams, including biosludge. Biosludge is often dried and incinerated, thus wasting the nitrogen contained therein. This paper describes a study in which the release of nitrogen during thermal drying, the impact of the drying temperatures of 130°C, 180°C, and 210°C on the mass of ammonia released, and the potential for recovery of nitrogen from biosludge were examined. The results indicate that 1310-1730 mg kgTS -1 of nitrogen was released, which corresponded to 56-74% of the soluble nitrogen in biosolids or 4.0-5.3% of the total nitrogen. Of this released nitrogen, 83-85% was identified in condensate and absorbing water, thus indicating a high potential for recovering nitrogen from biosludge.
Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, Ragnar; Caraco, N.; Jordan, T.; Berendse, F.; Freney, J.; Kudeyarov, V.; Murdoch, P.; Zhu, Z.-L.
1996-01-01
We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr-1 out of a total for the entire North Atlantic region of 13.1 Tg yr-1. On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km-2 yr-1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S. Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems. ?? 1996 Kluwer Academic Publishers.
Organic nitrogen chemistry during low-grade metamorphism
Boudou, J.-P.; Schimmelmann, A.; Ader, M.; Mastalerz, Maria; Sebilo, M.; Gengembre, L.
2008-01-01
Most of the organic nitrogen (Norg) on Earth is disseminated in crustal sediments and rocks in the form of fossil nitrogen-containing organic matter. The chemical speciation of fossil Norg within the overall molecular structure of organic matter changes with time and heating during burial. Progressive thermal evolution of organic matter involves phases of enhanced elimination of Norg and ultimately produces graphite containing only traces of nitrogen. Long-term chemical and thermal instability makes the chemical speciation of Norg a valuable tracer to constrain the history of sub-surface metamorphism and to shed light on the subsurface biogeochemical nitrogen cycle and its participating organic and inorganic nitrogen pools. This study documents the evolutionary path of Norg speciation, transformation and elimination before and during metamorphism and advocates the use of X-ray photoelectron spectroscopy (XPS) to monitor changes in Norg speciation as a diagnostic tool for organic metamorphism. Our multidisciplinary evidence from XPS, stable isotopes, traditional quantitative coal analyses, and other analytical approaches shows that at the metamorphic onset Norg is dominantly present as pyrrolic and pyridinic nitrogen. The relative abundance of nitrogen substituting for carbon in condensed, partially aromatic systems (where N is covalently bonded to three C atoms) increases exponentially with increasing metamorphic grade, at the expense of pyridinic and pyrrolic nitrogen. At the same time, much Norg is eliminated without significant nitrogen isotope fractionation. The apparent absence of Rayleigh-type nitrogen isotopic fractionation suggests that direct thermal loss of nitrogen from an organic matrix does not serve as a major pathway for Norg elimination. Instead, we propose that hot H, O-containing fluids or some of their components gradually penetrate into the carbonaceous matrix and eliminate Norg along a progressing reaction front, without causing nitrogen isotope fractionation in the residual Norg in the unreacted core of the carbonaceous matrix. Before the reaction front can reach the core, an increasing part of core Norg chemically stabilizes in the form of nitrogen atoms substituting for carbon in condensed, partially aromatic systems forming graphite-like structural domains with delocalized ??-electron systems (nitrogen atoms substituting for "graphitic" carbon in natural metamorphic organic matter). Thus, this nitrogen species with a conservative isotopic composition is the dominant form of residual nitrogen at higher metamorphic grade. ?? 2007 Elsevier Ltd. All rights reserved.
Demonstrating Paramagnetism Using Liquid Nitrogen.
ERIC Educational Resources Information Center
Simmonds, Ray; And Others
1994-01-01
Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)
Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation.
Petersen, Jillian M; Kemper, Anna; Gruber-Vodicka, Harald; Cardini, Ulisse; van der Geest, Matthijs; Kleiner, Manuel; Bulgheresi, Silvia; Mußmann, Marc; Herbold, Craig; Seah, Brandon K B; Antony, Chakkiath Paul; Liu, Dan; Belitz, Alexandra; Weber, Miriam
2016-10-24
Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity.
NASA Astrophysics Data System (ADS)
Hestrin, R.; Lehmann, J.
2017-12-01
Soil microbes play an important role in rhizosphere nutrient cycling and plant productivity. In this study, the contributions of soil microbes to organic matter mineralization and plant nitrogen uptake were investigated using incubation and microcosm experiments. Microbial inocula included arbuscular mycorrhizal fungi and microbial communities sampled across a long-term gradient of nitrogen fertilization. Stable isotopes, nanoSIMS imaging, and phospholipid fatty acid analysis were used to track carbon and nitrogen movement from organic matter into microbes, mycorrhizal fungi, and plants. Results show that multipartite relationships between plants and microbes increased plant growth and access to nitrogen from organic matter, and that nitrogen fertilization history had a lasting effect on microbial contributions to fungal and plant nitrogen uptake. This research links rhizosphere ecology and land management with terrestrial biogeochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okagawa, R.K.
1984-01-01
Small amounts of nitrogen were injected into Type 304L austenitic stainless steel weld metal. This was accomplished by using an Ar-N/sub 2/ shield gas mixture in combination with a controlled argon atmosphere on autogeneous Gas Tungsten Arc (GTA) welds. Weld metal nitrogen as a function of nitrogen shield gas content and applied pressure was examined. Nitrogen shield gas contents above 4% were found to have a major effect on the weld metal microstructure. The base metal nitrogen did not influence the nitrogen solubility reaction or solidification behavior during welding. For Type 304L austenitic stainless steel, a nitrogen coefficient of 13.4more » was determined for the nickel equivalent expression. 63 refs., 19 figs., 4 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, A.F.; Johnson, R.J.; Siegel, D.A.
1993-06-01
This paper compares a recent atmospheric wet deposition record (including all measurable daily rainfall events between October 1988 and June 1991) with concurrent measurements of nitrogen cycling and biomass at the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time Series Study station. The two data sets, among the most complete synoptic records of atmospheric nitrogen deposition and ocean nitrogen cycling, provide an opportunity to directly assess the importance of nitrogen deposition in the ocean. The results indicate that individual nitrogen wet deposition events are usually small compared to the ambient nitrogen cycle and that only under sustained calm conditionsmore » following large deposition events will nitrogen deposition processes be an important signal for the understanding of ocean biochemistry. 46 refs., 7 figs.« less
Camargo Valero, M A; Mara, D D; Newton, R J
2010-01-01
In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.
The Role of Atmospheric Organic Nitrogen in Forest Nitrogen Cycling
NASA Astrophysics Data System (ADS)
Lockwood, A.; Shepson, P.; Rhodes, D.
2003-12-01
Changes in the global climate and atmosphere cause significant effects to the biosphere. Forests respond to these global changes in various ways which all can affect their ability to store carbon, which in turn impacts climate change. Many temperate latitude forests are nitrogen-limited. A current working hypothesis is that atmospheric nitrogen compounds that are deposited to the canopy may be directly utilized by the plant as a nitrogen source. A significant fraction of atmospheric reactive nitrogen that can be deposited is organic. Organic nitrogen deposition is not well characterized nor have the ecological consequences been assessed. Our hypothesis is that organic nitrogen deposition to the canopy is significant, and that that nitrogen is utilized by trees. Fumigation experiments were conducted with 14N and 15N-labeled organic nitrates (focusing on 1-nitrooxy-3-methyl butane as a surrogate for isoprene nitrates) to determine if and how that nitrogen gets incorporated into the leaves by detecting the 15N-labeled leaf amino acids. This research builds on work completed during past summer intensives as part of the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET), and begins the next stage of research as part of the Biosphere Atmosphere Research & Training program (BART) at the University of Michigan Biological Station (UMBS). The overall goal of the new effort, the Biosphere Exchange of Atmospheric Carbon and Odd Nitrogen (BEACON) program, is to evaluate the interactive roles of the atmosphere and forest in the coupling of the carbon and nitrogen cycles.
Nitrogen Deposition: A Component of Global Change Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, Richard J.
1997-12-31
The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the developmentmore » of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.« less
This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2002. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) v5.0.2 run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadab
This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2011. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data
This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2006. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable dat
Wang, Shan Shan; Zhao, Yun Ge; Shi, Ya Fang; Gao, Li Qian; Yang, Qiao Yun
2017-12-01
The variations of total nitrogen, available nitrogen and microbial biomass nitrogen caused by simulated grazing disturbance were investigated in the sixth and twelfth months by using field survey combined with laboratory analysis in order to reveal the sensitivity of nitrogen content in biocrustal soils to disturbance in the hilly Loess Plateau region. The results showed that nitrogen contents in biocrustal soil were sensitive to disturbance. Total nitrogen and available nitrogen in the biocrustal layers were decreased by 0.17-0.39 g·kg -1 and 1.78-5.65 mg·kg -1 during the first half-year compared to the undisturbed treatment, and they were found respectively decreased by 0.13-0.40 g·kg -1 and 11.45-32.68 mg·kg -1 one year later since disturbance. The content of microbial biomass nitrogen in the biocrustal layer was reduced by 69.99-330.97 mg·kg -1 , whereas the content was increased by 25.51-352.17 mg·kg -1 in soil of 0-2 cm layer. The induction of nitrogen accumulation depended on the intensity of disturbance. Slight variation was observed in the nitrogen accumulation in biocrustal layer under 20% and 30% disturbance, while significant reduction was found in the 40% and 50% disturbance. Significant reduction was detected only in nitrogen accumulation in the biocrustal layers, whereas no significant influence was found in the top 5 cm soil layer.
Cobo-Díaz, José F; Fernández-González, Antonio J; Villadas, Pablo J; Robles, Ana B; Toro, Nicolás; Fernández-López, Manuel
2015-05-01
Wildfires are frequent in the forests of the Mediterranean Basin and have greatly influenced this ecosystem. Changes to the physical and chemical properties of the soil, due to fire and post-fire conditions, result in alterations of both the bacterial communities and the nitrogen cycle. We explored the effects of a holm oak forest wildfire on the rhizospheric bacterial communities involved in the nitrogen cycle. Metagenomic data of the genes involved in the nitrogen cycle showed that both the undisturbed and burned rhizospheres had a conservative nitrogen cycle with a larger number of sequences related to the nitrogen incorporation pathways and a lower number for nitrogen output. However, the burned rhizosphere showed a statistically significant increase in the number of sequences for nitrogen incorporation (allantoin utilization and nitrogen fixation) and a significantly lower number of sequences for denitrification and dissimilatory nitrite reductase subsystems, possibly in order to compensate for nitrogen loss from the soil after burning. The genetic potential for nitrogen incorporation into the ecosystem was assessed through the diversity of the nitrogenase reductase enzyme, which is encoded by the nifH gene. We found that nifH gene diversity and richness were lower in burned than in undisturbed rhizospheric soils. The structure of the bacterial communities involved in the nitrogen cycle showed a statistically significant increase of Actinobacteria and Firmicutes phyla after the wildfire. Both approaches showed the important role of gram-positive bacteria in the ecosystem after a wildfire.
Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen
Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin
2005-02-08
A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.
Evaluating the role of Actinobacteria in the gut of wood-feeding termites (Reticulitermes spp.)
Rachel A. Arango; Frederick Green III; Vina W. Yang; Joliene R. Lindholm; Nathaniel P. Chotlos; Kenneth F. Raffa
2017-01-01
Nitrogen has been shown to be a limiting nutrient across a range of xylophagous insects. These insects often rely on symbiotic microorganisms in the gut for nitrogen acquisition, via fixation of atmospheric nitrogen or break down of other available nitrogenous substances. In phylogenetically lower, wood-feeding termites, the role of nitrogen fixing bacteria has been...
Apodaca, Lori E.
2013-01-01
The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.
Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang
2018-01-01
Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...
Brice, Claire; Cubillos, Francisco A; Dequin, Sylvie; Camarasa, Carole; Martínez, Claudio
2018-01-01
Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway.
Lu, Shaoping; Yao, Shuaibing; Wang, Geliang; Guo, Liang; Zhou, Yongming; Hong, Yueyun; Wang, Xuemin
2016-03-01
Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M.
2015-01-21
Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switchingmore » mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji
To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energymore » efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.« less
Growth, nitrogen accumulation and nitrogen transfer by legume species established on mine spoils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jefferies, R.A.; Bradshaw, A.D.; Putwain, P.D.
1981-12-01
Nitrogen deficiency is an important factor limiting plant growth on many types of mine and mineral spoils. One method of overcoming this problem is to use legume species which are able to accumulate nitrogen in such spoils. The growth, nitrogen accumulation and nitrogen transfer to a companion species was compared in contrasting legume species established on colliery spoil and on sand waste from the extraction of china clay. Legumes can be effective means of accumulating nitrogen in such spoils with rates as high as 295 kg N ha/sup -1/ yr/sup -1/ being measured for Lupinus perennis sown on sand waste.more » Nitrogen transfer from legumes to a companion grass was also apparent. Trifolium repens sown on colliery spoil increased the nitrogen content of the companion grass by 76 kg ha/sup -1/ within 2 yr of sowing. It is concluded that a wider range of legume species than conventionally used is available, offering greater tolerance of the extreme conditions of mine spoils combined with high rates of nitrogen accumulation. It is necessary to develop reclamation strategies which incorporate such species.« less
[Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].
Wang, Li-Wen; Wei, Ya-Xing
2013-10-01
Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.
2018-01-01
Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway. PMID:29432462
Nitrogen Loading in Jamaica Bay, Long Island, New York: Predevelopment to 2005
Benotti, Mark J.; Abbene, Irene; Terracciano, Stephen A.
2007-01-01
Nitrogen loading to Jamaica Bay, a highly urbanized estuary on the southern shore of western Long Island, New York, has increased from an estimated rate of 35.6 kilograms per day (kg/d) under predevelopment conditions (pre-1900), chiefly as nitrate plus nitrite from ground-water inflow, to an estimated 15,800 kilograms per day as total nitrogen in 2005. The principal point sources are wastewater-treatment plants, combined sewer overflow/stormwater discharge during heavy precipitation, and subway dewatering, which account for 92 percent of the current (2005) nitrogen load. The principal nonpoint sources are landfill leachate, ground-water flow, and atmospheric deposition, which account for 8 percent of the current nitrogen load. The largest single source of nitrogen to Jamaica Bay is wastewater-treatment plants, which account for 89 percent of the nitrogen load. The current and historic contributions of nitrogen from seawater are unknown, although at present, the ocean likely serves as a sink for nitrogen from Jamaica Bay. Currently, concentrations of nitrogen in surface water are high throughout Jamaica Bay, but some areas with relatively little mixing have concentrations that are five times higher than areas that are well mixed.
Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica
Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.; ...
2017-02-15
Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less
Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.
Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhang, L.; Chen, Y.; Liu, X.; Xu, W.; Pan, Y.; Duan, L.
2016-12-01
We present a national-scale model analysis of the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2°×1/3° horizontal resolution. Averaged model results for 2008-2012 are evaluated with an ensemble of surface measurements of nitrogen wet deposition flux and concentration, and satellite measurements of tropospheric NO2 columns. Annual inorganic nitrogen deposition fluxes are shown to be generally less than 10 kg N ha-1 a-1 in the western China, 15-50 kg N ha-1 a-1 in the eastern China, and 15.6 kg N ha-1 a-1 averaged over China. The model simulates an annual total deposition flux of 16.4 Tg N to China, with 10.3 Tg N (63%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported out of China. We also find while nitrogen deposition to China is comparable to the nitrogen input from fertilizer application (16.5 Tg N a-1) on the national scale, it is much more widely distributed spatially. The deposition flux is also much higher than natural biological fixation (7.3 Tg N a-1). A comparison with estimates of nitrogen critical load for eutrophication indicates that about 40% of the land over China faces nitrogen critical load exceedances. However, 45% of the exceeding areas, mainly in Beijing-Tianjin-Hebei, Central China, East China, and South China, will not occur in the absence of nitrogen deposition, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects over these areas.
The effects of climate change on instream nitrogen transport in the contiguous United States
NASA Astrophysics Data System (ADS)
Alam, M. J.; Goodall, J. L.
2011-12-01
Excessive nitrogen loading has caused significant environmental impacts such as eutrophication and hypoxia in waterbodies around the world. Nitrogen loading is largely dependent on nonpoint source pollution and nitrogen transport from nonpoint source pollution is greatly impacted by climate conditions. For example, increased precipitation leads to more runoff and a higher nitrogen yield. However, higher temperatures also impact nitrogen transport in that higher temperatures increase denitrification and therefore reduce nitrogen yield. The purpose of this research is to quantify potential changes in nitrogen yield for the contiguous United States under predicted climate change scenarios, specifically changes in precipitation and air temperature. The analysis was performed for high (A2) and low (B1) emission scenarios and for the year 2030, 2050 and 2090. We used 11 different IPCC (The Intergovernmental Panel on Climate Change) models predicted precipitation and temperature estimates to capture uncertainty. The SPARROW model was calibrated using historical nitrogen loading data and used to predict nitrogen yields for future climate conditions. We held nitrogen source data constant in order to isolate the impact of predicted precipitation and temperature changes for each model scenario. Preliminary results suggest an overall decrease in nitrogen yield if climate change impacts are considered in isolation. For the A2 scenario, the model results indicated an overall incremental nitrogen yield decrease of 2-17% by the year 2030, 4-26% by the year 2050, and 11-45% by the year 2090. The B1 emission scenario also indicated an incremental yield decrease, but at lesser amounts of 2-18%, 5-21% and 10-38% by the years 2030, 2050, and 2090, respectively. This decrease is mainly due to higher predicted temperatures that result in increased denitrification rates.
Tesnière, Catherine; Delobel, Pierre; Pradal, Martine; Blondin, Bruno
2013-01-01
We evaluated the consequences of nutritional imbalances, particularly lipid/nitrogen imbalances, on wine yeast survival during alcoholic fermentation. We report that lipid limitation (ergosterol limitation in our model) led to a rapid loss of viability during the stationary phase of fermentation and that the cell death rate is strongly modulated by nitrogen availability and nature. Yeast survival was reduced in the presence of excess nitrogen in lipid-limited fermentations. The rapidly dying yeast cells in fermentations in high nitrogen and lipid-limited conditions displayed a lower storage of the carbohydrates trehalose and glycogen than observed in nitrogen-limited cells. We studied the cell stress response using HSP12 promoter-driven GFP expression as a marker, and found that lipid limitation triggered a weaker stress response than nitrogen limitation. We used a SCH9-deleted strain to assess the involvement of nitrogen signalling pathways in the triggering of cell death. Deletion of SCH9 increased yeast viability in the presence of excess nitrogen, indicating that a signalling pathway acting through Sch9p is involved in this nitrogen-triggered cell death. We also show that various nitrogen sources, but not histidine or proline, provoked cell death. Our various findings indicate that lipid limitation does not elicit a transcriptional programme that leads to a stress response protecting yeast cells and that nitrogen excess triggers cell death by modulating this stress response, but not through HSP12. These results reveal a possibly negative role of nitrogen in fermentation, with reported effects referring to ergosterol limitation conditions. These effects should be taken into account in the management of alcoholic fermentations.
He, Tengxia; Li, Zhenlun; Xie, Deti; Sun, Quan; Xu, Yi; Ye, Qing; Ni, Jiupai
2018-04-01
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH 4 + -N and NO 3 - -N/NO 2 - -N (about 5 mg/L-N each) and high concentration of mixed NH 4 + -N and NO 3 - -N/NO 2 - -N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.
NASA Astrophysics Data System (ADS)
Duan, L.; Xie, D.; Zhang, T.; Huang, Y.
2017-12-01
Reactive nitrogen emission and deposition has been greatly reduced in recent years in China. To study the responses of soil water chemistry to decreasing nitrogen deposition, a field manipulating experiment was carried out in Tieshanping, a nitogen-saturated forest near Chongqing city in southwest China. After ten-year application of NH4NO3 or NaNO3 to simulate doubling nitrogen deposition with different nitrogen forms during 2005-2014, the nitrogen fertilizers were stopped applying at the end of 2014 to simulate decrease in nitrogen deposition. The continuous observing results on the changes of soil water chemistry in the next two years (2015 and 2016) showed very quick decrease in NO3- (the major form of inorganic nitrogen in soil water, because almost all NH4+ added being nitrified) concentration at the nitrogen fertilizing plots, to similar level at the reference plots without N fertilizer application. The NO3- concentrations of soil water at the NH4NO3 plots were even lower than those at the NaNO3 plots. The previous experiment on the effects of nitrogen addition had showed that NH4+ deposition, instead of NO3- deposition, increased N retention in the forest ecosystem, and led to lower NO3- concentration in soil water. The nitrogen sink seemed remained in the two years after the cease of N addition. Although the total NO3- leaching decreased after nitrogen reduction, the pH of soil water had not showed significantly increasing trend. Therefore, the recovery of Tieshanping forest ecosystem from acidification was slow, which requiring further emission abatement of reactive nitrogen in the future.
Origin and Evolution of Nitrogen on Titan, Enceladus, Triton, and Pluto
NASA Technical Reports Server (NTRS)
Atreya, S. K.; Niemann, H. B.; Mahaffy, P. R.; Owen, T. C.
2007-01-01
Nitrogen, together with carbon, hydrogen, oxygen, phosphorus and sulfur (CHNOPS), plays a central role in life as we know it. Indeed, molecular nitrogen is the most abundant component of the terrestrial atmosphere, and second only to carbon dioxide on Mars and Venus. The Voyager and Cassini-Huygens observations show that copious nitrogen is present on Titan also, comprising some 95% by volume of this moon's 1500 millibar atmosphere. After water vapor, it may be the most abundant (4%) of the gases around tiny Enceladus, as revealed by the recent Cassini observations. A thin nitrogen atmosphere is found even on the coldest of the solar system bodies, Triton and Pluto. The available evidence on nitrogen isotopes and the heavy noble gases suggests that Titan acquired its nitrogen largely in the form of ammonia. Subsequent chemical evolution, beginning with the photolysis of NH3 on primordial Titan, led to the nitrogen atmosphere we see on Titan today. This is also the scenario for the origin of nitrogen on the terrestrial planets. Contrary to Titan, the colder outer solar system objects, Triton and Pluto, neither had the luxury of receiving much arnmonia in the first place, nor of photolyzing whatever little ammonia they did receive in the planetesimals that formed them. On the other hand, it is plausible the planetesimals were capable of trapping and delivering molecular nitrogen directly to Triton and Pluto, unlike Titan. The origin of nitrogen on Enceladus is somewhat enigmatic. A scenario similar to Titan's, but with a role for the interior processes, may be at work. In this paper, we will discuss the source and loss of nitrogen for the above objects, and why Ganymede, the largest moon in the solar system, is nitrogen starved.
Feng, Ai-Juan; Xiao, Xi; Ye, Cong-Cong; Xu, Xiao-Ming; Zhu, Qing; Yuan, Jian-Ping; Hong, Yue-Hui; Wang, Jiang-Hai
2017-12-01
The exploitation of rare-earth-element (REE) mines has resulted in severe ammonia nitrogen pollution and induced hazards to environments and human health. Screening microorganisms with the ammonia nitrogen-degrading ability provides a basis for bioremediation of ammonia nitrogen-polluted environments. In this study, a bacterium with the outstanding ammonia nitrogen-degrading capability was isolated from the tailings of REE mines in southern Jiangxi Province, China. This strain was identified as Burkholderia fungorum Gan-35 according to phenotypic and phylogenetic analyses. The optimal conditions for ammonia-nitrogen degradation by strain Gan-35 were determined as follows: pH value, 7.5; inoculum dose, 10%; incubation time, 44 h; temperature, 30 °C; and C/N ratio, 15:1. Strain Gan-35 degraded 68.6% of ammonia nitrogen under the optimized conditions. Nepeta cataria grew obviously better in the ammonia nitrogen-polluted soil with strain Gan-35 than that without inoculation, and the decrease in ammonia-nitrogen contents of the former was also more obvious than the latter. Besides, strain Gan-35 exhibited the tolerance to high salinities. In summary, strain Gan-35 harbors the ability of both ammonia-nitrogen degradation at high concentrations and promoting plant growth. This work has reported a Burkholderia strain with the ammonia nitrogen-degrading capability for the first time and is also the first study on the isolation of a bacterium with the ammonia nitrogen-degrading ability from the tailings of REE mines. The results are useful for developing an effective method for microbial remediation of the ammonia nitrogen-polluted tailings of REE mines.
Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong
2016-10-01
Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.
Tesnière, Catherine; Delobel, Pierre; Pradal, Martine; Blondin, Bruno
2013-01-01
We evaluated the consequences of nutritional imbalances, particularly lipid/nitrogen imbalances, on wine yeast survival during alcoholic fermentation. We report that lipid limitation (ergosterol limitation in our model) led to a rapid loss of viability during the stationary phase of fermentation and that the cell death rate is strongly modulated by nitrogen availability and nature. Yeast survival was reduced in the presence of excess nitrogen in lipid-limited fermentations. The rapidly dying yeast cells in fermentations in high nitrogen and lipid-limited conditions displayed a lower storage of the carbohydrates trehalose and glycogen than observed in nitrogen-limited cells. We studied the cell stress response using HSP12 promoter-driven GFP expression as a marker, and found that lipid limitation triggered a weaker stress response than nitrogen limitation. We used a SCH9-deleted strain to assess the involvement of nitrogen signalling pathways in the triggering of cell death. Deletion of SCH9 increased yeast viability in the presence of excess nitrogen, indicating that a signalling pathway acting through Sch9p is involved in this nitrogen-triggered cell death. We also show that various nitrogen sources, but not histidine or proline, provoked cell death. Our various findings indicate that lipid limitation does not elicit a transcriptional programme that leads to a stress response protecting yeast cells and that nitrogen excess triggers cell death by modulating this stress response, but not through HSP12. These results reveal a possibly negative role of nitrogen in fermentation, with reported effects referring to ergosterol limitation conditions. These effects should be taken into account in the management of alcoholic fermentations. PMID:23658613
Sammarone, Dino G.
1978-01-01
A system for controlling the environment of an enclosed area in nuclear reactor installations. The system permits the changing of the environment from nitrogen to air, or from air to nitrogen, without the release of any radioactivity or process gas to the outside atmosphere. In changing from a nitrogen to an air environment, oxygen is inserted into the enclosed area at the same rate which the nitrogen-oxygen gas mixture is removed from the enclosed area. The nitrogen-oxygen gas mixture removed from the enclosed area is mixed with hydrogen, the hydrogen recombining with the oxygen present in the gas to form water. The water is then removed from the system and, if it contains any radioactive products, can be utilized to form concrete, which can then be transferred to a licensed burial site. The process gas is purified further by stripping it of carbon dioxide and then distilling it to remove any xenon, krypton, and other fission or non-condensable gases. The pure nitrogen is stored as either a cryogenic liquid or a gas. In changing from an air to nitrogen environment, the gas is removed from the enclosed area, mixed with hydrogen to remove the oxygen present, dried, passed through adsorption beds to remove any fission gases, and reinserted into the enclosed area. Additionally, the nitrogen stored during the nitrogen to air change, is inserted into the enclosed area, the nitrogen from both sources being inserted into the enclosed area at the same rate as the removal of the gas from the containment area. As designed, the amount of nitrogen stored during the nitrogen to air change substantially equals that required to replace oxygen removed during an air to nitrogen change.
Seasonal changes of concentrations of inorganic and organic nitrogen in coastal marine sediments
NASA Astrophysics Data System (ADS)
Yamada, Hisashi; Kayama, Mitsu; Fujisawa, Kuniyasu
1987-05-01
The seasonal fluctuations of the concentration of nitrogenous compounds in sediments was investigated for three regions of the Seto Inland Sea in Japan; the variation of nitrogenous compounds in sediments was also studied in a laboratory experiment. The amounts of ammonium, dissolved organic nitrogen, nitrite and nitrate, as percentages of the dissolved total nitrogen of the interstitial water, were in the ranges of 47-99%, 10-50%, 0·1-0·6% and 0·3-4·1%, respectively. Ammonium was the major component and organic nitrogen was the next most important. The concentrations of these nitrogenous compounds changed seasonally: dissolved total nitrogen was higher in the warm month of September than in May; ammonium increased in warm months and decreased in cold months, but nitrite and nitrate increased in cold months. It was possible to explain the seasonal fluctuation of nitrogenous compounds in terms of the rates of the metabolic pathways of nitrogen in the sediments. Ammonium was not necessarily correlated with dissolved organic nitrogen. From this, it was considered that ammonium did not occur from solubilization of particulate organic nitrogen followed by mineralization, but from direct mineralization of particulate organic nitrogen in sediments. For the sediments of Suho Nada, Hiuchi Nada and station B-47 in Beppu Bay, the ratio of dissolved ammonium to adsorbed ammonium in the sediments was in the range 10-25%, but the ratio was 60-70% of adsorbed ammonium in the considerably anaerobic sediments at station B-45 in Beppu Bay. The ratio of dissolved ammonium to adsorbed ammonium increased with the increase of the concentration of sulfide in sediments. It was recognized that the anaerobic conditions of the sediments led to the dissolution of adsorbed ammonium.
40 CFR 52.1876 - Control strategy: Nitrogen dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan... change to the flow control date in the oxides of nitrogen budget trading SIP. (b) [Reserved] [69 FR 13234...
Nitrogen-doped carbon aerogels for electrical energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Patrick; Montalvo, Elizabeth; Baumann, Theodore F.
Disclosed here is a method for making a nitrogen-doped carbon aerogel, comprising: preparing a reaction mixture comprising formaldehyde, at least one nitrogen-containing resorcinol analog, at least one catalyst, and at least one solvent; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the nitrogen-doped carbon aerogel. Also disclosed is a nitrogen-doped carbon aerogel obtained according to the method and a supercapacitor comprising the nitrogen-doped carbon aerogel.
Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation
Whitney, R Roy; Jordan, Kevin; Smith, Michael W
2015-03-24
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.
Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels
2016-01-28
49.84 N/A N/A N/A 46.92 N/A N/A N/A 12 (100% Syn.) 1 57.79 N/A N/A N/A 53.48 N/A N/A N/A a - Conventional petroleum based jet fuel; b - Oil Shale ...Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen); d - Oil Shale , Australia (High Nitrogen) U/A – Unavailable in PQIS...fuel b - Oil Shale , Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen) d - Oil Shale , Australia (High Nitrogen) U/A
Water-quality assessment of Steiner Branch basin, Lafayette County, Wisconsin
Field, Stephen J.; Lidwin, R.A.
1982-01-01
Most of the nutrient load of the stream was transported during runoff: total organic nitrogen, 80 percent; ammonia nitrogen, 80 percent; total phosphorus, 84 percent; and total orthophosphorus, 77 percent. Transport of nitrite plus nitrate nitrogen and total nitrogen occurred primarily during baseflow conditions, with 75 and 56 percent, respectively, of the total load for the study period being transported during these conditions. The time distribution of total phosphorus, total orthophosphorus, ammonia nitrogen, and total organic nitrogen transport was very similar to suspended-sediment transport in Steiner Branch.
Methane/nitrogen separation process
Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.
1997-09-23
A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.
Methane/nitrogen separation process
Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott
1997-01-01
A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.
NASA Astrophysics Data System (ADS)
Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.
2012-06-01
Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial nitrification-anammox may play an important role in anammox nitrogen removal in the Cape Fear River Estuary.
Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong
2015-01-01
The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.
Iizaka, Shinji; Matsuo, Junko; Konya, Chizuko; Sekine, Rie; Sugama, Junko; Sanada, Hiromi
2012-11-01
To estimate protein requirements in older hospitalized adults with pressure ulcers (PrU) according to systemic conditions and wound severity. Secondary nitrogen balance study over 3 days. Long-term care facility. Twenty-eight older adults with PrU using a urinary catheter. Nitrogen balance over 3 days was evaluated from habitual nitrogen intake measured using a food weighing record and nitrogen excretion from urine, feces and wound exudate. Nitrogen intake required to maintain nitrogen equilibrium was estimated as an average protein requirement using a linear mixed model. Nitrogen intake at nitrogen equilibrium was 0.151 gN/kg per day (95% confidence interval = 0.127-0.175 gN/kg per day) for all participants. The amount of protein loss from wound exudate contributed little to total nitrogen excretion. A Charlson comorbidity index of 4 or greater (the median value) was related to lower nitrogen intake at nitrogen equilibrium (P = .005). Severe PrU with heavy exudate amounts and measured wound areas of 7.9 cm(2) or greater (the median value) were related to higher nitrogen intake at nitrogen equilibrium in individuals with a Charlson comorbidity index of 3 or less (both P = .04). Larger wound area (correlation coefficient (r) = 0.55, P = .003) and heavier exudate volume (r = 0.53, P = .004) were associated with muscle protein hypercatabolism measured according to 3-methylhistidine/creatinine ratio. The average protein requirement is 0.95 g/kg per day for older hospitalized Japanese adults with PrU, but protein requirements depend on an individual's condition and wound severity and range from 0.75 to 1.30 g/kg per day. Severe PrU can require higher protein intakes because of muscle protein hypercatabolism rather than direct loss of protein from wound exudate. © 2012, Copyright the Authors Journal compilation © 2012, The American Geriatrics Society.
Ecological implications of single and mixed nitrogen nutrition in Arabidopsis thaliana
2013-01-01
Background Ecologists recognize that plants capture nitrogen in many chemical forms that include amino acids. Access to multiple nitrogen types in plant communities has been argued to enhance plant performance, access to nitrogen and alter ecological interactions in ways that may promote species coexistence. However, data supporting these arguments have been limited. While it is known that plants uptake amino acids from soil, long term studies that link amino acid uptake to measures of plant performance and potential reproductive effort are not typically performed. Here, a series of experiments that link uptake of nitrate, glutamine or asparagine with lifetime reproductive effort in Arabidopsis thaliana are reported. Nitrogen was offered either singly or in mixture and at a variety of combinations. Traits related to reproductive output were measured, as was the preference for each type of nitrogen. Results When plants were supplied with a single nitrogen type at concentrations from 0.1-0.9 mM, the ranking of nitrogen types was nitrate > glutamine > asparagine in terms of the relative performance of plants. When plants were supplied with two types of nitrogen in mixture at ratios between 0.1:0.9-0.9:0.1 mM, again plants performed best when nitrate was present, and poorly when amino acids were mixed. Additionally, stable isotopes revealed that plants preferentially captured nitrogen types matching the hierarchy of nitrate > glutamine > asparagine. Comparing between the two experiments revealed that mixed nitrogen nutrition was a net cost to the plants. Conclusions Plant performance on mixed nitrogen was less than half the performance on equal amounts of any single nitrogen type. We asked: why did A. thaliana capture amino acids when doing so resulted in a net cost? We argue that available data cannot yet answer this question, but hypothesize that access to lower quality forms of nitrogen may become important when plants compete. PMID:23875896
[The Emission Spectroscopy of Nitrogen Discharge under Low Voltage at Room Temperature].
Shen, Li-hua; Yu, Chun-xia; Yan, Bei; Zhang, Cheng-xiao
2015-03-01
A set of direct current (DC) discharge device of N2 plasma was developed, carbon nanotubes (CNT) modified ITO electrode was used as anode, aluminum plate as cathode, with -80 μm separation between them. Nitrogen emission spectra was observed at room temperature and low DC voltage (less than 150 V), and the emission spectrometry was used to diagnose the active species of the process of nitrogen discharge. Under DC discharge, the strongest energy band N2 (C3π(u)), the weak Gaydon's Green system N2 (H3 -Φ(u)-G3 Δ(g)) and the emission line of nitrogen atoms (4 p-4 p0) at 820 nm were observed. Found that metastable state of nitrogen molecules were the main factors leading to a series of excited state nitrogen atoms and nitrogen ionization. Compared the emission spectra under DC with that under alternating current (AC) (1.1 kV), and it can be seen that under DC the spectra band of nitrogen atoms can be obviously observed, and there was a molecular band in the range of 500 - 800 nm. The effect of oxygen and hydrogen on the emission spectra of nitrogen was investigated. The results showed that the oxygen inhibited the luminescence intensity of nitrogen, but the shape of spectra unchanged. All of the second positive system, Gaydon's Green system and atomic lines of nitrogen can be observed. The second positive system and Gaydon's Green system of nitrogen will be greatly affected when the volume ratio of nitrogen and hydrogen greatly affected is 1 : 1, which was due to the hydrogen. The hydrogen can depresse nitrogen plasma activation, and make the Gaydon's Green System disappeared. CNT modified ITO electrode can reduce the breakdown voltage, and the optical signal generated by the weakly ionized gas can be observed by the photo-multiplier tube at low voltage of 10 V.
Pre- and post-impoundment nitrogen in the lower Missouri River
Blevins, Dale W.; Wilkison, Donald H.; Niesen, Shelley L.
2013-01-01
Large water-sample sets collected from 1899 through 1902, 1907, and in the early 1950s allow comparisons of pre-impoundment and post-impoundment (1969 through 2008) nitrogen concentrations in the lower Missouri River. Although urban wastes were not large enough to detectably increase annual loads of total nitrogen at the beginning of the 20th century, carcass waste, stock-yard manure, and untreated human wastes measurably increased ammonia and organic-nitrogen concentrations during low flows. Average total-nitrogen concentrations in both periods were about 2.5 mg/l, but much of the particulate-organic nitrogen, which was the dominant form of nitrogen around 1900, has been replaced by nitrate. This change in speciation was caused by the nearly 80% decrease in suspended-sediment concentrations that occurred after impoundment, modern agriculture, drainage of riparian wetlands, and sewage treatment. Nevertheless, bioavailable nitrogen has not been low enough to limit primary production in the Missouri River since the beginning of the 20th century. Nitrate concentrations have increased more rapidly from 2000 through 2008 (5 to 12% per year), thus increasing bioavailable nitrogen delivered to the Mississippi River and affecting Gulf Coast hypoxia. The increase in nitrate concentrations with distance downstream is much greater during the post-impoundment period. If strategies to decrease total-nitrogen loads focus on particulate N, substantial decreases will be difficult because particulate nitrogen is now only 23% of total nitrogen in the Missouri River. A strategy aimed at decreasing particulates also could further exacerbate land loss along the Gulf of Mexico, which has been sediment starved since Missouri River impoundment. In contrast, strategies or benchmarks aimed at decreasing nitrate loads could substantially decrease nitrogen loadings because nitrates now constitute over half of the Missouri's nitrogen input to the Mississippi. Ongoing restoration and creation of wetlands along the Missouri River could be part of such a nitrate-reduction strategy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Novel Tool for Simultaneous Carbon and Nitrogen Stable Isotope Analyses in Aqueous Samples
NASA Astrophysics Data System (ADS)
Federherr, E.; Schmidt, T. C.; Cerli, C.; Kalbitz, K.; Kupka, H. J.; Lange, L.; Dunsbach, R.; Panetta, R. J.; Kasson, A.
2014-12-01
Investigation of transformation and transport processes of carbon and nitrogen in ecosystems plays an important role to understand and predict their dynamics and role in biogeochemistry. Consequently, suitable and accurate methods for concentration as well as stable isotopic composition analysis of carbon and nitrogen in waters and aqueous solutions play a significant role. Traditionally dissolved carbon and nitrogen stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analysis isotope ratio mass spectrometry (EA/IRMS) or modified wet chemical oxidation based device coupled to IRMS. Recently we presented a high temperature combustion system (HTC), which significantly improves upon these methods for dissolved organic carbon (DOC) SIA. The analysis of δ15N of dissolved nitrogen still has large limitations. Its low concentration makes EA/IRMS laborious, time and sample consuming. Systems based on wet chemical oxidation-IRMS bare the risk of sensitivity loss as well as of fractionation due to incomplete mineralization. In addition, the high solubility of molecular nitrogen in water remains a technical challenge, as it requires additional separation steps to distinguish between physically dissolved nitrogen and bound nitrogen. Further development of our HTC system lead to the implementation of the δ15N determination which now coupled, into a novel total organic carbon (TOC) analyzing system, especially designed for SIA of both, carbon and nitrogen. Integrated, innovative purge and trap technique (peak focusing) for nitrogen with aluminosilicate adsorber and peltier element based cooling system, in combination with high injection volume (up to 3 mL) as well as favorable carrier gas flow significantly improves sensitivity. Down to 1ppm and less total nitrogen can be measured with precision of ≤ 0.5‰. To lower the background caused by physically dissolved nitrogen new, membrane-vacuum based, degasser was designed for online separation of physically dissolved nitrogen. This novel HTC system, "iso TOC cube", provides an innovative tool with large potential in investigation of biogeochemical carbon and nitrogen cycles.
Origin and Evolution of Titan's Nitrogen Atmosphere - A Cassini-Huygens Perspective
NASA Astrophysics Data System (ADS)
Atreya, Sushil K.
2014-05-01
Prior to Cassini-Huygens, it was debated how Titan acquired its earth-like atmosphere of nitrogen [1]. This talk will review the history of Titan's atmosphere, models, and the unique role of Cassini-Huygens in understanding the origin and evolution of an atmosphere of nitrogen on Titan. After hydrogen and helium, nitrogen is the fourth most abundant element in the solar system. In the colder outer solar system beyond 5 AU, nitrogen is bound to hydrogen in the giant planets. Thus ammonia (NH3), not N2, is the dominant reservoir of nitrogen in these objects. The satellites that form in the relatively warm and dense subnebula of the gas giant planets, Jupiter and Saturn, may acquire nitrogen as NH3 during their accretion [2], although some models had proposed N2, not NH3, as the stable form of nitrogen in the subnebulae. The latter is reflected in the atmosphere of Triton, which almost certainly accreted nitrogen directly as N2, since N2 can be the stable form of nitrogen in the very cold environment of Neptune. Before Cassini-Huygens, it was debated whether Titan, the largest moon of Saturn, also acquired its nitrogen directly as N2, putting it in the same class as Neptune's moon Triton half its size, or the nitrogen on Titan was secondary atmosphere, produced from a nitrogen bearing molecule, putting Titan in the class with terrestrial planets. The evidence from Cassini-Huygens to be discussed in this talk leaves no doubt that Titan's nitrogen atmosphere is secondary [3]. Probable scenarios of the sustenance, evolution and reduction or demise of this atmosphere will also be explored. References: [1]Owen T. (2000), Planet. Space Sci. 48, 747-752. [2]Prinn R.G., Fegley B. (1981), Astrophys J. 249, 308-317. [3]Atreya S.K., Lorenz R.D., Waite J.H. (2009), pp 177-199, in Titan (R.H. Brown et al., eds.) Springer.
He, Bin; Kanae, Shinjiro; Oki, Taikan; Hirabayashi, Yukiko; Yamashiki, Yosuke; Takara, Kaoru
2011-04-01
This study has analyzed the global nitrogen loading of rivers resulting from atmospheric deposition, direct discharge, and nitrogenous compounds generated by residential, industrial, and agricultural sources. Fertilizer use, population distribution, land cover, and social census data were used in this study. A terrestrial nitrogen cycle model with a 24-h time step and 0.5° spatial resolution was developed to estimate nitrogen leaching from soil layers in farmlands, grasslands, and natural lands. The N-cycle in this model includes the major processes of nitrogen fixation, nitrification, denitrification, immobilization, mineralization, leaching, and nitrogen absorption by vegetation. The previously developed Total Runoff Integrating Pathways network was used to analyze nitrogen transport from natural and anthropogenic sources through river channels, as well as the collecting and routing of nitrogen to river mouths by runoff. Model performance was evaluated through nutrient data measured at 61 locations in several major world river basins. The dissolved inorganic nitrogen concentrations calculated by the model agreed well with the observed data and demonstrate the reliability of the proposed model. The results indicate that nitrogen loading in most global rivers is proportional to the size of the river basin. Reduced nitrate leaching was predicted for basins with low population density, such as those at high latitudes or in arid regions. Nitrate concentration becomes especially high in tropical humid river basins, densely populated basins, and basins with extensive agricultural activity. On a global scale, agriculture has a significant impact on the distribution of nitrogenous compound pollution. The map of nitrate distribution indicates that serious nitrogen pollution (nitrate concentration: 10-50 mg N/L) has occurred in areas with significant agricultural activities and small precipitation surpluses. Analysis of the model uncertainty also suggests that the nitrate export in most rivers is sensitive to the amount of nitrogen leaching from agricultural lands. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dynamics of nitrogen in subtropical wetland and its uptake and storage by Pistia stratiotes.
Irfan, Sufia; Shardendu
2009-11-01
The paper describes the dynamics of nitrogen in different components (water, soil and plants) of Kabar wetland situated in Begusarai district of Bihar. Contents of nitrogen in the natural components were determined and were compared with the rate of uptake and accumulation under the experimental conditions. Physico-chemical characteristics of natural water and of test basins were quite similar. The trend of seasonal variation of NO3(-)-N in water and total N in soil and P. stratiotes tissue was almost similar but content of nitrogen differed significantly in the different components. The accumulation of nitrogen in the tissues of P. stratiotes was 5 to 15 fold higher than the concentration of nitrogen in the water and 2 to 3 fold higher than the nitrogen content measured in the soil. Maximum accumulation of nitrogen in P. stratiotes was 15.25 mg g(-1) when the concentration of NO3(-)-N in water was 0.86 mg l(-1). Under experimental conditions six different nitrogen concentrations were supplied and determined the uptake and accumulation of nitrogen in P. stratiotes. Maximum uptake and accumulation was 82.87 g m(-2) at the end of 60 days after starting the experiment but still the rate of accumulation was in rising trend. In another part of experiment no nitrogen was left in the basins of low concentrations (0.5 and 5 mg N l(-1)) at the end of 60 days of experiment but at higher concentrations (50 and 65 mg N l(-1)) significant amount of N was left in the test basin. The biomass enhancement was parallel with nitrogen supply till 15 mg N l(-1). This was opposite to the relationship between the nitrogen accumulation in the tissues and nitrogen supply in the experimental basins. Though, potassium was added as an essential growth nutrient but its accumulation was 95g m(-2) at 5 mg l(-1).
Reproductive effects on fecal nitrogen as an index of diet quality: an experimental assessment
Monteith, Kyle B.; Monteith, Kevin L.; Bowyer, R. Terry; Leslie,, David M.; Jenks, Jonathan A.
2014-01-01
Concentration of fecal nitrogen has been used widely as an indicator of dietary quality for free-ranging ruminants. Differences in digestive function between species of dimorphic ungulates render interspecific comparisons of fecal nitrogen unreliable; however, whether intraspecific sexual differences in digestive function also bias this nutritional index is unknown. Our objective was to compare sex-specific variation in concentration of fecal nitrogen using male, nonlactating female, and lactating female white-tailed deer (Odocoileus virginianus) on high- and low-quality diets. During weekly trials over spring and summer (2008-2009), we monitored intake rates, collected feces twice daily, and used micro-Kjeldahl procedures to determine percent fecal nitrogen. We also determined nitrogen content of feces following a neutral detergent fiber (NDF) rinse during pre-, peak, and postlactation. Fecal nitrogen reflected general differences in dietary quality between diets; however, fecal nitrogen of lactating females in both dietary groups was lower than for males or nonlactating females throughout lactation. Nitrogen concentration following an NDF rinse also was lower for lactating females during peak lactation. We hypothesize that the remodeling of the digestive tract and increased rumination by lactating females may enhance their ability to extract nitrogen from their forage. These adjustments may expand the foraging options of lactating females by increasing their ability to process low-quality foods, but also affects the interpretation of fecal nitrogen during the season of lactation.
The Nitrogen Cycle During the Transition to Euxinia
NASA Astrophysics Data System (ADS)
Meyer, K. M.; Kump, L. R.; Ridgwell, A.
2008-12-01
Nitrogen and phosphorous are essential to life, and their biological availability is hypothesized to regulate marine productivity on short and geologic timescales. The nature of primary production during recurrent intervals of Phanerozoic anoxia is of particular interest because of the redox control of nutrient and trace metal availability. Dissolved phosphate likely increased during transitions from oxic to euxinic marine conditions, while nitrogen availability may have decreased due to extensive denitrification as low-oxygen waters spread. Because nitrogen fixation is both metabolically and trace-metal intensive, a key question in the transition to euxinia is whether nitrogen fixation can "keep pace" with denitrification. If denitrification exceeds nitrogen fixation, diminished export production and oxygen demand in an N-limited ocean would pose a negative feedback that may prevent euxinia altogether or initiate the shift back to oxic conditions. Here we use the GENIE-1 Earth system model to address the biogeochemistry of the oxic-euxinic transition characteristic of some Phanerozoic oceanic anoxic events. As previously demonstrated with box models, phosphate accumulation stimulates both nitrogen fixation and denitrification. While there is an initial transient loss of total fixed nitrogen from the ocean, nitrogen inputs eventually exceed losses, and the marine nitrogen reservoir grows with that of phosphate to significantly exceed its modern value. Nitrogen buildup also corresponds with a shift in ecology of the surface ocean and the unexpected initiation of non-Redfieldian stoichiometry in the chemistry of the deep ocean.
Qiao, Sen; Nishiyama, Takashi; Fujii, Tatsuo; Bhatti, Zafar; Furukawa, Kenji
2012-02-01
In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m(3)/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m(3)/day at a nitrogen loading rate of 1.0 kg-N/m(3)/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m(3)/day at a nitrogen loading rate of 0.93 kg-N/m(3)/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5-6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.
Exchange of nitrogen and phosphorus between a shallow lagoon and coastal waters
Hayn, Melanie; Howarth, Robert W.; Ganju, Neil K.; Berg, Peter; Foreman, Kenneth H.; Giblin, Anne E.; McGlathery, Karen
2014-01-01
West Falmouth Harbor, a shallow lagoon on Cape Cod, has experienced a threefold increase in nitrogen load since the mid- to late 1990s due to input from a groundwater plume contaminated by a municipal wastewater treatment plant. We measured the exchange of nitrogen and phosphorus between the harbor and the coastal waters of Buzzards Bay over several years when the harbor was experiencing this elevated nitrogen load. During summer months, the harbor not only retained the entire watershed nitrogen load but also had a net import of nitrogen from Buzzards Bay. During the spring and fall, the harbor had a net export of nitrogen to Buzzards Bay. We did not measure the export in winter, but assuming the winter net export was less than 112 % of the load, the harbor exported less than half of the watershed nitrogen load on an annual basis. For phosphorus, the harbor had a net import from coastal waters in the spring and summer months and a net export in the fall. Despite the large increase in nitrogen load to the harbor, the summertime import of phosphorus from Buzzards Bay was sufficient to maintain nitrogen limitation of primary productivity during the summer. Our findings illustrate that shallow systems dominated by benthic producers have the potential to retain large terrestrial nitrogen loads when there is sufficient supply of phosphorus from exchange with coastal waters.
A dynamic nitrogen budget model of a Pacific Northwest salt ...
The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspiration, and groundwater inputs, all of which can vary significantly on timescales ranging from sub-daily to seasonal. Additionally, many of these hydrologic drivers may vary with a changing climate. Due to this temporal variation in hydrology, it is difficult to represent salt marsh nitrogen budgets as steady-state models. A dynamic nitrogen budget model that varies based on hydrologic conditions may more accurately describe the role of salt marshes in nitrogen cycling. In this study we aim to develop a hydrologic model that is coupled with a process-based nitrogen model to simulate nitrogen dynamics at multiple temporal scales. To construct and validate our model we will use hydrologic and nitrogen species data collected from 2010 to present, from a 1.8 hectare salt marsh in the Yaquina Estuary, OR, USA. Hydrologic data include water table levels at two transects, upland tributary flow, tidal channel stage and flow, and vertical hydraulic head gradients. Nitrogen pool data include concentrations of nitrate and ammonium in porewater, tidal channel water, and extracted from soil cores. Nitrogen flux data include denitrification rates, nitrogen concentrations in upland runoff, and tida
Soil nitrogen dynamics in a river floodplain mosaic.
Shrestha, J; Niklaus, P A; Frossard, E; Samaritani, E; Huber, B; Barnard, R L; Schleppi, P; Tockner, K; Luster, J
2012-01-01
In their natural state, river floodplains are heterogeneous and dynamic ecosystems that may retain and remove large quantities of nitrogen from surface waters. We compared the soil nitrogen dynamics in different types of habitat patches in a restored and a channelized section of a Thur River floodplain (northeast Switzerland). Our objective was to relate the spatiotemporal variability of selected nitrogen pools (ammonium, nitrate, microbial nitrogen), nitrogen transformations (mineralization, nitrification, denitrification), and gaseous nitrogen emission (NO) to soil properties and hydrological processes. Our study showed that soil water content and carbon availability, which depend on sedimentation and inundation dynamics, were the key factors controlling nitrogen pools and processes. High nitrogen turnover rates were measured on gravel bars, characterized by both frequent inundation and high sediment deposition rates, as well as in low-lying alluvial forest patches with a fine-textured, nutrient-rich soil where anaerobic microsites probably facilitated coupled nitrification-denitrification. In contrast, soils of the embankment in the channelized section had comparatively small inorganic nitrogen pools and low transformation rates, particularly those related to nitrate production. Environmental heterogeneity, characteristic of the restored section, favors nitrogen removal by creating sites of high sedimentation and denitrification. Of concern, however, are the locally high NO efflux and the possibility that nitrate could leach from nitrification hotspots. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications
Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.
1997-01-01
An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.
Relationship between carbon and nitrogen mineralization in a subtropical soil
NASA Astrophysics Data System (ADS)
Li, Qianru; Sun, Yue; Zhang, Xinyu; Xu, Xingliang; Kuzyakov, Yakov
2014-05-01
In most soils, more than 90% nitrogen is bonded with carbon in organic forms. This indicates that carbon mineralization should be closely coupled with nitrogen mineralization, showing a positive correlation between carbon and nitrogen mineralization. To test this hypothesis above, we conducted an incubation using a subtropical soil for 10 days at 15 °C and 25 °C. 13C-labeled glucose and 15N-labeled ammonium or nitrate was used to separate CO2 and mineral N released from mineralization of soil organic matter and added glucose or inorganic nitrogen. Phospholipid fatty acid (PLFA) and four exoenzymes (i.e. β-1,4- Glucosaminidase, chitinase, acid phosphatase, β-1,4-N- acetyl glucosamine glycosidase) were also analyzed to detect change in microbial activities during the incubation. Our results showed that CO2 release decreased with increasing nitrogen mineralization rates. Temperature did not change this relationship between carbon and nitrogen mineralization. Although some changes in PLFA and the four exoenzymes were observed, these changes did not contribute to changes in carbon and nitrogen mineralization. These findings indicates that carbon and nitrogen mineralization in soil are more complicated than as previously expected. Future investigation should focus on why carbon and nitrogen mineralization are coupled in a negative correlation not in a positive correlation in many soils for a better understanding of carbon and nitrogen transformation during their mineralization.
Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment.
Singh, Shweta; Bakshi, Bhavik R
2013-08-20
Nitrogen is indispensable for sustaining human activities through its role in the production of food, animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen cycle. This paper incorporates the biogeochemical cycle of nitrogen into the 2002 input-output model of the U.S. economy. Due to the complexity of this cycle, this work proposes a unique classification of nitrogen flows to facilitate understanding of the interaction between economic activities and various flows in the nitrogen cycle. The classification scheme distinguishes between the mobilization of inert nitrogen into its reactive form, use of nitrogen in various products, and nitrogen losses to the environment. The resulting inventory and model of the US economy can help quantify the direct and indirect impacts or dependence of economic sectors on the nitrogen cycle. This paper emphasizes the need for methods to manage the N cycle that focus not just on N losses, which has been the norm until now, but also include other N flows for a more comprehensive view and balanced decisions. Insight into the N profile of various sectors of the 2002 U.S. economy is presented, and the inventory can also be used for LCA or Hybrid LCA of various products. The resulting model is incorporated in the approach of Ecologically-Based LCA and available online.
The Nitrogen Footprint Tool network: A multi-institution program to reduce nitrogen pollution
Castner, Elizabeth A.; Leah, Allison M.; Leary, Neal; Baron, Jill S.; Compton, Jana E.; Galloway, James N.; Hastings, Meredith G.; Kimiecik, Jacob; Lantz-Trissel, Jonathan; de la Riguera, Elizabeth; Ryals, Rebecca
2017-01-01
Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this paper, the first seven completed institution nitrogen footprint results are presented. The institution NFT network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive nitrogen released to the environment. Energy use and food purchases are the two largest sectors contributing to institution nitrogen footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the nitrogen footprint, but the impact of food production on nitrogen pollution has not been directly addressed by the higher-ed sustainability community. The NFT Network found that institutions could reduce their nitrogen footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as reducing dependence on fossil fuels for energy.
Evolution of nitrogen species in landfill leachates under various stabilization states.
Zhao, Renzun; Gupta, Abhinav; Novak, John T; Goldsmith, C Douglas
2017-11-01
In this study, nitrogen species in landfill leachates under various stabilization states were investigated with emphasis on organic nitrogen. Ammonium nitrogen was found to be approximately 1300mg/L in leachates from younger landfill units (less than 10years old), and approximately 500mg/L in leachates from older landfill units (up to 30years old). The concentration and aerobic biodegradability of organic nitrogen decreased with landfill age. A size distribution study showed that most organic nitrogen in landfill leachates is <1kDa. The Lowry protein concentration (mg/L-N) was analyzed and showed a strong correlation with the total organic nitrogen (TON, mg/L-N, R 2 =0.88 and 0.98 for untreated and treated samples, respectively). The slopes of the regression curves of untreated (protein=0.45TON) and treated (protein=0.31TON) leachates indicated that the protein is more biodegradable than the other organic nitrogen species in landfill leachates. XAD-8 resin was employed to isolate the hydrophilic fraction of leachate samples, and it was found that the hydrophilic fraction proportion in terms of organic nitrogen decreased with landfill age. Solid-state 15 N nuclear magnetic resonance (NMR) was utilized to identify the nitrogen species. Proteinaceous materials were found to be readily biodegradable, while heterocyclic nitrogen species were found to be resistant to biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Scorca, Michael P.; Monti, Jack
2001-01-01
Fresh ground water that discharges from the northern part of Long Island's aquifer system to Long Island Sound contains elevated concentrations of nitrogen from agricultural fertilizer, domestic waste and fertilizer, and precipitation. The nitrogen contributes to algal blooms, which consume oxygen as the algae die and decompose. The resulting low dissolved oxygen concentrations (hypoxia) adversely affect plant and animal populations in Long Island Sound.The four major streams on the north shore of Long Island that have long-term discharge and water-quality records were selected for analysis of geographic, long-term, and seasonal trends in nitrogen concentration. Nitrogen concentrations generally decrease eastward among three Nassau County streams, then increase again at the easternmost stream, Nissequogue River in Suffolk County. A long-term (1970-96) increase in total nitrogen concentrations in the Nissequogue River also is evident. Seasonal fluctuations in nitrogen concentrations in all four streams reflect chemical reactions and microbial activity in the stream system, so total nitrogen concentrations in the three easternmost streams generally were lowest during summer and highest in winter, whereas those in the westernmost stream (Glen Cove Creek) were highest during summer and lowest in winter.The nitrogen loads discharged to Long Island Sound from each of the four streams for each year during 1985-96 were calculated from the annual mean total nitrogen concentration and the annual mean discharge. Nissequogue River's annual mean discharges were 3 to 6 times larger than those of Glen Cove and Mill Neck Creeks, and produced the largest annual loads of nitrogen--65 to 149 ton/yr (59,000 to 135,000 kg/yr). Cold Spring Brook had the lowest annual mean discharges and annual mean total nitrogen concentrations of the four streams; its annual mean nitrogen load ranged from 1.2 to 2.8 ton/yr (1,100 to 2,500 kg/yr).The nitrogen load carried to Long Island Sound by shallow ground water from the north shore of Long Island was calculated from simulated shallow-aquifer discharges from Nassau and Suffolk Counties (9,200 and 21,400 Mgal/yr or 34,800,000 and 81,100,000 m3/yr, respectively) and median total nitrogen concentrations at selected wells (2.2 and 4.3 milligrams per liter as N, respectively). The resultant nitrogen load was 84 ton/yr (76,500 kg/yr) for Nassau County and 384 ton/yr (349,000 kg/yr) for Suffolk County.The nitrogen load carried to Long Island Sound by deep ground water from the north shore was calculated from simulated deep-aquifer discharges from Nassau and Suffolk counties (13,200 and 47,300 Mgal/yr or 50,000,000 and 179,000,000 m3/yr, respectively). The median nitrogen concentrations of deep ground water for the two counties were 1.62 and 1.34 mg/L as N, respectively. The resultant nitrogen load from deep-aquifer discharge was 89 ton/yr (81,000 kg/yr) for Nassau County and 265 ton/yr (240,000 kg/yr) for Suffolk County.Nitrogen loads entering Long Island Sound from the shallow aquifer underlying three areas of differing land use along the north shore--a sewered residential area in Nassau County, an unsewered residential area in Suffolk County, and an agricultural area in Suffolk County--were evaluated. The agricultural area contains no major streams and, therefore, produces very little surface runoff to Long Island Sound and substantially greater shallow-aquifer discharge than in the sewered and unsewered areas. Ground water in the agricultural area also had the highest median nitrogen concentration (9.9 mg/L as N) of the three land-use areas and discharged the largest estimated nitrogen load to Long Island Sound--152 ton/yr (138,000 kg/yr), which represents about 40 percent of the estimated total nitrogen load from Suffolk County. Ground water in the sewered area had the lowest nitrogen concentration (1.9 mg/L as N) and discharged the smallest nitrogen load to Long Island Sound--7.28 ton/yr (6,600 kg/yr). The analysis indicates that land use on the north shore of Long Island can greatly affect the nitrogen concentration of water in the shallow aquifer and the resultant nitrogen load discharged to Long Island Sound from ground water.
Advance of Nitrogen Removal in Constructed Wetland
NASA Astrophysics Data System (ADS)
Xie, Anbin; Chen, Hao; You, Shaohong
2018-01-01
Based on current literature, the article reviewed the mechanism and route of nitrogen removal, discussed the microbial species associated with nitrogen metabolism in constructed wetlands. Key unresolved issues were concluded for classical and novel nitrogen removal routes.
Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, G.V.
1990-05-01
Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was foundmore » to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.« less
NASA Astrophysics Data System (ADS)
Chi, Yixia; Xue, Lianqing; Zhang, Zhanyu; Li, Dongying
2018-01-01
Based on the simulation experiments of solute transport in channel buffer bank and pot experiments, this study analyzed the transport of nitrogen pollution from farmland drains along the South-North Water Transfer east route project; and compared the nitrogen transport rule and purification effect of alfalfa in channel buffer bank soil under situations of bare land and alfalfa mulching. The results showed that: (1) soil nitrogen content decreased gradually with the width increase of channel buffer bank by the soil adsorption and decomposition; (2) the migration rates of nitrogen were 0.06 g·kg-1 by the alfalfa mulching; (3) the removed rates of nitrogen from the soil were 0.088 g·kg-1 by cutting alfalfa; (4) the residual nitrogen of soil with alfalfa was 10% of the bare land. Alfalfa in channel buffer bank had obvious reduction and hysteresis effect to soil nitrogen pollution.
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Meade, Paul E.
1988-01-01
Daily average solar proton flux data for 1978 and 1979 are used in a proton energy degradation scheme to derive ion pair production rates and atomic nitrogen production rates. The latter are computed in a form suitable for inclusion in an atmopheric, two-dimensional, time-dependent photochemical model. Odd nitrogen distributions are computed from the model, including atomic nitrogen production from solar protons, and are compared with baseline distributions. The comparisons show that the average effect of the solar protons in 1978 and 1979 was to cause changes in odd nitrogen only above 10 mbar and at latitudes only above about 50 deg in both hemispheres. The influence of the solar proton-produced odd nitrogen on the local abundance of odd nitrogen depends primarily on the background odd nitrogen abundance as well as the altitude and season.
Laser nitriding of iron: Nitrogen profiles and phases
NASA Astrophysics Data System (ADS)
Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.
1995-07-01
Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahid, Ahmad Nazrul Abd, E-mail: a-nazrul@nuclearmalaysia.gov.my; Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor; Rahim, Sahibin Abd, E-mail: haiyan@ukm.edu.my
This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be usedmore » in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.« less
Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle
NASA Astrophysics Data System (ADS)
Casciotti, Karen L.
2016-01-01
The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.
Hexacoordinated nitrogen(V) stabilized by high pressure
Kurzydłowski, Dominik; Zaleski-Ejgierd, Patryk
2016-01-01
In all of its known connections nitrogen retains a valence shell electron count of eight therefore satisfying the golden rule of chemistry - the octet rule. Despite the diversity of nitrogen chemistry (with oxidation states ranging from + 5 to −3), and despite numerous efforts, compounds containing nitrogen with a higher electron count (hypervalent nitrogen) remain elusive and are yet to be synthesized. One possible route leading to nitrogen’s hypervalency is the formation of a chemical moiety containing pentavalent nitrogen atoms coordinated by more than four substituents. Here, we present theoretical evidence that a salt containing hexacoordinated nitrogen(V), in the form of an NF6− anion, could be synthesized at a modest pressure of 40 GPa (=400 kbar) via spontaneous oxidation of NF3 by F2. Our results indicate that the synthesis of a new class of compounds containing hypervalent nitrogen is within reach of current high-pressure experimental techniques. PMID:27808104
Fernandes, Annabel; Coelho, João; Ciríaco, Lurdes; Pacheco, Maria José; Lopes, Ana
2016-12-01
Boron-doped diamond (BDD) and Ti/Pt/PbO 2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH 4 + , which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.
Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds
NASA Astrophysics Data System (ADS)
Putri, Gitta Agnes; Sunarsih
2018-02-01
This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.
Solubility of Nitrogen in Superaustenitic Stainless Steels During Air Induction Melting
NASA Astrophysics Data System (ADS)
Chandrasekar, A.; Anburaj, J.; Narayanan, R.; Balusamy, V.; Mohamed Nazirudeen, S. S.
2013-04-01
The amount of nitrogen contained in super austenitic stainless steels (SASS) influences their properties significantly. The effect of maximum amount of nitrogen in the highly alloyed Cr and Ni SASS containing further additions of Mo and Mn is studied. The calculated nitrogen contents of the experimental alloys are compared with the actual nitrogen contents obtained in the alloys produced using induction melting furnace. The actual nitrogen content of the alloys is always lower than the calculated value, and this discrepancy is due to the presence of positive interaction parameters of Ni, Cu, and Si in the alloy. However, the yield of nitrogen in the liquid SASS is improved significantly with additions of Mn and Mo contents. The construction of multicomponent phase diagrams for SASS is demonstrated using Thermo-Calc software. SASS containing more nitrogen exhibited a very high strength without loss of toughness.
Luo, Genming; Junium, Christopher K; Izon, Gareth; Ono, Shuhei; Beukes, Nicolas J; Algeo, Thomas J; Cui, Ying; Xie, Shucheng; Summons, Roger E
2018-03-07
The marine nitrogen cycle is dominated by redox-controlled biogeochemical processes and, therefore, is likely to have been revolutionised in response to Earth-surface oxygenation. The details, timing, and trajectory of nitrogen cycle evolution, however, remain elusive. Here we couple nitrogen and carbon isotope records from multiple drillcores through the Rooihoogte-Timeball Hill Formations from across the Carletonville area of the Kaapvaal Craton where the Great Oxygenation Event (GOE) and its aftermath are recorded. Our data reveal that aerobic nitrogen cycling, featuring metabolisms involving nitrogen oxyanions, was well established prior to the GOE and that ammonium may have dominated the dissolved nitrogen inventory. Pronounced signals of diazotrophy imply a stepwise evolution, with a temporary intermediate stage where both ammonium and nitrate may have been scarce. We suggest that the emergence of the modern nitrogen cycle, with metabolic processes that approximate their contemporary balance, was retarded by low environmental oxygen availability.
Modification of the G-phonon mode of graphene by nitrogen doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukashev, Pavel V., E-mail: pavel.lukashev@uni.edu; Hurley, Noah; Zhao, Liuyan
2016-01-25
The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. Wemore » show that the bond length change and the long range interaction of point defects are possible mechanisms responsible for the oscillatory behavior of the G frequency as a function of nitrogen concentration. At the same time, Friedel charge oscillations are unlikely to contribute to this behavior.« less
[Nitrogen input altered testate amoebae community in peatland of Sanjiang Plain, Northeast China].
Song, Li-hong; Yan, Xiu-min; Wang, Ke-hong; Zhu, Xiao-yan; Wu, Dong-hu
2015-02-01
In the present study, an in situ control experiment was carried out to explore the response of testate amoebae to exogenous nitrogen addition in peatland of Sanjiang Plain. The results showed that nitrogen addition increased the biomass of testate amoebae at lower levels (6 g N · m(-2)), while decreased it at higher levels (> 12 g N · m(-2)). At genus level, nitrogen addition significantly increased the biomass of Arcella and Phryganella, decreased the biomass of Euglypha. Only lower nitrogen addition significantly increased the biomass of Centropyxis. At species level, nitrogen addition significantly decreased the biomass of Euglypha rotunda, while the biomass of either Centropyxis cassis or Phryganella acropodia was increased by a lower nitrogen addition treatment. This study suggested that the response of peatland testate amoebae to nitrogen addition was species specific, which could potentially be used as an indicator for the environment of peatlands.
Nitrogen stress response and stringent response are coupled in Escherichia coli
Brown, Daniel R.; Barton, Geraint; Pan, Zhensheng; Buck, Martin; Wigneshweraraj, Sivaramesh
2014-01-01
Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria. PMID:24947454
Feng, Lei; Fang, Hui; Zhou, Wei-Jun; Huang, Min; He, Yong
2006-09-01
Site-specific variable nitrogen application is one of the major precision crop production management operations. Obtaining sufficient crop nitrogen stress information is essential for achieving effective site-specific nitrogen applications. The present paper describes the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine the nitrogen level of canola. This sensor assesses the nitrogen stress by means of estimated SPAD value of the canola based on canola canopy reflectance sensed using three channels (green, red, near-infrared) of the multi-spectral camera. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter. Based on the results obtained from this study, it can be concluded that a multi-spectral CCD camera can provide sufficient information to perform reasonable SPAD values estimation during field operations.
NASA Astrophysics Data System (ADS)
Narayanan, Vineed; Venkatarathnam, G.
2018-03-01
Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.
Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert
Brooks, Matthew L.
2003-01-01
1. Deserts are one of the least invaded ecosystems by plants, possibly due to naturally low levels of soil nitrogen. Increased levels of soil nitrogen caused by atmospheric nitrogen deposition may increase the dominance of invasive alien plants and decrease the diversity of plant communities in desert regions, as it has in other ecosystems. Deserts should be particularly susceptible to even small increases in soil nitrogen levels because the ratio of increased nitrogen to plant biomass is higher compared with most other ecosystems.2. The hypothesis that increased soil nitrogen will lead to increased dominance by alien plants and decreased plant species diversity was tested in field experiments using nitrogen additions at three sites in the in the Mojave Desert of western North America.3. Responses of alien and native annual plants to soil nitrogen additions were measured in terms of density, biomass and species richness. Effects of nitrogen additions were evaluated during 2 years of contrasting rainfall and annual plant productivity. The rate of nitrogen addition was similar to published rates of atmospheric nitrogen deposition in urban areas adjacent to the Mojave Desert (3·2 g N m−2 year−1). The dominant alien species included the grasses Bromus madritensis ssp. rubens and Schismus spp. (S. arabicus and S. barbatus) and the forb Erodium cicutarium.4. Soil nitrogen addition increased the density and biomass of alien annual plants during both years, but decreased density, biomass and species richness of native species only during the year of highest annual plant productivity. The negative response of natives may have been due to increased competitive stress for soil water and other nutrients caused by the increased productivity of aliens.5. The effects of nitrogen additions were significant at both ends of a natural nutrient gradient, beneath creosote bush Larrea tridentata canopies and in the interspaces between them, although responses varied among individual alien species. The positive effects of nitrogen addition were highest in the beneath-canopy for B. rubens and in interspaces for Schismus spp. and E. cicutarium.6. The results indicated that increased levels of soil nitrogen from atmospheric nitrogen deposition or from other sources could increase the dominance of alien annual plants and possibly promote the invasion of new species in desert regions. Increased dominance by alien annuals may decrease the diversity of native annual plants, and increased biomass of alien annual grasses may also increase the frequency of fire.7. Although nitrogen deposition cannot be controlled by local land managers, the managers need to understand its potential effects on plant communities and ecosystem properties, in particular how these effects may interact with land-use activities that can be managed at the local scale. These interactions are currently unknown, and hinder the ability of managers to make appropriate land-use decisions related to nitrogen deposition in desert ecosystems.8. Synthesis and applications. The effects of nitrogen deposition on invasive alien plants should be considered when deciding where to locate new conservation areas, and in evaluating the full scope of ecological effects of new projects that would increase nitrogen deposition rates.
Stream denitrification across biomes and its response to anthropogenic nitrate loading
Patrick J. Mulholland; Ashley M. Helton; Geoffrey C. Poole; Robert O. Hall; Stephen K. Hamilton; et al
2008-01-01
Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing1, 2 and terrestrial ecosystems are becoming increasingly nitrogen-saturated3, causing more bioavailable nitrogen to enter groundwater and surface waters4, 5, 6. Large-scale nitrogen budgets show that an average of about 20â25 per cent of the nitrogen added to the biosphere is exported from...
Yager, Tracy J.B.; McMahon, Peter B.
2012-01-01
Concentrations of dissolved nitrite plus nitrate increased fairly steadily in samples from four shallow groundwater monitoring wells after biosolids applications to nonirrigated farmland began in 1993. The U.S. Geological Survey began a preliminary assessment of sources of nitrogen in shallow groundwater at part of the biosolids-application area near Deer Trail, Colorado, in 2005 in cooperation with the Metro Wastewater Reclamation District. Possible nitrogen sources in the area include biosolids, animal manure, inorganic fertilizer, atmospheric deposition, and geologic materials (bedrock and soil). Biosolids from the Metro Wastewater Reclamation District plant in Denver and biosolids, cow manure, geologic materials (bedrock and soil), and groundwater from the study area were sampled to measure nitrogen content and nitrogen isotopic compositions of nitrate or total nitrogen. Biosolids also were leached, and the leachates were analyzed for nitrogen content and other concentrations. Geologic materials from the study area also were sampled to determine mineralogy. Estimates of nitrogen contributed from inorganic fertilizer and atmospheric deposition were calculated from other published reports. The nitrogen information from the study indicates that each of the sources contain sufficient nitrogen to potentially affect groundwater nitrate concentrations. Natural processes can transform the nitrogen in any of the sources to nitrate in the groundwater. Load calculations indicate that animal manure, inorganic fertilizer, or atmospheric deposition could have contributed the largest nitrogen load to the study area in the 13 years before biosolids applications began, but biosolids likely contributed the largest nitrogen load to the study area in the 13 years after biosolids applications began. Various approaches provided insights into sources of nitrate in the groundwater samples from 2005. The isotopic data indicate that, of the source materials considered, biosolids and (or) animal manure were the most likely sources of nitrate in the wells at the time of sampling (2005), and that inorganic fertilizer, atmospheric deposition, and geologic materials were not substantial sources of nitrate in the wells in 2005. The large total nitrogen content of the biosolids and animal-manure samples and biosolids leachates also indicates that the biosolids and animal manure had potential to leach nitrogen and produce large dissolved nitrate concentrations in groundwater. The available data, however, could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the nitrogen isotopic composition of the two materials is similar. Major-ion data also could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the major-ion composition (as well as the isotopic composition) of the two materials is similar. Without additional data, chloride/bromide mass ratios do not necessarily support or refute the hypothesis that biosolids and (or) animal manure were the primary sources of nitrate in water from the study-area wells in 2005. Concentrations of water-extractable nitrate in the soil indicate that biosolids could be an important source of nitrate in the groundwater recharge. Nitrogen inventories in the soil beneath biosolids-application areas and the nitrogen-input estimates for the study area both support the comparisons of isotopic composition, which indicate that some type of human waste (such as biosolids) and (or) animal manure was the source of nitrate in groundwater sampled from the wells in 2005. The nitrogen-load estimates considered with the nitrogen isotopic data and the soil-nitrogen inventories indicate that biosolids applications likely are a major source of nitrogen to the shallow groundwater at these monitoring wells.
NASA Astrophysics Data System (ADS)
Cai, X.; Yang, Z.-L.; Fisher, J. B.; Zhang, X.; Barlage, M.; Chen, F.
2016-01-01
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soil and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station - a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.
Huang, Jian-Sheng; Yang, Ping; Li, Chong-Ming; Guo, Yong; Lai, Bo; Wang, Ye; Feng, Li; Zhang, Yun
2015-01-01
In order to study the effect of nitrite and nitrate on the performance of microbial fuel cell, a system combining an anaerobic fluidized bed (AFB) and a microbial fuel cell (MFC) was employed for high-strength nitrogen-containing synthetic wastewater treatment. Before this study, the AFB-MFC had been used to treat high-strength organic wastewater for about one year in a continuous flow mode. The results showed that when the concentrations of nitrite nitrogen and nitrate nitrogen were increased from 1700 mg/L to 4045 mg/L and 545 mg/L to 1427 mg/L, respectively, the nitrite nitrogen and nitrate nitrogen removal efficiencies were both above 99%; the COD removal efficiency went up from 60.00% to 88.95%; the voltage was about 375 ± 15 mV while the power density was at 70 ± 5 mW/m(2). However, when the concentrations of nitrite nitrogen and nitrate nitrogen were above 4045 mg/L and 1427 mg/L, respectively, the removal of nitrite nitrogen, nitrate nitrogen, COD, voltage, and power density were decreased to be 86%, 88%, 77%, 180 mV, and 17 mW/m(2) when nitrite nitrogen and nitrate nitrogen were increased to 4265 mg/L and 1661 mg/L. In addition, the composition of biogas generated in the anode chamber was analyzed by a gas chromatograph. Nitrogen gas, methane, and carbon dioxide were obtained. The results indicated that denitrification happened in anode chamber.
Economic Analysis of Nitrate Source Reductions in California Agriculture
NASA Astrophysics Data System (ADS)
Medellin-Azuara, J.; Howitt, R.; Rosenstock, T.; Harter, T.; Pettygrove, S. G.; Dzurella, K.; Lund, J. R.
2011-12-01
We present an analytical approach to assess the economic impact of improving nitrogen management practices in California agriculture. We employ positive mathematical programming to calibrate crop production to base input information. The production function representation is a nested constant elasticity of substitution with two nests: one for applied water and one for applied nitrogen. The first nest accounts for the tradeoffs between irrigation efficiency and capital investments in irrigation technology. The second nest represents the tradeoffs between nitrogen application efficiency and the marginal costs of improving nitrogen efficiency. In the production function nest, low elasticities of substitution and water and nitrogen stress constraints keep agricultural crop yields constant despite changes in nitrogen management practices. We use the Tulare Basin, and the Salinas Valley in California's Central Valley and Central Coast respectively as our case studies. Preliminary results show that initial reductions of 25% in nitrogen loads to groundwater may not impose large costs to agricultural crop production as substitution of management inputs results in only small declines in net revenue from farming and total land use. Larger reductions in the nitrogen load to groundwater of 50% imposes larger marginal costs for better nitrogen management inputs and reductions in the area of lower valued crops grown in the study areas. Despite the shortage of data on quantitative effects of improved nitrogen efficiency; our results demonstrate the potential of combining economic and agronomic data into a model that can reflect differences in cost and substitutabilty in nitrogen application methods, that can be used to reduce the quantity of nitrogen leaching into groundwater.
Smith, T.E.; Laursen, A.E.; Deacon, J.R.
2008-01-01
Two methods were used to measure in-stream nitrogen loss in the Connecticut River during studies conducted in April and August 2005. A mass balance on nitrogen inputs and output for two study reaches (55 and 66 km), at spring high flow and at summer low flow, was computed on the basis of total nitrogen concentrations and measured river discharges in the Connecticut River and its tributaries. In a 10.3 km subreach of the northern 66 km reach, concentrations of dissolved N2 were also measured during summer low flow and compared to modeled N2 concentrations (based on temperature and atmospheric gas exchange rates) to determine the measured "excess" N2 that indicates denitrification. Mass balance results showed no in-stream nitrogen loss in either reach during April 2005, and no nitrogen loss in the southern 55 km study reach during August 2005. In the northern 66 km reach during August 2005, however, nitrogen output was 18% less than the total nitrogen inputs to the reach. N2 sampling results gave an estimated rate of N2 production that would remove 3.3% of the nitrogen load in the river over the 10.3 km northern sub-reach. The nitrogen losses measured in the northern reach in August 2005 may represent an approximate upper limit for nitrogen attenuation in the Connecticut River because denitrification processes are most active during warm summer temperatures and because the study was performed during the annual low-flow period when total nitrogen loads are small. ?? 2008 Springer Science+Business Media B.V.
Liu, Nan; Wu, Shuhua; Guo, Qinfeng; Wang, Jiaxin; Cao, Ce; Wang, Jun
2018-05-12
Global increases in nitrogen deposition may alter forest structure and function by interfering with plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy addition of nitrogen (CAN) on leaf nitrogen assimilation and partitioning in three subtropical forest plants (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that responses of leaf nitrogen assimilation and partitioning to CAN differ among subtropical forest plants. CAN increased leaf nitrate reductase (NR) activity, and leaf nitrogen and chlorophyll contents but reduced leaf maximum photosynthetic rate (A max ), photosynthetic nitrogen use efficiency (PNUE), ribulose-1,5-bisphosphate carboxylase (Rubisco) activity, and metabolic protein content of an overstory tree species C. henryi. In an understory tree A. quinquegona, CAN increased NR activity and glutamine synthetase activity and therefore increased metabolic protein synthesis (e.g., Rubisco) in leaves. In the shrub B. cochinchinensis, CAN increased A max , PNUE, Rubisco content, metabolic protein content, and Rubisco activity in leaves. Leaf nitrogen assimilation and partitioning results indicated that A. quinquegona and B. cochinchinensis may better acclimate to CAN than C. henryi and that the acclimation mechanism differs among the species. Results from this study suggest that long-term elevated atmospheric nitrogen deposition has contributed to the ongoing transformation of subtropical forests into communities dominated by small trees and shrubs. Copyright © 2018 Elsevier B.V. All rights reserved.
Nitrogen isotope and mass balance approach in the Elbe Estuary
NASA Astrophysics Data System (ADS)
Sanders, Tina; Wankel, Scott D.; Dähnke, Kirstin
2017-04-01
The supply of bioavailable nitrogen is crucial to primary production in the world's oceans. Especially in estuaries, which act as a nutrient filter for coastal waters, microbial nitrogen turnover and removal has a particular significance. Nitrification as well as other nitrogen-based processes changes the natural abundance of the stable isotope, which can be used as proxies for sources and sinks as well as for process identification. The eutrophic Elbe estuary in northern Germany is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of dissolved inorganic nitrogen: Nitrification is responsible for significant estuarine nutrient regeneration, especially in the Hamburg Port. In our study, we aimed to quantify sources and sinks of nitrogen based on a mass and stable isotope budget in the Elbe estuary. A model was developed reproduce internal N-cycling and associated isotope changes. For that approach we measured dissolved inorganic nitrogen (DIN), particulate nitrogen and their stable isotopes in a case study in July 2013. We found an almost closed mass balance of nitrogen, with only low lost or gains which we attribute to sediment resuspension. The isotope values of different DIN components and the model approach both support a high fractionation of up to -25‰ during nitrification. However, the nitrogen balance and nitrogen stable isotopes suggest that most important processes are remineralization of organic matter to ammonium and further on the oxidation to nitrate. Denitrification and nitrate assimilation play a subordinate role in the Elbe Estuary.
He, Hua; Liang, Gang; Li, Yang; Wang, Fang; Yu, Diqiu
2014-01-01
Nitrogen is an essential macronutrient required for plant growth and development. A number of genes respond to nitrogen starvation conditions. However, the functions of most of these nitrogen starvation-responsive genes are unclear. Our recent survey suggested that many microRNAs (miRNAs) are responsive to nitrogen starvation in Arabidopsis thaliana. Here, we identified a new miRNA (miR5090) from the complementary transcript of the MIR826 gene. Further investigation uncovered that both miRNA genes recently evolved from the inverse duplication of their common target gene, ALKENYL HYDROXALKYL PRODUCING2 (AOP2). Similar to miR826, miR5090 is induced by nitrogen starvation. By contrast, the AOP2 transcript level was negatively correlated with miR826 and miR5090 under nitrogen starvation. GUS-fused AOP2 expression suggested that AOP2 was posttranscriptionally suppressed by miR826 and miR5090. miRNA transgenic plants with significantly low AOP2 expression accumulated fewer Met-derived glucosinolates, phenocopying the aop2 mutants. Most glucosinolate synthesis-associated genes were repressed under nitrogen starvation conditions. Furthermore, miRNA transgenic plants with less glucosinolate displayed enhanced tolerance to nitrogen starvation, including high biomass, more lateral roots, increased chlorophyll, and decreased anthocyanin. Meanwhile, nitrogen starvation-responsive genes were up-regulated in transgenic plants, implying improved nitrogen uptake activity. Our study reveals a mechanism by which Arabidopsis thaliana regulates the synthesis of glucosinolates to adapt to environmental changes in nitrogen availability. PMID:24367020
Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils
Pajares, Silvia; Bohannan, Brendan J. M.
2016-01-01
Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinches, A.; Pallent, L.J.
1986-10-01
Rate and yield information relating to biomass and product formation and to nitrogen, glucose and oxygen consumption are described for xanthan gum batch fermentations in which both chemically defined (glutamate nitrogen) and complex (peptone nitrogen) media are employed. Simple growth and product models are used for data interpretation. For both nitrogen sources, rate and yield parameter estimates are shown to be independent of initial nitrogen concentrations. For stationary phases, specific rates of gum production are shown to be independent of nitrogen source but dependent on initial nitrogen concentration. The latter is modeled empirically and suggests caution in applying simple productmore » models to xanthan gum fermentations. 13 references.« less
Ammonium, Nitrate, and Total Nitrogen in the Soil Water of Feedlot and Field Soil Profiles1
Elliott, L. F.; McCalla, T. M.; Mielke, L. N.; Travis, T. A.
1972-01-01
A level feedlot, located in an area consisting of Wann silt loam changing with depth to sand, appears to contribute no more NO3- nitrogen, NH4+ nitrogen, and total nitrogen to the shallow water table beneath it than an adjacent cropped field. Soil water samples collected at 46, 76, and 107 cm beneath the feedlot surface generally showed NO3- nitrogen concentrations of less than 1 μg/ml. During the summer months, soil water NO3- nitrogen increased at the 15-cm depth, indicating that nitrification took place at the feedlot surface. However, the low soil water NO3- nitrogen values below 15 cm indicate that denitrification takes place beneath the surface. PMID:16349922
Improvements to the Characterization of Organic Nitrogen Chemistry
Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...
Nitrogen balance for a plantation forest drainage canal on the North Carolina Coastal Plain
Timothy W. Appelboom; George M. Chescheir; R. Wayne Skaggs; J. Wendell Gilliam; Devendra M. Amatya
2009-01-01
Human alteration of the nitrogen cycle has led to increased riverine nitrogen loads, contributing to the eutrophication of lakes, streams, estuaries, and near-coastal oceans. These riverine nitrogen loads are usually less...
Effect of fuel nitrogen and hydrogen content on emissions in hydrocarbon combustion
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Wolfbrandt, G.
1981-01-01
How the emissions of nitrogen oxides and carbon monoxide are affected by: (1) the decreased hydrogen content and (2) the increased organic nitrogen content of coal derived fuels is investigated. Previous CRT experimental work in a two stage flame tube has shown the effectiveness of rich lean two stage combustion in reducing fuel nitrogen conversion to nitrogen oxides. Previous theoretical work gave preliminary indications that emissions trends from the flame tube experiment could be predicted by a two stage, well stirred reactor combustor model using a detailed chemical mechanism for propane oxidation and nitrogen oxide formation. Additional computations are reported and comparisons with experimental results for two additional fuels and a wide range of operating conditions are given. Fuels used in the modeling are pure propane, a propane toluene mixture and pure toluene. These give hydrogen contents 18, 11 and 9 percent by weight, respectively. Fuel bound nitrogen contents of 0.5 and 1.0 percent were used. Results are presented for oxides of nitrogen and also carbon monoxide concentrations as a function of primary equivalence ratio, hydrogen content and fuel bound nitrogen content.
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R [Grand Forks, ND; Olson, Edwin S [Grand Forks, ND; Jiang, Junhua [Grand Forks, ND
2012-04-10
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.
A Cryogen Recycler with Pulse Tube Cryocooler for Recondensing Helium and Nitrogen
NASA Astrophysics Data System (ADS)
Wang, C.; Lichtenwalter, B.
2015-12-01
We have developed a cryogen recycler using a 4 K pulse tube cryocooler for recondensing helium and nitrogen in a NMR magnet. The liquid helium cooled NMR magnet has a liquid nitrogen cooled radiation shield. The magnet boils off 0.84 L/day of liquid helium and 6 L/day of liquid nitrogen. The recycler is designed with both a liquid helium return tube and a liquid nitrogen return tube, which are inserted into the fill ports of liquid helium and nitrogen. Therefore the recycler forms closed loops for helium and nitrogen. A two-stage 4 K pulse tube cryocooler, Cryomech model PT407 (0.7W at 4.2 K), is selected for the recycler. The recycler was first tested with a Cryomech's test cryostat and resulted in the capacities of recondensing 8.2 L/day of nitrogen and liquefying 4 L/day of helium from room temperature gas. The recycler has been installed in the NMR magnet at University of Sydney since August, 2014 and continuously maintains a zero boil off for helium and nitrogen.
Chi, Lei; Yao, Changhong; Cao, Xupeng; Xue, Song
2016-01-01
Lipids and carbohydrates are main energy storage compounds (ESC) of microalgae under stressed conditions and they are potential feedstock for biofuel production. Yet, the sustainable and commercially successful production of ESC in microalgae needs to consider nitrogen utilization efficiency. Here the impact of different initial cell densities (ICDs) on ESC accumulation in Isochrysis zhangjiangensis under two nitrogen supply modes (an initially equal concentration of nitrogen per-cell in the medium (N1) and an equal total concentration of nitrogen in the culture system (N2)) were investigated. The results demonstrated that the highest ESC yield (1.36gL(-1)) at N1, which included a maximal nitrogen supply in the cultivation system, and the highest ESC content (66.5%) and ESC productivity per mass of nitrogen (3.28gg(-1) (N) day(-1)) at N2, were all obtained under a high ICD of 8.0×10(6)cellsmL(-1). Therefore I. zhangjiangensis qualifies for ESC-enriched biomass production with economized nitrogen utilization. Copyright © 2015 Elsevier Ltd. All rights reserved.
U.S. nitrogen science plan focuses collaborative efforts
NASA Astrophysics Data System (ADS)
Holland, E. A.; Guenther, A.; Lee-Taylor, J.; Bertman, S. B.; Carroll, M. A.; Shepson, P. B.; Sparks, J. P.
Nitrogen is a major nutrient in terrestrial ecosystems and an important catalyst in tropospheric photochemistry. Over the last century human activities have dramatically increased inputs of reactive nitrogen (Nr, the combination of oxidized, reduced, and organically bound nitrogen) to the Earth system (Figure 1). Nitrogen cycle perturbations have compromised air quality and human health, acidified ecosystems, and degraded and eutrophied lakes and coastal estuaries [Vitousek et al., 1997a, 1997b; Rabalais, 2002; Howarth et al., 2003; Townsend et al., 2003; Galloway et al., 2004].Increased Nr affects global climate. Use of agricultural fertilizers such as ammonium nitrate leads to increased soil production of nitrous oxide (N2O), which has 320 times the global warming potential of carbon dioxide (CO2). Emission of nitrogen oxides (NOx = nitric oxide, NO + nitrogen dioxide, NO2) from fossil fuel burning leads to increases in tropospheric ozone, another greenhouse gas. Ozone is phytotoxic, and may reduce terrestrial CO2 sequestration. To predict the effects of nitrogen cycling changes under changing climatic conditions, there needs to be a better understanding of the global nitrogen budget.
Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current
NASA Astrophysics Data System (ADS)
Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.
2015-12-01
Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distringuishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.
Wu, Po-Kuei; Chen, Cheng-Fong; Wang, Jir-You; Chen, Paul Chih-Hsueh; Chang, Ming-Chau; Hung, Shih-Chieh; Chen, Wei-Ming
2017-06-01
Liquid nitrogen has been used as adjuvant cryotherapy for treating giant cell tumor (GCT) of bone. However, the liquid phase and ultrafreezing (-196° C) properties increase the risk of damage to the adjacent tissues and may lead to perioperative complications. A novel semisolid cryogen, freezing nitrogen ethanol composite, might mitigate these shortcomings because of less-extreme freezing. We therefore wished to evaluate freezing nitrogen ethanol composite as a coolant to determine its properties in tumor cryoablation. (1) Is freezing nitrogen ethanol composite-mediated freezing effective for tumor cryoablation in an ex vivo model, and if yes, is apoptosis involved in the tumor-killing mechanism? (2) Does freezing nitrogen ethanol composite treatment block neovascularization and neoplastic progression of the grafted GCTs and is it comparable to that of liquid nitrogen in an in vivo chicken model? (3) Can use of freezing nitrogen ethanol composite as an adjuvant to curettage result in successful short-term treatment, defined as absence of GCT recurrence at a minimum of 1 year in a small proof-of-concept clinical series? The cryogenic effect on bone tissue mediated by freezing nitrogen ethanol composite and liquid nitrogen was verified by thermal measurement in a time-course manner. Cryoablation on human GCT tissue was examined ex vivo for effect on morphologic features (cell shrinkage) and DNA fragmentation (apoptosis). The presumed mechanism was investigated by molecular analysis of apoptosis regulatory proteins including caspases 3, 8, and 9 and Bax/Bcl-2. Chicken chorioallantoic membrane was used as an in vivo model to evaluate the effects of freezing nitrogen ethanol composite and liquid nitrogen treatment on GCT-derived neovascularization and tumor neoplasm. A small group of patients with GCT of bone was treated by curettage and adjuvant freezing nitrogen ethanol composite cryotherapy in a proof-of-concept study. Tumor recurrence and perioperative complications were evaluated at a minimum of 19 months followup (mean, 24 months; range, 19-30 months). Freshly prepared freezing nitrogen ethanol composite froze to -136° C and achieved -122° C isotherm across a piece of 10 ± 0.50-mm-thick bone with a freezing rate of -34° C per minute, a temperature expected to meet clinical tumor-killing requirements. Human GCT tissues revealed histologic changes including shrinkage in morphologic features of multinucleated giant cells in the liquid nitrogen (202 ± 45 μm; p = 0.006) and freezing nitrogen ethanol composite groups (169 ± 27.4 μm; p < 0.001), and a decreased nucleated area of neoplastic stromal cells for the 30-second treatment. Enhanced counts of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells verified the involvement of DNA fragmentation in cryoablated GCT tissues. Western blotting analysis on the expression of apoptosis regulatory proteins showed enhancement of proteocleavage-activated caspases 3, 8, and 9 and higher ratios of Bax/Bcl2 in the liquid nitrogen- and freezing nitrogen ethanol composite-treated samples. Numbers of blood vessels and human origin tumor cells also were decreased by freezing nitrogen ethanol composite and liquid nitrogen treatment in the GCT-grafted chicken chorioallantoic membrane model. Seven patients with GCT treated by curettage and adjuvant cryotherapy by use of freezing nitrogen ethanol composite preparation had no intra- or postoperative complications related to the freezing, and no recurrences during the study surveillance period. These preliminary in vitro and clinical findings suggest that freezing nitrogen ethanol composite may be an effective cryogen showing ex vivo and in vivo tumor cryoablation comparable to liquid nitrogen. The semisolid phase and proper thermal conduction might avoid some of the disadvantages of liquid nitrogen in cryotherapy, but a larger clinical study is needed to confirm these findings. Level IV, therapeutic study.
Yang, Jun; Chen, Xiaorong; Zhu, Changlan; Peng, Xiaosong; He, Xiaopeng; Fu, Junru; Ouyang, Linjuan; Bian, Jianmin; Hu, Lifang; Sun, Xiaotang; Xu, Jie; He, Haohua
2015-01-01
Rice reproductive development is sensitive to high temperature and soil nitrogen supply, both of which are predicted to be increased threats to rice crop yield. Rice spikelet development is a critical process that determines yield, yet little is known about the transcriptional regulation of rice spikelet development in response to the combination of heat stress and low nitrogen availability. Here, we profiled gene expression of rice spikelet development during meiosis under heat stress and different nitrogen levels using RNA-seq. We subjected plants to four treatments: 1) NN: normal nitrogen level (165 kg ha-1) with normal temperature (30°C); 2) HH: high nitrogen level (264 kg ha-1) with high temperature (37°C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and normal temperature. The de novo transcriptome assembly resulted in 52,250,482 clean reads aligned with 76,103 unigenes, which were then used to compare differentially expressed genes (DEGs) in the different treatments. Comparing gene expression in samples with the same nitrogen levels but different temperatures, we identified 70 temperature-responsive DEGs in normal nitrogen levels (NN vs NH) and 135 DEGs in high nitrogen levels (HN vs HH), with 27 overlapping DEGs. We identified 17 and seven nitrogen-responsive DEGs by comparing changes in nitrogen levels in lower temperature (NN vs HN) and higher temperature (NH vs HH), with one common DEG. The temperature-responsive genes were principally associated with cytochrome, heat shock protein, peroxidase, and ubiquitin, while the nitrogen-responsive genes were mainly involved in glutamine synthetase, amino acid transporter, pollen development, and plant hormone. Rice spikelet fertility was significantly reduced under high temperature, but less reduced under high-nitrogen treatment. In the high temperature treatments, we observed downregulation of genes involved in spikelet development, such as pollen tube growth, pollen maturation, especially sporopollenin biosynthetic process, and pollen exine formation. Moreover, we observed higher expression levels of the co-expressed DEGs in HN vs HH compared to NN vs NH. These included the six downregulated genes (one pollen maturation and five pollen exine formation genes), as well as the four upregulated DEGs in response to heat. This suggests that high-nitrogen treatment may enhance the gene expression levels to mitigate aspects of heat-stress. The spikelet genes identified in this study may play important roles in response to the combined effects of high temperature and high nitrogen, and may serve as candidates for crop improvement.
Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth
NASA Astrophysics Data System (ADS)
van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.
2017-03-01
In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum hosts, in which a sheltered environment apparently outweighs the less favorable environmental conditions. We conclude that microbial activity is still nitrogen limited under eutrophic conditions because dissolved nitrogen is being monopolized by Sphagnum. Moreover, the fact that diazotrophic activity can significantly be upregulated by increased phosphorus addition and acid buffering, while Sphagnum spp. do not benefit, reveals remarkable differences in optimal conditions for both symbiotic partners and calls into question the regulation of nitrogen fixation by Sphagnum under these eutrophic conditions. The high nitrogen fixation rates result in high additional nitrogen loading of 6 kg ha-1 yr-1 on top of the high nitrogen deposition in these ecosystems.
Methods of detection and identificationoc carbon- and nitrogen-containing materials
Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhalivyan, Leonid Zavenovich; Brothers, Louis Joseph; Wilhide, Larry K
2013-11-12
Methods for detecting and identifying carbon- and/or nitrogen-containing materials are disclosed. The methods may comprise detection of photo-nuclear reaction products of nitrogen and carbon to detect and identify the carbon- and/or nitrogen-containing materials.
The microbial nitrogen-cycling network.
Kuypers, Marcel M M; Marchant, Hannah K; Kartal, Boran
2018-05-01
Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. By far, the largest inventory of freely accessible nitrogen is atmospheric dinitrogen, but most organisms rely on more bioavailable forms of nitrogen, such as ammonium and nitrate, for growth. The availability of these substrates depends on diverse nitrogen-transforming reactions that are carried out by complex networks of metabolically versatile microorganisms. In this Review, we summarize our current understanding of the microbial nitrogen-cycling network, including novel processes, their underlying biochemical pathways, the involved microorganisms, their environmental importance and industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurens, Lieve M; Olstad-Thompson, Jessica L; Templeton, David W
Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.
Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel
2013-01-01
Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.
Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel
2013-01-01
Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499
Modeling reactive nitrogen in North America: recent ...
Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. The bulk of nitrogen in the environment is tightly bound as non-reactive N2. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media (Galloway et al., 2003). Human activity has perturbed this cycle through the combustion of fossil fuels and synthesis of fertilizers. The anthropogenic contribution to this cycle is now larger than natural sources in the United States and globally (Galloway et al., 2004). Reactive nitrogen enters the biosphere primarily from emissions of oxidized nitrogen to the atmosphere from combustion sources, as inorganic fertilizer applied to crops as reduced nitrogen fixed from atmospheric N2 through the Haber-Bosch process, as organic fertilizers such as manure, and through the cultivation of nitrogen fixing crops (Canfield et al., 2010). Both the United States (US) Clean Air Act and the Canadian Environmental Protection Act (CEPA) have substantially reduced the emissions of oxidized nitrogen in North America through NOx controls on smokestacks and exhaust pipes (Sickles and Shadwick, 2015; AQA, 2015). However, reduced nitrogen emissions have remained constant during the last few decades of emission reductions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) c
Long-Term Simulated Atmospheric Nitrogen Deposition Alters ...
Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we previously observed that 10 years of chronic simulated nitrogen deposition (30 kg N ha-1 yr-1) increased soil organic carbon. Over three years at these sites, we investigated the effects of nitrogen additions on decomposition of two substrates with documented differences in biochemistry: leaf litter (more labile) and fine roots (more recalcitrant). Further, we combined decomposition rates with annual leaf and fine root litter production to estimate how nitrogen additions altered the accumulation of soil organic matter. Nitrogen additions marginally stimulated early-stage decomposition of leaf litter, a substrate with little acid-insoluble material (e.g., lignin). In contrast, nitrogen additions inhibited the late stage decomposition of fine roots, a substrate with high amount of acid insoluble material and a change consistent with observed decreases in lignin-degrading enzyme activities with nitrogen additions at these sites. At the ecosystem scale, the slower fine root decomposition led to additional root mass retention (g m-2), which explained 5, 48, and 52 % of previously-documented soil carbon accumulation due to nitrogen additions. Our results demonstrated that nitrogen deposition ha
Nitrogen fixation and nifH diversity in human gut microbiota
Igai, Katsura; Itakura, Manabu; Nishijima, Suguru; Tsurumaru, Hirohito; Suda, Wataru; Tsutaya, Takumi; Tomitsuka, Eriko; Tadokoro, Kiyoshi; Baba, Jun; Odani, Shingo; Natsuhara, Kazumi; Morita, Ayako; Yoneda, Minoru; Greenhill, Andrew R.; Horwood, Paul F.; Inoue, Jun-ichi; Ohkuma, Moriya; Hongoh, Yuichi; Yamamoto, Taro; Siba, Peter M.; Hattori, Masahira; Minamisawa, Kiwamu; Umezaki, Masahiro
2016-01-01
It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A 15N2 incorporation assay showed significant enrichment of 15N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance. PMID:27554344
Zhang, Wanguang; Lei, Qiongye; Li, Zhengkui; Han, Huayang
2016-02-01
Slightly polluted water has become one of the main sources of nitrogen contaminants in recent years, for which constructed wetlands (CW) is a typical and efficient treatment. However, the knowledge about contribution of individual nitrogen removal pathways and nitrogen balance in constructed wetlands is still limited. In this study, a stable-isotope-addition experiment was performed in laboratory-scale constructed wetlands treating slightly polluted water to determine quantitative contribution of different pathways and temporal variation of nitrogen balance using Na(15)NO3 as tracer. Microbial conversion and substrate retention were found to be the dominant pathways in nitrogen removal contributing 24.4-79.9 and 8.9-70.7 %, respectively, while plant contributed only 4.6-11.1 % through direct assimilation but promoted the efficiency of other pathways. In addition, microbial conversion became the major way to remove N whereas nitrogen retained in substrate at first was gradually released to be utilized by microbes and plants over time. The findings indicated that N2 emission representing microbial conversion was not only the major but also permanent nitrogen removal process, thus keeping a high efficiency of microbial conversion is important for stable and efficient nitrogen removal in constructed wetlands.
Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun
2014-01-01
The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.
Increased tree carbon storage in response to nitrogen deposition in the US
NASA Astrophysics Data System (ADS)
Quinn Thomas, R.; Canham, Charles D.; Weathers, Kathleen C.; Goodale, Christine L.
2010-01-01
Human activities have greatly accelerated emissions of both carbon dioxide and biologically reactive nitrogen to the atmosphere. As nitrogen availability often limits forest productivity, it has long been expected that anthropogenic nitrogen deposition could stimulate carbon sequestration in forests. However, spatially extensive evidence for deposition-induced stimulation of forest growth has been lacking, and quantitative estimates from models and plot-level studies are controversial. Here, we use forest inventory data to examine the impact of nitrogen deposition on tree growth, survival and carbon storage across the northeastern and north-central USA during the 1980s and 1990s. We show a range of growth and mortality responses to nitrogen deposition among the region's 24 most common tree species. Nitrogen deposition (which ranged from 3 to 11kgha-1yr-1) enhanced the growth of 11 species and decreased the growth of 3 species. Nitrogen deposition enhanced growth of all tree species with arbuscular mycorrhizal fungi associations. In the absence of disturbances that reduced carbon stocks by more than 50%, above-ground biomass increment increased by 61kg of carbon per kg of nitrogen deposited, amounting to a 40% enhancement over pre-industrial conditions. Extrapolating to the globe, we estimate that nitrogen deposition could increase tree carbon storage by 0.31Pg carbon yr-1.
Watershed delineation and nitrogen source analysis for Bayou ...
Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen loading stimulates eutrophication through algal blooms, which leads to an overall decrease in drinking water and aquatic habitat quality. Bayou Chico, a highly urbanized watershed in the Pensacola Bay system in northwest Florida, is a nutrient-impaired waterbody under management to reduce bacteria and nutrient loadings, in accordance with the Florida Department of Environmental Protection’s (FDEP) Basin Management Action Plan. Best management practices and green infrastructure (GI) throughout Bayou Chico help reduce nitrogen inputs by retaining and filtering water. GI can function as a nitrogen sink by sorption or infiltration into soils, sequestration into plant material, and denitrification through microbial processes. However, a better understanding of the efficiency of these systems is needed to better inform management practices on future nitrogen reduction. This project will address two issues relating to the presence of nitrogen in the Bayou Chico watershed: 1) the identification of specific nitrogen sources within urbanized areas, and 2) the potential rates of nitrogen removal and sequestration from GI and nitrogen transport throughout the bayou. To accomplish these goals, nitr
Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes)
NASA Astrophysics Data System (ADS)
Mayo, Aloyce W.; Hanai, Emmanuel E.
2017-08-01
Water hyacinth (Eichhornia crassipes) has a great potential for purification of wastewater through physical, chemical and biological mechanisms. In an attempt to improve the quality of effluents discharged from waste stabilization ponds at the University of Dar es Salaam, a pilot plant was constructed to experiment the effectiveness of this plants for transformation and removal of nitrogen. Samples of wastewater were collected and examined for water quality parameters, including pH, temperature, dissolved oxygen, and various forms of nitrogen, which were used as input parameters in a kinetic mathematical model. A conceptual model was then developed to model various processes in the system using STELLA 6.0.1 software. The results show that total nitrogen was removed by 63.9%. Denitrification contributed 73.8% of the removed nitrogen. Other dominant nitrogen removal mechanisms are net sedimentation and uptake by water hyacinth, which contributed 16.7% and 9.5% of the removed nitrogen, respectively. The model indicated that in presence of water hyacinth biofilm about 1.26 g Nm-2day-1 of nitrogen was removed. However, in the absence of biofilm in water hyacinth pond, the permanent nitrogen removal was only 0.89 g Nm-2day-1. This suggests that in absence of water hyacinth, the efficiency of nitrogen removal would decrease by 29.4%.
Lee, J W; Lee, H W; Kim, S W; Lee, S Y; Park, Y K; Han, J H; Choi, S I; Yi, Y S; Yun, Z
2004-01-01
In order to characterize the nitrogen conversion characteristics in a thermophilic aerobic digestion (TAD) system, a laboratory study has been conducted with the analysis of effluent gas and microbial community in the sludge samples. The lab TAD system was operated with HRT of 3 days and 60 degrees C. Based on the nitrogen mass balance, it has been found that about 2/3 of the daily load of nitrogen was converted to the gaseous form of nitrogen whereas cellular transformation and unmetabolized nitrogen accounted for about 1/3. Among the gaseous nitrogen transformation, significant amount of influent nitrogen had been converted to N2 gas (29% of influent N) and N2O (9% of influent N). Ammonia conversion was only 28% of influent N. The detection of N2O gas is a clear indication of the biological nitrogen reduction process in the thermophilic aerobic digester. No conclusive evidence for the existence of aerobic deammonification has been found. The microbial community analysis showed that thermophilic bacteria such as Bacillus thermocloacae, Bacillus sp. and Clostridial groups dominated in this TAD reactor. The diverse microbial community in TAD sludge may play an important role in removing both strong organics and nitrogen from piggery waste.
Population dynamics of hispid cotton rats (Sigmodon hispidus) across a nitrogen-amended landscape
Clark, J.E.; Hellgren, E.C.; Jorgensen, E.E.; Tunnell, S.J.; Engle, David M.; Leslie, David M.
2003-01-01
We conducted a mark-recapture experiment to examine the population dynamics of hispid cotton rats (Sigmodon hispidus) in response to low-level nitrogen amendments (16.4 kg nitrogen/ha per year) and exclosure fencing in an old-field grassland. The experimental design consisted of sixteen 0.16-ha plots with 4 replicates of each treatment combination. We predicted that densities, reproductive success, movement probabilities, and survival rates of cotton rats would be greater on nitrogen-amended plots because of greater aboveground biomass and canopy cover. Population densities of cotton rats tended to be highest on fenced nitrogen plots, but densities on unfenced nitrogen plots were similar to those on control and fenced plots. We observed no distinct patterns in survival rates, reproductive success, or movement probabilities with regard to nitrogen treatments. However, survival rates and reproductive success tended to be higher for cotton rats on fenced plots than for those on unfenced plots and this was likely attributable to decreased predation on fenced plots. As low-level nitrogen amendments continue to be applied, we predict that survival, reproduction, and population-growth rates of cotton rats on control plots, especially fenced plots with no nitrogen amendment, will eventually exceed those on nitrogen-amended plots as a result of higher plant-species diversity, greater food availability, and better quality cover.
Zhou, Jiamin; Yin, Xiaohong; Chen, Chaojun; Huang, Min; Peng, Fuyuan; Zhu, Xiaoqi
2010-06-01
To find out the optimal nitrogen application level of Desmodium styracifolium. A field experiment using randomized block design was carried out to study the effects of 5 nitrogen application levels (150, 187.5, 225.0, 262.5 and 300.0 kg x hm(-2)) on yield and active component content of D. styracifolium. Nitrogen application could increase the yield and contents of polysaccharide, total flavonoides and total saponins of D. styracifolium. However, the enhancing extent of the active component content and the yield were not always significant with the increase of nitrogen level. In which, the yield were not significantly different among the nitrogen application levels of 225.0, 262.5, 300.0 kg x hm(-2) the polysaccharide content was no significantly difference among the nitrogen application levels of 225.0, 262. 5 and 300.0 kg x hm(-2), the total flavonoides content under the nitrogen level of 300.0 kg x hm(-2) was significantly lower than that of 150.0 kg hm(-2) (P < 0.01), and the total saponins content under the nitrogen level of 300.0 kg x hm(-2) was no significant difference compared with that of 262.5 kg x hm(-2). The optimal nitrogen application level of D. styracifolium was 225.0-262.5 kg x hm(-2).
Reversible control of biofilm formation by Cellulomonas spp. in response to nitrogen availability.
Young, Jenna M; Leschine, Susan B; Reguera, Gemma
2012-03-01
The microbial degradation of cellulose contributes greatly to the cycling of carbon in terrestrial environments and feedbacks to the atmosphere, a process that is highly responsive to nitrogen inputs. Yet how key groups of cellulolytic microorganisms adaptively respond to the global conditions of nitrogen limitation and/or anthropogenic or climate nitrogen inputs is poorly understood. The actinobacterial genus Cellulomonas is of special interest because it incorporates the only species known to degrade cellulose aerobically and anaerobically. Furthermore, despite their inability to fix nitrogen, they are active decomposers in nitrogen-limited environments. Here we show that nitrogen limitation induced biofilm formation in Cellulomonas spp., a process that was coupled to carbon sequestration and storage in a curdlan-type biofilm matrix. The response was reversible and the curdlan matrix was solubilized and used as a carbon and energy source for biofilm dispersal once nitrogen sources became available. The biofilms attached strongly to cellulosic surfaces and, despite the growth limitation, produced cellulases and degraded cellulose more efficiently. The results show that biofilm formation is a competitive strategy for carbon and nitrogen acquisition and provide valuable insights linking nitrogen inputs to carbon sequestration and remobilization in terrestrial environments. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Rapid estimation of organic nitrogen in oil shale waste waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B.M.; Daughton, C.G.; Harris, G.J.
1984-04-01
Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting themore » sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a« less
Nitrogen vacancy complexes in nitrogen irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veen, A. van; Westerduin, K.T.; Schut, H.
1996-12-31
Gas desorption and positron annihilation techniques have been employed to study the evolution of nitrogen associated defects in nitrogen irradiated metals: Fe, Ni, Mo and W. Nitrogen in these metals has a rather high affinity to vacancy type defects. The results obtained for low irradiation dose show that substitutional nitrogen (NV; with V = vacancy) is formed. The nitrogen vacancy complex dissociates at temperatures ranging from 350 K for Ni to 900 K for Mo and 1,100 K for W. At high doses defects are formed which can be characterized as nitrogen saturated vacancy clusters. These defect, as observed bymore » helium probing, disappear during annealing for nickel at 800 K, and for Mo at 1,100 K. The direct observation of the desorbing nitrogen for nickel and molybdenum reveals a very fast desorption transient at the dissociation temperature of the clusters. This is the characteristic desorption transient of a small nitride cluster, e.g., by shrinkage with constant rate. For iron the nitrogen desorption is more complicated because of a general background that continuously rises with temperature. With the positron beam technique depth information was obtained for defects in iron and the defect character could be established with the help of the information provided on annihilation with conduction and core electrons of the defect trapped positrons.« less
Substantial nitrogen pollution embedded in international trade
NASA Astrophysics Data System (ADS)
Oita, Azusa; Malik, Arunima; Kanemoto, Keiichiro; Geschke, Arne; Nishijima, Shota; Lenzen, Manfred
2016-02-01
Anthropogenic emissions of reactive nitrogen to the atmosphere and water bodies can damage human health and ecosystems. As a measure of a nation’s contribution to this potential damage, a country’s nitrogen footprint has been defined as the quantity of reactive nitrogen emitted during the production, consumption and transportation of commodities consumed within that country, whether those commodities are produced domestically or internationally. Here we use global emissions databases, a global nitrogen cycle model, and a global input-output database of domestic and international trade to calculate the nitrogen footprints for 188 countries as the sum of emissions of ammonia, nitrogen oxides and nitrous oxide to the atmosphere, and of nitrogen potentially exportable to water bodies. Per-capita footprints range from under 7 kg N yr-1 in some developing countries to over 100 kg N yr-1 in some wealthy nations. Consumption in China, India, the United States and Brazil is responsible for 46% of global emissions. Roughly a quarter of the global nitrogen footprint is from commodities that were traded across country borders. The main net exporters have significant agricultural, food and textile exports, and are often developing countries, whereas important net importers are almost exclusively developed economies. We conclude that substantial local nitrogen pollution is driven by demand from consumers in other countries.
Divertor power load feedback with nitrogen seeding in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Dux, R.; Fuchs, J. C.; Fischer, R.; Geiger, B.; Giannone, L.; Herrmann, A.; Lunt, T.; Mertens, V.; McDermott, R.; Neu, R.; Pütterich, T.; Rathgeber, S.; Rohde, V.; Schmid, K.; Schweinzer, J.; Treutterer, W.; ASDEX Upgrade Team
2010-05-01
Feedback control of the divertor power load by means of nitrogen seeding has been developed into a routine operational tool in the all-tungsten clad ASDEX Upgrade tokamak. For heating powers above about 12 MW, its use has become inevitable to protect the divertor tungsten coating under boronized conditions. The use of nitrogen seeding is accompanied by improved energy confinement due to higher core plasma temperatures, which more than compensates the negative effect of plasma dilution by nitrogen on the neutron rate. This paper describes the technical details of the feedback controller. A simple model for its underlying physics allows the prediction of its behaviour and the optimization of the feedback gain coefficients used. Storage and release of nitrogen in tungsten surfaces were found to have substantial impact on the behaviour of the seeded plasma, resulting in increased nitrogen consumption with unloaded walls and a latency of nitrogen release over several discharges after its injection. Nitrogen is released from tungsten plasma facing components with moderate surface temperature in a sputtering-like process; therefore no uncontrolled excursions of the nitrogen wall release are observed. Overall, very stable operation of the high-Z tokamak is possible with nitrogen seeding, where core radiative losses are avoided due to its low atomic charge Z and a high ELM frequency is maintained.
Billen, Gilles; Garnier, Josette; Lassaletta, Luis
2013-01-01
The nitrogen cycle of pre-industrial ecosystems has long been remarkably closed, in spite of the high mobility of this element in the atmosphere and hydrosphere. Inter-regional and international commercial exchanges of agricultural goods, which considerably increased after the generalization of the use of synthetic nitrogen fertilizers, introduced an additional type of nitrogen mobility, which nowadays rivals the atmospheric and hydrological fluxes in intensity, and causes their enhancement at the local, regional and global scales. Eighty-five per cent of the net anthropogenic input of reactive nitrogen occurs on only 43 per cent of the land area. Modern agriculture based on the use of synthetic fertilizers and the decoupling of crop and animal production is responsible for the largest part of anthropogenic losses of reactive nitrogen to the environment. In terms of levers for better managing the nitrogen cascade, beyond technical improvement of agricultural practices tending to increase nitrogen use efficiency, or environmental engineering management measures to increase nitrogen sinks in the landscape, the need to better localize crop production and livestock breeding, on the one hand, and agriculture and food demand on the other hand, is put forward as a condition to being able to supply food to human populations while preserving environmental resources. PMID:23713121
Nguyen, Phuong M; Niemeyer, Emily D
2008-09-24
Many herbs and spices have been shown to contain high levels of polyphenolic compounds with potent antioxidant properties. In the present study, we explore how nutrient availability, specifically nitrogen fertilization, affects the production of polyphenolic compounds in three cultivars (Dark Opal, Genovese, and Sweet Thai) of the culinary herb, basil ( Ocimum basilicum L.). Nitrogen fertilization was found to have a significant effect on total phenolic levels in Dark Opal ( p < 0.001) and Genovese ( p < 0.001) basil with statistically higher phenolic contents observed when nutrient availability was limited at the lowest (0.1 mM) applied nitrogen treatment. Similarly, basil treated at the lowest nitrogen fertilization level generally contained significantly higher rosmarinic ( p = 0.001) and caffeic ( p = 0.001) acid concentrations than basil treated at other nitrogen levels. Nitrogen fertilization also affected antioxidant activity ( p = 0.002) with basil treated at the highest applied nitrogen level, 5.0 mM, exhibiting lower antioxidant activity than all other nitrogen treatments. The anthocyanin content of Dark Opal basil was not affected by applied nitrogen level, but anthocyanin concentrations were significantly impacted by growing season ( p = 0.001). Basil cultivar was also determined to have a statistically significant effect on total phenolic levels, rosmarinic and caffeic acid concentrations, and antioxidant activities.
Cooke, J V; Whipple, G H
1918-08-01
Sterile abscess formation in the dog is accompanied by a large increase in output of urinary nitrogen and also by a small but definite increase in the blood non-protein nitrogen. All this nitrogenous material of course is derived from body protein injury and autolysis. Septic inflammation in the dog (pleurisy, pneumonia, peritonitis, etc.) likewise shows a distinct rise in the blood non-protein nitrogen. This rise is not often so great as that frequently observed in the intoxication of intestinal obstruction. Many acute infections in man (septicemia, peritonitis, pneumonia, etc.) show a definite rise in the non-protein nitrogen and urea nitrogen of the blood; some cases show a very great rise above normal (over 100 mg. of non-protein nitrogen per 100 cc. of blood). There may be no anatomical change in the kidney beyond the familiar picture of cloudy swelling. This does not exclude the possibility of some transient functional derangement of the kidney epithelium. Certain obscure intoxications in man may show a considerable rise in the non-protein nitrogen of the blood, indicating a large amount of protein disintegration. These findings must be taken into account in any clinical analysis and interpretation of high non-protein nitrogen of the blood in pathological conditions.
Koven, Charles D.; Lawrence, David M.; Riley, William J.
2015-01-01
Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon−nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603
A nitrogen mass balance for California
NASA Astrophysics Data System (ADS)
Liptzin, D.; Dahlgren, R. A.
2010-12-01
Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows, requires a net influx of N in feed to the state. In terms of exports, the riverine N loads are smaller than many more mesic climates. Because many of the large population centers are on the coast, N discharged directly from wastewater treatment plants into the ocean is almost four times greater than the N discharge of all of the watersheds in the state combined. Gas losses are estimated through a combination of bottom up approaches using field data, emissions inventories, and numerical models. The largest uncertainties are in emissions of N2 and NH3. Calculated by difference, groundwater N loading represents the largest loss term in the mass balance. Contamination of groundwater with nitrates is a serious concern in many areas of the state. Given the long residence time of groundwater in many aquifers like the Central Valley the current and past N inputs to groundwater pose a hazard to drinking water supplies for decades to come. These calculations along with the analysis of management and policy tools will help elucidate the spatial location or activities that would be best to target to reduce the negative consequences of human alteration of the nitrogen cycle.
Nitrogen balance in patients with hemiparetic stroke during the subacute rehabilitation phase.
Wada, A; Kawakami, M; Otsuka, T; Aoki, H; Anzai, A; Yamada, Y; Liu, F; Otaka, E; Akaboshi, K; Liu, M
2017-06-01
In highly invasive diseases, metabolism commonly changes. Hypercatabolism is frequent in acute stroke, and nitrogen balance tends to be negative. However, there has been no study describing nitrogen balance in subacute and chronic stroke patients. The present study aimed to examine nitrogen balance in the subacute and chronic phases and to identify the factors related to it. Nitrogen balance was calculated from the collected urine of 56 patients with subacute stroke [mean (SD) 53.8 (18.4) days post-stroke] who were admitted for rehabilitation for their first-ever ischaemic or nonsurgical haemorrhagic stroke. In the first experiment, their nitrogen balance was measured during the rehabilitation phase, and factors (type, severity of hemiparesis, activities of daily living, dysphagia and malnutrition status) related to it were evaluated. The second experiment was performed to describe the time course of nitrogen balance in 31 consecutive patients, with assessments made at admission and at discharge. Nitrogen balance was positive in all patients in the subacute phase. A significant difference was seen in nitrogen balance between high and low fat-free mass in male patients. In the chronic phase, nitrogen balance was positive in 96% of the patients. There was no significant difference in nitrogen balance between discharge and admission. In the subacute and chronic phases of stroke, it was confirmed that hypercatabolism had resolved and that intensive rehabilitation is possible in the convalescent period of stroke. © 2017 The British Dietetic Association Ltd.
Wang, H-J; Wu, L-H; Tao, Q-N; Miller, D D; Welch, R M
2009-03-01
Many vegetables, especially leafy vegetables, accumulate NO(-) (3)-N in their edible portions. High nitrate levels in vegetables constitute a health hazard, such as cancers and blue baby syndrome. The aim of this study was to determine if (1) ammonium nitrogen (NH(+) (4)-N) and glutamine-nitrogen (Gln-N) absorbed by plant roots is converted into nitrate-nitrogen of pak-choi (Brassica chinensis L.) tissues, and (2) if nitrate-nitrogen (NO(-) (3)-N) accumulation and concentration of pak-choi tissues linearly increase with increasing NO(-) (3)-N supply when grown in nutrient solution. In experiment 1, 4 different nitrogen treatments (no nitrogen, NH(+) (4)-N, Gln-N, and NO(-) (3)-N) with equal total N concentrations in treatments with added N were applied under sterile nutrient medium culture conditions. In experiment 2, 5 concentrations of N (from 0 to 48 mM), supplied as NO(-) (3)-N in the nutrient solution, were tested. The results showed that Gln-N and NH(+) (4)-N added to the nutrient media were not converted into nitrate-nitrogen of plant tissues. Also, NO(-) (3)-N accumulation in the pak-choi tissues was the highest when plants were supplied 24 mM NO(-) (3)-N in the media. The NO(-) (3)-N concentration in plant tissues was quadratically correlated to the NO(-) (3)-N concentration supplied in the nutrient solution.
Bonnefond, Hubert; Moelants, Nina; Talec, Amélie; Mayzaud, Patrick; Bernard, Olivier; Sciandra, Antoine
2017-01-01
Nitrogen starvation and limitation are known to induce important physiological changes especially in lipid metabolism of microalgae (triglycerides, membrane lipids, beta-carotene, etc.). Although little information is available for Dunaliella salina , it is a promising microalga for biofuel production and biotechnological applications due to its ability to accumulate lipid together with beta-carotene. Batch and chemostat experiments with various degrees of nitrogen limitation, ranging from starvation to nitrogen-replete conditions, were carried out to study carbon storage dynamics (total carbon, lipids, and beta-carotene) in steady state cultures of D. salina . A new protocol was developed in order to manage the very high beta-carotene concentrations and to more accurately separate and quantify beta-carotene and triglycerides by chromatography. Biomass evolution was appropriately described by the Droop model on the basis of the nitrogen quota dynamics. Triglycerides and beta-carotene were both strongly anti-correlated with nitrogen quota highlighting their carbon sink function in nitrogen depletion conditions. Moreover, these two valuable molecules were correlated each other for nitrogen replete conditions or moderated nitrogen limitations (N:C ratio higher than 0.04). Under nitrogen starvation, i.e., for very low N:C ratio, the dynamic revealed, for the first time, uncoupled part (higher triglyceride accumulation than beta-carotene), possibly because of shortage in key proteins involved in the stabilization of lipid droplets. This study motivates the accurate control of the microalgal nitrogen quota in order to optimize lipid productivity.
Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.
Rogers, Christian; Oldroyd, Giles E D
2014-05-01
Nitrogen is abundant in the earth's atmosphere but, unlike carbon, cannot be directly assimilated by plants. The limitation this places on plant productivity has been circumvented in contemporary agriculture through the production and application of chemical fertilizers. The chemical reduction of nitrogen for this purpose consumes large amounts of energy and the reactive nitrogen released into the environment as a result of fertilizer application leads to greenhouse gas emissions, as well as widespread eutrophication of aquatic ecosystems. The environmental impacts are intensified by injudicious use of fertilizers in many parts of the world. Simultaneously, limitations in the production and supply of chemical fertilizers in other regions are leading to low agricultural productivity and malnutrition. Nitrogen can be directly fixed from the atmosphere by some bacteria and Archaea, which possess the enzyme nitrogenase. Some plant species, most notably legumes, have evolved close symbiotic associations with nitrogen-fixing bacteria. Engineering cereal crops with the capability to fix their own nitrogen could one day address the problems created by the over- and under-use of nitrogen fertilizers in agriculture. This could be achieved either by expression of a functional nitrogenase enzyme in the cells of the cereal crop or through transferring the capability to form a symbiotic association with nitrogen-fixing bacteria. While potentially transformative, these biotechnological approaches are challenging; however, with recent advances in synthetic biology they are viable long-term goals. This review discusses the possibility of these biotechnological solutions to the nitrogen problem, focusing on engineering the nitrogen symbiosis in cereals.
Davey, Marie L; Skogen, Marte J; Heegaard, Einar; Halvorsen, Rune; Kauserud, Håvard; Ohlson, Mikael
2017-01-01
Human activity has more than doubled the amount of nitrogen entering the global nitrogen cycle, and the boreal forest biome is a nitrogen-limited ecosystem sensitive to nitrogen load perturbation. Although bryophyte-associated microbes contribute significantly to boreal forest ecosystem function, particularly in carbon and nitrogen cycling, little is known about their responses to anthropogenic global change. Amplicon pyrosequencing of the ITS2 region of rDNA was used to investigate how fungal communities associated with three bryophyte species responded to increased nitrogen loads in a long-term fertilization experiment in a boreal Picea abies forest in southern Norway. Overall, OTU richness, community composition and the relative abundance of specific ecological guilds were primarily influenced by host species identity and tissue type. Although not the primary factor affecting fungal communities, nitrogen addition did impact the abundance of specific guilds of fungi and the resulting overall community composition. Increased nitrogen loads decreased ectomycorrhizal abundance, with Amphinema, Cortinarius, Russula and Tylospora OTUs responding negatively to fertilization. Pathogen abundance increased with fertilization, particularly in the moss pathogen Eocronartium. Saprophytic fungi were both positively and negatively impacted by the nitrogen addition, indicating a complex community level response. The overshadowing of the effects of increased nitrogen loads by variation related to host and tissue type highlights the complexity of bryophyte-associated microbial communities and the intricate nature of their responses to anthropogenic global change. © 2016 John Wiley & Sons Ltd.
Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena
2014-01-01
Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not.
Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena
2014-01-01
Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not. PMID:24466065
Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes
Mus, Florence; Crook, Matthew B.; Garcia, Kevin; Garcia Costas, Amaya; Geddes, Barney A.; Kouri, Evangelia D.; Paramasivan, Ponraj; Ryu, Min-Hyung; Oldroyd, Giles E. D.; Poole, Philip S.; Udvardi, Michael K.; Voigt, Christopher A.
2016-01-01
Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology. PMID:27084023
Wendland, F; Kunkel, R; Bogena, H; Gömann, H; Kreins, P
2007-01-01
An integrated model system has been developed to estimate the impact of nitrogen reduction measures on the nitrogen load in groundwater and in river catchment areas. The focus lies on an area-wide, regionally differentiated, consistent link-up between the indicator "nitrogen balance surplus" and nitrogen charges into surface waters. As a starting point of the analysis actual nitrogen surpluses in the soil were quantified using the agro-economic RAUMIS-model, which considers the most important N-inputs to the soil and N-removals from the soil through crop harvest. The most important pathways for diffuse nitrogen inputs into river systems are modelled with the water balance model GROWA. Additionally, the time-dependent nitrogen degradation along the nitrogen pathways in soil and groundwater are modelled using the WEKU-model. The two selected river basins in Germany cover a variety of landscape units with different hydrological, hydrogeological and socio-economic characteristics. The results indicate a wide range of annual nitrogen surpluses for the rural areas between than 10 kg N ha(-1) x a(-1) and 200 kg N ha(-1) x a(-1) or more, depending on the type and intensity of farming. The level of nitrogen inputs into the surface waters is reduced because of degradation processes during transport in soil and groundwater. Policy impact analyses for a nitrogen tax and a limitation of the livestock density stress the importance of regionally adjusted measures.
Hao, Kun; Liu, Xiao Gang; Zhang, Yan; Han, Zhi Hui; Yu, Ning; Yang, Qi Liang; Liu, Yan Wei
2017-12-01
The effects of periodic rewatering after drought stress and nitrogen fertilizer on growth, yield, photosynthetic characteristics of leaves and water and nitrogen productivity of Coffea arabica (Katim P7963) were studied under different nitrogen application levels in 2.5 consecutive years. Irrigation (periodic rewatering after drought stress) and nitrogen were designed as two factors, with four modes of irrigation, namely, full irrigation (I F-F : 100%ET 0 +100%ET 0 , ET 0 was reference crop evapotranspiration), rewatering after light drought stress (I L-F : 80%ET 0 +100%ET 0 ), rewatering after moderate drought stress (I M-F : 60%ET 0 +100%ET 0 ) and rewatering after severe drought stress (I S-F : 40%ET 0 +100%ET 0 ), and three levels of nitrogen, namely, high nitrogen (N H : 750 kg N·hm -2 each time), middle nitrogen (N M : 500 kg N·hm -2 each time), low nitrogen (N L : 250 kg N·hm -2 each time), and nitrogen was equally applied for 4 times. The results showed that irrigation and nitrogen had significant effect on plant height, stem diameter, yield and water and nitrogen productivity of C. arabica, and plant height and stem diameter showed S-curve with the day ordinal number, and leaf photosynthesis decreased significantly under drought stress but most photosynthesis index recovered somewhat after rewatering. Compared with I F-F , I L-F increased dry bean yield by 6.9%, while I M-F and I S-F decreased dry bean yield by 15.2% and 38.5%, respectively; I L-F and I M-F increased water use efficiency by 18.8% and 6.0%, respectively, while I S-F decreased water use efficiency by 12.1%; I L-F increased nitrogen partial productivity by 6.1%, while I M-F and I S-F decreased nitrogen partial productivity by 14.0% and 36.0%, respectively. Compared with N H , N M increased dry bean yield and water use efficiency by 20.9% and 19.3%, while N L decreased dry bean yield and water use efficiency by 42.4% and 41.9%, respectively; N M and N L increased nitrogen partial productivity by 81.4% and 72.9%, respectively. Compared with I F-F N H , I L-F N M increased dry bean yield, water use efficiency and nitrogen partial productivity by 37.6%, 52.9% and 106.4%, respectively. Regression analysis showed that the yield of dry bean was the maximum (2362 kg·hm -2 ) when the irrigation amount was 318 mm and the nitrogen application amount was 583 kg·hm -2 ; the water use efficiency was the maximum (0.78 kg·m -3 ) when the irrigationamount was 295 mm and the nitrogen application amount was 584 kg·hm -2 , that's to say when yield of dry bean and water use efficiency reach the maximum value at the same time, the combination was the closest to I L-F N M . Therefore, the best combination of water and nitrogen model for C. arabica was I L-F N M .
Controls on Nitrogen Retention and Loss in Urban and Rural Forest Ecosystems.
NASA Astrophysics Data System (ADS)
Templer, P. H.
2011-12-01
Human activities, such as the burning of fossil fuels and production of fertilizer, have increased the amount of nitrogen deposited onto terrestrial ecosystems. In addition to changes in atmospheric deposition of nitrogen, other human-induced disturbances have led to dramatic shifts in forest composition of the United States over the last 100 years. Tree species composition of many forests is changing in response to introduced pests and pathogens, competition with introduced plant species and changes in climate. Understanding the combined effects of increased nitrogen inputs and changes in plant species composition on forest nitrogen cycling is critical to our understanding of forest biogeochemistry and nutrient budgets. Despite several decades of research on the effects of atmospheric nitrogen deposition, there is still significant uncertainty about the factors that regulate nitrogen retention and loss in forest ecosystems. The use of natural abundance stable isotopes of nitrogen and oxygen has proven to be a powerful tool for tracing the sources of nitrate in water, from inputs to leaching, as it moves through an ecosystem. The evaluation of natural abundance nitrogen values in atmospheric deposition has been used to partition sources of nitrogen, such as coal-fired power plants vs. tailpipe exhaust, since each of their isotopic signatures is distinct. Similarly, natural abundance oxygen values of nitrate in atmospheric inputs and soil leachate have been used as a tool to partition sources of nitrate between precipitation and nitrate produced microbially during nitrification. We measured the natural abundance isotopic composition of nitrate to quantify rates of nitrogen inputs to the forest and to determine rates of nitrogen losses from healthy, declining and preemptively cut eastern hemlock (Tsuga canadensis) stands in both an urban forest at the Arnold Arboretum in Boston, MA, and a rural forest at Harvard Forest in Petersham, MA. The hemlock woolly adelgid (Adelges tsugae Annand), an introduced aphid-like insect from Japan, threatens hemlock stands throughout the eastern United States. The hemlock woolly adelgid was first reported in forests of the eastern United States in the early 1950s and is currently leading to mortality of eastern hemlock trees from Georgia to Massachusetts. We found that rates of nitrogen inputs to the forest floor were 4-5 times greater, and rates of nitrogen losses via leachate were more than ten times greater, at the Arnold Arboretum compared to Harvard Forest. Our results also show that current management regimes used to control the hemlock woolly adelgid, such as salvage cutting, may be reducing nitrogen losses in urban areas due to rapid regrowth of vegetation and the associated uptake of nitrogen by those plants. In contrast, cutting of trees in rural areas may be leading to proportionately greater losses of nitrogen in those sites, though the total magnitude of nitrogen lost is still smaller than in urban sites. Results of this study suggest that the combination of the hemlock woolly adelgid, atmospheric nitrogen inputs and management practices lead to changes in the nitrogen cycle within eastern hemlock forest ecosystems.
Improvements to the treatment of organic nitrogen chemistry & deposition in CMAQ
Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...
Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ
Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...
Plasma polymerization of an ethylene-nitrogen gas mixture
NASA Technical Reports Server (NTRS)
Hudis, M.; Wydeven, T.
1975-01-01
A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.
Cocking, Edward C; Stone, Philip J; Davey, Michael R
2005-12-01
It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus, with minimal or zero inputs.
Cocking, Edward C; Stone, Philip J; Davey, Michael R
2005-09-01
It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.
Controls on Biogeochemical Cycling of Nitrogen in Urban Ecosystems
NASA Astrophysics Data System (ADS)
Templer, P. H.; Hutyra, L.; Decina, S.; Rao, P.; Gately, C.
2017-12-01
Rates of atmospheric nitrogen deposition are declining across much of the United States and Europe, yet they remain substantially elevated by almost an order of magnitude over pre-industrial levels and occur as hot spots in urban areas. We measured atmospheric inputs of inorganic and organic nitrogen in multiple urban sites around the Boston Metropolitan area, finding that urban rates are substantially elevated compared to nearby rural areas, and that the range of these atmospheric inputs are as large as observed urban to rural gradients. Within the City of Boston, the variation in deposition fluxes can be explained by traffic intensity, vehicle emissions, and spring fertilizer additions. Throughfall inputs of nitrogen are approximately three times greater than bulk deposition inputs in the city, demonstrating that the urban canopy amplifies rates of nitrogen reaching the ground surface. Similar to many other metropolitan areas of the United States, the City of Boston has 25% canopy cover; however, 25% of this tree canopy is located above impervious pavement. Throughfall inputs that do not have soil below the canopy to retain excess nitrogen may lead to greater inputs of nitrogen into nearby waterways through runoff. Most measurement stations for atmospheric nitrogen deposition are intentionally located away from urban areas and point sources of pollution to capture regional trends. Our data show that a major consequence of this network design is that hotspots of nitrogen deposition and runoff into urban and coastal waterways is likely underestimated to a significant degree. A more complete determination of atmospheric nitrogen deposition and its fate in urban ecosystems is critical for closing regional nitrogen budgets and for improving our understanding of biogeochemical nitrogen cycling across multiple spatial scales.
A global trait-based approach to estimate leaf nitrogen functional allocation from observations
Ghimire, Bardan; Riley, William J.; Koven, Charles D.; ...
2017-03-28
Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained “residual” nitrogen pool. Based on our analysis, crops partition the largest fractionmore » of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73% respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple plant functional types, and report substantial differences in nitrogen allocation across different plant functional types. Furthermore, the resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated with ecosystem models to derive emergent properties of ecosystem productivity at local, regional, and global scales.« less
Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto
2017-01-01
The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments. PMID:28973038
Wang, Chuan-Hua; Li, Jun-Qing; Yang, Ying
2011-12-01
To investigate the effects of atmospheric nitrogen deposition on the seedlings regeneration of Liquidambar formosana, a greenhouse experiment was conducted, in which, the low light- and nitrogen supplies were controlled similar to those in typical L. formosana secondary forests, with the effects of different light- and nitrogen supply on the L. formosana seedlings survival, leaf functional traits, biomass allocation, and gas exchange studied. The whole plant light compensation point (LCP(whoIe-plant)) of the seedlings was estimated with a whole plant carbon balance model, and then compared with the understory photosynthetic active radiance (PAR) of the typical secondary forests. Under 3.0% and 6.0% of full sunlight, eutrophic nitrogen supply led to a decrease of seedlings survival (shade tolerance) and specific leaf area (SLA), but had no obvious effects on the seedlings biomass allocation. At eutrophic nitrogen supply, light intensity had significant effects on the leaf area based maximum assimilation rate, whereas increasing nitrogen supply under low light induced the increase of leaf mass based dark respiration rate. Both light intensity and nitrogen supply had significant effects on the mass based leaf respiration rate, and the interaction of light and nitrogen had significant effects on the mass based stem respiration rate. Increasing nitrogen supply increased the LCP(wholeplant), under 3.0%, 6.0%, and 12.0% of full sunlight, but decreased the LCP(whoIe-plant) under 25.0% of full sunlight. The decrease of the seedlings shade tolerance induced by the increasing nitrogen supply under low light was correlated with the variations of the seedlings carbon balance capacity. Under the background of elevated atmospheric nitrogen deposition, the maintenance of L. formosana populations in China would more depend on disturbances and gap regeneration, and the population dynamics would be deeply affected.
Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai
2017-01-01
Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging. PMID:29117250
A global trait-based approach to estimate leaf nitrogen functional allocation from observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghimire, Bardan; Riley, William J.; Koven, Charles D.
Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained “residual” nitrogen pool. Based on our analysis, crops partition the largest fractionmore » of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73% respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple plant functional types, and report substantial differences in nitrogen allocation across different plant functional types. Furthermore, the resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated with ecosystem models to derive emergent properties of ecosystem productivity at local, regional, and global scales.« less
Hayashida, Yasukazu; Kurusu, Takamitsu; Kojima, Soichi; Makino, Amane
2015-01-01
Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in all eukaryotes, and recent studies have revealed critical roles for autophagy in Rubisco degradation and nitrogen remobilization into seeds in Arabidopsis (Arabidopsis thaliana). Here, we examined the function of autophagy in vegetative growth and nitrogen usage in a cereal plant, rice (Oryza sativa). An autophagy-disrupted rice mutant, Osatg7-1, showed reduced biomass production and nitrogen use efficiency compared with the wild type. While Osatg7-1 showed early visible leaf senescence, the nitrogen concentration remained high in the senescent leaves. 15N pulse chase analysis revealed suppression of nitrogen remobilization during leaf senescence in Osatg7-1. Accordingly, the reduction of nitrogen available for newly developing tissues in Osatg7-1 likely led its reduced leaf area and tillers. The limited leaf growth in Osatg7-1 decreased the photosynthetic capacity of the plant. Much of the nitrogen remaining in senescent leaves of Osatg7-1 was in soluble proteins, and the Rubisco concentration in senescing leaves of Osatg7-1 was about 2.5 times higher than in the wild type. Transmission electron micrographs showed a cytosolic fraction rich with organelles in senescent leaves of Osatg7-1. Our results suggest that autophagy contributes to efficient nitrogen remobilization at the whole-plant level by facilitating protein degradation for nitrogen recycling in senescent leaves. PMID:25786829
Cai, X.; Yang, Z. -L.; Fisher, J. B.; ...
2016-01-15
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less
Xu, Xi-bao; Yang, Gui-shan; Li, Heng-peng
2009-08-15
Based on the long-term agricultural statistics data at the county scale, the estimation of nitrogen balance from 1980 to 2005 for agricultural land in Three Gorges Reservoir Area was made by the OECD soil surface nitrogen balance model with some suitable modification. The spatio-temporal changes of nitrogen balance and its drivers were analyzed. The results showed that the total inputs and total surplus of nitrogen from 1980 to 2005 presented increasing trends continuously, from 23.4 x 10(4) t and 14.4 x 104 t to 45.6 x 10(4) t and 30 x 10(4) t respectively. The total output of nitrogen in 1980-1995 was at the increasing trend, from 9.0 x 10(4) t to 16.7 x 10(4) t, while that of 1996-2005 was keeping steady. The average unit surplus of nitrogen in 1980-1998 was also at the increasing trend, from 133.4 kg/hm2 to 310.3 kg/hm(2); and the trend inclined to be steady after 1998, while the spatial differential pattern toned up. The great spatial changes for nitrogen surplus from 1980 to 2005, mainly centralized at the head and the middle of the Three Gorges Reservoir Area, similar to the spatial distribution of the resettlement. Fertilizer, manure and biological fixation were the main contributors of nitrogen input sources, accumulatively totaled for above 90%. Nitrogen balance changes were mainly influenced by the macro-environment of fertilizer utilization before 1995, while which were influenced by the large amounts of the resettlement for Three Gorges Project after 1995. However, how much the effects of the resettlement on nitrogen balance need to be further explored. Developing sideline, agricultural structure transition or ecological resettlement should be considered to control nitrogen emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, X.; Yang, Z. -L.; Fisher, J. B.
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less
Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice.
Wada, Shinya; Hayashida, Yasukzu; Izumi, Masanori; Kurusu, Takamitsu; Hanamata, Shigeru; Kanno, Keiichi; Kojima, Soichi; Yamaya, Tomoyuki; Kuchitsu, Kazuyuki; Makino, Amane; Ishida, Hiroyuki
2015-05-01
Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in all eukaryotes, and recent studies have revealed critical roles for autophagy in Rubisco degradation and nitrogen remobilization into seeds in Arabidopsis (Arabidopsis thaliana). Here, we examined the function of autophagy in vegetative growth and nitrogen usage in a cereal plant, rice (Oryza sativa). An autophagy-disrupted rice mutant, Osatg7-1, showed reduced biomass production and nitrogen use efficiency compared with the wild type. While Osatg7-1 showed early visible leaf senescence, the nitrogen concentration remained high in the senescent leaves. (15)N pulse chase analysis revealed suppression of nitrogen remobilization during leaf senescence in Osatg7-1. Accordingly, the reduction of nitrogen available for newly developing tissues in Osatg7-1 likely led its reduced leaf area and tillers. The limited leaf growth in Osatg7-1 decreased the photosynthetic capacity of the plant. Much of the nitrogen remaining in senescent leaves of Osatg7-1 was in soluble proteins, and the Rubisco concentration in senescing leaves of Osatg7-1 was about 2.5 times higher than in the wild type. Transmission electron micrographs showed a cytosolic fraction rich with organelles in senescent leaves of Osatg7-1. Our results suggest that autophagy contributes to efficient nitrogen remobilization at the whole-plant level by facilitating protein degradation for nitrogen recycling in senescent leaves. © 2015 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Ghimire, B.; Riley, W. J.; Koven, C.
2013-12-01
Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.
Heijnen, M L; Beynen, A C
1997-09-01
To study the effect of resistant starch (RS) on the route of nitrogen excretion, we fed three groups of six cannulated piglets each a diet containing either uncooked resistant starch (RS2 ), retrograded resistant starch (RS3 ) or glucose. The use of piglets with a cannula at the end of the ileum allowed measurement of the amount of nitrogen that entered the colon. Ileal digesta, urine and feces were collected quantitatively and weighed, and dry matter, starch and nitrogen content were determined. We hypothesized that RS2 would lower colonic absorption of nitrogen when compared with RS3 , because RS2 may be more fermentable than RS3 , thus trapping more nitrogen in bacteria. The piglets fed RS3 had a significantly higher production of ileal digesta and feces than the piglets fed glucose or RS2 . In the piglets fed RS2 , 44% of the amount of RS fed was recovered in the ileal digesta; in the piglets fed RS3 , 71% was recovered. Thus, more fermentable material entered the colon in the RS3 -fed piglets than in the RS2 -fed piglets. Virtually no starch was recovered in the feces of any dietary group. Replacement of glucose by either RS2 or RS3 did not affect nitrogen retention but increased fecal nitrogen excretion. Compared with glucose, RS3 but not RS2 reduced urinary nitrogen excretion, mainly in the form of urea, and reduced the amount of nitrogen absorbed by the colon when expressed as a percentage of the amount of nitrogen entering the colon. This study provides evidence that RS3 , but not RS2 , shifts nitrogen excretion from urine to feces in cannulated piglets.
Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.
Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke
2017-05-01
Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.
Fusaro, Lina; Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto
2017-01-01
The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.
Zhang, Mingwei; Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai
2017-01-01
Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging.
Lucey, K.J.
1989-01-01
The US Geological Survey maintains a quality assurance program based on the analysis of reference samples for its National Water Quality Laboratory located in Denver, Colorado. Reference samples containing selected inorganic, nutrient, and precipitation (low-level concentration) constituents are prepared at the Survey 's Water Quality Services Unit in Ocala, Florida, disguised as routine samples, and sent daily or weekly, as appropriate, to the laboratory through other Survey offices. The results are stored permanently in the National Water Data Storage and Retrieval System (WATSTORE), the Survey 's database for all water data. These data are analyzed statistically for precision and bias. An overall evaluation of the inorganic major ion and trace metal constituent data for water year 1988 indicated a lack of precision in the National Water Quality Laboratory for the determination of 8 out of 58 constituents: calcium (inductively coupled plasma emission spectrometry), fluoride, iron (atomic absorption spectrometry), iron (total recoverable), magnesium (atomic absorption spectrometry), manganese (total recoverable), potassium, and sodium (inductively coupled plasma emission spectrometry). The results for 31 constituents had positive or negative bias during water year 1988. A lack of precision was indicated in the determination of three of the six nutrient constituents: nitrate plus nitrite nitrogen as nitrogen, nitrite nitrogen as nitrogen, and orthophosphate as phosphorus. A biased condition was indicated in the determination of ammonia nitrogen as nitrogen, ammonia plus organic nitrogen as nitrogen, and nitrate plus nitrite nitrogen as nitrogen. There was acceptable precision in the determination of all 10 constituents contained in precipitation samples. Results for ammonia nitrogen as nitrogen, sodium, and fluoride indicated a biased condition. (Author 's abstract)
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
2012-01-01
In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.
Genome wide analysis of the complete GlnR nitrogen-response regulon in Mycobacterium smegmatis
2013-01-01
Background Nitrogen is an essential element for bacterial growth and an important component of biological macromolecules. Consequently, responding to nitrogen limitation is critical for bacterial survival and involves the interplay of signalling pathways and transcriptional regulation of nitrogen assimilation and scavenging genes. In the soil dwelling saprophyte Mycobacterium smegmatis the OmpR-type response regulator GlnR is thought to mediate the transcriptomic response to nitrogen limitation. However, to date only ten genes have been shown to be in the GlnR regulon, a vastly reduced number compared to other organisms. Results We investigated the role of GlnR in the nitrogen limitation response and determined the entire GlnR regulon, by combining expression profiling of M. smegmatis wild type and glnR deletion mutant, with GlnR-specific chromatin immunoprecipitation and high throughput sequencing. We identify 53 GlnR binding sites during nitrogen limitation that control the expression of over 100 genes, demonstrating that GlnR is the regulator controlling the assimilation and utilisation of nitrogen. We also determine a consensus GlnR binding motif and identify key residues within the motif that are required for specific GlnR binding. Conclusions We have demonstrated that GlnR is the global nitrogen response regulator in M. smegmatis, directly regulating the expression of more than 100 genes. GlnR controls key nitrogen stress survival processes including primary nitrogen metabolism pathways, the ability to utilise nitrate and urea as alternative nitrogen sources, and the potential to use cellular components to provide a source of ammonium. These studies further our understanding of how mycobacteria survive nutrient limiting conditions. PMID:23642041
Behie, Scott W.
2014-01-01
The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with 15N-labeled nitrogen, and we tracked the incorporation of 15N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities. PMID:24334669
NASA Astrophysics Data System (ADS)
Dong, Z.; Driscoll, C. T.; Hayhoe, K.; Pourmokhtarian, A.; Stoner, A. M. K.
2015-12-01
The biogeochemical model, PnET-BGC, was applied to Watershed 2 in H. J. Andrews Experimental Forest, Oregon, to project ecosystem carbon and nitrogen responses under different future climate change scenarios. Downscaled climate change inputs derived from two IPCC scenarios (RCP 4.5 and RCP 8.5) were interpreted by four Atmosphere-Ocean General Circulation Models (AOGCMs) at Andrews Forest. Model results showed decreases in foliar production under high temperature/CO2 scenarios due to increasing vapor pressure deficit. Projections by PnET-BGC suggest that under future climate changes in primary production coupled with an increasing rate of decomposition may result in decreases in litterfall carbon and nitrogen and soil organic carbon and nitrogen. Such changes in soil organic carbon and nitrogen may cause wide range of changes in ecosystem processing of nitrogen and carbon, such as nitrogen mineralization, plant NH4+ uptake, and stream NH4+ and dissolved organic carbon concentrations depending on climate change scenario considered. Under most high emission scenarios, net nitrogen mineralization and plant NH4+ uptake are projected to increase until the end of this century as result of increasing temperature and associated higher rates of decomposition. An accumulation of nitrogen in plant tissue due to decreasing litterfall decreases plant demand for nitrogen. Such changes in nitrogen mineralization and uptake will result in increase in stream NH4+ concentrations under high emission scenarios. Under low emission scenarios, net nitrogen mineralization and plant NH4+ uptake are projected to increase up to mid-century, then slightly decrease until the end of the century.
Nitrogen fixation in denitrified marine waters.
Fernandez, Camila; Farías, Laura; Ulloa, Osvaldo
2011-01-01
Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m(-2) d(-1)). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m(-2) d(-1)) than the oxic euphotic layer (48±68 µmol m(-2) d(-1)). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.
Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun
2014-06-01
The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.
Luo, Da; Feng, Qiu-hong; Shi, Zuo-min; Li, Dong-sheng; Yang, Chang-xu; Liu, Qian-li; He, Jian-she
2015-04-01
The carbon and nitrogen storage and distribution patterns of Cupressus chengiana plantation ecosystems with different stand ages in the arid valley of Minjiang River were studied. The results showed that carbon contents in different organs of C. chengiana were relatively stable, while nitrogen contents were closely related to different organs, and soil organic carbon and nitrogen contents increased with the stand age. Carbon and nitrogen storage in vegetation layer, soil layer, and the whole ecosystem of the plantation increased with the stand age. The values of total carbon storage in the 13-, 11-, 8-, 6- and 4-year-old C. chengiana plantation ecosystems were 190.90, 165.91, 144.57, 119.44, and 113.49 t x hm(-2), and the values of total nitrogen storage were 19.09, 17.97, 13.82, 13.42, and 12.26 t x hm(-2), respectively. Most of carbon and nitrogen were stored in the 0-60 cm soil layer in the plantation ecosystems and occupied 92.8% and 98.8%, respectively, and the amounts of carbon and nitrogen stored in the top 0-20 cm soil layer, accounted for 54.4% and 48.9% of those in the 0-60 cm soil layer, respectively. Difference in distribution of carbon and nitrogen storage was observed in the vegetation layer. The percentage of carbon storage in tree layer (3.7%) were higher than that in understory vegetation (3.5%), while the percentage of nitrogen storage in tree layer (0.5%) was lower than that in understory (0.7%). The carbon and nitrogen storage and distribution patterns in the plantations varied obviously with the stand age, and the plantation ecosystems at these age stages could accumulate organic carbon and nitrogen continuously.
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Schnoes, H. K.; Haug, P.; Burlingame, A. L.
1971-01-01
Basic nitrogenous compounds isolated from extracts of Green River Formation oil shale were analyzed. The major homologous constituents found were the compositional types - namely, quinolines, tetrahydrequinolines with minor amounts of pyridines and indoles series and traces of more aromatized nitrogen compounds. These results are correlated with nitrogen compounds isolated from Green River Formation retort oil and are a survey of the unaltered nitrogen compounds indigeneous to the shale.
NASA Astrophysics Data System (ADS)
Del Pozo, Alejandro; Garnier, Eric; Aronson, James
2000-01-01
Although it is well known that legumes have unusually high levels of nitrogen in both reproductive and vegetative organs, the physiological implications of this pattern have been poorly assessed. We conducted a literature survey and used data from two (unpublished) experiments on annual legumes and C 3 grasses in order to test whether these high nitrogen concentrations in legumes are correlated to high rates of carbon gain. Three different temporal/spatial scales were considered: full growing season/stand, days to month/whole plant and seconds/leaf. At the stand level, and for plants grown under both extratropical and tropical settings, biomass per unit organic-nitrogen was lower in legume than in grass crops. At a shorter time scale, the relative growth rate per unit plant nitrogen (`nitrogen productivity') was lower in faba bean ( Vicia faba var. minor cv. Tina) than in wheat ( Triticum aestivum cv. Alexandria), and this was confirmed in a comparison of two wild, circum-Mediterranean annuals - Medicago minima, a legume, and Bromus madritensis, a grass. Finally, at the leaf level, a synthesis of published data comparing soybean ( Glycine max) and rice ( Oryza sativa) on the one hand, and our own data on faba bean and wheat on the other hand, demonstrates that the photosynthetic rate per unit leaf nitrogen (the photosynthetic nitrogen use efficiency) is consistently lower in legumes than in grasses. These results demonstrate that, regardless of the scale considered and although the organic-nitrogen concentration in vegetative organs of legumes is higher than in grasses, this does not lead to higher rates of carbon gain in the former. Various physiological factors affecting the efficiency of nitrogen utilization at the three time scales considered are discussed. The suggestion is made that the ecological significance of the high nitrogen concentration in legumes may be related to a high nitrogen demand for high quality seed production at a time when nitrogen fixation is shut off rather than to a high production potential.
Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.
Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie
2016-09-15
Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.
Wang, Quanzhen; Xie, Bao; Wu, Chunhui; Chen, Guo; Wang, Zhengwei; Cui, Jian; Hu, Tianming; Wiatrak, Pawel
2012-01-01
Alllelopathic potential of chicory was investigated by evaluating its effect on seed germination, soluble sugar, malondialdehyde (MDA) and the chlorophyll content of three target plants species (Festuca arundinacea, Trifolium repens and Medicago sativa). The secretion of allelochemicals was regulated by keeping the donor plant (chicory) separate from the three target plant species and using different pH and nitrogen levels. Leachates from donor pots with different pH levels and nitrogen concentrations continuously irrigated the target pots containing the seedlings. The allelopathic effects of the chicory at equivalent coupling of nitrogen supply and pH level on the three target plants species were explored via models analyses. The results suggested a positive effect of nitrogen supply and pH level on allelochemical secretion from chicory plants. The nitrogen supply and pH level were located at a rectangular area defined by 149 to 168 mg/l nitrogen supply combining 4.95 to 7.0 pH value and point located at nitrogen supply 177 mg/l, pH 6.33 when they were in equivalent coupling effects; whereas the inhibitory effects of equivalent coupling nitrogen supply and pH level were located at rectangular area defined by 125 to 131 mg/l nitrogen supply combining 6.71 to 6.88 pH value and two points respectively located at nitrogen supply 180 mg/l with pH 6.38 and nitrogen supply 166 mg/l with pH 7.59. Aqueous extracts of chicory fleshy roots and leaves accompanied by treatment at different sand pH values and nitrogen concentrations influenced germination, seedling growth, soluble sugar, MDA and chlorophyll of F. arundinacea, T. repens and M. sativa. Additionally, we determined the phenolics contents of root and leaf aqueous extracts, which were 0.104% and 0.044% on average, respectively.
Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei
2016-01-01
Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and development.
Nitrogen emissions from broilers measured by mass balance over eighteen consecutive flocks.
Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B
2006-03-01
Emission of nitrogen in the form of ammonia from poultry rearing facilities has been an important topic for the poultry industry because of concerns regarding the effects of ammonia on the environment. Sound scientific data is needed to accurately estimate air emissions from poultry operations. Many factors, such as season of the year, ambient temperature and humidity, bird health, and management practices can influence ammonia volatilization from broiler rearing facilities. Precise results are often difficult to attain from commercial facilities, particularly over long periods of time. Therefore, an experiment was conducted to determine nitrogen loss from broilers in a research facility under conditions simulating commercial production for 18 consecutive flocks. Broilers were reared to 40 to 42 d of age and fed diets obtained from a commercial broiler integrator. New rice hulls were used for litter for the first flock, and the same litter was recycled for all subsequent flocks with caked litter removed between flocks. All birds, feeds, and litter materials entering and leaving the facility were quantified, sampled, and analyzed for total nitrogen content. Nitrogen loss was calculated by the mass balance method in which loss was equal to the difference between the nitrogen inputs and the nitrogen outputs. Nitrogen partitioning as a percentage of inputs averaged 15.29, 6.84, 55.52, 1.27, and 21.08% for litter, caked litter, broiler carcasses, mortalities, and nitrogen loss, respectively, over all eighteen flocks. During the production of 18 flocks of broilers on the same recycled litter, the average nitrogen emission rate was calculated to range from 4.13 to 19.74 g of N/ kg of marketed broiler (grams of nitrogen per kilogram) and averaged 11.07 g of N/kg. Nitrogen loss was significantly (P < 0.05) greater for flocks reared in summer vs. winter. Results of this experiment have demonstrated that the rate of nitrogen volatilization from broiler grow-out facilities varies significantly on a flock-to-flock basis.
Vendramini, Chiara; Beltran, Gemma; Nadai, Chiara; Giacomini, Alessio; Mas, Albert; Corich, Viviana
2017-10-03
Three vineyard strains of Saccharomyces cerevisiae, P301.4, P304.4 and P254.12, were assayed in comparison with a commercial industrial strain, QA23. The aim was to understand if nitrogen availability could influence strain competition ability during must fermentation. Pairwise-strain fermentations and co-fermentations with the simultaneous presence of the four strains were performed in synthetic musts at two nitrogen levels: control nitrogen condition (CNC) that assured the suitable assimilable nitrogen amount required by the yeast strains to complete the fermentation and low nitrogen condition (LNC) where nitrogen is present at very low level. Results suggested a strong involvement of nitrogen availability, as the frequency in must of the vineyard strains, respect to QA23, in LNC was always higher than that found in CNC. Moreover, in CNC only strain P304.4 reached the same strain frequency as QA23. P304.4 competition ability increased during the fermentation, indicating better performance when nitrogen availability was dropping down. P301.4 was the only strain sensitive to QA23 killer toxin. In CNC, when it was co-inoculated with the industrial strain QA23, P301.4 was never detected. In LNC, P301.4 after 12h accounted for 10% of the total population. This percentage increased after 48h (20%). Single-strain fermentations were also run in both conditions and the nitrogen metabolism further analyzed. Fermentation kinetics, ammonium and amino-acid consumptions and the expression of genes under nitrogen catabolite repression evidenced that vineyard yeasts, and particularly strain P304.4, had higher nitrogen assimilation rate than the commercial control. In conclusion, the high nitrogen assimilation rate seems to be an additional strategy that allowed vineyard yeasts successful competition during the growth in grape musts. Copyright © 2017 Elsevier B.V. All rights reserved.
Plant traits related to nitrogen uptake influence plant-microbe competition.
Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe
2015-08-01
Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more relevant for understanding plant-microbe interactions than composite traits, such as nitrophily, which are related to a number of ecophysiological processes.
NASA Astrophysics Data System (ADS)
Joye, S. B.; Weber, S.; Battles, J.; Montoya, J. P.
2014-12-01
Methane is an important greenhouse gas that plays a critical role in climate variation. Although a variety of marine methane sources and sinks have been identified, key aspects of the fate of methane in the ocean remain poorly constrained. At cold seeps in the Gulf of Mexico and elsewhere, methane is introduced into the overlying water column via fluid escape from the seabed. We quantified the fate of methane in the water column overlying seafloor cold seeps, in a brine basin, and at several control sites. Our goals were to determine the factors that regulated methane consumption and assimilation and to explore how these controlling factors varied among and between sites. In particular, we examined the impact of nitrogen availability on methane oxidation and studied the ability of methane oxidizing bacteria to fix molecular nitrogen. Methane oxidation rates were highest in the methane rich bottom waters of natural hydrocabron seeps. At these sites, inorganic nitrogen addition stimulated methane oxidation in laboratory experiments. In vitro shipboard experiments revealed that rates of methane oxidation and nitrogen fixation were correlated strongly, suggesting that nitrogen fixation may have been mediated by methanotrophic bacteria. The highest rates of methane oxidation and nitrogen fixation were observed in the deepwater above at natural hydrocarbon seeps. Rates of methane oxidation were substantial along the chemocline of a brine basin but in these ammonium-rich brines, addition of inorganic nitrogen had little impact on methane oxidation suggesting that methanotrophy in these waters were not nitrogen limited. Control sites exhibited the lowest methane concentrations and methane oxidation rates but even these waters exhibited substantial potential for methane oxidation when methane and inorganic nitrogen concentrations were increased. Together, these data suggest that the availability of inorganic nitrogen plays a critical role in regulating methane oxidation in pelagic ocean waters. Some methanotrophs may obtain a competitive advantage in nitrogen-limited oceanic environments by fixing molecular nitrogen. The importance of such "methano-diazotrophy" on a global scale warrants further investigation.
NASA Astrophysics Data System (ADS)
Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.
2014-12-01
In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers leads to overall improvements in CLM4.5's global carbon cycling predictions.
Transport and Fate of Organic and Inorganic Nitrogen from Biosolids leachates
NASA Astrophysics Data System (ADS)
Ilani, Talli; Trifonov, Pavel; Arye, Gilboa
2014-05-01
The use of biosolids as a means to ameliorate soil becomes prevalent in the last few years. In agricultural fields, the application of biosolids will be followed by irrigation; resulting in excessive leaching of the dissolved fraction of the organic matter. The dissolved organic matter (DOM) is one of the major players in the chemical, physical and biological processes in soils. The DOM mainly composed of dissolved organic carbon (DOC) and lower proportions of dissolved organic nitrogen (DON) and phosphate (DOP). The DON is considered to be the primary source of mineralisable nitrogen in the soil and can be used as an estimate of the nitrogen supplying capacity of the organic matter. Most of the researches which are dealing with nitrogen fate in terrestrial environments focused on its inorganic fractions (mainly nitrate and ammonium) and their transport toward the dipper soil layers. Since DON can be the source of the inorganic nitrogen (by providing nutrients and energy to nitrifying microbes, which in turn increases the nitrogen source for plants as nitrate), knowledge about the nature of its transport characteristics in the soil is important in the case of biosolids amendment. In addition, irrigation water quality (e.g. fresh water, wastewater or desalinized water) may significantly affect the transport and fate of the various nitrogen forms. The main objective of this study is to examine the fate and co-transport of organic and inorganics nitrogen, originating from biosolids leachates in the subsoil. The effect of water quality and flow rate under saturated steady-state flow is examined by a series of flow-through soil column experiments. The established breakthrough curves of the co-transport of total nitrogen, organic nitrogen (will be calculated from the differences between the total nitrogen measurements and the inorganic nitrogen measurements), nitrate, ammonium, dissolved organic carbon and chloride is presented and discussed.
Wang, Quanzhen; Xie, Bao; Wu, Chunhui; Chen, Guo; Wang, Zhengwei; Cui, Jian; Hu, Tianming; Wiatrak, Pawel
2012-01-01
Alllelopathic potential of chicory was investigated by evaluating its effect on seed germination, soluble sugar, malondialdehyde (MDA) and the chlorophyll content of three target plants species (Festuca arundinacea, Trifolium repens and Medicago sativa). The secretion of allelochemicals was regulated by keeping the donor plant (chicory) separate from the three target plant species and using different pH and nitrogen levels. Leachates from donor pots with different pH levels and nitrogen concentrations continuously irrigated the target pots containing the seedlings. The allelopathic effects of the chicory at equivalent coupling of nitrogen supply and pH level on the three target plants species were explored via models analyses. The results suggested a positive effect of nitrogen supply and pH level on allelochemical secretion from chicory plants. The nitrogen supply and pH level were located at a rectangular area defined by 149 to 168 mg/l nitrogen supply combining 4.95 to 7.0 pH value and point located at nitrogen supply 177 mg/l, pH 6.33 when they were in equivalent coupling effects; whereas the inhibitory effects of equivalent coupling nitrogen supply and pH level were located at rectangular area defined by 125 to 131 mg/l nitrogen supply combining 6.71 to 6.88 pH value and two points respectively located at nitrogen supply 180 mg/l with pH 6.38 and nitrogen supply 166 mg/l with pH 7.59. Aqueous extracts of chicory fleshy roots and leaves accompanied by treatment at different sand pH values and nitrogen concentrations influenced germination, seedling growth, soluble sugar, MDA and chlorophyll of F. arundinacea, T. repens and M. sativa. Additionally, we determined the phenolics contents of root and leaf aqueous extracts, which were 0.104% and 0.044% on average, respectively. PMID:22384054
Air Quality Criteria for Oxides of Nitrogen (Final Report, 1993)
This criteria document focuses on a review and assessment of the effects on human health and welfare of the nitrogen oxides, nitric oxide (NO) and nitrogen dioxide (NO2), and the related compounds, nitrites, nitrates, nitrogenous acids, and nitrosamines. Although the emphasis is ...
Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...
40 CFR 52.65 - Control Strategy: Nitrogen oxides.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control Strategy: Nitrogen oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen... using to implement provisions of the Prevention of Significant Deterioration regulations for nitrogen...
40 CFR 52.65 - Control Strategy: Nitrogen oxides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control Strategy: Nitrogen oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen... using to implement provisions of the Prevention of Significant Deterioration regulations for nitrogen...
40 CFR 52.65 - Control Strategy: Nitrogen oxides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control Strategy: Nitrogen oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen... using to implement provisions of the Prevention of Significant Deterioration regulations for nitrogen...
40 CFR 52.65 - Control Strategy: Nitrogen oxides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control Strategy: Nitrogen oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen... using to implement provisions of the Prevention of Significant Deterioration regulations for nitrogen...
Orchard nitrogen management: Which nitrogen source is best?
USDA-ARS?s Scientific Manuscript database
Suboptimal management of nitrogen fertility in pecan orchards leads to a loss of nutmeat yield and quality, but also a waste of natural resources and money. This article reviews several basic guiding principles useful to orchard managers when developing nitrogen management strategies, and determini...
Effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer
NASA Technical Reports Server (NTRS)
Bizjak, F.; Simkin, D. J.
1967-01-01
Study investigates effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer from one vessel to another at a higher elevation. Results may contribute to creation of new environmental systems and improved oxygen solubility in water to promote fish life.
Biochemical Approaches to Improved Nitrogen Fixation
USDA-ARS?s Scientific Manuscript database
Improving symbiotic nitrogen fixation by legumes has emerged again as an important topic on the world scene due to the energy crisis and lack of access to nitrogen fertilizer in developing countries. We have taken a biochemical genomics approach to improving symbiotic nitrogen fixation in legumes. L...
Highly nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 for CO2 capture.
Ma, Xiancheng; Li, Liqing; Chen, Ruofei; Wang, Chunhao; Li, Haoyang; Li, Hailong
2018-05-18
CO2 adsorption capacity of nitrogen-doped porous carbon depends to a large nitrogen doping levels and high surface area in previous studies. However, it seems difficult to incorporate large amounts of nitrogen while maintaining a high surface area and pore structure. Here we have reported porous carbon having a nitrogen content of up to 25.52% and specific surface area of 948 m2 g-1, which is prepared by pyrolyzing the nitrogen-containing zeolite imidazole framework-8 and urea composite at 650 °C under a nitrogen atmosphere. ZNC650 exhibits a superior CO2 uptake of 3.7 mmol g-1 at 25 ℃ and 1 bar. Experimental and theoretical results indicate that the nitrogen-containing functional groups can enhance CO2 uptake electrostatic interactions, Lewis acid-base interactions and hydrogen-bonding interactions, which are elucidated by density functional theory calculations. As CO2 adsorbent materials, these carbons have excellent adsorption capacity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Effects of seasonal snow cover on soil nitrogen transformation in alpine ecosystem: a review].
Liu, Lin; Wu, Yan; He, Yi-xin; Wu, Ning; Sun, Geng; Zhang, Lin; Xu, Jun-jun
2011-08-01
Seasonal snow cover has pronounced effects on the soil nitrogen concentration and transformation in alpine ecosystem. Snowfall is an important form of nitrogen deposition, which directly affects the content of soil available nitrogen. Different depths and different duration of snow cover caused by snowfall may lead the heterogeneity of abiotic factors (soil temperature and moisture) and biotic factors (soil microbes, alpine plants, and alpine animals), and further, produce complicated effects on the mineralization and immobilization of soil nitrogen. This paper introduced in emphasis the inherent mechanisms of soil nitrogen mineralization and leaching under the effects of frequent freeze-thaw events during the durative melting of snow cover, and summarized the main research results of field in situ experiments about the effects of seasonal snow cover on soil nitrogen in alpine ecosystem based on the possible changes in snow cover in the future. Some suggestions with regard to the effects of seasonal snow cover on soil nitrogen were put forward.
Chu, Fei-Fei; Chu, Pei-Na; Shen, Xiao-Fei; Lam, Paul K S; Zeng, Raymond J
2014-01-01
In order to study the effect of phosphorus on biodiesel production from Scenedesmus obliquus especially under nitrogen deficiency conditions, six types of media with combinations of nitrogen repletion/depletion and phosphorus repletion/limitation/depletion were investigated in this study. It was found that nitrogen starvation compared to nitrogen repletion enhanced biodiesel productivity. Moreover, biodiesel productivity was further strengthened by varying the supply level of phosphorus from depletion, limitation, through to repletion. The maximum FAMEs productivity of 24.2 mg/L/day was obtained in nitrogen depletion with phosphorus repletion, which was two times higher than that in nutrient complete medium. More phosphorus was accumulated in cells under the nitrogen starvation with sufficient phosphorus condition, but no polyphosphate was formed. This study indicated that nitrogen starvation plus sufficient P supply might be the real "lipid trigger". Furthermore, results of the current study suggest a potential application for utilizing microalgae to combine phosphorus removal from wastewater with biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Garde-Cerdán, T; López, R; Portu, J; González-Arenzana, L; López-Alfaro, I; Santamaría, P
2014-11-15
The aim of this work was to study the influence of foliar application of different nitrogen sources on grape amino acid content. The nitrogen sources applied to Tempranillo grapevines were proline, phenylalanine, urea, and two commercial nitrogen fertilisers, both without and with amino acids in their formulations. All treatments were applied at veraison and one week later. Proline treatment did not affect the must nitrogen composition. However, phenylalanine and urea foliar application enhanced the plants' synthesis of most of the amino acids, producing similar effects. In addition, the spray of commercial nitrogen fertilisers over leaves also induced a rise in grape amino acid concentrations regardless of the presence or absence of amino acids in their formulation. The most effective treatments were phenylalanine and urea followed by nitrogen fertilisers. This finding is of oenological interest for improved must nitrogen composition, ensuring better fermentation kinetics and most likely enhancing wine quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tritrophic interactions between parasitoids and cereal aphids are mediated by nitrogen fertilizer.
Aqueel, Muhammad A; Raza, Abu-bakar M; Balal, Rashad M; Shahid, Muhammad A; Mustafa, Irfan; Javaid, Muhammad M; Leather, Simon R
2015-12-01
Host plant nutritional quality can directly and indirectly affect the third trophic levels. The aphid-parasitoid relationship provides an ideal system to investigate tritrophic interactions (as the parasitoids are completely dependent for their development upon their hosts) and assess the bottom up forces operating at different concentrations of nitrogen applications. The effects of varying nitrogen fertilizer on the performance of Aphidius colemani (V.) reared on Sitobion avenae (F.) and Aphidius rhopalosiphi (D.) reared on Rhopalosiphum padi (L.) were measured. Parasitism and percent emergence of parasitoids were positively affected by nitrogen fertilizer treatments while developmental duration (egg, larval, and pupal stages) was not affected by increasing nitrogen inputs. In males and females of both parasitoid species, adult longevity increased with the increasing nitrogen fertilizer. Hind tibia length and mummy weight of both parasitoid species increased with nitrogen fertilizer concentrations, as a result of larger aphids. This study showed that nitrogen application to the soil can have important consequences for aboveground multitrophic interactions. © 2014 Institute of Zoology, Chinese Academy of Sciences.
Variation in nitrogen use efficiencies on Dutch dairy farms.
Daatselaar, Co Hg; Reijs, Joan R; Oenema, Jouke; Doornewaard, Gerben J; Aarts, H Frans M
2015-12-01
On dairy farms, the input of nutrients including nitrogen is higher than the output in products such as milk and meat. This causes losses of nitrogen to the environment. One of the indicators for the losses of nitrogen is the nitrogen use efficiency. In the Dutch Minerals Policy Monitoring Program (LMM), many data on nutrients of a few hundred farms are collected which can be processed by the instrument Annual Nutrient Cycle Assessment (ANCA, in Dutch: Kringloopwijzer) in order to provide nitrogen use efficiencies. After dividing the dairy farms (available in the LMM program) according to soil type and in different classes for milk production ha(-1) , it is shown that considerable differences in nitrogen use efficiency exist between farms on the same soil type and with the same level of milk production ha(-1) . This offers opportunities for improvement of the nitrogen use efficiency on many dairy farms. Benchmarking will be a useful first step in this process. © 2015 Society of Chemical Industry.
Paul, J H; Cooksey, K E
1981-01-01
Cellular levels of an L-asparaginase in a Chlamydomonas species were found to be greater in nitrogen-limited batch cultures than in batch cultures grown in ample nitrogen. Cells grown in high nitrogen medium (5 mM NH4Cl) and suspended in nitrogen-free medium showed a 2- to 3.5-fold increase in activity after 24 to 48 h. This increase in activity was inhibited by cycloheximide and by the addition of high levels of combined nitrogen (5 mM NH4Cl, NaNO3, or L-asparagine), suggesting repression by ambient nitrogen levels as the mode of regulation of this enzyme. Derepressed L-asparaginase activity did not disappear in the presence of high concentrations of medium nitrogen, indicating the absence of an asparaginase-degrading system. Derepression of asparaginase by this organism was light dependent and inhibited by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea suggesting a requirement for photosynthetic energy. PMID:7240099
Lipids as paleomarkers to constrain the marine nitrogen cycle
Rush, Darci
2017-01-01
Summary Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction‐oxidation transformations of bio‐available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio‐available nitrogen species. As most microorganisms are soft‐bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically‐important cycle, and provides examples of biomarker applications in the geological past. PMID:28142226
Robust biological nitrogen fixation in a model grass-bacterial association.
Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A
2015-03-01
Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C
2015-05-01
In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.
Growth responses of low-alpine dwarf-shrub heath species to nitrogen deposition and management.
Britton, Andrea J; Fisher, Julia M
2008-06-01
Nitrogen deposition is a continuing problem in European alpine regions. We hypothesised that, despite climatic limitations, low-alpine Calluna heathland would respond to nitrogen addition with increased shoot growth and flowering and that fire and grazing would modify responses. In a five-year study, 0-50kgNha(-1)y(-1) were added, combined with burning (+/-) and clipping (+/-). Calluna vulgaris responded with increased shoot extension, but effects on flowering were variable. Burning enhanced the positive effect of nitrogen addition and negative effects of clipping. Sub-dominant shrubs generally did not respond to nitrogen. C. vulgaris shoot extension was stimulated by nitrogen addition of 10kgNha(-1)y(-1) (above background) supporting suggestions that alpine heathlands are sensitive to low levels of nitrogen deposition. Increased C. vulgaris growth could negatively impact on important lichen components of this vegetation through increased shading and competition. Climatic factors constrain productivity in this community, but do not prevent rapid responses to nitrogen deposition by some species.
NASA Astrophysics Data System (ADS)
Husic, A.; Fox, J.; Ford, W. I., III; Agouridis, C.; Currens, J. C.; Taylor, C. J.
2017-12-01
Sediment tracing tools provide an insight into provenance, fate, and transport of sediment and, when coupled to stable isotopes, can elucidate in-stream biogeochemical processes. Particulate nitrogen fate in fluviokarst systems is a relatively unexplored area of research partially due to the complex hydrodynamics at play in karst systems. Karst topography includes turbulent conduits that transport groundwater and contaminants at speeds more typical of open channel flows than laminar Darcian flows. While it is accepted that karst hydro-geomorphology represents a hybrid surface-subsurface system for fluid, further investigation is needed to determine whether, and to what extent, karst systems behave like surface agricultural streams or porous media aquifers with respect to their role in nitrogen cycling. Our objective is to gain an understanding of in-conduit nitrogen processes and their effect on net nitrogen-exports from karst springs to larger waterbodies. The authors apply water, sediment, carbon, and nitrogen tracing techniques to analyze water for nitrate, sediment carbon and nitrogen, and stable sediment nitrogen isotope (δ15N). Thereafter, a new numerical model is formulated that: simulates dissolved inorganic nitrogen and sediment nitrogen transformations in the phreatic karst conduit; couples carbon turnover and nitrogen transformations in the model structure; and simulates the nitrogen stable isotope mass balance for the dissolved and sediment phases. Nitrogen tracing data results show a significant increase in δ15N of sediment nitrogen at the spring outlet relative to karst inputs indicating the potential for isotope fractionation during dissolved N uptake by bed sediments in the conduit and during denitrification within bed sediments. The new numerical modeling structure is then used to reproduce the data results and provide an estimate of the relative dominance of N uptake and denitrification within the surficial sediments of the karst conduit system. For the first time to our knowledge, results shed light on sediment processes that help control nutrient retention in phreatic karst conduits and tend to suggest that the karst systems behave as an intermediate N conveyor relative to surface agricultural streams and porous media aquifers.
Mullaney, John R.; Martin, Joseph W.; Morrison, Jonathan
2018-03-20
The daily and annual loads of nitrate plus nitrite and total nitrogen for the Connecticut River at Middle Haddam, Connecticut, were determined for water years 2009 to 2014. The analysis was done with a combination of methods, which included a predefined rating curve method for nitrate plus nitrite and total nitrogen for water years 2009 to 2011 and a custom rating curve method that included sensor measurements of nitrate plus nitrite nitrogen concentration and turbidity along with mean daily flow to determine total nitrogen loads for water years 2011 to 2014. Instantaneous concentrations of total nitrogen were estimated through the use of a regression model based on sensor measurements at 15-minute intervals of nitrate plus nitrite nitrogen and turbidity for water years 2011 to 2014.Annual total nitrogen loads at the Connecticut River at Middle Haddam ranged from 12,900 to 19,200 metric tons, of which about 42 to 49 percent was in the form of nitrate plus nitrite. The mean 95-percent prediction intervals on daily total nitrogen load estimates were smaller from the custom model, which used sensor data, than those calculated by the predefined model.Annual total nitrogen load estimates at the Connecticut River at Middle Haddam were compared with the upstream load estimates at the Connecticut River at Thompsonville, Conn. Annual gains in total nitrogen loads between the two stations ranged from 3,430 to 6,660 metric tons. These increases between the two stations were attributed to the effects of increased urbanization and to combined annual discharges of 1,540 to 2,090 metric tons of nitrogen from 24 wastewater treatment facilities in the drainage area between the two stations. The contribution of total nitrogen from wastewater discharge between the two stations had declined substantially before the beginning of this study and accounted for from 31 to 52 percent of the gain in nitrogen load between the Thompsonville and Middle Haddam sites.
Atmospheric Nitrogen Deposition in the Western United States: Sources, Sinks and Changes over Time
NASA Astrophysics Data System (ADS)
Anderson, Sarah Marie
Anthropogenic activities have greatly modified the way nitrogen moves through the atmosphere and terrestrial and aquatic environments. Excess reactive nitrogen generated through fossil fuel combustion, industrial fixation, and intensification of agriculture is not confined to anthropogenic systems but leaks into natural ecosystems with consequences including acidification, eutrophication, and biodiversity loss. A better understanding of where excess nitrogen originates and how that changes over time is crucial to identifying when, where, and to what degree environmental impacts occur. A major route into ecosystems for excess nitrogen is through atmospheric deposition. Excess nitrogen is emitted to the atmosphere where it can be transported great distances before being deposited back to the Earth's surface. Analyzing the composition of atmospheric nitrogen deposition and biological indicators that reflect deposition can provide insight into the emission sources as well as processes and atmospheric chemistry that occur during transport and what drives variation in these sources and processes. Chapter 1 provides a review and proof of concept of lichens to act as biological indicators and how their elemental and stable isotope composition can elucidate variation in amounts and emission sources of nitrogen over space and time. Information on amounts and emission sources of nitrogen deposition helps inform natural resources and land management decisions by helping to identify potentially impacted areas and causes of those impacts. Chapter 2 demonstrates that herbaria lichen specimens and field lichen samples reflect historical changes in atmospheric nitrogen deposition from urban and agricultural sources across the western United States. Nitrogen deposition increases throughout most of the 20 th century because of multiple types of emission sources until the implementation of the Clean Air Act Amendments of 1990 eventually decrease nitrogen deposition around the turn of the 21st century. Chapter 3 focuses on how nitrogen emissions and subsequent deposition are affected by processes and chemistry during atmospheric transport through analysis of the oxygen isotope composition of nitrate in wet deposition. Local emission sources drive spatial variation, changes in solar radiation drive seasonal variation, and variability in atmospheric conditions and transport drive interannual variation in the processes and chemistry occurring during atmospheric transport of reactive nitrogen.
Modeling of nitrogen transformation in an integrated multi-trophic aquaculture (IMTA)
NASA Astrophysics Data System (ADS)
Silfiana; Widowati; Putro, S. P.; Udjiani, T.
2018-03-01
The dynamic model of nitrogen transformation in IMTA (Integrated Multi-Trophic Aquaculture) is purposed. IMTA is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in IMTA consisting of ammonia (NH3), Nitrite (NO2) and Nitrate (NO3). Nitrogen transformation of several processes, nitrification, assimilation, and volatilization. Numerical simulations are performed by providing initial parameters and values based on a review of previous research. The numerical results show that the rate of change in nitrogen concentration in IMTA decrease and reaches stable at different times.
Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions
Apel, William A.
1998-01-01
A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.
Wang, Da-Wei; Li, Feng; Yin, Li-Chang; Lu, Xu; Chen, Zhi-Gang; Gentle, Ian R; Lu, Gao Qing; Cheng, Hui-Ming
2012-04-23
A nitrogen-doped porous carbon monolith was synthesized as a pseudo-capacitive electrode for use in alkaline supercapacitors. Ammonia-assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size-distributions and increased the specific surface area from 383 m(2) g(-1) to 679 m(2) g(-1). The nitrogen-containing porous carbon material showed a higher capacitance (246 F g(-1)) in comparison with the nitrogen-free one (186 F g(-1)). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen-containing functional groups on the surface of the N-doped carbon electrodes in a three-electrode cell. In addition, first-principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Svintsitskiy, Dmitry A.; Kibis, Lidiya S.; Smirnov, Dmitry A.; Suboch, Arina N.; Stonkus, Olga A.; Podyacheva, Olga Yu.; Boronin, Andrei I.; Ismagilov, Zinfer R.
2018-03-01
Carbon and nitrogen species on the surface of carbon nanotubes (N-CNTs) and nanofibers (N-CNFs) were studied by X-ray absorption (XAS) and photoelectron spectroscopy (PES) including the analysis of nitrogen distribution over the depth of materials. The study was performed with a series of bamboo-like carbon nanotubes and nanofibers having the platelet-like and herringbone-like morphology. It was shown that the main nitrogen species in the composition of the studied materials are pyridine, pyrrole (and/or amino groups), graphite-like and oxidized states of nitrogen. In distinction to nanofibers, the bamboo-like nanotubes additionally contain molecular nitrogen encapsulated in the internal hollows. Spectral data for different depths of analysis were obtained by varying the energy of incident radiation. Such an approach revealed that N-CNTs are characterized by non-uniform distribution of chemically bound nitrogen species. Thus, nitrogen enrichment was observed on the external surface and in the internal arches of carbon nanotubes. Nitrogen enrichment in the subsurface region was found for N-CNFs, whereas the full depth analysis of N-distribution was limited by a large diameter of nanofibers.
Effect of Nitrogen on Transformation Behaviors and Microstructure of V-N Microalloyed Steel
NASA Astrophysics Data System (ADS)
Zhao, Baochun; Zhao, Tan; Li, Guiyan; Lu, Qiang
Multi-pass deformation simulation tests were performed on V-N microalloyed steels with different nitrogen addition by using a Gleeble-3800 thermo-mechanical simulator and the corresponding continuous cooling transformation (CCT) diagrams were determined by thermal dilation method and metallographic method. The deformed austenite transformation behavior and resultant microstructure of the tested steels were studied. Furthermore, the effect of nitrogen addition on the transformation behavior and microstructure evolution was analyzed. The results show that the transformed microstructures in the three tested steels are ferrite, pearlite and bainite respectively while the transformation temperatures are not the same. For the two tested steel with higher nitrogen additions, higher ferrite start temperature and critical cooling rates are observed. Furthermore, an increase in nitrogen addition leads to increasing quantities of ferrite and the transformed ferrite is smaller in size. The hardness test results reveal that the hardness number increases with increasing nitrogen addition at low cooling rate while the value tends to be smaller due to increasing nitrogen addition at high cooling rate. Therefore, the hardness number of the steel with high nitrogen addition is not so sensitive to cooling rate as that of the steel with low nitrogen addition.
An analytical solubility model for nitrogen-methane-ethane ternary mixtures
NASA Astrophysics Data System (ADS)
Hartwig, Jason; Meyerhofer, Peter; Lorenz, Ralph; Lemmon, Eric
2018-01-01
Saturn's moon Titan has surface liquids of liquid hydrocarbons and a thick, cold, nitrogen atmosphere, and is a target for future exploration. Critical to the design and operation of vehicles for this environment is knowledge of the amount of dissolved nitrogen gas within the cryogenic liquid methane and ethane seas. This paper rigorously reviews experimental data on the vapor-liquid equilibrium of nitrogen/methane/ethane mixtures, noting the possibility for split liquid phases, and presents simple analytical models for conveniently predicting solubility of nitrogen in pure liquid ethane, pure liquid methane, and a mixture of liquid ethane and methane. Model coefficients are fit to three temperature ranges near the critical point, intermediate range, and near the freezing point to permit accurate predictions across the full range of thermodynamic conditions. The models are validated against the consolidated database of 2356 experimental data points, with mean absolute error between data and model less than 8% for both binary nitrogen/methane and nitrogen/ethane systems, and less than 17% for the ternary nitrogen/methane/ethane system. The model can be used to predict the mole fractions of ethane, methane, and nitrogen as a function of location within the Titan seas.
Cascading costs: an economic nitrogen cycle.
Moomaw, William R; Birch, Melissa B L
2005-09-01
The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.
Cascading costs: an economic nitrogen cycle.
Moomaw, William R; Birch, Melissa B L
2005-12-01
The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N2. We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single tonne of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a tonne of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that tonne would cascade. The analysis reveals that it is most cost effective to remove a tonne of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.
A Network Flow Analysis of the Nitrogen Metabolism in Beijing, China.
Zhang, Yan; Lu, Hanjing; Fath, Brian D; Zheng, Hongmei; Sun, Xiaoxi; Li, Yanxian
2016-08-16
Rapid urbanization results in high nitrogen flows and subsequent environmental consequences. In this study, we identified the main metabolic components (nitrogen inputs, flows, and outputs) and used ecological network analysis to track the direct and integral (direct + indirect) metabolic flows of nitrogen in Beijing, China, from 1996 to 2012 and to quantify the structure of Beijing's nitrogen metabolic processes. We found that Beijing's input of new reactive nitrogen (Q, which represents nitrogen obtained from the atmosphere or nitrogen-containing materials used in production and consumption to support human activities) increased from 431 Gg in 1996 to 507 Gg in 2012. Flows to the industry, atmosphere, and household, and components of the system were clearly largest, with total integrated inputs plus outputs from these nodes accounting for 31, 29, and 15%, respectively, of the total integral flows for all paths. The flows through the sewage treatment and transportation components showed marked growth, with total integrated inputs plus outputs increasing to 3.7 and 5.2 times their 1996 values, respectively. Our results can help policymakers to locate the key nodes and pathways in an urban nitrogen metabolic system so they can monitor and manage these components of the system.
Cost-Effectiveness of Nitrogen Mitigation by Alternative ...
Household wastewater, especially from conventional septic systems, is a major contributor to nitrogen pollution. Alternative household wastewater management technologies provide similar sewerage management services but their life cycle costs and nitrogen flow implications remain uncertain. We seek to address two key questions: (1) what are the total costs, nitrogen mitigation potential, and cost-effectiveness of a range of conventional and alternative municipal wastewater treatment technologies, and (2) what uncertainties influence these outcomes, and how can we improve our understanding of these technologies? We estimate a household nitrogen mass balance for various household wastewater treatment systems and combine this mass balance with life cycle cost assessment to calculate the cost-effectiveness of nitrogen mitigation, which we define as nitrogen removed from the local watershed. We apply our methods to Falmouth, MA, where failing septic systems have caused heightened eutrophication in local receiving water bodies. We find that flushing and dry (composting) urine-diversion toilets paired with conventional septic systems for greywater management demonstrate the lowest life cycle cost and highest cost-effectiveness (dollars per kilogram of nitrogen removed from the watershed). Composting toilets and neighborhood-scale blackwater digesters are also attractive options in some cases, particularly best-case nitrogen mitigation; innovative/advanced septic system
Cui, Qing Qing; Dong, Yan Hong; Li, Man; Zhang, Wen Dong; Liu, Bin Bin; Ai, Xi Zhen; Bi, Huan Gai; Li, Qing Ming
2017-04-18
Using split plot and then-split plot design, effects of water-nitrogen coupling on photosynthesis and ultrastructure of cucumber (Cucumis sativus) (Jinyou No.35) under CO 2 enrichment were investigated. The main plot had two CO 2 concentrations: ambient CO 2 concentration (400 μmol·mol -1 , A) and doubled CO 2 concentration (800±20 μmol·mol -1 , E). The split plot had two treatments: no drought stress (95% of field capacity, W) and drought stress (75% of field capacity, D). The then-split plot contained low nitrogen treatment (450 kg·hm -2 , N 1 ) and high nitrogen treatment (900 kg·hm -2 , N 2 ). The results showed that under the condition of drought and high nitrogen, increasing CO 2 enhanced the cucumber plant height, and no matter what kinds of water treatment, CO 2 enrichment increased the leaf area significantly under high nitrogen. Under the condition of normal irrigation, the photosynthetic rate, stomatal conductance and transpiration rate of high nitrogen treatment were higher than low nitrogen treatment, while it was under the drought condition. Elevated CO 2 enhanced the water use efficiency of cucumber leaf which increased with increasing nitrogen application rate. Under drought stress, cucumber adaxial surface porosity density was increased, and the CO 2 enrichment and high nitrogen significantly reduced the stomatal density. Increasing nitrogen application improved the number of chloroplast, and reduced that of starch grains. Drought stress decreased the number of chloroplast, but tended to promote the number of starch grains. Drought stress increased the chloroplast length and width, and the size of the starch grains, while high nitrogen reduced the length and width of the chloroplast and starch grains. CO 2 enrichment and high nitrogen increased grana thickness and layers (except ADN 2 ), and the slice layer of EDN 2 was significantly higher than that of ADN 2 . In conclusion, CO 2 enrichment and suitable water and nitrogen could promote the development of chloroplast thylakoid membrane system, significantly increase the thickness of grana and the number of grana lamella, and effectively improve the chloroplast structure of cucumber, which would benefit the photosynthesis of cucumber plants and ability to utilize CO 2 and water and nitrogen.
Spatial Scale Variability of NH3 and Impacts to interpolated Concentration Grids
Over the past decade, reduced nitrogen (NH3, NH4) has become an important component of atmospheric nitrogen deposition due to increases in agricultural activities and reductions in oxidized sulfur and nitrogen emissions from the power sector and mobile sources. Reduced nitrogen i...
A Simple Model of Nitrogen Concentration, Throughput, and Denitrification in Estuaries
The Estuary Nitrogen Model (ENM) is a mass balance model that includes calculation of nitrogen losses within bays and estuaries using system flushing time. The model has been used to demonstrate the dependence of throughput and denitrification of nitrogen in bays and estuaries on...
A MODEL OF ESTUARY RESPONSE TO NITROGEN LOADING AND FRESHWATER RESIDENCE TIME
We have developed a deterministic model that relates average annual nitrogen loading rate and water residence time in an estuary to in-estuary nitrogen concentrations and loss rates (e.g. denitrification and incorporation in sediments), and to rates of nitrogen export across the ...
Riparian zones, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and controlling nitrogen loads entering water bodies. Buffer width may be positively related to nitrogen removal efficiency by influencing nitrogen retention throug...
40 CFR 52.278 - Oxides of nitrogen control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Oxides of nitrogen control. 52.278... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control. (a) The following regulations are disapproved because they relax the control of nitrogen oxides...
40 CFR 52.278 - Oxides of nitrogen control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Oxides of nitrogen control. 52.278... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control. (a) The following regulations are disapproved because they relax the control of nitrogen oxides...
40 CFR 52.278 - Oxides of nitrogen control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Oxides of nitrogen control. 52.278... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control. (a) The following regulations are disapproved because they relax the control of nitrogen oxides...
40 CFR 52.278 - Oxides of nitrogen control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Oxides of nitrogen control. 52.278... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control. (a) The following regulations are disapproved because they relax the control of nitrogen oxides...
136. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN LIQUID NITROGEN ...
136. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770), FROM FUEL APRON WITH BAY DOOR OPEN - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth
USDA-ARS?s Scientific Manuscript database
Adoption of new management techniques which improve soil water storage and soil nitrogen plant availability yet limit nitrogen leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kilograms of Nitrogen per ...
40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable to...
40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable to...
40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable to...
40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable to...
40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable to...
Liu, Fupin; Guan, Jian; Wei, Tao; Wang, Song; Jiao, Mingzhi; Yang, Shangfeng
2013-04-01
A series of nitrogen-containing inorganic solid compounds with variable oxidation states of nitrogen and counter ions have been successfully applied as new inorganic solid nitrogen sources toward the synthesis of Sc-based metal nitride clusterfullerenes (Sc-NCFs), including ammonium salts [(NH4)xH(3-x)PO4 (x = 0-2), (NH4)2SO4, (NH4)2CO3, NH4X (X = F, Cl), NH4SCN], thiocyanate (KSCN), nitrates (Cu(NO3)2, NaNO3), and nitrite (NaNO2). Among them, ammonium phosphates ((NH4)xH(3-x)PO4, x = 1-3) and ammonium thiocyanate (NH4SCN) are revealed to behave as better nitrogen sources than others, and the highest yield of Sc-NCFs is achieved when NH4SCN was used as a nitrogen source. The optimum molar ratio of Sc2O3:(NH4)3PO4·3H2O:C and Sc2O3:NH4SCN:C has been determined to be 1:2:15 and 1:3:15, respectively. The thermal decomposition products of these 12 inorganic compounds have been discussed in order to understand their different performances toward the synthesis of Sc-NCFs, and accordingly the dependence of the production yield of Sc-NCFs on the oxidation state of nitrogen and counter ion is interpreted. The yield of Sc3N@C80 (I(h) + D(5h)) per gram Sc2O3 by using the N2-based group of nitrogen sources (thiocyanate, nitrates, and nitrite) is overall much lower than those by using gaseous N2 and NH4SCN, indicating the strong dependence of the yield of Sc-NCFs on the oxidation state of nitrogen, which is attributed to the "in-situ" redox reaction taking place for the N2-based group of nitrogen sources during discharging. For NH3-based group of nitrogen sources (ammonium salts) which exhibits a (-3) oxidation states of nitrogen, their performance as nitrogen sources is found to be sensitively dependent on the anion, and this is understood by considering their difference on the thermal stability and/or decomposition rate. Contrarily, for the N2-based group of nitrogen sources, the formation of Sc-NCFs is independent to both the oxidation state of nitrogen (+3 or +5) and the cation.
van der Heijden, Lizz; van der Geest, Ingrid C M; Schreuder, H W Bart; van de Sande, Michiel A J; Dijkstra, P D Sander
2014-03-05
The rate of recurrence of giant cell tumor of bone is decreased by use of adjuvant treatments such as phenol, liquid nitrogen, or polymethylmethacrylate (PMMA) during curettage. We assessed recurrence and complication rates and functional outcome after curettage with use of phenol and PMMA, liquid nitrogen and PMMA, and liquid nitrogen and bone grafts. We retrospectively compared the relative effectiveness of treatment of giant cell tumors of bone at two tertiary centers with a regional function from 1990 to 2010. The 132 (of 201) patients who met the inclusion criteria had a mean age of thirty-three years (range, eleven to sixty-nine years). Treatment assignment depended purely on the center, with primary treatment consisting of curettage with use of phenol and PMMA (n = 82) at one center and with use of either liquid nitrogen and PMMA (n = 26) or liquid nitrogen and bone grafts (n = 24) at the other center. Recurrence and complication rates were determined, and functional outcome was assessed on the basis of the Musculoskeletal Tumor Society (MSTS) score. The mean duration of follow-up was eight years (range, two to twenty-two years). Recurrence rates were comparable among the groups (28% for phenol and PMMA, 31% for liquid nitrogen and PMMA, and 38% for liquid nitrogen and bone grafts; p = 0.52). Soft-tissue extension increased the recurrence risk (hazard ratio [HR] = 2.1, 95% confidence interval [CI] = 1.1 to 4.0, p = 0.024). The complication rate was 33% after use of liquid nitrogen and bone grafts, 27% after liquid nitrogen and PMMA, and 11% after phenol and PMMA (p = 0.019); complications included osteoarthritis, infection, postoperative fracture, nonunion, transient nerve palsy, and PMMA leakage. The complication risk was increased by the presence of a pathologic fracture (HR = 4.1, 95% CI = 1.7 to 9.5, p = 0.001) and use of liquid nitrogen (HR = 3.9, 95% CI = 1.5 to 10, p = 0.006 for liquid nitrogen and bone grafts; HR = 3.1, 95% CI = 1.1 to 8.6, p = 0.028 for liquid nitrogen and PMMA). The mean MSTS score was 26 (range, 8 to 30) and was comparable among all three groups (p = 0.52). Recurrence rates were comparable for treatment with phenol and PMMA, liquid nitrogen and PMMA, and liquid nitrogen and bone grafts. Complication rates were higher after use of liquid nitrogen. The functional outcome was excellent in all three cohorts.
A role for shellfish aquaculture in coastal nitrogen management.
Rose, Julie M; Bricker, Suzanne B; Tedesco, Mark A; Wikfors, Gary H
2014-01-01
Excess nutrients in the coastal environment have been linked to a host of environmental problems, and nitrogen reduction efforts have been a top priority of resource managers for decades. The use of shellfish for coastal nitrogen remediation has been proposed, but formal incorporation into nitrogen management programs is lagging. Including shellfish aquaculture in existing nitrogen management programs makes sense from environmental, economic, and social perspectives, but challenges must be overcome for large-scale implementation to be possible.
NASA Astrophysics Data System (ADS)
Ward, N. K.; Maureira, F.; Yourek, M. A.; Brooks, E. S.; Stockle, C. O.
2014-12-01
The current use of synthetic nitrogen fertilizers in agriculture has many negative environmental and economic costs, necessitating improved nitrogen management. In the highly heterogeneous landscape of the Palouse region in eastern Washington and northern Idaho, crop nitrogen needs vary widely within a field. Site-specific nitrogen management is a promising strategy to reduce excess nitrogen lost to the environment while maintaining current yields by matching crop needs with inputs. This study used in-situ hydrologic, nutrient, and crop yield data from a heavily instrumented field site in the high precipitation zone of the wheat-producing Palouse region to assess the performance of the MicroBasin model. MicroBasin is a high-resolution watershed-scale ecohydrologic model with nutrient cycling and cropping algorithms based on the CropSyst model. Detailed soil mapping conducted at the site was used to parameterize the model and the model outputs were evaluated with observed measurements. The calibrated MicroBasin model was then used to evaluate the impact of various nitrogen management strategies on crop yield and nitrate losses. The strategies include uniform application as well as delineating the field into multiple zones of varying nitrogen fertilizer rates to optimize nitrogen use efficiency. We present how coupled modeling and in-situ data sets can inform agricultural management and policy to encourage improved nitrogen management.
Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei
2014-01-01
The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 −–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 +–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 −–N and NH4 +–N was ~31.38% and ~20.50% for the contents of NO3 −–N and NH4 +–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238
Mienis, Omer; Arye, Gilboa
2018-05-01
The long term behavior of total nitrogen and its components was investigated in a soil aquifer treatment system of the Dan Region Reclamation Project (Shafdan), Tel-Aviv, Israel. Use is made of the previous 40 years' secondary data for the main nitrogen components (ammonium, nitrate and organic nitrogen) in recharged effluent and observation wells located inside an infiltration basin. The wells were drilled to 106 and 67 m, both in a similar position within the basin. The transport characteristics of each nitrogen component were evaluated based on chloride travel-time, calculated by a cross-correlation between its concentration in the recharge effluent and the observation wells. Changes in the source of recharge effluent, wastewater treatment technology and recharge regime were found to be the main factors affecting turnover in total nitrogen and its components. During aerobic operation of the infiltration basins, most organic nitrogen and ammonium will be converted to nitrate. Total nitrogen removal in the upper part of the aquifer was found to be 47-63% by denitrification and absorption, and overall removal, including the lower part of the aquifer, was 49-83%. To maintain the aerobic operation of the infiltration fields, the total nitrogen load should remain below 10 mg/L. Above this limit, ammonium and organic nitrogen will be displaced into the aquifer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Formation of nitrogenated organic aerosols in the Titan upper atmosphere.
Imanaka, Hiroshi; Smith, Mark A
2010-07-13
Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan's organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet-vacuum ultraviolet irradiation of a N(2)/CH(4) gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N(2)/CH(4) photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H(2)C(2)N and HCN, respectively, are suggestive of important roles of H(2)C(2)N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using (13)C and (15)N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan's atmosphere.
NASA Astrophysics Data System (ADS)
Lins, S. M.; Della Coletta, L.; Ravagnani, E.; Gragnani, J. G.; Antonio, J.; Mazzi, E. A.; Martinelli, L. A.
2012-12-01
In this study the carbon and nitrogen concentrations, and stable carbon (δ13C) and stable nitrogen (δ15N) isotopic composition were determined in samples of Fabaceae and non Fabaceae leaves, litter, and soil samples in two different altitudes (Lowland and Montane Forests) of the coastal Atlantic Forest situated in the Southeast region of Brazil. In both altitudes there were two main differences between Fabaceae and non Fabaceae specimens. Fabaceae had a higher foliar nitrogen content and lower foliar δ15N than non Fabaceae specimens. As a consequence it seems that most of the Fabaceae specimens are fixing nitrogen from the atmosphere in both altitudes. This fact is contrary to most of other studies that found that most Fabaceae are not fixing nitrogen in tropical forests. We speculate that the main reason that Fabaceae are actively fixing nitrogen in the coastal Atlantic Forest is the steepness of the terrain that leads to frequent landslides, causing frequent disturbances of the nitrogen cycle, fostering nitrogen fixation. The main difference between the Lowland and the Montane Forest plots was the higher δ15N in the former in comparison with the later. We speculated that this difference is caused by larger losses of nitrogen by denitrification and riverine output, leading an enriched 15N substrate.
Nagamani, Sandesh C.S.; Agarwal, Umang; Tam, Allison; Azamian, Mahshid; McMeans, Ann; Didelija, Inka C.; Mohammad, Mahmoud A.; Marini, Juan C.
2017-01-01
Summary Purpose Benzoate and phenylbutyrate are widely used in the treatment of urea cycle disorders, but detailed studies on pharmacokinetics and comparative efficacy on nitrogen excretion are lacking. Methods We conducted a randomized, three arm, crossover trial in healthy volunteers to study pharmacokinetics and comparative efficacy of phenylbutyrate (NaPB; 7.15 g•m−2BSA•day−1), benzoate (NaBz; 5.5 g•m−2BSA•day−1), and a combination of two medications (MIX arm; 3.575 g NaPB and 2.75 g NaBz•m−2BSA•day−1) on nitrogen excretion. Stable isotopes were used to study effects on urea production and dietary nitrogen disposal. Results The conjugation efficacy for both phenylbutyrate and benzoate was 65%; conjugation was superior at the lower dose used in the MIX arm. Whereas NaPB and MIX treatments were more effective at excreting nitrogen than NaBz, nitrogen excretion as a drug conjugate was similar between phenylbutyrate and MIX arms. Nitrogen-excreted-per-USD was higher with combination therapy compared to NaPB. Conclusions Phenylbutyrate was more effective than benzoate at disposing nitrogen. Increasing phenylbutyrate dose may not result in higher nitrogen excretion due to decreased conjugation efficiency at higher doses. Combinatorial therapy with phenylbutyrate and benzoate has the potential to significantly decrease treatment cost without compromising the nitrogen disposal efficacy. PMID:29693650
Klein, Barbara E K; McElroy, Jane A; Klein, Ronald; Howard, Kerri P; Lee, Kristine E
2013-01-01
We examined the association of nitrate-nitrogen exposure from rural private drinking water and incidence of age-related macular degeneration (AMD). All participants in the Beaver Dam Eye Study (53916 improvement plan code) completed a questionnaire and had an ocular examination including standardized, graded fundus photographs at five examinations. Only information from rural residents in that study are included in this report. Data from an environmental monitoring study with probabilistic-based agro-chemical sampling, including nitrate-nitrogen, of rural private drinking water were available. Incidence of early AMD was associated with elevated nitrate-nitrogen levels in rural private drinking water supply (10.0% for low, 19.2% for medium, and 26.1% for high nitrate-nitrogen level in the right eye). The odds ratios (ORs) were 1.77 (95% confidence interval [CI]: 1.12-2.78) for medium and 2.88 (95% CI: 1.59-5.23) for high nitrate-nitrogen level. Incidence of late AMD was increased for those with medium or high levels of nitrate-nitrogen compared to low levels (2.3% for low and 5.1% for the medium or high nitrate-nitrogen level, for the right eye). The OR for medium or high nitrate-nitrogen groups was 2.80 (95% CI: 1.07-7.31) compared to the low nitrate-nitrogen group.
Klein, Barbara E. K.; McElroy, Jane A.; Klein, Ronald; Howard, Kerri P.; Lee, Kristine E.
2014-01-01
We examined the association of nitrate-nitrogen exposure from rural private drinking water and incidence of age-related macular degeneration (AMD). Participants of the Beaver Dam Eye Study living in rural areas within the 53916 zone improvement plan code but outside the city limits of Beaver Dam, Wisconsin (Beaver Dam Township) completed a questionnaire and ocular examination including standardized, graded fundus photographs at five examinations. Data from an environmental monitoring study with probabilistic-based agro-chemical sampling, including nitrate-nitrogen, of rural private drinking water were available. Incidence of early AMD was associated with elevated nitrate-nitrogen levels in rural private drinking water supply (10.0% for low, 19.2% for medium, and 26.1% for high nitrate-nitrogen level in the right eye). The odds ratios (ORs) were 1.77 (95% confidence interval [CI]: 1.12–2.78) for medium and 2.88 (95% CI: 1.59–5.23) for high nitrate-nitrogen level. Incidence of late AMD was increased for those with medium or high levels of nitrate-nitrogen compared to low levels (2.3% for low and 5.1% for the medium or high nitrate-nitrogen level, for the right eye). The OR for medium or high nitrate-nitrogen groups was 2.80 (95% CI: 1.07–7.31) compared to the low nitrate-nitrogen group. PMID:24007430
Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene
2017-01-01
Nitrogen doping opens possibilities for tailoring the electronic properties and band gap of graphene toward its applications, e.g., in spintronics and optoelectronics. One major obstacle is development of magnetically active N-doped graphene with spin-polarized conductive behavior. However, the effect of nitrogen on the magnetic properties of graphene has so far only been addressed theoretically, and triggering of magnetism through N-doping has not yet been proved experimentally, except for systems containing a high amount of oxygen and thus decreased conductivity. Here, we report the first example of ferromagnetic graphene achieved by controlled doping with graphitic, pyridinic, and chemisorbed nitrogen. The magnetic properties were found to depend strongly on both the nitrogen concentration and type of structural N-motifs generated in the host lattice. Graphenes doped below 5 at. % of nitrogen were nonmagnetic; however, once doped at 5.1 at. % of nitrogen, N-doped graphene exhibited transition to a ferromagnetic state at ∼69 K and displayed a saturation magnetization reaching 1.09 emu/g. Theoretical calculations were used to elucidate the effects of individual chemical forms of nitrogen on magnetic properties. Results showed that magnetic effects were triggered by graphitic nitrogen, whereas pyridinic and chemisorbed nitrogen contributed much less to the overall ferromagnetic ground state. Calculations further proved the existence of exchange coupling among the paramagnetic centers mediated by the conduction electrons. PMID:28110530
Zooming in on aquatic denitrification hot spots
NASA Astrophysics Data System (ADS)
Schultz, Colin
2011-06-01
Inorganic nitrogen is an important resource for marine and aquatic ecosystems, acting as a fertilizer for phytoplankton and aquatic plants. When nitrogen concentrations soar, algae blooms can occur. Subsequently, when the algae blooms die, their decomposition can consume most of the available dissolved oxygen, negatively affecting the ecosystem as a whole. Creeks and streams act as strong controls, regulating downstream nitrogen concentrations, and researchers have been zooming in on hyporheic zones—zones where water flows through the sediment alongside the surface water—as possible hot spots of activity in the nitrogen cycle. Using a stable isotope tracer, Zarnetske et al. tracked the evolution of a nitrogen addition as it flowed through a heavily instrumented gravel bar in Drift Creek, in Oregon. The researchers found that the gravel bar could act as either a source or a sink of inorganic nitrogen, depending on how long it took for the water to make its way through the bar. When the creek water took longer to pass through the hyporheic zone, nitrogen levels were reduced significantly through denitrification, while any water that traveled quickly could have its inorganic nitrogen concentrations increased by nitrification. The authors note that a context-dependent effect of individual hyporheic zones on inorganic nitrogen concentrations could have important implications for attempts to estimate the effects of a watershed on the nitrogen cycle. (Journal of Geophysical Research-Biogeosciences, doi:10.1029/ 2010JG001356, 2011)
[Effects of long-term fertilization on organic nitrogen fractions in aquic brown soil].
Ren, Jin Feng; Zhou, Hua; Ma, Qiang; Xu, Yong Gang; Jiang, Chun Ming; Pan, Fei Fei; Yu, Wan Tai
2017-05-18
The purpose of present research was to investigate how different fertilization regimes altered soil organic nitrogen fractions and their inter-annual dynamics based on a series of long-term experiment (initiated at 1990), including: CK (non-fertilization); M (recycled pig manure); NPK (chemical fertilizer NPK); NPK + M (recycled pig manure with chemical fertilizer NPK). The results showed that soil organic nitrogen components under the different fertilization treatments presented contrastive patterns from the establishment the experiments to 2015. Generally, acid hydrolysable organic nitrogen content increased year by year. The amino acid nitrogen content under CK and NPK treatments consistently declined, although amino acid nitrogen for M and NPK+M treatments showed a increasing trend. These phenomena were probably ascribed to the utilization of soil amino acids by microbes. From 1990 to 2015, NPK treatment substantially elevated the content of acid-released ammonium nitrogen by 31.1% compared with CK (mean value across the experiment), and for the treatments using organic manure (M and NPK+M), the contents of all fractions of soil organic nitrogen increased. Notably, the increase magnitudes for NPK+M were more dramatic than those of M. These results demonstrated that combined use of organic and inorganic fertilizers could more effectively elevate soil organic nitrogen, subsequently helping to improve the capacity of soil nitrogen supply and enhance the soil fertility.
Sang, Meng-meng; Fan, Hui; Jiang, Shan-shan; Jiang, Jing-yan
2015-09-01
In order to better understand the characteristics of nitrogen loss through different pathways under conventional fertilization conditions, a field experiment was conducted to investigate the variations of N2O emission, NH3 volatilization, N losses through surface runoff and leaching caused by the application of nitrogen fertilizers during summer maize growing season in the Middle and Lower reaches of the Yangtze River, China. Our results showed that when compound fertilizer was used as basal fertilizer at the nitrogen rate of 150 kg.hm-2, and urea with the same level of fertilizing as topdressing, the N2O emission coefficient in the entire growing season was 3. 3%, NH3 volatilization loss rate was 10. 2%, and nitrogen loss rate by leaching and surface runoff was 11. 2% and 5. 1%, respectively. In addition, leaching was the main pathway of nitrogen loss after basal fertilizer, while NH, volatilization and nitrogen leaching accounted for the majority of nitrogen loss after topdressing, which suggested that nitrogen loss from different pathways mainly depended on the type of nitrogen fertilizer. Taken together, it appears to be effective to apply the new N fertilizer with low ammonia volatilization instead of urea when maize needs topdressing, so as to reduce N losses from N fertilizer.
Formation of nitrogenated organic aerosols in the Titan upper atmosphere
Imanaka, Hiroshi; Smith, Mark A.
2010-01-01
Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan’s organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet–vacuum ultraviolet irradiation of a N2/CH4 gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N2/CH4 photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H2C2N and HCN, respectively, are suggestive of important roles of H2C2N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using 13C and 15N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan’s atmosphere. PMID:20616074
Carbon Fibers Conductivity Studies
NASA Technical Reports Server (NTRS)
Yang, C. Y.; Butkus, A. M.
1980-01-01
In an attempt to understand the process of electrical conduction in polyacrylonitrile (PAN)-based carbon fibers, calculations were carried out on cluster models of the fiber consisting of carbon, nitrogen, and hydrogen atoms using the modified intermediate neglect of differential overlap (MINDO) molecular orbital (MO) method. The models were developed based on the assumption that PAN carbon fibers obtained with heat treatment temperatures (HTT) below 1000 C retain nitrogen in a graphite-like lattice. For clusters modeling an edge nitrogen site, analysis of the occupied MO's indicated an electron distribution similar to that of graphite. A similar analysis for the somewhat less stable interior nitrogen site revealed a partially localized II electron distribution around the nitrogen atom. The differences in bonding trends and structural stability between edge and interior nitrogen clusters led to a two-step process proposed for nitrogen evolution with increasing HTT.
Nitrogen uptake and utilization by intact plants
NASA Technical Reports Server (NTRS)
Raper, C. D., Jr.; Tolley-Henry, L. C.
1986-01-01
The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.
Mullaney, John R.; Schwarz, Gregory E.
2013-01-01
The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year during water years 1999–2009. Total annual loads from the monitored basins represent 63 to 74 percent of the total load. Computed annual nitrogen loads from four stations near the Massachusetts border with Connecticut represent 52 to 54 percent of the total nitrogen load during water years 2008–9, the only years with data for all the border sites. During the latter part of the 1999–2009 study period, total nitrogen loads to Long Island Sound from the study area appeared to increase slightly. The apparent increase in loads may be due to higher than normal streamflows, which consequently increased nonpoint nitrogen loads during the study, offsetting major reductions of nitrogen from wastewater-treatment facilities. Nitrogen loads from wastewater treatment facilities declined as much as 2.3 million pounds per year in areas of Connecticut upstream from the monitoring stations and as much as 5.8 million pounds per year in unmonitored areas downstream in coastal and central Connecticut.
Stable nitrogen isotopes in coastal macroalgae: geographic and anthropogenic variability.
Viana, Inés G; Bode, Antonio
2013-01-15
Growing human population adds to the natural nitrogen loads to coastal waters. Both anthropogenic and natural nitrogen is readily incorporated in new biomass, and these different nitrogen sources may be traced by the measurement of the ratio of stable nitrogen isotopes (δ(15)N). In this study δ(15)N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus vesiculosus), and in nitrate and ammonium to determine the relative importance of anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal species and nitrogen sources showed similar isotopic enrichment for a given site, but algal δ(15)N was not related to either inorganic nitrogen concentrations or δ(15)N in the water samples. The latter suggests that inorganic nitrogen inputs are variable and do not always leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal δ(15)N along the coast is consistent with the differential effect of upwelling. Besides this geographic variability, the influence of anthropogenic nitrogen sources is evidenced by higher δ(15)N in macroalgae from rias and estuaries compared to those from open coastal areas and in areas with more than 15×10(3) inhabitants in the watershed. These results indicate that, in contrast with other studies, macroalgal δ(15)N is not simply related to either inorganic nitrogen concentrations or human population size but depends on other factors as the upwelling or the efficiency of local waste treatment systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Analysis of Nitrogen Loads From Long Island Sound Watersheds, 1988-98
NASA Astrophysics Data System (ADS)
Mullaney, J. R.; Trench, E. C.
2001-05-01
The U.S. Geological Survey (USGS) recently estimated annual nonpoint-source nitrogen loads from watersheds that drain to Long Island Sound. The study, was conducted in cooperation with the Connecticut Department of Environmental Protection, the New York State Department of Environmental Conservation and the U.S. Environmental Protection Agency, to assist these agencies with the issue of low concentrations of dissolved oxygen in Long Island Sound caused by nitrogen enrichment. A regression model was used to determine annual nitrogen loads at 27 streams monitored by the USGS during 1988-98. Estimates of nitrogen loads from municipal wastewater-treatment plants (where applicable) were subtracted from the total nitrogen loads to determine the nonpoint-source nitrogen load for each water-quality monitoring station. The nonpoint-source load information was applied to unmonitored areas by comparing the land-use and land-cover characteristics of monitored areas with unmonitored areas, and selecting basins that were most similar. In extrapolating load estimates to unmonitored areas, regional differences in mean annual runoff between monitored and unmonitored areas also were considered, using flow information from nearby USGS gaging stations. Estimates of nonpoint nitrogen loads from monitored areas with point sources of nitrogen discharge and estimates from unmonitored areas are subject to uncertainty. These estimates could be improved with additional data collection in coastal basins and in basins with a large percentage of urbanized land, measurements of instream transformation or losses of nitrogen, improved reporting of total nitrogen concentrations from municipal wastewater treatment facilities, and tracking of intrabasin and (or) interbasin diversion of water.
Real-time continuous nitrate monitoring in Illinois in 2013
Warner, Kelly L.; Terrio, Paul J.; Straub, Timothy D.; Roseboom, Donald; Johnson, Gary P.
2013-01-01
Many sources contribute to the nitrogen found in surface water in Illinois. Illinois is located in the most productive agricultural area in the country, and nitrogen fertilizer is commonly used to maximize corn production in this area. Additionally, septic/wastewater systems, industrial emissions, and lawn fertilizer are common sources of nitrogen in urban areas of Illinois. In agricultural areas, the use of fertilizer has increased grain production to meet the needs of a growing population, but also has resulted in increases in nitrogen concentrations in many streams and aquifers (Dubrovsky and others, 2010). The urban sources can increase nitrogen concentrations, too. The Federal limit for nitrate nitrogen in water that is safe to drink is 10 milligrams per liter (mg/L) (http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm, accessed on May 24, 2013). In addition to the concern with nitrate nitrogen in drinking water, nitrogen, along with phosphorus, is an aquatic concern because it feeds the intensive growth of algae that are responsible for the hypoxic zone in the Gulf of Mexico. The largest nitrogen flux to the waters feeding the Gulf of Mexico is from Illinois (Alexander and others, 2008). Most studies of nitrogen in surface water and groundwater include samples for nitrate nitrogen collected weekly or monthly, but nitrate concentrations can change rapidly and these discrete samples may not capture rapid changes in nitrate concentrations that can affect human and aquatic health. Continuous monitoring for nitrate could inform scientists and water-resource managers of these changes and provide information on the transport of nitrate in surface water and groundwater.
Terrestrial nitrogen-carbon cycle interactions at the global scale.
Zaehle, S
2013-07-05
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.
Zhao, Yaqi; Huang, Lei; Chen, Yucheng
2018-07-01
Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.
Rapid cycling of reactive nitrogen in the marine boundary layer.
Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph
2016-04-28
Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.
Abrams, Dean; Metcalf, David; Hojjatie, Michael
2014-01-01
In AOAC Official Method 955.04, Nitrogen (Total) in Fertilizers, Kjeldahl Method, fertilizer materials are analyzed using mercuric oxide or metallic mercury HgO or Hg) as a catalyst. AOAC Official Methods 970.02, Nitrogen (Total) in Fertilizers is a comprehensive total nitrogen (including nitrate nitrogen) method adding chromium metal. AOAC Official Method 978.02, Nitrogen (Total) in Fertilizers is a modified comprehensive nitrogen method used to measure total nitrogen in fertilizers with two types of catalysts. In this method, either copper sulfate or chromium metal is added to analyze for total Kjeldahl nitrogen. In this study, the part of AOAC Official Method 978.02 that is for nitrate-free fertilizer products was modified. The objective was to examine the necessity of copper sulfate as a catalyst for the nitrate-free fertilizer products. Copper salts are not environmentally friendly and are considered pollutants. Products such as ammonium sulfate, diammonium phosphate, monoammonium phosphate, urea-containing fertilizers such as isobutylene diurea (IBDU), and urea-triazone fertilizer solutions were examined. The first part of the study was to measure Kjeldahl nitrogen as recommended by AOAC Official Method 978.02. The second part of the study was to exclude the addition of copper sulfate from AOAC Official Method 978.02 to examine the necessity of copper sulfate as a catalyst in nitrate-free fertilizers, which was the primary objective. Our findings indicate that copper sulfate can be eliminated from the method with no significant difference in the results for the nitrogen content of the fertilizer products.
USE OF 15N IN THE STUDY OF FIXATION OF ATMOSPHERIC NITROGEN BY NON- NODULATED SEED PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, G.
1959-10-31
Both from observation of non-leguminous plants growing under natural conditions and also from measurements made of plot experiments with grasses it has been found that large amounts of nitrogen, of the order of 50-lb N/acre/year, accumulate both in the soil and in plant material. Measurements of the contribution made by nonsymbiotic nitrogen-fixing bacteria are only of the order of 2 to 3 lb N/acre/year, so that it appears likely that some other mechanism operates which leads to fixation of nitrogen with the growth of many nonleguminous plants. Experiments were carried out with the following species which grow well in Newmore » Zealand under poor nutrient conditions, especially as regards nitrogen: Pinus radiata, Coprosma robusta, Epilobium erectum and Dactylis glomerata. Plants have been grown in sand watered with a nitrogen-free nutrient solution when they have shown signs of nitrogen starvation, but, nevertheless, they have made considerable growth. Some plants have been exposed to an isotopically enriched atmosphere for periods of 7 to 14 days, and significant amounts of nitrogen-15 have been recovered from the combined nitrogen in the plants indicating that fixation of molecular nitrogen has occurred. The effect is not due to any of the known nonsymbiotic nitrogen-fixing bacteria which were shown to be absent from the sand cultures. Two possible explanations considered are that the effect may be due to microorganisms present in or on the plants, and that the effect may be due to some activity of the plants themselves. (auth)« less
Gene Expression Biomarkers Provide Sensitive Indicators of in Planta Nitrogen Status in Maize[W][OA
Yang, Xiaofeng S.; Wu, Jingrui; Ziegler, Todd E.; Yang, Xiao; Zayed, Adel; Rajani, M.S.; Zhou, Dafeng; Basra, Amarjit S.; Schachtman, Daniel P.; Peng, Mingsheng; Armstrong, Charles L.; Caldo, Rico A.; Morrell, James A.; Lacy, Michelle; Staub, Jeffrey M.
2011-01-01
Over the last several decades, increased agricultural production has been driven by improved agronomic practices and a dramatic increase in the use of nitrogen-containing fertilizers to maximize the yield potential of crops. To reduce input costs and to minimize the potential environmental impacts of nitrogen fertilizer that has been used to optimize yield, an increased understanding of the molecular responses to nitrogen under field conditions is critical for our ability to further improve agricultural sustainability. Using maize (Zea mays) as a model, we have characterized the transcriptional response of plants grown under limiting and sufficient nitrogen conditions and during the recovery of nitrogen-starved plants. We show that a large percentage (approximately 7%) of the maize transcriptome is nitrogen responsive, similar to previous observations in other plant species. Furthermore, we have used statistical approaches to identify a small set of genes whose expression profiles can quantitatively assess the response of plants to varying nitrogen conditions. Using a composite gene expression scoring system, this single set of biomarker genes can accurately assess nitrogen responses independently of genotype, developmental stage, tissue type, or environment, including in plants grown under controlled environments or in the field. Importantly, the biomarker composite expression response is much more rapid and quantitative than phenotypic observations. Consequently, we have successfully used these biomarkers to monitor nitrogen status in real-time assays of field-grown maize plants under typical production conditions. Our results suggest that biomarkers have the potential to be used as agronomic tools to monitor and optimize nitrogen fertilizer usage to help achieve maximal crop yields. PMID:21980173
Reproducibility and sensitivity of scanning laser Doppler flowmetry during graded changes in PO2
Strenn, K.; Menapace, R.; Rainer, G.; Findl, O.; Wolzt, M.; Schmetterer, L.
1997-01-01
AIMS/BACKGROUND—Recently a commercially available scanning laser Doppler flowmeter has been produced, which provides two dimensional maps of the retinal perfusion. The aim of the present study was to investigate the reproducibility and the sensitivity of these measurements. METHODS—16 healthy subjects were randomised to inhale different gas mixtures of oxygen and nitrogen in a double blind crossover study. The following gas mixtures of oxygen and nitrogen were administered: 100% oxygen + 0% nitrogen, 80% oxygen + 20% nitrogen, 60% oxygen + 40% nitrogen, 40% oxygen + 60% nitrogen, 30% oxygen + 70% nitrogen, 20% oxygen + 80% nitrogen, 15% oxygen + 85% nitrogen, and 10% oxygen + 90% nitrogen. Retinal haemodynamic variables and systemic haemodynamics were measured during all inhalation periods. Recordings under resting conditions were performed three times to calculate intraclass coefficients. RESULTS—In two subjects we did not obtain technically adequate results. A dose dependent change in retinal blood flow during graded oxygen breathing was observed (p < 0.001). During 100% oxygen breathing blood flow decrease was between 29% and 33%, whereas blood flow increase was between 28% and 33% during inhalation of 10% oxygen + 90% nitrogen. CONCLUSIONS—Scanning laser Doppler flowmetry has an acceptable reproducibility and is appropriate for description of the effect of graded changes in PO2 on retinal haemodynamics. The main problems with the system are the large zero offset, the fixation during retinal scanning, and the neglect of blood flow changes during the cardiac cycle. PMID:9227199
Food for folivores: nutritional explanations linking diets to population density.
Wallis, Ian R; Edwards, Melanie J; Windley, Hannah; Krockenberger, Andrew K; Felton, Annika; Quenzer, Megan; Ganzhorn, Joerg U; Foley, William J
2012-06-01
Ecologists want to explain why populations of animals are not evenly distributed across landscapes and often turn to nutritional explanations. In seeking to link population attributes with food quality, they often contrast nutritionally positive traits, such as the concentration of nitrogen, against negative ones, such as fibre concentration, by using a ratio of these traits. This specific ratio has attracted attention because it sometimes correlates with the biomass of colobine primates across sites in Asia and Africa. Although empirically successful, we have identified problems with the ratio that may explain why it fails under some conditions to predict colobine biomass. First, available nitrogen, rather than total nitrogen, is nutritionally important, while the presence of tannins is the major factor reducing the availability of nitrogen in browse plant species. Second, tannin complexes inflate measures of fibre. Finally, simple ratios may be unsound statistically because they implicitly assume isometric relationships between variables. We used data on the chemical composition of plants from three continents to examine the relationships between the concentrations of nitrogen, available nitrogen, fibre and tannins in foliage and to evaluate the nitrogen to fibre ratio. Our results suggest that the ratio of the concentration of nitrogen to fibre in leaves does sometimes closely correlate with the concentration of available nitrogen. However, the ratio may give misleading results when leaves contain high concentrations of tannins. The concentration of available nitrogen, which incorporates measures of total nitrogen, dry matter digestibility and tannins, should give a better indication of the nutritional value of leaves for herbivorous mammals that can readily be extrapolated to habitats.
Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize.
Yang, Xiaofeng S; Wu, Jingrui; Ziegler, Todd E; Yang, Xiao; Zayed, Adel; Rajani, M S; Zhou, Dafeng; Basra, Amarjit S; Schachtman, Daniel P; Peng, Mingsheng; Armstrong, Charles L; Caldo, Rico A; Morrell, James A; Lacy, Michelle; Staub, Jeffrey M
2011-12-01
Over the last several decades, increased agricultural production has been driven by improved agronomic practices and a dramatic increase in the use of nitrogen-containing fertilizers to maximize the yield potential of crops. To reduce input costs and to minimize the potential environmental impacts of nitrogen fertilizer that has been used to optimize yield, an increased understanding of the molecular responses to nitrogen under field conditions is critical for our ability to further improve agricultural sustainability. Using maize (Zea mays) as a model, we have characterized the transcriptional response of plants grown under limiting and sufficient nitrogen conditions and during the recovery of nitrogen-starved plants. We show that a large percentage (approximately 7%) of the maize transcriptome is nitrogen responsive, similar to previous observations in other plant species. Furthermore, we have used statistical approaches to identify a small set of genes whose expression profiles can quantitatively assess the response of plants to varying nitrogen conditions. Using a composite gene expression scoring system, this single set of biomarker genes can accurately assess nitrogen responses independently of genotype, developmental stage, tissue type, or environment, including in plants grown under controlled environments or in the field. Importantly, the biomarker composite expression response is much more rapid and quantitative than phenotypic observations. Consequently, we have successfully used these biomarkers to monitor nitrogen status in real-time assays of field-grown maize plants under typical production conditions. Our results suggest that biomarkers have the potential to be used as agronomic tools to monitor and optimize nitrogen fertilizer usage to help achieve maximal crop yields.
NASA Astrophysics Data System (ADS)
Capps, R.; Caffrey, J. M.; Hester, C.
2016-02-01
Seagrass meadows provide key ecosystem services including nursery and foraging grounds, storm and erosion buffers, biodiversity enhancers and global carbon and nutrient cycling. Nitrogen concentrations are often very low in coastal waters and sediments, which may limit primary productivity. Biological nitrogen fixation is a microbial process that converts dinitrogen to ammonium, which is readily taken up by seagrasses. In the oxygenated rhizospheres, diazotrophs provide the plant with ammonium and use root exudates as an energy source. Nitrogen fixation rates and nutrient concentrations differ between seagrass species and substrate types. Thalassia testudinum has a higher biomass and is a climax species than Halodule wrightii, which is a pioneer species. Nitrogen fixation rates are relatively consistent in Thalassia testudinum dominated sediments. However, it is relatively variable in sediments occupied by Halodule wrightii. Nitrogen fixation rates are higher in bare substrate compared to areas with Thalassia testudinum, which may be due to T. testudinum's greater efficiency in nutrient retention because it is a climax species. We hypothesize that seasonal shifts in nitrogen fixation will coincide with seasonal shifts in seagrass biomass due to higher nutrient requirements during peak growth and lower requirements during senescence and dormancy. The ratio of porewater ammonium to phosphate suggests that seagrass growth may be nitrogen limited as does nitrogen demand, estimated from gross primary productivity. Significant rates of ammonium oxidation in both surface and rhizosphere sediments contribute to this imbalance. Thus, nitrogen fixation may be critical in supporting plant growth.
Lemos Junior, W J F; Viel, A; Bovo, B; Carlot, M; Giacomini, A; Corich, V
2017-11-01
In this work the fermentation performances of seven vineyard strains, together with the industrial strain EC1118, have been investigated at three differing yeast assimilable nitrogen (YAN) concentrations (300 mg N l -1 , 150 mg N l -1 and 70 mg N l -1 ) in synthetic musts. The results indicated that the response to different nitrogen levels is strain dependent. Most of the strains showed a dramatic decrease of the fermentation at 70 mg N l -1 but no significant differences in CO 2 production were found when fermentations at 300 mg N l -1 and 150 mg N l -1 were compared. Only one among the vineyard strains showed a decrease of the fermentation when 150 mg N l -1 were present in the must. These results contribute to shed light on strain nitrogen requirements and offer new perspectives to manage the fermentation process during winemaking. Selected vineyard Saccharomyces cerevisiae strains can improve the quality and the complexity of local wines. Wine quality is also influenced by nitrogen availability that modulates yeast fermentation activity. In this work, yeast nitrogen assimilation was evaluated to clarify the nitrogen requirements of vineyard strains. Most of the strains needed high nitrogen levels to express the best fermentation performances. The results obtained indicate the critical nitrogen levels. When the nitrogen concentration was above the critical level, the fermentation process increased, but if the level of nitrogen was further increased no effect on the fermentation was found. © 2017 The Society for Applied Microbiology.
Nitrogen management and the future of food: Lessons from the management of energy and carbon
Socolow, Robert H.
1999-01-01
The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized. PMID:10339531
Stream nitrogen concentrations are variable and often high in the Oregon Coast Range, uncharacteristic for a predominantly forested region. We compiled stream nitrogen data and GIS-derived landscape characteristics in order to examine variation in nitrogen across the region. In s...
A Method to Exchange Air Nitrogen Emission Reductions for Watershed Nitrogen Load Reductions
Presentation of the method developed for the Chesapeake Bay Program to estimate changes in nitrogen loading to Chesapeake due to changes in Bay State state-level nitrogen oxide emissions to support air-water trading by the Bay States. Type for SticsUnder AMAD Application QAPP, QA...
Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. The bulk of nitrogen in the environment is tightly bound as non-reactive N2. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest ...
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...
40 CFR 86.1323-2007 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer... Exhaust Test Procedures § 86.1323-2007 Oxides of nitrogen analyzer calibration. This section describes the initial and periodic calibration of the chemiluminescent oxides of nitrogen analyzer. (a) Prior to...
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...
40 CFR 86.308-79 - Gas specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... blending. Nitrogen shall be the predominant diluent with the balance oxygen. Blends required for gasoline... zero grade nitrogen as a diluent. Combined CO and CO2 span gases are permitted. Zero grade nitrogen... analyzer shall be propane with zero-grade nitrogen as a diluent when testing gasoline-fueled engines. For...
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...
40 CFR 86.308-79 - Gas specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... blending. Nitrogen shall be the predominant diluent with the balance oxygen. Blends required for gasoline... zero grade nitrogen as a diluent. Combined CO and CO2 span gases are permitted. Zero grade nitrogen... analyzer shall be propane with zero-grade nitrogen as a diluent when testing gasoline-fueled engines. For...
40 CFR 86.1323-2007 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer... Exhaust Test Procedures § 86.1323-2007 Oxides of nitrogen analyzer calibration. This section describes the initial and periodic calibration of the chemiluminescent oxides of nitrogen analyzer. (a) Prior to...
40 CFR 86.1323-2007 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer... Exhaust Test Procedures § 86.1323-2007 Oxides of nitrogen analyzer calibration. This section describes the initial and periodic calibration of the chemiluminescent oxides of nitrogen analyzer. (a) Prior to...
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...