Sample records for nitrogen 20

  1. Eighth international congress on nitrogen fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  2. Changes in nitrogen budget and potential risk to the environment over 20years (1990-2010) in the agroecosystems of the Haihe Basin, China.

    PubMed

    Zheng, Mengmeng; Zheng, Hua; Wu, Yingxia; Xiao, Yi; Du, Yihua; Xu, Weihua; Lu, Fei; Wang, Xiaoke; Ouyang, Zhiyun

    2015-02-01

    The nitrogen balance can serve as an indicator of the risk to the environment of nitrogen loss from agricultural land. To investigate the temporal and spatial changes in agricultural nitrogen application and its potential threat to the environment of the Haihe Basin in China, we used a database of county-level agricultural statistics to calculate agricultural nitrogen input, output, surplus intensity, and use efficiency. Chemical fertilizer nitrogen input increased by 51.7% from 1990 to 2000 and by 37.2% from 2000 to 2010, concomitant with increasing crop yields. Simultaneously, the nitrogen surplus intensity increased by 53.5% from 1990 to 2000 and by 16.5% from 2000 to 2010, presenting a continuously increased environmental risk. Nitrogen use efficiency decreased from 0.46 in 1990 to 0.42 in 2000 and remained constant at 0.42 in 2010, partly due to fertilizer composition and type improvement. This level indicates that more than half of nitrogen inputs are lost in agroecosystems. Our results suggest that although the improvement in fertilizer composition and types has partially offset the decrease in nitrogen use efficiency, the environmental risk has still increased gradually over the past 20 years, along with the increase in crop yields and nitrogen application. It is important to achieve a better nitrogen balance through more effective management to significantly reduce the environmental risk, decrease nitrogen surplus intensity, and increase nitrogen use efficiency without sacrificing crop yields. Copyright © 2014. Published by Elsevier B.V.

  3. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    PubMed

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    under the ambient CO2- (360 µmol · mol(-1)) treatment. The order of nitrogen accumulation content in organs was bud > leaf > stem > root. Soil urease activity of both layers increased significantly with the elevation of CO2 concentration in all the nitrogen treatments. Under each CO2 concentration treatment, the soil urease activity in the upper layer (0-20 cm) increased significantly with nitrogen application, while the urease activity under the application of 300 kg · hm(-2) nitrogen was highest in the lower layer (20- 40 cm). The average soil urease activity in the upper layer (0-20 cm) was significantly higher than that in the lower layer (20-40 cm). This study suggested that the cotton dry matter accumulation and nitrogen absorption content were significantly increased in response to the elevated CO2 concentration (540 µmol · mol(-1)) and higher nitrogen addition (300 kg · hm(-2)).

  4. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai

    2017-01-01

    Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging. PMID:29117250

  5. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.).

    PubMed

    Zhang, Mingwei; Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai

    2017-01-01

    Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging.

  6. Eighth international congress on nitrogen fixation. Final program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  7. [Effects of grafting and nitrogen fertilization on melon yield and nitrogen uptake and utilization].

    PubMed

    Xue, Liang; Ma, Zhong Ming; DU, Shao Ping

    2017-06-18

    A split-field design experiment was carried out using two main methods of cultivation (grafting and self-rooted cultivation) and subplots with different nitrogen application levels (0, 120, 240, and 360 kg N·hm -2 ) to investigate the effects of cultivation method and nitrogen application levels on the yield and quality of melons, nitrogen transfer, nitrogen distribution, and nitrogen utilization rate. The results showed that melons produced by grafting cultivation had a 7.3% increase in yield and a 0.16%-3.28% decrease in soluble solid content, compared to those produced by self-rooted cultivation. The amount of nitrogen accumulated in melons grafted in the early growth phase was lower than that in self-rooted melons, and higher after fruiting. During harvest, nitrogen accumulation amount in grafted melon plants was 5.2% higher than that in self-rooted plants and nitrogen accumulation amount in fruits was 10.3% higher. Grafting cultivation increased the amount of nitrogen transfer from plants to fruits by 20.9% compared to self-rooted cultivation. Nitrogen distribution in fruits was >80% in grafted melons, whereas that in self-rooted melons was <80%. Under the same level of nitrogen fertilization, melons cultivated by grafting showed 1.3%-4.2% increase in nitrogen absorption and utilization rate, 2.73-5.56 kg·kg -1 increase in nitrogen agronomic efficiency, and 7.39-16.18 kg·kg -1 increase in nitrogen physiological efficiency, compared to self-rooted cultivation. On the basis of the combined perspective of commercial melon yield, and nitrogen absorption and utilization rate, an applied nitrogen amount of 240 kg·hm -2 is most suitable for graf-ting cultivation in this region.

  8. DSMC simulations of Mach 20 nitrogen flows about a 70 degree blunted cone and its wake

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Dogra, Virendra K.; Wilmoth, Richard G.

    1993-01-01

    Numerical results obtained with the direct simulation Monte Carlo (DSMC) method are presented for Mach 20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are simulated with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is to characterize the wake flow under rarefied conditions. This is accomplished by calculating the influence of rarefaction on wake structure along with the impact that an afterbody has on flow features. This data report presents extensive information concerning flowfield features and surface quantities.

  9. [Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China].

    PubMed

    Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de

    2017-01-01

    To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.

  10. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen - Preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1980-01-01

    The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.

  11. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    PubMed

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 40 CFR 86.1323-2007 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer... Exhaust Test Procedures § 86.1323-2007 Oxides of nitrogen analyzer calibration. This section describes the initial and periodic calibration of the chemiluminescent oxides of nitrogen analyzer. (a) Prior to...

  13. 40 CFR 86.1323-2007 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Oxides of nitrogen analyzer... Exhaust Test Procedures § 86.1323-2007 Oxides of nitrogen analyzer calibration. This section describes the initial and periodic calibration of the chemiluminescent oxides of nitrogen analyzer. (a) Prior to...

  14. Nitrogen, phosphorus, organic carbon, and biochemical oxygen demand : in Florida surface waters, 1972

    USGS Publications Warehouse

    Kaufman, Matthew I.; Dysart, J.E.

    1978-01-01

    Water samples were collected during spring and autumn 1972 from about 100 surface-water sites in Florida. The samples were analyzed for the plant nutrients, nitrogen and phosphorus. In most waters, nitrogen concentrations are less than 2.0 milligrams per liter as nitrogen, and organic nitrogen is dominant. Median total nitrogen concentration for Florida surface waters is between 1.2 and 2.0 milligrams per liter as nitrogen. In samples from 85 percent of the sites, total nitrogen exceeded 0.6 milligrams per liter. Median total phosphorus concentration as phosphorus for Florida surface waters is between 0.05 and 0.1 milligrams per liter. The information will form a base useful to agencies concerned with setting concentration limits for nitrogen and phosphorus in industrial and sewage plant outfalls. (Woodard-USGS)

  15. Tribological characteristics of nitrogen (N+) implanted iron

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Ferrante, J.

    1982-01-01

    The effect of implantation of nitrogen ions (1.5 MeV) on the friction and wear characteristics of pure ion sliding against M-50 steel (unimplanted) was studied in a pin-on-disk sliding friction apparatus. Test conditions included room temperature (25 C), a dry air atmosphere, a load of 1/2 kg (4.9 N), sliding velocities of 0.043 to 0.078 m/sec (15 to 25 rpm), a pure hydrocarbon lubricant (n-hexadecane), or a U.S.P. mineral oil and nitrogen ion implantation doses of 5x10 to the 15th power and 5x10 to the 17th power ions/sq cm. No differences in wear rates were observed in the low dose experiments. In the high dose experiments, small reductions in initial (40 percent) and steady state (20 percent) wear rates were observed for nitrogen implanted iron riders as compared with unimplanted controls. No differences in average friction coefficients were noted for either dose. Auger electron spectroscopy combined with argon ion bombardment revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 6 atomic percent at a depth of 0.8 microns. Similar analysis within the wear scar of an implanted rider after 20 microns of wear yielded only background nitrogen concentration. No inward migration of nitrogen ions was observed.

  16. CONTROLLING NITROGEN OXIDES

    EPA Science Inventory

    Recent research indicates that nitrogen oxides (NOx) could be one of the most troublesome air pollutants of the 1980's. More than 20 million metric tons of NOx are annually polluting our air as a result of the widespread combustion of fossil fuels in power plants, industrial boil...

  17. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Climate change impacts of US reactive nitrogen.

    PubMed

    Pinder, Robert W; Davidson, Eric A; Goodale, Christine L; Greaver, Tara L; Herrick, Jeffrey D; Liu, Lingli

    2012-05-15

    Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N(2)O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO(2) equivalents (CO(2)e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at -290 to -510 Tg CO(2)e on a GTP(20) basis. However, these effects are largely short-lived. On a GTP(100) basis, combustion contributes just -16 to -95 Tg CO(2)e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N(2)O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N(2)O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO(2) emission reductions will be required to avoid dangerous climate change.

  19. Climate change impacts of US reactive nitrogen

    PubMed Central

    Pinder, Robert W.; Davidson, Eric A.; Goodale, Christine L.; Greaver, Tara L.; Herrick, Jeffrey D.; Liu, Lingli

    2012-01-01

    Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N2O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO2 equivalents (CO2e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at −290 to −510 Tg CO2e on a GTP20 basis. However, these effects are largely short-lived. On a GTP100 basis, combustion contributes just −16 to −95 Tg CO2e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N2O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N2O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO2 emission reductions will be required to avoid dangerous climate change. PMID:22547815

  20. Preprototype nitrogen supply subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Fort, J. H.; Schubert, F. H.

    1982-01-01

    The design and development of a test stand for the Nitrogen Generation Module (NGM) and a series of tests which verified its operation and performance capability are described. Over 900 hours of parametric testing were achieved. The results from this testing were then used to design an advanced NGM and a self contained, preprototype Nitrogen Supply Subsystem. The NGM consists of three major components: nitrogen generation module, pressure controller and hydrazine storage tank and ancillary components. The most important improvement is the elimination of all sealing surfaces, achieved with a total welded or brazed construction. Additionally, performance was improved by increasing hydrogen separating capability by 20% with no increase in overall packaging size.

  1. Nitrogen solubility in the deep mantle and the origin of Earth's primordial nitrogen budget

    NASA Astrophysics Data System (ADS)

    Yoshioka, Takahiro; Wiedenbeck, Michael; Shcheka, Svyatoslav; Keppler, Hans

    2018-04-01

    The solubility of nitrogen in the major minerals of the Earth's transition zone and lower mantle (wadsleyite, ringwoodite, bridgmanite, and Ca-silicate perovskite) coexisting with a reduced, nitrogen-rich fluid phase was measured. Experiments were carried out in multi-anvil presses at 14 to 24 GPa and 1100 to 1800 °C close to the Fe-FeO buffer. Starting materials were enriched in 15N and the nitrogen concentrations in run products were measured by secondary ion mass spectrometry. Observed nitrogen (15N) solubilities in wadsleyite and ringwoodite typically range from 10 to 250 μg/g and strongly increase with temperature. Nitrogen solubility in bridgmanite is about 20 μg/g, while Ca-silicate perovskite incorporates about 30 μg/g under comparable conditions. Partition coefficients of nitrogen derived from coexisting phases are DNwadsleyite/olivine = 5.1 ± 2.1, DNringwoodite/wadsleyite = 0.49 ± 0.29, and DNbridgmanite/ringwoodite = 0.24 (+ 0.30 / - 0.19). Nitrogen solubility in the solid, iron-rich metal phase coexisting with the silicates was also measured and reached a maximum of nearly 1 wt.% 15N at 23 GPa and 1400 °C. These data yield a partition coefficient of nitrogen between iron metal and bridgmanite of DNmetal/bridgmanite ∼ 98, implying that in a lower mantle containing about 1% of iron metal, about half of the nitrogen still resides in the silicates. The high nitrogen solubility in wadsleyite and ringwoodite may be responsible for the low nitrogen concentrations often observed in ultradeep diamonds from the transition zone. Overall, the solubility data suggest that the transition zone and the lower mantle have the capacity to store at least 33 times the mass of nitrogen presently residing in the atmosphere. By combining the nitrogen solubility data in minerals with data on nitrogen solubility in silicate melts, mineral/melt partition coefficients of nitrogen can be estimated, from which the behavior of nitrogen during magma ocean crystallization can

  2. The Effect of Liquid Nitrogen on Bone Graft Survival.

    PubMed

    Sirinoglu, Hakan; Çilingir, Özlem Tuğçe; Çelebiler, Ozhan; Ercan, Feriha; Numanoglu, Ayhan

    2015-08-01

    Liquid nitrogen is used in medicine for cancer treatment and tissue preservation; however, bone viability after its application is controversial. This study aims to evaluate both the tissue viability and the clinical and histopathologic findings following liquid nitrogen application with different thawing techniques in rats. Mandibular bone grafts were taken from 45 Wistar rats and freezed in liquid nitrogen for 20 minutes. In the rapid-thawing technique (Rapid Thawing-1, Rapid Thawing-2), the grafts were held for 20 minutes in room temperature; in the slow-thawing technique (Slow Thawing-1, Slow Thawing-2), 20 minutes in -20°C, 20 minutes in +4°C, and 20 minutes in room temperature, respectively. In Rapid Thawing-2 and Slow Thawing-2 groups, autografts were implanted to their origin for 3 weeks and bone staining with India ink was performed and samples taken for histologic examination. The amount of cells and blood vessels and the density of bone canaliculi were significantly reduced in Rapid Thawing-1 and Slow Thawing-1 groups comparing to the Control group. However, the reduction rate was more significant in the Slow Thawing-1 group. Histomorphometric evaluation of the healing autografts after 3 weeks revealed that the decreased amounts of canaliculi were not changed in Slow Thawing-2 group. The study results demonstrated that bone tissue survives after liquid nitrogen treatment regardless of the performed thawing technique; however, slow thawing causes more tissue damage and metabolism impairment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Nitridation of silicon by nitrogen neutral beam

    NASA Astrophysics Data System (ADS)

    Hara, Yasuhiro; Shimizu, Tomohiro; Shingubara, Shoso

    2016-02-01

    Silicon nitridation was investigated at room temperature using a nitrogen neutral beam (NB) extracted at acceleration voltages of less than 100 V. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of a Si3N4 layer on a Si (1 0 0) substrate when the acceleration voltage was higher than 20 V. The XPS depth profile indicated that nitrogen diffused to a depth of 36 nm for acceleration voltages of 60 V and higher. The thickness of the silicon nitrided layer increased with the acceleration voltages from 20 V to 60 V. Cross-sectional transmission electron microscopy (TEM) analysis indicated a Si3N4 layer thickness of 3.1 nm was obtained at an acceleration voltage of 100 V. Moreover, it was proved that the nitrided silicon layer formed by the nitrogen NB at room temperature was effective as the passivation film in the wet etching process.

  4. Biodegradation of the nitramine explosive CL-20.

    PubMed

    Trott, Sandra; Nishino, Shirley F; Hawari, Jalal; Spain, Jim C

    2003-03-01

    The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobacterium sp. strain JS71, was isolated from enrichment cultures containing garden soil as an inoculum, succinate as a carbon source, and CL-20 as a nitrogen source. Growth experiments revealed that strain JS71 used 3 mol of nitrogen per mol of CL-20.

  5. Biodegradation of the Nitramine Explosive CL-20

    PubMed Central

    Trott, Sandra; Nishino, Shirley F.; Hawari, Jalal; Spain, Jim C.

    2003-01-01

    The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobacterium sp. strain JS71, was isolated from enrichment cultures containing garden soil as an inoculum, succinate as a carbon source, and CL-20 as a nitrogen source. Growth experiments revealed that strain JS71 used 3 mol of nitrogen per mol of CL-20. PMID:12620886

  6. Increasing importance of deposition of reduced nitrogen in the United States

    Treesearch

    Yi Li; Bret A. Schichtel; John T. Walker; Donna B. Schwede; Xi Chen; Christopher M. B. Lehmann; Melissa A. Puchalski; David A. Gay; Jeffrey L. Collett

    2016-01-01

    Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium...

  7. 40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer... Procedures § 92.121 Oxides of nitrogen analyzer calibration and check. (a) Quench checks; NO X analyzer. (1... performed in step in paragraph (a)(3)(i) this section. (b) Oxides of nitrogen analyzer calibration. (1...

  8. 40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen analyzer calibration... Procedures § 92.121 Oxides of nitrogen analyzer calibration and check. (a) Quench checks; NO X analyzer. (1... performed in step in paragraph (a)(3)(i) this section. (b) Oxides of nitrogen analyzer calibration. (1...

  9. Humus and nitrogen in soddy-podzolic soils of different agricultural lands in Perm region

    NASA Astrophysics Data System (ADS)

    Zav'yalova, N. E.

    2016-11-01

    Heavy loamy soddy-podzolic soils (Eutric Albic Retisols (Abruptic, Loamic, Cutanic)) under a mixed forest, a grass-herb meadow, a perennial legume crop (fodder galega, Galéga orientalis), and an eightcourse crop rotation (treatment without fertilization) have been characterized by the main fertility parameters. Differences have been revealed in the contents of humus and essential nutrients in the 0- to 20- and 20- to 40-cm layers of soils of the studied agricultural lands. The medium acid reaction and the high content of ash elements and nitrogen in stubble-root residues of legume grasses favor the accumulation of humic acids in the humus of soil under fodder galega; the CHA/CFA ratio is 0.95 in the 0- to 20-cm layer and 0.81 in the 20- to 40-cm layer (under forest, 0.61 and 0.41, respectively). The nitrogen pool in the upper horizon of the studied soddy-podzolic soil includes 61-76% nonhydrolyzable nitrogen and 17-25% difficultly hydrolyzable nitrogen. The content of easily hydrolyzable nitrogen varies depending on the type of agricultural land from 6% in the soil under mixed forest to 10% under crop rotation; the content of mineral nitrogen varies from 0.9 to 1.9%, respectively. The long-term use of plowland in crop rotation and the cultivation of perennial legume crop have increased the content of hydrolyzable nitrogen forms but have not changed the proportions of nitrogen fractions characteristic of this soil type.

  10. [Key techniques for precision cultivation of nitrogenous fertilizer of pollution-free ginseng].

    PubMed

    Guo, Li-Li; Guo, Shuai; Dong, Lin-Lin; Shen, Liang; Li, Xi-Wen; Xu, Jiang; Chen, Shi-Lin

    2018-04-01

    Planting pollution-free farmland is the main mode of industrialization of ginseng cultivation, fine management of nitrogen fertilizer ginseng pollution-free farmland cultivation technology system is one of the key factors. In order to investigate the effect of nitrogenous fertilizer on the accumulation of ginseng biomass and saponins synthesis in vegetative growth stage, two-years-old ginsengs were used as test materials in this study. The test materials were cultivated by Hoagland medium with different nitrogen concentration (0,10,20,40 mg·L⁻¹) for 40 days. During the cultivation, photosynthetic rate was measured four times. After 40 days cultivation, chlorophyll content, stem diameter and the spatiotemporal expression of saponin synthesis related genes PgHMGR and PgSQE were tested. The results showed that there were significant differences in the photosynthetic rate and chlorophyll content among different nitrogen concentrations. The relative expression level of PgHMGR gene and PgSQE gene in root, stem and leaves of ginseng were different. Ginseng seedlings cultivated by 20 mg·L⁻¹ nitrogen possess the highest photosynthetic rate and chlorophyll content, while PgHMGR and PgSE showed the highest gene expression level. The optimal nitrogen concentration for the growth of 2-years-old ginseng might be 20 mg·L⁻¹ with 57.14 g ammonium nitrate each plant or pure 20.00 mg nitrogen each plant. It is concluded that this concentration is the most suitable concentration for the ginsenoside synthesis. Pollution-free ginseng with fine nitrogen fertilizer cultivation is conducive to the production of high quality and efficient ginseng medicinal materials. It lays a theoretical foundation for the rational fertilization and environment-friendly sustainable ecological ginseng planting industry. Copyright© by the Chinese Pharmaceutical Association.

  11. [Effects of nitrogen preserving agent on composting process and nitrogen loss of Eichhornia crassipes].

    PubMed

    Li, Sen; Luo, Xue Mei; Tu, Wei Guo; Fan, Hua; Gou, Xiao Lin; DU, Yu Long; Li, Ling; Wang, Qiong Yao

    2017-04-18

    To study the effects of nitrogen preserving agent (NPA) on composting process and nitrogen loss of Eichhornia crassipes, an aerobic composting was conducted for 35 days using four treatments. The NPA was prepared by mixing ferrous sulfate, humic acid sodium, and superphosphate (M:M:M=75:20:5). Four treatments were included with different mass ratios of NPA, including 0% (CK), 1% (PN1), 2% (PN2), and 3% (PN3). The physical and chemical properties, N fraction concentrations, ammonia volatilization, and N loss rates were measured and explored during composting process. The results showed that the pile temperature of NPA treatments were higher than that of CK in thermophillic period, however their water contents were significantly (P<0.05) lower than that in CK in cooling period. At the end of composting, the concentrations of total nitrogen and organic nitrogen increased significantly in NPA treatments (P<0.05), and their highest concentrations in the PN3 treatment were 16.3% and 13.2% higher than those in CK, respectively. The ammonia volatilization losses of PN1, PN2 and PN3 treatments were 25.9%, 31.5% and 42.4% lower than that of CK, respectively, however, their nitrogen fixation rates reached 31.3%, 40.7% and 72.2% respectively. Therefore, adding NPA could accelerate start-up speed, shorten composting time, and also could effectively reduce ammonia volatilizations and nitrogen loss in the composting process of E. crassipes. Therefore, PN3 showed the best effects of nitrogen preserving.

  12. Determination of nitrogen in coal macerals using electron microprobe technique-experimental procedure

    USGS Publications Warehouse

    Mastalerz, Maria; Gurba, L.W.

    2001-01-01

    This paper discusses nitrogen determination with the Cameca SX50 electron microprobe using PCO as an analyzing crystal. A set of conditions using differing accelerating voltages, beam currents, beam sizes, and counting times were tested to determine parameters that would give the most reliable nitrogen determination. The results suggest that, for the instrumentation used, 10 kV, current 20 nA, and a counting time of 20 s provides the most reliable nitrogen determination, with a much lower detection limit than the typical concentration of this element in coal. The study demonstrates that the electron microprobe technique can be used to determine the nitrogen content of coal macerals successfully and accurately. ?? 2001 Elsevier Science B.V. All rights reserved.

  13. The nitrogen index as a tool to reduce nitrogen loss to the environment

    USDA-ARS?s Scientific Manuscript database

    Continued population growth creates a need for increased productivity of agricultural systems around the world. Increased agricultural productivity will be needed to support a population that is anticipated to have an additional 2.5 billion people by the year 2050. Nitrogen was part of the 20th cent...

  14. Microbes and the Next Nitrogen Revolution.

    PubMed

    Pikaar, Ilje; Matassa, Silvio; Rabaey, Korneel; Bodirsky, Benjamin Leon; Popp, Alexander; Herrero, Mario; Verstraete, Willy

    2017-07-05

    The Haber Bosch process is among the greatest inventions of the 20th century. It provided agriculture with reactive nitrogen and ultimately mankind with nourishment for a population of 7 billion people. However, the present agricultural practice of growing crops for animal production and human food constitutes a major threat to the sustainability of the planet in terms of reactive nitrogen pollution. In view of the shortage of directly feasible and cost-effective measures to avoid these planetary nitrogen burdens and the necessity to remediate this problem, we foresee the absolute need for and expect a revolution in the use of microbes as a source of protein. Bypassing land-based agriculture through direct use of Haber Bosch produced nitrogen for reactor-based production of microbial protein can be an inspiring concept for the production of high quality animal feed and even straightforward supply of proteinaceous products for human food, without significant nitrogen losses to the environment and without the need for genetic engineering to safeguard feed and food supply for the generations to come.

  15. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    PubMed

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  16. Virtual Nitrogen Losses from Organic Food Production

    NASA Astrophysics Data System (ADS)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  17. Pre- and post-impoundment nitrogen in the lower Missouri River

    USGS Publications Warehouse

    Blevins, Dale W.; Wilkison, Donald H.; Niesen, Shelley L.

    2013-01-01

    Large water-sample sets collected from 1899 through 1902, 1907, and in the early 1950s allow comparisons of pre-impoundment and post-impoundment (1969 through 2008) nitrogen concentrations in the lower Missouri River. Although urban wastes were not large enough to detectably increase annual loads of total nitrogen at the beginning of the 20th century, carcass waste, stock-yard manure, and untreated human wastes measurably increased ammonia and organic-nitrogen concentrations during low flows. Average total-nitrogen concentrations in both periods were about 2.5 mg/l, but much of the particulate-organic nitrogen, which was the dominant form of nitrogen around 1900, has been replaced by nitrate. This change in speciation was caused by the nearly 80% decrease in suspended-sediment concentrations that occurred after impoundment, modern agriculture, drainage of riparian wetlands, and sewage treatment. Nevertheless, bioavailable nitrogen has not been low enough to limit primary production in the Missouri River since the beginning of the 20th century. Nitrate concentrations have increased more rapidly from 2000 through 2008 (5 to 12% per year), thus increasing bioavailable nitrogen delivered to the Mississippi River and affecting Gulf Coast hypoxia. The increase in nitrate concentrations with distance downstream is much greater during the post-impoundment period. If strategies to decrease total-nitrogen loads focus on particulate N, substantial decreases will be difficult because particulate nitrogen is now only 23% of total nitrogen in the Missouri River. A strategy aimed at decreasing particulates also could further exacerbate land loss along the Gulf of Mexico, which has been sediment starved since Missouri River impoundment. In contrast, strategies or benchmarks aimed at decreasing nitrate loads could substantially decrease nitrogen loadings because nitrates now constitute over half of the Missouri's nitrogen input to the Mississippi. Ongoing restoration and creation

  18. [Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields].

    PubMed

    Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing

    2017-06-18

    A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the

  19. Ammonium stability and nitrogen isotope fractionations for NH4+-NH3(aq)-NH3(gas) systems at 20-70 °C and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Li, Long; Lollar, Barbara Sherwood; Li, Hong; Wortmann, Ulrich G.; Lacrampe-Couloume, Georges

    2012-05-01

    Ammonium/ammonia is an essential nutrient and energy source to support life in oceanic and terrestrial hydrothermal systems. Thus the stability of ammonium is crucial to determine the habitability or ecological structure in hydrothermal environments, but still not well understood. To date, the lack of constraints on nitrogen isotope fractionations between ammonium and ammonia has limited the application of nitrogen isotopes to trace (bio)geochemical processes in such environments. In this study, we carried out laboratory experiments to (1) examine the stability of ammonium in an ammonium sulfate solution under temperature conditions from 20 to 70 °C and pH from 2.1 to 12.6 and (2) determine nitrogen isotope fractionation between ammonium and ammonia. Our experimental results show that ammonium is stable under the experimental temperatures when pH is less than 6. In experiments with starting pH greater than 8, significant ammonium was lost as a result of dissociation of ammonium and degassing of ammonia product. Nitrogen concentrations in the fluids decreased by more than 50% in the first two hours, indicating extremely fast effusion rates of ammonia. This implies that ammonium at high pH fluids (e.g., Lost City Hydrothermal Vents, Oman ophiolite hyperalkaline springs) may not be stable. Habitable environments may be more favorable at the leading edge of a pH gradient toward more acidic conditions, where the fluid can efficiently trap any ammonia transferred from a high pH vent. Although modeling shows that high temperature, low pH hydrothermal vents (e.g., Rainbow hydrothermal vent) may have the capability to retain ammonium, their high temperatures may limit habitability. The habitable zone associated with such a hydrothermal vent is likely at the lower front of a temperature gradient. In contrast, modeling of ammonium in deep terrestrial systems, suggests that saline fracture waters in crystalline rocks such as described in the Canadian Shield and in the

  20. Nitrogen removal via nitrite from seawater contained sewage.

    PubMed

    Peng, Yongzhen; Yu, De-Shuang; Liang, Dawei; Zhu, Guibing

    2004-01-01

    Under the control of both pH and the concentration of free ammonia (FA), the nitrification-denitrification via nitrite pathway was accomplished in SBR to achieve enhanced biological nitrogen removal from seawater contained wastewater, which is used to flush toilet, under relatively high salinity. Several parameters including salinity, temperature, pH, and NH4+-N loading rate were studied to evaluate their effects. The results indicate that at different salinity the nitrogen removal efficiency is relative to ammonia-nitrogen loading rate. The nitrogen removal efficiency reaches above 90% when the NH4+-N loading does not exceed 0.15 kg NH4+-N/kg MLSS d. With the salinity increasing, the ammonia-nitrogen loading rate should be lowered to obtain high removal efficiency. The evaluation of temperature effect shows that nitrogen removal efficiency is promoted twice when reaction temperature is elevated from 20 to 30 degrees C. Moderately high pH in the range of 7.5-8.5 has advantage to achieve effective nitrification-denitrification via nitrite, the process of which is caused by the selective inhibition of free ammonia (FA).

  1. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine...

  2. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine...

  3. Five Years of Nitrogen Fertilization in a Sweetgum-Oak Stand

    Treesearch

    W. M. Broadfoot

    1966-01-01

    Diameter and height growth were significantly increased in a 20-year-old sweetgum-oak stand by annual surface application of ammonium nitrate and of complete N-P-K fertilizer. Nitrogen fertilization significantly increased the nitrogen content of foliage. With increasing nitrate application, exchangeable potassium in the soil 1 year after treatment decreased.

  4. Responses to simulated nitrogen deposition by the neotropical epiphytic orchid Laelia speciosa

    PubMed Central

    Díaz-Álvarez, Edison A.; Lindig-Cisneros, Roberto

    2015-01-01

    Potential ecophysiological responses to nitrogen deposition, which is considered to be one of the leading causes for global biodiversity loss, were studied for the endangered endemic Mexican epiphytic orchid, Laelia speciosa, via a shadehouse dose-response experiment (doses were 2.5, 5, 10, 20, 40, and 80 kg N ha−1 yr−1) in order to assess the potential risk facing this orchid given impending scenarios of nitrogen deposition. Lower doses of nitrogen of up to 20 kg N ha yr−1, the dose that led to optimal plant performance, acted as fertilizer. For instance, the production of leaves and pseudobulbs were respectively 35% and 36% greater for plants receiving 20 kg N ha yr−1 than under any other dose. Also, the chlorophyll content and quantum yield peaked at 0.66 ± 0.03 g m−2 and 0.85 ± 0.01, respectively, for plants growing under the optimum dose. In contrast, toxic effects were observed at the higher doses of 40 and 80 kg N ha yr−1. The δ13C for leaves averaged −14.7 ± 0.2‰ regardless of the nitrogen dose. In turn, δ15N decreased as the nitrogen dose increased from 0.9 ± 0.1‰ under 2.5 kg N ha−1yr−1 to −3.1 ± 0.2‰ under 80 kg N ha−1yr−1, indicating that orchids preferentially assimilate NH4+ rather than NO3− of the solution under higher doses of nitrogen. Laelia speciosa showed a clear response to inputs of nitrogen, thus, increasing rates of atmospheric nitrogen deposition can pose an important threat for this species. PMID:26131375

  5. Protein Losses and Urea Nitrogen Underestimate Total Nitrogen Losses in Peritoneal Dialysis and Hemodialysis Patients.

    PubMed

    Salame, Clara; Eaton, Simon; Grimble, George; Davenport, Andrew

    2018-04-28

    Muscle wasting is associated with increased mortality and is commonly reported in dialysis patients. Hemodialysis (HD) and peritoneal dialysis (PD) treatments lead to protein losses in effluent dialysate. We wished to determine whether changes in current dialysis practice had increased therapy-associated nitrogen losses. Cross-sectional cohort study. Measurement of total protein, urea and total nitrogen in effluent dialysate from 24-hour collections from PD patients, and during haemodiafiltration (HDF) and haemodialysis (HD) sessions. One hundred eight adult dialysis patients. Peritoneal dialysis, high-flux haemodialysis and haemodiafiltration. Total nitrogen and protein losses. Dialysate protein losses were measured in 68 PD and 40 HD patients. Sessional losses of urea (13.9 [9.2-21.1] vs. 4.8 [2.8-7.8] g); protein (8.6 [7.2-11.1] vs. 6.7 [3.9-11.1] g); and nitrogen (11.5 [8.7-17.7] vs. 4.9 [2.6-9.5] g) were all greater for HD than PD, P < .001. Protein-derived nitrogen was 71.9 (54.4-110.4) g for HD and 30.8 (16.1-59.6) g for PD. Weekly protein losses were lower with HD 25.9 (21.5-33.4) versus 46.6 (27-77.6) g/week, but nitrogen losses were similar. We found no difference between high-flux HD and HDF: urea (13.5 [8.8-20.6] vs. 15.3 [10.5-25.5] g); protein (8.8 [7.3-12.2] vs. 7.6 [5.8-9.0] g); and total nitrogen (11.6 [8.3-17.3] vs. 10.8 [8.9-22.5] g). Urea nitrogen (UN) only accounted for 45.1 (38.3-51.0)% PD and 63.0 (55.3-62.4)% HD of total nitrogen losses. Although sessional losses of protein and UN were greater with HD, weekly losses were similar between modalities. We found no differences between HD and HDF. However, total nitrogen losses were much greater than the combination of protein and UN, suggesting greater nutritional losses with dialysis than previously reported. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants

    DOE PAGES

    Franklin, Oskar; Cambui, Camila Aguetoni; Gruffman, Linda; ...

    2016-06-29

    The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that themore » carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production.« less

  7. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, Oskar; Cambui, Camila Aguetoni; Gruffman, Linda

    The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that themore » carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production.« less

  8. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants

    PubMed Central

    Cambui, Camila Aguetoni; Gruffman, Linda; Palmroth, Sari; Oren, Ram; Näsholm, Torgny

    2016-01-01

    Abstract The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production. PMID:27241731

  9. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  10. 40 CFR Table 1 to Subpart Cb of... - Nitrogen Oxides Guidelines for Designated Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Nitrogen Oxides Guidelines for... September 20, 1994 Pt. 60, Subpt. Cb, Table 1 Table 1 to Subpart Cb of part 60—Nitrogen Oxides Guidelines for Designated Facilities Municipal waste combustor technology Before April 28, 2009,nitrogen oxides...

  11. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  12. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  13. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  14. 40 CFR Table 1 to Subpart Cb of... - Nitrogen Oxides Guidelines for Designated Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Nitrogen Oxides Guidelines for... September 20, 1994 Pt. 60, Subpt. Cb, Table 1 Table 1 to Subpart Cb of Part 60—Nitrogen Oxides Guidelines for Designated Facilities Municipal waste combustor technology Before April 28, 2009,nitrogen oxides...

  15. Bounding salt marsh nitrogen fluxes: development of an ecohydrological salt marsh model

    EPA Science Inventory

    A mass-balance approach to characterize nitrogen flux in a 2-hectare, meso-haline saltmarsh yielded extensive flow and water chemistry data. However, a significant, unevenly distributed population of the nitrogen fixer Alnus rubra (red alder) in the 20-hectare upland catchment l...

  16. Nitrogen availability from residues-based biochar at two pyrolisis temperatures

    NASA Astrophysics Data System (ADS)

    Coscione, Aline Renee; Silveira Bibar, Maria Paula; de Andrade, Cristiano Alberto

    2014-05-01

    Biochar has been studied for several applications, such as soil quality improvement, heavy metals remediation and N2O mitigation. Considering the soil quality improvement aspect it is desirable to evaluate if the nitrogen content in biochar samples obtained from several residues used as the biomass sources could be available for plants. Samples of sewage sludge (SS), coffee grounds (CG), chicken manure (CM) and fungi mycelia (FM) were pyrolyzed at two temperatures, 400 and 700 oC (indicated by the number 4 and 7 in this abstract, respectively), in order to obtain the biochar samples. The Kjeldahl nitrogen of biochar was (% m/m): 3.0 (CM4, CG7, FM7 and CG4); 2.0 (CM7 e SS4); 3.4 (FM7); 1.4 (SS7), with organic carbon (potassium dichromate method) ranging from 2.0 to 3.0% for all but CG4 (6%). The C/N ratio of biochar samples was: 9 (CM4, SS4 and CG7); 11 (CM7); 15 (SS7); 7 (FM4 and FM7); 21 (CG4). The eight soil + biochar resulting mixtures, prepared using the equivalent to 60 t/ha of biochar (about 3% w/w), and one additional control treatment (no biochar added) were incubated for 90 days, with four replications of each treatment per time evaluated. Inorganic nitrogen and soil pH measurements were performed for all treatments at 0, 5, 15, 30, 60 and 90 days of incubation. Soil moisture was kept at 40% soil water holding capacity, by weighting, during the experiment. The data was submitted to ANOVA with Tukey's average comparison test (p < 0.05). No significative pH changes were observed during the incubation of biochar samples. At the initial incubation time (zero days) no statistical difference was observed among biochar sources or pyrolisis temperatures. After five days of incubation SS4 and CM4 showed significant inorganic nitrogen release compared to all other treatments, behavior repeated at all the following times evaluated. For CM7, FM4 and FM7 maximum nitrogen availability was observed after 15 days, while it occurred after 90 days for SS4. After 90 days

  17. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  18. Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide

    DOE Data Explorer

    Ken Oglesby

    2010-01-01

    Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI

  19. An Expanded Analysis of Nitrogen Ice Convection in Sputnik Planum

    NASA Astrophysics Data System (ADS)

    Umurhan, Orkan M.; Lyra, Wladimir; Wong, Teresa; McKinnon, William B.; Nimmo, Francis; Howard, Alan D.; Moore, Jeffrey M.; Binzel, Richard; White, Oliver; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie; New Horizons Geology and Geophysics Science Team

    2016-10-01

    The New Horizons close-encounter flyby of Pluto revealed 20-35 km scale ovoid patterns on the informally named Sputnik Planum. These features have been recently interpreted and shown to arise from the action of solid-state convection of (predominantly) nitrogen ice driven by Pluto's geothermal gradient. One of the major uncertainties in the convection physics centers on the temperature and grain-size dependency of nitrogen ice rheology, which has strong implications for the overturn times of the convecting ice. Assuming nitrogen ice in Sputnik Planum rests on a passive water ice bedrock that conducts Pluto's interior heat flux, and, given the uncertainty of the grain-size distribution of the nitrogen ice in Sputnik Planum, we examine a suite of two-dimensional convection models that take into account the thermal contact between the nitrogen ice layer and the conducting water-ice bedrock for a given emergent geothermal flux. We find for nitrogen ice layers several km deep, the emerging convection efficiently cools the nitrogen-ice water-ice bedrock interface resulting in temperature differences across the convecting layer of 10-20 K (at most) regardless of layer depth. For grain sizes ranging from 0.01 mm to 5 mm the resulting horizontal size to depth ratios of the emerging convection patterns go from 4:1 up to 6:1, suggesting that the nitrogen ice layer in Sputnik Planum may be anywhere between 3.5 and 8 km deep. Such depths are consistent with Sputnik Planum being a large impact basin (in a relative sense) analogous to Hellas on Mars. In this grain-size range we also find, (i) the calculated cell overturn times are anywhere from 1e4 to 5e5 yrs and, (ii) there is a distinct transition from steady state to time dependent convection.

  20. Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20)

    PubMed Central

    Karakaya, Pelin; Christodoulatos, Christos; Koutsospyros, Agamemnon; Balas, Wendy; Nicolich, Steve; Sidhoum, Mohammed

    2009-01-01

    The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the CL-20 concentration; levels of carbon (as glycerol) and ammonium sulfate and yeast extract as sources of nitrogen. Cultures that received CL-20 at the time of inoculation transformed CL-20 completely under all nutrient conditions studied. When CL-20 was added to pre-grown cultures, degradation was limited. The extent of mineralization was monitored by the 14CO2 time evolution; up to 51% mineralization was achieved when the fungus was incubated with [14C]-CL-20. The kinetics of CL-20 biodegradation by Phanerochaete chrysosporium follows the logistic kinetic growth model. PMID:19440524

  1. Biodegradation of the high explosive hexanitrohexaazaiso-wurtzitane (CL-20).

    PubMed

    Karakaya, Pelin; Christodoulatos, Christos; Koutsospyros, Agamemnon; Balas, Wendy; Nicolich, Steve; Sidhoum, Mohammed

    2009-04-01

    The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the CL-20 concentration; levels of carbon (as glycerol) and ammonium sulfate and yeast extract as sources of nitrogen. Cultures that received CL-20 at the time of inoculation transformed CL-20 completely under all nutrient conditions studied. When CL-20 was added to pre-grown cultures, degradation was limited. The extent of mineralization was monitored by the (14)CO(2) time evolution; up to 51% mineralization was achieved when the fungus was incubated with [(14)C]-CL-20. The kinetics of CL-20 biodegradation by Phanerochaete chrysosporium follows the logistic kinetic growth model.

  2. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    USGS Publications Warehouse

    Jain, A.A.; Yang, Xiaojuan; Kheshgi, H.; McGuire, A. David; Post, W.; Kicklighter, David W.

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon

  3. [Nitrogen mineralization rate in different soil layers and its influence factors under plastic film mulched in Danjiangkou Reservoir area, China].

    PubMed

    Yu, Xing Xiu; Xui, Miao Miao; Zhao, Jin Hui; Zhang, Jia Peng; Wang, Wei; Guo, Ya Li; Xiao, Juan Hua

    2018-04-01

    The objective of this study was to investigate the rate of nitrogen mineralization in various soil layers (0-10, 10-20, and 20-30 cm) and its influencing factors under plastic film mulching ridge-furrow in a corn field of Wulongchi small watershed, Danjiangkou Reservoir Area. Results showed that the rate of soil ammonification decreased with soil depth during the entire maize growth period. The rate of nitrification in seedling, jointing, and heading stages decreased in the following order: 10-20 cm > 0-10 cm > 20-30 cm, while it increased with soil depth in maturation stage. The rate of soil nitrogen mineralization decreased with the increases in soil depth in the seedling, jointing and heading stages, whereas an opposite pattern was observed in maturation stage. Compared with non-filming, film mulching promoted the soil ammonification process in 0-10 cm and the soil nitrification and nitrogen mineralization processes in jointing, heading, and maturation stages in both 0-10 and 10-20 cm. However, the rates of soil nitrification and nitrogen mineralization under film mulching were much lower than those under non-filming in seedling stage. The stepwise regression analysis indicated that the main factors influencing soil nitrogen mineralization rate varied with soil depth. Soil moisture and total N content were the dominant controller for variation of soil nitrogen mineralization in 0-10 cm layer. Soil temperature, moisture, and total N content were dominant controller for that in 10-20 cm layer. Soil temperature drove the variation of soil nitrogen mineralization in 20-30 cm layer.

  4. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  5. Neutralization by a Corona Discharge Ionizer in Nitrogen Atmosphere

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Toru; Takahashi, Kazunori; Ohkubo, Takahiro; Fujiwara, Tamiya

    An electrostatic neutralization of multilayer-loading silicon wafers is demonstrated using a corona discharge ionizer in nitrogen atmosphere, where ac and dc voltages are applied to two needle electrodes for generation of the negative- and positive-charged particles, respectively. We observe a surface potential of the silicon wafer decreases from ±1kV to ±20V within three seconds. Moreover, the density profiles of the charged particles generated by the electrodes are experimentally and theoretically investigated in nitrogen and air atmospheres. Our results show the possibility that the negative-charged particles contributing to the electrostatic neutralization are electrons and negative ions in nitrogen and air atmospheres, respectively.

  6. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants.

    PubMed

    Franklin, Oskar; Cambui, Camila Aguetoni; Gruffman, Linda; Palmroth, Sari; Oren, Ram; Näsholm, Torgny

    2017-01-01

    The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower - up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  7. Aqueous phase removal of nitrogen from nitrogen compounds

    DOEpatents

    Fassbender, Alex G.

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  8. Nitrogen vacancy complexes in nitrogen irradiated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, A. van; Westerduin, K.T.; Schut, H.

    1996-12-31

    Gas desorption and positron annihilation techniques have been employed to study the evolution of nitrogen associated defects in nitrogen irradiated metals: Fe, Ni, Mo and W. Nitrogen in these metals has a rather high affinity to vacancy type defects. The results obtained for low irradiation dose show that substitutional nitrogen (NV; with V = vacancy) is formed. The nitrogen vacancy complex dissociates at temperatures ranging from 350 K for Ni to 900 K for Mo and 1,100 K for W. At high doses defects are formed which can be characterized as nitrogen saturated vacancy clusters. These defect, as observed bymore » helium probing, disappear during annealing for nickel at 800 K, and for Mo at 1,100 K. The direct observation of the desorbing nitrogen for nickel and molybdenum reveals a very fast desorption transient at the dissociation temperature of the clusters. This is the characteristic desorption transient of a small nitride cluster, e.g., by shrinkage with constant rate. For iron the nitrogen desorption is more complicated because of a general background that continuously rises with temperature. With the positron beam technique depth information was obtained for defects in iron and the defect character could be established with the help of the information provided on annihilation with conduction and core electrons of the defect trapped positrons.« less

  9. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that

  10. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  11. Increasing importance of deposition of reduced nitrogen in the United States

    PubMed Central

    Li, Yi; Schichtel, Bret A.; Walker, John T.; Schwede, Donna B.; Chen, Xi; Lehmann, Christopher M. B.; Puchalski, Melissa A.; Gay, David A.; Collett, Jeffrey L.

    2016-01-01

    Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions. PMID:27162336

  12. Nitrogen metabolism in haloarchaea

    PubMed Central

    Bonete, María José; Martínez-Espinosa, Rosa María; Pire, Carmen; Zafrilla, Basilio; Richardson, David J

    2008-01-01

    The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments. The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3-, NO2- or NH4+ as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils. PMID:18593475

  13. Numerical study on the flow and heat transfer characteristics of slush nitrogen in a corrugated pipe

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Wu, S. Q.; Jin, T.

    2017-12-01

    Slush nitrogen has lower temperature, higher density and higher heat capacity than that of liquid nitrogen at normal boiling point. It is considered to be a potential coolant for high-temperature superconductive cables (HTS) that would decrease nitrogen consumption and storage cost. The corrugated pipe can help with the enhancement of heat transfer and flexibility of the coolants for HTS cables. In this paper, a 3-D Euler-Euler two-fluid model has been developed to study the flow and heat transfer characteristics of slush nitrogen in a horizontal helically corrugated pipe. By comparing with the empirical formula for pressure drop, the numerical model is confirmed to be effective for the prediction of slush nitrogen flow in corrugated pipes. The flow and heat transfer characteristics of slush nitrogen in a horizontal pipe at various working conditions (inlet solid fraction of 0-20%, inlet velocity of 0-3 m/s, heat flux of 0-12 kW/m2) have been analyzed. The friction factor of slush nitrogen is lower than that of subcooled liquid nitrogen when the slush Reynolds number is higher than 4.2×104. Moreover, the heat transfer coefficient of slush nitrogen flow in the corrugated pipe is higher than that of subcooled liquid nitrogen at velocities which is higher than that 1.76 m/s, 0.91 m/s and 0.55 m/s for slush nitrogen with solid fraction of 5%, 10% and 20%, respectively. The slush nitrogen has been confirmed to have better heat transfer performance and lower pressure drop instead of using liquid nitrogen flowing through a helically corrugated pipe.

  14. Landau level splitting in nitrogen-seeded epitaxial graphene

    DOE PAGES

    Rothwell, S. L.; Wang, F.; Liu, G.; ...

    2016-07-01

    We present a new form of semiconducting graphene grown on C-face silicon carbide, SiC(0001), seeded with a sub-monolayer of nitrogen. This graphene exhibits a gap of 0.3-0.7 eV from the Fermi level to the valence band dependent on lm thickness as measured via angle resolved photo-emission spectroscopy (ARPES). Scanning tunneling microscopy (STM) images imply that the bandgap may be the result of strain-induced confinement. STM indicates that much of the graphene consists of wide at hexagonal plateaus, 8-20 nm2 on average, surrounded by both smooth and disordered folds of length scales from 0.5-2 nm tall, 1-4 nm thick, and 1-20more » nm long. The remainder of the surface is covered in smooth or disordered ripples and folds intermixed. Scanning tunneling spectroscopy (STS) measurements on all features show peaks suggestive of Landau levels, and have been analyzed to give pseudo-magnetic field magnitudes. The magnetic lengths associated with these fields are less than the average plateau diameter but comparable to typical fold widths. We consider a growth process whereby the graphene grows pinned to the substrate by the interface nitrogen. The graphene experiences compressive strain as a result of both this pinning as well as competing thermal expansion forces between the substrate and lm. As a result, graphene on nitrogen-seeded SiC has a more concentrated network of strained ripples and folds than seen on C-face SiC graphene without nitrogen.« less

  15. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon

    NASA Astrophysics Data System (ADS)

    Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri

    2001-07-01

    Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.

  16. Effect of salinity on the critical nitrogen concentration of Spartina alterniflora Loisel

    USGS Publications Warehouse

    Bradley, P.M.; Morris, J.T.

    1992-01-01

    Nitrogen was withheld from the salt marsh grass Spartina alterniflora Loisel., in order to determine the effect of salinity (sea salts) on critical tissue nitrogen concentrations (defined here as the minimum tissue concentration required to sustain biomass accumulation). The critical nitrogen concentration per kilogram dry weight of above-ground tissue increased non-linearly from a mean of 8.2 g kg-1 at 5 g l-1 and 20 g l-1 salinity to 13.6 g kg-1 and 22.9 g kg-1 at salinities of 40 g l-1 and 50 g l-1, respectively. Below-ground tissue nitrogen concentrations averaged 62% of the above-ground values irrespective of salinity treatment. These results suggest that the critical nitrogen concentration is a function of salinity and indicate that the internal nitrogen supply required in support of growth increases with salinity. Above-ground tissue nitrogen concentrations reported in the literature and the relationship between salinity and critical nitrogen concentration observed in this study were used to evaluate the nitrogen status of S. alterniflora over a wide range of geographical locations. Comparisons suggest that both short and tall forms of S. alterniflora are nitrogen limited in the majority of marshes along the Gulf and Atlantic Coasts of the US. ?? 1992.

  17. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  18. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    PubMed

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II

    NASA Astrophysics Data System (ADS)

    Gonnella, D.; Aderhold, S.; Burrill, A.; Daly, E.; Davis, K.; Grassellino, A.; Grimm, C.; Khabiboulline, T.; Marhauser, F.; Melnychuk, O.; Palczewski, A.; Posen, S.; Ross, M.; Sergatskov, D.; Sukhanov, A.; Trenikhina, Y.; Wilson, K. M.

    2018-03-01

    The Linac Coherent Light Source II (LCLS-II) is a new state-of-the-art coherent X-ray source being constructed at SLAC National Accelerator Laboratory. It employs 280 superconducting radio frequency (SRF) cavities in order operate in continuous wave (CW) mode. To reduce the overall cryogenic cost of such a large accelerator, nitrogen-doping of the SRF cavities is being used. Nitrogen-doping has consistently been shown to increase the efficiency of SRF cavities operating in the 2.0 K regime and at medium fields (15-20 MV/m) in vertical cavity tests and horizontal cryomodule tests. While nitrogen-doping's efficacy for improvement of cavity performance was demonstrated at three independent labs, Fermilab, Jefferson Lab, and Cornell University, transfer of the technology to industry for LCLS-II production was not without challenges. Here we present results from the beginning of LCLS-II cavity production. We discuss qualification of the cavity vendors and the first cavities from each vendor. Finally, we demonstrate that nitrogen-doping has been successfully transferred to SRF cavity vendors, resulting in consistent production of cavities with better cryogenic efficiency than has ever been achieved for a large-scale accelerator.

  20. Feeding the city: food consumption and flow of nitrogen, Paris, 1801-1914.

    PubMed

    Barles, Sabine

    2007-04-01

    The flows of foodstuffs (and the nitrogen they contain) through the city of Paris in the 19th and early 20th century were evaluated. Between 1801 and 1914, the fivefold increase in the population of Paris, as well as the threefold increase in the number of horses used in urban transport, gave rise to increased needs for food and feed. The corresponding inputs of nitrogen increased from 6000 tN/year in 1817 to 25,000 tN/year from the rural hinterland to the city. The corresponding per capita inflows were relatively stable throughout the period and may be divided into four more or less equal parts (flour, meat, other human foodstuffs, forage), each representing about 6 gN per inhabitant per day. In total, the demand for foodstuffs was of the order of 24 gN per inhabitant per day, one quarter of which was for transport. The fate of this dietary nitrogen after consumption changed a lot with the techniques used for exploiting urban excreta of all kinds, particularly of nitrogen, which was in great demand until the development of synthetic fertilizers. Dietary nitrogen flow diagrams are established for the years 1817, 1869 and 1913, and reveal an increasing improvement of the agricultural reuse (from 20 to 40% of the inflowing N).

  1. Climate Change Impacts of US Reactive Nitrogen Emissions

    NASA Astrophysics Data System (ADS)

    Pinder, R. W.; Davidson, E. A.; Goodale, C. L.; Greaver, T.; Herrick, J.; Liu, L.

    2011-12-01

    By fossil fuel combustion and fertilizer application, the US has substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here, we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions. We use the global temperature potential (GTP) as a common metric, and we calculate the GTP at 20 and 100 years in units of CO2 equivalents. At both time-scales, nitrogen enhancement of CO2 uptake has the largest impact, because in the eastern US, areas of high nitrogen deposition are co-located with forests. In the short-term, the effect due to NOx altering ozone and methane concentrations is also substantial, but are not important on the 100 year time scale. Finally, the GTP of N2O emissions is substantial at both time scales. We have also attributed these impacts to combustion and agricultural sources, and quantified the uncertainty. Reactive nitrogen from combustion sources contribute more to cooling than warming. The impacts of agricultural sources tend to cancel each other out, and the net effect is uncertain. Recent trends show decreasing reactive nitrogen from US combustion sources, while agricultural sources are increasing. Fortunately, there are many mitigation strategies currently available to reduce the climate change impacts of US agricultural sources.

  2. High Energy Density Lithium Primary Cells Using Nitrogen Containing Polymer Positives.

    DTIC Science & Technology

    1983-12-01

    the charges were stabilized on heteroatoms, particularly nitro- gen. A positive charge would be stored in the form of an ammonium ion. in a high...operate reversibly. 2.0 POLYMERIC CATHODES A polymer which might be expected to exemplify charge stabilization by nitrogen is poly-N-methylpyrrole (PMP...This material is electronically conductive and might store one charge per nitrogen atom. ox. PMP;4 N3 red. I N + N+ An additional, seductive attraction

  3. Nitrogen release from rock and soil under simulated field conditions

    USGS Publications Warehouse

    Holloway, J.M.; Dahlgren, R.A.; Casey, W.H.

    2001-01-01

    A laboratory study was performed to simulate field weathering and nitrogen release from bedrock in a setting where geologic nitrogen has been suspected to be a large local source of nitrate. Two rock types containing nitrogen, slate (1370 mg N kg-1) and greenstone (480 mg N kg-1), were used along with saprolite and BC horizon sand from soils derived from these rock types. The fresh rock and weathered material were used in batch reactors that were leached every 30 days over 6 months to simulate a single wet season. Nitrogen was released from rock and soil materials at rates between 10-20 and 10-19 mo1 N cm-2 s-1. Results from the laboratory dissolution experiments were compared to in situ soil solutions and available mineral nitrogen pools from the BC horizon of both soils. Concentrations of mineral nitrogen (NO3- + NH4+) in soil solutions reached the highest levels at the beginning of the rainy season and progressively decreased with increased leaching. This seasonal pattern was repeated for the available mineral nitrogen pool that was extracted using a KCl solution. Estimates based on these laboratory release rates bracket stream water NO3-N fluxes and changes in the available mineral nitrogen pool over the active leaching period. These results confirm that geologic nitrogen, when present, may be a large and reactive pool that may contribute as a non-point source of nitrate contamination to surface and ground waters. ?? 2001 Elsevier Science B.V. All rights reserved.

  4. Nitrogen loss in normal and obese subjects during total fast.

    PubMed

    Göschke, H; Stahl, M; Thölen, H

    1975-07-01

    Healthy volunteers of ideal weight (12 men and 12 women) were fasted for 6 days, and obese but otherwise healthy subjects (20 men, 28 women) for 6--28 days. In all groups studied a significant increase in urinary nitrogen loss from day 1 to day 3 of fasting was followed by a steady decrease. The early rise in urinary nitrogen excretion coincided with a rise in plasma glucagon levels, suggesting a relation of the latter to increased gluconeogenesis from amino acids. At equal weight greater nitrogen losses were found in men than in women, in both normal and obese subjects. In spite of much higher weight and larger energy expenditure and nitrogen loss in obese subjects however was not higher than in normal ones. Mean daily nitrogen losses varied from 14.5 g (normal and obese men early in starvation) to 3.0 g (obese women after a 4-weeks fast). Calculating the amount of calories derived from body protien (urinary nitrogen X 6.25 X 4.1)and taking total energy expenditure from tabular metabolic values, the contribution of protein to total calorie output was found to vary from 15% (normal men 6 day fast) to 5(obese women, 4th week of fasting). The clinical significance of nitrogen loss during therapeutic fasting is discussed.

  5. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Nitrogen Oxides Requirements for Affected Facilities 2 Table 2 to Subpart FFF of Part 62 Protection of Environment ENVIRONMENTAL PROTECTION... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides...

  6. The Role of Atmospheric Organic Nitrogen in Forest Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    Lockwood, A.; Shepson, P.; Rhodes, D.

    2003-12-01

    Changes in the global climate and atmosphere cause significant effects to the biosphere. Forests respond to these global changes in various ways which all can affect their ability to store carbon, which in turn impacts climate change. Many temperate latitude forests are nitrogen-limited. A current working hypothesis is that atmospheric nitrogen compounds that are deposited to the canopy may be directly utilized by the plant as a nitrogen source. A significant fraction of atmospheric reactive nitrogen that can be deposited is organic. Organic nitrogen deposition is not well characterized nor have the ecological consequences been assessed. Our hypothesis is that organic nitrogen deposition to the canopy is significant, and that that nitrogen is utilized by trees. Fumigation experiments were conducted with 14N and 15N-labeled organic nitrates (focusing on 1-nitrooxy-3-methyl butane as a surrogate for isoprene nitrates) to determine if and how that nitrogen gets incorporated into the leaves by detecting the 15N-labeled leaf amino acids. This research builds on work completed during past summer intensives as part of the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET), and begins the next stage of research as part of the Biosphere Atmosphere Research & Training program (BART) at the University of Michigan Biological Station (UMBS). The overall goal of the new effort, the Biosphere Exchange of Atmospheric Carbon and Odd Nitrogen (BEACON) program, is to evaluate the interactive roles of the atmosphere and forest in the coupling of the carbon and nitrogen cycles.

  7. [Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field].

    PubMed

    Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei

    2015-03-01

    A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.

  8. [Effects of invasive Cenchrus spinifex on nitrogen pools in sandy grassland].

    PubMed

    Zhang, Ting; Fu, Wei Dong; Zhang, Rui Hai; Song, Zhen; Bai, Chao; Huang, Cheng Cheng; Zhang, Guo Liang

    2017-05-18

    Cenchrus spinifex is an invasive plant found in large areas of northern China. In this study, we focused on analysis of the effects of C. spinifex on soil nitrogen and plant nitrogen pools in Horqin sandy grassland. In addition, a pot experiment with 15 N tracing techniques was designed to study the biological nitrogen fixation ability of C. spinifex, compared with two native grasses, Elymus dahuricus and Agropyron cristatum. The total soil nitrogen pool in C. spinifex invaded-area increased significantly by 47.5% and 20.8%, and the soil ammonium nitrogen pool decreased significantly by 25.6% and 25.2%, compared with those in bare and native plant Roegneria kamoji areas, respectively. The plant shoot nitrogen pool decreased significantly by 18.7% in C. spinifex compared with native plant R. kamoji. Atom% 15 N, atom% 15 N excess and atom% 15 N weighting excess of C. spinifex were all significantly lower than those of E. dahuricus and A. cristatum. The nitrogen use efficiencies of C. spinifex and E. dahuricus were 48.5% and 47.0%, respectively, and no significant difference was observed. Ndfa of C. spinifex accounted for 60.2%, when growing together with E. dahuricus. These results suggested that the characteristics on the high efficient use for nitrogen of this invasive weed might an ecological adaptation mechanism, leading to successful colonization and spread in Horqin Steppe.

  9. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515 Section 862.1515 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  10. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515 Section 862.1515 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  11. Ice sheets and nitrogen.

    PubMed

    Wolff, Eric W

    2013-07-05

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land-atmosphere and ocean-atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2-3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas.

  12. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  13. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands.

    PubMed

    Weber, Bettina; Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J; Su, Hang; Pöschl, Ulrich

    2015-12-15

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.

  14. Reactive nitrogen and the world: 200 years of change.

    PubMed

    Galloway, James N; Cowling, Ellis B

    2002-03-01

    This paper examines the impact of food and energy production on the global N cycle by contrasting N flows in the late-19th century with those of the late-20th century. We have a good understanding of the amounts of reactive N created by humans, and the primary points of loss to the environment. However, we have a poor understanding of nitrogen's rate of accumulation in environmental reservoirs, which is problematic because of the cascading effects of accumulated N in the environment. The substantial regional variability in reactive nitrogen creation, its degree of distribution, and the likelihood of increased rates of reactive-N formation (especially in Asia) in the future creates a situation that calls for the development of a Total Reactive Nitrogen Approach that will optimize food and energy production and protect environmental systems.

  15. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    PubMed Central

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  16. Implementing a voluntary, nonregulatory approach to nitrogen management in Tampa Bay, FL: a public/private partnership.

    PubMed

    Greening, H; DeGrove, B D

    2001-11-14

    Participants in the Tampa Bay Estuary Program have agreed to adopt nitrogen-loading targets for Tampa Bay based on the water-quality and related light requirements of underwater seagrasses. Based on modeling results, it appears that light levels can be maintained at necessary levels by "holding the line" at existing nitrogen loadings; however, this goal may be difficult to achieve given the 20% increase in the watershed"s human population and associated 7% increase in nitrogen loading that are projected to occur over the next 20 years. To address the long-term management of nitrogen sources, a nitrogen management consortium of local electric utilities, industries, and agricultural interests, as well as local governments and regulatory agency representatives, has developed a consortium action plan to address the target load reduction needed to "hold the line" at 1992 to 1994 levels. To date, implemented and planned projects collated in the Consortium Action Plan meet and exceed the agreed-upon nitrogen-loading reduction goal. An example of the success of the private partnership aspect of this program can be seen in three phosphate fertilizer mining and manufacturing companies with facilities located on Tampa Bay. These companies are participants in the Estuary Program and the Nitrogen Management Consortium to provide support and input for a program that advocates voluntary, nonregulatory cooperation to reach environmental goals.

  17. Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source.

    PubMed Central

    Craven, R; Montie, T C

    1985-01-01

    The regulation of amino acid chemotaxis by nitrogen was investigated in the gram-negative bacterium Pseudomonas aeruginosa. The quantitative capillary tube technique was used to measure chemotactic responses of bacteria to spatial gradients of amino acids and other attractants. Chemotaxis toward serine, arginine, and alpha-aminoisobutyrate was sharply dependent on the form in which nitrogen was presented to the bacteria. Bacteria grown on mineral salts-succinate with potassium nitrate gave responses to amino acids that were 2 to 3 times those of cells grown on ammonium sulfate and 10 to 20 times those of cells grown in mineral salts-succinate with Casamino Acids as the nitrogen source. A combination of ammonium sulfate and glutamate was as effective as Casamino Acids in depressing serine taxis. The threshold concentration for alpha-aminoisobutyrate taxis was consistently lower in nitrate-grown bacteria than in ammonia-grown bacteria. Responsiveness to sodium succinate, however, was not subject to regulation by nitrogen, and glucose chemotaxis was inhibited, rather than enhanced, in nitrate-grown bacteria. These results indicate that chemotaxis of P. aeruginosa toward amino acids is subject to regulation by nitrogen and that this regulation probably is expressed at the level of the chemoreceptors or transducers. PMID:3932326

  18. Biomonitors of atmospheric nitrogen deposition: potential uses and limitations.

    PubMed

    Díaz-Álvarez, Edison A; Lindig-Cisneros, Roberto; de la Barrera, Erick

    2018-01-01

    Atmospheric nitrogen deposition is the third largest cause of global biodiversity loss, with rates that have more than doubled over the past century. This is especially threatening for tropical regions where the deposition may soon exceed 25 kg of N ha -1 year -1 , well above the threshold for physiological damage of 12-20 kg of N ha -1 year -1 , depending on plant species and nitrogenous compound. It is thus urgent to monitor these regions where the most diverse biotas occur. However, most studies have been conducted in Europe, the USA and recently in China. This review presents the case for the potential use of biological organisms to monitor nitrogen deposition, with emphasis on tropical plants. We first present an overview of atmospheric chemistry and the nitrogen metabolism of potential biomonitors, followed by a framework for monitoring nitrogen deposition based on the simultaneous use of various functional groups. In particular, the tissue nitrogen content responds to the rate of deposition, especially for mosses, whose nitrogen content increases by 1‰ per kilogram of N ha -1 year -1 . The isotopic signature, δ 15 N, is a useful indicator of the nitrogen source, as the slightly negative values (e.g. 5‰) of plants from natural environments can become very negative (-11.2‰) in sites with agricultural and husbandry activities, but very positive (13.3‰) in urban environments with high vehicular activity. Mosses are good biomonitors for wet deposition and atmospheric epiphytes for dry deposition. In turn, the nitrogen saturation of ecosystems can be monitored with trees whose isotopic values increase with saturation. Although given ecophysiological limitations of different organisms, particular studies should be conducted in each area of interest to determine the most suitable biomonitors. Overall, biomonitors can provide an integrative approach for characterizing nitrogen deposition in regions where the deployment of automated instruments or passive

  19. Biomonitors of atmospheric nitrogen deposition: potential uses and limitations

    PubMed Central

    Díaz-Álvarez, Edison A; Lindig-Cisneros, Roberto

    2018-01-01

    Abstract Atmospheric nitrogen deposition is the third largest cause of global biodiversity loss, with rates that have more than doubled over the past century. This is especially threatening for tropical regions where the deposition may soon exceed 25 kg of N ha−1 year−1, well above the threshold for physiological damage of 12–20 kg of N ha−1 year−1, depending on plant species and nitrogenous compound. It is thus urgent to monitor these regions where the most diverse biotas occur. However, most studies have been conducted in Europe, the USA and recently in China. This review presents the case for the potential use of biological organisms to monitor nitrogen deposition, with emphasis on tropical plants. We first present an overview of atmospheric chemistry and the nitrogen metabolism of potential biomonitors, followed by a framework for monitoring nitrogen deposition based on the simultaneous use of various functional groups. In particular, the tissue nitrogen content responds to the rate of deposition, especially for mosses, whose nitrogen content increases by 1‰ per kilogram of N ha−1 year−1. The isotopic signature, δ15N, is a useful indicator of the nitrogen source, as the slightly negative values (e.g. 5‰) of plants from natural environments can become very negative (−11.2‰) in sites with agricultural and husbandry activities, but very positive (13.3‰) in urban environments with high vehicular activity. Mosses are good biomonitors for wet deposition and atmospheric epiphytes for dry deposition. In turn, the nitrogen saturation of ecosystems can be monitored with trees whose isotopic values increase with saturation. Although given ecophysiological limitations of different organisms, particular studies should be conducted in each area of interest to determine the most suitable biomonitors. Overall, biomonitors can provide an integrative approach for characterizing nitrogen deposition in regions where the deployment of automated instruments

  20. Nitrogen dioxide and respiratory illness in children. Part II: Assessment of exposure to nitrogen dioxide.

    PubMed

    Lambert, W E; Samet, J M; Hunt, W C; Skipper, B J; Schwab, M; Spengler, J D

    1993-06-01

    Repeated measurements of nitrogen dioxide were obtained from 1988 to 1991 in the homes of 1,205 infants living in Albuquerque, NM. Passive diffusion samplers were used to obtain a series of two-week integrated measurements from the home of each infant for use in a cohort study of the relation of residential exposure to nitrogen dioxide and respiratory illnesses. Information on stove use and time spent inside the residence was collected at two-week and two-month intervals, respectively. During the winter, in the bedrooms of homes with gas cooking stoves, mean nitrogen dioxide concentrations were 21 parts per billion (ppb); mean concentrations in the living room and kitchen were 29 ppb and 34 ppb, respectively. In homes with electric cooking stoves, the mean bedroom concentration was 7 ppb during the winter. Lower indoor concentrations were observed during the summer in homes with both gas and electric stoves. On average, infants spent approximately 12.3 hours per day in their bedrooms, 7.3 hours in the living rooms, 35 minutes in the kitchens, and 3.8 hours out of their homes. (As a condition of participation, none of the infants spent more than 20 hours per week in day care outside of their homes). The mean time infants spent in the kitchen during cooking was approximately nine minutes per day. We tested whether exposures of infants living in homes with gas stoves could be reasonably estimated by measurements in the bedroom in comparison with time-weighted average concentrations based on time-activity data and simultaneous nitrogen dioxide measurements in the kitchen, living room, and bedroom. In 1,937 two-week intervals from 587 infants, 90% of time-weighted exposure (on the three-level classification used in this study) estimates were in agreement with estimates based on bedroom concentrations alone. The agreement of the time-weighted nitrogen dioxide exposure estimates with the bedroom concentrations is attributed to limited amounts of cooking stove use (the

  1. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II

    DOE PAGES

    Gonnella, D.; Aderhold, S.; Burrill, A.; ...

    2017-12-02

    The Linac Coherent Light Source II (LCLS-II) is a new state-of-the-art coherent X-ray source being constructed at SLAC National Accelerator Laboratory. It employs 280 superconducting radio frequency (SRF) cavities in order operate in continuous wave (CW) mode. To reduce the overall cryogenic cost of such a large accelerator, nitrogen-doping of the SRF cavities is being used. Nitrogen-doping has consistently been shown to increase the efficiency of SRF cavities operating in the 2.0 K regime and at medium fields (15–20 MV/m) in vertical cavity tests and horizontal cryomodule tests. While nitrogen-doping’s efficacy for improvement of cavity performance was demonstrated at threemore » independent labs, Fermilab, Jefferson Lab, and Cornell University, transfer of the technology to industry for LCLS-II production was not without challenges. Here in this paper, we present results from the beginning of LCLS-II cavity production. We discuss qualification of the cavity vendors and the first cavities from each vendor. Finally, we demonstrate that nitrogen-doping has been successfully transferred to SRF cavity vendors, resulting in consistent production of cavities with better cryogenic efficiency than has ever been achieved for a large-scale accelerator.« less

  2. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnella, D.; Aderhold, S.; Burrill, A.

    The Linac Coherent Light Source II (LCLS-II) is a new state-of-the-art coherent X-ray source being constructed at SLAC National Accelerator Laboratory. It employs 280 superconducting radio frequency (SRF) cavities in order operate in continuous wave (CW) mode. To reduce the overall cryogenic cost of such a large accelerator, nitrogen-doping of the SRF cavities is being used. Nitrogen-doping has consistently been shown to increase the efficiency of SRF cavities operating in the 2.0 K regime and at medium fields (15–20 MV/m) in vertical cavity tests and horizontal cryomodule tests. While nitrogen-doping’s efficacy for improvement of cavity performance was demonstrated at threemore » independent labs, Fermilab, Jefferson Lab, and Cornell University, transfer of the technology to industry for LCLS-II production was not without challenges. Here in this paper, we present results from the beginning of LCLS-II cavity production. We discuss qualification of the cavity vendors and the first cavities from each vendor. Finally, we demonstrate that nitrogen-doping has been successfully transferred to SRF cavity vendors, resulting in consistent production of cavities with better cryogenic efficiency than has ever been achieved for a large-scale accelerator.« less

  3. High Energy Cutting and Stripping Utilizing Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Hume, Howard; Noah, Donald E.; Hayes, Paul W.

    2005-01-01

    The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal. The NitroJet(TM) is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements. The NitroJet(TM) uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals. Liquid nitrogen (LN2) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN2 to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN2 is about -250 F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 - 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about -220 F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over

  4. Quantifying atmospheric nitrogen outflow from the Front Range of Colorado

    NASA Astrophysics Data System (ADS)

    Neuman, J. A.; Eilerman, S. J.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Herndon, S. C.; Holloway, J. S.; Nowak, J. B.; Roscioli, J. R.; Ryerson, T. B.; Sjostedt, S. J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Wild, R. J.

    2015-12-01

    Reactive nitrogen emitted to the atmosphere from urban, industrial, and agricultural sources can be transported and deposited far from the source regions, affecting vegetation, soils, and water of sensitive ecosystems. Mitigation of atmospheric nitrogen deposition requires emissions characterization and quantification. Ammonia (NH3), a full suite of gas-phase oxidized nitrogen compounds, and particulate matter were measured from an aircraft that flew downwind from concentrated animal feeding operations, oil and gas extraction facilities, and urban areas along the Colorado Front Range in March and April 2015, as part of the Shale Oil and Natural Gas Nexus (SONGNEX) field study. Additionally, NH3 measurements from a fully instrumented aircraft that flew over the same region in July and August 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) are used to examine atmospheric nitrogen emission and transport. Cross-wind plume transects and altitude profiles were performed over the source regions and 60-240 km downwind. Plumes were transported in the boundary layer with large NH3 mixing ratios (typically 20-100 ppbv) and were tens of km wide. The NH3 in these plumes provided an atmospheric nitrogen burden greater than 0.2 kg N/ha. Nitrogen oxides and their oxidation products and particulate matter were also enhanced in the plumes, but with concentrations substantially less than NH3. With efficient transport followed by wet deposition, these plumes have the potential to provide a large nitrogen input to the neighboring Rocky Mountain National Park, where nitrogen deposition currently exceeds the ecological critical load of 1.5 kg N/ha/yr.

  5. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes.

    PubMed

    Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun

    2013-01-01

    Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water.

  6. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  7. Medium-chain triglyceride feeding in premature infants: effects on fat and nitrogen absorption.

    PubMed

    Tantibhedhyangkul, P; Hashim, S A

    1975-03-01

    The effect of medium-chain triglycerides (MCT) on the "physiological" steatorrhea of prematurity was studied in 34 infants with birthweights below 2,000 gm. The infants were divided into three groups and fed three formulas identical in nutrient content except for the type of fat, as follows: group 1 (control): corn oil, oleo, and coconut oil (39:41:20); group 2: MCT, corn oil, and coconut oil (40:40:20); group 3: MCT and corn oil (80:20). The infants fed MCT-containing formulas had striking diminution in stool volume and frequency. Their total fat absorption was significantly improved when compared with controls; nitrogen absorption was slightly but significantly improved in the 80% MCT group. The results also suggest that nitrogen sparing may be enhanced in premature infants fed MCT-containing formulas.

  8. Nitrogen line spectroscopy of O-stars. II. Surface nitrogen abundances for O-stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Rivero González, J. G.; Puls, J.; Najarro, F.; Brott, I.

    2012-01-01

    Context. Nitrogen is a key element for testing the impact of rotational mixing on evolutionary models of massive stars. Recent studies of the nitrogen surface abundance in B-type stars within the VLT-FLAMES survey of massive stars have challenged part of the corresponding predictions. To obtain a more complete picture of massive star evolution, and to allow for additional constraints, these studies need to be extended to O-stars. Aims: This is the second paper in a series aiming at the analysis of nitrogen abundances in O-type stars, to establish tighter constraints on the early evolution of massive stars. In this paper, we investigate the N ivλ4058 emission line formation, provide nitrogen abundances for a substantial O-star sample in the Large Magellanic Cloud, and compare our (preliminary) findings with recent predictions from stellar evolutionary models. Methods: Stellar and wind parameters of our sample stars were determined by line profile fitting of hydrogen, helium and nitrogen lines, exploiting the corresponding ionization equilibria. Synthetic spectra were calculated by means of the NLTE atmosphere/spectrum synthesis code fastwind, using a new nitrogen model atom. We derived nitrogen abundances for 20 O- and 5 B-stars by analyzing all nitrogen lines (from different ionization stages) present in the available optical spectra. Results: The dominating process responsible for emission at N ivλ4058 in O-stars is the strong depopulation of the lower level of the transition, which increases as a function of Ṁ. Unlike the N iii triplet emission, resonance lines do not play a role for typical mass-loss rates and below. We find (almost) no problem in fitting the nitrogen lines, in particular the "f" features. Only for some objects, where lines from N iii/N iv/N v are visible in parallel, we need to opt for a compromise solution. For five objects in the early B-/late O-star domain that have been previously analyzed by different methods and model atmospheres, we

  9. Understanding Nitrogen Fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul J. Chirik

    . The synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from

  10. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice.

    PubMed

    Wang, Qing; Nian, Jinqiang; Xie, Xianzhi; Yu, Hong; Zhang, Jian; Bai, Jiaoteng; Dong, Guojun; Hu, Jiang; Bai, Bo; Chen, Lichao; Xie, Qingjun; Feng, Jian; Yang, Xiaolu; Peng, Juli; Chen, Fan; Qian, Qian; Li, Jiayang; Zuo, Jianru

    2018-02-21

    In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10-20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.

  11. Empirical regression models for estimating nitrogen removal in a stormwater wetland during dry and wet days.

    PubMed

    Guerra, Heidi B; Park, Kisoo; Kim, Youngchul

    2013-01-01

    Due to the highly variable hydrologic quantity and quality of stormwater runoff, which requires more complex models for proper prediction of treatment, a relatively few and site-specific models for stormwater wetlands have been developed. In this study, regression models based on extensive operational data and wastewater wetlands were adapted to a stormwater wetland receiving both base flow and storm flow from an agricultural area. The models were calibrated in Excel Solver using 15 sets of operational data gathered from random sampling during dry days. The calibrated models were then applied to 20 sets of event mean concentration data from composite sampling during 20 independent rainfall events. For dry days, the models estimated effluent concentrations of nitrogen species that were close to the measured values. However, overestimations during wet days were made for NH(3)-N and total Kjeldahl nitrogen, which resulted from higher hydraulic loading rates and influent nitrogen concentrations during storm flows. The results showed that biological nitrification and denitrification was the major nitrogen removal mechanism during dry days. Meanwhile, during wet days, the prevailing aerobic conditions decreased the denitrification capacity of the wetland, and sedimentation of particulate organic nitrogen and particle-associated forms of nitrogen was increased.

  12. High-performance alkaline direct methanol fuel cell using a nitrogen-postdoped anode.

    PubMed

    Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Bender, Guido; O'Hayre, Ryan

    2014-07-01

    A commercial PtRu/C catalyst postdoped with nitrogen demonstrates a significantly higher performance (~10-20% improvement) in the anode of an alkaline direct methanol fuel cell than an unmodified commercial PtRu/C catalyst control. The enhanced performance shown herein is attributed at least partially to the increased electrochemical surface area of the PtRu/C after postdoping with nitrogen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of Epichloë gansuensis Endophyte on the Nitrogen Metabolism, Nitrogen Use Efficiency, and Stoichiometry of Achnatherum inebrians under Nitrogen Limitation.

    PubMed

    Wang, Jianfeng; Nan, Zhibiao; Christensen, Michael J; Zhang, Xingxu; Tian, Pei; Zhang, Zhixin; Niu, Xueli; Gao, Peng; Chen, Tao; Ma, Lixia

    2018-04-25

    The systemic fungal endophyte of the grass Achnatherum inebrians, Epichloë gansuensis, has important roles in enhancing resistance to biotic and abiotic stresses. In this work, we first evaluated the effects of E. gansuensis on nitrogen metabolism, nitrogen use efficiency, and stoichiometry of A. inebrians under varying nitrogen concentrations. The results demonstrated that E. gansuensis significantly improved the growth of A. inebrians under low nitrogen conditions. The fresh and dry weights, nitrogen reductase, nitrite reductase, and glutamine synthetase activity, NO 3 - , NH 4 + , N, and P content, and also the total N accumulation, N utilization efficiency, and N uptake efficiency were all higher in leaves of A. inebrians with E. ganusensis (E+) plants than A. inebrians plants without this endophyte (E-) under low nitrogen availability. In conclusion, E. gansuensis has positive effects on improving the growth of A. inebrians under low-nitrogen conditions by modulating the enzymes of nitrogen metabolism and enhancing nitrogen use efficiency.

  14. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    PubMed

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  15. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference... and periodic calibration. Prior to its initial use and monthly thereafter, or within one month prior... following table). Example calibration points (%) Acceptable for calibration? 20, 30, 40, 50, 60, 70 No...

  16. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference... and periodic calibration. Prior to its initial use and monthly thereafter, or within one month prior... following table). Example calibration points (%) Acceptable for calibration? 20, 30, 40, 50, 60, 70 No...

  17. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference... and periodic calibration. Prior to its initial use and monthly thereafter, or within one month prior... following table). Example calibration points (%) Acceptable for calibration? 20, 30, 40, 50, 60, 70 No...

  18. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    PubMed

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and

  19. [Coupling effects of periodic rewatering after drought stress and nitrogen fertilizer on growth and water and nitrogen productivity of Coffea arabica].

    PubMed

    Hao, Kun; Liu, Xiao Gang; Zhang, Yan; Han, Zhi Hui; Yu, Ning; Yang, Qi Liang; Liu, Yan Wei

    2017-12-01

    The effects of periodic rewatering after drought stress and nitrogen fertilizer on growth, yield, photosynthetic characteristics of leaves and water and nitrogen productivity of Coffea arabica (Katim P7963) were studied under different nitrogen application levels in 2.5 consecutive years. Irrigation (periodic rewatering after drought stress) and nitrogen were designed as two factors, with four modes of irrigation, namely, full irrigation (I F-F : 100%ET 0 +100%ET 0 , ET 0 was reference crop evapotranspiration), rewatering after light drought stress (I L-F : 80%ET 0 +100%ET 0 ), rewatering after moderate drought stress (I M-F : 60%ET 0 +100%ET 0 ) and rewatering after severe drought stress (I S-F : 40%ET 0 +100%ET 0 ), and three levels of nitrogen, namely, high nitrogen (N H : 750 kg N·hm -2 each time), middle nitrogen (N M : 500 kg N·hm -2 each time), low nitrogen (N L : 250 kg N·hm -2 each time), and nitrogen was equally applied for 4 times. The results showed that irrigation and nitrogen had significant effect on plant height, stem diameter, yield and water and nitrogen productivity of C. arabica, and plant height and stem diameter showed S-curve with the day ordinal number, and leaf photosynthesis decreased significantly under drought stress but most photosynthesis index recovered somewhat after rewatering. Compared with I F-F , I L-F increased dry bean yield by 6.9%, while I M-F and I S-F decreased dry bean yield by 15.2% and 38.5%, respectively; I L-F and I M-F increased water use efficiency by 18.8% and 6.0%, respectively, while I S-F decreased water use efficiency by 12.1%; I L-F increased nitrogen partial productivity by 6.1%, while I M-F and I S-F decreased nitrogen partial productivity by 14.0% and 36.0%, respectively. Compared with N H , N M increased dry bean yield and water use efficiency by 20.9% and 19.3%, while N L decreased dry bean yield and water use efficiency by 42.4% and 41.9%, respectively; N M and N L increased nitrogen partial

  20. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands

    PubMed Central

    Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich

    2015-01-01

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth’s nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a−1 of NO-N and 0.6 Tg a−1 of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate. PMID:26621714

  1. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    PubMed

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  2. Behavior of nitrogen removal in an aerobic sponge based moving bed biofilm reactor.

    PubMed

    Zhang, Xinbo; Song, Zi; Guo, Wenshan; Lu, Yanmin; Qi, Li; Wen, Haitao; Ngo, Huu Hao

    2017-12-01

    This study aims to investigate the behavior of nitrogen removal in an aerobic sponge based moving bed biofilm reactor by evaluating nitrification and denitrification rates of sponge biocarriers from three aerobic moving bed biofilm reactors (MBBRs) with filling ratios of 10% (R-10), 20% (R-20) and 30% (R-30). Results showed that the highest removal efficiencies of total nitrogen in three reactors were 84.5% (R-10), 93.6% (R-20) and 95.3% (R-30). Correspondingly, simultaneous nitrification and denitrification rate (SND) was 90.9%, 97.6% and 100%, respectively. Although R-20 had the highest attached-growth biomass (AGB) per gram of sponge compared to the other two reactors, R-30 showed the maximum ammonium oxidation rate (AOR) (2.1826±0.0717mgNH 4 + -N/gAGB/h) and denitrification rate (DNR) (5.0852±0.0891mgNO 3 - -N/gAGB/h), followed by R-20 and R-10. These results indicated AOR, DNR and AGB were affected by the filling ratio under the same operation mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Effects of postponed basal nitrogen application with reduced nitrogen rate on grain yield and nitrogen use efficiency of south winter wheat].

    PubMed

    Zhang, Lei; Shao, Yu Hang; Gu, Shi Lu; Hu, Hang; Zhang, Wei Wei; Tian, Zhong Wei; Jiang, Dong; Dai, Ting Bo

    2016-12-01

    Excessive nitrogen (N) fertilizer application has led to a reduction of nitrogen use efficiency and environmental problems. It was of great significance for high-yield and high-efficiency cultivation to reduce N fertilizer application with modified application strategies. A two-year field experiment was conducted to study effects of different N application rates at basal and seedling application stages on grain yield and nitrogen use efficiency. Taking the conventional nitrogen application practice (240 kg N·hm -2 with application at basal, jointing, and booting stages at ratios of 5:3:2, respectively) as control, a field trial was conducted at different N application rates (240, 180 and 150 kg N·hm -2 , N 240 , N 180 and N 150 , respectively) and different application times [basal (L 0 ), fourth (L 4 ) and sixth leaf stage (L 6 )] to investigate the effects on grain yield and nitrogen use efficiency. The results indicated that grain yield decreased along with reducing the N application rate, but it had no significant difference between N 240 and N 180 while decreased significantly under N 150 . Nitrogen agronomy and recovery efficiency were all highest under N 180 . Among different N application stages, grain yield and nitrogen use efficiency were highest under L 4 . N 180 L 4 had no signifi-cant difference with control in grain yield, but its nitrogen use efficiency was significantly higher. The leaf area index, flag leaf photosynthesis rate, leaf nitrogen content, activity of nitrogen reductase and glutamine synthase in flag leaf, dry matter and N accumulation after jointing of N 180 L 4 had no significant difference with control. In an overall view, postponing basal N fertilizer application at reduced nitrogen rate could maintain high yield and improve nitrogen use efficiency through improving photosynthetic production capacity and promoting nitrogen uptake and assimilation.

  4. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Pan, Y.; Wang, Y.; Paulot, F.; Henze, D. K.

    2015-09-01

    Rapid Asian industrialization has led to increased downwind atmospheric nitrogen deposition threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2° × 2/3° horizontal resolution over East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the high-NH3 emissions reflect its intensive agricultural activities. We find Asian NH3 emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind of the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7 % over the South China Sea, and become important (greater than 30 %) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian monsoon and in nitrogen emissions. The model adjoint further estimates that nitrogen deposition to the Yellow Sea originates from sources over China (92 % contribution) and the Korean peninsula (7 %), and by sectors from fertilizer use (24 %), power plants (22 %), and transportation (18

  5. Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium.

    PubMed

    Shen, Yu; Guo, Jin-Song; Chen, You-Peng; Zhang, Hai-Dong; Zheng, Xu-Xu; Zhang, Xian-Ming; Bai, Feng-Wu

    2012-08-31

    Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Influence of polyunsaturated fatty acid supplementation and membrane fluidity on ozone and nitrogen dioxide sensitivity of rat alveolar macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietjens, I.M.; van Tilburg, C.A.; Coenen, T.M.

    1987-01-01

    The phospholipid polyunsaturated fatty acid (PUFA) content and the membrane fluidity of rat alveolar macrophages were modified dose-dependently and in different ways. This was done to study the importance of both membrane characteristics for the cellular sensitivity toward ozone and nitrogen dioxide. Cells preincubated with arachidonic acid (20:4) complexed to bovine serum albumin (BSA) demonstrated an increased in vitro sensitivity versus ozone and nitrogen dioxide. The phenomenon was only observed at the highest 20:4 concentrations tested, whereas the membrane fluidity of the 20:4-treated cells already showed a maximum increase at lower preincubation concentrations. Hence it could be concluded that themore » increased ozone and nitrogen dioxide sensitivity of PUFA-enriched cells is not caused by their increased membrane fluidity, resulting in an increased accessibility of sensitive cellular fatty acid moieties or amino acid residues. This conclusion receives further support from other observations. These results strongly support the involvement of lipid oxidation in the mechanism(s) of toxic action of both ozone and nitrogen dioxide in an intact cell system.« less

  7. Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters.

    PubMed

    Chen, Jun; Ying, Guang-Guo; Liu, You-Sheng; Wei, Xiao-Dong; Liu, Shuang-Shuang; He, Liang-Ying; Yang, Yong-Qiang; Chen, Fan-Rong

    2017-07-03

    This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH 3 -N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH 3 -N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.

  8. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    PubMed

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil

  9. Friction wear and auger analysis of iron implanted with 1.5-MeV nitrogen ions

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Jones, W. R., Jr.

    1982-01-01

    The effect of implantation of 1.5-MeV nitrogen ions on the friction and wear characteristics of pure iron sliding against steel was studied in a pin-on disk apparatus. An implantation dose of 5 x 10 to the 17th power ions/sq cm was used. Small reductions in initial and steady-state wear rates were observed for nitrogen-implanted iron riders as compared with unimplanted controls. Auger electron spectroscopy revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 15 at. % at a depth of 8 x 10 to the -7th m. A similar analysis within the wear scar of an implanted rider after 20 microns of wear yielded only background nitrogen concentration, thus giving no evidence for diffusion of nitrogen beyond the implanted range.

  10. Nitrogen Out of the Bottle: The Challenge of Managing the Genie

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2012-12-01

    Human activity converts more N2 to reactive nitrogen (Nr; all nitrogen species other than N2) than do natural terrestrial processes (mostly biological nitrogen fixation (BNF) in unmanaged ecosystems). Most of the Nr is created as a consequence of food production, fossil fuel combustion and industry. The Haber-Bosch process, invented in the early 20th century, now provides a virtually inexhaustible supply of nitrogen fertilizer. This one invention is responsible for the existence of about half of the world's population. That's the good news. The other news is that most of this nitrogen (and additional amounts from fossil fuel combustion and industry) is lost to the environment where it has exceeded the ability of the environment to convert it back to unreactive N2. The accumulating Nr contributes to smog, greenhouse effect, ecosystem eutrophication, acid rain and loss of stratospheric ozone in a sequential manner—the nitrogen cascade. Collectively these changes alter climate, decrease air quality, and diminish ecosystem sustainability. The challenge is how do we manage the genie—make sure we get the benefits of nitrogen, while minimizing the problems it causes. The paper will layout the possible, the probable and the improbable (but if it occurred, would be transformative) options for nitrogen management. Included will be the role that a nation vs. a person should play. The paper will also give examples of success stories, where nitrogen losses to the environment have been decreased, without impacting the service being provided—food and energy production. The paper will conclude with a forecast to the future, based upon the RCP scenarios for 2100.

  11. Characteristics of Nitrogen Balances of Large-scale Stock Farms and Reduction of Environmental Nitrogen Loads

    NASA Astrophysics Data System (ADS)

    Hattori, Toshihiro; Takamatsu, Rieko

    We calculated nitrogen balances on farm gate and soil surface on large-scale stock farms and discussed methods for reducing environmental nitrogen loads. Four different types of public stock farms (organic beef, calf supply and daily cows) were surveyed in Aomori Prefecture. (1) Farm gate and soil surface nitrogen inflows were both larger than the respective outflows on all types of farms. Farm gate nitrogen balance for beef farms were worse than that for dairy farms. (2) Soil surface nitrogen outflows and soil nitrogen retention were in proportion to soil surface nitrogen inflows. (3) Reductions in soil surface nitrogen retention were influenced by soil surface nitrogen inflows. (4) In order to reduce farm gate nitrogen retention, inflows of formula feed and chemical fertilizer need to be reduced. (5) In order to reduce soil surface nitrogen retention, inflows of fertilizer need to be reduced and nitrogen balance needs to be controlled.

  12. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  13. The Nitrogen Footprint Tool Network: A Multi-Institution Program To Reduce Nitrogen Pollution

    PubMed Central

    Leach, Allison M.; Leary, Neil; Baron, Jill; Compton, Jana E.; Galloway, James N.; Hastings, Meredith G.; Kimiecik, Jacob; Lantz-Trissel, Jonathan; de la Reguera, Elizabeth; Ryals, Rebecca

    2017-01-01

    Abstract Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This article uses the Nitrogen Footprint Tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this article, the first seven completed institution nitrogen footprint results are presented. The Nitrogen Footprint Tool Network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive nitrogen released to the environment. Energy use and food purchases are the two largest sectors contributing to institution nitrogen footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the nitrogen footprint, but the impact of food production on nitrogen pollution has not been directly addressed by the higher education sustainability community. The Nitrogen Footprint Tool Network found that institutions could reduce their nitrogen footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as by reducing dependence on fossil fuels for energy. PMID:29350216

  14. Orchard nitrogen management: Which nitrogen source is best?

    USDA-ARS?s Scientific Manuscript database

    Suboptimal management of nitrogen fertility in pecan orchards leads to a loss of nutmeat yield and quality, but also a waste of natural resources and money. This article reviews several basic guiding principles useful to orchard managers when developing nitrogen management strategies, and determini...

  15. Effect of mineral phosphates on growth and nitrogen fixation of diazotrophic cyanobacteria Anabaena variabilis and Westiellopsis prolifica.

    PubMed

    Yandigeri, Mahesh S; Yadav, Arvind K; Meena, Kamlesh Kumar; Pabbi, Sunil

    2010-03-01

    The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.

  16. An introduction to the nitrogen dynamics in controlled systems workshop. Life support and nitrogen: NASA's interest in nitrogen cycling

    NASA Technical Reports Server (NTRS)

    MacElroy, R. D.; Smernoff, D. T.

    1996-01-01

    A Workshop on "Nitrogen Dynamics in Controlled Systems" was held September 26-28, 1995 at the Lawrence Berkeley National Laboratory. The meetings were sponsored by the NASA Advanced Life Support program and the Lawrence Berkeley National Laboratory, and hosted by Prof. Lester Packer of the University of California at Berkeley, and of the Lawrence Berkeley National Laboratory. The Workshop participants were asked to: 1. summarize current knowledge on the cycling of nitrogen in closed systems; 2. identify the needs that closed systems may have for specific forms of nitrogen; 3. identify possible ways of generating and maintaining (or avoiding) specific forms and concentrations of nitrogen; 4. compare biological and physical/chemical methods of transforming nitrogen.

  17. Indicators: Nitrogen

    EPA Pesticide Factsheets

    Nitrogen, like phosphorus, is a critical nutrient required for all life. Nitrogen can occur in rivers and streams, lakes, and coastal waters in several forms including ammonia (NH3), nitrates (NO3), and nitrites (NO2).

  18. Spatial pattern of nitrogen deposition flux over Czech forests: a novel approach accounting for unmeasured nitrogen species

    NASA Astrophysics Data System (ADS)

    Hůnová, Iva; Stoklasová, Petra; Kurfürst, Pavel; Vlček, Ondřej; Schovánková, Jana; Stráník, Vojtěch

    2015-04-01

    atmospheric nitrogen deposition flux over the Czech forests collating all available data and model results. The aim of the presented study is to provide an improved, more reliable and more realistic estimate of spatial pattern of nitrogen deposition flux over one country. This has so far been based standardly on measurements of ambient N/NOx concentrations as dry deposition proxy, and N/NH4+ and N/NO3- as wet deposition proxy. For estimate of unmeasured species contributing to dry deposition, we used an Eulerian photochemical dispersion model CAMx, the Comprehensive Air Quality Model with extensions (ESSS, 2011), coupled with a high resolution regional numeric weather prediction model Aladin (Vlček, Corbet, 2011). Contribution of fog was estimated using a geostatistical data driven model. Final maps accounting for unmeasured species clearly indicate, that so far used approach results in substantial underestimation of nitrogen deposition flux. Substitution of unmeasured nitrogen species by modeled values seems to be a plausible way for approximation of total nitrogen deposition, and getting more realistic spatial pattern as input for further studies of likely nitrogen impacts on ecosystems. Acknowledgements: We would like to acknowledge the grants GA14-12262S - Effects of changing growth conditions on tree increment, stand production and vitality - danger or opportunity for the Central-European forestry?, and NAZV QI112A168 (ForSoil) of the Czech Ministry for Agriculture for support of this contribution. The input data used for the analysis were provided by the Czech Hydrometeorological Institute. References: Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R. et al. (2010): Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: a Synthesis. Ecological Applications 20 (1), 30-59. Fowler D., O'Donoghue M., Muller J.B.A, et al. (2005): A chronology of nitrogen deposition in the UK between 1900 and 2000. Watter, Air & Soil Pollution: Focus

  19. Modelling the nitrogen loadings from large yellow croaker (Larimichthys crocea) cage aquaculture.

    PubMed

    Cai, Huiwen; Ross, Lindsay G; Telfer, Trevor C; Wu, Changwen; Zhu, Aiyi; Zhao, Sheng; Xu, Meiying

    2016-04-01

    Large yellow croaker (LYC) cage farming is a rapidly developing industry in the coastal areas of the East China Sea. However, little is known about the environmental nutrient loadings resulting from the current aquaculture practices for this species. In this study, a nitrogenous waste model was developed for LYC based on thermal growth and bioenergetic theories. The growth model produced a good fit with the measured data of the growth trajectory of the fish. The total, dissolved and particulate nitrogen outputs were estimated to be 133, 51 and 82 kg N tonne(-1) of fish production, respectively, with daily dissolved and particulate nitrogen outputs varying from 69 to 104 and 106 to 181 mg N fish(-1), respectively, during the 2012 operational cycle. Greater than 80 % of the nitrogen input from feed was predicted to be lost to the environment, resulting in low nitrogen retention (<20 %) in the fish tissues. Ammonia contributed the greatest proportion (>85 %) of the dissolved nitrogen generated from cage farming. This nitrogen loading assessment model is the first to address nitrogenous output from LYC farming and could be a valuable tool to examine the effects of management and feeding practices on waste from cage farming. The application of this model could help improve the scientific understanding of offshore fish farming systems. Furthermore, the model predicts that a 63 % reduction in nitrogenous waste production could be achieved by switching from the use of trash fish for feed to the use of pelleted feed.

  20. Nitrogen metabolism and nitrogen control in corynebacteria: variations of a common theme.

    PubMed

    Walter, Britta; Hänssler, Eva; Kalinowski, Jörn; Burkovski, Andreas

    2007-01-01

    The published genome sequences of Corynebacterium diphtheriae, Corynebacterium efficiens, Corynebacterium glutamicum and Corynebacterium jeikeium were screened for genes encoding central components of nitrogen source uptake, nitrogen assimilation and nitrogen control systems. Interestingly, the soil-living species C. efficiens and C. glutamicum exhibit a broader spectrum of genes for nitrogen transport and metabolism than the pathogenic species C. diphtheriae and C. jeikeium. The latter are characterized by gene decay and loss of functions like urea metabolism and nitrogen-dependent transcription control. The global regulator of nitrogen regulation AmtR and its DNA-binding motif are conserved in C. diphtheriae, C. efficiens and C. glutamicum, while in C. jeikeium, an AmtR-encoding gene as well as putative AmtR-binding motifs are missing. Copyright (c) 2007 S. Karger AG, Basel.

  1. Use of Nitrogen-15 Isotope Method in Soils and Ground Water to Determine Potential Nitrogen Sources Affecting a Municipal Water Supply in Kansas, USA

    NASA Astrophysics Data System (ADS)

    Townsend, M. A.; Macko, S. A.

    2004-12-01

    Nitrate-N concentrations have increased to greater than 10 mg/L in a municipal water supply in western Kansas from 1995 to 2002. A study was done by the Kansas Geological Survey using the nitrogen-15 natural abundance isotope method to determine potential sources for the increasing nitrate concentrations. Preliminary results of the isotope analyses on water samples suggest that animal waste and/or denitrification enrichment has affected the water supply. Soil samples from areas near the wells that were not treated with manure show a general increase of nitrogen-15 signature (+9 to +15 \\permil) to a depth of 5 m. Soils are silt loams with measurable carbonate (0.8 to 2 % by weight) in the profile, which may permit volatilization enrichment to occur in the soil profile. Wells in the area range from 11 to 20 m in alluvial deposits with depth to water at approximately 9 m). Nitrate-N values range from 8 to 26 mg/L. Nitrogen-15 values range from (+17 to +28 \\permil) with no obvious source of animal waste near the well sites. There are potential nearby long-term sources of animal waste - an abandoned sewage treatment plant and an agricultural testing farm. One well has a reducing chemistry with a nitrate value of 0.9 mg/L and a nitrogen-15 value of +17 \\permil suggesting that alluvial sediment variation also has an impact on the water quality in the study area. The other wells show values of nitrate and nitrogen-15 that are much greater than the associated soils. The use of nitrogen-15 alone permited limited evaluation of sources of nitrate to ground water particularly in areas with carbonate in the soils. Use of oxygen-18 on nitrate will permit the delineation of the processes affecting the nitrogen in the soil profile and determination of the probable sources and the processes that have affected the nitrogen in the ground water. Final results of the nitrogen-15 and oxygen-18 analyses will be presented.

  2. Genome Sequencing of Sulfolobus sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains.

    PubMed

    Dai, Xin; Wang, Haina; Zhang, Zhenfeng; Li, Kuan; Zhang, Xiaoling; Mora-López, Marielos; Jiang, Chengying; Liu, Chang; Wang, Li; Zhu, Yaxin; Hernández-Ascencio, Walter; Dong, Zhiyang; Huang, Li

    2016-01-01

    The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus islandicus and Sulfolobus solfataricus ), suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, Sulfolobus acidocaldarius, S. islandicus , and Sulfolobus tokodaii , which were isolated from geographically separated areas, identified 1801 genes conserved among all Sulfolobus species analyzed (core genes). Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO 2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e., S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed

  3. Genome Sequencing of Sulfolobus sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains

    PubMed Central

    Dai, Xin; Wang, Haina; Zhang, Zhenfeng; Li, Kuan; Zhang, Xiaoling; Mora-López, Marielos; Jiang, Chengying; Liu, Chang; Wang, Li; Zhu, Yaxin; Hernández-Ascencio, Walter; Dong, Zhiyang; Huang, Li

    2016-01-01

    The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2591 open reading frames (ORFs). Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and <30% DNA-DNA hybridization (DDH) values with the most closely related known Sulfolobus species (i.e., Sulfolobus islandicus and Sulfolobus solfataricus), suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, Sulfolobus acidocaldarius, S. islandicus, and Sulfolobus tokodaii, which were isolated from geographically separated areas, identified 1801 genes conserved among all Sulfolobus species analyzed (core genes). Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e., S. islandicus strain REY15A, LAL14/1, M14.25, and M16.27) or urea (i.e., S. islandicus HEV10/4, S. tokodaii strain7, and S. metallicus DSM 6482). The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR), whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE). However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed at a

  4. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001).

    PubMed

    Prasad, V Krishna; Badarinath, K V S; Yonemura, S; Tsuruta, H

    2004-11-01

    Nitrogen regulates several ecological and biogeochemical processes and excess reactive nitrogen in the environment can lead to pollution problems, including the deterioration of air quality, disruption of forest processes, acidification of lakes and streams, and degradation of coastal waters. Much of the excess nitrogen inputs are related to food and energy production. An important step to understanding the sources of nitrogen and ultimately defining solutions to excess nitrogen is to describe the geographic distribution of agricultural nitrogen contributions from different regions. In this study, soil surface nitrogen loads were quantified for different states of India for the period 2000-2001. Nearly 35.4 Tg of nitrogen has been estimated as inputs from different sources, with output nitrogen from harvested crops of about 21.20 Tg. The soil surface nitrogen balance, estimated as inputs minus outputs, is found to be about 14.4 Tg surplus from the agricultural land of India. Livestock manure constituted a major percentage of total inputs (44.06%), followed by inorganic fertilizer (32.48%), atmospheric deposition (11.86%) and nitrogen fixation (11.58%). Nitrogen balance varied from deficit to surplus for different states. The highest nitrogen surplus was found in Uttar Pradesh (2.50 Tg) followed by Madhya Pradesh (1.83 Tg), Andhra Pradesh (1.79 Tg), etc. A negative nitrogen balance was found in Orissa (-0.01 Tg), Andaman Nicobar Islands (-0.32 Tg) and for some of the northeastern states. Major fertilizer consumption states were found to be Tamilnadu (204 kg/ha), Haryana (132 kg/ha), Punjab (148 kg/ha), followed by others. Similarly, nitrogen inputs from total livestock excretions were found to be high for Kerala (616 kg/ha), Jammu and Kashmir (389 kg/ha), Tamil Nadu (338 kg/ha), etc. The average nitrogen surplus of about 54 kg/ha observed for the agricultural land of the entire country of India is comparatively higher than the average surplus of about 31 kg

  5. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  6. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  7. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    PubMed

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  8. Anaerobic Ammonium Oxidation and its Contribution to Nitrogen Removal in China's Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Hou, L., Sr.

    2016-02-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China's coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China's coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8-10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China's coastal wetland ecosystems.

  9. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants

    PubMed Central

    Fox, Jennifer E.; Gulledge, Jay; Engelhaupt, Erika; Burow, Matthew E.; McLachlan, John A.

    2007-01-01

    Unprecedented agricultural intensification and increased crop yield will be necessary to feed the burgeoning world population, whose global food demand is projected to double in the next 50 years. Although grain production has doubled in the past four decades, largely because of the widespread use of synthetic nitrogenous fertilizers, pesticides, and irrigation promoted by the “Green Revolution,” this rate of increased agricultural output is unsustainable because of declining crop yields and environmental impacts of modern agricultural practices. The last 20 years have seen diminishing returns in crop yield in response to increased application of fertilizers, which cannot be completely explained by current ecological models. A common strategy to reduce dependence on nitrogenous fertilizers is the production of leguminous crops, which fix atmospheric nitrogen via symbiosis with nitrogen-fixing rhizobia bacteria, in rotation with nonleguminous crops. Here we show previously undescribed in vivo evidence that a subset of organochlorine pesticides, agrichemicals, and environmental contaminants induces a symbiotic phenotype of inhibited or delayed recruitment of rhizobia bacteria to host plant roots, fewer root nodules produced, lower rates of nitrogenase activity, and a reduction in overall plant yield at time of harvest. The environmental consequences of synthetic chemicals compromising symbiotic nitrogen fixation are increased dependence on synthetic nitrogenous fertilizer, reduced soil fertility, and unsustainable long-term crop yields. PMID:17548832

  10. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Yang, X.; Richardson, T. K.; Jain, A. K.

    2010-10-01

    We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates

  11. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Yang, X.; Richardson, T. K.; Jain, A. K.

    2010-04-01

    We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates

  12. Quantitative analysis of nitrogen containing compounds in microalgae based bio-oils using comprehensive two-dimensional gas-chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer.

    PubMed

    Toraman, Hilal E; Franz, Kristina; Ronsse, Frederik; Van Geem, Kevin M; Marin, Guy B

    2016-08-19

    Insight in the composition of the algae derived bio-oils is crucial for the development of efficient conversion processes and better upgrading strategies for microalgae. Comprehensive two-dimensional gas chromatography (GC×GC) coupled to nitrogen chemiluminescence detector (NCD) and time-of-flight mass spectrometer (TOF-MS) allows to obtain the detailed quantitative composition of the nitrogen containing compounds in the aqueous and the organic fraction of fast pyrolysis bio-oils from microalgae. Normal phase (apolar×mid-polar) and reverse phase column (polar×apolar) combination are investigated to optimize the separation of the detected nitrogen containing compounds. The reverse phase column combination gives the most detailed information in terms of the nitrogen containing compounds. The combined information from the GC×GC-TOF-MS (qualitative) and GC×GC-NCD (quantitative) with the use of a well-chosen internal standard, i.e. caprolactam, enables the identification and quantification of nitrogen containing compounds belonging to 13 different classes: amines, imidazoles, amides, imides, nitriles, pyrazines, pyridines, indoles, pyrazoles, pyrimidines, quinolines, pyrimidinediones and other nitrogen containing compounds which were not assigned to a specific class. The aqueous fraction mostly consists of amines (4.0wt%) and imidazoles (2.8wt%) corresponding to approximately 80wt% of the total identified nitrogen containing compounds. On the other hand, the organic fraction shows a more diverse distribution of nitrogen containing compounds with the majority of the compounds quantified as amides (3.0wt%), indoles (2.0wt%), amines (1.7wt%) and imides (1.3wt%) corresponding to approximately 65wt% of the total identified nitrogen containing compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    NASA Astrophysics Data System (ADS)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  14. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    PubMed

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  16. [Research advances on regulating soil nitrogen loss by the type of nitrogen fertilizer and its application strategy.

    PubMed

    Zhou, Wei; Lyu, Teng Fei; Yang, Zhi Ping; Sun, Hong; Yang, Liang Jie; Chen, Yong; Ren, Wan Jun

    2016-09-01

    Unreasonable application of nitrogen fertilizer to cropland decreases nitrogen use efficiency of crop. A large amount of nitrogen loss to environment through runoff, leaching, ammonia volati-lization, nitrification-denitrification, etc., causes water and atmospheric pollution, poses serious environmental problems and threatens human health. The type of nitrogen fertilizer and its application rate, time, and method have significant effects on nitrogen loss. The primary reason for nitrogen loss is attributed to the supersaturated soil nitrogen concentration. Making full use of environmental nitrogen sources, reducing the application rate of chemical nitrogen fertilizers, applying deep placement fertilizing method, and applying organic fertilizers with chemical nitrogen fertilizers, are effective practices for reducing nitrogen loss and improving nitrogen use efficiency. It is suggested that deve-loping new high efficiency nitrogen fertilizers, enhancing nitrogen management, and strengthening the monitoring and use of environmental nitrogen sources are the powerful tools to decrease nitrogen application rate and increase efficiency of cropland.

  17. Relationship of nitrogen use efficiency with the activities of enzymes involved in nitrogen uptake and assimilation of finger millet genotypes grown under different nitrogen inputs.

    PubMed

    Gupta, Nidhi; Gupta, Atul K; Gaur, Vikram S; Kumar, Anil

    2012-01-01

    Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content.

  18. A Search for Nitrogen-enhanced Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer A.; Herwig, Falk; Beers, Timothy C.; Christlieb, Norbert

    2007-04-01

    Theoretical models of very metal-poor intermediate-mass asymptotic giant branch (AGB) stars predict a large overabundance of primary nitrogen. The very metal-poor, carbon-enhanced, s-process-rich stars, which are thought to be the polluted companions of now extinct AGB stars, provide direct tests of the predictions of these models. Recent studies of the carbon and nitrogen abundances in metal-poor stars have focused on the most carbon-rich stars, leading to a potential selection bias against stars that have been polluted by AGB stars that produced large amounts of nitrogen and hence have small [C/N] ratios. We call these stars nitrogen-enhanced metal-poor (NEMP) stars and define them as having [N/Fe]>+0.5 and [C/N]<-0.5. In this paper we report on the [C/N] abundances of a sample of 21 carbon-enhanced stars, all but three of which have [C/Fe]<+2.0. If NEMP stars were made as easily as carbon-enhanced metal-poor (CEMP) stars, then we expected to find between two and seven NEMP stars. Instead, we found no NEMP stars in our sample. Therefore, this observational bias is not an important contributor to the apparent dearth of N-rich stars. Our [C/N] values are in the same range as values reported previously in the literature (-0.5 to +2.0), and all stars are in disagreement with the predicted [C/N] ratios for both low- and high-mass AGB stars. We suggest that the decrease in [C/N] from the low-mass AGB models is due to enhanced extramixing, while the lack of NEMP stars may be caused by unfavorable mass ratios in binaries or the difficulty of mass transfer in binary systems with large mass ratios. Based on observations obtained at Cerro Tololo Inter-American Observatory and Kitt Peak National Observatory, a division of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  19. Biological nitrogen removal from plating wastewater by submerged membrane bioreactor packed with granular sulfur.

    PubMed

    Moon, Jinyoung; Hwang, Yongwoo; Kim, Junbeum; Kwak, Inho

    Recent toughened water quality standards have necessitated improvements for existing sewer treatment facilities through advanced treatment processes. Therefore, an advanced treatment process that can be installed through simple modification of existing sewer treatment facilities needs to be developed. In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was developed and operated to determine the biological nitrogen removal behaviors of plating wastewater containing a high concentration of NO3(-). Continuous denitrification was carried out at various nitrogen loading rates at 20 °C using synthetic wastewater, which was comprised of NO3(-) and HCO3(-), and actual plating wastewater, which was collected from the effluent water of a plating company called 'H Metals'. High-rate denitrification in synthetic plating wastewater was accomplished at 0.8 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 0.9 kg NO3(-)-N/m(3)·day. The denitrification rate further increased in actual plating wastewater to 0.91 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 1.11 kg NO3(-)-N/m(3)·day. Continuous filtration was maintained for up to 30 days without chemical cleaning with a transmembrane pressure in the range of 20 cmHg. Based on stoichiometry, SO4(2-) production and alkalinity consumption could be calculated theoretically. Experimental alkalinity consumption was lower than the theoretical value. This newly proposed MBR-GS process, capable of high-rate nitrogen removal by compulsive flux, is expected to be applicable as an alternative renovation technique for nitrogen treatment of plating wastewater as well as municipal wastewater with a low C/N ratio.

  20. Ultrafast microwave-assisted synthesis of nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction.

    PubMed

    Xu, Jingjing; Zhang, Ruifang; Lu, Shiyao; Liu, Huan; Li, Zhaoyang; Zhang, Xinyu; Ding, Shujiang

    2018-07-27

    A facile and ultrafast microwave-assisted thermolysis approach has been adopted to synthesize hierarchical nitrogen-doped carbon within a very short time. The precursor PANI@carbon felt composite was pyrolyzed in microwave oven for different time (10, 20, 30, 40, 50 s) and denoted as NC-X (X = 10, 20, 30, 40, 50). As for NC-30, nitrogen-doping content is obtained up to 3.62 at% with striking enrichment of pyridinic N as high as 45% of the total nitrogen content. Raman analysis indicates the extent graphitization level for the resultant NC-30 and the relative intensity I D /I G was 1.26. High nitrogen-doping content and graphitization level provide effective active sites and efficient electron transfer channel. The resultant NC-30 exhibits pronounced ORR activity with an onset potential of 0.94 V (versus RHE), half-wave potential of 0.80 V and diffusion limiting current density of -5.23 mA cm -2 , comparable to those of the commercial Pt/C. It also shows enhanced stability with current retention of 98.3% over 7.5 h as well as superior tolerance against methanol. The simple preparation and excellent ORR performance of NC-30 suggest its promising practical application.

  1. Simultaneous removal of ammonia nitrogen and manganese from wastewater using nitrite by electrochemical method.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Qiu, Jiang; Chen, Hongliang; Tao, Changyuan

    2017-02-01

    In this work, nitrite was developed to simultaneously remove manganese and ammonia nitrogen from wastewater by the electrochemical method. The characteristics of electrolytic reaction were observed via cyclic voltammograms. Moreover, the mole ratio of nitrite and ammonia nitrogen, voltage, and initial pH value, which affected the removal efficiency of ammonia nitrogen and manganese, were investigated. The results showed that the concentration of ammonia nitrogen in wastewater could be reduced from 120.2 to 6.0 mg L -1 , and manganese could be simultaneously removed from 302.4 to 1.5 mg L -1 at initial pH of 8.0, the mole ratios of nitrite and ammonia nitrogen of 1.5:1, and voltage of 20 V direct current electrolysis for 4.0 h. XRD analysis showed that manganese dioxide was deposited on the anode, and manganese was mainly removed in the form of manganese hydroxide precipitation in the cathode chamber.

  2. Is nitrogen the next carbon?

    NASA Astrophysics Data System (ADS)

    Battye, William; Aneja, Viney P.; Schlesinger, William H.

    2017-09-01

    Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.

  3. Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols

    NASA Astrophysics Data System (ADS)

    Beem, K. B.; Desyaterik, Y.; Ozel, M. Z.; Hamilton, J. F.; Collett, J. L.

    2010-12-01

    negative. The differences in the number of species and what species are identified between these two methods are important for planning future analyses of organic nitrogen compounds. In addition, these data provide new insight into the potential source of organic nitrogen in RMNP. Using the GCxGC method, 39 organic nitrogen species were detected and 20 were identified. Identified species include several types of amines and phenols. The LC/MS method identified several types of cresols, amines, and nitrates.

  4. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  5. [Nitrogen balance assessment in burn patients].

    PubMed

    Beça, Andreia; Egipto, Paula; Carvalho, Davide; Correia, Flora; Oliveira, Bruno; Rodrigues, Acácio; Amarante, José; Medina, J Luís

    2010-01-01

    The burn injury probably represents the largest stimulus for muscle protein catabolism. This state is characterized by an accelerated catabolism of the lean or skeletal mass that results in a clinical negative balance of nitrogen and muscle wasting. The determination of an appropriate value for protein intake is essential, since it is positively related to the nitrogen balance (NB) and accordingly several authors argue that a positive NB is the key parameter associated with nutritional improvement of a burn patient. Evaluation of the degree of protein catabolism by assessment of the Nitrogen Balance; Defining of nutritional support (protein needs) to implement in patients with burned surface area (BSA) = 10%. We prospectively evaluated the clinical files and scrutinized the clinical variables of interest. The NB was estimated according to three formulae. Each gram of nitrogen calculated by the NB was then converted into grams of protein, subtracted or added to protein intake (or administered enteric or parenterically) and divided by kg of reference Weight (kg Rweight), in an attempt to estimate the daily protein needs. The cohort consisted of 10 patients, 6 females, with average age of 58(23) years old, a mean of BSA of 21.4(8.4)%, ranging from a minimum of 10.0% and máximum of 35.0%. On average, patients were 58 (23) years old. The average number of days of hospitalization in the burn unit was 64.8(36.5) days. We observed significant differences between the 3 methods used for calculating the NB (p = 0.004), on average the NB was positive. When the formula A was used the average value of NB was higher. Regarding the attempt to estimate the needs of g prot/kg Rweight/day most of the values did not exceed, on average, 2.6 g Prot/kg Rweight/day and no significant differences between patients with a BSA% of 10-20% and with BSA% > 20% were found. Despite being able to estimate the protein catabolism through these formulas and verifying that most values were above zero

  6. Glutamine nitrogen and ammonium nitrogen supplied as a nitrogen source is not converted into nitrate nitrogen of plant tissues of hydroponically grown pak-choi (Brassica chinensis L.).

    PubMed

    Wang, H-J; Wu, L-H; Tao, Q-N; Miller, D D; Welch, R M

    2009-03-01

    Many vegetables, especially leafy vegetables, accumulate NO(-) (3)-N in their edible portions. High nitrate levels in vegetables constitute a health hazard, such as cancers and blue baby syndrome. The aim of this study was to determine if (1) ammonium nitrogen (NH(+) (4)-N) and glutamine-nitrogen (Gln-N) absorbed by plant roots is converted into nitrate-nitrogen of pak-choi (Brassica chinensis L.) tissues, and (2) if nitrate-nitrogen (NO(-) (3)-N) accumulation and concentration of pak-choi tissues linearly increase with increasing NO(-) (3)-N supply when grown in nutrient solution. In experiment 1, 4 different nitrogen treatments (no nitrogen, NH(+) (4)-N, Gln-N, and NO(-) (3)-N) with equal total N concentrations in treatments with added N were applied under sterile nutrient medium culture conditions. In experiment 2, 5 concentrations of N (from 0 to 48 mM), supplied as NO(-) (3)-N in the nutrient solution, were tested. The results showed that Gln-N and NH(+) (4)-N added to the nutrient media were not converted into nitrate-nitrogen of plant tissues. Also, NO(-) (3)-N accumulation in the pak-choi tissues was the highest when plants were supplied 24 mM NO(-) (3)-N in the media. The NO(-) (3)-N concentration in plant tissues was quadratically correlated to the NO(-) (3)-N concentration supplied in the nutrient solution.

  7. Growth, nitrogen accumulation and nitrogen transfer by legume species established on mine spoils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jefferies, R.A.; Bradshaw, A.D.; Putwain, P.D.

    1981-12-01

    Nitrogen deficiency is an important factor limiting plant growth on many types of mine and mineral spoils. One method of overcoming this problem is to use legume species which are able to accumulate nitrogen in such spoils. The growth, nitrogen accumulation and nitrogen transfer to a companion species was compared in contrasting legume species established on colliery spoil and on sand waste from the extraction of china clay. Legumes can be effective means of accumulating nitrogen in such spoils with rates as high as 295 kg N ha/sup -1/ yr/sup -1/ being measured for Lupinus perennis sown on sand waste.more » Nitrogen transfer from legumes to a companion grass was also apparent. Trifolium repens sown on colliery spoil increased the nitrogen content of the companion grass by 76 kg ha/sup -1/ within 2 yr of sowing. It is concluded that a wider range of legume species than conventionally used is available, offering greater tolerance of the extreme conditions of mine spoils combined with high rates of nitrogen accumulation. It is necessary to develop reclamation strategies which incorporate such species.« less

  8. The Influence of Nitrogen on the Biological Properties of Soil Contaminated with Zinc.

    PubMed

    Strachel, Rafał; Wyszkowska, Jadwiga; Baćmaga, Małgorzata

    2017-03-01

    This study analyzed the relationship between nitrogen fertilization and the biological properties of soil contaminated with zinc. The influence of various concentrations of zinc and nitrogen on the microbiological and biochemical activity of soil was investigated. In a laboratory experiment, loamy sand with pH KCl 5.6 was contaminated with zinc (ZnCl 2 ) and fertilized with urea as a source of nitrogen. The activity of acid phosphatase, alkaline phosphatase, urease and β-glucosidase, and microbial counts were determined in soil samples after 2 and 20 weeks of incubation. Zinc generally stimulated hydrolase activity, but the highest zinc dose (1250 mg kg -1 ) led to the inhibition of hydrolases. Nitrogen was not highly effective in neutralizing zinc's negative effect on enzyme activity, but it stimulated the growth of soil-dwelling microorganisms. The changes in soil acidity observed after the addition of urea modified the structure of microbial communities.

  9. The Nitrogen Footprint Tool network: A multi-institution program to reduce nitrogen pollution

    USGS Publications Warehouse

    Castner, Elizabeth A.; Leah, Allison M.; Leary, Neal; Baron, Jill S.; Compton, Jana E.; Galloway, James N.; Hastings, Meredith G.; Kimiecik, Jacob; Lantz-Trissel, Jonathan; de la Riguera, Elizabeth; Ryals, Rebecca

    2017-01-01

    Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this paper, the first seven completed institution nitrogen footprint results are presented. The institution NFT network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive nitrogen released to the environment. Energy use and food purchases are the two largest sectors contributing to institution nitrogen footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the nitrogen footprint, but the impact of food production on nitrogen pollution has not been directly addressed by the higher-ed sustainability community. The NFT Network found that institutions could reduce their nitrogen footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as reducing dependence on fossil fuels for energy.

  10. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    PubMed Central

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  11. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile.

    PubMed

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non- Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non- Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non- Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non- Saccharomyces yeasts ( Starmerella bacillaris, Metschnikowia pulcherrima , and Pichia membranifaciens ) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae , to assess the impact of the non- Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae . Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae . We report here, for the first time, that non- Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris , aspartic acid was assimilated very slowly by M. pulcherrima , and glutamine was not assimilated by P. membranifaciens . By contrast, cysteine appeared to be a preferred nitrogen source for all non- Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non- Saccharomyces yeasts may account for

  12. Long-Term Changes in Nitrogen Budgets and Retention in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Eisele, Annika; van Beusekom, Justus E. E.; Wirtz, Kai

    2016-04-01

    Eutrophication remains one of the major factors influencing the ecological state of coastal ecosystems. Coastal eutrophication is in turn intimately linked to riverine nutrient loads. At the freshwater side of the estuary, nutrient loads can easily be quantified but estuarine processes including organic matter import from the sea and loss factors like denitrification can modify the actual nutrient loads reaching the coastal seas. We quantified and localized nutrient retention processes by analyzing changes of nutrient concentrations along the estuary and constructing nutrient budgets. Two methods -the Officer method based on conservative mixing and a new method based on changes in nitrogen concentrations along the freshwater part of the estuary- were compared using long term records for the Elbe River, a major European waterway. Nutrient budgets and dynamics reveal that nutrient retention processes in the water column play a substantial role in the Elbe River. Overall, ~25 mio mol/day N are imported into the Elbe estuary and ~20 mio mol/day DIN is exported, with obvious variations depending on river discharge and season. A nitrogen loss of about 20% falls within the range found in other studies. Whereas in the 1980s a significant part of the nitrogen input was retained by the estuary, in the 1990s and 2000s most of the imported total nitrogen was exported as DIN. At present, the retention of nitrogen -presumably due to increased denitrification- increases again. As these long-term changes in the retention capacity of the Elbe were supported by both methods, the calibrated station-based approach can now be used to calculate nutrient budgets in estuaries where no or only few transect data are available, such as the Weser and Ems estuary. Our presentation will finally discuss the possible impact of increased phytoplankton import from the Elbe River and increased import of suspended matter from the North Sea ecosystem on estuarine nitrogen dynamics.

  13. The pitcher plant Sarracenia purpurea can directly acquire organic nitrogen and short-circuit the inorganic nitrogen cycle.

    PubMed

    Karagatzides, Jim D; Butler, Jessica L; Ellison, Aaron M

    2009-07-07

    Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition. At sites in Canada (low nitrogen deposition) and the United States (high nitrogen deposition), individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake. By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant's reliance for nitrogen mineralization on a seasonally reconstructed food web operating on infrequent and irregular prey capture.

  14. The Pitcher Plant Sarracenia purpurea Can Directly Acquire Organic Nitrogen and Short-Circuit the Inorganic Nitrogen Cycle

    PubMed Central

    Karagatzides, Jim D.; Butler, Jessica L.; Ellison, Aaron M.

    2009-01-01

    Background Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition. Methodology and Principal Findings At sites in Canada (low nitrogen deposition) and the United States (high nitrogen deposition), individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake. Conclusions and Significance By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant's reliance for nitrogen mineralization on a seasonally reconstructed food web operating on

  15. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515 Section 862.1515 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  16. [Effects of cotton straw returning on soil organic carbon, nitrogen, phosphorus and potas-sium contents in soil aggregates].

    PubMed

    Wang, Shuang Lei; Liu, Yan Hui; Song, Xian Liang; Wei, Shao Bin; Li, Jin Pu; Nie, Jun Jun; Qin, Du Lin; Sun, Xue Zhen

    2016-12-01

    To clarify the effects of cotton straw returning on the composition and contents of nu-trients in different particle sizes of aggregates, two treatments with or without cotton straw returning were tested in continuous three years. After three years straw treatments, we collected undisturbed soil within 0-5, 5-10, 10-20 and 20-30 cm soil layers, and to measure the composition, soil organic carbon, nitrogen, phosphorus and potassium contents in different particle sizes of aggregates classified using dry sieving. Returning cotton straw into the field significantly increased particle contents of 2-5 mm and >5 mm aggregates in 0-5 cm soil layer, while the content of <0.25 mm micro-aggregates was decreased. Cotton straw returning significantly improved soil organic carbon, nitrogen, and potassium contents by 19.2%, 14.2% and 17.3%, respectively, compared to no returning control. In 5-10 cm soil layer, cotton straw returning increased the contents of 2-5 mm and >5 mm aggregates, reduced the content of <0.25 mm micro-aggregate, but significantly increased contents of soil organic carbon, available nitrogen and potassium by 19.6%, 12.6% and 23.4%, compared to no straw returning control. In 10-20 cm soil layer, cotton straw returning significantly reduced the content of <0.25 mm micro-aggregates, and significantly enhanced soil organic carbon, nitrogen, and potassium contents by 8.4%, 10.9% and 11.5%, compared to the control. However, in 20-30 cm soil layer, cotton straw returning only increased soil available potassium content by 12.0%, while there were no significant changes in particle size, organic carbon, nitrogen and phosphorus contents. We concluded that cotton straw returning could significantly improve the structure of surface soil by increasing the number of macro-aggregates, contents of organic carbon, available nitrogen and potassium in aggregates, while decreasing micro-aggregate content. The enhancement of the contribution of macro-aggregates to soil fertility

  17. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  18. Effect of nitrogen addition on the structural, electrical, and optical properties of In-Sn-Zn oxide thin films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Torigoshi, Yoshifumi; Suko, Ayaka; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Shigesato, Yuzo

    2017-02-01

    Indium-tin-zinc oxide (ITZO) films were deposited at various nitrogen flow ratios using magnetron sputtering. At a nitrogen flow ratio of 40%, the structure of ITZO film changed from amorphous, with a short-range-ordered In2O3 phase, to a c-axis oriented InN polycrystalline phase, where InN starts to nucleate from an amorphous In2O3 matrix. Whereas, nitrogen addition had no obvious effect on the structure of indium-gallium-zinc oxide (IGZO) films even at a nitrogen flow ratio of 100%. Nitrogen addition also suppressed the formation of oxygen-related vacancies in ITZO films when the nitrogen flow ratio was less than 20%, and higher nitrogen addition led to an increase in carrier density. Moreover, a red-shift in the optical band edge was observed as the nitrogen flow ratio increased, which could be attributed to the generation of InN crystallites. We anticipate that the present findings demonstrating nitrogen-addition induced structural changes can help to understand the environment-dependent instability in amorphous IGZO or ITZO based thin-film transistors (TFTs).

  19. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  20. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-10-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8-10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems.

  1. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    PubMed Central

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-01-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems. PMID:26494435

  2. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    PubMed

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  3. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  4. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels

    PubMed Central

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants. PMID:29320529

  5. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    PubMed

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  6. RELATIONSHIPS BETWEEEN NITROGEN LOADING AND CONCENTRATIONS OF NITROGEN AND CHLOROPHYLL IN COASTAL EMBAYMENTS

    EPA Science Inventory

    We describe results obtained with a simple model that uses loading rates of total nitrogen (TN), defined as dissolved inorganic nitrogen plus dissolved and particulate organic nitrogen, to calculate annually and spatially averaged concentrations of TN in coastal embayments. We al...

  7. NITROGEN CONCENTRATION OF STOMACH CONTENTS AS AN INDEX OF DIETARY NITROGEN FOR HISPID COTTON RATS

    EPA Science Inventory

    We examined the reliability of using nitrogen concentration of stomach contents from hispid cotton rats (Sigmodon hispidus) as an index of diet nitrogen. Stomach contents of cotton rats fed diets varying in nitrogen concentration were analyzed for stomach nitrogen. Regression a...

  8. Environmental Fate and tTransport of a New Energetic Material CL-20

    DTIC Science & Technology

    2006-02-01

    the study suggest indirectly that availability of their respective food sources, bacteria and fungi, were also unaffected, or increased in soil CL-20...was placed inside each pot at the bottom in order to prevent soil loss during testing. Alfalfa seeds were inoculated with nitrogen-fixing bacteria ...prior to sowing (Southern States Alfalfa-Clover Nitrogen Fixing Bacteria , lot no. 3092002, expiration date 07/2004 [Alfalfa toxicity tests were

  9. New Data for Modeling Hypersonic Entry into Earth's Atmosphere: Electron-impact Ionization of Atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Ciccarino, Christopher

    2017-06-01

    Meteors passing through Earth’s atmosphere and space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the meteor or vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the entering object by radiative and convective processes. Modeling the processes a meteor undergoes as it passes through the atmosphere and designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in Earth's atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during atomspheric entry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen.Here we present new EII calculations for atomic nitrogen. The atom is treated as a 69 level system, incorporating Rydberg values up to n=20. Level-specific cross sections are from published B-Spline R-Matrix-with-Pseudostates results for the first three levels and binary-encounter Bethe (BEB) calculations that we have carried out for the remaining 59 levels. These cross section data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenius-Kooij formula for ease of use in hypersonic chemical models. The rate coefficient data can be readily scaled by the relevant atomic nitrogen partition function which varies in time and space around the meteor or reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.

  10. First approach to the Japanese nitrogen footprint model to predict the loss of nitrogen to the environment

    NASA Astrophysics Data System (ADS)

    Shibata, Hideaki; Cattaneo, Lia R.; Leach, Allison M.; Galloway, James N.

    2014-11-01

    Humans increase the amount of reactive nitrogen (all N species except N2) in the environment through a number of processes, primarily food and energy production. Once in the environment, excess reactive nitrogen may cause a host of various environmental problems. Understanding and controlling individual nitrogen footprints is important for preserving environmental and human health. In this paper we present the per capita nitrogen footprint of Japan. We considered the effect of the international trade of food and feed, and the impact of dietary preferences among different consumer age groups. Our results indicate that the current average per capita N footprint in Japan considering trade is 28.1 kg N capita-1 yr-1. This footprint is dominated by food (25.6 kg N capita-1 yr-1), with the remainder coming from the housing, transportation, and goods and services sectors. The difference in food choices and intake between age groups strongly affected the food N footprint. Younger age groups tend to consume more meat and less fish, which leads to a larger food N footprint (e.g., 27.5 kg N capita-1 yr-1 for ages 20 to 29) than for older age groups (e.g., 23.0 kg N capita-1 yr-1 for ages over 70). The consideration of food and feed imports to Japan reduced the per capita N footprint from 37.0 kg N capita-1 yr-1 to 28.1 kg N capita-1 yr-1. The majority of the imported food had lower virtual N factors (i.e., Nr loss factors for food production), indicating that less N is released to the environment during the respective food production processes. Since Japan relies on imported food (ca. 61%) more than food produced domestically, much of the N losses associated with the food products is released in exporting countries.

  11. Wort free amino nitrogen analysis adapted to a microplate format

    USDA-ARS?s Scientific Manuscript database

    The standard method for determining wort free amino nitrogen content calls for the use of test tubes and glass marbles, as well as boiling and 20°C water baths. In this paper we describe how the standard method can be updated and streamlined by replacing water baths, test tubes and marbles with a th...

  12. The nitrogen footprint tool network: a multi-institution program to reduce nitrogen pollution

    EPA Science Inventory

    Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional...

  13. 75 FR 14116 - Approval of Implementation Plans of Wisconsin: Nitrogen Oxides Reasonably Available Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Annealing Furnace. Asphalt Plants =>65 mmBtu/hr... Gaseous fuel, 0.15 lbs/mmBtu. Distillate oil, 0.20 lbs/mm... relations, Nitrogen oxides, Ozone, Particulate matter, Reporting and recordkeeping requirements, Sulfur...

  14. Use of stable isotopes of nitrogen and water to identify sources of nitrogen in three urban creeks of Durham, North Carolina, 2011-12

    USGS Publications Warehouse

    McSwain, Kristen Bukowski; Young, Megan B.; Giorgino, Mary L.

    2014-01-01

    A preliminary assessment of nitrate sources was conducted in three creeks that feed nutrient impaired Falls and Jordan Lakes in the vicinity of Durham County, North Carolina, from July 2011 to June 2012. Cabin Branch, Ellerbe Creek, and Third Fork Creek were sampled monthly to determine if sources of nitrate in surface water could be identified on the basis of their stable isotopic compositions. Land use differs in the drainage basins of the investigated creeks—the predominant land use in Cabin Branch Basin is forest, and the Ellerbe and Third Fork Creek Basins are predominantly developed urban areas. Total nutrient concentrations were below 1 milligram per liter (mg/L). All measured nitrate plus nitrite concentrations were below the North Carolina standard of 10 mg/L as nitrogen with the highest concentration of 0.363 mg/L measured in Third Fork Creek. Concentrations of ammonia were generally less than 0.1 mg/L as nitrogen in all creek samples. More than 50 percent of the total nitrogen measured in the creeks was in the form of organic nitrogen. Total phosphorus and orthophosphate concentrations in all samples were generally less than 0.2 mg/L as phosphorus. The isotopic composition of surface water (δ2HH20 and δ18OH2O) is similar to that of modern-day precipitation. During July and August 2011 and May and June 2012, surface-water samples displayed a seasonal difference in isotopic composition, indicating fractionation of isotopes as a result of evaporation and, potentially, mixing with local and regional groundwater. The dominant source of nitrate to Cabin Branch, Ellerbe Creek, and Third Fork Creek was the nitrification of soil nitrogen. Two stormflow samples in Ellerbe Creek and Third Fork Creek had nitrate sources that were a mixture of the nitrification of soil nitrogen and an atmospheric source that had bypassed some soil contact through impermeable surfaces within the drainage basin. No influence of a septic or wastewater source was found in Cabin

  15. Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.

    PubMed

    Fernández-Castro, B; Mouriño-Carballido, B; Marañón, E; Chouciño, P; Gago, J; Ramírez, T; Vidal, M; Bode, A; Blasco, D; Royer, S-J; Estrada, M; Simó, R

    2015-09-09

    The input of new nitrogen into the euphotic zone constrains the export of organic carbon to the deep ocean and thereby the biologically mediated long-term CO2 exchange between the ocean and atmosphere. In low-latitude open-ocean regions, turbulence-driven nitrate diffusion from the ocean's interior and biological fixation of atmospheric N2 are the main sources of new nitrogen for phytoplankton productivity. With measurements across the tropical and subtropical Atlantic, Pacific and Indian oceans, we show that nitrate diffusion (171±190 μmol m(-2) d(-1)) dominates over N2 fixation (9.0±9.4 μmol m(-2) d(-1)) at the time of sampling. Nitrate diffusion mediated by salt fingers is responsible for ca. 20% of the new nitrogen supply in several provinces of the Atlantic and Indian Oceans. Our results indicate that salt finger diffusion should be considered in present and future ocean nitrogen budgets, as it could supply globally 0.23-1.00 Tmol N yr(-1) to the euphotic zone.

  16. The anaerobic potentially mineralizable nitrogen test as a tool for nitrogen management in the Midwest

    USDA-ARS?s Scientific Manuscript database

    The anaerobic potentially mineralizable nitrogen (PMNan) test is a tool that can improve estimations of mineralizable nitrogen (N) and enhance nitrogen use efficiency. This tool may also help improve predictions of N uptake, grain yield, and the economic optimum nitrogen rate (EONR) of corn (Zea ma...

  17. "Cold" Fixation: Reconciliation of Nitrogen Fixation Rates and Diazotroph Assemblages in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fong, A. A.; Waite, A.; Rost, B.; Richter, K. U.

    2016-02-01

    Measurements of biological nitrogen fixation are typically conducted in oligotrophic subtropical and tropical marine environments where concentrations of fixed inorganic nitrogen are low. To date, only a handful of nitrogen fixation studies have been conducted in high latitude marine environments, but further investigation is needed to resolve the distribution of cold ocean diazotrophic assemblages. Nitrogen fixation rates and nifH gene distributions were measured at seven stations from 5°E to 20°E, north of 81°N in the Arctic Ocean at the onset of summer 2015. Discrete water samples in ice-covered regions were collected from the sea surface to 200 m for 15N2-tracer additions and targeted nifH gene and transcript analyses. Previous work suggests that heterotrophic bacteria dominate diazotrophic communities in the Arctic Ocean. Therefore, additional nifH gene surveys of sinking particles were conducted to test for enrichment on organic matter-rich microenvironments. Together, these measurements aim to reconcile diazotrophic activity with microbial community composition, further elucidating how nitrogen fixers could impact current concepts in polar carbon and nutrient cycling.

  18. Effect of nitrogen on iron-manganese-based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ariapour, Azita

    Shape memory effect is due to a reversible martensitic transformation. The major drawback in case of Fe-Mn-based shape memory alloys is their inferior shape memory effect compared to Ni-Ti and Cu-based shape memory alloys and their low strength and corrosion resistance compared to steel alloys. It is known that by increasing the alloy strength the shape memory effect can be improved. Nitrogen in solid solution can increase the strength of steels to a greater extent than other major alloying elements. However, its effect on shape memory effect of Fe-Mn-based alloys is ambiguous. In this work first we investigated the effect of nitrogen addition in solid solution on both shape memory effect (SME) and strength of a Fe-Mn-Cr-Ni-Si shape memory alloy (SMA). It was found that interstitial nitrogen suppressed the shape memory effect in these alloys. As an example addition of 0.24 wt % nitrogen in solid solution to the alloy system suppressed the SME by ˜80% and increased the strength by 20%. A reduction of martensitic phase formation was found to be the dominant factor in suppression of the SME. This was related, experimentally and theoretically to stacking fault energy of the alloy as well as the driving force and friction force during the transformation. The second approach was doping the alloy with both 0.36 wt% of nitrogen and 0.36 wt% of niobium. Niobium has great affinity for nitrogen and thus NbN dispersed particles can be produced in the alloy following hot rolling. Then particles prevent growth of the alloy and increase the strength of the alloy due to reduced grain size, and precipitation hardening. The improvement of SME in this alloy compared to the interstitial containing alloys was due to the large removal of the nitrogen from solid solution. In case of all the alloys studied in this work, the presence of nitrogen in solid solution improved the corrosion resistance of the alloy. This suggests that nitrogen can replace nickel in the alloy. One of the

  19. Nitrogen fluxes in a high elevation Colorado Rocky Mountain basin

    USGS Publications Warehouse

    Baron, Jill S.; Campbell, D.H.

    1997-01-01

    Measured, calculated and simulated values were combined to develop an annual nitrogen budget for Loch Vale Watershed (LVWS) in the Colorado Front Range. Nine-year average wet nitrogen deposition values were 1??6 (s = 0??36) kg NO3-N ha-1, and 1??0 (s = 0??3) kg NH4-N ha-1. Assuming dry nitrogen deposition to be half that of measured wet deposition, this high elevation watershed receives 3??9 kg N ha-1. Although deposition values fluctuated with precipitation, measured stream nitrogen outputs were less variable. Of the total N input to the watershed (3??9 kg N ha-1 wet plus dry deposition), 49% of the total N input was immobilized. Stream losses were 2??0 kg N ha-1 (1125 kg measured dissolved inorganic N in 1992, 1-2 kg calculated dissolved organic N, plus an average of 203 kg algal N from the entire 660 ha watershed). Tundra and aquatic algae were the largest reservoirs for incoming N, at approximately 18% and 15% of the total 2574 kg N deposition, respectively. Rocky areas and forest stored the remaining 11% and 5%, respectively. Fully 80% of N losses from the watershed came from the 68% of LVWS that is alpine. ?? 1997 by John Wiley & Sons, Ltd.

  20. Delta nitrogen tetroxide fueling operations

    NASA Technical Reports Server (NTRS)

    Grigsby, R. B.; Cross, T. M.; Rucci, T. D.

    1978-01-01

    The development of the Delta second stage nitrogen tetroxide fueling system is briefly summarized. The nitrogen tetroxide fueling system and the equipment used to protect the spacecraft environment from the toxic nitrogen tetroxide fumes are described. Topics covered include: the nitrogen tetroxide transfer system; loading operations; safety precautions; and chemical treatment of all toxic vapors.

  1. [Isolation, Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain y3 Isolated from Marine Environment].

    PubMed

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Xu, Guang-yao; Li, Jin

    2016-03-15

    A heterotrophic nitrification--aerobic denitrification bacterium named y3 was isolated from the sludge of Jiaozhou Bay using the enrichment medium with seawater as the matrix. It was identified as Pseudomonas sp. based on the morphological observation, physiological experiments and sequence analysis of 16S rRNA. The experiment results showed that the optimal carbon resource was sodium citrate, the optimal pH was 7.0, and the optimal C/N was 13. The strain could use NH₄Cl, NaNO₂ and KNO₃ as sole nitrogen source, and the removal efficiencies were 98.69%, 78.38% and 72.95% within 20 hours, respectively. There was no nitrate and nitrite accumulation during the heterotrophic nitrification process. Within 20 hours, the nitrogen removal efficiencies were 99.56%, 99.75% and 99.41%, respectively, in the mixed system with NO₃⁻-N: NO²⁻-N of 2:1, 1:1 and 1:2. When the NH₄⁺-N: NO₃⁻-N ratios were 2: 1 , 1: 1 , 1: 2, the nitrogen removal efficiencies were all 100% . When the NH₄⁺-N:NO₂⁻-N ratios were 2:1,1:1,1:2, the nitrogen removal efficiencies were 90.43%, 92.79% and 99.96%, respectively. They were higher than those with single nitrogen source. As a result, strain y3 had good nitrogen removal performance in high saline wastewater treatment.

  2. Mineral commodity profiles: nitrogen

    USGS Publications Warehouse

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  3. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    PubMed

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in < 0. 25 mm. The content of nitrogen fractions for all aggregate-classes followed in the order of abandoned land < grass land < brush land < brush-arbor land < arbor land in different sample plots. Artificial forest lands had more effects on the improvement of the soil nitrogen than honeysuckle land. In this study it also showed the nitrogen stockpiling quantity of each aggregate-size class was differed in all aggregate-size classes, in which the content of nitrogen fraction in 5-10 mm and 2-5 mm classes of soil aggregate-size were the highest. And it meant that soil nutrient mainly was stored in large size aggregates. Large size aggregates were significant to the storage of soil nutrient. For each class of soil aggregate-size, the contribution of the nitrogen stockpiling quantity of 0. 25-1 mm class to soil net nitrogen mineralization quantity was the biggest, and following >5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  4. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    PubMed

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Nitrogen balance in dairy farm: research progress].

    PubMed

    Lü, Chao; Qin, Wen-Xiao; Gao, Teng-Yun; Wang, Xiao-Xiao; Han, Zhi-Guo; Li, Jia

    2013-01-01

    Large dairy farm with intensive management has high stocking density, but generally does not have enough space and normative feces disposal system, resulting in the discharged nitrogen surpassed the environmental carrying capacity of unit area land. Dairy farm is one of the major emission sources of nitrogen discharges in agriculture, where the nitrogen balance has being aroused attention by the experts abroad. The research on the nitrogen flow and nitrogen balance in dairy farm is the basis of the dairy farm nitrogen cycling and management study, as well as the basis for the construction of environmental laws, regulations and policies. The most reliable indicators to evaluate the nitrogen flow and nitrogen balance in dairy farm are nitrogen surplus and nitrogen use efficiency. This paper introduced the concept of nitrogen balance on farm-scale and the nitrogen flow within farm, compared the application scope of nitrogen surplus and nitrogen use efficiency, analyzed the factors affecting the nitrogen balance in dairy farm, and summarized the effective strategies to reduce the nitrogen discharges from dairy farm, aimed to provide references for the nitrogen management of dairy farm in China.

  6. Investigating Nitrogen Pollution: Activities and Models.

    ERIC Educational Resources Information Center

    Green Teacher, 2000

    2000-01-01

    Introduces activities on nitrogen, nitrogen pollution from school commuters, nitrogen response in native and introduced species, and nutrient loading models. These activities help students determine the nitrogen contribution from their parents' cars, test native plant responses to nitrogen, and experiment with the results of removing water from…

  7. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective currentmore » path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.« less

  8. ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE VERSION 2.0

    EPA Science Inventory

    The two-volume report describes the development of and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 2.0 model. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (NOx), a...

  9. ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL VERSION 2.0

    EPA Science Inventory

    The two-volume report describes the development of and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 2.0 model. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (NOx), a...

  10. Characterization of La/Fe/TiO2 and Its Photocatalytic Performance in Ammonia Nitrogen Wastewater

    PubMed Central

    Luo, Xianping; Chen, Chunfei; Yang, Jing; Wang, Junyu; Yan, Qun; Shi, Huquan; Wang, Chunying

    2015-01-01

    La/Fe/TiO2 composite photocatalysts were synthesized by Sol-Gel method and well characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen-physical adsorption, and UV-Vis diffuse reflectance spectra (UV-Vis DRS). It is interesting that the doped catalysts were in anatase phase while the pure TiO2 was in rutile phase. In addition, the composites possessed better physical chemical properties in photocatalytic activity than pure TiO2: stronger visible-light-response ability, larger specific surface area, and more regular shape in morphology. The photodegradation results of ammonia nitrogen indicate that: the La/Fe/TiO2 had higher catalytic activity to ammonia nitrogen waste water compared pure TiO2 and the other single metal-doped TiO2. pH 10 and 2 mmol/L H2O2 were all beneficial to the removal of ammonia nitrogen by La/Fe/TiO2. However, the common inorganic ions of Cl−, NO3−, SO42−, HCO3−/CO32−, Na+, K+, Ca2+ and Mg2+ in water all inhibited the degradation of ammonia nitrogen. By balance calculation, at least 20% of ammonia nitrogen was converted to N2 during the 64.6% removal efficiency of ammonia nitrogen. PMID:26593929

  11. Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions.

    PubMed

    Wang, Da-Wei; Li, Feng; Yin, Li-Chang; Lu, Xu; Chen, Zhi-Gang; Gentle, Ian R; Lu, Gao Qing; Cheng, Hui-Ming

    2012-04-23

    A nitrogen-doped porous carbon monolith was synthesized as a pseudo-capacitive electrode for use in alkaline supercapacitors. Ammonia-assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size-distributions and increased the specific surface area from 383 m(2) g(-1) to 679 m(2) g(-1). The nitrogen-containing porous carbon material showed a higher capacitance (246 F g(-1)) in comparison with the nitrogen-free one (186 F g(-1)). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen-containing functional groups on the surface of the N-doped carbon electrodes in a three-electrode cell. In addition, first-principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The effects of antecedent dry days on the nitrogen removal in layered soil infiltration systems for storm run-off control.

    PubMed

    Cho, Kang-Woo; Yoon, Min-Hyuk; Song, Kyung-Guen; Ahn, Kyu-Hong

    2011-01-01

    The effects of antecedent dry days (ADD) on nitrogen removal efficiency were investigated in soil infiltration systems, with three distinguishable layers: mulch layer (ML), coarse soil layer (CSL) and fine soil layer (FSL). Two sets of lab-scale columns with loamy CSL (C1) and sandy CSL (C2) were dosed with synthetic run-off, carrying chemical oxygen demand of 100 mg L(-1) and total nitrogen of 13 mg L(-1). The intermittent dosing cycle was stepwise adjusted for 5, 10 and 20 days. The influent ammonium and organic nitrogen were adsorbed to the entire depth in C1, while dominantly to the FSL in C2. In both columns, the effluent ammonium concentration increased while the organic nitrogen concentration decreased, as ADD increased from 5 to 20 days. The effluent of C1 always showed nitrate concentration exceeding influent, caused by nitrification, by increasing amounts as ADD increased. However, the wash-out of nitrate in C1 was not distinct in terms of mass since the effluent flow rate was only 25% of the influent. In contrast, efficient reduction (>95%) of nitrate loading was observed in C2 under ADD of 5 and 10 days, because of insignificant nitrification in the CSL and denitrification in the FSL. However, for the ADD of 20 days, a significant nitrate wash-out appeared in C2 as well, possibly because of the re-aeration by the decreasing water content in the FSL. Consequently, the total nitrogen load escaping with the effluent was always smaller in C2, supporting the effectiveness of sandy CSL over loamy FSL for nitrogen removal under various ADDs.

  13. Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon

    NASA Technical Reports Server (NTRS)

    Perkins, R. A.; Cieszkiewicz, M. T.

    1991-01-01

    Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.

  14. NITROGEN OUTPUTS FROM FECAL AND URINE DEPOSITION OF SMALL MAMMALS: IMPLICATIONS FOR NITROGEN CYCLING

    EPA Science Inventory

    The contribution of small mammals to nitrogen cycling is poorly understood, but it could have reverberations back to the producer community by maintaining or perhaps magnifying nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) of ...

  15. NITROGEN OUTPUTS OF SMALL MAMMALS FROM FECAL AND URINE DEPOSITION: IMPLICATIONS FOR NITROGEN CYCLING

    EPA Science Inventory

    The contribution of small mammals in nitrogen cycling is poorly understood and could have reverberations back to the producer community by maintaining or even magnifying increased nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) ...

  16. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    Ammonia was produced by 12 companies at 27 plants in 15 states in the United States during 2011. Sixty-one percent of total U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2011, U.S. producers operated at about 84 percent of their rated capacity (excluding plants that were idle for the entire year). Four companies — CF Industries Holdings Inc.; Koch Nitrogen Co.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 77 percent of the total U.S. ammonia production capacity.

  17. Effects of low carbohydrate diets on energy and nitrogen balance and body composition in rats depend on dietary protein-to-energy ratio.

    PubMed

    Frommelt, Lena; Bielohuby, Maximilian; Menhofer, Dominik; Stoehr, Barbara J M; Bidlingmaier, Martin; Kienzle, Ellen

    2014-01-01

    Truly ketogenic rodent diets are low in carbohydrates but also low in protein. The aim of this study was to differentiate effects of ketosis, low carbohydrate (LC) and/or low-protein intake on energy and nitrogen metabolism. We studied the nitrogen balance of rats fed LC diets with varying protein contents: LC diets consisted of 75/10, 65/20 and 55/30 percent of fat to protein (dry matter), respectively, and were iso-energetically pair-fed to a control (chow) diet to 12-wk-old male Wistar rats (n = 6 per diet). Previous studies demonstrated only LC75/10 was truly ketogenic. Food, fecal, and urine samples, as well as carcasses were collected and analyzed for heat of combustion and nitrogen (Kjeldahl method). Blood samples were analyzed for plasma protein, albumin, and triacylglycerol. All LC groups displayed less body weight gain, and the degree of reduction was inversely related to digestible crude protein intake (daily weight gain compared with chow: LC75/10: -50%; LC55/30: -20%). Nitrogen excretion by urine was related to digestible protein intake (chow: 0.23 ± 0.02 g nitrogen/d; LC75/10: 0.05 ± 0.01 g nitrogen/d). Renal energy excretion was closely associated with intake of digestible crude protein (r = 0.697) and renal nitrogen excretion (r = 0.769). Energy-to-nitrogen ratio in urine was nearly doubled with LC75/10 compared with all other groups. Total body protein was highest with chow and lowest with LC75/10. Rats fed with LC75/10 displayed features of protein deficiency (reduced growth and nitrogen balance, hypoproteinemia, depletion of body protein, and increased body and liver fat), whereas the effects with the non-ketogenic diets LC65/20 and LC55/30 were less pronounced. These results suggest that truly ketogenic LC diets in growing rats are LC diets that are also deficient in protein for growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Mapping of accumulated nitrogen in the sediment pore water of a eutrophic lake in Iowa, USA

    USGS Publications Warehouse

    Iqbal, M.Z.; Fields, C.L.

    2009-01-01

    A large pool of nitrogen in the sediment pore fluid of a eutrophic lake in Iowa, USA, was mapped in this study. Previously, the lake had supported fishing and boating, but today it no longer supports its designated uses as a recreational water body. In the top 5 cm of the lake bottom, the pore water nitrogen ranges between 3.1 and 1,250 ??g/cm3 of sediments, with an average of 160.3 ??g/cm3. Vertically, nitrate concentrations were measured as 153 ??g/cm3 at 0-10 cm, 162 ??g/cm3 at 10-20 cm, and 32 ??g/cm3 at 20-30 cm. Nitrate mass distribution was quantified as 3.67 ?? 103 kg (65%) in the bottom sediments, 172 kg (3%) in suspended particulates, and 1.83 ?? 103 kg (32%) in the dissolved phase. Soil runoff nutrients arrive at the lake from the heavily fertilized lands in the watershed. Upon sedimentation, a large mass of nitrogen desorbs from mineral particles to the relatively immobile pore fluid. Under favorable conditions, this nitrogen diffuses back into the water column, thereby dramatically limiting the lake's capability to process incoming nutrients from farmlands. Consequently, a condition of oxygen deficiency disrupts the post-season biological activities in the lake. ?? 2008 Springer-Verlag.

  19. Urea fertilizer increases growth of 20-year-old, thinned Douglas-fir on poor quality site

    Treesearch

    Richard E. Miller; Donald L. Reukema

    1977-01-01

    In 20-year-old, site V Douglas-fir in southwest Washington, fertilizing with nitrogen increased average 5-year diameter and height growth of concurrently released dominant trees by about 85 percent. There was no additional response when phosphorus, potassium, and sulfur were added with the nitrogen fertilizer. Thinning with no other treatment in this moderately stocked...

  20. Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands.

    PubMed

    Henry, Jason; Aherne, Julian

    2014-02-01

    High resolution nitrogen (N) deposition maps were developed to assess the exceedance of empirical critical loads of nutrient N for grasslands in Ireland. Nitrogen emissions have remained relatively constant during the past 20 yrs and are projected to remain constant under current legislation. Total N deposition (estimated as wet nitrate [NO3(-)] and ammonium [NH4(+)] plus dry NO× and NH3) ranged from 2 to 22 kg Nha(-1)yr(-1) (mean=12 kg Nha(-1)yr(-1)) to grasslands. Empirical critical loads for nutrient N were set at 15 kg Nha(-1)yr(-1) for both acid and calcareous grasslands; exceedance was observed for ~35% (~2,311 km(2)) of mapped acid grasslands. In contrast, only ~9% of calcareous grasslands (~35 km(2)) received N deposition in excess of the critical load. Reduced N deposition (primarily dry NH3) represented the dominant form to grasslands (range 55-90%) owing to significant emissions associated with livestock (primarily cattle). The extent of exceedance in acid grasslands suggests that N deposition to this habitat type may lead to adverse impacts such as a decline in plant species diversity and soil acidification. Further, given that elevated N deposition was dominated by NH3 associated with agricultural emissions rather than long-range transboundary sources, future improvements in air quality need to be driven by national policies. © 2013.

  1. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications.

    PubMed

    Noh, Seung Hyo; Kwon, Choah; Hwang, Jeemin; Ohsaka, Takeo; Kim, Beom-Jun; Kim, Tae-Young; Yoon, Young-Gi; Chen, Zhongwei; Seo, Min Ho; Han, Byungchan

    2017-06-08

    In this study, we report self-assembled nitrogen-doped fullerenes (N-fullerene) as non-precious catalysts, which are active for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and thus applicable for energy conversion and storage devices such as fuel cells and metal-air battery systems. We screen the best N-fullerene catalyst at the nitrogen doping level of 10 at%, not at the previously known doping level of 5 or 20 at% for graphene. We identify that the compressive surface strain induced by doped nitrogen plays a key role in the fine-tuning of catalytic activity.

  2. Release of Nitrogen during Planetary Accretion Explains Missing Nitrogen in Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Liu, J.; Dorfman, S.; Lv, M.; Li, J.; Kono, Y.

    2017-12-01

    Nitrogen and carbon are essential elements for life on Earth, and their relative abundances in planetary bodies (C/N ratios) are important for understanding planetary evolution and habitability1,2. However, the high C/N ratio in the bulk silicate Earth relative to CI chondrites and other volatile-rich chondrites is difficult to explain with partitioning behavior between silicate and metallic liquid or solubility in silicate melt, and has thus been a major unsolved problem in geochemistry1-5. Because core formation does not explain nitrogen depletion in the mantle, another process is required to match the observed BSE C/N ratio, such as devolatilization of metallic liquid. Previous studies have examined the Fe-C phase diagram extensively (e.g. ref. 6), but very limited melting data is available for the Fe-N system7. Here we examine melting relations for four Fe-N-C compositions with 1-7 wt% nitrogen up to 7 GPa and 2200 K in the Paris-Edinburgh press by a combination of in-situ X-ray radiography, X-ray diffraction and ex-situ electron microprobe techniques. In striking contrast to the Fe-C system, near-surface melting in all compositions in the Fe-N-C system entails release of nitrogen fluid and depletion of nitrogen from the liquid alloy. This could provide a pathway for nitrogen to escape the magma ocean in the accretion stage while carbon is retained. On the basis of our experimental results, we propose a new quantitative model of mantle nitrogen evolution during the core formation stage to explain the high BSE C/N ratios and resolve the paradox of missing mantle nitrogen1-5. Although nitrogen itself is not a greenhouse gas, the nitrogen released to the atmosphere from metallic melt early in Earth's history could amplify the greenhouse effect through collision-enhanced absorption8,9, which may help to explain warm surface temperatures during the Hadean and Archean eras on Earth when the solar luminosity was 25-30% lower than the present10. References1. Bergin et

  3. Molecular Biology of Nitrogen Fixation

    ERIC Educational Resources Information Center

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  4. The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains.

    PubMed

    Vendramini, Chiara; Beltran, Gemma; Nadai, Chiara; Giacomini, Alessio; Mas, Albert; Corich, Viviana

    2017-10-03

    Three vineyard strains of Saccharomyces cerevisiae, P301.4, P304.4 and P254.12, were assayed in comparison with a commercial industrial strain, QA23. The aim was to understand if nitrogen availability could influence strain competition ability during must fermentation. Pairwise-strain fermentations and co-fermentations with the simultaneous presence of the four strains were performed in synthetic musts at two nitrogen levels: control nitrogen condition (CNC) that assured the suitable assimilable nitrogen amount required by the yeast strains to complete the fermentation and low nitrogen condition (LNC) where nitrogen is present at very low level. Results suggested a strong involvement of nitrogen availability, as the frequency in must of the vineyard strains, respect to QA23, in LNC was always higher than that found in CNC. Moreover, in CNC only strain P304.4 reached the same strain frequency as QA23. P304.4 competition ability increased during the fermentation, indicating better performance when nitrogen availability was dropping down. P301.4 was the only strain sensitive to QA23 killer toxin. In CNC, when it was co-inoculated with the industrial strain QA23, P301.4 was never detected. In LNC, P301.4 after 12h accounted for 10% of the total population. This percentage increased after 48h (20%). Single-strain fermentations were also run in both conditions and the nitrogen metabolism further analyzed. Fermentation kinetics, ammonium and amino-acid consumptions and the expression of genes under nitrogen catabolite repression evidenced that vineyard yeasts, and particularly strain P304.4, had higher nitrogen assimilation rate than the commercial control. In conclusion, the high nitrogen assimilation rate seems to be an additional strategy that allowed vineyard yeasts successful competition during the growth in grape musts. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impacts of reactive nitrogen on climate change in China

    PubMed Central

    Shi, Yalan; Cui, Shenghui; Ju, Xiaotang; Cai, Zucong; Zhu, Yong-Guan

    2015-01-01

    China is mobilizing the largest anthropogenic reactive nitrogen (Nr) in the world due to agricultural, industrial and urban development. However, the climate effects related to Nr in China remain largely unclear. Here we comprehensively estimate that the net climate effects of Nr are −100 ± 414 and 322 ± 163 Tg CO2e on a GTP20 and a GTP100 basis, respectively. Agriculture contributes to warming at 187 ± 108 and 186 ± 56 Tg CO2e on a 20-y and 100-y basis, respectively, dominated by long-lived nitrous oxide (N2O) from fertilized soils. On a 20-y basis, industry contributes to cooling at −287 ± 306 Tg CO2e, largely owing to emissions of nitrogen oxides (NOx) altering tropospheric ozone, methane and aerosol concentrations. However, these effects are short-lived. The effect of industry converts to warming at 136 ± 107 Tg CO2e on a 100-y basis, mainly as a result of the reduced carbon (C) sink from the NOx-induced ozone effect on plant damage. On balance, the warming effects of gaseous Nr are partly offset by the cooling effects of N-induced carbon sequestration in terrestrial ecosystems. The large mitigation potentials through reductions in agricultural N2O and industrial NOx will accompany by a certain mitigation pressure from limited N-induced C sequestration in the future. PMID:25631557

  6. The microbial nitrogen-cycling network.

    PubMed

    Kuypers, Marcel M M; Marchant, Hannah K; Kartal, Boran

    2018-05-01

    Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. By far, the largest inventory of freely accessible nitrogen is atmospheric dinitrogen, but most organisms rely on more bioavailable forms of nitrogen, such as ammonium and nitrate, for growth. The availability of these substrates depends on diverse nitrogen-transforming reactions that are carried out by complex networks of metabolically versatile microorganisms. In this Review, we summarize our current understanding of the microbial nitrogen-cycling network, including novel processes, their underlying biochemical pathways, the involved microorganisms, their environmental importance and industrial applications.

  7. Effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer

    NASA Technical Reports Server (NTRS)

    Bizjak, F.; Simkin, D. J.

    1967-01-01

    Study investigates effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer from one vessel to another at a higher elevation. Results may contribute to creation of new environmental systems and improved oxygen solubility in water to promote fish life.

  8. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  9. Brucella, nitrogen and virulence.

    PubMed

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.

  10. Nitrogen in rock: Occurrences and biogeochemical implications

    USGS Publications Warehouse

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  11. A study on the migration and transformation law of nitrogen in urine in municipal wastewater transportation and treatment.

    PubMed

    Wuang, Ren; Pengkang, Jin; Chenggang, Liang; Xiaochang, Wang; Lei, Zhang

    2013-01-01

    Many studies suggest that the total nitrogen (TN) in urine is around 9,000 mg/L and about 80% of nitrogen in municipal wastewater comes from urine, because nitrogen mainly occurs in the form of urea in fresh human urine. Based on this fact, the study on the migration and transformation law of nitrogen in urine and its influencing factors was carried out. It can be seen from the experimental results that the transformation rate of urea in urine into ammonia nitrogen after standing for 20 days is only about 18.2%, but the urea in urine can be hydrolyzed into ammonia nitrogen rapidly after it is catalyzed directly with free urease or indirectly with microorganism. Adding respectively a certain amount of urease, activated sludge and septic-tank sludge to urine samples can make the maximum transformation rate achieve 85% after 1 day, 2 days and 6 days, respectively. In combination with some corresponding treatment methods, recycling of nitrogen in urine can be achieved. The results are of great significance in guiding denitrification in municipal wastewater treatment.

  12. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Chen, Y.; Liu, X.; Xu, W.; Pan, Y.; Duan, L.

    2016-12-01

    We present a national-scale model analysis of the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2°×1/3° horizontal resolution. Averaged model results for 2008-2012 are evaluated with an ensemble of surface measurements of nitrogen wet deposition flux and concentration, and satellite measurements of tropospheric NO2 columns. Annual inorganic nitrogen deposition fluxes are shown to be generally less than 10 kg N ha-1 a-1 in the western China, 15-50 kg N ha-1 a-1 in the eastern China, and 15.6 kg N ha-1 a-1 averaged over China. The model simulates an annual total deposition flux of 16.4 Tg N to China, with 10.3 Tg N (63%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported out of China. We also find while nitrogen deposition to China is comparable to the nitrogen input from fertilizer application (16.5 Tg N a-1) on the national scale, it is much more widely distributed spatially. The deposition flux is also much higher than natural biological fixation (7.3 Tg N a-1). A comparison with estimates of nitrogen critical load for eutrophication indicates that about 40% of the land over China faces nitrogen critical load exceedances. However, 45% of the exceeding areas, mainly in Beijing-Tianjin-Hebei, Central China, East China, and South China, will not occur in the absence of nitrogen deposition, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects over these areas.

  13. Nitrogen incorporation in carbon nitride films produced by direct and dual ion-beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrasonis, G.; Gago, R.; Jimenez, I.

    2005-10-01

    Carbon (C) and carbon nitride (CN{sub x}) films were grown on Si(100) substrates by direct ion-beam sputtering (IBS) of a carbon target at different substrate temperatures (room temperature-450 deg. C) and Ar/N{sub 2} sputtering gas mixtures. Additionally, the effect of concurrent nitrogen-ion assistance during the growth of CN{sub x} films by IBS was also investigated. The samples were analyzed by elastic recoil detection analysis (ERDA) and x-ray absorption near-edge spectroscopy (XANES). The ERDA results showed that significant nitrogen amount (up to 20 at. %) was incorporated in the films, without any other nitrogen source but the N{sub 2}-containing sputtering gas.more » The nitrogen concentration is proportional to the N{sub 2} content in the sputtering beam and no saturation limit is reached under the present working conditions. The film areal density derived from ERDA revealed a decrease in the amount of deposited material at increasing growth temperature, with a correlation between the C and N losses. The XANES results indicate that N atoms are efficiently incorporated into the carbon network and can be found in different bonding environments, such as pyridinelike, nitrilelike, graphitelike, and embedded N{sub 2} molecules. The contribution of molecular and pyridinelike nitrogen decreases when the temperature increases while the contribution of the nitrilelike nitrogen increases. The concurrent nitrogen ion assistance resulted in the significant increase of the nitrogen content in the film but it induced a further reduction of the deposited material. Additionally, the assisting ions inhibited the formation of the nitrilelike configurations while promoting nitrogen environments in graphitelike positions. The nitrogen incorporation and release mechanisms are discussed in terms of film growth precursors, ion bombardment effects, and chemical sputtering.« less

  14. Vibrational cross sections for positron scattering by nitrogen molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazon, K. T.; Tenfen, W.; Michelin, S. E.

    2010-09-15

    We present a systematic study of low-energy positron collision with nitrogen molecules. Vibrational elastic and excitation cross sections are calculated using the multichannel version of the continued fractions method in the close-coupling scheme for the positron incident energy up to 20 eV. The interaction potential is treated within the static-correlation-polarization approximation. The comparison of our calculated data with existing theoretical and experimental results is encouraging.

  15. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  16. Nitrogen Cycling in the Mycorrhizosphere: Multipartite Interactions and Plant Nitrogen Uptake Vary with Fertilization Legacy

    NASA Astrophysics Data System (ADS)

    Hestrin, R.; Lehmann, J.

    2017-12-01

    Soil microbes play an important role in rhizosphere nutrient cycling and plant productivity. In this study, the contributions of soil microbes to organic matter mineralization and plant nitrogen uptake were investigated using incubation and microcosm experiments. Microbial inocula included arbuscular mycorrhizal fungi and microbial communities sampled across a long-term gradient of nitrogen fertilization. Stable isotopes, nanoSIMS imaging, and phospholipid fatty acid analysis were used to track carbon and nitrogen movement from organic matter into microbes, mycorrhizal fungi, and plants. Results show that multipartite relationships between plants and microbes increased plant growth and access to nitrogen from organic matter, and that nitrogen fertilization history had a lasting effect on microbial contributions to fungal and plant nitrogen uptake. This research links rhizosphere ecology and land management with terrestrial biogeochemistry.

  17. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P < 0.01). Nevertheless, it is not clear why AM hyphae responded differently to nitrogen fertilization in the different sites. Carbon stocks within

  18. EEG patterns associated with nitrogen narcosis (breathing air at 9 ATA).

    PubMed

    Pastena, Lucio; Faralli, Fabio; Mainardi, Giovanni; Gagliardi, Riccardo

    2005-11-01

    The narcotic effect of nitrogen impairs diver performance and limits dive profiles, especially for deep dives using compressed air. It would be helpful to establish measurable correlates of nitrogen narcosis. The authors observed the electroencephalogram (EEG) of 10 subjects, ages 22-27 yr, who breathed air during a 3-min compression to a simulated depth of 80 msw (9 ATA). The EEG from a 19-electrode cap was recorded for 20 min while the subject reclined on a cot with eyes closed, first at 1 ATA before the dive and again at 9 ATA. Signals were analyzed using Fast Fourier Transform and brain mapping for frequency domains 0-4 Hz, 4-7 Hz, 7-12 Hz, and 12-15 Hz. Student's paired t-test and correlation tests were used to compare results for the two conditions. Two EEG patterns were observed. The first was an increase in delta and theta activity in all cortical regions that appeared in the first 2 min at depth and was related to exposure time. The second was an increase in delta and theta activity and shifting of alpha activity to the frontal regions at minute 6 of breathing air at 9 ATA and was related to the narcotic effects of nitrogen. If confirmed by studies with larger case series, this EEG pattern could be used to identify nitrogen narcosis for various gas mixtures and prevent the dangerous impact of nitrogen on diver performance.

  19. Effects of soil and foliar applications of nitrogen fertilizers on a 20-year-old Douglas-fir stand

    Treesearch

    Richard E. Miller; Steve. Wert

    1979-01-01

    We compared growth and cone production of Douglas-fir treated 4 years earlier with ISO pounds N per acre applied as urea prill by hand and as a 32-percent N solution applied by helicopter. Nitrogen fertilization increased growth by 3 88 ft per acre during the 4 years after treatment; this 3S-percent gain was similar for both soil (prill) and foliar (solution)...

  20. Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste

    NASA Astrophysics Data System (ADS)

    Robinson, Georgina; MacTavish, Thomas; Savage, Candida; Caldwell, Gary S.; Jones, Clifford L. W.; Probyn, Trevor; Eyre, Bradley D.; Stead, Selina M.

    2018-03-01

    The treatment of organic wastes remains one of the key sustainability challenges facing the growing global aquaculture industry. Bioremediation systems based on coupled bioturbation-microbial processing offer a promising route for waste management. We present, for the first time, a combined biogeochemical-molecular analysis of the short-term performance of one such system that is designed to receive nitrogen-rich particulate aquaculture wastes. Using sea cucumbers (Holothuria scabra) as a model bioturbator we provide evidence that adjusting the waste C : N from 5 : 1 to 20 : 1 promoted a shift in nitrogen cycling pathways towards the dissimilatory nitrate reduction to ammonium (DNRA), resulting in net NH4+ efflux from the sediment. The carbon amended treatment exhibited an overall net N2 uptake, whereas the control receiving only aquaculture waste exhibited net N2 production, suggesting that carbon supplementation enhanced nitrogen fixation. The higher NH4+ efflux and N2 uptake was further supported by meta-genome predictions that indicate that organic-carbon addition stimulated DNRA over denitrification. These findings indicate that carbon addition may potentially result in greater retention of nitrogen within the system; however, longer-term trials are necessary to determine whether this nitrogen retention is translated into improved sea cucumber biomass yields. Whether this truly constitutes a remediation process is open for debate as there remains the risk that any increased nitrogen retention may be temporary, with any subsequent release potentially raising the eutrophication risk. Longer and larger-scale trials are required before this approach may be validated with the complexities of the in-system nitrogen cycle being fully understood.

  1. 136. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN LIQUID NITROGEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    136. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770), FROM FUEL APRON WITH BAY DOOR OPEN - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Removal efficiency and balance of nitrogen in a recirculating aquaculture system integrated with constructed wetlands.

    PubMed

    Zhong, Fei; Liang, Wei; Yu, Tao; Cheng, Shui P; He, Feng; Wu, Zhen B

    2011-01-01

    The nitrogen (N) balance for aquaculture is an important aspect, especially in China, and it is attributed to the eutrophication in many freshwater bodies. In recent years, constructed wetlands (CWs) have been widely used in wastewater treatment and ecosystem restoration. A recirculating aquaculture system (RAS) consisting of CWs and 4 fish ponds was set up in Wuhan, China. Channel catfish (Ictalurus punctatus) fingerlings were fed for satiation daily for 168 days with 2 diets containing 5.49 % and 6.53 % nitrogen, respectively. The objectives of this study were to investigate the N budget in the RAS, and try to find out the feasibility of controlling N accumulation in the fish pond. It is expected that the study can provide a mass balance for the fate of N in the eco-friendly treatment system to avoid eutrophication. The results showed that the removal rates of ammonia (NH(+)(4)-N), sum of nitrate & nitrite (NO(-)(X)-N), and total nitrogen (TN) by the CWs were 20-55%, 38-84 % and 39-57 %, respectively. Denitrification in the CWs was the main pathway of nitrogen loss (41.67 %). Nitrogen accumulation in pond water and sediment accounted for 3.39 % and 12.65 % of total nitrogen loss, respectively. The nitrogen removal efficiency and budget showed that the CW could be used to control excessive nitrogen accumulation in fish ponds. From the viewpoint of the nitrogen pollution control, the RAS combined with the constructed wetland can be applied to ensure the sustainable development for aquaculture.

  3. Evaluation of the Impact of Alveolar Nitrogen Excretion on Indices Derived from Multiple Breath Nitrogen Washout

    PubMed Central

    Nielsen, Niklas; Nielsen, Jorgen G.; Horsley, Alex R.

    2013-01-01

    Background A large body of evidence has now accumulated describing the advantages of multiple breath washout tests over conventional spirometry in cystic fibrosis (CF). Although the majority of studies have used exogenous sulphur hexafluoride (SF6) as the tracer gas this has also led to an increased interest in nitrogen washout tests, despite the differences between these methods. The impact of body nitrogen excreted across the alveoli has previously been ignored. Methods A two-compartment lung model was developed that included ventilation heterogeneity and dead space (DS) effects, but also incorporated experimental data on nitrogen excretion. The model was used to assess the impact of nitrogen excretion on washout progress and accuracy of functional residual capacity (FRC) and lung clearance index (LCI) measurements. Results Excreted nitrogen had a small effect on accuracy of FRC (1.8%) in the healthy adult model. The error in LCI calculated with true FRC was greater (6.3%), and excreted nitrogen contributed 21% of the total nitrogen concentration at the end of the washout. Increasing DS and ventilation heterogeneity both caused further increase in measurement error. LCI was increased by 6–13% in a CF child model, and excreted nitrogen increased the end of washout nitrogen concentration by 24–49%. Conclusions Excreted nitrogen appears to have complex but clinically significant effects on washout progress, particularly in the presence of abnormal gas mixing. This may explain much of the previously described differences in washout outcomes between SF6 and nitrogen. PMID:24039916

  4. Electron Microprobe Measurements of Nitrogen in SiC

    NASA Astrophysics Data System (ADS)

    Ross, K.

    2007-12-01

    Methods have been developed for the measurement of low abundances of nitrogen in SiC films. These techniques were developed for measurements of synthetic thin-film samples prepared by materials scientists but the technique can also be applied to natural SiC grains in meteorites. One problem associated with measuring nitrogen at low abundance levels is the low count rates due to strong absorption of the nitrogen signal in the matrix material. In thin film samples, (SiC deposited on elemental Si) it is preferable to limit x-ray production and emission to the overlayer. This eliminates the need for data reduction using thin-film methods. Thin film data reduction is inevitably less accurate than bulk material data reduction methods. In order to limit x-ray emission to the film layer, data has been collected at 5 kV and 3.5 kV accelerating voltage (depending on film thickness estimates provided by scientists who prepared these samples). These low beam energies also promote production of x-rays in the shallow region of the samples, and this minimizes strong absorption, leading to more abundant nitrogen x-ray detection, which improves counting statistics and overall precision. The CASINO monte carlo modeling program was used to model electron penetration and x-ray production as a function of beam energy and depth in the sample in order to ensure that the excited volume is limited to the film. The beam was set to 200 nA beam current. This high beam current also improves counting statistics by providing more abundant count rates. One drawback of these beam conditions is the limited spatial resolution provided. In our Cameca probe, a 5 kV, 200 nA beam is approximately 10 microns in diameter. SiC samples and standard were not carbon coated (they are conducting). AlN was used as the nitrogen standard. These films contained 0.3 to 0.7 wt. per cent nitrogen, with analytical uncertainties in the range of 10-20 per cent relative errors. The Si:C ratios were very near 1

  5. A coastal three-dimensional water quality model of nitrogen in Jiaozhou Bay linking field experiments with modelling.

    PubMed

    Lu, Dongliang; Li, Keqiang; Liang, Shengkang; Lin, Guohong; Wang, Xiulin

    2017-01-15

    With anthropogenic changes, the structure and quantity of nitrogen nutrients have changed in coastal ocean, which has dramatically influenced the water quality. Water quality modeling can contribute to the necessary scientific grounding of coastal management. In this paper, some of the dynamic functions and parameters of nitrogen were calibrated based on coastal field experiments covering the dynamic nitrogen processes in Jiaozhou Bay (JZB), including phytoplankton growth, respiration, and mortality; particulate nitrogen degradation; and dissolved organic nitrogen remineralization. The results of the field experiments and box model simulations showed good agreement (RSD=20%±2% and SI=0.77±0.04). A three-dimensional water quality model of nitrogen (3DWQMN) in JZB was improved and the dynamic parameters were updated according to field experiments. The 3DWQMN was validated based on observed data from 2012 to 2013, with good agreement (RSD=27±4%, SI=0.68±0.06, and K=0.48±0.04), which testifies to the model's credibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    PubMed

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  7. Do foliar endophytic bacteria fix nitrogen?

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Moyes, A. B.; Frank, C.; Pett-Ridge, J.; Carper, D.; Vandehey, N.; O'Neil, J.; Dekas, A.

    2015-12-01

    Endophytic microorganisms - bacteria and fungi that live inside healthy plant tissue - are a relatively unexplored source of functional diversity in natural ecosystems. Prior to modern sequencing technology, detecting uncultured endophytic bacteria and assessing their putative functions was challenging. However, recent work has revealed a remarkable diversity of as yet non-culturable endophytic taxa and is beginning to identify functional roles within plant microbiomes. We recently examined bacterial communities in the foliage of a long-lived, high-elevation conifer species, limber pine (Pinus flexilis), and discovered a community strongly dominated by acetic acid bacteria (Acetobacteraceae), with several taxa closely related to known nitrogen fixers. Given limber pine's status as a pioneer species that is able to grow in low fertility soils, we hypothesized that this bacterial community has a potential functional role in fixing atmospheric nitrogen, providing a source of this limiting nutrient to the host tree. We used the radioisotope 13N2 to confirm that N2 rapidly diffuses into pine needles, where it could potentially be fixed. With an acetylene reduction assay we confirmed nitrogenase enzyme activity inside excised twigs 4 times over a growing season, and estimate potential rates of N2 fixation at 0.1 nmol N2 g needle-1 hr-1. Scaled to the stand level, this N input could be on the order of ~20 mg N m-2 d-1 over a growing season. While these rates are low, the long lifespan of individual trees (~1000 years) makes them biologically meaningful. Still, measured rates of acetylene reduction and bulk 15N2 incorporation are quite variable in space and time. Much work remains to better characterize the plant-microbial interactions in this system, including the rates of nitrogen fixation and their variability over the growing season, across edaphic conditions, among host species, and through plant development; and to determine which community members are responsible

  8. Nitrogen nanoinclusions in milky diamonds from Juina area, Mato Grosso State, Brazil

    NASA Astrophysics Data System (ADS)

    Rudloff-Grund, J.; Brenker, F. E.; Marquardt, K.; Howell, D.; Schreiber, A.; O'Reilly, S. Y.; Griffin, W. L.; Kaminsky, F. V.

    2016-11-01

    A unique set of diamonds with a 'milky' optical appearance from the Rio Soriso placer deposit in the Juina area, Mato Grosso, Brazil was studied by combined transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy. The main characteristics of the studied samples are large numbers of randomly distributed {111}-faceted octahedral defect nanostructures. The dislocation densities of the focused ion beam (FIB) foils are generally low. Dislocation loops are observed only around larger inclusions. The inclusion size shows a bimodal distribution and spreads around values of 20 and 200 nm. Electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray (EDX) spectroscopy mapping of both subsets yield high nitrogen contents for all sealed inclusions. In cases where the nanoinclusions touch the surface of the FIB section no nitrogen signal could be detected, indicating the loss of a fluid or gas phase as the carrier of nitrogen. FTIR mapping of the same regions showed a strong correlation between structurally bound nitrogen, hydrogen and the abundance of nanoinclusions. We propose that the most likely phase included in these nanoinclusions is NH3. These nanoinclusions could be the result of a high-temperature episode or of long residence times at shallower depths and lower temperatures. Thus they might represent the last stage of the nitrogen aggregation, or they may be syngenetic trapped NH-bearing source fluids.

  9. [Estimating Winter Wheat Nitrogen Vertical Distribution Based on Bidirectional Canopy Reflected Spectrum].

    PubMed

    Yang, Shao-yuan; Huang, Wen-jiang; Liang, Dong; Uang, Lin-sheng; Yang, Gui-jun; Zhang, Gui-jan; Cai, Shu-Hong

    2015-07-01

    The vertical distribution of crop nitrogen is increased with plant height, timely and non-damaging measurement of crop nitrogen vertical distribution is critical for the crop production and quality, improving fertilizer utilization and reducing environmental impact. The objective of this study was to discuss the method of estimating winter wheat nitrogen vertical distribution by exploring bidirectional reflectance distribution function (BRDF) data using partial least square (PLS) algorithm. The canopy reflectance at nadir, +/-50 degrees and +/- 60 degrees; at nadir, +/- 30 degrees and +/- 40 degrees; and at nadir, +/- 20 degrees and +/- 30 degrees were selected to estimate foliage nitrogen density (FND) at upper layer, middle layer and bottom layer, respectively. Three PLS analysis models with FND as the dependent variable and vegetation indices at corresponding angles as the explicative variables were. established. The impact of soil reflectance and the canopy non-photosynthetic materials, was minimized by seven kinds of modifying vegetation indices with the ratio R700/R670. The estimated accuracy is significant raised at upper layer, middle layer and bottom layer in modeling experiment. Independent model verification selected the best three vegetation indices for further research. The research result showed that the modified Green normalized difference vegetation index (GNDVI) shows better performance than other vegetation indices at each layer, which means modified GNDVI could be used in estimating winter wheat nitrogen vertical distribution

  10. Toward Deterministic Implantation of Nitrogen Vacancy Centers in Bulk Diamond Crystals

    NASA Astrophysics Data System (ADS)

    Brundage, T. O.; Atkins, Z.; Sangtawesin, S.; Petta, J. R.

    2014-03-01

    Over the last decade, research investigating the room temperature stability, coherence, and optical manipulation of spin states of the nitrogen vacancy (NV) center in diamond has made it a strong candidate for applications in magnetometry and quantum information processing. As research progresses and we begin to investigate the dynamics and scalability of multiple NV systems, the ability to place NV centers deterministically in the host material with high accuracy is critical. Here we implement a simple fabrication method for NV implantation. We expose and develop small dots in PMMA using an electron-beam lithography tool. Unexposed PMMA serves as a mask for 20 keV nitrogen-15 implantation. The implanted sample is then cleaned in a boiling mixture of nitric, sulfuric, and perchloric acid. Annealing at 850° for 2 hours allows vacancies to diffuse next to implanted nitrogen atoms, forming NV centers with an efficiency of a few percent. SRIM simulations provide nitrogen ion distribution within our diamond substrate and PMMA mask as functions of implantation energy. Thus, after balancing implantation parameters and exposure hole cross-sections, NV center placement can be achieved with accuracy limited by the precision of available electron-beam lithography equipment. Supported by the Sloan and Packard Foundations, the Army Research Office, and the National Science Foundation.

  11. Nitrogen-based drugs are not essential for blockade of monoamine transporters.

    PubMed

    Madras, B K; Pristupa, Z B; Niznik, H B; Liang, A Y; Blundell, P; Gonzalez, M D; Meltzer, P C

    1996-12-01

    In brain, monoamine transporters are principal targets of widely used therapeutic drugs including antidepressants, methylphenidate (Ritalin), and the addictive drug cocaine. Without exception, these transport blocking agents contain an amine nitrogen. A prevalent view and untested premise is that an amine nitrogen is needed to bind to the same counterion on the transporter as does the amine nitrogen of the monoamine neurotransmitter. We report that several compounds without nitrogen (8-oxa-bicyclo-3-aryl-[3.2.1] octanes, or aryloxatropanes) are active at monoamine transporters. One of these, tropoxane (0-914), bound with high affinity to the dopamine (IC50: 3.35 +/- 0.39 nM), serotonin (IC50: 6.52 +/- 2.05 nM), and norepinephrine (IC50: 20.0 +/- 0.3 nM) transporters in monkey brain, the human striatal dopamine transporter (IC50: 5.01 +/- 1.74 nM), and blocked dopamine transport (IC50: 7.2 +/- 3.0 nM) in COS-7 cells transfected with the human dopamine transporter. These unique compounds require a revision of current concepts of the drug binding domains on monoamine transporters, open avenues for discovery of a new generation of drugs and raise the issue of whether mammalian transporters and receptors may respond to, as yet, undiscovered non-amine bearing neurotransmitters or drugs.

  12. Flame tube parametric studies for control of fuel bound nitrogen using rich-lean two-stage combustion

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Wolfbrandt, G.

    1980-01-01

    An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The blended fuels were proportioned to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion; conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced and combustion efficiency was acceptable, shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased.

  13. NITROGEN CONCENTRATION OF STOMACH CONTENTS AS AN INDEX OF DIETARY NITROGEN FOR HISPID COTTON RATS (SIGMODON HISPIDUS)

    EPA Science Inventory

    We examined the reliability of using nitrogen concentration of stomach contents from hispid cotton rats (Sigmodon hispidus) as an index of diet nitrogen. Stomach contents of cotton rats fed diets varying in nitrogen concentration were analyzed for stomach nitrogen. Regression a...

  14. Enhanced concentrations of reactive nitrogen species in wildfire smoke

    NASA Astrophysics Data System (ADS)

    Benedict, Katherine B.; Prenni, Anthony J.; Carrico, Christian M.; Sullivan, Amy P.; Schichtel, Bret A.; Collett, Jeffrey L.

    2017-01-01

    During the summer of 2012 the Hewlett Gulch and High Park wildfires burned an area of 400 km2 northwest of Fort Collins, Colorado. These fires both came within 20 km of the Department of Atmospheric Science at Colorado State University, allowing for extensive measurements of smoke-impacted air masses over the course of several weeks. In total, smoke plumes were observed at the measurement site for approximately 125 h. During this time, measurements were made of multiple reactive nitrogen compounds, including gas phase species NH3, NOx, and HNO3, and particle phase species NO3- and NH4+, plus an additional, unspeciated reactive nitrogen component that is measured by high temperature conversion over a catalyst to NO. Concurrent measurements of CO, levoglucosan and PM2.5 served to confirm the presence of smoke at the monitoring site. Significant enhancements were observed for all of the reactive nitrogen species measured in the plumes, except for NH4+ which did not show enhancements, likely due to the fresh nature of the plume, the presence of sufficient regional ammonia to have already neutralized upwind sulfate, and the warm conditions of the summer measurement period which tend to limit ammonium nitrate formation. Excess mixing ratios for NH3 and NOx relative to excess mixing ratios of CO in the smoke plumes, ΔNH3/ΔCO (ppb/ppb) and ΔNOx/ΔCO (ppb/ppb), were determined to be 0.027 ± 0.002 and 0.0057 ± 0.0007, respectively. These ratios suggest that smoldering combustion was the dominant source of smoke during our plume interceptions. Observations from prior relevant laboratory and field measurements of reactive nitrogen species are also briefly summarized to help create a more comprehensive picture of reactive nitrogen and fire.

  15. Nitrogen trading tool

    USDA-ARS?s Scientific Manuscript database

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  16. Influence of pulsed-light irradiation on the productivity and nitrogen-fixing ability of blue-green algae nostoc muscorum Ag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umarov, G.Ya.; Kuchkarova, M.A.; Maksudov, T.U.

    1975-01-01

    The utilization of pulsed concentrated sunlight to improve the productivity of nostoc muscorum Ag. algae was investigated. In laboratory experiments the greatest accumulation of biomass was found after 5-min irradiation; there was a 10 percent increase in nitrogen fixation. For cultivation under the open sky productivity and nitrogen fixation rose after 10- and 20-min irradiation by pulsed concentrated sunlight.

  17. RIBBED MUSSEL NITROGEN ISOTOPE SIGNATURES REFLECT NITROGEN SOURCES IN COASTAL MARSHES

    EPA Science Inventory

    The stable nitrogen isotope ratio in tissue of the ribbed mussel (Geukensia demissa) was investigated as an indicator of the source of nitrogen inputs to coastal salt marshes. Initially, mussels were fed a diet of 15N-enriched algae in the laboratory to determine how the tissue n...

  18. Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption.

    PubMed

    Dobermann, Achim; Cassman, Kenneth G

    2005-09-01

    At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm-or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikely to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.

  19. Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption.

    PubMed

    Dobermann, Achim; Cassman, Kenneth G

    2005-12-01

    At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm- or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.

  20. Improvement of post-thaw sperm survivals using liquid nitrogen vapor in a spermcasting oyster Ostrea angasi.

    PubMed

    Hassan, Md Mahbubul; Li, Xiaoxu; Qin, Jian G

    2017-10-01

    Low survival of cryopreserved sperm impedes the application of cryopreservation technique in spermcasting oyster species. This study developed a simple method of liquid nitrogen vapor freezing to improve post-thaw sperm survival in the spermcasting oyster Ostrea angasi. The results indicate that the permeable cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG) and propylene glycol (PG) were non-toxic to sperm up to 20% concentration and 90 min exposure whereas methanol at 10% or higher was toxic to sperm for any exposure over 30 min. Among the treatments with permeable cryoprotectants, 15% EG produced the highest post-thaw sperm motility. Sperm motility was further improved by the addition of non-permeable cryoprotectants (trehalose and glucose), with 15% EG + 0.2 M trehalose resulting in the highest post-thaw sperm motility among all the combinations evaluated. The durations of 20, 30 and 60 min equilibrations produced a higher post-thaw sperm motility and plasma membrane integrity (PMI) than 10 min. Higher post-thaw motility and PMI were achieved by freezing sperm at the 8 cm height from the liquid nitrogen surface than at the 2, 4, 6, 10 or 12 cm height. Holding sperm for 10 min in liquid nitrogen vapor produced higher post-thaw motility and PMI than for 2, 5 or 20 min. The cryopreservation protocol developed in this study improved both post-thaw motility and PMI of O. angasi sperm at least 15% higher than those cryopreserved using programmable freezing method. Liquid nitrogen vapor freezing might have greater applicability in improving post-thaw sperm quality of spermcasting oyster species. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The contribution of nitrogen fixation by cyanobacteria to particulate organic nitrogen in a constructed wetland

    NASA Astrophysics Data System (ADS)

    Zhang, X.; PAN, X.; MA, M.; Li, W.; Cui, L.

    2016-12-01

    N-fixing cyanobacteria can create extra nitrogen for aquatic ecosystems. Previous studies reported inconsistence patterns of the contribution of biological nitrogen fixation to the nitrogen pools in aquatic ecosystems. However, there were few studies concerning the effect of fixed nitrogen by cyanobacteria on the nitrogen removal efficiency in constructed wetlands. This study was performed at the Beijing Wildlife Rescue and Rehabilitation Centre, where a constructed lake for the habitation of waterfowls and a constructed wetland for purifying sewage from the lake are located. The composition of phytoplankton communities, the concentrations of particulate organic nitrogen (PON) and nitrogen fixation rates (Rn) in the constructed lake and the constructed wetland were compared throughout a growing season. We counted the densities of genus Anabaena and Microcystis cells, and explored their relationships with PON and Rn in water. The proportions of PON from various sources, including the ambient N2, waterfowl faeces, wetland sediments and the nitrates, were calculated by the natural abundance of 15N with the IsoSource software. The result revealed that the constructed lake was alternately dominated by Anabaena and Microcystis throughout the growing season, and the Rn was positively correlated with PON and the cell density of Anabaena (P < 0.05). This implied that the fixed nitrogen by N-fixing Anabaena might be utilized by non-N-fixing Microcystis, maintaining the fixed nitrogen with PON form. The ambient N2 composed 0.5 82% and 50.0 84.7% to the PON in the constructed lake and wetland respectively during the growing season. The proportions of PON from N2 increased to more than 80% when the Rn reached the highest in September. The result demonstrated that the nitrogen fixed by Anabaena might be utilized by non-N-fixing Microcystis which formed water blooms in summer. Therefore, the decline of the removal efficiency of PON in the constructed wetland in summer might

  2. Isotopic composition of cosmic ray nitrogen at 1.5 GeV/amu

    NASA Technical Reports Server (NTRS)

    Dwyer, R.; Meyer, P.

    1975-01-01

    For any location, the earth's magnetic field acts as a filter for incoming cosmic rays, allowing only particles above a certain rigidity. The relative isotopic composition of abundant elements can be measured with a detector sensitive to the velocity of particles in the penumbra of the earth's magnetic field. In this paper, the nitrogen velocity spectrum is compared with that of carbon plus oxygen as a reference, since in this case Z-dependent effects are minimal. The form of the energy spectrum of carbon, nitrogen, and oxygen, needed for proper correction, was measured in the same experiment. The results were obtained using a scintillator-Cerenkov counter telescope with a geometric factor of 0.25 sq in sr, flown twice on high-altitude balloons from Palestine, Texas, obtaining an exposure factor of 20 sq m sr hr. Results are presented on the isotopic composition of nitrogen at about 1.5GeV/amu.

  3. Successful slush nitrogen vitrification of human ovarian tissue.

    PubMed

    Talevi, Riccardo; Barbato, Vincenza; Fiorentino, Ilaria; Braun, Sabrina; De Stefano, Cristofaro; Ferraro, Raffaele; Sudhakaran, Sam; Gualtieri, Roberto

    2016-06-01

    To study whether slush nitrogen vitrification improves the preservation of human ovarian tissue. Control vs. treatment study. University research laboratory. Ovarian biopsies collected from nine women (aged 14-35 years) during laparoscopic surgery for benign gynecologic conditions. None. Ovarian cortical strips of 2 × 5 × 1 mm were vitrified with liquid or slush nitrogen. Fresh and vitrified cortical strips were analyzed for cryodamage and viability under light, confocal, and transmission electron microscopy. Compared with liquid nitrogen, vitrification with slush nitrogen preserves [1] follicle quality (grade 1 follicles: fresh control, 50%; liquid nitrogen, 27%; slush nitrogen, 48%); [2] granulosa cell ultrastructure (intact cells: fresh control, 92%; liquid nitrogen, 45%; slush nitrogen, 73%), stromal cell ultrastructure (intact cells: fresh control, 59.8%; liquid nitrogen, 24%; slush nitrogen, 48.7%), and DNA integrity (TUNEL-positive cells: fresh control, 0.5%; liquid nitrogen, 2.3%; slush nitrogen, 0.4%); and [3] oocyte, granulosa, and stromal cell viability (oocyte: fresh control, 90%; liquid nitrogen, 63%; slush nitrogen, 87%; granulosa cells: fresh control, 93%; liquid nitrogen, 53%; slush nitrogen, 81%; stromal cells: fresh control, 63%; liquid nitrogen, 30%; slush nitrogen, 52%). The histology, ultrastructure, and viability of follicles and stromal cells are better preserved after vitrification with slush nitrogen compared with liquid nitrogen. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. The fundamental science of nitrogen-doping of niobium superconducting cavities

    NASA Astrophysics Data System (ADS)

    Gonnella, Daniel Alfred

    theoretical predictions. The nature of the low-field quench in nitrogen-doped cavities was also studied with high power pulsed measurements and found to be related to a lowering of the lower critical field, Bc1 due to lowering of the mean free path. Finally, five cryomodule tests were carried out on nitrogen-doped 9-cell cavities to understand how the cryomodule environment affects the performance of doped cavities. This is the first demonstration that environmental factors can be controlled to achieve high Q0 of more than 2.7x10 10 at 16 MV/m and 2.0 K in a cryomodule, meeting and exceeding the specification for LCLS-II. The work presented here represents a significant leap forward in the understanding of the underlying science behind nitrogen-doped cavities and demonstrates their readiness for use in future particle accelerators.

  5. [Effects of nitrogen management on yield, quality, nitrogen accumulation and its transportation of watermelon in gravel-mulched field].

    PubMed

    Ma, Zhong-ming; Du, Shao-ping; Xue, Liang

    2015-11-01

    The effects of nitrogen management on yield, quality, nitrogen and dry matter accumulation and transportation of watermelon in sand field were studied based on a field experiment. The results showed that too low or too high basal nitrogen fertilzation was unfavorable to seedling growth of watermelon in sand field, and no nitrogen application at vine extension or fruiting stages limited the formation of 'source' or 'sink'. At the same nitrogen rate, compared with the traditional T1 treatment (30% basal N fertilizer + 70% N fertilizer in vine extension), the nitrogen and dry matter accumulation of vegetative organs of T4 treatment (30% basal N fertilizer + 30% N fertilizer in vine extension + 40% N fertilizer in fruiting) and T6 treatment (100% basal N fertilizer + NAM) were reduced significantly, but the nitrogen and dry matter accumulation of fruit were increased significantly in the flushing period. The nitrogen transportation ratio and nitrogen contribution ratio of T4 were 33.6% and 12.0%, respectively. Compared to T1, the nitrogen harvest index, nitrogen fertilizer partial factor productivity and nitrogen fertilizer recovery efficiency of T4 and T6 treatments increased by 14.1% and 12.7%, 11.6% and 12.5%, 5.3% and 8.7%, respectively, and yield of watermelon increased by 11.6% and 12.5%, the soluble sugar, effective acid, the ratio of sugar and acid, Vc content increased by 16.5% and 11.7%, 4.5% and 2.8%, 19.4% and 13.4%, 35.6% and 19.0%, respectively. Therefore, T4 and T6 treatments were the optimal nitrogen fertilizer management mode which could not only achieve high yield and quality but also obtain high nitrogen fertilizer use efficiency in sand field. T6 treatment was the best nitrogen fertilizer management mode considering reduction of fertilizing labor intensity and extending service time of gravel-mulched field.

  6. Atmospheric Nitrogen Deposition in the Western United States: Sources, Sinks and Changes over Time

    NASA Astrophysics Data System (ADS)

    Anderson, Sarah Marie

    Anthropogenic activities have greatly modified the way nitrogen moves through the atmosphere and terrestrial and aquatic environments. Excess reactive nitrogen generated through fossil fuel combustion, industrial fixation, and intensification of agriculture is not confined to anthropogenic systems but leaks into natural ecosystems with consequences including acidification, eutrophication, and biodiversity loss. A better understanding of where excess nitrogen originates and how that changes over time is crucial to identifying when, where, and to what degree environmental impacts occur. A major route into ecosystems for excess nitrogen is through atmospheric deposition. Excess nitrogen is emitted to the atmosphere where it can be transported great distances before being deposited back to the Earth's surface. Analyzing the composition of atmospheric nitrogen deposition and biological indicators that reflect deposition can provide insight into the emission sources as well as processes and atmospheric chemistry that occur during transport and what drives variation in these sources and processes. Chapter 1 provides a review and proof of concept of lichens to act as biological indicators and how their elemental and stable isotope composition can elucidate variation in amounts and emission sources of nitrogen over space and time. Information on amounts and emission sources of nitrogen deposition helps inform natural resources and land management decisions by helping to identify potentially impacted areas and causes of those impacts. Chapter 2 demonstrates that herbaria lichen specimens and field lichen samples reflect historical changes in atmospheric nitrogen deposition from urban and agricultural sources across the western United States. Nitrogen deposition increases throughout most of the 20 th century because of multiple types of emission sources until the implementation of the Clean Air Act Amendments of 1990 eventually decrease nitrogen deposition around the turn of

  7. Carbon, nitrogen, and phosphorus transport by world rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meybeck, M.

    1982-04-01

    The various forms (dissolved and particulate, organic and inorganic) of carbon, nitrogen, and phosphorus in world rivers are reviewed from literature data. Natural levels are based mainly on major rivers for the subarctic and tropical zones which are still unpolluted and on smaller streams for the temperate zone. Atmospheric fallout is also reviewed. Natural contents of dissolved organic carbon (DOC) are mainly dependent on environmental conditions: DOC varies from 1 mg 1/sup -1/ in the mountainous alpine environments to 20 mg 1/sup -1/ in some taiga rivers. The world DOC average is 5.75 mg l/sup -1/. Nitrogen forms include dissolvedmore » organic nitrogen (DON), dissolved inorganic nitrogen (DIN = N - NH/sub 4//sup +/ + N - NO/sub 3//sup -/ + N - NO/sub 2//sup -/), and particulate organic nitrogen (PON). Natural levels are very low: DIN = 120 ..mu..g 1/sup -1/ of which only 15 percent is present as ammonia, and 1 percent as nitrite. Phosphorus is naturally present in very low amounts: around 10 ..mu..g 1/sup -1/ for P-PO/sub 4//sup 3/ and 25 ..mu..g 1/sup -1/ for total dissolved phosphorus (TDP which includes the organic form). The average nutrient content of rains has been estimated with a set of unpolluted stations: P - PO/sub 4/ = 5 ..mu..g 1/sup -1/, TDP = 10, N - NO/sub 2/ = 5, N - NH/sub 4/ = 225, DON = 225, and N - NO/sub 3/ = 175 ..mu..g 1/sup -1/. TOC levels are probably around several mg 1/sup -1/. These contents are very similar to those found in unpolluted rivers. Man's influence on surface waters has now greatly increased natural nutrient levels. Total dissolved P and N have globally increased by a factor of two and locally (Western Europe, North America) by factors of 10 to 50. These increases were found to be directly proportional to the watershed population and to its energy consumption.« less

  8. A Nitrogen-concentrated Phase in IA Iron Meteorite Acid Residue

    NASA Astrophysics Data System (ADS)

    Hashizume, K.; Sugiura, N.

    1993-07-01

    portion of nitrogen is released at 500 degrees C and 600 degrees C temperature fractions. Total nitrogen amounts and average delta^l5N values of the two acid residues are described in Table 1. Discussion and Summary: Sample "Can-1bn" is 3-4 times concentrated in nitrogen than "Call-2b," although its delta^15N value is within terrestrial range (0 < delta^15N < +20 per mil). Presently, we cannot deny the possibility that nitrogen in "Can-1bn" is dominated by terrestrial nitrogen, which may have been acquired during the acid treatment. Nevertheless, nitrogen isotope data of "Can-2b" suggests that indigenous nitrogen is indeed concentrated in the acid residue of Canyon Diablo. Bulk nitrogen isotope data of Canyon Diablo is reported to be delta^15N= -61.8 +- 10.4 per mil, N= 38.0 +- 155 ppm [2]. Therefore, delta^15N values of "Can-2b" can be resulted by a mixing of indigenous nitrogen and contaminating nitrogen. However, distinct delta^15N values of these two samples may indicate, in turn, that nitrogen isotopes in inclusions of Canyon Diablo are truly heterogeneous because carbon isotopes of graphite inclusions in IA iron meteorites seem to be heterogeneous [7]. Acknowledgments: We thank Dr. J.-I. Matsuda of Osaka University for providing samples and information on these samples. References: [1] Scott E. R. D. and Wasson J. T. (1975) Rev. Geophys. Space Sci., 13, 527-546. [2] Prombo C. A. and Clayton R. N. (1983) Meteoritics, 18, 377-379. [3] Franchi I. A. et al. (1988) Meteoritics, 22, 379-380. [4] Hashizume K. (1993) Doctor Thesis. [5] Murty S. V. S. et al. (1983) GCA, 47, 1061-1068. [6] Ogata Y. et al. (1990) In Abstract of the 1990 Annual Meeting of the Geochemical Society of Japan, 57. [7] Deines P. and Wickman F. E. (1973) GCA, 37, 1295-1319. Table 1 appears here in the hard copy.

  9. [Nitrogen and water cycling of typical cropland in the North China Plain].

    PubMed

    Pei, Hong-wei; Shen, Yan-jun; Liu, Chang-ming

    2015-01-01

    Intensive fertilization and irrigation associated increasing grain production has led to serious groundwater depletion and soil/water pollution in the North China Plain (NCP). Intensive agriculture changes the initial mass and energy balance, and also results in huge risks to the water/soil resources and food security regionally. Based on the research reports on the nitrogen cycle and water cycle in typical cropland (winter wheat and summer corn) in the NCP during the past 20 years, and the meteorological data, field experiments and surveys, we calculated the nitrogen cycle and water-cycle for this typical cropland. Annual total nitrogen input were 632 kg N . hm-2, including 523 kg N . hm-2 from commercial fertilizer, 74 kg N . hm-2 from manure, 23 kg N . hm-2 from atmosphere, and 12 kg N . hm-2 from irrigation. All of annual outputs summed to 532 kg N . hm-2 including 289 kg N . hm-2 for crop, 77 kg N . hm-2 staying in soil profile, leaching 104 kg N . hm-2, 52 kg N . hm-2 for ammonia volatilization, 10 kg N . hm-2 loss in nitrification and denitrification. Uncertainties of the individual cases and the summary process lead to the unbalance of nitrogen. For the dominant parts of the field water cycle, annual precipitation was 557 mm, irrigation was 340 mm, while 762 mm was for evapotranspiration and 135 mm was for deep percolation. Considering uncertainties in the nitrogen and water cycles, coupled experiments based on multi-disciplines would be useful for understanding mechanisms for nitrogen and water transfer processes in the soil-plant-atmosphere-continuum (SPAC) , and the interaction between nitrogen and water, as well as determining the critical threshold values for sustainability of soil and water resources in the NCP.

  10. Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Anastasio, Cort; Jimenez-Cruz, Mike

    2002-06-01

    Recent studies have suggested that organic nitrogen (ON) is a ubiquitous and significant component of atmospheric dry and wet deposition, but very little is known about the concentrations and speciation of organic nitrogen in aerosol particles. In addition, while amino compounds also appear to be ubiquitous in atmospheric condensed phases, their contribution to organic nitrogen has not been previously quantified. To address these issues, we have characterized the water-soluble organic nitrogen and amino compounds in fine particles (PM2.5) collected in Davis, California, over a period of 1 year. Concentrations of water-soluble organic nitrogen (WSON) ranged from 3.1-57.8 nmol N m-3 air, peaking during winter and early spring, and typically accounted for ~20% of total nitrogen in Davis PM2.5. Assuming an average N-normalized molecular weight of 100 Da per N atom for WSON, particulate organic nitrogen had a median mass concentration of 1.6 μg m-3 air, and typically represented 18% of the total fine particle mass. The average mass of water-soluble ON in Davis PM2.5 was comparable to that of sulfate during the summer, but was significantly higher in winter. Total amino compounds (free plus combined forms) made up a significant portion of particulate organic nitrogen (median value equal to 23%), primarily due to the presence of combined amino compounds such as proteins and peptides. Total amino compounds had a median mass concentration of 290 ng m-3 air, and typically accounted for 3.3% of the total fine particle mass. These results indicate that organic nitrogen is a significant component of fine particles in northern California, and suggest that this group of compounds might play an important role in the ecological, radiative, and potential health effects of atmospheric fine particles in this region.

  11. Insects as a Nitrogen Source for Plants

    PubMed Central

    Behie, Scott W.; Bidochka, Michael J.

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  12. Atmospheric Nitrogen Inputs to the Ocean and their Impact

    NASA Astrophysics Data System (ADS)

    Jickells, Tim D.

    2016-04-01

    Atmospheric Nitrogen Inputs to the Ocean and their Impact T Jickells (1), K. Altieri (2), D. Capone (3), E. Buitenhuis (1), R. Duce (4), F. Dentener (5), K. Fennel (6), J. Galloway (7), M. Kanakidou (8), J. LaRoche (9), K. Lee (10), P. Liss (1), J. Middleburg (11), K. Moore (12), S. Nickovic (13), G. Okin (14), A. Oschilies (15), J. Prospero (16), M. Sarin (17), S. Seitzinger (18), J. Scharples (19), P. Suntharalingram (1), M. Uematsu (20), L. Zamora (21) Atmospheric nitrogen inputs to the ocean have been identified as an important source of nitrogen to the oceans which has increased greatly as a result of human activity. The significance of atmospheric inputs for ocean biogeochemistry were evaluated in a seminal paper by Duce et al., 2008 (Science 320, 893-7). In this presentation we will update the Duce et al 2008 study estimating the impact of atmospheric deposition on the oceans. We will summarise the latest model estimates of total atmospheric nitrogen deposition to the ocean, their chemical form (nitrate, ammonium and organic nitrogen) and spatial distribution from the TM4 model. The model estimates are somewhat smaller than the Duce et al estimate, but with similar spatial distributions. We will compare these flux estimates with a new estimate of the impact of fluvial nitrogen inputs on the open ocean (Sharples submitted) which estimates some transfer of fluvial nitrogen to the open ocean, particularly at low latitudes, compared to the complete trapping of fluvial inputs on the continental shelf assumed by Duce et al. We will then estimate the impact of atmospheric deposition on ocean primary productivity and N2O emissions from the oceans using the PlankTOM10 model. The impacts of atmospheric deposition we estimate on ocean productivity here are smaller than those predicted by Duce et al impacts, consistent with the smaller atmospheric deposition estimates. However, the atmospheric input is still larger than the estimated fluvial inputs to the open ocean

  13. Nonprotein nitrogen is absorbed from the large intestine and increases nitrogen balance in growing pigs fed a valine-limiting diet.

    PubMed

    Columbus, Daniel A; Lapierre, Hélène; Htoo, John K; de Lange, Cornelis F M

    2014-05-01

    Nitrogen absorption from the large intestine, largely as ammonia and possibly as amino acids (AAs), is generally thought to be of little nutritional value to nonruminant animals and humans. Ammonia-nitrogen absorbed from the large intestine, however, may be recycled into the small intestine as urea and incorporated into microbial AAs, which may then be used by the host. A cecal infusion study was performed to determine the form in which nitrogen is absorbed from the large intestine and the impact of large intestine nitrogen supply on nitrogen balance in growing pigs. Eighteen cecally cannulated barrows (initial body weight: 22.4 ± 1.2 kg) were used to determine the effect of supplying nitrogen into the large intestine from either casein or urea on whole-body nitrogen retention and urea kinetics. Treatments were cecal infusions of saline (control), casein, or urea with nitrogen infused at a rate of 40% of nitrogen intake. In a subsample of 9 pigs, (15)N(15)N-urea was infused via i.v. during the nitrogen-balance period to determine urea kinetics. All pigs were fed a valine-limiting cornstarch-soybean meal-based diet. More than 80% of infused nitrogen was apparently absorbed. Urea flux and urinary nitrogen excretion increased (P ≤ 0.05) by the same amount for both nitrogen sources, but this increase did not fully account for the increase in nitrogen absorption from the large intestine. Whole-body nitrogen retention improved with nitrogen infusions (129 vs. 114 g/d; P < 0.01) and did not differ (P > 0.05) between nitrogen sources. Absorption of nitrogen from the large intestine appears to be in the form of nonprotein nitrogen, which appears to be returned to the small intestine via urea and used there for microbial AA production and should therefore be considered when determining nitrogen and AA supply and requirements.

  14. Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Zeng, Chao; Qu, Deyu; Tang, Haolin; Li, Yu; Su, Bao-Lian; Qu, Deyang

    2016-07-01

    Nitrogen-doped ordered mesoporous carbons (OMCs) have been synthesized via aqueous cooperative assembly route in the presence of basic amino acids as either polymerization catalysts or nitrogen dopants. This method allows the large-scale production of nitrogen-doped OMCs with tunable composition, structure and morphology while maintaining highly ordered mesostructures. For instances, the nitrogen content can be varied from ∼1 wt% to ∼6.3 wt% and the mesophase can be either 3-D body-centered cubic or 2-D hexagonal. The specific surface area for typical OMCs is around 600 m2 g-1, and further KOH activation can significantly enhance the surface area to 1866 m2 g-1 without destroying the ordered mesostructures. Benefiting from hierarchically ordered porous structure, nitrogen-doping effect and large-scale production availability, the synthesized OMCs show a great potential towards supercapacitor application. When measured in a symmetrical two-electrode configuration with an areal mass loading of ∼3 mg cm-2, the activated OMC exhibits high capacitance (186 F g-1 at 0.25 A g-1) and good rate capability (75% capacity retention at 20 A g-1) in ionic liquid electrolyte. Even as the mass loading is up to ∼12 mg cm-2, the OMC electrode still yields a specific capacitance of 126 F g-1 at 20 A g-1.

  15. Benchmarking carbon-nitrogen interactions in Earth System Models to observations: An inter-comparison of nitrogen limitation in global land surface models with carbon and nitrogen cycles (CLM-CN and O-CN)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Zaehle, S.; Templer, P. H.; Goodale, C. L.

    2011-12-01

    Predictions of climate change depend on accurately modeling the feedbacks among the carbon cycle, nitrogen cycle, and climate system. Several global land surface models have shown that nitrogen limitation determines how land carbon fluxes respond to rising CO2, nitrogen deposition, and climate change, thereby influencing predictions of climate change. However, the magnitude of the carbon-nitrogen-climate feedbacks varies considerably by model, leading to critical and timely questions of why they differ and how they compare to field observations. To address these questions, we initiated a model inter-comparison of spatial patterns and drivers of nitrogen limitation. The experiment assessed the regional consequences of sustained nitrogen additions in a set of 25-year global nitrogen fertilization simulations. The model experiments were designed to cover effects from small changes in nitrogen inputs associated with plausible increases in nitrogen deposition to large changes associated with field-based nitrogen fertilization experiments. The analyses of model simulations included assessing the geographically varying degree of nitrogen limitation on plant and soil carbon cycling and the mechanisms underlying model differences. Here, we present results from two global land-surface models (CLM-CN and O-CN) with differing approaches to modeling carbon-nitrogen interactions. The predictions from each model were compared to a set of globally distributed observational data that includes nitrogen fertilization experiments, 15N tracer studies, small catchment nitrogen input-output studies, and syntheses across nitrogen deposition gradients. Together these datasets test many aspects of carbon-nitrogen coupling and are able to differentiate between the two models. Overall, this study is the first to explicitly benchmark carbon and nitrogen interactions in Earth System Models using a range of observations and is a foundation for future inter-comparisons.

  16. Bacteria and the Nitrogen Economy.

    ERIC Educational Resources Information Center

    Ayanaba, A.

    1982-01-01

    Biological nitrogen fixation accounts for almost 70 percent of nitrogen for plant growth. If food is to keep abreast of population growth, even more nitrogen must be fixed. For this international research institutes continue the search for natural variants in the bacterial population while also pursuing novel genetic engineering methods. (Author)

  17. 21 CFR 582.1540 - Nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Nitrogen. 582.1540 Section 582.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Nitrogen. (a) Product. Nitrogen. (b) Conditions of use. This substance is generally recognized as safe when...

  18. 21 CFR 582.1540 - Nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Nitrogen. 582.1540 Section 582.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Nitrogen. (a) Product. Nitrogen. (b) Conditions of use. This substance is generally recognized as safe when...

  19. 21 CFR 582.1540 - Nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Nitrogen. 582.1540 Section 582.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Nitrogen. (a) Product. Nitrogen. (b) Conditions of use. This substance is generally recognized as safe when...

  20. 21 CFR 582.1540 - Nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Nitrogen. 582.1540 Section 582.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Nitrogen. (a) Product. Nitrogen. (b) Conditions of use. This substance is generally recognized as safe when...

  1. 21 CFR 582.1540 - Nitrogen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Nitrogen. 582.1540 Section 582.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Nitrogen. (a) Product. Nitrogen. (b) Conditions of use. This substance is generally recognized as safe when...

  2. Mean age distribution of inorganic soil-nitrogen

    NASA Astrophysics Data System (ADS)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  3. Impacts of Human Induced Nitrogen Deposition on Ecosystem Carbon Sequestration and Water Balance in China

    NASA Astrophysics Data System (ADS)

    Sheng, M.; Yang, D.; Tang, J.; Lei, H.

    2017-12-01

    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?

  4. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    DOE PAGES

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; ...

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m 2/g, total pore volume 0.6 cm 3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in themore » media with pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less

  5. Oxides of nitrogen at two sites in New Zealand

    NASA Astrophysics Data System (ADS)

    Stedman, D. H.; McEwan, M. J.

    1983-02-01

    Oxides of nitrogen, ozone and solar UV radiation were measured at two New Zealand sites, four months at Mt. John near Lake Tekapo, and one month at the New Zealand Department of scientific and Industrial Research, Physics and Engineering Laboratory Atmospheric Station (PELAS) near Lauder. The former site proved ideal for clean-air measurements. Ozone concentrations of ˜20-25 ppb, with little diurnal variation were accompanied by total nitrogen oxide (NOy) levels frequently less than 150 ppt (parts in 1012 by volume). The noon NO and NO2 data were well correlated with a slope comparable to model values. Gaseous HNO3 was observed to be significantly above the noise level (˜15 ppt) for only twenty-seven four-hour averages. For these a median of 43 ppt was obtained with a median ([NOy]-[HNO3])/[HNO3] ratio of 7.5, not comparable with model values of around 1.1. This low HNO3 may arise from the fact that the Mt. John site is downwind of a mountain range which experiences significant upwind precipitation. At the PELAS site, strong diurnal variation of ozone and much larger NOy concentrations were observed. The difference is apparently caused by local sources of nitrogen oxides and the local meteorology at the fertile valley PELAS site.

  6. 46 CFR 154.1755 - Nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-522). [CGD 74-289, 44 FR 26009, May 3...

  7. 46 CFR 154.1755 - Nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-OES). [CGD 74-289, 44 FR 26009, May 3...

  8. 46 CFR 154.1755 - Nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-OES). [CGD 74-289, 44 FR 26009, May 3...

  9. 46 CFR 154.1755 - Nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-OES). [CGD 74-289, 44 FR 26009, May 3...

  10. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9) is a colorless, odorless...

  11. Nitrogen Fixation by Anaerobes is Stimulated by Low Oxygen and Insensitive to Combined Nitrogen in Coastal Sediments

    NASA Astrophysics Data System (ADS)

    Jenkins, B. D.; Spinette, R.; Jones, A.; Puggioni, G.; Ehrlich, A.; Brown, S. M.

    2016-02-01

    Coastal sediments are typically zones of nitrogen removal via coupled nitrification-denitrification pathways. Increasingly, there are reports of nitrogen fixation in anthropogenically impacted sediments containing ample combined nitrogen. In previous work in the estuarine sediments of Narragansett Bay, we found that anaerobes related to Desulfovibrio spp. and in the Desulfuromonadales express genes for nitrogen fixation (nifH). We also determined that nitrogen fixation rates and gene expression are elevated during periods of seasonal hypoxia. Statistical modeling shows that a combination of elevated phytoplankton biomass as with a duration of hypoxia for a week or longer lead to conditions that promote nitrogen fixation as measured by acetylene reduction. Interestingly, diazotrophs closely related to those identified in Narragansett Bay are present and active in other low oxygen systems, suggesting that expansion of hypoxic events may lead to unanticipated consequences for the benthic nitrogen cycle in many ecosystems. To determine controls on diazotrophy on the organismal level, we isolated and sequenced the genomes of two Narragansett Bay members of the Desulfovibrio. We found that these organisms are insensitive to nitrate and urea, as they are missing the genes to assimilate these nitrogen sources. However, their nitrogen fixation is suppressed by increasing concentrations of ammonium, indicating that they may be sensitive to this nitrogen source in the environment. The paradox of detectable nitrogen fixation in the background of measurable ammonium in estuarine systems is a newly emergent theme and suggests that there are complex microbial interactions and/or structure to the nutrient regimes allowing for fixation.

  12. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences

    USGS Publications Warehouse

    Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, Ragnar; Caraco, N.; Jordan, T.; Berendse, F.; Freney, J.; Kudeyarov, V.; Murdoch, P.; Zhu, Z.-L.

    1996-01-01

    major control over river nitrogen export in some regions such as the northeastern U.S. Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems. ?? 1996 Kluwer Academic Publishers.

  13. Is Nitrogen Deposition Altering the Nitrogen Status of Northeastern Forests?

    NASA Astrophysics Data System (ADS)

    Aber, J. D.; Goodale, C. L.; Ollinger, S. V.; Smith, M.; Magill, A. H.; Martin, M. E.; Hallett, R. A.; Stoddard, J. L.; Participants, N.

    2002-05-01

    The nitrogen saturation hypothesis suggests that foliar and soil N concentration, nitrification rate, and nitrate leaching loss should all increase in response to increased N deposition. We tested this hypothesis with a major new synthesis of foliar (362 plots), soil (251 plots), and surface water (354 lakes and streams) chemistry from the northeastern U.S. Nitrogen deposition decreases across the Northeast from ~ 10-12 kg ha-1 yr-1 in the Mid-Atlantic region to ~ 4 kg ha-1 yr-1 in northern Maine. Foliar chemistry (%N and lignin:N ratio) of red spruce and sugar maple correlated more strongly with elevation than with N deposition, although these factors covary. Forest floor C:N ratio decreased with N deposition for both conifers and hardwoods although correlations were not strong (R2 < 0.20). Regardless of forest type or soil horizon, percent nitrification (as a fraction of N mineralization) increased as soil C:N decreased below ~25, and increased weakly with N deposition in hardwood stands. Across the Northeast, surface water seasonal nitrate concentrations and N export during the mid- to late-1990s increased with N deposition (R2 = 0.30-0.56), with two important patterns emerging: 1) nitrate rarely exceeded 1 μ mol/L in watersheds receiving <8-10 kg ha-1 yr-1; and 2) high nitrate concentrations occurred only in lakes and streams receiving relatively high N inputs. This pattern resembles that for European forests. Factors such as species composition, forest history, climate, and hydrology may affect foliar, soil, and stream chemistry at different spatial and temporal scales. Foliar and soil chemistry may be more strongly influenced by local heterogeneity, whereas surface water samples integrate over much larger areas. Using surface waters as the most comprehensive indicator of N saturation, it appears that N deposition is altering the N status of forests in the northeastern U.S.

  14. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9...

  15. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9...

  16. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9...

  17. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment.

    PubMed

    Wang, Haitao; Gilbert, Jack A; Zhu, Yongguan; Yang, Xiaoru

    2018-08-01

    Coastal ecosystems are hotspots for nitrogen cycling, and specifically for nitrogen removal from water and sediment through the coupled nitrification-denitrification process. Salinity is globally important in structuring bacterial and archaeal communities, but the association between salinity and microbially-mediated nitrification and denitrification remains unclear. The denitrification activity and composition and structure of microbial nitrifiers and denitrifiers were characterized across a gradient of manipulated salinity (0, 10, 20 and 30ppt) in a mangrove sediment. Salinity negatively correlated with both denitrifying activity and the abundance of nirK and nosZ denitrifying genes. Ammonia-oxidizing bacteria (AOB), which dominated nitrification, had significantly greater abundance at intermediate salinity (10 and 20ppt). However, a positive correlation between ammonia concentration and salinity suggested that nitrifying activity might also be inhibited at higher salinity. The community structure of ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as nirK, nirS and nosZ denitrifying communities, were all significantly correlated with salinity. These changes were also associated with structural shifts in phylogeny. These findings provide a strong evidence that salinity is a key factor that influences the nitrogen transformations in coastal wetlands, indicating that salinity intrusion caused by climate change might have a broader impact on the coastal biospheres. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A nitrogen mass balance for California

    NASA Astrophysics Data System (ADS)

    Liptzin, D.; Dahlgren, R. A.

    2010-12-01

    Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows

  19. [Comparison of nitrogen loss via surface runoff from two agricultural catchments in semi-arid North China].

    PubMed

    Lu, Hai-Ming; Yin, Cheng-Qing; Wang, Xia-Hui; Zou, Ying

    2008-10-01

    Nitrogen loss characteristics via surface runoff from two typical agricultural catchments into Yuqiao Reservoir--the important drinking water source area for Tianjin city in semi-arid North China were investigated through two-year in-situ monitoring and indoor chemical analysis. The results showed that annual nitrogen export mainly concentrated in the rainy period between June to September. About 41% of the annual water output and 52% of the annual total nitrogen output took place in two rainfall events with rainfall> 60 mm in Taohuasi catchment (T catchment), while the distribution of water and nitrogen export among various rainfalls in Caogezhuang catchment (C catchment) was smooth. The rainfall thresholds for the appearance of water and nitrogen export from the outlet of T catchment and C catchment were 20 mm and 10 mm. The mean annual runoff coefficients of C and T catchments were 0.013 2 and 0.001 6, respectively. The mean annual total nitrogen exports from C catchment and T catchment were 1.048 kg x (hm2 x a)(-1) and 0.158 kg x (hm2 x a)(-1) respectively. The difference of micro-topography, landscape pattern and hydrological pathway between two catchments could explain the nitrogen export gap. Micro-topographical features created by long-term anthropological disturbance decrease the runoff generation ability. The distance between nitrogen source area and the outlet in T catchment was around 1 500 m, while such distance in C catchment was just around 200 m. The short distance added the nitrogen export risk via surface runoff. Road-type hydrological pathway in C catchment could transfer nitrogen into the receiving water via surface runoff directly, while nitrogen could be detained within the pathway by many sink structures such as small stones, vegetated buffer strip and dry ponds in T catchment.

  20. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  1. Ambient Ammonium Contribution to total Nitrogen Deposition ...

    EPA Pesticide Factsheets

    There has been a wealth of evidence over the last decade illustrating the rising importance of reduced inorganic nitrogen (NHx = ammonia gas, NH3, plus particulate ammonium, p-NH4) in the overall atmospheric mass balance and deposition of nitrogen as emissions of oxidized nitrogen have decreased throughout a period of stable or increasing NH3 emissions. In addition, the fraction of ambient ammonia relative to p-NH4 generally has risen as a result of decreases in both oxides of nitrogen and sulfur emissions. EPA plans to consider ecological effects related to deposition of nitrogen, of which NHx is a contributing component, in the review of secondary National Ambient Air Quality Standards (NAAQS) for oxides of nitrogen and sulfur (NOx/SOx standard). Although these ecological effects are associated with total nitrogen deposition, it will be important to understand the emissions sources contributing to the total nitrogen deposition and to understand how much of the total nitrogen deposition is from deposition of NHx versus other nitrogen species. Because p-NH4 contributes to nitrogen deposition and can also be a significant component of particulate matter, there is a potential overlap in addressing nitrogen based deposition effects in the secondary PM and NOx/SOx NAAQS. Consequently, there is a policy interest in quantifying the contribution of p-NH4 to total nitrogen deposition. While dry deposition of p-NH4 is calculated through a variety of modeling app

  2. [Nitrogen flow in Huizhou region].

    PubMed

    Ma, Xiaobo; Wang, Zhaoyin; Koenig, Albert; Deng, Jiaquan

    2006-06-01

    Eutrophication is a serious problem of water body pollution. By the method of material flow accounting, this paper studied the human activities- related nitrogen flow in the system of environment and anthroposphere in Huizhou region. The non-point source pollution was quantified by export coefficient method, and the domestic discharge was estimated by demand-supply method. The statistic and dynamic analyses based on the investigation data of 1998 showed that the major nitrogen flows in this region were river loads, fertilizer and feedstuff imports, atmospheric deposition, animal excretes' degradation and volatilization, and the processes relating to burning and other emissions. In 1998, about 40% of nitrogen was detained in the system, which could be accumulated and yield potential environmental problems. The nitrogen export in this region was mainly by rivers, accounted for about 57%. A comparison of Huizhou region with the Danube and Changjiang basins showed that the unit area nitrogen exports in these three regions were of the same magnitude, and the per capita nitrogen exports were comparable.

  3. Odd nitrogen production by meteoroids

    NASA Technical Reports Server (NTRS)

    Park, C.; Menees, G. P.

    1978-01-01

    The process by which odd nitrogen species (atomic nitrogen and nitric oxide) are formed during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source of mass with a continuum regime evolving in its wake. The amounts of odd nitrogen species, produced by high-temperature reactions of air in the continuum wake, are calculated by numerical integration of chemical rate equations. Flow properties are assumed to be uniform across the wake, and 29 reactions involving five neutral species and five singly ionized species are considered, as well as vibrational and electron temperature nonequilibrium phenomena. The results, when they are summed over the observed mass, velocity, and entry-angle distribution of meteoroids, provide odd-nitrogen-species annual global production rates as functions of altitude. The peak production of nitric oxide is found to occur at an altitude of about 85 km; atomic nitrogen production peaks at about 95 km. The total annual rate for nitric oxide is 40 million kg; for atomic nitrogen it is 170 million kg.

  4. Boosting the Supercapacitance of Nitrogen-Doped Carbon by Tuning Surface Functionalities.

    PubMed

    Biemolt, Jasper; Denekamp, Ilse M; Slot, Thierry K; Rothenberg, Gadi; Eisenberg, David

    2017-10-23

    The specific capacitance of a highly porous, nitrogen-doped carbon is nearly tripled by orthogonal optimization of the microstructure and surface chemistry. First, the carbons' hierarchical pore structure and specific surface area were tweaked by controlling the temperature and sequence of the thermal treatments. The best process (pyrolysis at 900 °C, washing, and subsequent annealing at 1000 °C) yielded a carbon with a specific capacitance of 117 F g -1 -nearly double that of a carbon made by a typical single-step synthesis at 700 °C. Following the structural optimization, the surface chemistry of the carbons was enriched by applying an oxidation routine based on a mixture of nitric and sulfuric acid in a 1:4 ratio at two different treatment temperatures (0 and 20 °C) and different treatment times. The optimal treatment times were 4 h at 0 °C and only 1 h at 20 °C. Overall, the specific capacitance nearly tripled relative to the original carbon, reaching 168 F g -1 . The inherent nitrogen doping of the carbon comes into interplay with the acid-induced surface functionalization, creating a mixture of oxygen- and nitrogen-oxygen functionalities. The evolution of the surface chemistry was carefully followed by X-ray photoelectron spectroscopy and by N 2 sorption porosimetry, revealing stepwise surface functionalization and simultaneous carbon etching. Overall, these processes are responsible for the peak-shaped capacitance trends in the carbons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of water and nitrogen additions on free-living nitrogen fixer populations in desert grass root zones.

    PubMed Central

    Herman, R P; Provencio, K R; Torrez, R J; Seager, G M

    1993-01-01

    In this study we measured changes in population levels of free-living N2-fixing bacteria in the root zones of potted Bouteloua eriopoda and Sporobolus flexuosus plants as well as the photosynthetic indices of the plants in response to added nitrogen, added water, and added water plus nitrogen treatments. In addition, N2 fixer population changes in response to added carbon source and nitrogen were measured in plant-free soil columns. There were significant increases in the numbers of N2 fixers associated with both plant species in the water and the water plus nitrogen treatments. Both treatments increased the photosynthetic index, suggesting that plant exudates were driving N2 fixer population changes. Population increases were greatest in the water plus nitrogen treatments, indicating that added nitrogen was synergistic with added water and suggesting that nitrogen addition spared bacteria the metabolic cost of N2 fixation, allowing greater reproduction. Plant-free column studies demonstrated a synergistic carbon-nitrogen effect when carbon levels were limiting (low malate addition) but not when carbon was abundant (high malate), further supporting this hypothesis. The results of this study indicate the presence of N2 fixer populations which interact with plants and which may play a role in the nitrogen balance of desert grasslands. PMID:8215373

  6. Microbial Succession and Nitrogen Cycling in Cultured Biofilms as Affected by the Inorganic Nitrogen Availability.

    PubMed

    Li, Shuangshuang; Peng, Chengrong; Wang, Chun; Zheng, Jiaoli; Hu, Yao; Li, Dunhai

    2017-01-01

    Biofilms play important roles in nutrients and energy cycling in aquatic ecosystems. We hypothesized that as eutrophication could change phytoplankton community and decrease phytoplankton diversity, ambient inorganic nitrogen level will affect the microbial community and diversity of biofilms and the roles of biofilms in nutrient cycling. Biofilms were cultured using a flow incubator either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def). The results showed that the biomass and nitrogen and phosphorous accumulation of biofilms were limited by N deficiency; however, as expected, the N-def biofilms had significantly higher microbial diversity than that of N-rep biofilms. The microbial community of biofilms shifted in composition and abundance in response to ambient inorganic nitrogen level. For example, as compared between the N-def and the N-rep biofilms, the former consisted of more diazotrophs, while the latter consisted of more denitrifying bacteria. As a result of the shift of the functional microbial community, the N concentration of N-rep medium kept decreasing, while that of N-def medium showed an increasing trend in the late stage. This indicates that biofilms can serve as the source or the sink of nitrogen in aquatic ecosystems, and it depends on the inorganic nitrogen availability.

  7. Soil organic carbon and nitrogen accumulation on coal mine spoils reclaimed with maritime pine (Pinus pinaster Aiton) in Agacli-Istanbul.

    PubMed

    Sever, Hakan; Makineci, Ender

    2009-08-01

    Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.

  8. Effects of different nitrogen levels on the leaf chlorophyll content nutrient concentration and nutrient uptake pattern of blackgram.

    PubMed

    Kulsum, M U; Baque, M A; Karim, M A

    2007-01-15

    This study was conducted to evaluate the performance of blackgram (Vigna mungo L) under various levels of nitrogen at the Agronomy Research Site of Bangabandhu Sheikh Mujibur Rahman Agricultural University during March to June 2002. Two varieties of blackgram--BARI mash 3 and BINA mash 1 and six levels of nitrogen viz. 0, 20, 40, 60, 80 and 100 kg N ha(-1) were the treatment variables. The experiment was laid out in a RCB Design with three replications. A best-fit positive linear relationship existed between leaf chlorophyll and leaf nitrogen content with different nitrogen levels. Unexpectedly the N, P and K accumulation in the two varieties was not affected significantly. However, there was an increasing tendency of total uptake of these elements in both the varieties. N, P and K uptake increased up to 60 kg N ha(-1) then decreased with the increasing nitrogen levels. Among the varieties BARI mash 3 showed better performance than BINA mash 1 for most of the parameters.

  9. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrogen. 184.1540 Section 184.1540 Food and Drugs... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9) is a colorless, odorless, flavorless gas that is produced commercially by the fractionation of liquid...

  10. The nitrogen cycle on Mars

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  11. Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century

    NASA Astrophysics Data System (ADS)

    Vilmin, Lauriane; Mogollón, José M.; Beusen, Arthur H. W.; Bouwman, Alexander F.

    2018-04-01

    Nitrogen (N) and phosphorus (P) play a major role in the biogeochemical functioning of aquatic systems. N and P transfer to surface freshwaters has amplified during the 20th century, which has led to widespread eutrophication problems. The contribution of different sources, natural and anthropogenic, to total N and P loading to river networks has recently been estimated yearly using the Integrated Model to Assess the Global Environment - Global Nutrient Model (IMAGE-GNM). However, eutrophic events generally result from a combination of physicochemical conditions governed by hydrological dynamics and the availability of specific nutrient forms that vary at subyearly timescales. In the present study, we define for each simulated nutrient source: i) its speciation, and ii) its subannual temporal pattern. Thereby, we simulate the monthly loads of different N (ammonium, nitrate + nitrite, and organic N) and P forms (dissolved and particulate inorganic P, and organic P) to global river networks over the whole 20th century at a half-degree spatial resolution. Results indicate that, together with an increase in the delivery of all nutrient forms to global rivers, the proportion of inorganic forms in total N and P inputs has risen from 30 to 43% and from 56 to 65%, respectively. The high loads originating from fertilized agricultural lands and the increasing proportion of sewage inputs have led to a greater proportion of DIN forms (ammonium and nitrate), that are usually more bioavailable. Soil loss from agricultural lands, which delivers large amounts of particle-bound inorganic P to surface freshwaters, has become the dominant P source, which is likely to lead to an increased accumulation of legacy P in slow flowing areas (e.g., lakes and reservoirs). While the TN:TP ratio of the loads has remained quite stable, the DIN:DIP molar ratio, which is likely to affect algal development the most, has increased from 18 to 27 globally. Human activities have also affected the

  12. TThe role of nitrogen availability in land-atmosphere interactions: a systematic evaluation of carbon-nitrogen coupling in a global land surface model using plot-level nitrogen fertilization experiments

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Goodale, C. L.; Bonan, G. B.; Mahowald, N. M.; Ricciuto, D. M.; Thornton, P. E.

    2010-12-01

    Recent research from global land surface models emphasizes the important role of nitrogen cycling on global climate, via its control on the terrestrial carbon balance. Despite the implications of nitrogen cycling on global climate predictions, the research community has not performed a systematic evaluation of nitrogen cycling in global models. Here, we present such an evaluation for one global land model, CLM-CN. In the evaluation we simulated 45 plot-scale nitrogen-fertilization experiments distributed across 33 temperate and boreal forest sites. Model predictions were evaluated against field observations by comparing the vegetation and soil carbon responses to the additional nitrogen. Aggregated across all experiments, the model predicted a larger vegetation carbon response and a smaller soil carbon response than observed; the responses partially offset each other, leading to a slightly larger total ecosystem carbon response than observed. However, the model-observation agreement improved for vegetation carbon when the sites with observed negative carbon responses to nitrogen were excluded, which may be because the model lacks mechanisms whereby nitrogen additions increase tree mortality. Among experiments, younger forests and boreal forests’ vegetation carbon responses were less than predicted and mature forests (> 40 years old) were greater than predicted. Specific to the CLM-CN, this study used a systematic evaluation to identify key areas to focus model development, especially soil carbon- nitrogen interactions and boreal forest nitrogen cycling. Applicable to the modeling community, this study demonstrates a standardized protocol for comparing carbon-nitrogen interactions among global land models.

  13. Nitrogen fixation in denitrified marine waters.

    PubMed

    Fernandez, Camila; Farías, Laura; Ulloa, Osvaldo

    2011-01-01

    Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m(-2) d(-1)). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m(-2) d(-1)) than the oxic euphotic layer (48±68 µmol m(-2) d(-1)). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.

  14. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.

    PubMed

    Qiao, Chunlian; Liu, Lingli; Hu, Shuijin; Compton, Jana E; Greaver, Tara L; Li, Quanlin

    2015-03-01

    Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50-100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2 O) and ammonia (NH3 ) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N-enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33-67%), but reduced dissolved inorganic N leaching (-48%, -56% to -38%), N2 O emission (-44%, -48% to -39%) and NO emission (-24%, -38% to -8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34-93%) and productivity of grain (9%, 6-13%), straw (15%, 12-18%), vegetable (5%, 0-10%) and pasture hay (14%, 8-20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha(-1)  yr(-1) for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win-win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully

  15. [Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N2O emission in subtropical forest soils].

    PubMed

    Ma, Fen; Ma, Hong-liang; Qiu, Hong; Yang, Hong-yu

    2015-02-01

    An incubation experiment was conducted to investigate the effects of the additions of different nitrogen forms on nitrogen transformation in red soils of subtropical forest under soil moisture conditions with 40%, 70% and 110% of water holding capacity (WHC). The results showed that soil net mineralization and ammonification rates were maximum at 70% WHC and minimum at 40% WHC. Compared with the control, the addition of NO(3-)-N decreased the soil net mineralization and ammonification rates by 56.1% and 43.0% under 70% WHC condition, and decreased by 68.2% and 19.0% under 110% WHC, respectively. However, the proportion of ammonification to mineralization increased at 70% and 110% WHC, which suggested that nitrate addition inhibited the nitrification. With addition of NO(3-)-N at 110% WHC, the net nitrification rate was lowest while N20 emission was highest with the concomitant decrease of nitrate content, indicating that N2O emission was largely derived from denitrification. However, at 40% WHC and 70% WHC, the maximum N20 flux was found at the early stage of incubation. Even with addition of NH(4+)-N and NO(3-)-N, N2O flux did not change much at the latter stage of incubation, indicating that autotrophic nitrification was dominant for N20 production at the early stage of incubation. Under 40% WHC condition, soluble organic carbon increased more and it increased largely with NH(4+)-N addition, which meant NH(4+)-N addition could enhance the mineralization of soil organic matter. Under 40% and 110% WHC conditions, the addition of NH(4+)-N increased significantly the soil soluble organic nitrogen (SON) by 73.6% and 176.6% compared with the control, respectively. A significant increase of 78.7% for SON was only found at 40% WHC under addition of NO(3-)-N compared with the control. These results showed that high soil moisture condition and addition of NH(4+)-N were of benefit to SON formation.

  16. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei

    2017-03-01

    We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.

  17. [Nitrogen and protein content analysis of human milk, diurnality vs nocturnality].

    PubMed

    Sánchez López, C L; Hernández, A; Rodríguez, A B; Rivero, M; Barriga, C; Cubero, J

    2011-01-01

    Breast milk is changing with the progression of lactation and during a 24-h period. To determine the effect of diurnality or nocturnality on total nitrogen and protein content of the breast milk. We collected human milk samples from health mothers living throughout Community of Extremadura (Spain) from January 2008 to December 2008 with less than two months of lactation. We divided the samples in three groups: calostral group (1-5 days postpartum), transitional group (6-15 days postpartum) and mature group (> 15 days postpartum). All samples were stored in a freezer at -80 ºC. We considered as day period between 08:00-20:00 h and night period 20:00-08:00 h. Analysis of the human milk samples was based on the Kjeldahl method. Protein contents were calculated from total nitrogen x 6,25. The statistical analysis of the data was descriptive (mean ± standard deviation) and inferential (T-Student test). No differences (P > 0,05) were found to exist among the contents of individual human milk samples. The mean contents of each component were as follows: Total nitrogen of calostral, transitional and mature group was 0,30 ± 0,06 g/dL (night period), 0,29 ± 0,05 g/dL (day period); 0,26 ± 0,04 g/dL (night period), 0,25 ± 0,04 g/dL (day period); 0,22 ± 0,05 g/dL (night period), 0,20 ± 0,04 g/dL (day period) respectively, in this mature group with a statistical variation (P < 0,05). Protein content of calostral, transitional and mature group was 1,88 ± 0,4 g/dL (night period), 1,81 ± 0,3 g/dL (day period); 1,62 ± 0,3 g/dL (night period), 1,59 ± 0,3 g/dL (day period); 1,35 ± 0,3 g/dL (night period), 1,26 ± 0,3 g/dL (day period) respectively, in this mature group with a statistical variation (P < 0,05). Although we observed differences in the nitrogen and protein content during the individual stages of lactation, it is just in the population of mature lactating women, where the components analyzed varied significantly between day and night.

  18. Transformation of nitrogen and distribution of nitrogen-related bacteria in a polluted urban stream.

    PubMed

    Jiao, Y; Jin, W B; Zhao, Q L; Zhang, G D; Yan, Y; Wan, J

    2009-01-01

    Most researchers focused on either nitrogen species or microbial community for polluted urban stream while ignoring the interaction between them and its effect on nitrogen transformation, which restricted the rational selection of an effective and feasible remediation technology. Taking Buji stream in Shenzhen (China) as target stream, the distribution of nitrogen-related bacteria was investigated by most probable number (MPN) besides analysis of nitrogen species etc. The nitrogen-related bacteria in sediment were 10(2) times richer than those in water. Owing to their faster growth, the MPN of ammonifying bacteria and denitrifying bacteria were 10(5) and 10(2) times higher than those of nitrifying bacteria, respectively. The ammonifying bacteria numbers were significantly related to BOD5 in water, while nitrifying bacteria in sediment correlated well with nitrate in water. Thus, nitrification occurred mainly in sediment surface and was limited by low proportion of nitrifying bacteria. The denitrifying bacteria in sediment had good relationship with BOD5 and nitrite and nitrate in water. Low DO and rich organic compounds were beneficial to denitrification but unfavourable to nitrification. Denitrification was restricted by low nitrite and nitrate concentration. These results could be served as a reference for implementing the remediation scheme of nitrogen polluted urban stream.

  19. The Fixation of Nitrogen.

    ERIC Educational Resources Information Center

    Andrew, S. P. S.

    1978-01-01

    Discusses the fixation of atmospheric nitrogen in the form of ammonia as one of the foundations of modern chemical industry. The article describes ammonia production and synthesis, purifying the hydrogen-nitrogen mix, nitric acid production, and its commericial plant. (HM)

  20. A geographical and seasonal comparison of nitrogen uptake by phytoplankton in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Philibert, R.; Waldron, H.; Clark, D.

    2015-03-01

    The impact of light and nutrients (such as silicate and iron) availability on nitrogen uptake and primary production vary seasonally and regionally in the Southern Ocean. The seasonal cycle of nitrogen uptake by phytoplankton in the Southern Ocean is not fully resolved over an annual scale due to the lack of winter in situ measurements. In this study, nitrate and ammonium uptake rates were measured using 15N tracers during a winter cruise in July 2012 and a summer cruise in February-March 2013. The winter cruise consisted of two legs: leg 1 extended from Cape Town to the ice margin along the GoodHope line and leg 2 stretched from the ice margin to Marion Island. The summer cruise was mostly focused on the subantarctic zone of the Atlantic sector. In winter, nitrogen uptake rates were measured at 55 and 1% of the surface photosynthetically active radiation (sPAR). The summer uptake rates were measured at four light depths corresponding to 55, 30, 10 and 3% sPAR. The integrated nitrate uptake rates during the winter cruise ranged from 0.17 to 5.20 mmol N m-2 d-1 (average 1.14 mmol N m-2 d-1) while the ammonium uptake rates ranged from 0.60 to 32.86 mmol N m-2 d-1 (average 6.73 mmol N m-2 d-1). During the summer cruise, the mean-integrated nitrate uptake rate was 0.20 mmol N m-2 d-1 with a range between 0.10 and 0.38 mmol N m-2 d-1. The integrated ammonium uptake rate averaged 4.39 mmol N m-2 d-1 and ranged from 1.12 to 9.05 mmol N m-2 d-1. The factors controlling nitrogen uptake in winter and summer were investigated. During the winter cruise, it was found that the different nitrogen uptake regimes were not separated by the fronts of the Antarctic Circumpolar Current (ACC). Light (in terms of day length) and ammonium concentration had the most influence on the nitrogen uptake. In the summer, increases in the mixed layer depth (MLD) resulted in increased nitrogen uptake rates. This suggests that the increases in the MLD could be alleviating nutrient limitations

  1. Modeling nitrogen fluxes in Germany - where does the nitrogen go?

    NASA Astrophysics Data System (ADS)

    Klement, Laura; Bach, Martin; Breuer, Lutz

    2016-04-01

    According to the latest inventory of the EU Water Framework Directive, 26.3% of German groundwater bodies are in a poor chemical state regarding nitrate. Additionally, the EU initiated infringement proceedings against Germany for not meeting the quality standards of the EU Nitrate Directive. Agriculture has been determined as the main source of nitrate pollution due to over-fertilization and regionally high density of livestock farming. The nitrogen balance surplus is commonly used as an indicator characterizing the potential of nitrate leaching into groundwater bodies and thus also serves as a foundation to introduce legislative restrictions or to monitor the success of mitigation measures. Currently, there is an ongoing discussion which measures are suitable for reducing the risk of nitrate leaching and also to what extent. However, there is still uncertainty about just how much the nitrogen surplus has to be reduced to meet the groundwater quality standards nationwide. Therefore, the aims of our study were firstly to determine the level of the nitrogen surplus that would be acceptable at the utmost and secondly whether the currently discussed target value of 30 kg N per hectare agricultural land for the soil surface nitrogen balance would be sufficient. The models MONERIS (Modeling Nutrient Emissions in River System) and MoRE (Modelling of Regionalized Emissions), the latter based on the first, are commonly used for estimating nitrogen loads into the river system in Germany at the mesoscale, as well as the effect of mitigation measures in the context of the EU directive 2008/105/EC (Environmental quality standards applicable to surface water). We used MoRE to calculate nitrate concentration for 2759 analytical units in Germany. Main factors are the surplus of the soil surface nitrogen balance, the percolation rate and an exponent representing the denitrification in the vadose zone. The modeled groundwater nitrate concentrations did not correspond to the regional

  2. Investigating the relative importance of nitrogen deposition on the terrestrial carbon sink in recent decades

    NASA Astrophysics Data System (ADS)

    O'Sullivan, M.; Buermann, W.; Spracklen, D. V.; Gloor, E. U.; Arnold, S.

    2017-12-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that these parallel increases in fossil fuel burning and terrestrial sink are causally linked via increases in atmospheric CO2 and nitrogen deposition (and carbon-nitrogen interaction). Using the dynamic global vegetation model CLM4.5-BGC, we performed factorial analyses, separating the effects of individual drivers to changes in carbon fluxes and sinks. Globally, we found that increases in nitrogen deposition from 1900 to 2016 led to an additional 32 PgC stored. 40% of this increase could be attributed to East Asia and Europe alone, with North America also having a significant contribution. The global, post-2000 anthropogenic nitrogen deposition effect on terrestrial carbon uptake was 0.7 PgC/yr (20% of the total sink). Comparing the past decade (2005-2016) to the previous (1990-2005), regionally, we find nitrogen deposition to be an important driver of changes in net carbon uptake. In East Asia, increases in nitrogen deposition contributed 26% of the total increase in carbon uptake, with direct CO2 fertilization contributing 67%, and the synergistic carbon-nitrogen effect explaining 7% of the sink. Conversely, declining nitrogen deposition rates over North America contributed negatively (-35%) to the carbon sink, with a near zero contribution from the synergistic effect. At global scale, however, our findings suggest that changes in nitrogen deposition (both direct and via increasing the efficiency of the CO2 fertilization effect) played only a minor role in the enhanced plant carbon uptake and sink activity during the most recent decade. This finding is due to regional compensations but also suggesting that other factors (direct CO2, climate, land use change) may have been more important drivers.

  3. Carbon and nitrogen isotopic signatures and nitrogen profile to identify adulteration in organic fertilizers.

    PubMed

    Verenitch, Sergei; Mazumder, Asit

    2012-08-29

    Recently it has been shown that stable isotopes of nitrogen can be used to discriminate between organic and synthetic fertilizers, but the robustness of the approach is questionable. This work developed a comprehensive method that is far more robust in identifying an adulteration of organic nitrogen fertilizers. Organic fertilizers of various types (manures, composts, blood meal, bone meal, fish meal, products of poultry and plant productions, molasses and seaweed based, and others) available on the North American market were analyzed to reveal the most sensitive criteria as well as their quantitative ranges, which can be used in their authentication. Organic nitrogen fertilizers of known origins with a wide δ(15)N range between -0.55 and 28.85‰ (n = 1258) were characterized for C and N content, δ(13)C, δ(15)N, viscosity, pH, and nitrogen profile (urea, ammonia, organic N, water insoluble N, and NO3). A statistically significant data set of characterized unique organic nitrogen fertilizers (n = 335) of various known origins has been assembled. Deliberately adulterated samples of different types of organic fertilizers mixed with synthetic fertilizers at a wide range of proportions have been used to develop the quantitative critical characteristics of organic fertilizers as the key indicators of their adulteration. Statistical analysis based on the discriminant functions of the quantitative critical characteristics of organic nitrogen fertilizers from 14 different source materials revealed a very high average rate of correct classification. The developed methodology has been successfully used as a source identification tool for numerous commercial nitrogen fertilizers available on the North American market.

  4. Impacts of reactive nitrogen on climate change in China.

    PubMed

    Shi, Yalan; Cui, Shenghui; Ju, Xiaotang; Cai, Zucong; Zhu, Yong-Guan

    2015-01-29

    China is mobilizing the largest anthropogenic reactive nitrogen (Nr) in the world due to agricultural, industrial and urban development. However, the climate effects related to Nr in China remain largely unclear. Here we comprehensively estimate that the net climate effects of Nr are -100 ± 414 and 322 ± 163 Tg CO₂e on a GTP₂₀ and a GTP₁₀₀ basis, respectively. Agriculture contributes to warming at 187 ± 108 and 186 ± 56 Tg CO₂e on a 20-y and 100-y basis, respectively, dominated by long-lived nitrous oxide (N2O) from fertilized soils. On a 20-y basis, industry contributes to cooling at -287 ± 306 Tg CO₂e, largely owing to emissions of nitrogen oxides (NOx) altering tropospheric ozone, methane and aerosol concentrations. However, these effects are short-lived. The effect of industry converts to warming at 136 ± 107 Tg CO₂e on a 100-y basis, mainly as a result of the reduced carbon (C) sink from the NOx-induced ozone effect on plant damage. On balance, the warming effects of gaseous Nr are partly offset by the cooling effects of N-induced carbon sequestration in terrestrial ecosystems. The large mitigation potentials through reductions in agricultural N₂O and industrial NOx will accompany by a certain mitigation pressure from limited N-induced C sequestration in the future.

  5. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  6. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  7. Chemical characterization of 4140 steel implanted by nitrogen ions

    NASA Astrophysics Data System (ADS)

    Niño, E. D. V.; Pinto, J. L.; Dugar-Zhabon, V.; Henao, J. A.

    2012-06-01

    AISI SAE 4140 steel samples of different surface roughness which are implanted with 20 keV and 30 keV nitrogen ions at a dose of 1017 ions/cm2 are studied. The crystal phases of nitrogen compositions of the implanted samples, obtained with help of an x-ray diffraction method, are confronted with the data reported by the International Centre for Diffraction Data (ICDD) PDF-2. The implantation treatment is realized in high-voltage pulsed discharges at low pressures. The crystal structure of the implanted solid surfaces is analyzed by the x-ray diffraction technique which permits to identify the possible newly formed compounds and to identify any change in the surface structure of the treated samples. A decrease in the intensity of the plane (110), a reduction of the cell unity in values of 2-theta and a diminishing of the crystallite dimensions in comparison with non-implanted samples are observed.

  8. Arginine supplementation does not alter nitrogen metabolism of beef steers during a lipopolysaccharide challenge

    USDA-ARS?s Scientific Manuscript database

    Demand for arginine (Arg) is reported to increase during immune challenges. This study evaluated effects of lipopolysaccharide (LPS) and abomasal Arg infusion on nitrogen (N) metabolism and immune response of 20 ruminally cannulated steers (369 ± 46 kg BW) in a randomized block design. Each block co...

  9. Cascading costs: an economic nitrogen cycle.

    PubMed

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  10. Cascading costs: an economic nitrogen cycle.

    PubMed

    Moomaw, William R; Birch, Melissa B L

    2005-12-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N2. We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single tonne of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a tonne of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that tonne would cascade. The analysis reveals that it is most cost effective to remove a tonne of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  11. Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets.

    PubMed

    Feng, Yang; Friedrichs, Marjorie A M; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E; Wiggert, Jerry D; Hood, Raleigh R

    2015-08-01

    The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 10 9  g N yr -1 ) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 10 9  g N yr -1 ) and buried (46 × 10 9  g N yr -1 ) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 10 9  g N yr -1 ) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.

  12. Chesapeake Bay nitrogen fluxes derived from a land‐estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets

    PubMed Central

    Friedrichs, Marjorie A. M.; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E.; Wiggert, Jerry D.; Hood, Raleigh R.

    2015-01-01

    Abstract The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land‐estuarine‐ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within‐estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite‐derived data, and a simulation using environmental conditions for 2001–2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr−1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr−1) and buried (46 × 109 g N yr−1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr−1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50–60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf. PMID:27668137

  13. The fabrication of nitrogen detector porous silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Husairi, F. S.; Othman, N.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    In this study the porous silicon nanostructure used as a the nitrogen detector was fabricated by using anodization method because of simple and easy to handle. This method using 20 mA/ cm2 of current density and the etching time is from 10 - 40 minutes. The properties of the porous silicon nanostructure analyzed using I-V testing (electrical properties) and photoluminescence spectroscopy. From the I-V testing, sample PsiE40 where the sensitivity is 25.4% is a sensitivity of PSiE40 at 10 seconds exposure time.

  14. Gene Deletions Resulting in Increased Nitrogen Release by Azotobacter vinelandii: Application of a Novel Nitrogen Biosensor

    PubMed Central

    Eberhart, Lauren J.; Ohlert, Janet M.; Knutson, Carolann M.; Plunkett, Mary H.

    2015-01-01

    Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes. PMID:25888177

  15. Nitrogen balance in older individuals in energy balance depends on timing of protein intake.

    PubMed

    Jordan, Leora Y; Melanson, Edward L; Melby, Christopher L; Hickey, Matthew S; Miller, Benjamin F

    2010-10-01

    To explore whether nitrogen retention can differ on an isonitrogenous diet by changing when protein is consumed, we performed a short-term study in older individuals (64.5 ± 2.0 years) performing daily exercise while in energy balance. Participants consumed an isonitrogenous-isocaloric diet with the timing of a protein or carbohydrate beverage after exercise (protein after exercise [PRO], carbohydrate after exercise [CHO]) versus earlier in the day. Three-day mean energy balance (PRO: 202 ± 36 kcal and CHO: 191 ± 44 kcal; p = .68) did not differ between trials, but 3-day mean nitrogen balance was significantly more positive in the PRO (1.2 ± 0.32 g N) trial than the CHO trial (0.8 ± 0.45 g N; p < .05). Older individuals were better able to maintain nitrogen balance by simply changing when a portion of an identical amount of daily protein was consumed.

  16. Nitrogen species

    NASA Technical Reports Server (NTRS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; Mccormick, M. P.; Noxon, J.; Owens, A. J.

    1985-01-01

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  17. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    PubMed

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-06-13

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement.

  18. Impact of nitrogen reduction measures on nitrogen surplus, income and production of German agriculture.

    PubMed

    Gömann, H; Kreins, P; Møller, C

    2004-01-01

    Among the numerous non-point sources of diffuse water pollution with nitrogen, agriculture is counted one of the main sources. The agricultural policies of the Agenda 2000 and a decoupling of direct payments for farmers from their production decisions are exemplarily evaluated as nitrogen reduction measures using the Regional Agricultural and Environmental Information System RAUMIS. The results show that until the target year 2010 the risk of diffuse pollution of water bodies with nitrogen is a regional problem in Germany. These problems are neither mitigated by the policies of Agenda 2000 nor by a decoupling of direct payments from production decisions of farmers. While total nitrogen surplus reduces considerably after a decoupling of direct payments due to decreases of land-use the nitrogen surplus on the remaining cultivated area increases resulting from structural changes. Granting the same amount of direct payments to farmers in both policy alternatives the agricultural sector income would be higher after a decoupling of direct payments opposed to the Agenda 2000 resulting from a more efficient allocation of inputs.

  19. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  20. Nitrogen conservation and acidity control during food wastes composting through struvite formation.

    PubMed

    Wang, Xuan; Selvam, Ammaiyappan; Chan, Manting; Wong, Jonathan W C

    2013-11-01

    One of the main problems of food waste composting is the intensive acidification due to initial rapid fermentation that retards decomposition efficiency. Lime addition overcame this problem, but resulted in significant loss of nitrogen as ammonia that reduces the nutrient contents of composts. Therefore, this study investigated the feasibility of struvite formation as a strategy to control pH and reduce nitrogen loss during food waste composting. MgO and K2HPO4 were added to food waste in different molar ratios (P1, 1:1; P2, 1:2), and composted in 20-L composters. Results indicate that K2HPO4 buffered the pH in treatment P2 besides supplementing phosphate into the compost. In P2, organic decomposition reached 64% while the formation of struvite effectively reduced the nitrogen loss from 40.8% to 23.3% during composting. However, electrical conductivity of the compost increased due to the addition of Mg and P salts that requires further investigation to improve this technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  2. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1991-01-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  3. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species

    PubMed Central

    Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto

    2017-01-01

    The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments. PMID:28973038

  4. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species.

    PubMed

    Fusaro, Lina; Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto

    2017-01-01

    The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.

  5. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    USGS Publications Warehouse

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified

  6. [Effect of water-nitrogen coupling on photosynthesis and ultrastructure of cucumber leaves under CO2 enrichment].

    PubMed

    Cui, Qing Qing; Dong, Yan Hong; Li, Man; Zhang, Wen Dong; Liu, Bin Bin; Ai, Xi Zhen; Bi, Huan Gai; Li, Qing Ming

    2017-04-18

    Using split plot and then-split plot design, effects of water-nitrogen coupling on photosynthesis and ultrastructure of cucumber (Cucumis sativus) (Jinyou No.35) under CO 2 enrichment were investigated. The main plot had two CO 2 concentrations: ambient CO 2 concentration (400 μmol·mol -1 , A) and doubled CO 2 concentration (800±20 μmol·mol -1 , E). The split plot had two treatments: no drought stress (95% of field capacity, W) and drought stress (75% of field capacity, D). The then-split plot contained low nitrogen treatment (450 kg·hm -2 , N 1 ) and high nitrogen treatment (900 kg·hm -2 , N 2 ). The results showed that under the condition of drought and high nitrogen, increasing CO 2 enhanced the cucumber plant height, and no matter what kinds of water treatment, CO 2 enrichment increased the leaf area significantly under high nitrogen. Under the condition of normal irrigation, the photosynthetic rate, stomatal conductance and transpiration rate of high nitrogen treatment were higher than low nitrogen treatment, while it was under the drought condition. Elevated CO 2 enhanced the water use efficiency of cucumber leaf which increased with increasing nitrogen application rate. Under drought stress, cucumber adaxial surface porosity density was increased, and the CO 2 enrichment and high nitrogen significantly reduced the stomatal density. Increasing nitrogen application improved the number of chloroplast, and reduced that of starch grains. Drought stress decreased the number of chloroplast, but tended to promote the number of starch grains. Drought stress increased the chloroplast length and width, and the size of the starch grains, while high nitrogen reduced the length and width of the chloroplast and starch grains. CO 2 enrichment and high nitrogen increased grana thickness and layers (except ADN 2 ), and the slice layer of EDN 2 was significantly higher than that of ADN 2 . In conclusion, CO 2 enrichment and suitable water and nitrogen could promote the

  7. Membrane rejection of nitrogen compounds

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Rejection characteristics of nitrogen compounds were examined for reverse osmosis, nanofiltration, and low-pressure reverse osmosis membranes. The rejection of nitrogen compounds is explained by integrating experimental results with calculations using the extended Nernst-Planck model coupled with a steric hindrance model. The molecular weight and chemical structure of nitrogen compounds appear to be less important in determining rejection than electrostatic properties. The rejection is greatest when the Donnan potential exceeds 0.05 V or when the ratio of the solute radius to the pore radius is greater than 0.8. The transport of solute in the pore is dominated by diffusion, although convective transport is significant for organic nitrogen compounds. Electromigration contributes negligibly to the overall solute transport in the membrane. Urea, a small organic compound, has lower rejection than ionic compounds such as ammonium, nitrate, and nitrite, indicating the critical role of electrostatic interaction in rejection. This suggests that better treatment efficiency for organic nitrogen compounds can be obtained after ammonification of urea.

  8. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...

  9. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...

  10. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...

  11. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...

  12. 21 CFR 868.2385 - Nitrogen dioxide analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen dioxide analyzer. 868.2385 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2385 Nitrogen dioxide analyzer. (a) Identification. The nitrogen dioxide analyzer is a device intended to measure the concentration of nitrogen...

  13. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting.

    PubMed

    Li, Yun; Luo, Wenhai; Li, Guoxue; Wang, Kun; Gong, Xiaoyan

    2018-02-01

    This study investigated the performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation during pig manure composting with cornstalk as the bulking agent. Results show that phosphogypsum increased nitrous oxide (N 2 O) emission, but significantly reduced ammonia (NH 3 ) emission and thus enhanced the mineral and total nitrogen (TN) contents in compost. Although N 2 O emission could be reduced by adding calcium magnesium phosphate fertilizer, NH 3 emission was considerably increased, resulting in an increase in TN loss during composting. By blending these two additives, both NH 3 and N 2 O emissions could be mitigated, achieving effective nitrogen conservation in composting. More importantly, with the addition of 20% TN of the mixed composting materials, these two additives could synergistically improve the compost maturity and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ammonia Nitrogen Added to Diets Deficient in Dispensable Amino Acid Nitrogen Is Poorly Utilized for Urea Production in Growing Pigs.

    PubMed

    Mansilla, Wilfredo D; Silva, Kayla E; Zhu, Cuilan L; Nyachoti, Charles M; Htoo, John K; Cant, John P; de Lange, Cornelis Fm

    2017-12-01

    Background: Including ammonia in low-crude protein (CP) diets deficient in dispensable amino acid (DAAs) increases nitrogen retention in growing pigs. Objective: We investigated the absorption and metabolism of dietary ammonia nitrogen in the portal-drained viscera (PDV) and liver of pigs fed a diet deficient in DAA nitrogen. Methods: Eight pigs with an initial mean ± SD body weight (BW) of 26.5 ± 1.4 kg were surgically fitted with 4 catheters each (portal, hepatic and mesenteric veins, and carotid artery). The pigs were fed (2.8 × 191 kcal/kg BW 0.60 ), for 7 d and every 8 h, a diet deficient in DAA nitrogen supplemented with increasing amounts of ammonia nitrogen (CP: 7.76%, 9.27%, and 10.77%; indispensable amino acid nitrogen:total nitrogen ratio: 0.71, 0.59, and 0.50 for control and low- and high-ammonia diets, respectively). The treatment sequence was based on a Latin square design with 3 consecutive periods. On the last day of each period, blood flows in the portal and hepatic veins were determined with a continuous infusion of ρ-amino hippuric acid into the mesenteric vein. Serial blood samples were taken to determine ammonia and urea nitrogen concentration. Net balances of ammonia and urea nitrogen were calculated for the PDV and liver. Results: Cumulative (8 h) ammonia nitrogen appearance in the portal vein increased ( P ≤ 0.05) with ammonia intake (433, 958, and 1629 ± 60 mg ammonia nitrogen/meal for control and low- and high-ammonia diets, respectively). The cumulative hepatic uptake of ammonia nitrogen increased ( P ≤ 0.05) with ammonia nitrogen supply. The cumulative urea nitrogen appearance in the hepatic vein tended to increase ( P ≤ 0.10) only in high-ammonia treatment (-92.5, -59.4, and 209.7 ± 92 mg urea nitrogen/meal for control and low- and high-ammonia diets, respectively) and, relative to the control diet, represented -6.0% and 11% of ammonia nitrogen intake. Conclusion: Dietary ammonia nitrogen is poorly utilized for urea

  15. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

    PubMed Central

    Stern, Jennifer C.; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P.; Archer, P. Douglas; Buch, Arnaud; Brunner, Anna E.; Coll, Patrice; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.; Mahaffy, Paul R.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; - Torres, F. Javier Martín; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d’Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2015-01-01

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544

  16. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars.

    PubMed

    Stern, Jennifer C; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P; Archer, P Douglas; Buch, Arnaud; Brunner, Anna E; Coll, Patrice; Eigenbrode, Jennifer L; Fairen, Alberto G; Franz, Heather B; Glavin, Daniel P; Kashyap, Srishti; McAdam, Amy C; Ming, Douglas W; Steele, Andrew; Szopa, Cyril; Wray, James J; Martín-Torres, F Javier; Zorzano, Maria-Paz; Conrad, Pamela G; Mahaffy, Paul R

    2015-04-07

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.

  17. Effects of Soil Warming and Nitrogen Addition on Soil Respiration in a New Zealand Tussock Grassland

    PubMed Central

    Graham, Scott L.; Hunt, John E.; Millard, Peter; McSeveny, Tony; Tylianakis, Jason M.; Whitehead, David

    2014-01-01

    Soil respiration (R S) represents a large terrestrial source of CO2 to the atmosphere. Global change drivers such as climate warming and nitrogen deposition are expected to alter the terrestrial carbon cycle with likely consequences for R S and its components, autotrophic (R A) and heterotrophic respiration (R H). Here we investigate the impacts of a 3°C soil warming treatment and a 50 kg ha−1 y−1 nitrogen addition treatment on R S, R H and their respective seasonal temperature responses in an experimental tussock grassland. Average respiration in untreated soils was 0.96±0.09 μmol m−2 s−1 over the course of the experiment. Soil warming and nitrogen addition increased R S by 41% and 12% respectively. These treatment effects were additive under combined warming and nitrogen addition. Warming increased R H by 37% while nitrogen addition had no effect. Warming and nitrogen addition affected the seasonal temperature response of R S by increasing the basal rate of respiration (R 10) by 14% and 20% respectively. There was no significant interaction between treatments for R 10. The treatments had no impact on activation energy (E 0). The seasonal temperature response of R H was not affected by either warming or nitrogen addition. These results suggest that the additional CO2 emissions from New Zealand tussock grassland soils as a result of warming-enhanced R S constitute a potential positive feedback to rising atmospheric CO2 concentration. PMID:24621790

  18. [Impact of short-term grazing disturbance on nitrogen accumulation of biological soil crusts in the hilly Loess Plateau region, China].

    PubMed

    Wang, Shan Shan; Zhao, Yun Ge; Shi, Ya Fang; Gao, Li Qian; Yang, Qiao Yun

    2017-12-01

    The variations of total nitrogen, available nitrogen and microbial biomass nitrogen caused by simulated grazing disturbance were investigated in the sixth and twelfth months by using field survey combined with laboratory analysis in order to reveal the sensitivity of nitrogen content in biocrustal soils to disturbance in the hilly Loess Plateau region. The results showed that nitrogen contents in biocrustal soil were sensitive to disturbance. Total nitrogen and available nitrogen in the biocrustal layers were decreased by 0.17-0.39 g·kg -1 and 1.78-5.65 mg·kg -1 during the first half-year compared to the undisturbed treatment, and they were found respectively decreased by 0.13-0.40 g·kg -1 and 11.45-32.68 mg·kg -1 one year later since disturbance. The content of microbial biomass nitrogen in the biocrustal layer was reduced by 69.99-330.97 mg·kg -1 , whereas the content was increased by 25.51-352.17 mg·kg -1 in soil of 0-2 cm layer. The induction of nitrogen accumulation depended on the intensity of disturbance. Slight variation was observed in the nitrogen accumulation in biocrustal layer under 20% and 30% disturbance, while significant reduction was found in the 40% and 50% disturbance. Significant reduction was detected only in nitrogen accumulation in the biocrustal layers, whereas no significant influence was found in the top 5 cm soil layer.

  19. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  20. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...

  1. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...

  2. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...

  3. Effects of pH on nitrogen transformations in media-based aquaponics.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Guimbaud, Christophe; Fang, Yingke

    2016-06-01

    To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-06-01

    Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  5. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  6. Comparison of Satellite Observations of Nitrogen Dioxide to Surface Monitor Nitrogen Dioxide Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; Pippin, Margaret R.; Pierce, R. Bradley; Neil, Doreen O.; Lingenfelser, Gretchen; Szykman, James J.

    2006-01-01

    Nitrogen dioxide is one of the U. S. EPA s criteria pollutants, and one of the main ingredients needed for the production of ground-level ozone. Both ozone and nitrogen dioxide cause severe public health problems. Existing satellites have begun to produce observational data sets for nitrogen dioxide. Under NASAs Earth Science Applications Program, we examined the relationship between satellite observations and surface monitor observations of this air pollutant to examine if the satellite data can be used to facilitate a more capable and integrated observing network. This report provides a comparison of satellite tropospheric column nitrogen dioxide to surface monitor nitrogen dioxide concentration for the period from September 1996 through August 1997 at more than 300 individual locations in the continental US. We found that the spatial resolution and observation time of the satellite did not capture the variability of this pollutant as measured at ground level. The tools and processes developed to conduct this study will be applied to the analysis of advanced satellite observations. One advanced instrument has significantly better spatial resolution than the measurements studied here and operates with an afternoon overpass time, providing a more representative distribution for once-per-day sampling of this photochemically active atmospheric constituent.

  7. Anaerobic Nitrogen Fixers on Mars

    NASA Astrophysics Data System (ADS)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  8. Isotopic evidence for nitrogen mobility in peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Stepanova, Marketa; Jackova, Ivana; Vile, Melanie A.; Wieder, R. Kelman; Buzek, Frantisek; Adamova, Marie; Erbanova, Lucie; Fottova, Daniela; Komarek, Arnost

    2014-05-01

    Elevated nitrogen (N) input may reduce carbon (C) storage in peat. Under low atmospheric deposition, most N is bound in the moss layer. Under high N inputs, Sphagnum is not able to prevent penetration of dissolved N to deeper peat. Nitrogen may become available to the roots of invading vascular plants. The concurrent oxygenation of deeper peat layers, along with higher supply of labile organic C, may enhance microbial decomposition and lead to peat thinning. The resulting higher emissions of greenhouse gases may accelerate global warming. Seepage of N to deeper peat has never been quantified. Here we present evidence for post-depositional mobility of atmogenic N in peat, based on natural-abundance N isotope ratios. We conducted a reciprocal peat transplant experiment between two Sphagnum-dominated peat bogs in the Czech Republic (Central Europe), differing in anthropogenic N inputs. The northern site VJ received as much as 33 kg N ha-1 yr-1 via spruce canopy throughfall. The southern site was less polluted (17.6 kg N ha-1 yr-1). Isotope signatures of living moss differed between the two sites (δ15N of -3‰ and -7‰ at VJ and CB, respectively). After 18 months, an isotope mass balance was constructed. In the CB-to-VJ transplant, a significant portion of original CB nitrogen (98-31%) was removed and replaced by nitrogen of the host site throughout the top 10 cm of the profile. Nitrogen, deposited at VJ, was immobilized in imported CB peat that was up to 20 years old. Additionally, we compared N concentration and N accumulation rates in 210Pb-dated peat profiles with well-constrained data on historical atmospheric N pollution. Nationwide N emissions peaked in 1990, while VJ exhibited the highest N content in peat that formed in 1930. This de-coupling of N inputs and N retention in peat might be interpreted as a result of translocation of dissolved pollutant N downcore, corroborating our δ15N results at VJ and CB. Data from a variety of peat bogs along pollution

  9. Organic nitrogen chemistry during low-grade metamorphism

    USGS Publications Warehouse

    Boudou, J.-P.; Schimmelmann, A.; Ader, M.; Mastalerz, Maria; Sebilo, M.; Gengembre, L.

    2008-01-01

    Most of the organic nitrogen (Norg) on Earth is disseminated in crustal sediments and rocks in the form of fossil nitrogen-containing organic matter. The chemical speciation of fossil Norg within the overall molecular structure of organic matter changes with time and heating during burial. Progressive thermal evolution of organic matter involves phases of enhanced elimination of Norg and ultimately produces graphite containing only traces of nitrogen. Long-term chemical and thermal instability makes the chemical speciation of Norg a valuable tracer to constrain the history of sub-surface metamorphism and to shed light on the subsurface biogeochemical nitrogen cycle and its participating organic and inorganic nitrogen pools. This study documents the evolutionary path of Norg speciation, transformation and elimination before and during metamorphism and advocates the use of X-ray photoelectron spectroscopy (XPS) to monitor changes in Norg speciation as a diagnostic tool for organic metamorphism. Our multidisciplinary evidence from XPS, stable isotopes, traditional quantitative coal analyses, and other analytical approaches shows that at the metamorphic onset Norg is dominantly present as pyrrolic and pyridinic nitrogen. The relative abundance of nitrogen substituting for carbon in condensed, partially aromatic systems (where N is covalently bonded to three C atoms) increases exponentially with increasing metamorphic grade, at the expense of pyridinic and pyrrolic nitrogen. At the same time, much Norg is eliminated without significant nitrogen isotope fractionation. The apparent absence of Rayleigh-type nitrogen isotopic fractionation suggests that direct thermal loss of nitrogen from an organic matrix does not serve as a major pathway for Norg elimination. Instead, we propose that hot H, O-containing fluids or some of their components gradually penetrate into the carbonaceous matrix and eliminate Norg along a progressing reaction front, without causing nitrogen

  10. Carbon Accumulation and Nitrogen Pool Recovery during Transitions from Savanna to Forest in Central Brazil

    NASA Astrophysics Data System (ADS)

    Pellegrini, A.; Hoffmann, W. A.; Franco, A. C.

    2014-12-01

    The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to firedriven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate : ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical

  11. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  12. Heterotrophic organisms dominate nitrogen fixation in the South Pacific Gyre

    PubMed Central

    Halm, Hannah; Lam, Phyllis; Ferdelman, Timothy G; Lavik, Gaute; Dittmar, Thorsten; LaRoche, Julie; D'Hondt, Steven; Kuypers, Marcel MM

    2012-01-01

    Oceanic subtropical gyres are considered biological deserts because of the extremely low availability of nutrients and thus minimum productivities. The major source of nutrient nitrogen in these ecosystems is N2-fixation. The South Pacific Gyre (SPG) is the largest ocean gyre in the world, but measurements of N2-fixation therein, or identification of microorganisms involved, are scarce. In the 2006/2007 austral summer, we investigated nitrogen and carbon assimilation at 11 stations throughout the SPG. In the ultra-oligotrophic waters of the SPG, the chlorophyll maxima reached as deep as 200 m. Surface primary production seemed limited by nitrogen, as dissolved inorganic carbon uptake was stimulated upon additions of 15N-labeled ammonium and leucine in our incubation experiments. N2-fixation was detectable throughout the upper 200 m at most stations, with rates ranging from 0.001 to 0.19 nM N h−1. N2-fixation in the SPG may account for the production of 8–20% of global oceanic new nitrogen. Interestingly, comparable 15N2-fixation rates were measured under light and dark conditions. Meanwhile, phylogenetic analyses for the functional gene biomarker nifH and its transcripts could not detect any common photoautotrophic diazotrophs, such as, Trichodesmium, but a prevalence of γ-proteobacteria and the unicellular photoheterotrophic Group A cyanobacteria. The dominance of these likely heterotrophic diazotrophs was further verified by quantitative PCR. Hence, our combined results show that the ultra-oligotrophic SPG harbors a hitherto unknown heterotrophic diazotrophic community, clearly distinct from other oceanic gyres previously visited. PMID:22170429

  13. Effect of increasing dietary metabolizable protein on nitrogen efficiency in Holstein dairy cows

    PubMed Central

    Imran, Muhammad; Pasha, Talat Naseer; Shahid, Muhammad Qamer; Babar, Imran; Naveed ul Haque, Muhammad

    2017-01-01

    Objective The objective of the study was to determine the effects of increasing levels of metabolizable protein (MP) on lactation performance and nitrogen (N) efficiencies in lactating dairy cows. Methods Nine multiparous cows in mid lactation [113±25 days in milk] received three treatments in a 3×3 Latin square design with a period length of 21 days. The treatments were three diets, designed to provide similar energy and increasing supply of MP (g/d) (2,371 [low], 2,561 [medium], and 2,711 [high] with corresponding crude protein levels [%]) 15.2, 18.4, and 20.9, respectively. Results Increasing MP supplies did not modify dry matter intake, however, it increased milk protein, fat, and lactose yield linearly. Similarly, fat corrected milk increased linearly (9.3%) due to an increase in both milk yield (5.2%) and milk fat content (7.8%). No effects were observed on milk protein and lactose contents across the treatments. Milk nitrogen efficiency (MNE) decreased from 0.26 to 0.20; whereas, the metabolic efficiency of MP decreased from 0.70 to 0.60 in low to high MP supplies, respectively. The concentration of blood urea nitrogen (BUN) increased linearly in response to increasing MP supplies. Conclusion Increasing MP supplies resulted in increased milk protein yield; however, a higher BUN and low MNE indicated an efficient utilization of dietary protein at low MP supplies. PMID:28002937

  14. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter Wheat

    PubMed Central

    Huang, Wenjiang; Yang, Qinying; Pu, Ruiliang; Yang, Shaoyuan

    2014-01-01

    Timely measurement of vertical foliage nitrogen distribution is critical for increasing crop yield and reducing environmental impact. In this study, a novel method with partial least square regression (PLSR) and vegetation indices was developed to determine optimal models for extracting vertical foliage nitrogen distribution of winter wheat by using bi-directional reflectance distribution function (BRDF) data. The BRDF data were collected from ground-based hyperspectral reflectance measurements recorded at the Xiaotangshan Precision Agriculture Experimental Base in 2003, 2004 and 2007. The view zenith angles (1) at nadir, 40° and 50°; (2) at nadir, 30° and 40°; and (3) at nadir, 20° and 30° were selected as optical view angles to estimate foliage nitrogen density (FND) at an upper, middle and bottom layer, respectively. For each layer, three optimal PLSR analysis models with FND as a dependent variable and two vegetation indices (nitrogen reflectance index (NRI), normalized pigment chlorophyll index (NPCI) or a combination of NRI and NPCI) at corresponding angles as explanatory variables were established. The experimental results from an independent model verification demonstrated that the PLSR analysis models with the combination of NRI and NPCI as the explanatory variables were the most accurate in estimating FND for each layer. The coefficients of determination (R2) of this model between upper layer-, middle layer- and bottom layer-derived and laboratory-measured foliage nitrogen density were 0.7335, 0.7336, 0.6746, respectively. PMID:25353983

  15. Estimation of nitrogen vertical distribution by bi-directional canopy reflectance in winter wheat.

    PubMed

    Huang, Wenjiang; Yang, Qinying; Pu, Ruiliang; Yang, Shaoyuan

    2014-10-28

    Timely measurement of vertical foliage nitrogen distribution is critical for increasing crop yield and reducing environmental impact. In this study, a novel method with partial least square regression (PLSR) and vegetation indices was developed to determine optimal models for extracting vertical foliage nitrogen distribution of winter wheat by using bi-directional reflectance distribution function (BRDF) data. The BRDF data were collected from ground-based hyperspectral reflectance measurements recorded at the Xiaotangshan Precision Agriculture Experimental Base in 2003, 2004 and 2007. The view zenith angles (1) at nadir, 40° and 50°; (2) at nadir, 30° and 40°; and (3) at nadir, 20° and 30° were selected as optical view angles to estimate foliage nitrogen density (FND) at an upper, middle and bottom layer, respectively. For each layer, three optimal PLSR analysis models with FND as a dependent variable and two vegetation indices (nitrogen reflectance index (NRI), normalized pigment chlorophyll index (NPCI) or a combination of NRI and NPCI) at corresponding angles as explanatory variables were established. The experimental results from an independent model verification demonstrated that the PLSR analysis models with the combination of NRI and NPCI as the explanatory variables were the most accurate in estimating FND for each layer. The coefficients of determination (R2) of this model between upper layer-, middle layer- and bottom layer-derived and laboratory-measured foliage nitrogen density were 0.7335, 0.7336, 0.6746, respectively.

  16. Biochemical Approaches to Improved Nitrogen Fixation

    USDA-ARS?s Scientific Manuscript database

    Improving symbiotic nitrogen fixation by legumes has emerged again as an important topic on the world scene due to the energy crisis and lack of access to nitrogen fertilizer in developing countries. We have taken a biochemical genomics approach to improving symbiotic nitrogen fixation in legumes. L...

  17. A Method to Exchange Air Nitrogen Emission Reductions for Watershed Nitrogen Load Reductions

    EPA Science Inventory

    Presentation of the method developed for the Chesapeake Bay Program to estimate changes in nitrogen loading to Chesapeake due to changes in Bay State state-level nitrogen oxide emissions to support air-water trading by the Bay States. Type for SticsUnder AMAD Application QAPP, QA...

  18. Climate variability and nitrogen rate interactions affecting corn nitrogen use efficiency in Alabama

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) fertilization is an important practice to increase yield; however, plant–soil interactions to in-season changes in climatic conditions result on site-specific responses of corn to nitrogen rates. The objective of this study was to evaluate the effect of different climatic conditions and...

  19. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    PubMed

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  20. Temporal variation of nitrogen balance within constructed wetlands treating slightly polluted water using a stable nitrogen isotope experiment.

    PubMed

    Zhang, Wanguang; Lei, Qiongye; Li, Zhengkui; Han, Huayang

    2016-02-01

    Slightly polluted water has become one of the main sources of nitrogen contaminants in recent years, for which constructed wetlands (CW) is a typical and efficient treatment. However, the knowledge about contribution of individual nitrogen removal pathways and nitrogen balance in constructed wetlands is still limited. In this study, a stable-isotope-addition experiment was performed in laboratory-scale constructed wetlands treating slightly polluted water to determine quantitative contribution of different pathways and temporal variation of nitrogen balance using Na(15)NO3 as tracer. Microbial conversion and substrate retention were found to be the dominant pathways in nitrogen removal contributing 24.4-79.9 and 8.9-70.7 %, respectively, while plant contributed only 4.6-11.1 % through direct assimilation but promoted the efficiency of other pathways. In addition, microbial conversion became the major way to remove N whereas nitrogen retained in substrate at first was gradually released to be utilized by microbes and plants over time. The findings indicated that N2 emission representing microbial conversion was not only the major but also permanent nitrogen removal process, thus keeping a high efficiency of microbial conversion is important for stable and efficient nitrogen removal in constructed wetlands.

  1. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    PubMed

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO < BR-GO < HO-GO < HU-GO. In the same way, the pyridinic form of nitrogen increased and the electrocatalytic effect of N-doped graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  2. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures.

    PubMed

    Silva, Fernando; Campanari, Sabrina; Matteo, Stefania; Valentino, Francesco; Majone, Mauro; Villano, Marianna

    2017-07-25

    A sequencing batch reactor (SBR) is typically used for selecting mixed microbial cultures (MMC) for polyhydroxyalkanoate (PHA) production. Since many waste streams suitable as process feedstock for PHA production are nitrogen-deficient, a nutrient supply in the SBR is typically required to allow for efficient microbial growth. The scope of this study was to devise a nitrogen feeding strategy which allows controlling the nitrogen levels during the feast and famine regime of a lab-scale SBR, thereby selecting for PHA-storing microorganisms. At the beginning of the cycle the reactor was fed with a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5gCODL -1 d -1 (i.e. 260CmmolL -1 d -1 ), whereas nitrogen (in the form of ammonium sulphate) was added either simultaneously to the carbon feed (coupled feeding strategy) or after the end of the feast phase (uncoupled feeding strategy). As a main result, PHA production was more than doubled (up to about 1300±64mgCODL -1 ) when carbon and nitrogen were separately fed and the higher PHA production also corresponded to an 82% increase in the polymer HV content (up to 20±1%, wtwt -1 ). Three SBR runs were performed with the uncoupled carbon and nitrogen feeding at different carbon to nitrogen (C/N) ratios (of 14.3, 17.9, and 22.3CmolNmol -1 , respectively) which were varied by progressively reducing the concentration of the nitrogen feeding. In spite of a comparable PHA storage yield at 14.3 and 17.9CmolNmol -1 (0.41±0.05 gCOD PHA gCOD VFA -1 and 0.38±0.05 gCOD PHA gCOD VFA -1 , respectively), the storage response of the selected MMC significantly decreased when the C/N ratio was set at the highest investigated value. Notably, an increase in this parameter also resulted in a change in the HV content in the polymer regardless the composition of the organic acids solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments.

    PubMed

    Liu, Nan; Wu, Shuhua; Guo, Qinfeng; Wang, Jiaxin; Cao, Ce; Wang, Jun

    2018-05-12

    Global increases in nitrogen deposition may alter forest structure and function by interfering with plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy addition of nitrogen (CAN) on leaf nitrogen assimilation and partitioning in three subtropical forest plants (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that responses of leaf nitrogen assimilation and partitioning to CAN differ among subtropical forest plants. CAN increased leaf nitrate reductase (NR) activity, and leaf nitrogen and chlorophyll contents but reduced leaf maximum photosynthetic rate (A max ), photosynthetic nitrogen use efficiency (PNUE), ribulose-1,5-bisphosphate carboxylase (Rubisco) activity, and metabolic protein content of an overstory tree species C. henryi. In an understory tree A. quinquegona, CAN increased NR activity and glutamine synthetase activity and therefore increased metabolic protein synthesis (e.g., Rubisco) in leaves. In the shrub B. cochinchinensis, CAN increased A max , PNUE, Rubisco content, metabolic protein content, and Rubisco activity in leaves. Leaf nitrogen assimilation and partitioning results indicated that A. quinquegona and B. cochinchinensis may better acclimate to CAN than C. henryi and that the acclimation mechanism differs among the species. Results from this study suggest that long-term elevated atmospheric nitrogen deposition has contributed to the ongoing transformation of subtropical forests into communities dominated by small trees and shrubs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Soil nitrogen accretion along a floodplain terrace chronosequence in northwest Alaska: Influence of the nitrogen-fixing shrub Shepherdia Canadensis

    Treesearch

    Charles Rhoades; Dan Binkley; Hlynur Oskarsson; Robert Stottlemyer

    2008-01-01

    Nitrogen enters terrestrial ecosystems through multiple pathways during primary succession. We measured accumulation of total soil nitrogen and changes in inorganic nitrogen (N) pools across a 300-y sequence of river terraces in northwest Alaska and assessed the contribution of the nitrogen-fixing shrub Shepherdia canadensis. Our work compared 5...

  5. Where is the nitrogen on Mars?

    NASA Astrophysics Data System (ADS)

    Mancinelli, Rocco L.; Banin, Amos

    2003-07-01

    Nitrogen is an essential element for life. Specifically, fixed nitrogen (i.e. NH3, NH4+, NOx or N that is chemically bound to either inorganic or organic molecules and can be released by hydrolysis to form NH3 or NH4+) is useful to living organisms. Nitrogen on present-day Mars has been analysed only in the atmosphere. The inventory is a small fraction of the amount of nitrogen presumed to have been received by the planet during its accretion. Where is the missing nitrogen? Answering this question is crucial for understanding the probability of the origin and evolution of life on Mars, and for its future astrobiological exploration. The two main processes that could have removed nitrogen from the atmosphere include: (1) non-thermal escape of N atoms to space and (2) burial within the regolith as nitrates and ammonium salts. Nitrate would probably be stable in the highly oxidized surface soil of Mars and could have served as an NO3[minus sign] sink. Such accumulations are observed in certain desert environments on Earth. Some NH4+ nitrogen may also be fixed and stabilized in the soil by inclusion as a structural cation in the crystal lattices of certain phyllosilicates replacing K+. Analysis of the Martian soil for traces of NO3[minus sign] and NH4+ during future missions will provide important information regarding the nitrogen abundance on Mars. We hypothesize that Mars soil, as typical of extremely dry desert soils on Earth, is likely to contain at least some of the missing nitrogen as nitrate salts and some fixed ammonium bound to aluminosilicate minerals.

  6. Magnetization enhancement due to incorporation of non-magnetic nitrogen content in (Co{sub 84}Zr{sub 16})N{sub x} nano-composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jitendra, E-mail: jitendra@ceeri.ernet.in; Akhtar, Jamil; Academy of Scientific and Innovative Research, New Delhi 110001

    We report the magnetic, electronic, and structural properties of nano-composite (Co{sub 84}Zr{sub 16})N{sub x} or CZN films prepared by reactive co-sputter deposition method. As-deposited CZN films have shown enhancement in magnetization (M{sub s}) with incorporation of nitrogen content, which is related to the evolution of nano-composite phase. X-ray diffraction study has confirmed poly-crystalline growth of CZN films with fcc(331) and fcc(422) phases. High-resolution transmission electron microscope study reveals that CZN films are composed of ordered and crystalline ferromagnetic Co nano-clusters, which are embedded in the nano-composite matrix. Photoemission measurements show the change in the intensity near the Fermi level mostmore » likely due to defects and shift in the core-levels binding energy with nitrogen concentration. Raman spectroscopy data show an increase in the intensity of the Raman lines with nitrogen concentration upto 20%. However, the intensity is significantly lower for 30% sample. This indicates that less nitrogen or defect states are being substituted into the lattice above 20% and is consistent with the observed magnetic behavior. Our studies indicate that defects induced due to the incorporation of non-magnetic nitrogen content play a key role to enhance the magnetization.« less

  7. Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane.

    PubMed

    Haddadi, Sakineh; Nabi-Bidhendi, Gholamreza; Mehrdadi, Nasser

    2014-02-17

    Vulnerability of water resources to nutrients led to progressively stricter standards for wastewater effluents. Modification of the conventional procedures to meet the new standards is inevitable. New technologies should give a priority to nitrogen removal. In this paper, ammonium chloride and urine as nitrogen sources were used to investigate the capacity of a microbial electrolysis cell (MEC) configured by cation exchange membrane (CEM) for electrochemical removal of nitrogen over open-and closed-circuit potentials (OCP and CCP) during biodegradation of organic matter. Results obtained from this study indicated that CEM was permeable to both organic and ammonium nitrogen over OCP. Power substantially mediated ammonium migration from anodic wastewater to the cathode, as well. With a urine rich wastewater in the anode, the maximum rate of ammonium intake into the cathode varied from 34.2 to 40.6 mg/L.h over CCP compared to 10.5-14.9 mg/L.h over OCP. Ammonium separation over CCP was directly related to current. For 1.46-2.12 mmol electron produced, 20.5-29.7 mg-N ammonium was removed. Current also increased cathodic pH up to 12, a desirable pH for changing ammonium ion to ammonia gas. Results emphasized the potential for MEC in control of ammonium through ammonium separation and ammonia volatilization provided that membrane characteristic is considered in their development.

  8. Genetic Dissection of Root Morphological Traits Related to Nitrogen Use Efficiency in Brassica napus L. under Two Contrasting Nitrogen Conditions

    PubMed Central

    Wang, Jie; Dun, Xiaoling; Shi, Jiaqin; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2017-01-01

    As the major determinant for nutrient uptake, root system architecture (RSA) has a massive impact on nitrogen use efficiency (NUE). However, little is known the molecular control of RSA as related to NUE in rapeseed. Here, a rapeseed recombinant inbred line population (BnaZNRIL) was used to investigate root morphology (RM, an important component for RSA) and NUE-related traits under high-nitrogen (HN) and low-nitrogen (LN) conditions by hydroponics. Data analysis suggested that RM-related traits, particularly root size had significantly phenotypic correlations with plant dry biomass and N uptake irrespective of N levels, but no or little correlation with N utilization efficiency (NUtE), providing the potential to identify QTLs with pleiotropy or specificity for RM- and NUE-related traits. A total of 129 QTLs (including 23 stable QTLs, which were repeatedly detected at least two environments or different N levels) were identified and 83 of them were integrated into 22 pleiotropic QTL clusters. Five RM-NUE, ten RM-specific and three NUE-specific QTL clusters with same directions of additive-effect implied two NUE-improving approaches (RM-based and N utilization-based directly) and provided valuable genomic regions for NUE improvement in rapeseed. Importantly, all of four major QTLs and most of stable QTLs (20 out of 23) detected here were related to RM traits under HN and/or LN levels, suggested that regulating RM to improve NUE would be more feasible than regulating N efficiency directly. These results provided the promising genomic regions for marker-assisted selection on RM-based NUE improvement in rapeseed. PMID:29033971

  9. Controls on the distributions of organic carbon and nitrogen in the eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hansell, Dennis A.; Waterhouse, Tye Y.

    1997-05-01

    Measurements of total organic carbon (TOC) and nitrogen (TON) were made on the WOCE P18 line (from 67°S to 23°N along 103°/110°W). There was an accumulation of TOC on the equator and in the oligotrophic waters north and south of the equator. The concentrations of TOC were well correlated with temperature, indicating an important physical control on its distribution. The boundary separating shallow, TOC-rich water from deep, TOC-poor water overlaid the main thermocline. This observation suggests that water column stability or residence time imparted by the main thermocline is a primary determinant of TOC accumulation. Elevated TON concentrations were found in all surface waters, with the lowest values found in the region of 20-35°S. Net TON drawdown in the South Pacific subtropical gyre, likely due to biological utilization and vertical export of the nitrogen, was initiated with depletion of equatorially upwelled nitrate. The degree to which inorganic nitrogen was limiting in the surface layer south of the equator served to control the concentrations of TON. Such controls were not exerted on organic carbon, as reflected by increasing C:N ratios of organic matter as TON was removed. Unlike the findings in the South Pacific, TON concentrations in oligotrophic waters north of the equator were frequently higher than on the equator. Such accumulations are hypothesized to be maintained from nitrogen fixation, nitrogen input due to vertical migration of autotrophs or diffusive flux of inorganic nitrogen into the euphotic zone across the relatively shallow nitracline.

  10. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  11. Nitrogen and dry-matter partitioning in soybean plants during onset of and recovery from nitrogen stress

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    The study tested the hypothesis that resupplying nitrogen after a period of nitrogen stress leads to restoration of the balance between root and shoot growth and normal functional activity. Nonnodulated soybean plants were grown hydroponically for 14 days with 1.0 mM NO3- in a complete nutrient solution. One set of plants was continued on the complete nutrient solution for 25 days; a second set was given 0.0 mM NO3- for 25 days; and the third set was given 0.0 mM NO3- for 10 days followed by transfer to the complete solution with 1.0 mM NO3- for 15 days. In continuously nitrogen-stressed plants, emergence and expansion of main-stem and branch leaves were severely inhibited as low nitrogen content limited further growth. This was followed by a shift in partitioning of dry matter from the leaves to the roots, resulting in an initial stimulation of root growth and a decreased shoot:root ratio. Reduced nitrogen also was redistributed from the leaves into the stem and roots. When nitrogen stress was relieved, leaf initiation and expansion were renewed. With the restoration of the balance between root and shoot function, the shoot:root ratio and distribution of reduced nitrogen within the plant organs returned to levels similar to those of nonstressed plants.

  12. [Interactive impact of water and nitrogen on yield, quality of watermelon and use of water and nitrogen in gravel-mulched field].

    PubMed

    Du, Shao-ping; Ma, Zhong-ming; Xue, Liang

    2015-12-01

    In order to develop the optimal coupling model of water and nitrogen of watermelon under limited irrigation in gravel-mulched field, a field experiment with split-plot design was conducted to study the effects of supplementary irrigation volume, nitrogen fertilization, and their interactions on the growth, yield, quality and water and nitrogen use efficiency of watermelon with 4 supplementary irrigation levels (W: 0, 35, 70, and 105 m³ · hm⁻²) in main plots and 3 nitrogen fertilization levels (N: 0, 120, and 200 kg N · hm⁻²) in sub-plots. The results showed that the photosynthetic rate, yield, and water and nitrogen use efficiency of watermelon increased with the increasing supplementary irrigation, but the nitrogen partial productivity and nitrogen use efficiency decreased with increasing nitrogen fertilization level. The photosynthetic rate and quality indicators increased with increasing nitrogen fertilization level as the nitrogen rate changed from 0 to 120 kg N · hm⁻², but no further significant increase as the nitrogen rate exceeded 120 kg · hm⁻². The interactive effects between water and nitrogen was significant for yield and water and nitrogen use efficiency of watermelon, supplementary irrigation volume was a key factor for the increase yield compared with the nitrogen fertilizer, and the yield reached the highest for the W₇₀N₂₀₀ and W₁₀₅ N₁₂₀ treatments, for which the yield increased by 42.4% and 40.4% compared to CK. Water use efficiency (WUE) was improved by supplementary irrigation and nitrogen rate, the WUE of all nitrogen fertilizer treatments were more than 26 kg · m⁻³ under supplemental irrigation levels 70 m³ · hm⁻² and 105 m³ · hm⁻². The nitrogen partial productivity and nitrogen use efficiency reached the highest in the treatment of W₁₀₅N₁₂₀. It was considered that under the experimental condition, 105 m³ · hm⁻² of supplementary irrigation plus 120 kg · hm⁻² of nitrogen

  13. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  14. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 −–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 +–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 −–N and NH4 +–N was ~31.38% and ~20.50% for the contents of NO3 −–N and NH4 +–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  15. Long-Term Simulated Atmospheric Nitrogen Deposition Alters ...

    EPA Pesticide Factsheets

    Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we previously observed that 10 years of chronic simulated nitrogen deposition (30 kg N ha-1 yr-1) increased soil organic carbon. Over three years at these sites, we investigated the effects of nitrogen additions on decomposition of two substrates with documented differences in biochemistry: leaf litter (more labile) and fine roots (more recalcitrant). Further, we combined decomposition rates with annual leaf and fine root litter production to estimate how nitrogen additions altered the accumulation of soil organic matter. Nitrogen additions marginally stimulated early-stage decomposition of leaf litter, a substrate with little acid-insoluble material (e.g., lignin). In contrast, nitrogen additions inhibited the late stage decomposition of fine roots, a substrate with high amount of acid insoluble material and a change consistent with observed decreases in lignin-degrading enzyme activities with nitrogen additions at these sites. At the ecosystem scale, the slower fine root decomposition led to additional root mass retention (g m-2), which explained 5, 48, and 52 % of previously-documented soil carbon accumulation due to nitrogen additions. Our results demonstrated that nitrogen deposition ha

  16. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  17. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  18. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  19. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  20. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  1. Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei

    2013-12-04

    We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

  2. [Effects of fertilization method and nitrogen application rate on soil nitrogen vertical migration in a Populus xeuramericana cv. 'Guariento' plantation].

    PubMed

    Dai, Teng-fei; Xi, Ben-ye; Yan, Xiao-li; Jia, Li-ming

    2015-06-01

    A field experiment was conducted to investigate the effects of fertilization methods, i.e., drip (DF) and furrow fertilization (GF), and nitrogen (N) application rates (25, 50, 75 g N · plant(-1) · time(-1)) on the dynamics of soil N vertical migration in a Populus x euramericana cv. 'Guariento' plantation. The results showed that soil NH4(+)-N and NO3(-)-N contents decreased with the increasing soil depth under different fertilization methods and N application rates. In the DF treatment, soil NH4(+)-N and NO3(-)-N were mainly concentrated in the 0-40 cm soil layer, and their contents ascended firstly and then descended, reaching their maximum values at the 5th day (211.1 mg · kg(-1)) and 10th day (128.8 mg · kg(-1)) after fertilization, respectively. In the GF treatment, soil NH4(+)-N and NO3(-)-N were mainly concentrated in the 0-20 cm layer, and the content of soil NO3(-)-N rose gradually and reached its maximum at the 20th day (175.7 mg · kg(-1)) after fertilization, while the NH4(+)-N content did not change significantly after fertilization. Overall, N fertilizer had an effect within 20 days in the DF treatment, and more than 20 days in the GF treatment. In the DF treatment, the content and migration depth of soil NH4(+)-N and NO3(-)-N increased with the N application rate. In the GF treatment, the NO3(-)-N content increased with the N application rate, but the NH4(+)-N content was not influenced. Under the DF treatment, the hydrolysis rate, nitrification rate and migration depth of urea were higher or larger than that under the GF treatment, and more N accumulated in deep soil as the N application rate increased. Considering the distribution characteristics of fine roots and soil N, DF would be a better fertilization method in P. xeuramericana cv. 'Guariento' plantation, since it could supply N to larger distribution area of fine roots. When the N application rate was 50 g · tree(-1) each time, nitrogen mainly distributed in the zone of fine roots and

  3. Beyond fossil fuel–driven nitrogen transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.

    Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. Here, a key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.

  4. Beyond fossil fuel–driven nitrogen transformations

    DOE PAGES

    Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.; ...

    2018-05-25

    Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. Here, a key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.

  5. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    PubMed

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  6. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Pan, Yuepeng; Wang, Yuesi; Paulot, Fabien; Henze, Daven

    2016-04-01

    Rapid Asian industrialization has lead to increased atmospheric nitrogen deposition downwind threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2°× 2/3° horizontal resolution over the East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the much higher NH3 emissions reflect its intensive agricultural activities. We improve the seasonality of Asian NH3 emissions; emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7% over the South China Sea, and become important (greater than 30%) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian Monsoon and in nitrogen emissions. The model adjoint further points out that nitrogen deposition to the Yellow Sea originates from sources over China (92% contribution) and the Korean peninsula (7%), and by sectors from fertilizer use (24%), power plants

  7. Nitrogen-Functionalized Hydrothermal Carbon Materials by Using Urotropine as the Nitrogen Precursor.

    PubMed

    Straten, Jan Willem; Schleker, Philipp; Krasowska, Małgorzata; Veroutis, Emmanouil; Granwehr, Josef; Auer, Alexander A; Hetaba, Walid; Becker, Sylvia; Schlögl, Robert; Heumann, Saskia

    2018-03-25

    Nitrogen-containing hydrothermal carbon (N-HTC) materials of spherical particle morphology were prepared by means of hydrothermal synthesis with glucose and urotropine as precursors. The molar ratio of glucose to urotropine has been varied to achieve a continuous increase in nitrogen content. By raising the ratio of urotropine to glucose, a maximal nitrogen fraction of about 19 wt % could be obtained. Decomposition products of both glucose and urotropine react with each other; this opens up a variety of possible reaction pathways. The pH has a pronounced effect on the reaction pathway of the corresponding reaction steps. For the first time, a comprehensive analytical investigation, comprising a multitude of analytical tools and instruments, of a series of nitrogen-containing HTC materials was applied. Functional groups and structural motifs identified were analyzed by means of FTIR spectroscopy, thermogravimetric MS, and solid-state NMR spectroscopy. Information on reaction mechanisms and structural details were obtained by electronic structure calculations that were compared with vibrational spectra of polyfuran or polypyrrole-like groups, which represent structural motifs occurring in the present samples. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. SOURCES AND ESTIMATED LOAD OF BIOAVAILABLE NITROGEN ATTRIBUTED TO CHRONIC NITROGEN EXPOSURE AND CHANGED ECOSYSTEM STRUCTURE AND FUNCTION

    EPA Science Inventory

    Bioavailable nitrogen is a limiting nutrient throughout the Eastern United States. Research demonstrates that exposure to large doses of nitrogen leads to deleterious environmental impacts. However, effects of chronic exposure to lower doses of nitrogen are under-appreciated. ...

  9. The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales

    PubMed Central

    Billen, Gilles; Garnier, Josette; Lassaletta, Luis

    2013-01-01

    The nitrogen cycle of pre-industrial ecosystems has long been remarkably closed, in spite of the high mobility of this element in the atmosphere and hydrosphere. Inter-regional and international commercial exchanges of agricultural goods, which considerably increased after the generalization of the use of synthetic nitrogen fertilizers, introduced an additional type of nitrogen mobility, which nowadays rivals the atmospheric and hydrological fluxes in intensity, and causes their enhancement at the local, regional and global scales. Eighty-five per cent of the net anthropogenic input of reactive nitrogen occurs on only 43 per cent of the land area. Modern agriculture based on the use of synthetic fertilizers and the decoupling of crop and animal production is responsible for the largest part of anthropogenic losses of reactive nitrogen to the environment. In terms of levers for better managing the nitrogen cascade, beyond technical improvement of agricultural practices tending to increase nitrogen use efficiency, or environmental engineering management measures to increase nitrogen sinks in the landscape, the need to better localize crop production and livestock breeding, on the one hand, and agriculture and food demand on the other hand, is put forward as a condition to being able to supply food to human populations while preserving environmental resources. PMID:23713121

  10. High Nitrogen Stainless Steel

    DTIC Science & Technology

    2011-07-19

    STAINLESS STEEL by E. U. Lee R. Taylor 19 July 2011 Approved for...NAWCADPAX/TR-2011/162 19 July 2011 HIGH NITROGEN STAINLESS STEEL by E. U. Lee R. Taylor RELEASED BY...REPORT TYPE Technical Report 3. DATES COVERED 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER High Nitrogen Stainless Steel 5b. GRANT

  11. Altered water and nitrogen input shifts succession in a southern California coastal sage community.

    PubMed

    Kimball, Sarah; Goulden, Michael L; Suding, Katharine N; Parker, Scot

    Vegetation-type conversions between grasslands and shrublands have occurred worldwide in semiarid regions over the last 150 years. Areas once covered by drought-deciduous shrubs in Southern California (coastal sage scrub) are converting to grasslands dominated by nonnative species. Increasing fire frequency, drought, and nitrogen deposition have all been hypothesized as causes of this conversion, though there is little direct evidence. We constructed rain-out shelters in a coastal sage scrub community following a wildfire, manipulated water and nitrogen input in a split-plot design, and collected annual data on community composition for four years. While shrub cover increased through time in all plots during the postfire succession, both drought and nitrogen significantly slowed recovery. Four years after the fire, average native shrub cover ranged from over 80% in water addition, ambient-nitrogen plots to 20% in water reduction, nitrogen addition plots. Nonnative grass cover was high following the fire and remained high in the water reduction plots through the third spring after the fire, before decreasing in the fourth year of the study. Adding nitrogen decreased the cover of native plants and increased the cover of nonnative grasses, but also increased the growth of one crown-sprouting shrub species. Our results suggest that extreme drought during postfire succession may slow or alter succession, possibly facilitating vegetation-type conversion of coastal sage scrub to grassland. Nitrogen addition slowed succession and, when combined with drought, significantly decreased native cover and increased grass cover. Fire, drought, and atmospheric N deposition are widespread aspects of environmental change that occur simultaneously in this system. Our results imply these drivers of change may reinforce each other, leading to a continued decline of native shrubs and conversion to annual grassland.

  12. [Effect of argon and nitrogen on the peritoneal macrophages in mice and their resistance to the UV damaging effect in vitro].

    PubMed

    Galchuk, S V; Turovetskiĭ, V B; Andreev, A I; Buravkova, L B

    2001-01-01

    Explored were effects of argon and nitrogen on intracellular pH in peritoneal macrophages in mice and resistance of cellular membranes to the UV damaging effect in vitro. Blasting argon or nitrogen along the surface of cell cultures in airtight chamber for 20 minutes was shown to decrease 5-folds the oxygen content of solution as compared with initial level with culture pH unchanged. Ten-minute blasting argon or nitrogen through the incubation chamber slightly elevates intracellular pH in macrophages. The standard cell incubation conditions recovered following approximately 60 minutes in hypoxic atmosphere, the ability of macrophages to build up fluorescein was degraded and they increased intracellular pH no matter the indifferent gas yet more marked in case of nitrogen in use. It was demonstrated that the normobaric gas environment with oxygen partly replaced by nitrogen or argon protects plasmatic membranes of cells from UV-induced damage.

  13. Molybdenum Trafficking for Nitrogen Fixation†

    PubMed Central

    Hernandez, Jose A.; George, Simon J.; Rubio, Luis M.

    2009-01-01

    The molybdenum nitrogenase is responsible for most biological nitrogen fixation, a prokaryotic metabolic process that determines the global biogeochemical cycles of nitrogen and carbon. Here we describe the trafficking of molybdenum for nitrogen fixation in the model diazotrophic bacterium Azotobacter vinelandii. The genes and proteins involved in molybdenum uptake, homeostasis, storage, regulation, and nitrogenase cofactor biosynthesis are reviewed. Molybdenum biochemistry in A. vinelandii reveals unexpected mechanisms and a new role for iron-sulfur clusters in the sequestration and delivery of molybdenum. PMID:19772354

  14. Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes

    NASA Astrophysics Data System (ADS)

    Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.

    2016-06-01

    Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.

  15. Hexacoordinated nitrogen(V) stabilized by high pressure

    PubMed Central

    Kurzydłowski, Dominik; Zaleski-Ejgierd, Patryk

    2016-01-01

    In all of its known connections nitrogen retains a valence shell electron count of eight therefore satisfying the golden rule of chemistry - the octet rule. Despite the diversity of nitrogen chemistry (with oxidation states ranging from + 5 to −3), and despite numerous efforts, compounds containing nitrogen with a higher electron count (hypervalent nitrogen) remain elusive and are yet to be synthesized. One possible route leading to nitrogen’s hypervalency is the formation of a chemical moiety containing pentavalent nitrogen atoms coordinated by more than four substituents. Here, we present theoretical evidence that a salt containing hexacoordinated nitrogen(V), in the form of an NF6− anion, could be synthesized at a modest pressure of 40 GPa (=400 kbar) via spontaneous oxidation of NF3 by F2. Our results indicate that the synthesis of a new class of compounds containing hypervalent nitrogen is within reach of current high-pressure experimental techniques. PMID:27808104

  16. SOURCES AND ESTIMATED LOAD OF BIOAVAILABLE NITROGEN ATTRIBUTABLE TO CHRONIC NITROGEN EXPOSURE AND CHANGED ECOSYSTEM STRUCTURE AND FUNCTION

    EPA Science Inventory

    Bioavailable nitrogen is a limiting nutrient throughout the Eastern United States. Research demonstrates that exposure to large doses of nitrogen leads to deleterious environmental impacts. However, effects of chronic exposure to lower doses of nitrogen are not well known. Since...

  17. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation

    PubMed Central

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F.; Wang, Jian-Ping

    2016-01-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 107 erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25–30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 1017/cm2. PMID:27145983

  18. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation.

    PubMed

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F; Wang, Jian-Ping

    2016-05-05

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 10(7) erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25-30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 10(17)/cm(2).

  19. Modeling reactive nitrogen in North America: recent ...

    EPA Pesticide Factsheets

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. The bulk of nitrogen in the environment is tightly bound as non-reactive N2. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media (Galloway et al., 2003). Human activity has perturbed this cycle through the combustion of fossil fuels and synthesis of fertilizers. The anthropogenic contribution to this cycle is now larger than natural sources in the United States and globally (Galloway et al., 2004). Reactive nitrogen enters the biosphere primarily from emissions of oxidized nitrogen to the atmosphere from combustion sources, as inorganic fertilizer applied to crops as reduced nitrogen fixed from atmospheric N2 through the Haber-Bosch process, as organic fertilizers such as manure, and through the cultivation of nitrogen fixing crops (Canfield et al., 2010). Both the United States (US) Clean Air Act and the Canadian Environmental Protection Act (CEPA) have substantially reduced the emissions of oxidized nitrogen in North America through NOx controls on smokestacks and exhaust pipes (Sickles and Shadwick, 2015; AQA, 2015). However, reduced nitrogen emissions have remained constant during the last few decades of emission reductions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) c

  20. Substantial nitrogen pollution embedded in international trade

    NASA Astrophysics Data System (ADS)

    Oita, Azusa; Malik, Arunima; Kanemoto, Keiichiro; Geschke, Arne; Nishijima, Shota; Lenzen, Manfred

    2016-02-01

    Anthropogenic emissions of reactive nitrogen to the atmosphere and water bodies can damage human health and ecosystems. As a measure of a nation’s contribution to this potential damage, a country’s nitrogen footprint has been defined as the quantity of reactive nitrogen emitted during the production, consumption and transportation of commodities consumed within that country, whether those commodities are produced domestically or internationally. Here we use global emissions databases, a global nitrogen cycle model, and a global input-output database of domestic and international trade to calculate the nitrogen footprints for 188 countries as the sum of emissions of ammonia, nitrogen oxides and nitrous oxide to the atmosphere, and of nitrogen potentially exportable to water bodies. Per-capita footprints range from under 7 kg N yr-1 in some developing countries to over 100 kg N yr-1 in some wealthy nations. Consumption in China, India, the United States and Brazil is responsible for 46% of global emissions. Roughly a quarter of the global nitrogen footprint is from commodities that were traded across country borders. The main net exporters have significant agricultural, food and textile exports, and are often developing countries, whereas important net importers are almost exclusively developed economies. We conclude that substantial local nitrogen pollution is driven by demand from consumers in other countries.

  1. Validation of a dew-point generator for pressures up to 6 MPa using nitrogen and air

    NASA Astrophysics Data System (ADS)

    Bosma, R.; Mutter, D.; Peruzzi, A.

    2012-08-01

    A new primary humidity standard was developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated with other carrier gases such as natural gas at pressures up to 6 MPa and SF6 at pressures up to 1 MPa. The temperature range of the standard is from -80 °C to +20 °C. In this paper, we report the validation of the new primary dew-point generator in the temperature range -41 °C to +5 °C and the pressure range 0.1 MPa to 6 MPa using nitrogen and air. For the validation the flow through the dew-point generator was varied up to 10 l min-1 (at 23 °C and 1013 hPa) and the dew point of the gas entering the generator was varied up to 15 °C above the dew point exiting the generator. The validation results showed that the new generator, over the tested temperature and pressure range, can be used with a standard uncertainty of 0.02 °C frost/dew point. The measurements used for the validation at -41 °C and -20 °C with nitrogen and at +5 °C with air were also used to calculate the enhancement factor at pressures up to 6 MPa. For +5 °C the differences between the measured and literature values were compatible with the respective uncertainties. For -41 °C and -20 °C they were compatible only up to 3 MPa. At 6 MPa a discrepancy was observed.

  2. Chitin: 'Forgotten' Source of Nitrogen: From Modern Chitin to Thermally Mature Kerogen: Lessons from Nitrogen Isotope Ratios

    USGS Publications Warehouse

    Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.

    1998-01-01

    Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may

  3. Increasing alkali supplementation decreases urinary nitrogen excretion when adjusted for same day nitrogen intake

    USDA-ARS?s Scientific Manuscript database

    Summary: We examined whether escalating doses of potassium bicarbonate (KHCO3) supplements alter urinary nitrogen excretion expressed as a ratio to same day nitrogen intake (measure of muscle-protein breakdown). The ratio declined significantly from placebo to low to high dose of KHCO3 supplementati...

  4. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    NASA Technical Reports Server (NTRS)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  5. Monitoring plant tissue nitrogen isotopes to assess nearshore inputs of nitrogen to Lake Crescent, Olympic National Park, Washington

    USGS Publications Warehouse

    Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.

    2016-05-31

    Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.

  6. Short-term effects of tidal flooding on soil nitrogen mineralization in a Chinese tidal salt marsh

    NASA Astrophysics Data System (ADS)

    Gao, Haifeng; Bai, Junhong; Deng, Xiaoya; Lu, Qiongqiong; Ye, Xiaofei

    2018-02-01

    Tidal flooding is an important control of nitrogen biogeochemistry in wetland ecosystems of Yellow River Delta, China. Variations in hydrology could change soil redox dynamics and conditions for microorganisms living. A tidal simulation experiment was designed to extract tidal flooding effect on nitrogen mineralization of salt marsh soil. Inorganic nitrogen and relevant enzyme were measured during the 20-day incubation period. Considering the variation of both inorganic N and enzymes, nitrogen mineralization process in tidal salt marsh could be divided into 2 phases of short term response and longtime adaption by around 12th incubation day as the inflection point. Soil ammonium nitrogen (NH4+-N) and volatilized ammonia (NH3) occupied the mineralization process since nitrate nitrogen (NO3--N) was not detected over whole incubation period. NH4+-N varied fluctuant and increased significantly after 12 day's incubation. Released NH3 reached to peak value of 14.24 mg m-2 d-1 at the inflection point and declined thereafter. Inorganic nitrogen released according to net nitrogen mineralization rate (RM) under the tidal flooding condition without plant uptake except first 2 days. However, during the transitional period of 6-12 days, RM decreased notably to almost 0 and increased again after inflection point with the value of 0.182 mg kg-1 d-1. It might be due to the change of microbial composition and function when soil shifted from oxic to anoxic, which were reflected by arylamidase, urease and fluorescein diacetate. Fluorescein diacetate hydrolysis and arylamidase had the similar variation of U style with decreasing activities before 12 days' incubation. All the enzymes measured in this experiment increased after inflection point. Whereas, urease activity kept constant from 2 to 12 days. Alternant oxidation reduction condition would increase N loss through denitrification and ammonia volatilization during the transitional period, while more inorganic nitrogen would be

  7. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ombaka, L.M.; Ndungu, P.G.; Department of Applied Chemistry, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF{sub 3} and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF{sub 3} catalyst indicates that steric factors influence the X-ray structure of 1,1′-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF{sub 3} catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and aremore » less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF{sub 3} and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF{sub 3} catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials. - Graphical abstract: Graphical abstract showing the synthesis of N-CNTs using halogenated-ferrocenyl derivatives as catalyst with pyridine or acetonitrile as nitrogen and carbon sources via the chemical vapour deposition technique. - Highlights: • N-CNTs were synthesized from halogenated ferrocenyl catalysts. • Halogenated catalysts promote nitrogen-doping and pyridinic nitrogen in N-CNTs. • Halogenated catalysts facilitate iron filling of N-CNTs.« less

  8. Alterations in leaf nitrogen metabolism indicated the structural changes of subtropical forest by canopy addition of nitrogen.

    PubMed

    Liu, Nan; Wang, Jiaxin; Guo, Qinfeng; Wu, Shuhua; Rao, Xingquan; Cai, Xi'an; Lin, Zhifang

    2018-09-30

    Globally, nitrogen deposition increment has caused forest structural changes due to imbalanced plant nitrogen metabolism and subsequent carbon assimilation. Here, a 2 consecutive-year experiment was conducted to reveal the effects of canopy addition of nitrogen (CAN) on nitrogen absorption, assimilation, and allocation in leaves of three subtropical forest woody species (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that CAN altered leaf nitrogen absorption, assimilation and partitioning of different plants in different ways in subtropical forest. It shows that CAN increased maximum photosynthetic rate (A max ), photosynthetic nitrogen use efficiency (PNUE), and metabolic protein content of the two understory species A. quinquegona and B. cochinchinensis. By contrary, for the overstory species, C. henryi, A max , PNUE, and metabolic protein content were significantly reduced in response to CAN. We found that changes in leaf nitrogen metabolism were mainly due to the differences in enzyme (e.g. Ribulose-1,5-bisphosphate carboxylase, nitrate reductase, nitrite reductase and glutamine synthetase) activities under CAN treatment. Our results indicated that C. henryi may be more susceptible to CAN treatment, and both A. quinquegona and B. cochinchinensis could better adapt to CAN treatment but in different ways. Our findings may partially explain the ongoing degradation of subtropical forest into a community dominated by small trees and shrubs in recent decades. It is possible that persistent high levels of atmospheric nitrogen deposition will lead to the steady replacement of dominant woody species in this subtropical forest. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Solubilities of nitrogen and noble gases in basalt melt

    NASA Technical Reports Server (NTRS)

    Miyazaki, A.; Hiyagon, H.; Sugiura, N.

    1994-01-01

    Nitrogen and noble gases are important tracers in geochemistry and chosmochemistry. Compared to noble gases, however, physicochemical properties of nitrogen, such as solubility in melt or melt/silicate partition, are not well known. Solubility of nitrogen in basalt melt depends on redox condition of the atmosphere. For example, solubility of nitrogen in E chondrite melt under reducing conditions is as high as 2 mol percent at 1500 C, suggesting that nitrogen is chemically dissolved in silicate melts, i.e., being dissolved as free anions or replacing oxygen sites in silicate network. However, the solubility and the dissolution mechanism of nitrogen under oxidizing conditions are not well investigated. To obtain nitrogen solubility in silicate melts under various redox conditions and to understand its mechanism, we are conducting experiments by using (15)N(15)N-labeled nitrogen gas. This makes it easy to distinguish dissolved nitrogen from later contamination of atmospheric nitrogen, and hence enables us to measure the nitrogen solubility accurately. As a preliminary experiment, we have measured solubility of nitrogen in basalt melt under the atmospheric oxygen pressure.

  10. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    NASA Astrophysics Data System (ADS)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  11. Microcosm experiments approach to quantify nitrogen leaching from mineral and organic fertilized soil

    NASA Astrophysics Data System (ADS)

    Severus Sandor, Mignon; Sandor, Valentina; Mihai Onica, Bogdan; Brad, Traian

    2017-04-01

    The use of nitrogen inputs to improve agricultural soils fertility is a common practice in arable lands. Depending of nitrogen forms only a part of introduced nitrogen will be effectively used by the crops while another part can be leached from soil with negative impact on the environment. In temperate climate these losses are greater during spring time when rains are frequent and crop plants are in the early growth stage. In a microcosm experiments we simulated this kind of conditions in order to assess nitrogen losses from two different soils (Chernozem, Luvisol) fertilized with mineral (ammonium nitrate) and organic (mustard as green manure, slurry manure and cattle manure) fertilizers. From each microcosms we obtained 100 ml of leachate which was filtered and analyzed from N-NO3 and N-NH4. The leachate was obtained by adding distillate water at the microcosm surface two times during the experiment at a ten days interval. Preliminary results showed that only small quantity of ammonium was leached from fertilized soils, mainly after 20 days of incubation. These amounts were higher in Chernozem soil than in Luvisol and registered the highest amount in cattle manure fertilized soils. In general, the nitrate was leached from soils in high quantities. The highest value was measured in Chernozem soil when cattle manure was used as fertilizer (1200 mg/l) and represents a cumulative amount. For most of the treatments the cumulative loss of nitrate nitrogen was double in Chernozem soil than in Luvisol. The highest quantity of leaching nitrate was measured for both soils in manure fertilized soil.

  12. Nitrogen balance as a tool to assess nitrogen mineralized from winery wastes under different irrigation strategies

    NASA Astrophysics Data System (ADS)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    Grape marc is a by-product coming from the winery industry, composed of skins, seeds and stalks generated during the crushing process. In Spain, large quantities of wine are produced every year (3,610,000 tonnes in 2010 (FAO, 2010)) with the consequent waste generation. With an adequate composting treatment, this waste can be applied to soils as a source of nutrients and organic matter. Compost N forms added to soil are mostly organic N forms, so organic N can be mineralized during the crop period and thus be taken up by the plants, immobilised, or leached. Compost N mineralization depends on factors such as compost C/N ratio but also on climate conditions. Estimation of N mineralization is necessary to optimise crop yield and minimize the risk of N losses to the environment, especially in zones vulnerable to nitrate pollution. The aim of this work was to assess mineralized N during the crop season when applying grape marc compost as fertilizer in a melon crop cultivated under different drip irrigation rates. A nitrogen balance in field conditions was carried out with three different doses of compost: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T/ha (D3); and two irrigation rates (100% ETc and 120% ETc). The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Nitrogen plant uptake and nitrate losses were measured weekly; mineral N in soil was determined before compost addition and at the end of the crop cycle. An estimation of soil mineralized N during the crop season using nitrogen balance is presented. Results are compared with data obtained in laboratory conditions. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  13. Nitrogen mineralization and geochemical characteristics of amino acids in surface sediments of a typical polluted area in the Haihe River Basin, China.

    PubMed

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong

    2015-11-01

    Studies of nitrogen mineralization and diagenetic status of organic matter evaluated by total hydrolysable amino acids (THAAs) were designed to test the hypothesis that nitrogen mineralization in sediments was a potential source of ammonium in strongly artificially disturbed rivers such as the Ziya River watershed. Ammonium and organic nitrogen in both water and sediment samples were the major forms of nitrogen in the watershed. NH3-N was significantly correlated with organic nitrogen in both water (R = 0.823, P < 0.01) and sediments (R = 0.787, P < 0.01). Organic nitrogen with an average content of 3,275.21 ± 1,476.10 mg · kg(-1), accounted for 82.73 % of total nitrogen (TN) in sediments. Organic nitrogen was a potential source of ammonia release into overlying water. Nitrogen mineralization experiments showed that accumulated dissolved inorganic nitrogen ranged from 326.15 to 545.72 mg · kg(-1) and accumulated NH3-N ranged from 320.95 to 533.93 mg · kg(-1). Most of the mineralized nitrogen was NH3-N ( approximately 98.17%) and mineralized nitrogen in sediments ranged from 6.20 to 22.10% of TN. Twenty amino acids were detected, accounting for 45.70 % of organic nitrogen. Protein amino acids, accounting for 89.22% of THAAs, were the dominant THAAs in sediments. The ratio of L-glutamic acid to γ-aminobutyric acid and degradation index showed that the organic matter was poorly degraded and presented a high potential risk of ammonium mineralization.

  14. Advance of Nitrogen Removal in Constructed Wetland

    NASA Astrophysics Data System (ADS)

    Xie, Anbin; Chen, Hao; You, Shaohong

    2018-01-01

    Based on current literature, the article reviewed the mechanism and route of nitrogen removal, discussed the microbial species associated with nitrogen metabolism in constructed wetlands. Key unresolved issues were concluded for classical and novel nitrogen removal routes.

  15. Adaptive Management Tools for Nitrogen: Nitrogen Index, Nitrogen Trading Tool and Nitrogen Losses Environmental Assessment Package (NLEAP-GIS)

    USDA-ARS?s Scientific Manuscript database

    Average nitrogen (N) use efficiencies are approximately fifty percent and can be even lower for shallower rooted systems grown on irrigated sandy soils. These low N use efficiencies need to be increased if reactive N losses to the environmental are to be reduced. Recently, USDA-NRCS identified Adapt...

  16. Percentile Distributions of Median Nitrite Plus Nitrate as Nitrogen, Total Nitrogen, and Total Phosphorus Concentrations in Oklahoma Streams, 1973-2001

    USGS Publications Warehouse

    Haggard, Brian E.; Masoner, Jason R.; Becker, Carol J.

    2003-01-01

    Nutrients are one of the primary causes of water-quality impairments in streams, lakes, reservoirs, and estuaries in the United States. The U.S. Environmental Protection Agency has developed regional-based nutrient criteria using ecoregions to protect streams in the United States from impairment. However, nutrient criteria were based on nutrient concentrations measured in large aggregated nutrient ecoregions with little relevance to local environmental conditions in states. The Oklahoma Water Resources Board is using a dichotomous process known as Use Support Assessment Protocols to define nutrient criteria in Oklahoma streams. The Oklahoma Water Resources Board is modifying the Use Support Assessment Protocols to reflect nutrient informa-tion and environmental characteristics relevant to Oklahoma streams, while considering nutrient information grouped by geographic regions based on level III ecoregions and state boundaries. Percentile distributions of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorous concentrations were calculated from 563 sites in Oklahoma and 4 sites in Arkansas near the Oklahoma and Arkansas border to facilitate development of nutrient criteria for Oklahoma streams. Sites were grouped into four geographic regions and were categorized into eight stream categories by stream slope and stream order. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations were greater in the Ozark Highland ecoregion and were less in the Ouachita Mountains ecoregion when compared to other geographic areas used to group sites. The 50th percentiles of median concentrations of nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus were least in first, second, and third order streams. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen and total phosphorus concentrations in the Ozark Highland and Ouachita Mountains ecoregions were least in

  17. Melting line of polymeric nitrogen

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.

    2013-05-01

    We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.

  18. Nitrogen comes down to earth: report from the 5th European Nitrogen Fixation Conference.

    PubMed

    De Hoff, Peter; Hirsch, Ann M

    2003-05-01

    For four days and four nights, with almost 50 presentations and more than 175 posters, the 5th European Nitrogen Fixation Conference continued a tradition of excellence, bringing scientists from diverse fields such as microbiology, biochemistry, computational genomics, and plant physiology together to address the complex problems associated with biological nitrogen fixation (BNF). The conference was hosted by the John Innes Center and the University of East Anglia in Norwich, England and took place from September 6 through 10, 2002. A diverse range of topics was presented, from the evolution of rhizobial genomes to the plant genes involved in bacterial and fungal symbiosis, to the structure of nitrogenase, and to the means by which nitrogen is shuttled between the symbiotic bacteria and the plant. Additionally, sessions involving broader issues, such as nitrogen fertilizer use and work being done in developing countries, brought home the importance of the research being carried out in BNF around the world.

  19. Electrochemical process for the preparation of nitrogen fertilizers

    DOEpatents

    Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

    2013-03-19

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

  20. The discharge characteristics in nitrogen helicon plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Gao; Wang, Huihui; Si, Xinlu; Ouyang, Jiting; Chen, Qiang; Tan, Chang

    2017-12-01

    Discharge characteristics of helicon plasma in nitrogen and argon-nitrogen mixtures were investigated experimentally by using a Langmuir probe, a B-dot probe, and an optical emission spectrum. Helicon wave discharge is confirmed by the changes of electron density and electromagnetic signal amplitude with the increasing RF power, which shows three discharge stages in nitrogen, corresponding to E-mode, H-mode, and W-mode discharges in helicon plasma, respectively. Discharge images in the radial cross section at different discharge modes through an intensified charge coupled device (ICCD) show a rapid increase in luminous intensity along with the RF power. When the nitrogen discharge is in the W-mode, the images show that the strongest luminance locates near the plasma boundary and no blue core appears in the axial center of tube, which is always observed in argon W-mode discharge. The "big blue" or blue core is a special character in helicon plasma, but it has not been observed in nitrogen helicon plasma. In nitrogen-argon mixtures, a weak blue core is observed in ICCD images since the nitrogen content is increased. The electric field turns to the periphery in the distribution of the radial field and the electron temperature decreases with the increasing nitrogen content, especially when the blue core disappears. The different behaviors of the electron impact and the energy consumption in nitrogen helicon plasma are suggested to be responsible for the decrease in electron energy and the change in the electric field distribution.

  1. Cost-Effectiveness of Nitrogen Mitigation by Alternative ...

    EPA Pesticide Factsheets

    Household wastewater, especially from conventional septic systems, is a major contributor to nitrogen pollution. Alternative household wastewater management technologies provide similar sewerage management services but their life cycle costs and nitrogen flow implications remain uncertain. We seek to address two key questions: (1) what are the total costs, nitrogen mitigation potential, and cost-effectiveness of a range of conventional and alternative municipal wastewater treatment technologies, and (2) what uncertainties influence these outcomes, and how can we improve our understanding of these technologies? We estimate a household nitrogen mass balance for various household wastewater treatment systems and combine this mass balance with life cycle cost assessment to calculate the cost-effectiveness of nitrogen mitigation, which we define as nitrogen removed from the local watershed. We apply our methods to Falmouth, MA, where failing septic systems have caused heightened eutrophication in local receiving water bodies. We find that flushing and dry (composting) urine-diversion toilets paired with conventional septic systems for greywater management demonstrate the lowest life cycle cost and highest cost-effectiveness (dollars per kilogram of nitrogen removed from the watershed). Composting toilets and neighborhood-scale blackwater digesters are also attractive options in some cases, particularly best-case nitrogen mitigation; innovative/advanced septic system

  2. Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC In Vivo

    PubMed Central

    Schumacher, Jörg; Behrends, Volker; Pan, Zhensheng; Brown, Dan R.; Heydenreich, Franziska; Lewis, Matthew R.; Bennett, Mark H.; Razzaghi, Banafsheh; Komorowski, Michal; Barahona, Mauricio; Stumpf, Michael P. H.; Wigneshweraraj, Sivaramesh; Bundy, Jacob G.; Buck, Martin

    2013-01-01

    ABSTRACT Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. PMID:24255125

  3. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  4. Carbon cycle: Nitrogen's carbon bonus

    NASA Astrophysics Data System (ADS)

    Janssens, Ivan A.; Luyssaert, Sebastiaan

    2009-05-01

    Atmospheric deposition of nitrogen can, but does not always, speed up the sequestration of carbon in trees and forest soil. This complexity may arise from the spatial variations in each of the three mechanisms by which nitrogen affects carbon storage.

  5. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  6. Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation.

    PubMed

    Cao, Rui; Huang, Xiao-hua; Zhou, Qing; Cheng, Xiao-ying

    2007-01-01

    The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m2 and high level 0.45 W/m2 significantly affected the whole nitrogen metabolism in soybean seedlings (p < 0.05). It restricted uptake and transport of NO3(-), inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.

  7. Nickel Nanoparticle Encapsulated in Few-Layer Nitrogen-Doped Graphene Supported by Nitrogen-Doped Graphite Sheets as a High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Yuan, Haoran; Yan, Feng; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-01-10

    Herein we develop a facile strategy for fabricating nickel particle encapsulated in few-layer nitrogen-doped graphene supported by graphite carbon sheets as a high-performance electromagnetic wave (EMW) absorbing material. The obtained material exhibits sheetlike morphology with a lateral length ranging from a hundred nanometers to 2 μm and a thickness of about 23 nm. Nickel nanoparticles with a diameter of approximately 20 nm were encapsulated in about six layers of nitrogen-doped graphene. As applied for electromagnetic absorbing material, the heteronanostructures exhibit excellent electromagnetic wave absorption property, comparable to most EMW absorbing materials previously reported. Typically, the effective absorption bandwidth (the frequency region falls within the reflection loss below -10 dB) is up to 8.5 GHz at the thicknesses of 3.0 mm for the heteronanostructures with the optimized Ni content. Furthermore, two processes, carbonization at a high temperature and subsequent treatment in hot acid solution, were involved in the preparation of the heteronanostructures, and thus, mass production was achieved easily, facilitating their practical applications.

  8. Nitrogen on Mars: Insights from Curiosity

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Sutter, B.; Jackson, W. A.; Navarro-Gonzalez, Rafael; McKay, Chrisopher P.; Ming, W.; Archer, P. Douglas; Glavin, D. P.; Fairen, A. G.; Mahaffy, Paul R.

    2017-01-01

    Recent detection of nitrate on Mars indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars.

  9. Processing watershed-derived nitrogen in a well-flushed New England estuary

    USGS Publications Warehouse

    Tobias, C.R.; Cieri, M.; Peterson, B.J.; Deegan, Linda A.; Vallino, J.; Hughes, J.

    2003-01-01

    Isotopically labeled nitrate (15NO3-) was added continuously to the Rowley estuary, Massachusetts, for 22 d to assess the transport, uptake, and cycling of terrestrially derived nitrogen during a period of high river discharge and low phytoplankton activity. Isotopic enrichment of the 3.5-km tidal prism (150,000 m3) was achieved for the 3 weeks and allowed us to construct a nitrogen mass balance model for the upper estuary. Mean ??15NO3- in the estuary ranged from 300??? to 600???, and approximately 75%-80% of the 15N was exported conservatively as 15NO 3- to the coastal ocean. Essentially all of the 20%-25% of the 15N processed in the estuary occurred in the benthos and was evenly split between direct denitrification and autotrophic assimilation. The lack of water-column 15N uptake was attributed to low phytoplankton stocks and short water residence times (1.2-1.4 d). Uptake of water-column NO3- by benthic autotrophs (enriched in excess of 100???) was a function of NO3- concentration and satisfied up to 15% and 25% of the total nitrogen demand for benthic microalgae and macroalgae, respectively. Approximately 10% of tracer assimilated by benthic autotrophs was mineralized and released back to the water column as 15NH4+. By the end of the study, 15N storage in sediments and marsh macrophytes accounted for 50%-70% of the 15N assimilated in the estuary. These compartments may sequester watershed-derived nitrogen in the estuary for time scales of months to years.

  10. Estimation of leaf nitrogen concentration on winter wheat by multispectral imaging

    NASA Astrophysics Data System (ADS)

    Leemans, Vincent; Marlier, Guillaume; Destain, Marie-France; Dumont, Benjamin; Mercatoris, Benoit

    2017-04-01

    Precision agriculture can be considered as one of the solutions to optimize agricultural practice such as nitrogen fertilization. Nitrogen deficiency is a major limitation to crop production worldwide whereas excess leads to environmental pollution. In this context, some devices were developed as reflectance spot sensors for on-the-go applications to detect leaves nitrogen concentration deduced from chlorophyll concentration. However, such measurements suffer from interferences with the crop growth stage and the water content of plants. The aim of this contribution is to evaluate the nitrogen status in winter wheat by using multispectral imaging. The proposed system is composed of a CMOS camera and a set of filters ranged from 450 nm to 950 nm and mounted on a wheel which moves due to a stepper motor. To avoid the natural irradiance variability, a white reference is used to adjust the integration time. The segmentation of Photosynthetically Active Leaves is performed by using Bayes theorem to extract their mean reflectance. In order to introduce information related to the canopy architecture, i.e. the crop growth stage, textural attributes are also extracted from raw images at different wavelength ranges. Nc was estimated by partial least squares regression (R² = 0.94). The best attribute was homogeneity extracted from the gray level co-occurrence matrix (R² = 0.91). In order to select in limited number of filters, best subset selection was performed. Nc could be estimated by four filters (450 +/- 40 nm, 500 +/- 20 nm, 650 +/- 40 nm, 800 +/- 50 nm) (R² = 0.91).

  11. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    PubMed

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  12. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    PubMed Central

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  13. Measurement of nitrogen in the body using a commercial PGNAA system--phantom experiments.

    PubMed

    Chichester, D L; Empey, E

    2004-01-01

    An industrial prompt-gamma neutron activation analysis (PGNAA) system, originally designed for the real-time elemental analyses of bulk coal on a conveyor belt, has been studied to examine the feasibility of using such a system for body composition analysis. Experiments were conducted to measure nitrogen in a simple, tissue equivalent phantom comprised of 2.7 wt% of nitrogen. The neutron source for these experiments was 365 MBq (18.38 microg) of 252Cf located within an engineered low Z moderator and it yielded a dose rate in the measurement position of 3.91 mSv/h; data were collected using a 2780 cm(3) NaI(Tl) cylindrical detector with a digital signal processor and a 512 channel MCA. Source, moderator and detector geometries were unaltered from the system's standard configuration, where they have been optimized for considerations such as neutron thermalization, measurement sensitivity and uniformity, background radiation and external dose minimization. Based on net counts in the 10.8 MeV PGNAA nitrogen photopeak and its escape peaks the dose dependent nitrogen count rate was 11,600 counts/mSv with an uncertainty of 3.0% after 0.32 mSv (4.9 min), 2.0% after 0.74 mSv (11.4 min) and 1.0% after 3.02 mSv (46.4 min).

  14. [Dynamics of carbon and nitrogen storage of Cupressus chengiana plantations in the arid valley of Minjiang River, Southwest China].

    PubMed

    Luo, Da; Feng, Qiu-hong; Shi, Zuo-min; Li, Dong-sheng; Yang, Chang-xu; Liu, Qian-li; He, Jian-she

    2015-04-01

    The carbon and nitrogen storage and distribution patterns of Cupressus chengiana plantation ecosystems with different stand ages in the arid valley of Minjiang River were studied. The results showed that carbon contents in different organs of C. chengiana were relatively stable, while nitrogen contents were closely related to different organs, and soil organic carbon and nitrogen contents increased with the stand age. Carbon and nitrogen storage in vegetation layer, soil layer, and the whole ecosystem of the plantation increased with the stand age. The values of total carbon storage in the 13-, 11-, 8-, 6- and 4-year-old C. chengiana plantation ecosystems were 190.90, 165.91, 144.57, 119.44, and 113.49 t x hm(-2), and the values of total nitrogen storage were 19.09, 17.97, 13.82, 13.42, and 12.26 t x hm(-2), respectively. Most of carbon and nitrogen were stored in the 0-60 cm soil layer in the plantation ecosystems and occupied 92.8% and 98.8%, respectively, and the amounts of carbon and nitrogen stored in the top 0-20 cm soil layer, accounted for 54.4% and 48.9% of those in the 0-60 cm soil layer, respectively. Difference in distribution of carbon and nitrogen storage was observed in the vegetation layer. The percentage of carbon storage in tree layer (3.7%) were higher than that in understory vegetation (3.5%), while the percentage of nitrogen storage in tree layer (0.5%) was lower than that in understory (0.7%). The carbon and nitrogen storage and distribution patterns in the plantations varied obviously with the stand age, and the plantation ecosystems at these age stages could accumulate organic carbon and nitrogen continuously.

  15. Electrochemical process for the preparation of nitrogen fertilizers

    DOEpatents

    Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V

    2015-04-14

    Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.

  16. Cosmological evolution of the nitrogen abundance

    NASA Astrophysics Data System (ADS)

    Vangioni, Elisabeth; Dvorkin, Irina; Olive, Keith A.; Dubois, Yohan; Molaro, Paolo; Petitjean, Patrick; Silk, Joe; Kimm, Taysun

    2018-06-01

    The abundance of nitrogen in the interstellar medium is a powerful probe of star formation processes over cosmological time-scales. Since nitrogen can be produced both in massive and intermediate-mass stars with metallicity-dependent yields, its evolution is challenging to model, as evidenced by the differences between theoretical predictions and observations. In this work, we attempt to identify the sources of these discrepancies using a cosmic evolution model. To further complicate matters, there is considerable dispersion in the abundances from observations of damped Lyα absorbers (DLAs) at z ˜ 2-3. We study the evolution of nitrogen with a detailed cosmic chemical evolution model and find good agreement with these observations, including the relative abundances of (N/O) and (N/Si). We find that the principal contribution of nitrogen comes from intermediate-mass stars, with the exception of systems with the lowest N/H, where nitrogen production might possibly be dominated by massive stars. This last result could be strengthened if stellar rotation which is important at low metallicity can produce significant amounts of nitrogen. Moreover, these systems likely reside in host galaxies with stellar masses below 108.5 M⊙. We also study the origin of the observed dispersion in nitrogen abundances using the cosmological hydrodynamical simulations Horizon-AGN. We conclude that this dispersion can originate from two effects: difference in the masses of the DLA host galaxies, and difference in their position inside the galaxy.

  17. Effects of Water and Nitrogen Availability on Nitrogen Contribution by the Legume, Lupinus argenteus Pursh.

    USDA-ARS?s Scientific Manuscript database

    Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentr...

  18. Description of Liquid Nitrogen Experimental Test Facility

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Jacobs, Richard E.; Saiyed, Naseem H.

    1991-01-01

    The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.

  19. Description of liquid nitrogen experimental test facility

    NASA Technical Reports Server (NTRS)

    Jurns, J. M.; Jacobs, R. E.; Saiyed, N. H.

    1992-01-01

    The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.

  20. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  1. Toward a nitrogen footprint calculator for Tanzania

    NASA Astrophysics Data System (ADS)

    Hutton, Mary Olivia; Leach, Allison M.; Leip, Adrian; Galloway, James N.; Bekunda, Mateete; Sullivan, Clare; Lesschen, Jan Peter

    2017-03-01

    We present the first nitrogen footprint model for a developing country: Tanzania. Nitrogen (N) is a crucial element for agriculture and human nutrition, but in excess it can cause serious environmental damage. The Sub-Saharan African nation of Tanzania faces a two-sided nitrogen problem: while there is not enough soil nitrogen to produce adequate food, excess nitrogen that escapes into the environment causes a cascade of ecological and human health problems. To identify, quantify, and contribute to solving these problems, this paper presents a nitrogen footprint tool for Tanzania. This nitrogen footprint tool is a concept originally designed for the United States of America (USA) and other developed countries. It uses personal resource consumption data to calculate a per-capita nitrogen footprint. The Tanzania N footprint tool is a version adapted to reflect the low-input, integrated agricultural system of Tanzania. This is reflected by calculating two sets of virtual N factors to describe N losses during food production: one for fertilized farms and one for unfertilized farms. Soil mining factors are also calculated for the first time to address the amount of N removed from the soil to produce food. The average per-capita nitrogen footprint of Tanzania is 10 kg N yr-1. 88% of this footprint is due to food consumption and production, while only 12% of the footprint is due to energy use. Although 91% of farms in Tanzania are unfertilized, the large contribution of fertilized farms to N losses causes unfertilized farms to make up just 83% of the food production N footprint. In a developing country like Tanzania, the main audiences for the N footprint tool are community leaders, planners, and developers who can impact decision-making and use the calculator to plan positive changes for nitrogen sustainability in the developing world.

  2. Efficient assimilation of cyanobacterial nitrogen by water hyacinth.

    PubMed

    Qin, Hongjie; Zhang, Zhiyong; Liu, Minhui; Wang, Yan; Wen, Xuezheng; Yan, Shaohua; Zhang, Yingying; Liu, Haiqin

    2017-10-01

    A 15 N labeling technique was used to study nitrogen transfer from cyanobacterium Microcystis aeruginosa to water hyacinth. 15 N atom abundance in M. aeruginosa peaked (15.52%) after cultivation in 15 N-labeled medium for 3weeks. Over 87% of algal nitrogen was transferred into water hyacinth after the 4-week co-cultivation period. The nitrogen quickly super-accumulated in the water hyacinth roots, and the labeled nitrogen was re-distributed to different organs (i.e., roots, stalks, and leaves). This study provides a new strategy for further research on cyanobacterial bloom control, nitrogen migration, and nitrogen cycle in eutrophic waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Combined anaerobic and aerobic digestion for increased solids reduction and nitrogen removal.

    PubMed

    Novak, John T; Banjade, Sarita; Murthy, Sudhir N

    2011-01-01

    A unique sludge digestion system consisting of anaerobic digestion followed by aerobic digestion and then a recycle step where thickened sludge from the aerobic digester was recirculated back to the anaerobic unit was studied to determine the impact on volatile solids (VS) reduction and nitrogen removal. It was found that the combined anaerobic/aerobic/anaerobic (ANA/AER/ANA) system provided 70% VS reduction compared to 50% for conventional mesophilic anaerobic digestion with a 20 day SRT and 62% for combined anaerobic/aerobic (ANA/AER) digestion with a 15 day anaerobic and a 5 day aerobic SRT. Total Kjeldahl nitrogen (TKN) removal for the ANA/AER/ANA system was 70% for sludge wasted from the aerobic unit and 43.7% when wasted from the anaerobic unit. TKN removal was 64.5% for the ANA/AER system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Decoupling of soil carbon and nitrogen turnover partly explains increased net ecosystem production in response to nitrogen fertilization

    NASA Astrophysics Data System (ADS)

    Ehtesham, Emad; Bengtson, Per

    2017-04-01

    During the last decade there has been an ongoing controversy regarding the extent to which nitrogen fertilization can increase carbon sequestration and net ecosystem production in forest ecosystems. The debate is complicated by the fact that increased nitrogen availability caused by nitrogen deposition has coincided with increasing atmospheric carbon dioxide concentrations. The latter could further stimulate primary production but also result in increased allocation of carbon to root exudates, which could potentially ‘prime’ the decomposition of soil organic matter. Here we show that increased input of labile carbon to forest soil caused a decoupling of soil carbon and nitrogen cycling, which was manifested as a reduction in respiration of soil organic matter that coincided with a substantial increase in gross nitrogen mineralization. An estimate of the magnitude of the effect demonstrates that the decoupling could potentially result in an increase in net ecosystem production by up to 51 kg C ha-1 day-1 in nitrogen fertilized stands during peak summer. Even if the effect is several times lower on an annual basis, the results still suggest that nitrogen fertilization can have a much stronger influence on net ecosystem production than can be expected from a direct stimulation of primary production alone.

  5. Excitation of atomic nitrogen by electron impact

    NASA Technical Reports Server (NTRS)

    Stone, E. J.; Zipf, E. C.

    1972-01-01

    Absolute cross sections were measured for the excitation of the N I(1134, 1164, 1168, 1200, 1243, and 1743 A) multiplets by electron impact on atomic nitrogen. The presence of vibrationally excited molecular nitrogen in the discharged gas was confirmed, and its effect on the measurements is discussed. The ratio of the oscillator strengths of the 1200 and 1134 A resonance transitions is presented, as well as the branching ratio for the N I(1311/1164 A) multiplets. Striking differences in the distribution of intensity between the spectra of atomic nitrogen and molecular nitrogen excited by energetic electrons suggest an optical method for measuring the density of atomic nitrogen in the upper atmosphere.

  6. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Treesearch

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  7. Quantification of phenolic acids and antioxidant potential of inbred, hybrid and composite cultivars of maize under different nitrogen regimes.

    PubMed

    Ganie, Arshid Hussain; Yousuf, Peerzada Yasir; Ahad, Amjid; Pandey, Renu; Ahmad, Sayeed; Aref, Ibrahim M; Noor, Jewel Jameeta; Iqbal, Muhammad

    2016-11-01

    Maize (Zea mays L.) is a multipurpose crop, which is immensely used worldwide for its nutritional as well as medicinal properties. This study evaluates the effect of varying concentrations of nitrogen (N) on accumulation of phenolic acids and antioxidant activity in different maize cultivars, including inbreds, hybrids and a composite, which were grown in natural light under controlled temperature (30°C/20°C D/N) and humidity (80%), with sufficient (4.5mM) and low (0.05mM) nitrogen supply. Seeds of different cultivars were powdered and extracted in a methanol:water (80:20) mixture through reflux at 60-75°C, and the extracts obtained were subjected to high performance thin layer chromatography (HPTLC), using ethyl acetate: acetic acid: formic acid: water (109:16:12:31) solvent system for the separation of phenolic acids. Antioxidant activity of the extracts was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2-scavenging activity assays. At sufficient nitrogen condition, the contents of different phenolic acids were higher in the composite cultivar (8.7 mg g-1 d.wt. in gallic acid to 39.3 mg g-1 d.wt. in cinnamic and salicylic acids) than in inbreds and hybrids. Under low nitrogen condition, the phenolic acids contents declined significantly in inbreds and hybrids, but remained almost unaffected in the composite. The antioxidant activity was also the maximum in the composite, and declined similarly as phenolic acids under low nitrogen supply, showing a significant reduction in inbreds and hybrids only. Therefore, the maize composite has a potential for being used as a nutraceutical in human-health sector.

  8. Food, Feed and Fuel: a Story About Nitrogen

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.; Burke, M. B.; Mooney, H. A.; Steinfeld, H.

    2008-12-01

    Humans obtain metabolic energy by eating food. Nitrogen is required to grow food, but natural supplies of N for human purposes have been inadequate since the beginning of the twentieth century. The Haber-Bosch process now provides a virtually inexhaustible supply of nitrogen, limited primarily by the cost of energy. However, most nitrogen used in food production is lost to the environment, where it cascades through environmental reservoirs contributing to many of the major environmental issues of the day. Furthermore, growing international trade in nitrogen-containing commodities is increasingly replacing wind and water as an important international transporter of nitrogen around the globe. Finally, the rapid growth in crop-based biofuels, and its attendant effects on the global production and trade of all agricultural commodities, could greatly affect global patterns of N use and loss. In the light of the findings above, this paper examines the role of nitrogen in food, feed and fuel production. It describes the beneficial consequences for food production and the negative consequences associated with the commodity nitrogen cascade and the environmental nitrogen cascade. The paper reviews estimates of future projections of nitrogen demands for food and fuel, including the impact of changing diets in the developing world. The paper concludes by presenting the potential interactions among global change, agricultural production and the nitrogen and carbon cycles.

  9. Atmosphere-Forest Exchange: Important Questions Regarding the Atmosphere's Role in the Delivery of Nutrient Nitrogen and Impacts on Nitrogen and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Carroll, M.; Shepson, P. B.; Bertman, S. B.; Sparks, J. P.; Holland, E. A.

    2002-12-01

    Atmosphere-Forest Exchange: Important Questions Regarding the Atmosphere's Role in the Delivery of Nutrient Nitrogen and Impacts on Nitrogen and Carbon Cycling Atmospheric composition and chemistry directly affect ecosystem nitrogen cycling and indirectly affect ecosystem carbon cycling and storage. Current understanding of atmosphere-forest nitrogen exchange and subsequent impacts is based almost exclusively on nitrogen deposition data obtained from networks using buckets placed in open areas, studies involving inorganic nitrogen, frequently with enhanced N deposition inputs applied only to soils, and that ignore multiple stresses (e.g., the combined effects of aerosols, ozone exposure, elevated CO2, and drought). Current models of nitrogen cycling treat deposited nitrogen (e.g., HNO3 and NO3-) as a permanent sink whereas data appear to indicate that photolytic and heterogeneous chemical processes occurring on surfaces and in dew can result in the re-evolution of gaseous species such as NO and HONO. Similarly, the direct uptake of gaseous nitrogen compounds by foliage has been neglected, compromising conclusions drawn from deposition experiments and ignoring a mechanism that may significantly affect nitrogen cycling and carbon storage, one that may become more significant with future atmospheric and climate change. We hypothesize that the atmosphere plays a significant role in the delivery of nutrient nitrogen to the N-limited mixed hardwood forest at the PROPHET research site at the University of Michigan Biological Station. We assert that a complete understanding of atmosphere- biosphere interactions and feedbacks is required to develop a predictive capability regarding forest response to increasing atmospheric CO2, reactive nitrogen, oxidants, and aerosols, increasing nitrogen and acidic deposition, and anticipated climate change. We further assert that conclusions drawn from studies that are limited to inorganic nitrogen, fertilization of soils, and/or that

  10. Nitrogen dynamics in organic and conventional cotton production systems in India

    NASA Astrophysics Data System (ADS)

    Duboc, O.; Adamtey, N.; Forster, D.; Cadisch, G.

    2012-04-01

    Ongoing population growth still represents a challenge to agricultural production (food, fiber and fuel material supply). In spite of the undeniable achievements reached with the "green revolution" technologies, there is a growing awareness among scientists and policy makers that diverse and integrated approaches which are both productive and sustainable are now necessary to meet the agricultural challenges. Integrated and organic agriculture are such alternatives which need to be better investigated and implemented. While long-term experiments in temperate regions have assessed the effect of organic agriculture on different crops and soil quality, there is currently a lack of reliable data from tropical regions, such as findings arising from long-term systems comparison trials. This has necessitated a long-term system comparison trials in Kenya, Bolivia and India by the Research Institute of Organic Agriculture (FiBL) and its partners (icipe, BioRe, Ecotop and Institute of Ecology) (www.systems-comparison.fibl.org). In India the project is based in Madhya Pradesh, in which organic and conventional production systems are being compared in a 2-yr crop rotation - cotton (yr 1) and soybean-wheat (yr 2). The field trial is planned for a time span of 10-20 years, in order to investigate long-term effects of those production systems on yields, soil characteristics, or economic return. A PhD study is incorporated into this project to investigate the effect of the production systems on soil characteristics. The main focus will be on nitrogen cycling under the different production systems. Particular attention will be given to nitrogen use efficiencies and the synchrony of nitrogen availability (e.g. nitrogen mineralization with the polyethylene bag technique, monitoring of soil mineral N) with plant nitrogen uptake, for which allometric equations will be calibrated in order to circumvent destructive sampling on the plots of the long-term experiment. Nitrogen losses

  11. Effects of different nitrogen reduction modes on yield of spring maize and nitrate - N residue in soils of the southern Loess Plateau

    NASA Astrophysics Data System (ADS)

    Dang, Tinghui; Dong, Qiang

    2017-04-01

    【Objectives】Excessive fertilization in farmland caused nitrate leaching and accumulation in soil, which not only reduced the fertilizer utilization rate, but also had potential environmental problems. The effects of different nitrogen reduction modes on yield of spring maize and soil NO3-N in the southern Loess Plateau were discussed, and scientific fertilization suggestions were put forward, which were of great significance to instruct local maize fertilization and protect environment safety. 【Methods】A field experiment was conducted in the south of the Loess Plateau for three years. Spring maize was planted with half plastic film mulching in one crop per annum.The experiment consisted of 5 N fertilization treatments: control treatment (CK),conventional N fertilization rate (Con), optimal N fertilizationⅠ(OptⅠ), optimal N fertilizationⅡ (Opt Ⅱ) and optimal N fertilization Ⅲ(Opt Ⅲ), The changes of yield of maize, nitrogen uptake and soil NO3-N were measured.【Results】The results showed that, compared with the conventional fertilization, the grain yield and N uptake of maize had no significant change under the three optimal N fertilization application models, the rate of the grain yield's change is 100 300kg/hm2. Compared with the conventional fertilization, agronomic efficiency of fertilizer-nitrogen and N partial fertilizer productivity were increased by 20.2% 23.2% and 21.9% 23.7%, respectively. The accumulation of nitrate nitrogen in profile (0-200 cm) decreased by 90.7 kg / hm2, 97.3 kg / hm2, 100.7 kg / hm2 ,respectively, with the decreases of 44.7%, 47.9% and 49.6% respectively.【Conclusions】The optimum nitrogen fertilization pattern did not affect spring maize yield and N uptake, and could improve agronomic efficiency of fertilizer-nitrogen and N partial fertilizer productivity. Under the same nitrogen application rate, the effects of adding nitrification inhibitor or slow-release fertilizer on nitrate-N residue were not obvious

  12. Spectroscopic investigation of nitrogen-functionalized carbon materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Kevin N.; Christensen, Steven T.; Nordlund, Dennis

    2016-04-07

    Carbon materials are used in a diverse set of applications ranging from pharmaceuticals to catalysis. Nitrogen modification of carbon powders has shown to be an effective method for enhancing both surface and bulk properties of as-received material for a number of applications. Unfortunately, control of the nitrogen modification process is challenging and can limit the effectiveness and reproducibility of N-doped materials. Additionally, the assignment of functional groups to specific moieties on the surface of nitrogen-modified carbon materials is not straightforward. Herein, we complete an in-depth analysis of functional groups present at the surface of ion-implanted Vulcan and Graphitic Vulcan throughmore » the use of X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS). Our results show that regardless of the initial starting materials used, nitrogen ion implantation conditions can be tuned to increase the amount of nitrogen incorporation and to obtain both similar and reproducible final distributions of nitrogen functional groups. The development of a well-controlled/reproducible nitrogen implantation pathway opens the door for carbon supported catalyst architectures to have improved numbers of nucleation sites, decreased particle size, and enhanced catalyst-support interactions.« less

  13. 40 CFR 52.1876 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan... change to the flow control date in the oxides of nitrogen budget trading SIP. (b) [Reserved] [69 FR 13234...

  14. 40 CFR 52.1876 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan... change to the flow control date in the oxides of nitrogen budget trading SIP. (b) [Reserved] [69 FR 13234...

  15. 40 CFR 52.1876 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan... change to the flow control date in the oxides of nitrogen budget trading SIP. (b) [Reserved] [69 FR 13234...

  16. 40 CFR 52.1876 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Nitrogen dioxide. 52...: Nitrogen dioxide. (a) The condition to EPA's approval of the oxides of nitrogen State Implementation Plan... change to the flow control date in the oxides of nitrogen budget trading SIP. (b) [Reserved] [69 FR 13234...

  17. Beyond fossil fuel-driven nitrogen transformations.

    PubMed

    Chen, Jingguang G; Crooks, Richard M; Seefeldt, Lance C; Bren, Kara L; Bullock, R Morris; Darensbourg, Marcetta Y; Holland, Patrick L; Hoffman, Brian; Janik, Michael J; Jones, Anne K; Kanatzidis, Mercouri G; King, Paul; Lancaster, Kyle M; Lymar, Sergei V; Pfromm, Peter; Schneider, William F; Schrock, Richard R

    2018-05-25

    Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. A key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils

    NASA Astrophysics Data System (ADS)

    Huygens, Dries; Boeckx, Pascal; Templer, Pamela; Paulino, Leandro; van Cleemput, Oswald; Oyarzún, Carlos; Müller, Christoph; Godoy, Roberto

    2008-08-01

    Nitrogen cycling is an important aspect of forest ecosystem functioning. Pristine temperate rainforests have been shown to produce large amounts of bioavailable nitrogen, but despite high nitrogen turnover rates, loss of bioavailable nitrogen is minimal in these ecosystems. This tight nitrogen coupling is achieved through fierce competition for bioavailable nitrogen by abiotic processes, soil microbes and plant roots, all of which transfer bioavailable nitrogen to stable nitrogen sinks, such as soil organic matter and above-ground forest vegetation. Here, we use a combination of in situ 15N isotope dilution and 15N tracer techniques in volcanic soils of a temperate evergreen rainforest in southern Chile to further unravel retention mechanisms for bioavailable nitrogen. We find three processes that contribute significantly to nitrogen bioavailability in rainforest soils: heterotrophic nitrate production, nitrate turnover into ammonium and into a pool of dissolved organic nitrogen that is not prone to leaching loss, and finally, the decoupling of dissolved inorganic nitrogen turnover and leaching losses of dissolved organic nitrogen. Identification of these biogeochemical processes helps explain the retention of bioavailable nitrogen in pristine temperate rainforests.

  19. Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors.

    PubMed

    Sun, Li; Fu, Yu; Tian, Chungui; Yang, Ying; Wang, Lei; Yin, Jie; Ma, Jing; Wang, Ruihong; Fu, Honggang

    2014-06-01

    Separated boron and nitrogen porous graphitic carbon (BNGC) is fabricated by a facile hydrothermal coordination/ZnCl2-activation process from renewable and inexpensive nitrogen-containing chitosan. In this synthetic pathway, chitosan, which has a high nitrogen content, first coordinates with Fe(3+) ions to form chitosan-Fe that subsequently reacts with boric acid (boron source) to generate the BNGC precursor. After simultaneous carbonization and ZnCl2 activation followed by removal of the Fe catalyst, BNGC, containing isolated boron and nitrogen centers and having a high surface area of 1567 m(2)  g(-1) and good conductivity, can be obtained. Results indicate that use of chitosan as a nitrogen-containing carbon source effectively prevents nitrogen atoms from direct combination with boron atoms. In addition, the incorporation of Fe(3+) ions not only endows BNGC with high graphitization, but also favors for nitrogen fixation. Remarkably, the unique microstructure of BNGC enables its use as an advanced electrode material for energy storage. As electrode material for supercapacitors, BNGC shows a high capacitance of 313 F g(-1) at 1 A g(-1), and also long-term durability and coulombic efficiency of >99.5 % after 5000 cycles. Notably, in organic electrolytes, the energy density could be up to 50.1 Wh kg(-1) at a power density of 10.5 kW kg(-1). The strategy developed herein opens a new avenue to prepare BNGC without inactive BN bonds from commercially available chitosan for high-performance supercapacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical determination of particulate nitrogen in San Francisco Bay. Nitrogen: chlorophyll a ratios in plankton

    USGS Publications Warehouse

    Hager, S.W.; Harmon, D.D.; Alpine, A.E.

    1984-01-01

    Particulate nitrogen (PN) and chlorophyll a (Chla) were measured in the northern reach of San Francisco Bay throughout 1980. The PN values were calculated as the differences between unfiltered and filtered (0??4 ??m) samples analyzed using the UV-catalyzed peroxide digestion method. The Chla values were measured spectrophotometrically, with corrections made for phaeopigments. The plot of all PN Chla data was found to be non-linear, and the concentration of suspended particulate matter (SPM) was found to be the best selector for linear subsets of the data. The best-fit slopes of PN Chla plots, as determined by linear regression (model II), were interpreted to be the N: Chla ratios of phytoplankton. The Y-intercepts of the regression lines were considered to represent easily-oxidizable detrital nitrogen (EDN). In clear water ( < 10 mg l-1 SPM), the N: Chla ratio was 1??07 ??g-at N per ??g Chla. It decreased to 0??60 in the 10-18 mg l-1 range and averaged 0??31 in the remaining four ranges (18-35, 35-65, 65-155, and 155-470 mg l-1). The EDN values were less than 1 ??g-at N l-1 in the clear water and increased monotonically to almost 12 ??g-at N l-1 in the highest SPM range. The N: Chla ratios for the four highest SPM ranges agree well with data for phytoplankton in light-limited cultures. In these ranges, phytoplankton-N averaged only 20% of the PN, while EDN averaged 39% and refractory-N 41%. ?? 1984.

  1. Nitrogen Deposition: A Component of Global Change Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the developmentmore » of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.« less

  2. SEMICONDUCTOR TECHNOLOGY: Influence of nitrogen dose on the charge density of nitrogen-implanted buried oxide in SOI wafers

    NASA Astrophysics Data System (ADS)

    Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang

    2010-02-01

    To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.

  3. Comparing Institution Nitrogen Footprints: Metrics for ...

    EPA Pesticide Factsheets

    When multiple institutions with strong sustainability initiatives use a new environmental impact assessment tool, there is an impulse to compare. The first seven institutions to calculate their nitrogen footprints using the nitrogen footprint tool have worked collaboratively to improve calculation methods, share resources, and suggest methods for reducing their footprints. This paper compares the results of those seven results to reveal the common and unique drivers of institution nitrogen footprints. The footprints were compared by scope and sector, and the results were normalized by multiple factors (e.g., population, number of meals served). The comparisons found many consistencies across the footprints, including the large contribution of food. The comparisons identified metrics that could be used to track progress, such as an overall indicator for the nitrogen sustainability of food purchases. The results also found differences in system bounds of the calculations, which are important to standardize when comparing across institutions. The footprints were influenced by factors that are both within and outside of the institutions’ ability to control, such as size, location, population, and campus use. However, these comparisons also point to a pathway forward for standardizing nitrogen footprint tool calculations, identifying metrics that can be used to track progress, and determining a sustainable institution nitrogen footprint. This paper is being submitt

  4. ATMOSPHERIC NITROGEN FIXATION BY METHANE-OXIDIZING BACTERIA

    PubMed Central

    Davis, J. B.; Coty, V. F.; Stanley, J. P.

    1964-01-01

    Davis, J. B. (Socony Mobil Oil Co., Inc., Dallas, Tex.), V. F. Coty, and J. P. Stanley. Atmospheric nitrogen fixation by methane-oxidizing bacteria. J. Bacteriol. 88:468–472. 1964.—Methane-oxidizing bacteria capable of fixing atmospheric nitrogen were isolated from garden soil, pond mud, oil field soil, and soil exposed to natural gas, indicating a rather wide prevalence in nature. This may explain the high concentration of organic nitrogen commonly found in soils exposed to gas leakage from pipelines or natural-gas seeps. Added molybdenum was a requirement for growth in a nitrogen-free mineral salts medium. All nitrogen-fixing, methane-oxidizing bacteria isolated were gram-negative, nonsporeforming, usually motile rods. Colonies were light yellow, yellow, or white. The most common isolate, which formed light-yellow colonies, is referred to as Pseudomonas methanitrificans sp. n., and is distinguished from Pseudomonas (Methanomonas) methanica by nitrogen-fixing ability and a preponderance of poly-β-hydroxybutyrate in the cellular lipid fraction. Images PMID:14203365

  5. Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China

    PubMed Central

    Xu, Xiaotian; Liu, Hongyan; Song, Zhaoliang; Wang, Wei; Hu, Guozheng; Qi, Zhaohuan

    2015-01-01

    Although nitrogen addition and recovery from degradation can both promote production of grassland biomass, these two factors have rarely been investigated in combination. In this study, we established a field experiment with six N-treatment (CK, 10, 20, 30, 40, 50 g N m−2 yr−1) on five fields with different degradation levels in the Inner Mongolian steppe of China from 2011–2013. Our observations showed that while the external nitrogen increased the aboveground biomass in all five grasslands, the magnitude of the effects differed with the severity of degradation. Fields with a higher level of degradation tended to have a higher saturation value (20 g N m−2 yr−1) than those with a lower degradation level ( < 10 g N m−2 yr−1). After three years of experimentation, species richness showed little change across degradation levels. Among the four functional groups of grasses, sedges, forbs and legumes, grasses shared the most similar response patterns with those of the whole community, demonstrating the predominant role that they play in the restoration of grassland under a stimulus of nitrogen addition. PMID:26194184

  6. Electrochemical process for the preparation of nitrogen fertilizers

    DOEpatents

    Aulich, Ted R [Grand Forks, ND; Olson, Edwin S [Grand Forks, ND; Jiang, Junhua [Grand Forks, ND

    2012-04-10

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.

  7. U.S. nitrogen science plan focuses collaborative efforts

    NASA Astrophysics Data System (ADS)

    Holland, E. A.; Guenther, A.; Lee-Taylor, J.; Bertman, S. B.; Carroll, M. A.; Shepson, P. B.; Sparks, J. P.

    Nitrogen is a major nutrient in terrestrial ecosystems and an important catalyst in tropospheric photochemistry. Over the last century human activities have dramatically increased inputs of reactive nitrogen (Nr, the combination of oxidized, reduced, and organically bound nitrogen) to the Earth system (Figure 1). Nitrogen cycle perturbations have compromised air quality and human health, acidified ecosystems, and degraded and eutrophied lakes and coastal estuaries [Vitousek et al., 1997a, 1997b; Rabalais, 2002; Howarth et al., 2003; Townsend et al., 2003; Galloway et al., 2004].Increased Nr affects global climate. Use of agricultural fertilizers such as ammonium nitrate leads to increased soil production of nitrous oxide (N2O), which has 320 times the global warming potential of carbon dioxide (CO2). Emission of nitrogen oxides (NOx = nitric oxide, NO + nitrogen dioxide, NO2) from fossil fuel burning leads to increases in tropospheric ozone, another greenhouse gas. Ozone is phytotoxic, and may reduce terrestrial CO2 sequestration. To predict the effects of nitrogen cycling changes under changing climatic conditions, there needs to be a better understanding of the global nitrogen budget.

  8. [Removal of nitrogen and phosphorus in eutrophic water by Jussiaea stipulacea Ohwi].

    PubMed

    Wang, Chao; Zhang, Wen-ming; Wang, Pei-fang; Hou, Jun

    2007-05-01

    Jussiaea stipulacea Ohwi, a native kind of floating vegetation resembling Alternanthera philoxeroides (Mart.) Griseb., is widespread in ditches, ponds and rivers of Taihu Lake Basin. Its growth habits indicate its potential use in aquatic ecological restoration in Taihu Lake Basin. The removal effects of Jussiaea stipulacea Ohwi on nitrogen and phosphorus in eutrophic water were further studied in indoor experiment, as well as in field observation. The results of indoor experiment show that in summer, the removal rate for total nitrogen was 60%, which is 1.6, 1.9 and 2.8 times greater than that of Eichhornia crassipes (Mart.) Solms., Alternanthera philoxeroides (Mart.) Griseb., and control, respectively, and the removal rate for total phosphorus was about 25%, which is 0.3 times lower than that of Eichhornia crassipes (Mart.) Solms., but 0.9 and 4 times higher than that of Alternanthera philoxeroides (Mart.) Griseb., and control, in winter, the removal rates for total nitrogen and total phosphorus were 23% and 20%, 2.3 and 1 times higher than that of control; Jussiaea stipulacea Ohwi also has good removal effects for ammonia and nitrite. And the results of field observation in Linzhuanggang River, Yixing City, show that the removal rates of total nitrogen and total phosphorus in July to October were 10.2%-19.6% and 23.4%-41.6% in the reach with Jussiaea stipulacea Ohwi, while only 0.1%-1.6% and 3.7%-5.6% in control reach. Based on its good purifying effect on nitrogen and phosphorus in indoor experiment and field observation, the indigene Jussiaea stipulacea Ohwi is recommended as one species of aquatic vegetation in phytoremediation for eutrophic water in rivers of Tailu Lake Basin.

  9. CHARACTERIZATION OF A SPATIAL GRADIENT OF NITROGEN DIOXIDE ACROSS A UNITED STATES-MEXICO BORDER CITY DURING WINTER

    EPA Science Inventory

    A gradient of ambient nitrogen dioxide (NO2) concentration is demonstrated across metropolitan El Paso, Texas (USA), a city located on the international border between the United States and Mexico. Integrated measurements of NO2 were collected over seven days at 20 elementary sc...

  10. Suppressing Nitrite-oxidizing Bacteria Growth to Achieve Nitrogen Removal from Domestic Wastewater via Anammox Using Intermittent Aeration with Low Dissolved Oxygen

    PubMed Central

    Ma, Bin; Bao, Peng; Wei, Yan; Zhu, Guibing; Yuan, Zhiguo; Peng, Yongzhen

    2015-01-01

    Achieving nitrogen removal from domestic wastewater using anaerobic ammonium oxidation (anammox) has the potential to make wastewater treatment energy-neutral or even energy-positive. The challenge is to suppress the growth of nitrite-oxidizing bacteria (NOB). This study presents a promising method based on intermittent aeration with low dissolved oxygen to limit NOB growth, thereby providing an advantage to anammox bacteria to form a partnership with the ammonium-oxidizing bacteria (AOB). The results showed that NOB was successfully suppressed using that method, with the relative abundance of NOB maintained between 2.0–2.6%, based on Fluorescent in-situ Hybridization. Nitrogen could be effectively removed from domestic wastewater with anammox at a temperature above 20 °C, with an effluent total nitrogen (TN) concentration of 6.6 ± 2.7 mg/L, while the influent TN and soluble chemical oxygen demand were 62.6 ± 3.1 mg/L and 88.0 ± 8.1 mg/L, respectively. PMID:26354321

  11. Watershed delineation and nitrogen source analysis for Bayou ...

    EPA Pesticide Factsheets

    Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen loading stimulates eutrophication through algal blooms, which leads to an overall decrease in drinking water and aquatic habitat quality. Bayou Chico, a highly urbanized watershed in the Pensacola Bay system in northwest Florida, is a nutrient-impaired waterbody under management to reduce bacteria and nutrient loadings, in accordance with the Florida Department of Environmental Protection’s (FDEP) Basin Management Action Plan. Best management practices and green infrastructure (GI) throughout Bayou Chico help reduce nitrogen inputs by retaining and filtering water. GI can function as a nitrogen sink by sorption or infiltration into soils, sequestration into plant material, and denitrification through microbial processes. However, a better understanding of the efficiency of these systems is needed to better inform management practices on future nitrogen reduction. This project will address two issues relating to the presence of nitrogen in the Bayou Chico watershed: 1) the identification of specific nitrogen sources within urbanized areas, and 2) the potential rates of nitrogen removal and sequestration from GI and nitrogen transport throughout the bayou. To accomplish these goals, nitr

  12. Atmospheric Nitrogen Deposition and the Properties of Soils in Forests of Vologda Region

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, I. Yu.; Ivashchenko, K. V.; Ananyeva, N. D.; Ivanishcheva, E. A.

    2018-02-01

    Twenty plots (20 m2 each) were selected in coniferous and mixed forests of the industrial Vologda district and the Vytegra district without developed industries in Vologda region. In March, snow cores corresponding to the snow cover depth were taken on these plots. In August, soil samples from the 0- to 20-cm layer of litter-free soddy-podzolic soil (Albic Retisol (Ochric)) were taken on the same plots in August. The content of mineral nitrogen (Nmin), including its ammonium (NH+ 4) and nitrate (NO- 3) forms, was determined in the snow (meltwater) and soil. The contents of total organic carbon, total nitrogen, and elements (Al, Ca); pH; particle size distribution; and microbiological parameters―carbon of microbial biomass (Cmic) and microbial respiration (MR)―were determined in the soil. The ratio MR/Cmic = qCO2 (specific respiration of microbial biomass, or soil microbial metabolic quotient) was calculated. The content of Nmic in meltwater of two districts was 1.7 mg/L on the average (1.5 and 0.3 mg/L for the NH+ 4 and NO- 3 forms, respectively). The annual atmospheric deposition was 0.6-8.9 kg Nmin/ha, the value of which in the Vologda district was higher than in the Vytegra district by 40%. Reliable correlations were found between atmospheric NH+ 4 depositions and Cmic (-0.45), between NH+ 4 and qCO2 (0.56), between atmospheric NO- 3 depositions and the soil NO- 3 (-0.45), and between NO- 3 and qCO2 (-0.58). The content of atmospheric Nmin depositions correlated with the ratios C/N (-0.46) and Al/Ca (-0.52) in the soil. In forests with the high input of atmospheric nitrogen (>2.0 kg NH+ 4/(ha yr) and >6.4 kg Nmin/(ha yr)), a tendency of decreasing Cmic, C/N, and Al/Ca, as well as increasing qCO2, was revealed, which could be indicative of deterioration in the functioning of microbial community and the chemical properties of the soil.

  13. Assessing dissolved inorganic nitrogen flux in the Yangtze River, China: Sources and scenarios

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Chen, Zhongyuan; Finlayson, Brian; Webber, Michael; Wu, Xiaodan; Li, Maotian; Chen, Jing; Wei, Taoyuan; Barnett, Jon; Wang, Mark

    2013-07-01

    This study gives a thorough assessment of the occurrences of dissolved inorganic nitrogen (DIN) in the Yangtze River in the past half century. The results have shown that nitrogen fertilizer, a major DIN source, has been replaced by domestic sewage in the last decade, which has dramatically driven up DIN loads in the Yangtze. DIN concentrations showed a rapid increase from < 0.5 mg L- 1 in the 1960s to nearly 1.5 mg L- 1 at the end of the 1990s. Since then DIN has remained steady at ca. 1.6-1.8 mg L- 1. A significant relationship between the historical DIN record at the downstream gauging station (Datong) and nitrogen (N) sources in the Yangtze River basin is established using principal components analysis. This allows us to apportion DIN loads for the year 2007 (the most recent year of measured DIN data available) to various N sources, listed here in order of weight: sewage (0.391 million tons); atmosphere (0.358 million tons); manure (0.318 million tons), N-fertilizer (0.271 million tons). Therefore, we estimated that a DIN load of 1.339 × 106 t was delivered to the lower Yangtze and its estuarine water in that year. We established scenarios to predict DIN concentrations in the lower Yangtze at 10 year intervals to 2050. For a dry year (20,000 m3 s- 1) DIN concentrations would range from 2.2-3.0 mg L- 1 for 2020-2050. This far exceeds the 2.0 mg L- 1 defined on the Chinese National Scale as the worst class for potable source water. The scenario results suggest that upgrading the sewage treatment systems throughout the basin will be an effective way to help reduce DIN concentrations to less than 2.0 mg L- 1 in the lower Yangtze. This would save the Shanghai megacity from the increasing threat of heavily polluted water sources, where > 23 million people are at present dependent on the Yangtze estuary for 70% of their freshwater intake.

  14. The Nitrogen Cycle During the Transition to Euxinia

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Kump, L. R.; Ridgwell, A.

    2008-12-01

    Nitrogen and phosphorous are essential to life, and their biological availability is hypothesized to regulate marine productivity on short and geologic timescales. The nature of primary production during recurrent intervals of Phanerozoic anoxia is of particular interest because of the redox control of nutrient and trace metal availability. Dissolved phosphate likely increased during transitions from oxic to euxinic marine conditions, while nitrogen availability may have decreased due to extensive denitrification as low-oxygen waters spread. Because nitrogen fixation is both metabolically and trace-metal intensive, a key question in the transition to euxinia is whether nitrogen fixation can "keep pace" with denitrification. If denitrification exceeds nitrogen fixation, diminished export production and oxygen demand in an N-limited ocean would pose a negative feedback that may prevent euxinia altogether or initiate the shift back to oxic conditions. Here we use the GENIE-1 Earth system model to address the biogeochemistry of the oxic-euxinic transition characteristic of some Phanerozoic oceanic anoxic events. As previously demonstrated with box models, phosphate accumulation stimulates both nitrogen fixation and denitrification. While there is an initial transient loss of total fixed nitrogen from the ocean, nitrogen inputs eventually exceed losses, and the marine nitrogen reservoir grows with that of phosphate to significantly exceed its modern value. Nitrogen buildup also corresponds with a shift in ecology of the surface ocean and the unexpected initiation of non-Redfieldian stoichiometry in the chemistry of the deep ocean.

  15. Soil nitrogen dynamics in a river floodplain mosaic.

    PubMed

    Shrestha, J; Niklaus, P A; Frossard, E; Samaritani, E; Huber, B; Barnard, R L; Schleppi, P; Tockner, K; Luster, J

    2012-01-01

    In their natural state, river floodplains are heterogeneous and dynamic ecosystems that may retain and remove large quantities of nitrogen from surface waters. We compared the soil nitrogen dynamics in different types of habitat patches in a restored and a channelized section of a Thur River floodplain (northeast Switzerland). Our objective was to relate the spatiotemporal variability of selected nitrogen pools (ammonium, nitrate, microbial nitrogen), nitrogen transformations (mineralization, nitrification, denitrification), and gaseous nitrogen emission (NO) to soil properties and hydrological processes. Our study showed that soil water content and carbon availability, which depend on sedimentation and inundation dynamics, were the key factors controlling nitrogen pools and processes. High nitrogen turnover rates were measured on gravel bars, characterized by both frequent inundation and high sediment deposition rates, as well as in low-lying alluvial forest patches with a fine-textured, nutrient-rich soil where anaerobic microsites probably facilitated coupled nitrification-denitrification. In contrast, soils of the embankment in the channelized section had comparatively small inorganic nitrogen pools and low transformation rates, particularly those related to nitrate production. Environmental heterogeneity, characteristic of the restored section, favors nitrogen removal by creating sites of high sedimentation and denitrification. Of concern, however, are the locally high NO efflux and the possibility that nitrate could leach from nitrification hotspots. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations

    PubMed Central

    Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber

    2016-01-01

    The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20–30 nm) were synthesized with and without nitrogen doping using a sol–gel method. Ultraviolet–Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations. PMID:27980404

  17. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations.

    PubMed

    Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber

    The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20-30 nm) were synthesized with and without nitrogen doping using a sol-gel method. Ultraviolet-Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations.

  18. Effects of water and nitrogen availability on nitrogen contribution by the legume, Lupinus argenteus Pursh

    Treesearch

    Erin Goergen; Jeanne C. Chambers; Robert Blank

    2009-01-01

    Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentration, nodulation, nodule activity, and rhizodeposition of ...

  19. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    NASA Astrophysics Data System (ADS)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  20. Global assessment of nitrogen fertilizer: the SCOPE/IGBP nitrogen fertilizer rapid assessment project.

    PubMed

    Mosier, Arvin R; Syers, J Keith; Freney, John R

    2005-12-01

    Nitrogen (N) availability is a key role in food and fiber production. Providing plant-available N through synthetic fertilizer in the 20th and early 21st century has been a major contributor to the increased production required to feed and clothe the growing human population. To continue to meet the global demands and to minimize environmental problems, significant improvements are needed in the efficiency with which fertilizer N is utilized within production systems. There are still major uncertainties regarding the fate of fertilizer N added to agricultural soils and the potential for reducing losses to the environment. Enhancing the technical and economic efficiency of fertilizer N is seen to promote a favorable situation for both agricultural production and the environment, and this has provided much of the impetus for a new N fertilizer project. To address this important issue, a rapid assessment project on N fertilizer (NFRAP) was conducted by SCOPE (the Scientific Committee on Problems of the Environment) during late 2003 and early 2004. This was the first formal project of the International Nitrogen Initiative (INI). As part of this assessment, a successful international workshop was held in Kampala, Uganda on 12 -16 January, 2004. This workshop brought together scientists from around the world to assess the fate of synthetic fertilizer N in the context of overall N inputs to agricultural systems, with a view to enhancing the efficiency of N use and reducing negative impacts on the environment. Regionalization of the assessment highlighted the problems of too little N for crop production to meet the nutrient requirements of sub-Saharan Africa and the oversupply of N in the major rice-growing areas of China. The results of the assessment are presented in a book (SCOPE 65) which is now available to provide a basis for further discussions on N fertilizer.